AN OPTIMIZATION MODEL: MINIMIZING FLOUR MILLERS' COSTS OF PRODUCTION BY BLENDING WHEAT AND ADDITIVES

by

PHILIPPE STEFFAN

M.A., Université de Nancy II, France, 1982 M.B.A., Warwick Business School, UK, 2006

A THESIS

Submitted in partial fulfillment of the requirements

for the degree

MASTER OF AGRIBUSINESS

Department of Agricultural Economics

College of Agriculture

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012

Approved by:

Major Professor Dr. Jason Bergtold

ABSTRACT

Grands Moulins d'Abidjan (GMA) is a flour milling company operating in Côte d'Ivoire. It wishes to determine the optimal blend of wheat and additives that minimizes its costs of production while meeting its quality specifications. Currently, the chief miller selects the mix of ingredients. The management of the company would like to dispose of a scientific tool that challenges the decisions of the chief miller.

The thesis is about building and testing this tool, an optimization model.

GMA blends up to six ingredients into flour: soft wheat, hard wheat, gluten, ascorbic acid and two types of enzyme mixes. Quality specifications are summarized into four flour characteristics: protein content, falling number, Alveograph W and specific volume of a baguette after four hours of fermentation. GMA blending problem is transformed into a set of equations. The relationships between ingredients and quality parameters are determined with reference to grains science and with the help of linear regression.

The optimization model is implemented in Microsoft Office Excel 2010, in two versions. In the first one (LP for Linear Programming model), it is assumed that weights of additives can take any value. In the second one (ILP for Integer Linear Programming model), some technical constraints restrain the set of values that weights of additives can take.

The two models are tested with Premium Solver V11.5 from Frontline Systems Inc., against four situations that actually occurred at GMA in 2011 and 2012,.

The solutions provided by the model are sensible. They challenge the ones that were actually implemented. They may have helped GMA save money.

The optimization model can nevertheless be improved. The choice of relevant quality parameters can be questioned. Equations that link ingredients and quality parameters, and particularly those determined with the help of linear regression, should be further researched. The optimization model should also take into account some hidden constraints such as logistics that actually influence the decision of GMA chief miller. Finally, sensitivity analyses may also be used to provide alternative solutions.

TABLE OF CONTENTS

List of Figures	vii
List of Tables	viii
Acknowledgments	X
Chapter I: Introduction	1
1.1 Thesis objective	1
1.2 Limitations	4
1.3 Framework	5
CHAPTER II: LITERATURE REVIEW	6
CHAPTER III: DATA AND METHODS 1 MATHEMATICAL ANALYSIS	8
3.1 Optimization of wheat and additives blending	8
3.1.1 The Decision Variables.3.1.2 The Objective Function.3.1.3 The Constraints	8 9 9
3.1.4 Linearity3.2 Decision variables: ingredients of the mix, wheat and additives	10 11
 3.2.1 Soft wheat	11 12 13 13 14 14
 3.3.1 GMA milling process and the incorporation of ingredients 3.3.2 Incorporation of wheat 3.3.3 Incorporation of additives	15 16 17 20
 3.4.1 Previous literature	21 23 24 25
 3.5.1 Flour protein content	25 26 27 29

3.6 Quality constraints: equations (LHS)	32
3.6.1 Flour protein content.3.6.2 Flour falling number	33
3.6.3 Alveograph W	38
3.6.4 Specific volume of baguette after 4 nours of fermentation	41
2.7.1 The Objective Exection	1 1
3.7.1 The Objective Function	44 45
3.7.3 Technical constraints	45
3.7.4 Quality constraints	45
CHAPTER IV: DATA AND METHODS COMPUTER IMPLEMENTATION	47
4.1 Solver	47
4.2 Models	48
4.2.1 The LP Model	49
4.2.3 The ILP model.	53
CHAPTER V: RESULTS	57
5.1 Results	57
5.2 Discussion	62
5.2.1 Different optimization model solutions: LP vs. ILP	62
5.2.2 Optimization model solutions vs. actual blends	64
5.3 Optimization model quality constraints equations.	70
5.3.1 Test of quality constraint equations	70
5.3.2 Actual flour and quality specifications	74 7 6
CHAITER VI.SUMMART AND CONCLUSIONS	/0
Appendix A: Analysis of redundancy (correlation) of quality parameters	80
Appendix B: Quality tests on different blends of wheat and additives	82
Appendix C: Test of Equation FPC1 on flours made of wheat and gluten only	84
Appendix D: Test of Equation FPC1 on flours made of wheat and additives	85
Appendix E: Test of Equation LNR1 on flours made of wheat only	87
Appendix F: Test of Equation LNR1 on flours made of wheat and additives	88
Appendix G: Test of Equation LNR2	90
Appendix H: Test of Equation ALW1 on flours made of wheat only	92
Appendix I: Test of Equation ALW1 on flours made of wheat and additives	93
Annendiy I: Test of Faustion AI W?	05
Appendix 5. 1 (5) of Equation AE W 2	

Appendix K: Test of Equation BVL1	97
Appendix L: Test of Equation BVL2	
Appendix M: Quality tests of actual flours	

LIST OF FIGURES

Figure 1.1: GMA Logo	1
Figure 1.2: Baguettes at GMA test bakery	2
Figure 1.3: General view of GMA silos and flour mill	4
Figure 3.1: Ship unloading wheat at GMA facilities	15
Figure 3.2: GMA dosing scales	16
Figure 3.3: Flour Protein Content test	26
Figure 3.4: Falling Number test	27
Figure 3.5: Example of Alveograph curve	
Figure 3.6: Volumeter test	30
Figure 3.7: Weighing baguettes	31
Figure 4.1: LP optimization model on Excel	49
Figure 4.2: LP Premium Solver V11.5 Parameters box	51
Figure 4.3: LP Premium Solver V11.5 Guided mode	52
Figure 4.4: LP Premium Solver V11.5 Options Box	
Figure 4.5: ILP optimization model on Excel	55
Figure 4.6: ILP Premium Solver V11.5 Parameters Box	55
Figure 4.7: ILP Premium Solver V11.5 Options Box	56
Figure 5.1: Premium Solver V11.5 - LP optimization model – February 2011	58
Figure 5.2: Premium Solver V11.5 - ILP optimization model – February 2011	59
Figure 5.3: Premium Solver V11.5 - ILP Answer Report – February 2011	60
Table 5.4: LP and ILP optimal solutions vs. actual ones	61
Figure 5.4: Rounded LP optimization model – February 2011	63
Figure 5.5: ILP optimization model – February 2011 Answer Report	67
Figure 5.6: LP optimization model – February 2011 Sensitivity Report	69
Figure 6.1: GMA flour mill staff	76

LIST OF TABLES

Table 3.1: Objective Function Formula	.9
Table 3.2: Constraint Formulas	.9
Table 3.3: Linear Constraint Formulas 1	1
Table 3.4: Impact of calculations on incorporation rates of additives	19
Table 3.5: Additives Weight Sets 2	20
Table 3.6: Quality parameters in previous literature 2	22
Table 3.7: GMA quality specifications 3	31
Table 3.8: Regression Analyses β coefficients	32
Table 3.9: Equation FPC1 – Flour Protein Content	33
Table 3.10: Equation LNR1 – Liquefaction Number3	35
Table 3.11: Equation LNR1 – Liquefaction Number – Soft wheat and hard wheat	
only3	36
Table 3.12: Equation LNR2 – Liquefaction Number3	38
Table 3.13: Equation ALW1 – Alveograph W3	39
Table 3.14: Equation ALW1 – Alveograph W – Soft wheat and hard wheat only3	39
Table 3.15: Equation ALW2 – Alveograph W4	10
Table 3.16: Equation ALW3 – Alveograph W4	1 1
Table 3.17: Equation BVL1 – Specific Volume of Baguette4	12
Table 3.18: Equation BVL2 – Specific Volume of Baguette4	13
Table 3.19: Optimization Model – Objective Function4	14
Table 3.20: Optimization Model - Self-binding Constraints 4	1 5
Table 3.21: Optimization Model - Technical Constraints 4	15
Table 3.22: Optimization Model – Quality Constraints 4	1 5
Table 4.1: LP/ILP model - Units Correspondence Table	53
Table 4.2: LP/ILP model - Technical Constraints Correspondence Table	53
Table 4.3: LP/ILP model - Unit Prices Correspondence Table	54
Table 4.4: LP/ILP model – Quality Constraints Correspondence Table	54
Table 4.5: LP/ILP model – Sum of Weights Correspondence Table	54
•••	

Table 5.1: Soft wheat quality parameters
Table 5.2: Hard wheat quality parameters
Table 5.3: Unit prices of ingredients
Table 5.5: Rounded LP optimal solutions
Table 5.6: Price of optimal solutions vs. actual blends
Table 5.7: Quality constraints of optimal vs. actual solutions 66
Table 5.8: Optimal solutions binding constraints and quality parameters of actual
blends67
Table 5.9: Quality parameters of actual samples of flour
Table 5.10: Normal Distribution Confidence Intervals 71
Table 5.11: Quality parameters: computed figures vs. confidence intervals 72
Table 5.12: Quality parameters: computed figures vs. confidence intervals - Summary73
Table 5.13: Flour quality standards vs. actual74

ACKNOWLEDGMENTS

The author wishes to US Wheat Associates. Messrs. Edward Wiese, Gerald Theus, James McKenna, Peter Lloyd do a wonderful job promoting US wheat in Africa. They gave the author the opportunity to visit the USA and to attend the flour milling short course of the International Grains Program at Kansas State University. It was during this short course that the author first heard about the MAB program.

The production department of Grands Moulins d'Abidjan provided all the data that made this thesis possible. The author seizes the opportunity to thank all the staff from this department for all the good work they do all year long.

Finally, this project would never been achieved without the support of the author's wife and son, Julienne and Pierre.

CHAPTER I: INTRODUCTION

The profitability of a firm depends upon both the quality of its outputs and the costs of its inputs. In the flour milling industry, to be profitable, a firm must produce flour that meets the needs of its customers by choosing the correct blend of wheat and additives that is as cheap as possible.

The second element of this statement is of particular importance. Wheat and additives represent more than eighty percent of the total production costs of flour millers. However, if cheap production prices result in flour of poor quality, it will have adverse effects on operational efficiency.

Economists have designed tools that deal with such issues. Operations research and optimization techniques simplify economic reality by using mathematical models in order to find an optimal solution and inform decision making.

The present thesis is about the implementation of an optimization model.

1.1 Thesis objective

The objective of the thesis is to determine <u>the optimal economic blend of wheat and</u> <u>additives that minimizes flour miller's cost of production while meeting quality</u> <u>requirements</u>. The modeling effort is based on facts and figures provided by Grands Moulins d'Abidjan (GMA), a flour milling company operating in Côte d'Ivoire in West Africa.

Figure 1.1: GMA Logo

GMA processes about 250,000 tons of wheat per year. Ninety percent of GMA flour is sold to small bakeries, which almost exclusively produce baguettes, a French type bread. Much smaller percentages of GMA flour are used to produce pan bread, cookies and pastries. The present thesis will focus on bakery flour designed for making baguettes.

Figure 1.2: Baguettes at GMA test bakery

Since wheat does not grow in Côte d'Ivoire, GMA has to import it by sea vessels from other areas of production. Quite logically, French soft wheat is well adapted to the production of French type bread. For many years, GMA only imported French wheat in order to produce its flour.

However, over time, in order to satisfy the needs of Ivorian bakers, as well as to keep pace with market developments, GMA has started to blend other ingredients.

Hard wheat from North America brings higher protein content and strength to GMA flour. Additives such as gluten, ascorbic acid or enzyme mixes modify flour characteristics. From a technical point of view, such additives are complementary products to wheat. From an economic point of view, hard wheat and additives can, to some extent and for some characteristics, be considered as soft wheat substitutes. When some desired characteristics of soft wheat are not available at hand, hard wheat or additives can be used as replacements. The specific operating conditions of GMA reinforce the importance of the issue of blending wheat and additives.

Every year, GMA receives about 15 vessels, each of them carrying an average of 15,000 tons of soft wheat. The quality of wheat of each cargo varies from ship to ship. Due to this variation, in order to maintain quality standards, GMA has to deal with blending problems about every three weeks, whenever it ends up with one cargo of wheat and switches to the next one.

GMA is located far away from wheat production areas and wheat cannot be delivered except by sea vessels. It takes at least four weeks between the moment an order is placed and the moment wheat is delivered to Abidjan. When the expected specifications of a cargo are not met, GMA may ask for some refund from its suppliers, but it must nevertheless process the wheat that has actually been received and wait several weeks for another shipment. Unfortunately, such a problem occurs from time to time. The only solution is to design an appropriate mix of ingredients, at short notice, to meet needed standards.

The chief miller is responsible for the blending decision. He knows the different specifications and characteristics of ingredients, wheat and additives, in his possession. He knows what type of flour must be produced. Capitalizing upon his experience, he designs a satisfactory blend. This way of doing things has proved to be quite efficient over the years. However, the management of the company believes this process can be improved.

An optimization model could help GMA define the mix of wheat and additives that both meets the needs of its customers, while being the least expensive. The optimum defined by this program should not replace the decision of the chief miller. However, based upon a scientific approach, it could challenge his proposal and give rise to a hopefully fruitful discussion before a final decision is made.

Figure 1.3: General view of GMA silos and flour mill

1.2 Limitations

Flour milling has to deal with blending techniques. Flour millers purchase wheat from different geographical origins or from different classes or grades. Out of these different inputs, they wish to produce flour of consistent quality. To do so, they use two main techniques: blending wheat or blending flour. The two techniques have pros and cons. We focus only on wheat blending here as GMA's mill layout favors wheat rather than flour blending.

It is also important to make it clear from the beginning that this study is only about economic optimization. We will not talk about flour milling techniques. Of course, flour millers, with the help of various processes and machines, optimize the wheat blending process as well as the use of additives. All these techniques are beyond the scope of the present thesis. We will focus on optimizing the blending process through economic tools and techniques.

1.3 Framework

The economic optimization of wheat and additives blending is a crucial issue for flour millers. As regards GMA, an optimization model may lead to saving significant amounts of money. The thesis objective will be therefore to design and build a model which can efficiently address this issue.

Another interest of the present thesis is that it provides an opportunity to apply another technique, optimization, to a GMA business issue. As such, it fits quite adequately with the purpose of an executive education program such as the Master of Agri-Business at Kansas State University.

The present study is organized as follows: definition of objective; literature review; data and methods; results and conclusion. In addition, the process takes account of the pragmatic five-step optimization modeling process identified by Ragsdale (2008): identifying the problem, mathematically analyzing the problem, implementing the problem on computer, solving the problem using software tools and, finally, testing the results.

The present thesis will comprise 6 chapters. In the present Chapter 1 "Introduction", the thesis objective is identified and is defined. In Chapter 2, the "Literature Review" describes previous papers or studies on similar or related subjects. It outlines how the present project differs from these previous works. Chapter 3 "Data and Methods 1.Mathematical Analysis" explains how actual business conditions are transformed into a set of equations and inequalities. Chapter 4 "Data and Methods 2.Computer Implementation", depicts how the equations of the model are captured on a spreadsheet. In Chapter 5 "Results", optimal solutions given by the model are compared with actual decisions made by GMA. Finally, Chapter 6 "Summary and Conclusion" draws conclusions and suggests ideas for further research and improvement of the optimization model.

CHAPTER II: LITERATURE REVIEW

The objective of the present thesis is to use wheat and additives blending as a means of minimizing flour millers' costs of production while still meeting quality requirements.

This is a common issue among flour millers. Fowler (2009, p. 62-66) summarizes the economic reasons why millers blend wheat and add ingredients to flour. They want to deliver a consistent or a unique product and they want to minimize their raw material cost.

The way to achieve this objective is through optimization techniques, particularly linear programming. Blending problems are traditional applications of linear programming. Some of the earliest to be addressed were the nut-mix problem (Charnes et al. 1953) and the sausage-blending problem (Steuer 1986).

Niernberger (1973) was certainly the first to formulate and evaluate a wheat blending model in order to maximize profit from flour milling operations. He designed a computerized linear programming model that determined the optimum blend of different lots of wheat and maximized profit, under several technical and economic constraints. Niernberger's model's purpose is close to the objectives of the present thesis. There are nevertheless significant differences between the two efforts. Niernberger's objective was to optimize the flour miller's profit originating from all its products: patent flour, 1st clear flour, 2nd clear flour, as well as mill feed. The objective of the present thesis is only to minimize the cost of production of one type of flour, designed for making French type bread, baguettes. Other differences derive from geographical contexts. Niernberger's model only considers types of hard winter wheat. He uses Brabender Farinograph data to build constraints and the flour produced is designed to make pan-bread. In the present thesis, different wheat varieties from Europe and North America are mixed. The addition of additives that may influence the price, as well as the characteristics of flour is also considered. Flour is used to make baguettes. Finally, Chopin Alveograph is used instead of Brabender Farinograph.

Hayta and Cakmakli (2001) used linear programming to optimize the blending of wheat lots. Using linear regression, they identify three criteria that characterize wheat lots and that are significantly correlated with loaf volume: particle size index, dough volume and falling number. Then they design a linear programming model that determines the most economic wheat mix. Hayta and Cakmali focus on the selection of quality criteria rather than on the optimization problem itself. They work on wheat and flour characteristics that are different from those used in West Africa. In addition, they do not take account of additives.

In addition to published literature, the idea of the present thesis was triggered by two other pieces of work.

The International Grains Program (IGP) organizes short courses for flour millers, in association with Kansas State University. The 2006 Flour Milling short course included a lesson on spreadsheet solutions by Bryan Shurle and Mark Fowler. Among other things, this lesson displayed an example of a wheat blending problem worked out by Microsoft Office Excel Solver. However, although quite realistic, this spreadsheet had to be adapted in order to meet actual constraints and become an effective tool.

In the 2000's, Peter Lloyd of US Wheat Associates (USW) also designed a Microsoft Office Excel spreadsheet that helped millers determine the most profitable blends of wheat. All millers visited by US Wheat Associates can request this spreadsheet, specifically in Africa since Peter Lloyd is based out of Casablanca, Morocco. Millers enter in the spreadsheet several inputs such as wheat characteristics, type of flour produced, prices of wheat, prices of flour, operating costs, etc. They choose a specific blend of wheat and the spreadsheet enables them to compare the characteristics of this blend with what they expect in terms of flour quality, as well as gross margin. Solver and Goal Seek functions are used to fine tune the wheat blend. The USW spreadsheet is more ambitious than the present thesis project: it is designed to compute flour millers' gross margins and not only minimize production costs. However, it takes into account only the rheological characteristics of the flour produced. The present thesis will also consider bread-making characteristics of flour. As all other works, the USW model does not take account of additives.

7

CHAPTER III: DATA AND METHODS 1 MATHEMATICAL ANALYSIS

In the introductory chapter, the thesis objective was identified as the minimization of flour millers' production costs by blending wheat and additives, while meeting flour standards. In the present chapter, this objective as well as GMA constraints will be analyzed and transformed into a mathematical model to be optimized.

The optimization model and its different components: variables, equations and inequalities will be defined in section 3.1. In the subsequent sections, the different elements of the model will be reviewed. In section 2, the decision variables, i.e. the different ingredients of the GMA mix will be considered. In section 3, technical constraints will be identified and described in mathematical terms. In sections 4 to 6, quality constraints will be identified, given limits and put into equations. Finally, the whole optimization model will be displayed in section 7.

3.1 Optimization of wheat and additives blending

In the modeling approach, the blending problem is translated into equations and/or inequalities. The mathematical formulation of the problem requires definition of decision variables, objective function, and constraints.

3.1.1 The Decision Variables

Decision variables represent the choice to be made: the quantities the researcher wishes to determine. For the GMA model, decision variables $(W_1, W_2..., W_i)$ are the actual weights of the different ingredients that are blended in order to produce flour of a desired and consistent quality.

It must be stated from the beginning of the thesis that, since Côte d'Ivoire has adopted the metric system, all weights are expressed in metric tons (t) or kilograms (kg). And in order to keep things simple, it is assumed that, in the present optimization model, the total weight of all ingredients is equal to one thousand metric tons. The price of 1,000 tons of a mix of wheat and additives is large enough to be significant. Using weights instead of respective proportions of ingredients in the mix, for instance, makes it easier to compute prices since unit prices are expressed in CFA frances per metric ton. The CFA france (FCFA) is the West

African Economic and Monetary Union (WAEMU) currency and is worth about 0.002 US dollars.

As regards wheat, either hard or soft, each W_i represents a weight which is associated to one sea vessel. This is how GMA differentiates lots of wheat. Wheat from each vessel is consistent since cargoes are homogenized in port elevators before loading. They are handled and stored separately in GMA silos after reception at Abidjan. Last but not least, to each and every vessel corresponds a specific unit price of wheat.

3.1.2 The Objective Function

The objective function is a function of the decision variables that the researcher wishes to maximize or minimize. For GMA, the objective function of the optimization model is to minimize the cost of the blend of wheat and additives processed by the mill.

Table 3.1: Objective Function Formula

Min: $\Sigma W_i P_i$

where:

- W_i is the weight of wheat or any additive used in the mix, the total of which amounts to one thousand metric tons ;
- P_i is the price of the corresponding ingredient, expressed in CFA francs per metric ton (FCFA/t).

3.1.3 The Constraints

Constraints are other functions of the decision variables. In a world of limited resources, they are restrictions on the solutions available to any business. Constraints can be stated mathematically as follows:

Table 3.2: Constraint Formulas

f(W ₁ , W ₂ ,,	W_n) $\leq \alpha$, or
$f(W_1, W_2,,$	$W_n \geq \alpha$, or
f(W ₁ W ₂ ,	$(\mathbf{W}_n) = \alpha$

where:

- W_i is the weight of wheat or additive used in a mix, the total of which amounts to one thousand metric tons ;
- α is the limit value of the constraint.

In order to determine the optimal mix of wheat for GMA, the chief miller has to face three

categories of constraints: constraints that bind the decision variables themselves,

constraints that are imposed by technical considerations and, finally, constraints that concern the quality of flour.

There are two constraints that bind the decision variables themselves. Weights of wheat and additives cannot be negative. And, as already mentioned above, the total weight of wheat and additives is one thousand metric tons.

Other constraints are imposed by technical considerations. Proportions of additives in the mix should be compatible with the dosing scales of the flour mill. Incorporation rates may be recommended by suppliers of these ingredients. The technical constraints are considered in section 3.3.

Sections 3.4 to 3.6 deal with quality constraints. Relevant quality constraints parameters must be selected. Specifications must be defined for these constraints. Finally, the mathematical functions that link the ingredients of the mix and the selected quality constraints parameters must be identified.

3.1.4 Linearity

In principle, objective function and constraints can have any mathematical form. The important point is that they should accurately describe the problem which is to be solved.

However, preferably, functions representing the objective function and constraints should be linear. According to Studenmund (2006, p. 207-208), a function can be linear in the variables and/or linear in the coefficients. A function is linear in the variables "if plotting the function in terms of X and Y generates a straight line". A function is linear in the coefficients "if the coefficients appear in their simplest form – they are not raised to any powers (other than one), are not multiplied or divided by other coefficients, and do not themselves include some sort of function (like logs or exponents)".

Solving a set of linear functions is easier and is more reliable than a set of non-linear functions. When using only linear functions, operations research is often termed linear programming (LP). In the course of the present thesis, one non-linear function will be tested but only linear functions will eventually be used in the optimization model.

Table 3.3: Linear Constraint Formulas

	$\begin{array}{l} \beta_0 + \beta_1 W_1 + \beta_2 W_2 + \ldots + \beta_n W_n \leq \alpha, \text{ or} \\ \beta_0 + \beta_1 W_1 + \beta_2 W_2 + \ldots + \beta_n W_n \geq \alpha, \text{ or} \\ \beta_0 + \beta_1 W_1 + \beta_2 W_2 + \ldots + \beta_n W_n = \alpha \end{array}$
wł	nere:
•	W_{i} is the weight of wheat or any additive used in a mix, the total of which amounts to one thousand metric tons ;
•	β_i is the technical coefficient attached to W_i ;
•	α is the limit value of the constraint.

3.2 Decision variables: ingredients of the mix, wheat and additives

In order to make flour, GMA can mix up to six ingredients: soft wheat, hard wheat, gluten, ascorbic acid and two types of enzyme mixes.

In further developments, flour made out of some or all of these ingredients will be referenced to by letters 'FLR'. For instance, the price of soft wheat will be labeled P_{FLR} .

3.2.1 Soft wheat

Soft wheat is the main ingredient of GMA flour designed for making baguettes. The total mix usually includes up to 90% or 95% soft wheat. Soft wheat processed by GMA is imported mostly from France. However, GMA also exploits market opportunities and, from time to time, imports soft wheat from other origins such as the Black Sea region, Germany or Argentina.

GMA collects data on soft wheat for every vessel that comes to Abidjan, at various stages of the supply process.

Samples of wheat are tested in the port of loading silos as well as later, when the ship is unloaded in Abidjan. These analyses provide data about physical (dockage, moisture etc.) as well as rheological (protein content, falling number, Alveograph etc.) characteristics of every cargo of wheat.

Upon arrival, a sample of soft wheat from every vessel is also processed and transformed into flour in GMA mills. Milling and rheological characteristics of this flour are analyzed. It is also baked and transformed into bread and graded at the GMA test bakery.

Altogether, GMA can characterize every cargo of soft wheat with some twenty parameters.

The GMA accounting system computes a price for every shipment of wheat. This price is expressed in CFA francs per ton (FCFA/t). It comprises the Cost, Insurance and Freight (CIF) price plus all forwarding costs involved until wheat is stored in bins and ready for milling.

In recent periods of time, the price of soft wheat has suffered from high volatility. Prices recorded by GMA follow the fluctuations of world market prices with a few weeks delay due to transportation time. In addition, they are affected by fluctuations in freight rates. In January 2010, the price of soft wheat at GMA was 124,688 FCFA/t. It was relatively stable until July 2010. Then it started to increase rapidly and went from 202,844 FCFA/t in September 2010 to 229,343 FCFA/t in March 2011.It remained at high levels until September 2011. Then the price went down, but it is still subject to significant fluctuations. In March 2012, GMA price for soft wheat was 197,575 FCFA/t.

Soft wheat will be referred to by the letters 'sw'. The weight of soft wheat in the mix of ingredients will be labeled W_{sw} and the unit price of soft wheat will be labeled P_{sw} .

3.2.2 Hard wheat

At a low incorporation rate, hard wheat, with its higher protein content, brings many interesting properties that are appreciated by GMA customers: baking strength, tolerance, bread volume, etc. However, high percentages of incorporation of hard wheat can have negative effects, which do not suit the production of baguettes.

Hard wheat is imported by GMA from North America. In the past years, GMA has imported mostly Canada Western Red Spring (CWRS) wheat. CWRS is hard red spring wheat of superior milling and baking quality.

When GMA purchases hard wheat, it performs the same tests as on soft wheat. These tests provide data on physical, as well as rheological characteristics of the wheat. In addition, on every shipment, GMA processes a few kilograms of hard wheat in a laboratory mill. The rheological, as well as milling characteristics of this flour are tested

However, GMA does not transform this sample of flour into bread. The weight of flour obtained from the laboratory mill is too small. Moreover, it is well known that 100% hard wheat flour does not fit the production of baguettes. Consequently, unlike soft wheat, GMA does not record the baking characteristics of its hard wheat supplies.

The price of hard wheat is usually higher than the price of soft wheat. It is computed by the GMA accounting system in exactly the same way as soft wheat. This price has also been subject to significant fluctuations in recent periods of time. It actually ranged from 163,682 FCFA/t in November 2009 to 253,491 FCFA/T in November 2011.

Hard wheat will be referred to by the letters 'hw'. The weight of hard wheat in the mix of ingredients will be labeled W_{hw} and the unit price of hard wheat will be labeled P_{hw} .

3.2.3 Gluten

Gluten is made of water insoluble proteins, glutenins and gliadins. Gluten can be found in wheat kernels. It is also marketed on its own.

GMA incorporates gluten in the mix whenever soft wheat lacks protein content. Gluten can be seen as a substitute for hard wheat. However, its effects have a more limited range.

The price of gluten is linked to the price of wheat but is nevertheless more stable. GMA recorded a price of gluten at 1,286 FCFA/kg in October 2010. It reached a peak in September 2011 at 1,618 FCFA/kg and went down to 1,205 FCFA/kg in January 2012.

Gluten will be referred to by the letters 'GLT'. The weight of gluten in the mix of ingredients will be labeled W_{GLT} and the unit price of gluten will be labeled P_{GLT} .

3.2.4 Ascorbic acid

Ascorbic acid is incorporated into flour essentially because of its functionality properties. It is an oxidizing agent that favors the baking process. It increases dough extensibility.

Ascorbic acid price varies significantly according to its origin. In 2011, GMA purchased ascorbic acid from Europe at 12,186 FCFA/kg and from China at 5,246 FCFA/kg.

Ascorbic acid will be referred to by the letters 'AAC'. The weight of ascorbic acid in the mix of ingredients will be labeled W_{AAC} and the unit price of ascorbic acid will be labeled P_{AAC} .

3.2.5 Enzyme mixes

There are many different kinds of enzymes that flour millers incorporate in their mixes: amylases, proteases, lipases, glucose-oxidases, etc. These products act as catalysts. They trigger or enhance chemical reactions during the baking process. Flour millers use enzymes to correct wheat deficiencies and help provide for consistent quality flour.

Knowledge about the effects of these different enzymes has dramatically improved in past years. It is very difficult for a flour miller like GMA to keep up to date with progresses made in this domain of research. As a consequence, GMA is not able to formulate by itself relevant enzyme mixes that can address its quality issues. GMA refers to specialized firms that design its enzyme mixes. The formulas of these enzyme mixes are kept confidential by the supplier and GMA does not know the composition exactly.

In 2011 and 2012, GMA used two different enzyme mixes. The price of Enzyme Mix 1 varied from 26,504 FCFA/kg in December 2010 to 27,256 FCFA/kg in February 2011. The price of Enzyme Mix 2 is equal to 24,752 FCFA/kg and is unique since GMA has purchased only one lot of it.

The first enzyme mix and the second enzyme mix will be referred to as 'EN1' and 'EN2', respectively. Weights of EN1 and EN2 in the total mix of ingredients will be labeled W_{EN1} and W_{EN2} , respectively. Unit prices of EN1 and EN2 will be labeled P_{EN1} and P_{EN2} , respectively.

3.3 Technical constraints

In order to find a relevant solution to the optimization problem, it is necessary to consider the technical constraints of the mill. The milling process, the capabilities of dosing scales, as well as suppliers' advice have an impact on the incorporation of ingredients. In the case of wheat, the relative proportions of soft and hard wheat can be affected. In the case of additives, the set of weights that can actually be incorporated in a mix of one thousand metric tons is restricted to certain values.

3.3.1 GMA milling process and the incorporation of ingredients

Wheat is unloaded on the quays of Abidjan harbor and is directed by conveyors to GMA elevators.

Figure 3.1: Ship unloading wheat at GMA facilities

After a period of storage, soft wheat and hard wheat are blended in a silo bin. The blend is then conveyed to the flour mill. It is cleaned, tempered and put to rest. Flour milling theory teaches that soft wheat and hard wheat should be treated differently, as regards the amount of water that is added to wheat and the time it is allowed to rest. However, for decades, GMA has not respected these differences and is used to blending and treating soft wheat and hard wheat together.

Afterwards, the blend of wheat goes through a series of roller mills and sifters in order to separate endosperm from bran and to reduce endosperm particles in the flour. Flour is collected and goes through conveyors to flour bins. Dosing scales are implemented on these conveyors so that GMA can put additives, gluten, ascorbic acid and enzyme mixes, into the flour.

Figure 3.2: GMA dosing scales

After flour has been stored in bins, it is extracted, put into bags and finally delivered to customers.

3.3.2 Incorporation of wheat

At GMA, soft wheat and hard wheat are blended together in a silo bin. The relative proportions of soft wheat and hard wheat that are directed to this silo bin are predetermined by scales which are computer-controlled. The precision of these scales is of half a percent.

It means that in a lot of 1,000 metric tons of wheat, weights of soft wheat and hard wheat can only be multiples of 5 tons.

However, when additives are added to the mix, respective weights of soft wheat and hard wheat can assume other values. If, for instance, 4 tons of gluten are added into the mix, the weight of wheat amounts to 996 tons in a total of 1,000 metric tons and 0.5% of this weight represents 4.98 tons. If, for instance, 1 ton of gluten and 56 kilograms of enzyme mix are added into the mix, the total weight of wheat amounts to 998.944 tons in a total of 1,000 tons and 0.5% of this weight represents 4.99472 tons.

Since weights of soft wheat and hard wheat can take such different values in a mix of one thousand metric tons, it will be assumed in the optimization model that these variables are continuous.

3.3.3 Incorporation of additives

a) Additives: Incorporation rates and increments

When it comes to additives, one has to consider both limitations and sensibilities of dosing scales but also recommendations from suppliers of ingredients.

GMA dosing scales are able to add gluten into flour at a rate which ranges between 0.1% and 1.0% with increments of 0.1%.

Ascorbic acid is usually added to flour at rates which can vary between 0 to 100 parts per million (ppm). Because of GMA dosing scales capabilities, this rate of incorporation can only increase by steps of 10 ppm.

According to its supplier, enzyme mix 1 is to be incorporated at a rate of 70 ppm. It also recommends that enzyme mix 2 should be mixed into flour at rates of 5, 10, 15 or 20 ppm. Incorporation rates may vary but with increments of 5 ppm and a maximum limit of 20 ppm.

The above rates and increments are computed, as is usual in a flour mill, upon the basis of flour weights. In the optimization model, these rates and increments need to be recalculated upon the basis of the weight of the total mix of ingredients.

b) Additives: Incorporation rates denominator

Two steps are necessary to change the denominator of incorporation rates of additives. First, they must be computed over weights of wheat instead of weights of flour. Then, they must be calculated over the total weight of wheat and additives instead of the weight of wheat only.

The rate of flour extraction out of wheat depends on many different parameters ranging from wheat characteristics: dockage, moisture, hardness etc., to the milling process: length

of roller mills, flour ash rate etc. It is difficult to predict precisely what an extraction rate of flour out of wheat will be. However, GMA statistical records show that, on the long run, its extraction rate is, on the average, equal to 80%.

Such an extraction rate may appear quite high to US millers which process hard wheat. Soft wheat extraction rates are generally higher than hard wheat. In addition, GMA flour mills have been designed to provide a high extraction rate.

When computed on wheat rather than flour, the above incorporation rates and increments should therefore be multiplied by 80%. If the incorporation rate of gluten is, for instance, of 0.7% on flour, it is equal to $(0.7\% \times 80\%) = 0.56\%$ on wheat. With this formula, incorporation rates on flour can be transformed on incorporation rates upon the basis of the wheat blend.

However, what is needed is incorporation rates computed on the weight of the total mix, wheat and additives included.

If, for instance, gluten is the only additive that is incorporated in the mix, then 0.56% on wheat is equal to 0.56/(100 + 0.56) = 0.5569% when computed on the weight of the total mix. In another example, 0.8% of gluten and 50ppm of ascorbic acid and 56 ppm of enzyme mix 1 are added to a basis of wheat. When calculated with reference to the weight of the total mix, these incorporation rates become, respectively, 0.8/(100 + 0.8 + 0.005 + 0.0056) = 0.7936% of gluten and 0.005/(100 + 0.8 + 0.005 + 0.0056) = 49.6ppm of ascorbic acid and 0.0056/(100 + 0.8 + 0.005 + 0.0056) = 55.5ppm of enzyme mix 1.

In the following table, all additives are incorporated at their maximum rate and the differences between incorporation rates calculated on the mix of wheat or on the total mix are at their maximum.

	Incorporation	Incorporation	Weights	Weights (for a	Incorporation rates	Difference
	rates	rates	(metric	total of 1,000	computed over	(A-B)
	computed	computed	tons)	metric tons)	weight of the mix	
	over weight	over weight			(B)	
	of flour	of wheat (A)				
Wheat			1,000.0000	991.9139		
Gluten	1.0000%	0.8000 %	8.0000	7.9353	0.7935%	0.0065%
Ascorbic acid	100.0000 ppm	80.0000 ppm	0.0800	0.0794	79.3531 ppm	0.6469 ppm
Enzyme mix 1	70.0000 ppm	56.0000 ppm	0.0560	0.0555	55.5472 ppm	0.4528 ppm
Enzyme mix 2	20.0000 ppm	16.0000 ppm	0.0160	0.0159	15.8706 ppm	0.1294 ppm
TOTAL			1,008.1520	1,000.0000		

Table 3.4: Impact of calculations on incorporation rates of additives

The maximum relative difference on incorporation rates calculated on the weight of wheat and incorporation rates calculated on the weight of the total mix is equal to (0.8000 - 0.7935)/(0.8000 = (80.0000 - 79.3531)/80.0000 = (56.0000 - 55.5472)/56.0000 = (16.0000 - 15.8706)/16.0000 = 0.8086%.

This error term is not significant. It is below the sensitivity limits of dosing scales. Increments defined by the manufacturers of these dosing scales are much higher than this error term. In addition, the uncertainty implied by the use of 80% as the average extraction rate of GMA is, by far, larger.

As a consequence, in order to simplify the model, the difference between incorporation rates upon the basis of wheat and incorporation rates upon the basis of the total mix will be neglected. Incorporation rates computed on the weight of wheat will be used without change in the optimization model.

c) Additives: Weight sets

Gluten is incorporated in the mix at a rate n_{GLT} , calculated on the weight of flour, which ranges between 0.1% and 1.0% with increments of 0.1%. On wheat, with an extraction rate of 80%, the set of relevant incorporation rates becomes: $n_{GLT} \in \{0.00\%; 0.08\%; 0.16\%; 0.24\%; 0.32\%; 0.40\%; 0.48\%; 0.56\%; 0.64\%; 0.72\%; 0.80\%\}$.

Ascorbic acid is incorporated in the mix at a rate, n_{AAC} , which ranges between 0 and 100 ppm with increments of 10 ppm, on the weight of flour. The set of relevant incorporation

rates on the weight of wheat is: $n_{AAC} \in \{0ppm; 8ppm; 16ppm; 24ppm; 32ppm; 40ppm; 48ppm; 56ppm; 64ppm; 72ppm; 80ppm \}.$

Supplier recommends that enzyme mix 1 is incorporated at a rate, n_{EN1} of 70ppm on the weight of flour. The set of relevant incorporation rates on the weight of wheat is: $n_{EN1} \in \{0ppm; 56ppm\}$.

Supplier recommends that enzyme mix 2 is incorporated at a rate n_{EN2} between 5 and 20ppm with increments of 10ppm on the weight of flour. The set of relevant incorporation rates on the weight of wheat is: $n_{EN2} \in \{0ppm; 4ppm; 8ppm; 12ppm; 16ppm\}$.

Assuming that incorporation rates on wheat are not significantly different from incorporation rates on the total mix of ingredients, they can be transformed into sets of relevant weights for additives when the weight of the total mix is equal to 1000 tons. All weights are expressed in metric tons.

 Table 3.5: Additives Weight Sets

Gluten	W _{GLT} €{0.0; 0.8; 1.6; 2.4; 3.2; 4.0; 4.8; 5.6; 6.4; 7.2; 8.0}
Ascorbic Acid	$W_{AAC} \in \{0.000; 0.008; 0.016; 0.024; 0.032; 0.040; 0.048; 0.056; 0.064; 0.072; 0.080\}$
Enzyme Mix 1	$W_{EN1} \in \{0.000; 0.056\}$
Enzyme Mix 2	$W_{EN2} \in \{0.000; 0.004; 0.008; 0.012; 0.016\}$

These sets of relevant weights are technical constraints of the optimization model. They have a significant impact on the optimization model since they change the model from a Linear Programming (LP) model to an Integer Linear Programming (ILP) model.

3.4 Quality constraints: selection

GMA is very concerned about the quality of its products. It records many different data about its flour quality: physical, rheological, milling characteristics as well as baking characteristics. Altogether, GMA can display at least twenty series of data about each lot of flour manufactured.

It is not desirable however to build twenty constraints in an optimization model. The higher the number of constraints, the more time and IT resources consuming the

optimization model is. Some of these constraints may be irrelevant or redundant. In addition, with too many constraints, a feasible solution may become difficult to find. The model is more robust when it has only a few constraints.

In order to select relevant quality constraints, two types of references will be used: previous literature and econometrics.

3.4.1 Previous literature

The parameters that were selected as constraints in previous literature are not the same from one work to another.

Niernberger (1973) used 9 characteristics as quality constraints. The IGP model is based upon 4 constraints. The US Wheat Associates model uses 8 constraints. In these different works, the way quality constraints were selected is not explicit. On the other hand, Hayta and Cakmali (2001) use econometrics techniques to select 3 constraints that are highly correlated to loaf volume of bread.

The following table summarizes the parameters that were selected as constraints in these works.

	Niernberger (1973)	IGP model	US Wheat Associates model	Hayta & Cakmali (2001)
Physical Wheat Traits				
Test Weight		X		
Moisture		X		
Wheat protein		X		
Falling number			X	Х
Milling and Rheological Traits				
Wet Gluten		Х	X	
Flour protein	X		X	
Alveo P			X	
Alveo L			X	
Alveo W			X	
Alveo P/L			X	
Flour ash	X		X	
Particle Size Index				Х
Far. Absorption	X			
Far. Arrival time	X			
Far. Development time	X			
Far. Valorimeter	X			
Starch Damage	X			
Baking Data				
Dough volume				X
Loaf volume	X			
Total score	Х			

Table 3.6: Quality parameters in previous literature

No single quality parameter has been selected by more than two authors. Only four of them have been selected by two authors: Falling number, Wet Gluten, Flour protein and Flour ash.

However, one must note that four characteristics selected by Niernberger (1973) and four other characteristics selected in the US Wheat Associates model measure the same thing but with a different device. Alveograph is widely used in France and is rather dedicated to soft wheat. Farinograph is widely used in other countries and is rather dedicated to hard wheat. Both Alveograph and Farinograph are laboratory devices that test the physical traits of dough.

3.4.2 Econometrics

In order to minimize the number of constraints in the optimization model, redundant characteristics should be excluded.

Econometricians search for redundant variables in order to avoid multicollinearity in regression functions. They consider that two variables are redundant when their coefficient of determination is high. A high coefficient of determination between two variables means that one of them is largely determined by the other. There is no universally admitted definition of what is a high R² coefficient. However, R² ranging between 0 and 1, one may admit that when R² is higher than 0.5, data are highly correlated and therefore redundant.

The coefficient of determination R² between twenty quality parameters has been computed for every cargo of soft wheat received by GMA during the year 2010. The tables showing these twenty parameters for every vessel and their coefficients of determination are displayed in Appendix A.

Eight parameters out of twenty have coefficients of determination higher than 0.5. These relatively high correlation coefficients between characteristics make sense.

The P and G measures from the Alveograph are correlated with P/L. Actually, P/L is computed by dividing P by L and L is a function of G (G = $2.226 \sqrt{L}$).

It makes sense that the volume of bread after 3 hours of fermentation is highly correlated with the loaf weight and that the volume of bread after 4 hours of fermentation is highly correlated with the volume of bread after 3 hours of fermentation.

The total score of bread is also highly correlated with the bread volume, the dough grade, the bread grade and the crumb grade. Actually the total score is the sum of all the other characteristics.

All these parameters should not be selected together as quality constraints of the optimization model.

3.4.3 Quality constraints selection

The objective of the present work is to minimize production costs while still meeting requirements on flour quality. It therefore makes sense to focus on final products: flour and bread. Wheat quality parameters, although important when it comes to procurement, may be considered as less relevant in the optimization model.

In order to minimize the number of parameters selected as constraints of the optimization model, it also makes sense to consider aggregates rather than their components.

In addition, flour ash, a parameter that was selected as a quality constraint by two previous works, is irrelevant. In Côte d'Ivoire, it is a law requirement that bakery flour should have an ash content between 0.50% and 0.60%. All bakery flours from GMA are at 0.60%.

The parameters that have been selected as constraints of the optimization model are:

- 1. Flour protein content
- 2. Flour falling number
- 3. Alveograph W
- 4. Specific volume of baguette after 4 hours of fermentation.

These parameters have already been selected by previous authors; they are not highly correlated with each other; they concern the final product, flour; and they cover the whole range of flour characteristics:

- Flour Physical Traits: protein content and falling number
- Milling Properties: Alveograph W
- Baking Properties: specific volume of baguette after 4 hours of fermentation.

There are good reasons to select these four quality parameters as constraints of the optimization model. Their choice nevertheless remains at least partly subjective. One will have to keep in mind that the selection of better quality parameters will remain a way to improve the optimization model.

3.5 Quality constraints: specifications (RHS)

In the optimization model, quality constraints are represented by inequalities. In the current section, the focus will be on the Right Hand Side (RHS) or α of such inequalities: the specifications or the limits GMA assigns to quality parameters.

3.5.1 Flour protein content

A kernel of wheat is composed of some 83% of endosperm, 14.5% of bran and 2.5% of germ. Basically, wheat milling consists in separating endosperm from bran and germ and reducing endosperm into a fine powder called flour. Wheat flour is therefore essentially made of the components of endosperm: starch, moisture and protein. Protein contents of flour vary from 7% to 16%. They are essentially determined by wheat genetics, milling techniques and environment.

Proteins are essential components in human food. They have also important characteristics when it comes to flour functionality. Wheat proteins include glutenins, gliadins, globulins, albumins, glycoproteins and others. While albumins and globulins contain some functional enzymes, glutenins and gliadins account for gluten formation. Gluten is water insoluble and it forms when wheat flour is mixed with water. It impacts dough elasticity and gives dough gas retaining ability. Protein content is therefore a major parameter of flour quality.

There are different ways to measure flour protein content. However, all methods are based upon the fact that proteins contain nitrogen. Standard methods are known as Kjeldahl or Dumas. GMA uses a quicker method: infrared spectroscopy. A small quantity of flour is put into a device called Infraneo, manufactured by Chopin Technologies (www.chopin.fr). It instantaneously reads nitrogen content and converts it into protein content. Although less reliable than Kjeldahl or Dumas, this method is widely used by flour millers, because it is very quick. GMA experience of the market has shown that flour protein content between 11% and 13% is optimal for the production of baguettes in Côte d'Ivoire.

Figure 3.3: Flour Protein Content test

In further equations, flour protein content will be labeled 'FPC' with subscript characters indicating which product is concerned. For instance, FPC_{sw} will mean protein content of flour made out of soft wheat only and FPC_{FLR} will mean protein content of flour made out of a mix of ingredients.

3.5.2 Flour falling number

Enzymes are catalysts in the chemical reactions that occur during the baking process. Wheat kernels contain different types of enzymes. Among them, alpha-amylases trigger the breakdown of starch into sugar during fermentation. The level of alpha-amylase activity is therefore an important parameter of flour quality.

Alpha-amylase activity is measured by Hagberg falling number, with a device manufactured by Perten (www.perten.com). The falling number actually records the time it takes a piston to sink through a paste made of boiling water and flour. The higher the falling number is, the lower the enzyme activity. A certain level of enzyme activity is necessary for the baking process. However, too much enzyme activity would produce adverse effects.
Figure 3.4: Falling Number test

GMA standards in terms of falling number are in between 350 and 500 seconds.

In further equations, flour falling number will be labeled 'FLN' with subscript characters indicating which product is concerned. For instance, FLN_{sw} will mean falling number of flour made out of soft wheat only and FLN_{FLR} will mean falling number of flour made out of a mix of ingredients.

3.5.3 Alveograph W

Protein content and Falling number measure physical and chemical characteristics of flour. However the quality of flour also relies upon the physical characteristics of the dough that is made with it. In French baking traditional areas, millers generally use a device called Alveograph, manufactured by Chopin Technologies (www.chopin.fr), to test dough properties.

A sample of flour is mixed with a salt solution to form dough. It is then extruded, sheeted and cut into disks that are allowed to rest in the Alveograph under controlled heat conditions. Then the Alveograph blows air into a dough disk. This dough disk expands into a bubble until it eventually breaks. During this process, pressure variations on the dough bubble are recorded and printed as a curve on a graph.

Four main figures come with this curve: P, L, Ie and W. P, for pressure, represents the highest point of the curve. It measures tenacity or the resistance to pressure of the dough. L, for length, represents the width of the curve from the beginning of the process until the breaking point. It measures the extensibility of the dough. Ie is the Index of elasticity, the ability of dough to regain its initial form. W, for work, represents the area below the curve. It is an indicator of the baking strength of dough and the quality of proteins. W gives a global view of the baking strength of dough. It is particularly influenced by protein quantity and quality, the amount of damaged starch and the enzymatic activity of dough.

Figure 3.5: Example of Alveograph curve

As regards W, GMA sets its objectives at values higher than 230.

In further equations, Alveograph W will be labeled 'ALW' with subscript characters indicating which product is concerned. For instance, ALW_{sw} will mean Alveograph W of flour made out of soft wheat only and ALW_{FLR} will mean Alveograph W of flour made out of a mix of ingredients.

3.5.4 Specific volume of baguette after 4 hours of fermentation

Baking tests are eventually the only ones that can predict the end product performance. At GMA, they are performed at a trial bakery upon the basis of the BIPEA protocol. The BIPEA (Bureau Inter-Professionnel d'Etudes Analytiques) is a French society that sets up industry standards. It has designed baking tests that are widely used in French mills. GMA has adapted these tests in order to take greater account of the requirements of Ivorian bakers.

Experience has shown that the most important criterion for Ivorian bakers is the volume of baguette after four hours of fermentation. Ivorian bakers are looking for high volumes of bread. They also appreciate tolerant dough which can stand for long hours of fermentation under tropical climate.

Figure 3.6: Volumeter test

Because the weights of baguettes are not always the same, this quality characteristic is measured by a specific volume: the volume, in cubic centimeters, of one gram of baguette. Volumes of baguettes are measured in a device called a "Volumeter" and their weights are read on a laboratory balance.

According to GMA standards, the specific volume of a baguette after 4 hours of fermentations should be higher than 11.5 cubic centimeters per gram.

Figure 3.7: Weighing baguettes

In further equations, the specific volume of a baguette after 4 hours of fermentation will be labeled 'BVL' with subscript characters indicating which product is concerned. For instance, BVL_{sw} will mean specific volume of bread made out of soft wheat only and BVL_{FLR} will mean specific volume of bread made out of a mix of ingredients.

The following table summarizes GMA objectives as regards quality constraints.

Quality Parameter	Minimum	Maximum
Flour Protein Content	11%	13%
Flour Falling Number	350 s.	500 s.
Flour Alveograph W	230	
Specific volume of baguette after 4 hours of fermentation	11.5 cm ³ /gram	

Table 3.7: GMA quality specifications

These specifications reflect the requirements of the Ivorian market in 2011/2012. They may evolve in the future.

3.6 Quality constraints: equations (LHS)

The current section deals with the Left Hand Side (LHS) of the constraint equations: the relationships between ingredients and quality parameters.

Grains science is the major source of information for defining these quality constraint equations. Actually, most relationships between wheat, additives and flour characteristics have already been studied and documented by grain scientists.

However, some specific relationships in the optimization model remain unknown. This is the case when it comes to the specific volume of baguette. This is also the case when it comes to enzymes mixes, because GMA has no precise information on their contents. In such cases, regression analysis will be used in order to determine the relationships between ingredients and flour quality parameters.

According to Ragsdale (2008, p. 409), "the goal in regression analysis is to identify a function that describes, as closely as possible, the relationship between these (independent and dependent) variables so that we can predict what value the dependent variable will assume given specific values for the independent variables". In other words, regression analysis helps determine what the technical coefficients, β_{is} , are in the constraints.

Table 3.8: Regression Analyses β coefficients

	$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n \le \alpha$, or
	$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n \ge \alpha$, or
	$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n = \alpha$
wh	ere:
•	X _i are the independent variables ;
•	α is the dependent variable.

In the optimization model, X_i will represent some characteristics of soft wheat, hard wheat, gluten, ascorbic acid or enzyme mixes and the different α s will stand for GMA specifications as regards protein content, falling number, Alveograph W and baguette specific volume.

Regression analyses will be performed on data collected by GMA in the past. GMA has achieved tests of flour quality that were specially designed at gaining a better understanding of the impacts of different inputs on the final product. Altogether 73 tests were conducted in 2010 and 2011 with varying incorporation rates of soft wheat, hard wheat, gluten, different enzyme mixes and/or ascorbic acid. Values of independent variables and of corresponding dependent variables from all these tests are displayed in Appendix B.

In the present thesis, regression analysis equations are determined using the Ordinary Least Squares method, with the help of Microsoft Excel functions.

3.6.1 Flour protein content

Flour milling theory teaches that the flour protein content of a mix of wheat is the weighted average of the flour protein contents of the different types of wheat that have been blended.

Flour millers also know that, in the range of protein contents used by GMA, the addition of x% of gluten in flour will result in an increase of 0.8x% of protein content in the mix. Accordingly, with an extraction rate of 80%, the addition of y% of gluten over wheat, will result in an increase of $(80\% \times 0.8y\%) = 0.64y\%$ of protein content in the mix.

Consequently, the protein content of a flour made out of soft wheat, hard wheat and gluten is mathematically determined by the following equation.

Table 3.9: Equation FPC1 – Flour Protein Content

 $(W_{sw}/1000) FPC_{sw} + (W_{hw}/1000) FPC_{hw} + 0.64 (W_{GLT}/1000) = FPC_{FLR}$

where:

- W_{sw}, W_{hw} and W_{GLT} represent the weights in metric tons of respectively soft wheat, hard wheat and gluten used in a mix, the total of which amounts to one thousand metric tons ;
- FPC_{sw} and FPC_{hw} and FPC_{FLR} represent the protein contents of flours produced out of respectively soft wheat and hard wheat and the final mix.

This equation has been tested against 10 analyses achieved by GMA of protein contents of flours made exclusively out of wheat and gluten. The comparison of predicted flour protein contents with actual ones is displayed in Appendix C.

The coefficient of correlation R between the two sets of data is equal to 0.87. Their coefficient of determination R² is equal to 0.75, meaning that 75% of actual flour protein content is explained by Equation FPC1. And the adjusted R² is equal to 0.72. All these figures are high, confirming close correlation between flour protein contents predicted by equation FPC1 and actual figures. In addition, a Student's t test has been performed on the two sets of data and concludes that the means of the two sets of data are the same (see Appendix C).

This confirms that, when there are no other inputs than wheat and gluten, equation FPC1 above is valid.

Equation FPC1 has also been tested against other data, when other inputs, acid ascorbic and different enzyme mixes, had been incorporated in the mix in addition to wheat and gluten. Protein contents of 55 different flours made out of various ingredients were compared to the results of equation FPC1. This test is displayed in Appendix D.

The coefficient of correlation R, the coefficient of determination R^2 and the adjusted R^2 of the two new sets of data drop down to, respectively 0.80, 0.65 and 0.64. Such coefficients are still high. However, the hypothesis stating that the means of the two sets of data are the same, is not confirmed by a Student's t test.

The drop in coefficients may be explained by the presence of ascorbic acid or enzyme mixes. However, incorporation of ascorbic acid should have no effect on flour protein content. Ascorbic acid does not contain proteins. As regards enzyme mixes, they may contain protein but their rate of incorporation to the blend is so low that they should not have a significant impact.

Consequently and because it is theoretically sound, FPC1 will be used as the flour protein content constraint equation of the optimization model.

3.6.2 Flour falling number

Grains science has shown that the falling number of flour made out of a mix of wheat is not the weighted average of the falling numbers of flours made out of its wheat components. However, milling scientists have identified a proxy, the liquefaction number, which has this desired characteristic. If FLN is the falling number, then the corresponding liquefaction number LNR is equal to (6,000 / (FLN+50)).

The relationship between the liquefaction number of flour made from a mix of wheat and the liquefaction numbers of flours made out of its wheat components can be written as follows.

Table 3.10: Equation LNR1 – Liquefaction Number

 $(\mathbf{n}_{w1}\mathbf{LNR}_{w1} + \mathbf{n}_{w2}\mathbf{LNR}_{w2} + \dots + \mathbf{n}_{wn}\mathbf{LNR}_{wn}) = \mathbf{LNR}_{FLR}$

where:

- n_{w1} , n_{w2} and n_{wn} represent the relative proportion of n lots of wheat in the mix, the sum of n_{wi} being equal to 100%;
- LNR_{w1}, LNR_{w2} ... LNR_{wn} represent the liquefaction numbers of flours produced out of the respective lots of wheat 1,2 or n ;
- LNR_{FLR} represents the liquefaction number of flour made out of the mix of wheat.

Because it is much easier to use linear equations, liquefaction number will be used instead of falling number in the equation of the optimization model. In Section 3.4, GMA falling number specifications were fixed at 350 and 500 seconds. These standards now become respectively 15.000 and 10.909 in terms of liquefaction numbers.

In further equations, liquefaction number will be labeled 'LNR' with subscript characters indicating which product is concerned. For instance, LNR_{sw} will mean liquefaction number of flour made out of soft wheat only and LNR_{FLR} will mean liquefaction number of flour made out of a mix of ingredients.

For a blend weighing 1,000 metric tons that is made exclusively out of one lot of soft wheat and one lot of hard wheat, equation LNR1 becomes:

 Table 3.11: Equation LNR1 – Liquefaction Number – Soft wheat and hard wheat only

 $(W_{sw}/1000) LNR_{sw} + (W_{hw}/1000) LNR_{hw} = LNR_{FLR}$

where:

- W_{sw} and W_{hw} represent the weights in metric tons of respectively soft wheat and hard wheat used in a mix, the total of which amounts to one thousand metric tons ;
- LNR_{sw} and LNR_{hw} represent the liquefaction numbers of flours produced out of respectively soft wheat and hard wheat ;
- LNR_{FLR} represents the liquefaction number of flour made out of the mix of wheat.

This equation has been tested against 9 series of data GMA has recorded on falling numbers or liquefaction numbers of flours made exclusively out of soft wheat and hard wheat. The comparison between predicted liquefaction numbers and actual ones is displayed in Appendix E.

The coefficient of correlation R between the two sets of data is equal to 0.52. Their coefficient of determination R² is equal to 0.28, meaning that 28% of actual liquefaction number is explained by the theoretical equation. And the adjusted R² is equal to 0.17. A Student's t test, performed on the two sets of data, concludes that the means of the two sets of data are the same. All these figures seem to confirm that there is a correlation between liquefaction numbers predicted by equation LNR1 and actual figures. However, this correlation is not very strong.

Differences between predictions from equation LNR1 and actual liquefaction numbers may arise from many different sources. If wheat lots are not homogeneous enough, liquefaction numbers from one sample may not represent the value of the whole lot. Because the test of enzymatic activity is relatively sophisticated, the person who performs the test may also influence the results. The devices with which tests are performed may also cause errors: manufacturers of such devices acknowledge that tests performed on similar samples do not always give the same results and the margin of error may be as high as five percent. Although R² is smaller than expected, it can reasonably be assumed that, when there are no other inputs than soft wheat and hard wheat, equation LNR1 above is confirmed by tests.

Equation LNR1 has also been tested against other data, when other ingredients such as gluten, ascorbic acid or enzyme mixes have been incorporated in the mix in addition to wheat. The comparison of the liquefaction numbers of 49 flours made out of different ingredients and the results of equation LNR1 is displayed in Appendix F.

Surprisingly, coefficients R, R² and adjusted R² increase to 0.64, 0.41 and 0.39, respectively. And a Student's t test confirms that the means of the two sets of data are the same. The fact that this second correlation is stronger than the previous one without additives may come from the fact that it is tested against a larger dataset. However, other ingredients should have no impact on falling number and, consequently, on liquefaction number.

Gluten is composed of proteins and does not contain alpha-amylases. Ascorbic acid is not an enzyme. The presence of these ingredients does not affect flour liquefaction number.

Enzyme mixes should increase the alpha-amylase activity of dough, as long as they contain alpha-amylases. In their presence, falling number should decrease and liquefaction number should increase. GMA has no information about the presence of alpha-amylases in its enzyme mixes.

Regression analysis has been used in order to assess the relationship between enzyme mixes and the proportion of flour liquefaction number which is not explained by wheat in equation LNR1 above. The details of the regression analysis are shown in Appendix G. The following table summarizes the Ordinary Least Squares estimates.

	$LNR_{res} =$	1.7711	– 27.3652 W	$V_{EN1} - 153.5047 W_{EN2}$	
	Standard deviation		21.0408	104.8242	
	t-statistic		- 1.3006	- 1.4644	
	Adjusted $R^2 = 0.0153$	n = 39	1		
wh	ere:				
•	LNR _{res} is the amount of liqu	efaction number	r that is not exp	plained by the liquefaction n	umbers of
	the mix of wheat ;				

 Table 3.12: Equation LNR2 – Liquefaction Number

• W_{EN1} and W_{EN2} are the weights, in metric tons, of respectively enzyme mix 1 and enzyme mix 2, used in the mix, the total of which amounts to one thousand metric tons.

The adjusted R^2 is very low in the regression equation. Given their t-statistics, the coefficients of W_{EN1} and W_{EN2} are not statistically significant at a level of 10%. In addition, they are surprisingly negative. This poor regression equation may mean that there are no alpha-amylases in the enzyme mixes used by GMA.

Consequently, equation LNR1 will be retained as the constraint equation of the optimization model as regards flour liquefaction number.

3.6.3 Alveograph W

According to Chopin Technologies, the company that manufactures the Alveograph, W of flour made out of a mix of wheat is equal to the weighted average of Ws of flours made out of these different types of wheat. This can be mathematically translated as follows.

Table 3.13: Equation ALW1 – Alveograph W

 $(\mathbf{n}_{w1}\mathbf{A}\mathbf{L}\mathbf{W}_{w1} + \mathbf{n}_{w2}\mathbf{A}\mathbf{L}\mathbf{W}_{w2} + \dots + \mathbf{n}_{wn}\mathbf{A}\mathbf{L}\mathbf{W}_{wn}) = \mathbf{A}\mathbf{L}\mathbf{W}_{FLR}$

where:

- n_{w1} , n_{w2} and n_{wn} represent respectively the relative proportion of n types of wheat in the mix, the sum of n_{wi} being equal to 100%;
- ALW_{w1}, ALW_{w2} ... ALW_{wn} represent Alveograph Ws of flours produced out of the respective types of wheat 1, 2 or n ;
- ALW_{FLR} represents the Alveograph W of flour made out of the mix of wheat.

When flour is made exclusively out of a blend of soft wheat and hard wheat and when the total mix weighs 1,000 metric tons, equation ALW1 becomes.

Table 3.14: Equation ALW1 – Alveograph W – Soft wheat and hard wheat only

$$(W_{sw}/1000) ALW_{sw} + (W_{hw}/1000) ALW_{hw} = ALW_{FLR}$$

where:

- W_{sw} and W_{hw} represent the weights in metric tons of respectively soft wheat and hard wheat used in a mix, the total of which amounts to one thousand metric tons ;
- ALW_{sw} and ALW_{hw} represent Alveograph Ws of flours produced out of, respectively soft wheat and hard wheat ;
- ALW_{FLR} represents the Alveograph W of flour made out of the mix of wheat.

This equation has been tested against 9 series of data GMA has recorded on flours made exclusively out of soft wheat and hard wheat. The comparison between predicted Ws and actual ones is displayed in Appendix H.

The coefficient of correlation R between the two sets of data is equal to 0.97. Their coefficient of determination R² is equal to 0.93, meaning that 93% of actual Alveograph W is explained by the equation ALW1. And the adjusted R² is equal to 0.93. All these figures confirm that there is a strong correlation between Alveograph W numbers predicted by equation ALW1 and actual figures. A Student's t test has been performed on the two sets of data and it concludes that the means of the two sets of data are the same.

Equation ALW1 has also been tested against other data, when additives, gluten, acid ascorbic or enzyme mixes had been incorporated into flour in addition to wheat. The comparison of 55 Alveograph Ws from flours made out of different inputs and the results of equation ALW1 is displayed in Appendix I.

The coefficient of correlation R, the coefficient of determination R² and the adjusted R² between the two new sets of data drop down to, respectively 0.93, 0.87 and 0.87. These coefficients nevertheless remain high. A Student's t test confirms that the means of the two sets of data are the same.

Theory supporting equation ALW1 is strong and is reinforced by tests on actual data.

Some additives may nevertheless have a further impact on Alveograph W. Gluten reinforces pressure and extensibility of dough although this is generally considered as not significant. Experience teaches that enzyme mixes may influence the strength of dough and consequently Alveograph W. However, their impact is nevertheless difficult to forecast.

Regression analysis has been used in order to assess the relationship between gluten, enzyme mixes and residual W, the amount of Alveograph W which is not explained by wheat mixes. The details of the regression analysis are shown in Appendix J. The following table summarizes the Ordinary Least Squares estimates.

Table 3.15: Equation ALW2 – Alveograph W

	$ALW_{res} =$	-0.6236	$+ 0.4938 W_{GLT}$	+ 110.3011 W	$V_{\rm EN1} + 272.3460 \ {\rm W}_{\rm EN2}$	
	St. deviation		0.4324	77.7021	398.1873	
	t-statistic		1.1421	1.4195	0.6840	
	Adjusted R ² =).0868	n = 46			
wh	ere:					
•	\mathbf{ALW}_{res} is the amount of the second	int of W that is	not explained by th	e Ws of the mi	x of wheat ;	
•	W _{GLT,} W _{EN1} and W	_{EN2} represent tl	he weights, in metric	tons, of respec	ctively gluten, enzyme n	nix 1
	and enzyme mix 2	ised in a mix, t	he total of which am	ounts to one th	ousand metric tons ;	

Adjusted R^2 is low at 0.0868. Signs of β coefficients are as expected. Only the β coefficient of W_{EN1} is statistically significant at a level of 10%, according to the Student's t-test. Altogether this regression equation is not very satisfactory. But it is theoretically sound.

Consequently, ALW3, a mix of equations ALW1 and ALW2, will be used as the constraint equation for Alveograph Ws in the optimization model.

Table 3.16: Equation ALW3 – Alveograph W

 $(W_{sw}/1000) ALW_{sw} + (W_{hw}/1000) ALW_{hw} - 0.6236 + 0.4938 W_{GLT} + 110.3011 W_{EN1} + 272.3460 W_{EN2} = ALW_{FLR}$

3.6.4 Specific volume of baguette after 4 hours of fermentation

Unlike the other quality parameters, there is no readily available theoretical model that links ingredients and flour as regards the specific volume of baguette after 4 hours of fermentation. Only experience gives some hints.

Soft wheat, as the most important component of GMA mix is obviously a major influence on the volume of baguettes. This influence is expressed in the specific volume of baguettes made exclusively out of the soft wheat lot under review.

Incorporation of hard wheat at a relatively small percentage increases the volume of baguettes. However, when this percentage is too high, it has an adverse effect. Stronger networks of protein hinder the growth of dough. As already mentioned earlier, GMA does not make baguettes out of its cargoes of hard wheat. In order to represent hard wheat influence in the baguette specific volume constraints equation, a proxy, Alveograph W, ALW_{hw}, the baking strength of flour made exclusively out of hard wheat will be used.

Gluten has a similar effect as hard wheat on baguette volume. It brings higher gas retaining power in dough. At relatively low incorporation rates, it favors high volume of bread. At higher incorporation rates, it has an adverse effect.

The major reason for incorporating ascorbic acid into the mix is to increase bread volume. Ascorbic acid brings oxygen in dough and helps breaking the protein network. It enhances extensibility of dough, i.e. the ability of dough to expand while retaining gas. Different enzymes may have different effects on the volume of bread. For instance, glucose-oxidases favor bread volume while some proteases don't. However, GMA requests its supplier to elaborate enzyme mixes that increases bread volumes. One should therefore expect that the effect of at least one of its enzyme mixes is positive when it comes to the volume of baguettes.

In absence of a theoretical model, regression analysis is used in order to determine a mathematical relationship between all these inputs and flour as regards the specific volume of baguette after 4 hours of fermentation. Details of this analysis are displayed in Appendix K. The following table summarizes the Ordinary Least Estimates.

	$BVL_{FLR} =$	-1.0237 + 1.0482 ((W _{sw} /1000) BVL _{sw}	+ 0.0295 (W_{hw} /1000) AL W_{hw}					
	St. deviation	0.	1523	0.0053					
	t-statistic	6.	8839	5.5289					
		+ 0.00159 W _{GLT}	+ 6.9306 W _{AAC}	+ 23.0209 W _{EN1}					
	St. deviation	0.0654	5.5136	5.9985					
	t-statistic	0.2437	1.2570	3.8378					
		+ 15.0943 W _{EN2}							
	St. deviation	31.3419							
	t-statistic	0.4816							
	Adjusted R ² = 0).6198 n	= 66						
wh	ere:								
•	BVL _{FLR} is the speci	fic volume (volume d	livided by weight) exp	ressed in cubic centimeters divide	ed				
	by grams, of bague	uettes after 4 hours of fermentation ;							
•	BVL _{sw} is the specifi	c volume (volume di	vided by weight) expre	essed in cubic centimeters divided	l				
	by grams, of bague	ttes, after 4 hours of	fermentation, made fr	rom soft wheat only ;					

• ALW_{hw} represents the Alveograph W of flour produced out of hard wheat only ;

• W_{sw} , W_{hw} , W_{GLT} , W_{AAC} , W_{EN1} and W_{EN2} represent the weights in metric tons of respectively soft wheat, hard wheat, gluten, ascorbic acid, enzyme mix 1 and enzyme mix 2 used in a mix, the total of which amounts to one thousand metric tons.

Adjusted R^2 is quite high at 0.62. Signs of β coefficients are positive as expected, except for gluten. β coefficients are also statistically significant, according to Student's t tests, except for gluten, ascorbic acid and enzyme mix 2. Altogether this regression equation is relatively satisfactory.

In between the limits of the technical constraints identified in Section 3.3 above, the adverse effects of high incorporation rates of hard wheat and gluten should not be felt. However, another way to take account of adverse effects is to use other functional forms in the regression model. Equations with quadratic functions applied to hard wheat and gluten have been tested. This regression analysis is documented in Appendix L and gives the following results.

$BVL_{FLR} =$	-1.1560 + 1.0488 (W _{sw}	/1000) BV	L _{ew} +	
St. deviation	0.154	3	5.1	
t-statistic	6.795	2		
	+ 0.0374 (W _{hw} /1000) A	LW _{hw}	+ 0.0001 ((W _{hw} /1000) ALW _{hy}	$(w)^{2} +$
St. deviation	0.0117		0.0001	
t-statistic	3.1835		0.7581	
	- 0.0047 W _{GLT}	- 0.0050	$(W_{GLT})^2 + 6.9548 W_{AAC} +$	
St. deviation	0.1427	0.0246	5.6151	
t-statistic	- 0.0331	- 0.2021	1.2386	
	+ 23.9619 W _{EN1}	+ 18.595	55 W _{EN2}	
St. deviation	6.1970	32.107	0	
t-statistic	3.8667	0.5792		

Table 3.18: Equation BVL2 – Specific Volume of Baguette

Adjusted $R^2 = 0.6105$ n = 66

where:

- BVL_{FLR} is the specific volume (volume divided by weight) expressed in cubic centimeters divided by grams, of baguettes after 4 hours of fermentation ;
- BVL_{sw} is the specific volume (volume divided by weight) expressed in cubic centimeters divided by grams, of baguettes, after 4 hours of fermentation, made from soft wheat only ;
- ALW_{hw} represents the Alveograph W of flour produced out of hard wheat only ;
- W_{sw}, W_{hw}, W_{GLT}, W_{AAC}, W_{EN1} and W_{EN2} represent the weights in metric tons of respectively soft wheat, hard wheat, gluten, ascorbic acid, enzyme mix 1 and enzyme mix 2 used in a mix, the total of which amounts to one thousand metric tons.

Adjusted R² in equation BVL2 is slightly lower than in equation BVL1. Signs of coefficients of gluten are unexpectedly negative. According to Student's t tests, the coefficients of gluten, ascorbic acid and enzyme mix 2 are not statistically significant Coefficients of negative squared weight of hard wheat W as well as negative squared weight of gluten are also not statistically significant.

Because of the insignificance of the non-linear terms in equation BVL2, equation BVL1 has been preferred as the specific baguette volume constraint in the optimization model.

3.7 The optimization model

After identifying the objective function, the constraints, their limits and their equations, the blending problem of GMA can be expressed in mathematical terms. The optimization model includes an objective function and three types of constraints: self-binding constraints, technical constraints and quality constraints.

3.7.1 The Objective Function

 Table 3.19: Optimization Model – Objective Function

 MIN: $(W_{sw}P_{sw}) + (W_{hw}P_{hw}) + (W_{GLT}P_{GLT}) + (W_{AAC}P_{AAC}) + (W_{EN1}P_{EN1}) + (W_{EN2}P_{EN2})$

Prices are expressed in CFA francs per metric tons (FCFA/t) and weights are expressed in metric tons (t).

3.7.2 Self-binding constraints

Decision variables cannot be negative. The total weight of the mix is equal to 1,000 metric tons

Table 3.20: Optimization Model - Self-binding Constraints

Non negativity	$W_{sw} \ge 0$; $W_{hw} \ge 0$; $W_{GLT} \ge 0$; $W_{AAC} \ge 0$; $W_{EN1} \ge 0$; $W_{EN2} \ge 0$
Total Weight	$\mathbf{W}_{sw} + \mathbf{W}_{hw} + \mathbf{W}_{GLT} + \mathbf{W}_{AAC} + \mathbf{W}_{EN1} + \mathbf{W}_{EN2} = 1,000$

3.7.3 Technical constraints

GMA milling process, technical specifications of dosing scales or suppliers' advice affect incorporation rates and their increments. Weights of additives, in metric tons, can take only a limited set of values.

Table 3.21: Optimization Model - Technical Constra	ints
--	------

Gluten	$W_{GLT} \in \{0.0; 0.8; 1.6; 2.4; 3.2; 4.0; 4.8; 5.6; 6.4; 7.2; 8.0\}$
Ascorbic Acid	$W_{AAC} \in \{0.000; 0.008; 0.016; 0.024; 0.032; 0.040; 0.048; 0.056; 0.064; 0.072; 0.080\}$
Enzyme Mix 1	$W_{EN1} \in \{0.000; 0.056\}$
Enzyme Mix 2	$W_{EN2} \in \{0.000; 0.004; 0.008; 0.012; 0.016\}$

3.7.4 Quality constraints

The third set of constraints set limits on flour quality parameters.

Table 3.22: Optimiz	ation Model – Quality Constraints
Flour Protein Content	
FPC1	$11.0 \le (W_{sw}/1000) \text{ FPC}_{sw} + (W_{hw}/1000) \text{ FPC}_{hw} + 0.64 (W_{GLT}/1000) \le 13.0$
Flour Liquefaction Num	ber, as a proxy of Flour Falling Number
LNR1	$10.909 \le (W_{sw}/1000) LNR_{sw} + (W_{hw}/1000) LNR_{hw} \le 15.000$
Alveograph W	
ALW3	$230 \le (W_{sw}/1000) \text{ ALW}_{sw} + (W_{hw}/1000) \text{ ALW}_{hw} - 0.6236 + 0.4938 \text{ W}_{GLT} + 0.0000 \text{ ALW}_{sw} + 0.00000 \text{ ALW}_{sw} + 0.00000 \text{ ALW}_{sw} + 0.0000000000000000000000000000000000$
	110.3011 W_{EN1} + 272.3460 W_{EN2}

 Specific volume of baguette after 4 hours of fermentation

 BVL1
 $11.5 \le -1.0237 + 1.0482 (W_{sw}/1000) BVL_{sw} + 0.0295 (W_{hw}/1000) ALW_{hw} + 0.0159 W_{GLT} + 6.9306 W_{AAC} + 23.0209 W_{EN1} + 15.0943 W_{EN2}$

The object of Chapter 3 was to transform GMA blending problem into a set of equations. The real difficulty that appeared in this process was to make choices. The selection of quality parameters, of their specifications (RHS), of the form of their equations (LHS) is at least partly subjective and questionable. These choices do impact the results of the optimization model.

CHAPTER IV: DATA AND METHODS COMPUTER IMPLEMENTATION

Nowadays, many spreadsheets provide tools, called solvers that easily solve optimization model such as the one that has been identified in the previous Chapter.

In the first section of the present Chapter, one of these solvers will be considered. Then the optimization model data will be entered on templates designed in Microsoft Excel.

4.1 Solver

Operational research and optimization techniques were first developed for military purposes during World War II. Since then, these techniques have met an increasing success. The different methods developed in order to solve an optimization model come down to testing different solutions and selecting the optimal one. Efficient techniques like the Simplex method allow for a low the number of iterations before finding the optimum solution. However, solving a complex optimization problem nevertheless requires a significant computing power. As a consequence, what really generalized the use of operational research was the development of information systems and particularly personal computers in the last decades of the 20th century. Spreadsheets and their solvers have made it easy and simple to solve optimization problems.

Eventually, the implementation of the problem on computer has become a necessary and ordinary step of the optimization modeling process. It is the third step of the five identified by Ragsdale (2008) and it constitutes the fourth chapter of the present thesis.

Solvers are computer programs that are designed to find the values of certain cells, called variable cells, which maximize or minimize the value of another cell, called a target cell, while meeting problem constraints listed in other cells of the spreadsheet. In other terms, solvers provide solutions to optimization problems.

There is a wide range of solver software available on the market nowadays. Some of them are supplied on their own. Most often, they are included in spreadsheet packages. And

nowadays, any spreadsheet commonly integrates more or less sophisticated solver functions.

For the purpose of the present thesis, the optimization model will be implemented on Microsoft Office Excel 2010. Excel includes a solver function which was developed by a company named Frontline Systems Inc. (www.solver.com).

However another solver, also developed by Frontline Systems Inc., and that work as an Excel add-in will be preferred. Premium Solver V11.5 is more powerful then Excel Solver. It includes a guided mode and it can handle larger and more complex models. It can be purchased at a price of USD 4,000 which is worth about 2 million FCFA. This is cheap in comparison of the price of one thousand tons of wheat. The cost of acquiring Premium Solver V11.5 will therefore be neglected in the optimization model.

A drawback of Premium Solver V11.5 in a French-speaking country like Côte d'Ivoire is that it is only available in English and it they must be added to the English version of Microsoft Excel. The Excel Solver, on the other hand, is available on the French version of Microsoft Excel.

Premium Solver V11.5 will be used and tested on two different models.

4.2 Models

In the previous Chapter, three types of constraints were identified: self-binding, quality and technical constraints. The technical constraints limit the values that the weights of additives can take. They drastically restrict the set of possible solutions to the optimization model. Such constraints are equivalent to integrality conditions: decision variables can assume only integer values.

A standard linear programming (LP) problem, where all variables are assumed to be continuous has an infinite number of feasible solutions. An integer linear programming (ILP) problem has only a finite set of feasible solutions. Integrality conditions may even lead to infeasability.

In order to deal with this issue, two models will be built: an ILP model where all integrality conditions are met, but also a LP model where the technical constraints are not considered. If the ILP model does not find any solution, it can be relaxed. LP model solutions will then be considered and may serve as substitutes.

Because it is easier to design and to implement, the LP model will be designed first. Integrality conditions on additives will then be introduced in the ILP model

4.2.1 The LP Model

Microsoft Excel offers many ways to implement a LP model. Figure 4.1 shows one of them.

K 🛃 🖻 × (* × =				LP	Template - Micr	osoft Excelling FR	Français (France)	🕐 Aide 📮				
File Home Insert Page La	yout Form	ulas Data	Review Vie	w Add-Ins	Risk Solver Plat	tform						a 🕜 🗆 🖡
Premium Solver V11.5 Menu Commands		2001/012-14	12-012-012)									
114 4	D	C	D	E	E	C	ш	1	1	V	- IV	M
	BIDIAN	C	U	L	F	G			,	ĸ	-	IVI
2 Vorrol	ADIDJAN	Tort	Tort									
3 Ingredients		Soft Wheat	Hard Wheat	Gluten	Ascorbic	Enzyme Mix	Enzyme Mix					
4		sw	hw	GLT	AAC	EN1	EN2					
5 Characteristics				-								
6 Flour Protein Content		0,0	0,0									
7 Flour Falling Number		0	0									
8 Flour Liquefaction Number		120	120									
9 Alveograph W		0	0									
10 Specific Volume of Bread		0,00										
11 Objective Function									Total	Const	raints	
12 Unit Prices	MFCFA/t	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000					
13 Weights	tons	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		0,0000	1000,0000	tons	
14								Target Cell	0,0000	MFCFA		
15 Constraints								Intercept		Min	Max	
16 Flour Protein Content		0,0000	0,0000	0,0006					0,0	11,0	13,0	
17 Flour Liquefaction Number		0,1200	0,1200						0,000	10,909	15,000	
18 Alveograph W		0,0000	0,0000	0,4938		110,3011	272,3460	-0,6236	-1	230		
19 Specific Volume of Bread		0,0000	0,0000	0,0159	6,9306	23,0209	15,0943	-1,0237	-1,0	11,5		
20												
21 Weights	MAX			8,0000	0,0800	0,0560	0,0160					
22												
23												
24												
🔹 🕨 🕅 Template LP 🖄							14	1	III			•
Ready											110%	

Figure 4.1: LP optimization model on Excel

Quality parameters and prices of the different ingredients of the flour mix are inputs of the model. They are highlighted in yellow. Variable cells, i.e. the weights of the different ingredients in a mix of 1,000 metric tons, are highlighted are green. The target cell, the

price of the mix of 1,000 metric tons, is highlighted in blue. And finally, constraints are highlighted in red.

Formula for cell J14, the target cell, is the sum of the prices of the different components of the mix. Such prices are the products of unit prices (in row 12) by weights (in row 13). In order to limit scaling problems, all prices are expressed in millions of CFA francs (MFCFA).

The total weight of the mix is assumed to be equal to 1,000 metric tons, which is the first constraint shown in cell K13. Data in cells C16:I19 record the different components (LHS) of the quality constraints equations. The results of these equations are displayed in cells J16:J19. These figures should be higher than constraints limits shown in cells K16:K19 and lower than constraints limits shown in cells L16:L17 (RHS). Finally, cells E21:H21 show the upper limits of the weights of additives in the mix.

In Excel, Premium Solver V11.5 is available in the Add-Ins menu. Target cell, variable cells and constraints are entered into the Solver Parameters box, as displayed in Figure 4.2.

Menu Commands A B C D GRANDS MOULINS D'ABIDJAN	Menu Commands A B C D E GRANDS MOULINS D'ABIDJAN Test Test Generalization (Minh)					(Solver Param	neters V11.5			l	×	
A B C D E 1 GRANDS MOULINS D'ABIDJAN	A B C D E GRANDS MOULINS D'ABIDJAN -	Menu Commands	fx =+SUMPF	RODUCT(C12:H	12;C13:H13)		- Objectiv	/e			Add		
CRANDS MOULINS D'ABIDIAN Test Test Test Test Test Test Test Test Test Delete 2 Vesel Soft Wheat Hard Wheat Gluten Delete Delete Reset All Delete 3 Ingredients Soft Wheat Hard Wheat Gluten Soft Wheat Hard Wheat Gluten Delete Reset All Delete Reset All Load/Save 5 Characteristics	GRANDS MOULINS D'ABIDJAN Image: Constraints Delete Vessel Test Test Test Ingredients Soft Wheat Hard Wheat Gluten sw hw GLT Delete Flour Protein Content 0,0 0 Delete Alveograph W 0 0 Delete 2 Unit Prices MFCFA/t 0,00000 0,00000 3 Weights tons 0,0000 0,0000 4 Neegraph W 0,00 0,0000 Dipetive Function Solving Method Standard LP/Quadratic Options 5 Constraints 0,0000 0,00000 0,00000 0,0000 Test Log J3,00 3 Weights tons 0,0000 0,0000 0,0000 J0,0000 J0,0000 4 New graph W 0,000 0,0000 0,0000 J0,0000 J0,0000 J0,0000 5 Flour Protein Content 0,0000 0,0000 J0,0000 J0,0000 J0,0000 J10,3011 272,3460 -0,6236 -1 230 4 Weights MAX 8,0000 0,0800 0,0560 <td< td=""><td>A</td><td>В</td><td>С</td><td>D</td><td>E</td><td>E- Variable</td><td>4 (Min) 25</td><td></td><td></td><td>Change</td><td>L</td><td>M</td></td<>	A	В	С	D	E	E- Variable	4 (Min) 25			Change	L	M
Vessel Test Test Test Ingredients Soft Wheat Hard Wheat Gluten Building Wheat Gluten Scharacteristics	Vessel Test Test Ingredients Soft Wheat Hard Wheat Gluten sw hw GLT Scharacteristics Image: Statistic Statistics Image: Statistic Statistics Image: Statistic Statistics Flour Protein Content 0,0 0,0 Image: Statistic Statistics Image: Statistic Statistics Image: Statistic Statistics Flour Liquefaction Number 120 120 Image: Statistics Image: Statistics Image: Statistics Image: Statistics Justices MFCFAt 0,00000 0,0000 Options Statistics Image: St	GRANDS MOULINS D'A	BIDJAN				E-Nor	mal					
Ingredients Soft Wheat Hard Wheat Gluten Reset All Reset All Characteristics	Ingredients Soft Wheat Hard Wheat Gluten Reset All Reset All Characteristics 0,0 0,0 0 0 0 0 Flour Falling Number 0 0 0 0 0 0 Flour Falling Number 120 120 0 0 0 0 0 Specific Volume of Bread 0,00 0	Vessel		Test	Test		Rec	ourse		=	Delete		
Sw hw GLT Kest NI Characteristics	Sw hw GLT Characteristics 0,0 0,0 Flour Protein Content 0,0 0,0 Flour Protein Content 0,0 0 Specific Volume of Bread 0,000 0,0000 0 Specific Volume of Bread 0,000 0,0000 10 Vights tons 0,0000 2 Unit Prices MFCFA/t 0,00000 0,00000 3 Weights tons 0,0000 0,0000 4 Veograph W 0,000 0,0000 0,0000 2 Unit Prices MFCFA/t 0,00000 0,0000 3 Weights tons 0,0000 0,0000 4 Veograph W 0,000 0,0000 0,0000 5 Flour Protein Content 0,0000 0,0000 0,0000 6 Constraints	Ingredients		Soft Wheat	Hard Wheat	Gluten	E Constra	ints			Bocot All		
Characteristics Image: Characteristics	Characteristics 0,0 0,0 0,0 0 Flour Protein Content 0,0 0 0 0 Flour Fluipefaction Number 120 120 120 Model Alveograph W 0 0 0 0 0 0 Objective Function 0 <			sw	hw	GLT	E-Nor	mal VI SIS13 = SKS13			Reset All		
Flour Protein Content 0,0 0,0 Flour Falling Number 0 0 Flour Falling Number 120 120 Alveograph W 0 0 Objective Function 0,000 0,0000 Weights tons 0,0000 0,0000 Outperformation 0,000 0,0000 0,0000 Outperformation 0,000 0,0000 0,0000 Outperformation 0,000 0,0000 0,0000 Outperformation 0,0000 0,0000 0,0000 Outperformation 0,0000 0,0000 0,0000 Outperformation 0,0000 0,0000 0,0000 Outperformation 0,0000 0,0000 0,0000 Flour Liquefaction Number 0,1200 0,0120 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160	Flour Protein Content 0,0 0,0 Flour Falling Number 0 0 Flour Falling Number 120 120 Alveograph W 0 0 Specific Volume of Bread 0,000 0,0000 0,0000 Objective Function Model Image: Select the GR Non-Negative Options Veights More Non-Negative Options Select the GR Non-Negative Solution Protein Content 0,0000 0,0000 0,0000 0,0000 Ornarce Solution Proteins that are smooth nonlinear. Select the GR Non-Negative Solver Problems that are smooth nonlinear. Select the GR Non-Negative Solver Problems that are smooth nonlinear. Select the GR Non-Negative Solver Problems that are smooth nonlinear. Select the GR Non-Negative Solver Problems that are smooth nonlinear. Select the GR Non-Negative Solver Problems that are smooth nonlinear. Select the GR Non-Negative Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlinear. Select the GR Solver Problems that are smooth nonlineare. Select the GR Solver Problems that are sm	Characteristics						✓ \$J\$16:\$J\$17 <=	SL\$16:SL\$17		Load/Save		
Flour Falling Number 0 0 Flour Liquefaction Number 120 120 Alveograph W 0 0 Objective Function	Flour Falling Number 0 0 Flour Liquefaction Number 120 120 Alveograph W 0 0 Specific Volume of Bread 0,00 0 Unit Prices MFCFA/t 0,00000 0,00000 Weights tons 0,0000 0,0000 0,0000 Constraints 0 0 0 0 Flour Protein Content 0,0000 0,0000 0,0000 0,0000 Alveograph W 0 0 0 0 Constraints 0 0 0 0 Flour Protein Content 0,0000 0,0000 0,0000 0,0000 Alveograph W 0,0000 0,0000 0,0000 0,0000 Alveograph W 0,0000 0,0000 0,0000 110,3011 272,3460 -0,6236 -1 230 Specific Volume of Bread 0,0000 0,0000 0,0080 0,0560 0,0160 0 11,50 Weights MAX 8,0000 0,0800 0,0560 0,0160 0 0 11,03 0,0160 0	Flour Protein Content		0,0	0,0		L	SJS16:SJS19 >=	\$K\$16:\$K\$19			-	
Flour Liquefaction Number 120 120 Alveograph W 0 0 Specific Volume of Bread 0,00 0 Unit Prices MFCFA/t 0,00000 0,00000 Weights tons 0,0000 0,00000 0,00000 Constraints	Flour Liquefaction Number 120 120 Alveograph W 0 0 Specific Volume of Bread 0,00 0 Objective Function 0 0 Weights tons 0,000 0,0000 Objective Function 0 0 0 Output Prices MFCFA/t 0,0000 0,0000 0,0000 Weights tons 0,000 0,0000 0,0000 0,0000 Flour Iquefaction Number 0,1200 0,1200 0,0000 0,0000 0,0000 Alveograph W 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 Specific Volume of Bread 0,0000 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0560 0,0160 10,0160 </td <td>Flour Falling Number</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>EL Ror</td> <td>ind</td> <td></td> <td>*</td> <td>Model</td> <td></td> <td></td>	Flour Falling Number		0	0		EL Ror	ind		*	Model		
Alveograph W 0 0 0 Specific Volume of Bread 0,00 - <td>Alveograph W 0 0 Specific Volume of Bread 0,00 select a Solving Method: Standard LF/Quadratic Options Objective Function </td> <td>Flour Liquefaction Number</td> <td></td> <td>120</td> <td>120</td> <td></td> <td>🔽 Make Ui</td> <td>nconstrained Va</td> <td>riables Non-Nega</td> <td>tive</td> <td></td> <td></td> <td></td>	Alveograph W 0 0 Specific Volume of Bread 0,00 select a Solving Method: Standard LF/Quadratic Options Objective Function	Flour Liquefaction Number		120	120		🔽 Make Ui	nconstrained Va	riables Non-Nega	tive			
Specific Volume of Bread 0,00 Specific Volume of Bread 0,00 Specific Volume of Bread 0,000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Veights MAX 8,0000 0,0800 0,0560 0,0160	Specific Volume of Bread 0,00 Objective Function	Alveograph W		0	0		0.1		In the set of the form	and and a second	Ontions	1	
Objective Function Memory Constraints Solving Method Solving Method <th< td=""><td>Objective Function Solving Method 2 Unit Prices MFCFA/t 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 Select the G&G Nonlinear Solver Problems that are smooth nonlinear. Solver problems that are non-smooth. Instraints Instrai</td><td>Specific Volume of Bread</td><td></td><td>0,00</td><td></td><td></td><td>Select a Sol</td><td>ving Method:</td><td>Standard LP/Q</td><td>uadratic 💌</td><td>options</td><td></td><td></td></th<>	Objective Function Solving Method 2 Unit Prices MFCFA/t 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 Select the G&G Nonlinear Solver Problems that are smooth nonlinear. Solver problems that are non-smooth. Instraints Instrai	Specific Volume of Bread		0,00			Select a Sol	ving Method:	Standard LP/Q	uadratic 💌	options		
Weights MFCFAyt 0,00000 0,01159 272,3460 -0,6236 -1 230 110,3011 272,3460 -0,6236 -1 230 100 11,5 100 11,5	Unit Prices MFCFA/t 0,00000 0,0000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,0000 0,0000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,0011 272,3460 -0,6236 -1 230 -1	Objective Function					Solving Met	thod				nstraints	
Weights tons 0,0000 0,0000 0,0000 0,0000 nonlinear. Select the <i>D</i> simplex engine for linear Solver problems, and select the <i>D</i> simplex engine for linear Solver problems, and select the <i>D</i> simplex engine for linear Solver problems that are non-smooth. Non 5 Constraints	Neights tons 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 1 Weights MAX 8,0000 0,0800 0,0560 0,0160	2 Unit Prices	MFCFA/t	0,000000	0,000000	0,000000	Select the G	RG Nonlinear e	ngine for Solver P	roblems that are s	mooth		
information information information information information Max information information Max information information Max information Max information	Constraints Solve Close Max 6 Flour Protein Content 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0120 0	3 Weights	tons	0,0000	0,0000	0,0000	nonlinear. S select the E	Select the LP Sim volutionary engi	plex engine for li ne for Solver prot	near Solver Proble plems that are not	ems, and n-smooth.	100 tons	
Constraints One One One In Max 5 Flour Protein Content 0,000 0,0000 Interview Interview </td <td>Constraints Iiii Max Flour Protein Content 0,0000 0,0000 Plour Protein Content 0,0000 0,0000 Alveograph W 0,0000 0,0000 0,4938 Specific Volume of Bread 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	Constraints Iiii Max Flour Protein Content 0,0000 0,0000 Plour Protein Content 0,0000 0,0000 Alveograph W 0,0000 0,0000 0,4938 Specific Volume of Bread 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1										-	
5 Flour Protein Content 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,04938 110,3011 272,3460 -0,6236 -1 230 3 Alveograph W 0,0000 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 3 Specific Volume of Bread 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 4 Weights MAX 8,0000 0,0800 0,0560 0,0160 -1 </td <td>6 Flour Protein Content 0,0000 0,00159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160 </td> <td>Constraints</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[</td> <td></td> <td>lin M</td> <td>.ax</td>	6 Flour Protein Content 0,0000 0,00159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160	Constraints								[lin M	.ax
7 Flour Liquefaction Number 0,1200 0,1200 0 10,3011 272,3460 -0,6236 -1 230 3 Alveograph W 0,0000 0,04938 110,3011 272,3460 -0,6236 -1 230 5 Specific Volume of Bread 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 4 Weights MAX 8,0000 0,0800 0,0560 0,0160 -	7 Flour Liquefaction Number 0,1200 0,1200 0,1200 0,1200 0,1200 10,3011 272,3460 -0,6236 -1 230 15,000 15,000 15,000 15,000 10,0111 272,3460 -0,6236 -1 230 15,000 10,0111 272,3460 -0,6236 -1 230 15,000 10,0111 272,3460 -0,6236 -1 230 15,000 10,011 272,3460 -0,6236 -1 230 110,3011 272,3460 -0,6236 -1 230 110,3011 272,3460 -0,6236 -1 230 110,3011 272,3460 -0,6236 -1 0 110,3011 272,3460 -0,6236 -1 0 110,3011 272,3460 -1,00237 -1,0 11,5 110,3011 272,3460 0,0600 0,0160 100 100,011 272,3460 0,0600 0,0160 110,3011 272,3460 0,0160 100,011 272,3460 0,0160 100,011 272,3460 0,0160 100,011 272,3460 0	5 Flour Protein Content		0,0000	0,0000	0,0006				<u>S</u> olve •	Close	1,0 13	3,0
Alveograph W 0,0000 0,0000 0,4938 110,3011 272,3460 -0,6236 -1 230 specific Volume of Bread 0,0000 0,0159 6,9306 23,029 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160 -1 1 -1 -1	Alveograph W 0,0000 0,0938 110,3011 272,3460 -0,6236 -1 230 Specific Volume of Bread 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 -1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 0 <td>7 Flour Liquefaction Number</td> <td></td> <td>0,1200</td> <td>0,1200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>09 15,0</td> <td>00</td>	7 Flour Liquefaction Number		0,1200	0,1200							09 15,0	00
Specific Volume of Bread 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 V Veights MAX 8,0000 0,0800 0,0560 0,0160 -	Specific Volume of Bread 0,0000 0,0000 0,0159 6,9306 23,0209 15,0943 -1,0237 -1,0 11,5 Weights MAX 8,0000 0,0800 0,0560 0,0160	3 Alveograph W		0,0000	0,0000	0,4938		110,3011	272,3460	-0,6236	-1	230	
0 Main 8,0000 0,0560 0,0160 1 Weights MAX 8,0000 0,0560 0,0160 2 Image: Comparison of the state of th	0 Weights MAX 8,000 0,0800 0,0560 0,0160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Specific Volume of Bread		0,0000	0,0000	0,0159	6,9306	23,0209	15,0943	-1,0237	-1,0	11,5	
I Weights MAX 8,0000 0,0800 0,0160 2	I Weights MAX 8,0000 0,0800 0,0160 2)					and the second sec		an and a second of				
2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	l Weights	MAX			8,0000	0,0800	0,0560	0,0160				
3 4	3 4 • > M Template LP / 27 / 14 / 11 / 12 / 12 / 12 / 12 / 12 / 12	2											
	Image: transmission of the second	3											
	() H Template LP (2)	1											

Figure 4.2: LP Premium Solver V11.5 Parameters box

Premium Solver V11.5 guided mode confirms that the model is LP convex.

K	17-6-1	•		_		LP Templa	te - Microsoft E	IC FR Fra	nçais (Franc	e) 😰 Aide 📜	-				0 8
File	Home	Insert Pag	ge Layout Fo	rmulas Data	Review Vie	w Add-Ins Risk	Sohrer Platform							۵ (0 - # #
Mode	Distribution	s Correlations R	esults Decision	s Constraints Ob	jective Parameters	Simulate Optimize	Reports Charts	Decision Tree *	Fit Dist Sim #1 •	CIII Freeze	Load/Save *	Options	Help		
Mode	el Sun	ulation Model	0) 	dimization Mode	Parameters	Solve Action	Analysis			Tools		Options	Help		
		- (C	J# 045010	G	ided Mode					*					
	E.	F	G	п	-	Analysis Des	lta-				P	Solver Option	is and Mod	el specificati	ions + /
1						Good News: You	r model was di	agnosed a	s LP Conv	ex.		- 2 Model	~ phatron	n	e un compo
2	The second	Annahia	Comme Mile	C								+ · ×	411		
1	GIT	ASCOTOIC	EN1	Enzyme n		What this mea	ns:						\$3\$14 (Mir	(r	*
5	GLI	AAL	EINT	EIVZ	-	 This is the easi Risk Solver Pla 	est type of more	tel to solve	itoo ledole	mal			Normal		-
6						solution.	avin carnyin	any mila a	Jongiopa					\$13:\$4\$13	
7						• It is generally v	ery easy to sca	le up mod	els of this ty	/pe.			Recourse		
8						states and the second	222.925	2,001	52				onstraints		-
9						What Risk Sol	ver Platform	will do ne	xt	da ata dia			SIS \$35	13 = sK\$13	
0						the Engine tab of	the Task Pane	to solve th	is model	alacted in	-			\$16:\$1\$17 <=	\$\$16:5.5
11													-211 \$14	\$16:\$3\$19 >=	\$K\$16:\$K\$
12	0,000000	0,000000	0,000000	0,000		Recommenda	tion						Chance		
13	0,0000	0,0000	0,0000	0,0		If you go to the E	ngine Tab on th	e Task Pa	ne and che	ack the box				\$13:\$4\$13 <-	\$E\$21:\$1
14						"Automatically S	elect Engine", H	tisk Solver	Platform w	all choose		-	I Cook		
15						the Destengine i	or your modern	ype and su	с.						****
6	0,0006											Model Typ	agiiosis	Unknown	**Z+*
17												Variable:	s - Function	ns - Depende	encies
.8	0,4938		110,3011	272,5		Stop Solving	Skip Gui	dance	N	ext Step		AL		Vars For	N/A
19	0,0159	6,9306	23,0209	9 15,0			-	124				Smooth		N/A N/2	N/A
20	212200		NO DO DO DO	_								Linear		N/A N/#	N/A
11	8,0000	0,0800	0,0560	0,016								Recourse		0 N/4	a n/A -
22												O Model Ty	The set of the set	alver without	Solution
13												button to dia	gnose the m	odel.	
14	N N Tomolo	10 /00				51 4		-				Diagona	100%	_	
lead	v empla	ie i P / C /				14		L			1410		1 1105	0	0 4
	1		(197		Total State	A	-	-		-	-	Contraction of the local division of the loc			11.07

Figure 4.3: LP Premium Solver V11.5 Guided mode

Several options can be defined in the Options box of Premium Solver V11.5.

					Options		- X -					
1	Menu Commands	=+SUMP	RODUCT/C12:H	12:C13:H1	All Methods LSGRG Evolutionary	LP/QP Interval SO	CP	-				_
á	A	В	C	D				1	1	К	E I	м
	GRANDS MOULINS D'A	BIDIAN			Constraint Precision:	1e-006						
	Vessel	DIDJAN	Test	Test	Use Automatic Scaling							
	Ingredients		Soft Wheat	Hard W								
	ingreateries		SUL THILLIL	hw	Show Iteration Results							
	Characteristics				Bypass Solver Reports							
	Flour Protein Content		0.0		-Solving with Integer Const	aints						
	Flour Falling Number		C			inte						
	Flour Liquefaction Number		120		L ignore integer constra	ints						
	Alveograph W		0		Integer Optimality (%):	0						
)	Specific Volume of Bread		0,00		- Soluina Limite							
i.	Objective Function				autoring clinics	1			Total	Constr	aints	
2	Unit Prices	MFCFA/t	0,000000	0,00	Max Time (Seconds):	100						
3	Weights	tons	0,0000	0,	Iterations:	1000			0,0000	1000,0000	tons	
			-			and the second sec		arget Cell	0,0000	MFCFA		
;	Constraints				Evolutionary and integer C	onstraints:		Intercept		Min	Max	
	Flour Protein Content		0,0000	0,	Max Subproblems:	5000			0,0	11,0	13,0	
7	Flour Liquefaction Number		0,1200	0,	May Fascible Colutions	5000			0,000	10,909	15,000	
3	Alveograph W		0,0000	0,	wax reasible solutions:	3.5.0		-0,6236	-1	230		
9	Specific Volume of Bread		0,0000	0,				-1,0237	-1,0	11,5		
0												
L	Weights	MAX				OK	Cancel					
						1						
3												
20												

Figure 4.4: LP Premium Solver V11.5 Options Box

Automatic Scaling is always useful although some of the scaling issues have already been dealt with by using millions of CFA francs for prices.

Until now, technical constraints described in Section 3.3 have not been implemented in the model.

4.2.3 The ILP model

The ILP model template is built on the basis of the LP model template. However, in order to deal with the technical constraints, variables representing additives weights have been redefined so that their respective increments correspond to one unit. With this conversion, the model becomes an integer one: variable cells can assume only integer values. To do so, variables W_i are replaced by their proxies W_i'.

 Table 4.1: LP/ILP model - Units Correspondence Table

Ingredients	Formulas	W _i units	W _i ' units
Gluten	W_{GLT} ' = $W_{GLT} \times 1.25$	1 metric ton	800 kg
Ascorbic acid	W_{AAC} ' = $W_{AAC} \ge 125$	1 metric ton	8 kg
Enzyme Mix 1	W_{EN1} ' = $W_{EN1} \ge 1,000 / 56$	1 metric ton	56 kg
Enzyme Mix 2	$\mathbf{W}_{\mathrm{EN2}}' = \mathbf{W}_{\mathrm{EN2}} \ge 250$	1 metric ton	4 kg

With such transformations, the technical constraints become:

Ingredients	Technical Constraints with W _i	Technical Constraints with W _i '
Gluten	$ \begin{split} W_{GLT} & \in \{0.0; 0.8; 1.6; 2.4; 3.2; 4.0; 4.8; \\ & 5.6; 6.4; 7.2; 8.0 \} \end{split} $	W_{GLT} ' $\in \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}$
Ascorbic acid	$ \begin{split} W_{AAC} & \in \{0.000; 0.008; 0.016; 0.024; 0.032; \\ & 0.040; 0.048; 0.056; 0.064; 0.072; 0.080\} \end{split} $	W _{AAC} ' є {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10}
Enzyme Mix 1	$W_{EN1} \in \{0.000; 0.056\}$	$\mathbf{W}_{\mathrm{EN1}}$ ' $\mathbf{\epsilon}$ {0; 1}
Enzyme Mix 2	$W_{EN2} \in \{0.000; 0.004; 0.008; 0.012; 0.016\}$	W_{EN2} , ε {0; 1; 2; 3; 4}

Table 4.2: LP/ILP model - Technical Constraints Correspondence Table

Unit prices of ingredients are modified as well.

Ingredients	Formulas	W _i units	W _i ' units
Gluten	$P_{GLT}' = P_{GLT} / 1.25$	1 metric ton	800 kg
Ascorbic acid	$\mathbf{P}_{\mathrm{AAC}}$ ' = $\mathbf{P}_{\mathrm{AAC}}$ / 125	1 metric ton	8 kg
Enzyme Mix 1	$P_{EN1}' = P_{EN1} / 1,000 \times 56$	1 metric ton	56 kg
Enzyme Mix 2	$P_{EN2}' = P_{EN2} / 250$	1 metric ton	4 kg

 Table 4.3: LP/ILP model - Unit Prices Correspondence Table

Coefficients of quality constraints also change, where weights of additives are concerned.

Ouality	W _i equations	W _i ' equations
Constraint		
Flour protein Content	$\begin{array}{l} 11.0 \leq (W_{sw}/1000) \ FPC_{sw} + (W_{hw}/1000) \\ FPC_{hw} + 0.64 \ (W_{GLT}/1000) \leq 13.0 \end{array}$	$\begin{array}{l} 11.0 \leq (W_{sw}/1000) \ FPC_{sw} + (W_{hw}/1000) \\ FPC_{hw} + 0.512 \ (W_{GLT}' \ / \ 1000) \leq 13.0 \end{array}$
Flour Liquefaction Number	$\begin{array}{l} 10,\!909 \leq (W_{sw}/1000) LNR_{sw} + \\ (W_{hw}/1000) LNR_{hw} \leq 15,\!000 \end{array}$	$\begin{array}{l} 10,\!909 \leq (W_{sw}/1000) LNR_{sw} + \\ (W_{hw}/1000) LNR_{hw} \leq 15,\!000 \end{array}$
Alveograph W	$\begin{array}{l} 230 \leq (W_{sw}/1000) \: ALW_{sw} + (W_{hw}/1000) \\ ALW_{hw} - 0.6236 + 0.4938 \: W_{GLT} + \\ 110.3011 \: W_{EN1} + 272.3460 \: W_{EN2} \end{array}$	$\begin{array}{l} 230 \leq (W_{sw}/1000) \ ALW_{sw} + (W_{hw}/1000) \\ ALW_{hw} - 0.6236 + 0.3950 \ W_{GLT} ^{\prime} + \\ 6.1769 \ W_{EN1} ^{\prime} + 1.0894 \ W_{EN2} ^{\prime} \end{array}$
Specific Volume of Baguette	$\begin{array}{l} 11.5 \leq -1.0237 + 1.0482 \; (W_{sw}/1000) \\ BVL_{sw} + 0.0295 \; (W_{hw}/1000) \; ALW_{hw} + \\ 0.0159 \; W_{GLT} + 6.9306 \; W_{AAC} + 23.0209 \\ W_{EN1} + 15.0943 \; W_{EN2} \end{array}$	$\begin{array}{l} 11.5 \leq -1.0237 + 1.0482 \; (W_{sw}/1000) \\ BVL_{sw} + 0.0295 \; (W_{hw}/1000) \; ALW_{hw} + \\ 0.0127 \; W_{GLT}' + 0.0554 \; W_{AAC}' + 1.2892 \\ W_{EN1}' + 0.0604 \; W_{EN2}' \end{array}$

Table 4.4: LP/ILP model – Quality Constraints Correspondence Table

Finally, the sum of the weights of ingredients, which is assumed to be equal to 1,000 metric tons, was straightforward in the LP model. It now becomes.

 $1000) + (W_{EN2}' / 250) = 1,000$

Table 4.5. L1/1L1 model – Sum of	weights Correspondence rable
LP model / W _i equations	ILP model / W _i ' equations
$W_{sw} + W_{hw} + W_{GLT} + W_{AAC} + W_{EN1}$	$W_{sw} + W_{hw} + (W_{GLT}' / 1.25) + (W_{AAC}' / 125) + (W_{EN1}' \times 56 / 125)$

Fable 4.5: LP/IL	P model – Sum	of Weights	Corres	pondence Table
------------------	---------------	------------	--------	----------------

 $+ W_{EN2} = 1,000$

Figure 4.5: ILP optimization model on Excel

Z.	N 3) + (1 + 1=		_		ILP	Template - Mice	osoft Exc	Français (France)	Aide				
n	In Home Insert Page L	eyout Form	ulas Data	Review Vie	w Add-Ins	Risk Solver Plat	term		10				a 🕜 🗆
ľ	Calibri	- 11 -	A' A' =	= 😑 😻	📑 Wrap Text	Numbe	e - +		B	3- 3	Σ 	AutoSum - A	7 A
Pas T	te 🥑 Format Painter 🖪 I 💆	• 🖽 • 🗳	•· <u>Δ</u> · ≡	三三 保保	Merge & C	enter - 🛒 -	% · 38 #3	Conditional F Formatting * as	ormat Cell Table - Styles -	Insert Delete	Format 2	Clear - Filt	er * Select
_	Clipboard /2	Font	- 14	Aligne	tent	12 0	lumber 13	sty	es.	Cells		Editing	
	J16 * (*	Jr =+SUMP	RODUCT(C14:H	14;C15:H15)									
A	A	В	С	D	E	F	G	н	1	1	K	1	М
1	GRANDS MOULINS D'	ABIDJAN											
Ē	Vessel		Test	Test									
3	Ingredients		Soft Wheat	Hard Wheat	Gluten	Ascorbic	Enzyme Mix	Enzyme Mix					
1	2		sw	hw	GLT	AAC	EN1	EN2					
	Characteristics												
i.	Flour Protein Content		0,0	0,0									
2	Flour Falling Number		C	0									
	Flour Liquefaction Number		120	120									
	Alveograph W		C	0 0									
0	Specific Volume of Bread		0,00										
1	Unit Prices	MFCFA/t	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000					
2													
3	Objective Function									Total	Const	raints	
ŧ.	Unit Prices	MFCFA/unit	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000					
5	Weights		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		0,0000	1000,0000	tons	
5		units	1ton	1ton	800kg	Skg	56kg	4kg	Target Cell	0,0000	MFCFA		
7	Constraints								Intercept		Min	Max	
8	Flour Protein Content		0,0000	0,0000	0,0005					0,0	11,0	13,0	
A.	Flour Liqueraction Number		0,1200	0,1200	0 3050		6 4760	1 0004	0.0000	0,000	10,909	15,000	
	Specific Volume of Broad		0,0000	0,0000	0,3950	0.0554	6,1/69	1,0894	-0,6236	-1	230	-	
1	specific volume of Bread		0,0000	0,0000	0,012/	0,0554	1,2892	0,0604	-1,0237	-1,0	11,5		
5	14/olabte	MAY			10.0000	10,0000	1.0000	4 0000					
4	weights	MAA			10,0000	10,0000	1,0000	4,0000					
	+ H Template II B							140					-
	dy										100 53 03	110%	

Unit prices, total weight, constraints formulas and limits have been changed. And a new constraint has been introduced: additives weights must be integer figures.

Z I	a) = (u + -		_		ILP	Template - Micro	soft Excent July 7	nçais (France) 🚺	Aide -					
E	Home Incert Page	mont Form	dar Data 1	Tentenn Ullenn	Add Inc	Rick Soher Blatte	La ben		and the second second				0	51.5
	Premium Solver V11.5													
_	• (*	fe =+SUMPF	RODUCT(C14:	Solver Paramete	ers V11.5			-2	-				20001	
1	A	В	C							1	К	L	M	-
1	GRANDS MOULINS D'	ABIDJAN		E Constraints	6			Add						1
2	Vessel		Test	El-Norma	1 1515 = 5K515			0						
3	Ingredients		Soft Wheat	-121	LI\$18:5:519 <=	SL\$18.5L519		unange						
4	el		sw	- Chance	5J\$18:5J521 ≫	5#518:5#521		Delete						
5	Characteristics			B-Bound										
7	Flour Falling Number		~	- Conic	E\$15:5H515 <-	SE\$23:5H\$23	Ξ.	RESET ALL						
8	Flour Linuefaction Number		12	E- Intege	rs			Load/Save						
9	Alveograph W			Uncertain	(2515-5H515 = /arlables	integer		1000						
10	Specific Volume of Bread		0.00		a navisa		Ψ.	Model						
11	Unit Prices	MFCFA/t	0,00000	🔽 Make Unco	nstrained Var	iables Non-Negat	ive							
12				Select a Solvin	e Method	Standard L9/Qu	adratic •	Options						
13	Objective Function					1				Total	Constr	aints		
14	Unit Prices	MFCFA/unit	0,00000	Solving Metho	d									
15	Weights		0,000	Select the GRO	Nonlinear er	gine for Solver Pro	oblems that are sine and solver Problem	mooth		0,0000	000,000	tons		
16		units	1tor	select the Evol	utionary engin	ne for Solver probl	ems that are non	-smooth.	et Cell	0,0000	MFCFA			
17	Constraints								tercept		Min	Max		
18	Flour Protein Content		0,000				Colum .	Close	1	0,0	11,0	13.0		
19	Flour Liquefaction Number		0,120				Source .	erose		0,000	10,909	15,000		
20	Alveograph W		0,0006						0,6236	-1	230			
21	Specific Volume of Bread		0,0000	0,0000	0,0127	0,0554	1,2892	0,0604	-1,0237	-1,0	11,5			
12					10 0000			1 0000						
14	weights	MAX			10,0000	10,0000	1,0000	4,0000						
C44	N.W. Templete U.D.									-			_	1
	r emplace ICP										(The second second			11

Figure 4.6: ILP Premium Solver V11.5 Parameters Box

The integer options box has also been fulfilled and integer optimality set to 0% as shown in Figure 4.7. With this option, the model does not allow any tolerance on the constraints.

Unlike the LP Model, the ILP model integrates all constraints.

The set of equations and inequalities of the optimization model has been translated into two spreadsheet templates. Premium Solver V11.5 has been fed with the model parameters. The optimization model, in its two versions, LP and ILP, is now ready to be tested with actual data.

CHAPTER V: RESULTS

The GMA blending problem has been put into a mathematical programming model and implemented on computer. The optimization model is ready to be solved and tested.

Four months when GMA has made blending decisions have been selected: February 2011, May 2011, August 2011 and February 2012. Corresponding data have been entered in the model templates.

In the first section, the optimization model solutions will be described. In the second section, they will be discussed. Finally, in the third section, a special attention will be given to the quality constraints equations that were identified in Chapter 3.

5.1 Results

In the months being considered, GMA processed soft wheat and hard wheat with the following characteristics.

Period	Feb. 2011	<u>May 2011</u>	<u>Aug. 2011</u>	Feb. 2012
Vessel	African Orchyd	Silva- plana	Lavaux	Monte Azul
Flour Protein Content (%)	10.7	10.8	10.8	11.1
Flour Falling Number (s.)	372	325	354	339
Alveograph W	225	207	235	250
Specific weight of baguette after 4 hours of fermentation (cm ³ /g)	11.88	11.40	10.52	12.55

 Table 5.1: Soft wheat quality parameters

Period	Feb. 2011	<u>May 2011</u>	<u>Aug. 2011</u>	Feb. 2012
Vessel	Amorita	Greenwing	Federal Leda	Neptune Pioneer
Flour Protein Content (%)	15.7	15.6	15.4	15.8
Flour Falling Number (s.)	468	424	598	430
Alveograph W	457	415	387	475

Prices of the different ingredients, in FCFA/t, as recorded in GMA books, were as follows.

Prices (FCFA/t)	Feb. 2011	May 2011	Aug. 2011	Feb. 2012
Soft Wheat	219,680	229,302	212,644	188,669
Hard Wheat	221,321	241,044	230,980	245,530
Gluten	1,286,000	1,238,000	1,579,000	1,204,900
Ascorbic acid	5,711,000	5,245,570	5,245,570	4,415,180
Enzyme mix 1	26,957,570	26,957,570	27,255,950	27,255,950
Enzyme mix 2	24,752,100	24,752,100	24,752,100	24,752,100

Table 5.3: Unit prices of ingredients

With these data as inputs, Premium Solver V11.5 gives the following LP optimal solution, as regards February 2011.

Premium Solver V11.5												
J14 -	fx =+SUMPR	ODUCT(C12:H1	2;C13:H13)									
A	В	С	D	E	F	G	Н	I	J	К	L	М
GRANDS MOULINS D'A	BIDJAN											
Vessel		Test	Test									
Ingredients		Af. Orchyd	Amorita	Gluten	Ascorbic	Enzyme Mix	Enzyme Mix					
		sw	hw	GLT	AAC	EN1	EN2					
Characteristics				-								
Flour Protein Content		10,7	15,7									
Flour Falling Number		372	468									
Flour Liquefaction Number		14	12									
Alveograph W		225	457									
Specific Volume of Bread		11,88										
Objective Function									Total	Constr	aints	
Unit Prices	MFCFA/t	0,219680	0,221321	1,286000	5,711000	26,957570	24,752100					
Weights	tons	939,9958	60,0029	0,0000	0,0014	0,0000	0,0000		1000,0000	1000,0000	tons	
								Target Cell	219,7855	MFCFA		
Constraints								Intercept		Min	Max	
Flour Protein Content		0,0107	0,0157	0,0006					11,0	11,0	13,0	
Flour Liquefaction Number		0,0142	0,0116						14,060	10,909	15,000	
Alveograph W		0,2250	0,4570	0,4938		110,3011	272,3460	-0,6236	238	230		
specific Volume of Bread		0,0125	0,0135	0,0159	6,9306	23,0209	15,0943	-1,0237	11,5	11,5		
Woights	MAY			0,0000	0.0800	0.0500	0.0160					
weights	IVIAA			8,0000	0,0800	0,0560	0,0160					
Answer Report 1 / Sensi	tivity Report 1	Limits Repor	t 1 Templa	to I D								
	inter report 1	2 cando Repor	ст д тептры						nu.		11001	

Figure 5.1: Premium Solver V11.5 - LP optimization model – February 2011

Premium Solver V11.5 gives a different solution to the ILP model.

₩) + (²¹ + -				Feb	11 ILP PSP - Mic	rosoft Exe	Français (France)	🕐 Aide 📮			le le	- 0
ile Home Insert Page L	ayout Formu	ilas Data	Review Vie	w Add-Ins	Risk Solver Plat	tform						∞ 🕜 ⊏
Premium Solver V11.5 Menu Commands												
J16 🔹 🥐	fx =+SUMPR	RODUCT(C14:H14	4;C15:H15)									
A	В	С	D	E	F	G	Н	I	J	K	L	М
GRANDS MOULINS D'	ABIDJAN											
Vessel		Test	Test	1								
Ingredients		Af. Orchyd	Amorita	Gluten	Ascorbic	Enzyme Mix	Enzyme Mix					
-		sw	hw	GLT	AAC	EN1	EN2					
Characteristics												
Flour Protein Content		10,7	15,7									
Flour Falling Number		372	468									
Flour Liquefaction Number		14	12									
Alveograph W		225	457									
Specific Volume of Bread		11,88										
Unit Prices	MFCFA/t	0,219680	0,221321	1,286000	5,711000	26,957570	24,752100					
Objective Function									Total	Const	raints	
Unit Prices	MFCFA/unit	0,219680	0,221321	1,028800	0,045688	1,509624	0,099008					
Weights		930,9116	69,0884	0,0000	0,0000	0,0000	0,0000		1000,0000	1000,0000	tons	
	units	1ton	1ton	800kg	8kg	56kg	4kg	Target Cell	219,7930	MFCFA		
Constraints								Intercept		Min	Max	
Flour Protein Content		0,0107	0,0157	0,0005					11,0	11,0	13,0	
Flour Liquefaction Number		0,0142	0,0116				0.000	000000	14,036	10,909	15,000	
Alveograph W		0,2250	0,4570	0,3950	1000 mg 1000 mg 1000 mg	6,1769	1,0894	-0,6236	240	230		
Specific Volume of Bread		0,0125	0,0135	0,0127	0,0554	1,2892	0,0604	-1,0237	11,5	11,5		
Weights	MAX			10,0000	10,0000	1,0000	4,0000					
▲ ► ► Answer Report 1 Temu	plate ILP 🦯 💱						14		101			

			-	~ -						
i¢	onre	5 2.	Premiur	n Solver	V115	- IL P	ontimization	model –	. Februarv	2011
- 6	Suit	J. . .	I I CIIII UI		1 11.0	11/1	opumization	mouci	I COI uai y	AOII

Figures 5.1 and 5.2 are screen captures from Microsoft Excel. Premium Solver V11.5 can also display optimal solutions as an Answer Report.

Figure 5.3: Premium Solver V11.5 - ILP Answer Report – February 2011 Microsoft Excel 14.0 Answer Report Worksheet: [Feb 11 ILP PSP.xlsx]Template ILP Report Created: 9/8/2012 11:57:40 AM Result: Solver found a solution. All constraints and optimality conditions are satisfied. Engine: Standard LP/Quadratic Solution Time: 01 Seconds Iterations: 0 Subproblems: 0 Incumbent Solutions: 0

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$J\$16	Target Cell Total	219,7930115	219,7930115

Decision Variable Cells

Cell		Name	Original Value	Final Value	Туре
\$C\$15	Weights sv	W	930,9116	930,9116	Normal
\$D\$15	Weights h	w	69,0884	69,0884	Normal
\$E\$15	Weights G	LT	0,0000	0,0000	Normal
\$F\$15	Weights A	AC	0,0000	0,0000	Normal
\$G\$15	Weights E	N1	0,0000	0,0000	Normal
\$H\$15	Weights E	N2	0,0000	0,0000	Normal

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$J\$15	Weights Total	1000,0000	\$J\$15=\$K\$15	Binding	0
\$J\$18	Flour Protein Content Total	11,0	\$J\$18<=\$L\$18	Not Binding	1,954557754
\$J\$19	Flour Liquefaction Number Total	14,036	\$J\$19<=\$L\$19	Not Binding	0,96403844
\$J\$18	Flour Protein Content Total	11,0	\$J\$18>=\$K\$18	Not Binding	0,045442246
\$J\$19	Flour Liquefaction Number Total	14,036	\$J\$19>=\$K\$19	Not Binding	3,126870651
\$J\$20	Alveograph W Total	240	\$J\$20>=\$K\$20	Not Binding	10,40492022
\$J\$21	Specific Volume of Bread Total	11,5	\$J\$21>=\$K\$21	Binding	0
\$E\$15	Weights GLT	0,0000	\$E\$15<=\$E\$23	Not Binding	10
\$F\$15	Weights AAC	0,0000	\$F\$15<=\$F\$23	Not Binding	10
\$G\$15	Weights EN1	0,0000	\$G\$15<=\$G\$23	Not Binding	1
\$H\$15	Weights EN2	0,0000	\$H\$15<=\$H\$23	Not Binding	4

The following tables compare, for each month under review, the LP model solutions, the ILP model solutions and the blend that was actually implemented by GMA.

February 2011	LP Model	ILP model	Actual Blend
(tons)			
Soft Wheat	939.9958	930.9116	947.6668
Hard Wheat	60.0029	69.0884	49.8772
Gluten			2.4000
Ascorbic acid	0.0014		
Enzyme Mix 1			0.0560
Enzyme Mix 2			
Total Weight	1,000.0000	1,000.0000	1,000.0000
Price MFCFA	219.7855	219.7930	223.8180

Table 5.4: LP and ILP optimal solutions vs. actual ones

<u>May 2011</u>	LP Model	ILP model	Actual Blend
(tons)			
Soft Wheat	701.0240	701.0303	949.9886
Hard Wheat	298.9057	298.8977	49.9994
Gluten			
Ascorbic acid	0.0703	0.0720	
Enzyme Mix 1			
Enzyme Mix 2			0.0120
Total Weight	1,000.0000	1,000.0000	1,000.0000
Price MFCFA	233.1643	233.1725	230.1830

<u>August 2011</u>	LP Model	ILP model	Actual Blend
(tons)			
Soft Wheat	956.1192	956.2271	947.6668
Hard Wheat	43.7606	43.6849	49.8772
Gluten			2.4000
Ascorbic acid	0.0800	0.0320	
Enzyme Mix 1	0.0402	0.0560	0.0560
Enzyme Mix 2			
Total Weight	1,000.0000	1,000.0000	1,000.0000
Price MFCFA	214.9376	215.1207	218.3525

February 2012	LP Model	ILP model	Actual Blend
(tons)			
Soft Wheat	854.9451	854.9451	899.9496
Hard Wheat	145.0549	145.0549	99.9944
Gluten			
Ascorbic acid			
Enzyme Mix 1			0.0560
Enzyme Mix 2			
Total Weight	1,000.0000	1,000.0000	1,000.0000
Price MFCFA	196.9173	196.9173	195.8709

The solutions provided by the optimization model are alternatives to the blends that were actually implemented by GMA. They make sense and, in two cases out of four, are cheaper than actual blends. However, they must be considered in more depth.

5.2 Discussion

The different solutions provided by the optimization models need to be assessed. In the following paragraphs, the following points will be addressed:

- Different LP model solutions and ILP model solutions;
- Optimization model solutions and actual blends.

5.2.1 Different optimization model solutions: LP vs. ILP

In February 2012, solutions of the LP model and of the ILP model are the same. In the other 3 months, solutions of the LP model are, logically, cheaper than solutions of the ILP model since ILP models include more constraints (technical constraints) than the LP models.

An alternative way to introduce the technical constraints into the optimization model would be to round the decision variables of the LP model solutions to the next values that belong to the set of admitted weights for additives.
Weights in tons	Feb. 2011	May 2011	Aug. 2011
Soft Wheat	940.000	701.0172	956.1040
Hard Wheat	60.000	298.9028	43.7600
Gluten			
Ascorbic acid		0.0800	0.0800
Enzyme Mix 1			0.0560
Enzyme Mix 2			
Total Weight	1,000.0000	1,000.0000	1,000.0000
Total Price (MFCFA)	219.7781	233.2127	215.3637

Table 5.5: Rounded LP optimal solutions

The rounded LP optimal solution for February 2011 (219.7781 MFCFA) is cheaper than both LP optimal solution (219.7855 MFCFA) and ILP optimal solution (219.7930 MFCFA). However, with this rounded LP optimal solution, the specific volume of baguette after 4 hours of fermentation is predicted to go down to 11.49 cm³ against a minimum fixed at 11.50 cm³.

	u a) + (a + 1±				Feb 11	LP rounded - M	licrosoft in 1924	Français (France)	🛛 Aide 📮				
5	A Home Insert Page Lay	out Formu	las Data	Review Vie	w Add-Ins	Risk Solver Pla	tform					(
P	Yemium Solver V11.5												
-	J19 + 🤄 J	=+SUMPR	ODUCT(\$C\$13:	GH\$13;C19:H1	9)+119								
	A	В	C	D	E	F	G	н	1	1	К	L	М
	GRANDS MOULINS D'A	BIDJAN											
	Vessel		Test	Test									
	Ingredients		Af. Orchyd	Amorita	Gluten	Ascorbic	Enzyme Mix	Enzyme Mix					
			sw	hw	GLT	AAC	EN1	EN2					
	Characteristics												
	Flour Protein Content		10,7	15,7									
	Flour Falling Number		372	468									
	Flour Liquefaction Number		14	12									
	Alveograph W		225	457									
	Specific Volume of Bread		11,88							Tetal	C		
	Unit Driver	MECEA	0.210590	0 321321	1 286000	5 711000	26 057570	24 752100		Total	Const	raints	
	Weights	tone	940,0000	60,0000	0,0000	0.0000	0.0000	0.0000		1000.0000	1000 0000	toos	
	Treignes	Conta	240,0000	00,0000	0,0000	0,0000	0,0000	wjesses	Target Cell	219,7781	MECEA	COTT2	
	Constraints								Intercept		Min	Max	
	Flour Protein Content		0,0107	0,0157	0,0006					11,0	11.0	13,0	
	Flour Liquefaction Number		0,0142	0,0116						14,060	10,909	15,000	
	Alveograph W		0,2250	0,4570	0,4938		110,3011	272,3460	-0,6236	238	230		
	Specific Volume of Bread		0,0125	0,0135	0,0159	6,9306	23,0209	15,0943	-1,0237	11,49	11.5		
İ													
	Weights	MAX			8,0000	0,0800	0,0560	0,0160					
	336.0700000												
	17. A.												
	H LP test results Rounded	Sol.									freedome cree		
	N I											11020	

Figure 5.4: Rounded LP optimization model – February 2011

When it comes to May 2011, all quality constraints are met by the rounded LP optimal solution. However, its total price is more expensive (233.2127 MFCFA) than both the LP optimal solution (233.1643 MFCFA) and ILP optimal solution (233.1725 MFCFA).

The same thing happens in August 2011. All quality constraints are met but the total price of the rounded LP solution (215.3637 MFCFA) is more expensive than both the LP optimal solution (214.9376 MFCFA) and ILP optimal solution (215.1207 MFCFA).

LP solutions and rounded LP solutions, although theoretically questionable, are nevertheless interesting. They require less computing power from solvers than ILP: the Excel Solver is powerful enough to provide the same solutions as Premium Solver V11.5. However, rounding of LP solutions may end up with solutions that do not respect all quality constraints or that are not optimal.

5.2.2 Optimization model solutions vs. actual blends

Blends that were actually implemented by GMA never correspond to optimal solutions of the model, whether LP or ILP. Different reasons may explain this fact.

a) Routine thinking

One can note that the blend that has actually been implemented in August 2011 is the same as the one that had already been implemented in February 2011. This may be the effect of some routine thinking. The chief miller may use solutions that have worked previously rather than take risks with a new blend. If this assumption is true, it reinforces the interest of the optimization model for GMA management since the optimization model may be more imaginative than the chief miller.

b) Hidden constraints

It is also remarkable that the weights of hard wheat that are suggested by the optimization model for May 2011 and February 2012 are much larger than in actual blends. However, if GMA had applied these solutions, it would have had to order a vessel of hard wheat four or five times earlier than scheduled. One may assume that the chief miller does not want to be short of hard wheat and that, when he makes a decision, he takes account of the inventory of supplies.

Something similar happens with enzyme mixes. Their incorporation is suggested by the optimization model in August 2011 only. On the other hand, the chief miller has actually used such mixes in all four months. This may be because enzyme mixes have limited shelf life. If GMA does not use these enzyme mixes, it will have to throw them away.

These two considerations show that there are some hidden constraints that are not taken into account by the optimization model. One must not forget that modeling is a process that simplifies reality and sometimes reality is more complex than expected.

c) Potential savings

The following tables compare the prices of the ILP optimal solutions and of the actual blends.

Price	Feb. 2011	May 2011	Aug. 2011	Feb 2012	Total
(MFCFA/1,000 t.)					
ILP model	219.7930	233.1725	215.1207	196.9173	865.0035
Actual blend	223.8180	230.1830	218.3525	195.8709	868.2244
Difference (Actual – ILP)	4.0250	- 2.9895	3.2318	- 1.0464	3.2209

 Table 5.6: Price of optimal solutions vs. actual blends

The purchase of 4,000 metric tons of ingredients, i.e. 1,000 metric tons in each month of February 2011, May 2011, August 2011 and February 2012 according to the suggestions of the ILP optimization model would have cost 865.0035 MFCFA against 868.2244 MFCFA actually paid by GMA. The difference (868.2244 - 865.0035) = 3.2209 corresponds to 0.805 MFCFA per thousand tons. Since GMA processes some 250,000 tons of ingredients per year, one can infer that the optimization model could enable GMA to save some 201.3 MFCFA per year. This sum is worth about 400,000 US dollars. The optimization model may indeed help GMA reduce its costs of production.

d) Quality specifications, binding constraints and sensitivity analyses

Optimization model solutions are not always the cheapest ones. In May 2011 and February 2012, actual blends are cheaper than optimization model solutions. This happens because

all constraints are not met by actual blends. The following tables show the values of the different quality parameters as computed by equations defined in Chapter 3 and applied to the different mixes.

February 2011	Limits	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x \le 13.0\%$	11.0%	11.0%	<mark>10.9%</mark>
Flour Falling Number	$350s. \le x \le 500s.$	377s.	377s.	377s.
Alveograph W	$230 \le x$	238	240	243
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$	11.5 cm ³	11.5 cm ³	12.8 cm ³

 Table 5.7: Quality constraints of optimal vs. actual solutions

<u>May 2011</u>	Limits	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x \le 13.0\%$	12.2%	12.2%	11.0%
Flour Falling Number	$350s. \le x \le 500s.$	350s.	350s.	<mark>329s.</mark>
Alveograph W	$230 \le x$	269	269	<mark>220</mark>
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$	11.5 cm ³	11.5 cm ³	11.1 cm ³

<u>August 2011</u>	Limits	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x \le 13.0\%$	11.0%	11.0%	11.0%
Flour Falling Number	$350s. \le x \le 500s.$	361s.	361s.	363s.
Alveograph W	$230 \le x$	245	247	249
Specific volume of baguette	11.5 cm ³ \leq x	11.5 cm ³	11.5 cm ³	11.3cm ³

February 2012	Limits	LP model	ILP model	<u>Actual</u>
Flour Protein Content	$11.0\% \le x \le 13.0\%$	11.8%	11.8%	11.6%
Flour Falling Number	$350s. \le x \le 500s.$	350s.	350s.	<mark>347s.</mark>
Alveograph W	$230 \le x$	282	282	278
Specific volume of baguette	11.5 cm ³ \leq x	12.3 cm ³	12.3 cm ³	13.5 cm ³

When it comes to actual blends, parameters highlighted in yellow do not respect GMA quality specifications.

In addition to optimal solutions, solvers provide information about binding constraints, i.e. constraints which are strictly satisfied in the optimal solution, with no slack. The following table displays, for instance, the Answer report for February 2011 ILP Model. This report outlines the fact that the specific volume of baguette is a binding constraint.

1,13	gui	. 3.3. ILI Upu	mizau	on mo	u c i - i	UDI	uai	y 201		13 V V	/1 11	upu	σιι					
	(u + -			Fe	b 11 LP PSP	- Microso	ft Exe	rançais (Franc	e) 🕐 Aio	ie 📮							
File	Hor	me Insert Page Layout Fo	rmulas Data	Review Vie	w Add-Ins	Risk So	lver Platfor	n								0	3 — Ø	23
	🔏 Cut	Calibri * 11	- A A =	= = >>-	Wrap Text		General	×				-	P		Σ AutoSum	27	A	
Paste	Form	nat Painter 🖪 🛛 💆 👻 🖷 🔻	<u>≫</u> • <u>A</u> • ≡ =	三王 作作	Merge &	Center 🔻	- %	, .00 .00	Conditiona Formatting	Format as Table	Cell Styles *	Insert *	Delete	Format	Q Clear ▼	Sort & Filter *	Find & Select *	
	Clipboard	Fa Font	r _{ie}	Alignr	nent	T _N	Num	ber 🕞	(Styles			Cells		E	diting		
	F34	▼ (ƒ _x Bindir	ng															*
14	В	С	D	E	F	G	ł	1 1	J	K		L	М	N	0 1	1	0	
16																		
17 C	ecision V	ariable Cells				25												
18	Cell	Name	Original Value	Final Value	Туре													
19	\$C\$13 t	tons sw	939,9958	939,9958	3 Normal													
20	\$D\$13 t	tons hw	60,0029	60,0029	Normal													
21	\$E\$13 1	tons GLI	0,0000	0,0000	Normal													
22	\$C\$12 +	tons EN1	0,0014	0,001	Normal													
24	SH\$13 1	tons EN2	0,0000	0,0000) Normal													
25	411420		0,0000	0,0000														
26 0	onstraint	5																
27	Cell	Name	Cell Value	Formula	Status	Slack												
28	\$J\$13 t	tons Total	1000,0000	\$J\$13=\$K\$13	Binding		0											
29	\$J\$16 F	Flour Protein Content Total	11,0	\$J\$16<=\$L\$16	Not Binding		2											
30	\$J\$17	Flour Liquefaction Number Total	14,060	\$J\$17<=\$L\$17	Not Binding	0,940117	7226											
31	\$J\$16 I	Flour Protein Content Total	11,0	\$J\$16>=\$K\$16	Binding		0											
32	\$J\$17 F	Flour Liquefaction Number Total	14,060	\$J\$17>=\$K\$17	Not Binding	3,150791	1865											
33	\$1\$18 /	Alveograph W Lotal	238	\$J\$18>=\$K\$18	Not Binding	8,296760	0831											=
25	¢E¢12 +	tons GLT	0.0000	¢E¢12/-¢E¢21	Not Rinding		0											
36	\$E\$13 t	tons AAC	0,0000	\$E\$13<=\$E\$21	Not Binding	0.078648	3773											
37	\$G\$13 t	tons EN1	0.0000	\$G\$13<=\$G\$21	Not Binding	0	.056											
38	\$H\$13 t	tons EN2	0,0000	\$H\$13<=\$H\$21	Not Binding	0	,016											
39	20																	
40																		
41																		
47		swer Report 1 Sensitivity Report	t 1 Limits Rep	ort 1 / Templa	telP 🖗								101				•	-
Read	y Ans	strain trapore a ground where hepot	a a contractive p	and a complete											100% ()	0	÷
) 📋 🖸 💌			1-1	0	22	3	2	ine.	1	3		•	• 🗑 al ()	*	12:24 08/09/2012	

Figure 5.5: ILP optimization model – February 2011 Answer Report

The following tables compare the binding quality constraints of the LP and the ILP models

and the constraints that were not met by actual blends.

Table 5.8: Optimal solutions binding	constraints a	nd quality	parameters	of actual
blends				

February 2011	Constraints	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x$	Х		X
	x ≤ 13.0%			
Flour Falling Number	$350s. \le x$			
	$x \leq 500s.$			
Alveograph W	$230 \le x$			
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$	X	Χ	

<u>May 2011</u>	Constraints	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x$			
	x ≤ 13.0%			
Flour Falling Number	$350s. \le x$	Х	X	Х
	$x \leq 500s.$			
Alveograph W	$230 \le x$			Χ
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$	X		Χ

<u>August 2011</u>	Constraints	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x$	Х	Х	
	x ≤ 13.0%			
Flour Falling Number	350s. ≤ x			
	$x \leq 500s.$			
Alveograph W	$230 \le x$			
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$	X		Х

February 2012	Constraints	LP model	ILP model	Actual
Flour Protein Content	$11.0\% \le x$			
	x ≤ 13.0%			
Flour Falling Number	$350s. \le x$	Х	Х	Х
	$x \leq 500s$.			
Alveograph W	$230 \le x$			
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$			

In all four months of the sample, constraints that were not met by actual blends correspond to optimization models binding constraints. Optimization models can effectively identify the most sensitive constraints.

But solvers can go further than that. They provide Sensitivity reports for LP models. These reports give information about the consequences of relaxing binding constraints.

Figure 5.6: LP optimization model – February 2011 Sensitivity Report Microsoft Excel 14.0 Sensitivity Report Worksheet: [Feb 11 LP PSP.xlsx]Template LP Report Created: 9/8/2012 11:47:19 AM Engine: Standard LP/Quadratic

Objectiv	e Cell (Min)	
Cell	Name	Final Value
\$J\$14	Target Cell Total	219,7855172

Decision Variable Cells

Constraints

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$13 tons sw		939,9958	0,0000	0,2196796	0,000825019	1,160254621
\$D\$13 tons hw		60,0029	0,0000	0,22132114	1,702429678	0,000824896
\$E\$13 tons GLT		0,0000	1,0652	1,286	1E+30	1,065242224
\$F\$13 tons AAC		0,0014	0,0000	5,711	2,547523653	5,494835186
\$G\$13 tons EN1		0,0000	8,4707	26,95757	1E+30	8,470695015
\$H\$13 tons EN2		0,0000	12,5590	24,7521	1E+30	12,55903251

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$J\$13	tons Total	1000,0000	0,2080	1000	0,912217206	53,0960267
\$J\$16	Flour Protein Content Total	11,0	0,0	13	1E+30	2
\$J\$17	Flour Liquefaction Number Total	14,060	0,000	15	1E+30	0,940117226
\$J\$16	Flour Protein Content Total	11,0	0,2	11	0,045442246	0,178840744
\$J\$17	Flour Liquefaction Number Total	14,060	0,000	10,90909091	3,150791865	1E+30
\$J\$18	Alveograph W Total	238	0	230,6236	8,296766831	1E+30
\$J\$19	Specific Volume of Bread Total	11,5	0,8	12,5237	0,544276976	0,00935096

In the example of February 2011, binding constraints identified by the LP optimization model are "Flour Protein Content" and "Specific Volume of Bread". As shown on Figure 5.8, the Shadow Prices for these constraints are, respectively, equal to 0.2 and 0.8 million FCFA, with constraints (RHS) limits fixed at, respectively, 11.0% and 11.5 cm³ per gram. It means that if GMA decides to relax a constraint and to accept, for instance, a flour with a protein content of 10.9% instead of 11.0%, one tenth less than before, the price of the mix will drop down by one tenth of 0.2 million FCFA, i.e. 0.02 million FCFA, all other coefficients remaining constant.

GMA may have to consider such constraints modifications. Premium Solver V11.5 provides all the relevant information that is necessary to make such a decision. The optimization model enables GMA management to take such a decision with full knowledge of its consequences, in terms of price as well as in terms of quality.

Up till now, the values of quality constraint parameters have been computed by the equations of the optimization model as they were determined in Chapter 3. Obviously, such values are true only if these quality constraint equations hold. It is therefore important to test these quality constraint equations.

5.3 Optimization model quality constraints equations.

GMA laboratory performs flour tests on a daily basis. At least one sample of flour produced per work shift is tested on its rheological and milling properties. At least one sample of flour per working day is transformed into bread in the test bakery.

The results of these tests for February 2011, May 2011, August 2011 and February 2012 are displayed in Appendix M.

Results of laboratory tests have been compared with the results of the equations of the optimization model. They have also been used to check whether actual blends respect GMA quality specifications.

5.3.1 Test of quality constraint equations

Quality parameters of actual flour samples are analyzed by GMA laboratory and GMA test bakery.

February 2011	Average	Standard	Number of
		Deviation	tests
Flour Protein Content	10.9%	0.2	24
Flour Falling Number	368s.	12	24
Alveograph W	240	15	24
Specific volume of baguette	12.46 cm ³ /g	0.42	9

Table 5.9: Quality parameters of actual samples of flour

<u>May 2011</u>	Average	Standard	Number of
		Deviation	tests
Flour Protein Content	11.0%	0.1	35
Flour Falling Number	364s.	15	35
Alveograph W	225	17	35
Specific volume of baguette	12.23 cm ³ /g	0.62	15

<u>August 2011</u>	Average	Standard	Number of
		Deviation	tests
Flour Protein Content	11.1%	0.2	67
Flour Falling Number	360s.	13	67
Alveograph W	244	15	67
Specific volume of baguette	12.37 cm ³ /g	0.31	29

February 2012	Average	Standard	Number of
		Deviation	tests
Flour Protein Content	11.3%	0.1	39
Flour Falling Number	347s.	8	39
Alveograph W	273	19	39
Specific volume of baguette	13.01 cm ³ /g	0.35	12

These tests have been conducted on samples. If one assumes that the four quality parameters are normally distributed, then the 99.74 percent confidence interval of the population means is determined by the following formula.

Table 5.10: Normal Distribution Confidence Intervals

 $[\mathbf{m} - 3\sigma/\sqrt{n}; \mathbf{m} + 3\sigma/\sqrt{n}]$

where:

- m is the average of the sample ;
- σ is the standard deviation of the sample ;
- n is the size of the sample.

The following table compares, for each period and each quality parameter:

- values computed by optimization model equations and
- confidence intervals of the population means, determined upon the basis of sample tests.

 Table 5.11: Quality parameters: computed figures vs. confidence intervals

<u>February 2011</u>	Optimization	Confidence	Confidence
	model	Interval	Interval
	equations	lower limit	upper limit
Flour Protein Content	10.9%	10.8%	11.0%
Flour Falling Number	<mark>377s.</mark>	361s.	376s.
Alveograph W	243	231	249
Specific volume of baguette	12.80 cm ³ /g	12.04 cm ³ /g	12.88 cm ³ /g

<u>May 2011</u>	Optimization	Confidence	Confidence
	model	Interval	Interval
	equations	lower limit	upper limit
Flour Protein Content	11.0%	10.9%	11.0%
Flour Falling Number	<mark>329s</mark> .	356s.	372s.
Alveograph W	230	217	234
Specific volume of baguette	<mark>11.10 cm³/g</mark>	11.74 cm ³ /g	12.71 cm ³ /g

<u>August 2011</u>	Optimization	Confidence	Confidence
	model	Interval	Interval
	equations	lower limit	upper limit
Flour Protein Content	11.0%	11.0%	11.1%
Flour Falling Number	363s.	356s.	365s.
Alveograph W	249	238	249
Specific volume of baguette	11.30 cm ³ /g	12.19 cm ³ /g	12.54 cm ³ /g

February 2012	Optimization	Confidence	Confidence
	model	Interval	Interval
	equations	lower limit	upper limit
Flour Protein Content	<mark>11.6%</mark>	11.2%	11.3%
Flour Falling Number	347s.	343s.	350s.
Alveograph W	278	264	282
Specific volume of baguette	13.50 cm ³ /g	12.71 cm ³ /g	13.31 cm ³ /g

Values highlighted in yellow are outside of the confidence intervals. The following table summarizes the cases when values computed by optimization model equations fall into or outside the limits of the confidence intervals.

 Table 5.12: Quality parameters: computed figures vs. confidence intervals - Summary

	Feb. 2011	May 2011	Aug. 2011	Feb. 2012
Flour Protein Content	IN	IN	IN	<mark>OUT</mark>
Flour Falling Number	OUT	OUT	IN	IN
Alveograph W	IN	IN	IN	IN
Specific volume of baguette	IN	OUT	OUT	<mark>OUT</mark>

Altogether, computed figures are in between the limits of the confidence intervals in nine cases out of sixteen.

Flour Protein Content equation FPC1 is exclusively based upon Grains Science knowledge. This equation gives results that fall within confidence intervals limits, in three out of four cases.

Flour Falling Numbers in the optimization model are computed with Flour Liquefaction Numbers equation LNR1. This equation has been built upon theory because econometrics did not bring significant results. However, the correlation between the equation results and GMA data was not very strong. Only two out of four results are inside the confidence intervals. The Alveograph W equation ALW3 is designed out of both theory and econometrics. The model equation gives four results that are inside confidence intervals.

The specific volume of baguette equation BVL1 is determined exclusively by econometrics. The results of this equation lie outside the limits of the confidence intervals three times out of four.

These results outline the need for GMA to improve the optimization model by enhancing the validity and robustness of the quality constraints equations. This is particularly true when regression analysis is involved. Further econometrics research should be made more specifically on "Flour falling number" and on "Specific volume of baguette after 4 hours of fermentation".

5.3.2 Actual flour and quality specifications

Actual flour quality parameters, measured by confidence intervals, have also been tested against GMA quality specifications.

1 abic 5.15. 1100	i quanty stanuar	us vs. actual			
	GMA	Feb. 2011	May 2011	Aug. 2011	Feb. 2012
	specifications				
Flour Protein	$11.0\% \le x \le$	<mark>[10.8% -</mark>	<mark>[10.9% -</mark>	[11.0%-	[11.2%-
Content	13.0%	<mark>11.0%]</mark>	<mark>11.0%]</mark>	11.1%]	11.3%]
Flour Falling Number	$350s. \le x \le 500s.$	[361 – 376]	[356-372]	[356-365]	<mark>[343-350]</mark>
Alveograph W	$230 \le x$	[231 – 249]	[217-234]	[238-249]	[264-282]
Specific volume of baguette	$11.5 \text{ cm}^3 \le x$	[12.04-12.88]	[11.74–12.71]	[12.19-12.54]	[12.71-13.31]

Table 5.13: Flour quality standards vs. actual

At worst, confidence intervals of actual flour quality parameters have common limits with GMA specifications. These worst cases are highlighted in yellow. Under such circumstances, one cannot reject the claim that GMA flour respects its quality standards. The chief miller's experience may be a better predictor of flour quality than the optimization model quality equations.

GMA managers must be aware that the optimization model is no more valid than its assumptions. This observation leads to two remarks.

First, there is a need to improve quality constraints equations. Actual blends of May 2011 and February 2012 are cheaper than ILP optimization model solutions and, although quality constraints equations tell another story, one cannot prove that this happens because quality parameters are not respected.

Then, one must not forget that all the conclusions of this section are subject to the assumption that the four quality parameters are normally distributed. This may be true but laboratory tests are subject to biases.

CHAPTER VI : SUMMARY AND CONCLUSIONS

The objective of the present thesis, as it is defined in Chapter 1 is <u>to determine the optimal</u> <u>blend of wheat and additives that minimizes flour millers' cost of production while meeting</u> <u>quality requirements</u>.

This objective has been achieved. The objective function and the constraints of GMA have been translated into mathematical equations. The set of equations and inequalities has been implemented in Microsoft Office Excel 2010. Premium Solver V11.5 has found optimal solutions to several examples of actual business situations.

Figure 6.1: GMA flour mill staff

These optimization model solutions do question the habits of the chief miller, without any prejudice. And it can be inferred from these examples that the implementation of these optimal solutions would overall have saved money for GMA when compared with actual blends. However, on a case by case basis, money saving is not always true.

Some observations need to be made and several limitations remain.

Choosing a solver: ILP vs. LP model

The optimization model takes account of technical constraints such as dosing scales capacities or additives suppliers' advice. They limit the set of values that additives weights can take in the blend and transform the model into an Integer Linear Programming (ILP) problem instead of a simpler Linear Programming (LP) one. ILP models require powerful solvers. However, Premium Solver V11.5 is effective at solving GMA ILP optimization model.

If technical constraints are neglected and only quality constraints are considered, Excel Solver is sufficient to solve the LP optimization model. Excel Solver has several advantages: it is easy to implement, it is free of additional charge and it is available in French. On the other hand, solutions provided by the LP optimization model may be irrelevant. Rounding of LP solutions may lead to solutions that do not respect quality constraints.

Assessing the assumptions

In order to build quality constraints, several important assumptions were made. These assumptions should not be taken for granted. They need to be questioned and periodically revised. The following considerations must be taken account of:

1. Selecting quality parameters

Four quality parameters were selected to represent the expectations of GMA customers: flour protein content, flour falling number, Alveograph W and the specific volume of baguettes after 4 hours of fermentation. The choice of these parameters is supported by previous literature, some econometrics and the experience of the Ivorian market. It is nevertheless at least partly subjective and should be reassessed from time to time.

2. Setting limits (RHS) to quality parameters

The limits that are assigned to quality parameters are designed in order to fit with market requirements. They should reflect the evolution of the market.

3. Determining quality (LHS) constraint equations

The LHS of the quality equations describe the way ingredients impact flour quality parameters. Equations have been determined with reference to grains science theory and

with the help of econometrics. The comparison of the results of these equations and test analyses of actual flour shows that quality constraint equations should be further researched and improved.

Improved quality constraint equations are particularly important when GMA wants to assess, with the help of sensitivity reports from solvers, the possibility of relaxing its quality specifications.

Keeping hidden constraints in mind

The comparison between optimization model solutions and actual blends shows that the model does not take account of some hidden constraints such as the delivery program of hard wheat or expiration dates for consumption of ingredients. GMA management should be cautious about the possible existence of such hidden constraints when considering the solutions provided by the optimization model.

More generally, the main problems encountered during this thesis did not lie with optimization techniques. The most important issues boil down to modeling the economic reality. Reality is often too complex to be easily and fully grasped into an economic model. However, although perfectible, the optimization model designed in the present thesis has proven to be of interest for GMA in providing challenging ideas for minimizing costs of production while still meeting quality requirements.

The next step will be to implement the model and to use it as frequently as possible when blending decisions are to be made. This way, the advantages but also the limitations and imperfections of the model will be revealed. Hopefully GMA will save money with the help of this model and this will enhance the interest in correcting its imperfections.

WORKS CITED

Charnes, A., W.W. Cooper and A. Henderson. *An Introduction to Linear Programming*. Wiley, New York, 1953.

Chopin Technologies http://www.chopin.fr (accessed September 8, 2012°

Del Frate, Régis. "Mieux Connaître la Farine." Les Nouvelles de la Boulangerie Pâtisserie 85 (January 2005): 2-15

Fowler, Mark. "Blending for Value." World Grain, October 2009.

Frontline Systems Inc. – Risk Solver Platform V11.5 2012 - http://www.solver.com (accessed September 1, 2012).

Hayta, Mehmet and Cakmakli Ünsal. "Optimization of Wheat Blending to Produce Breadmaking Flour." *Journal of Food Process Engineering 24* (2001): 179-192

Lloyd, Peter. "Wheat Blend Calculator." Spreadsheet model presented by US Wheat Associates, Casablanca, May 2005

Niernberger, Floyd F. "Blending Wheat to Meet Product Specifications." Bulletin-Association of Operative Millers (September 1973): 3395-3400

Perten Instruments http://www.perten.com (accessed September 8, 2012)

Ragsdale, Cliff T. Spreadsheet Modeling & Decision Analysis. Thomson-South Western, 2008

Schurle, Bryan and Mark Fowler. "Spreadsheet Solutions." Lesson of the Flour Milling Short Course, International Grains Program, Kansas State University, June 5-16, 2006

Steuer, R.E. Multi-Criteria Optimization: Theory, Computation, and Application. John Wiley & Sons, New York, 1986

Studenmund, A.H. Using Econometrics. Pearson-Addison Wesley, 2006

APPENDIX A: ANALYSIS OF REDUNDANCY (CORRELATION) OF QUALITY PARAMETERS

1. Analyses Data

ANALYSI	ES DATA																		
Reference		01/2010	02/2010	03/2010	04/2010	05/2010	06/2010	07/2010	08/2010	09/2010	11/2010	12/2010	13/2010	14/2010	15/2010	17/2010	18/2010	19/2010	21/2010
Date		20-janv-10	02-févr-10	03-mars-10	123-mars-10	08-avr-10	29-avr-10	11-mai-10	25-mai-10	10-juin-10	20-juin-10	06-juil-10	30-juil-10	13-août-10	28-août-10	21-sept-10	12-oct-10	03-nov-10	23-déc-10
Ship		Arosia	Sylvretta V3	3 Afiya (de Sc	a Praetorius	Laura	Sylvretta V4	Bumbi	Ever Regal	Sihaplana	Thetis	Silvretta V5	Andra	/oge Eva	Explorius	Pan Bless	Silvretta V6	Great Succe	African Hawl
WHEAT	Aver. Moisture	13,7	13,8	13,8	13,5	13.7	13,6	13,7	13,5	13,6	13,6	13,4	13,3	13,6	13,6	13,7	13,8	13,2	13,1
WHEAT	Aver. Protein Cont.	11,9	11,9	11,8	11.7	11,8	11,5	11,5	11,7	11,4	11,8	11,7	11,4	11,2	11,4	11,4	11,5	11,3	12,1
WHEAT	Aver. Falling Nber	327				342			343	336	쁈	338	326	336	331	345	335	341	339
WHEAT	Aver. Test Weight	79,67	79,1	80,2	79,3	80,1	79,4	80,3	80,0	80,4	80,4	80,3	80,3	80,3	81,4	80,5	80,3	81,2	80,6
FLOUR	Protein Content	10,7	10,5	10,5	10,6	10,5	10,6	10,6	10,8	10,4	10,3	10,5	10,8	11,0	10,9	10,9	10,6	10,9	10,8
FLOUR	Water Content	13,8	14,2	14,2	13,9	13,9	13,9	13,4	13,6	14,2	14,3	14,4	14,5	14,2	14,0	14,2	14,2	14,4	14,0
FLOUR	Ash Rate	0,62	09'0	09'0	0,62	09'0	0,61	0,60	0,68	0,63	0,56	0,58	0,61	0,62	0,59	0,62	0,59	0,62	0,61
FLOUR	Falling Number	360	349	349	347	385	350	345	341	344	331	340	335	312	354	339	324	341	343
FLOUR	Alveo. P	78	66	66	84	94	92	8	66	55	16	95	80	96	86	102	91	86	103
FLOUR	Alveo. G	18,60	18,20	18,20	18,90	17,80	17,90	17,90	18,20	17,40	18,60	19,00	19,40	17,50	16,80	17,40	19,50	18,50	16,00
FLOUR	Alveo. P/L	1,11	1,34	1,34	1,17	1,47	1,42	1,46	1,34	1,54	1,39	1,29	1,17	1,55	1,72	1,67	1,18	1,42	2,00
FLOUR	Alveo. W	171	205	205	203	210	204	214	198	197	223	222	223	203	204	220	241	233	202
BREAD	Water Absorption	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	68	<u>6</u> 8	89
BREAD	Weight	221	225	5 225		200	213	211	213	213	214	215	213	215	213	213	210	212	213
BREAD	Vol 1	2	5,53	5,53	8,38	9,45	8,42	8,65	7,43	8,07	7,86	7,45	7,98	8,67	9,41	9'2	9,68	9,62	9,59
BREAD	Vol2	9,49	8,78	8,78	8,31	9,55	9,32	10,8	8,81	8,79	9,58	8,16	9,4	10,08	10,5	11,24	11,1	10,52	11,07
BREAD	Dough Grade	2'11'2	86,5	5 86,5	5, 77,5	82,0	83,5	89,5	82,0	76,0	86,5	83,5	86,5	86,5	89,5	89,5	89,5	89,5	86,5
BREAD	Bread Grade	85,0	85,0	85,0	82,0	85,0	85,0	91,0	85,0	82,0	85,0	80,5	85,0	79,0	85,0	85,0	85,0	88,0	88,0
BREAD	Crumb Grade	85,0	85,0	85,0	85,0	85,0	85,0	88,0	85,0	85,0	85,0	88,0	85,0	85,0	88,0	88,0	88,0	88,0	88,0
BREAD	Total Score	247,5	256,5	5 256,5	5 244,5	252.0	253,5	268,5	252,0	243,0	256,5	252,0	256,5	250,5	262,5	262,5	262,5	265,5	262,5

2. Coefficients of determination

COEFFIC	CIENTS OF DETE	ERMINATIO	Z																		
		Y WHEAT	WHEAT	WHEAT	WHEAT	FLOUR	FLOUR	FLOUR	FLOUR	FLOUR	FLOUR	FLOUR	LOUR	3READ E	READ	READ	BREAD	BREAD	BREAD	BREAD	BREAD
			AVEC.	AVEL																	
		Aver.	Protein	Falling	N AVEL. TES	st Proteil	_		Falling					Water		Bread vol.	Bread vol.	Dough	Bread	Crumb	
Х		Moisture	Cont.	Nbel	- Weigt	1 Conten	tt Moisture	Ash Rate	Number	Alveo. P	Alveo. G	Alveo. P/L	Alveo. W	Absorption	Weight	after 3h.	after 4h.	Grade	Grade	Grade	Total Score
WHEAT	Aver. Moisture	e 1,00	0'00	00'0	75	4 0,14	1 0,06	0,03	0,03	0,10	0,02	60'0	0,02	0,21	0'0	0,12	0,01	00'0	0,01	0'0	0'0
WHEAT	Aver. Protein Cont	t. 0,00	1,00	0'02	0,1	8 0,2'	0'02	0,02	0,20	0'0	0'0	00'0	0,13	00'0	20'0	0,17	0,07	0,08	0,04	0,03	0,02
WHEAT	Aver. Falling Nbe	ir 0,00	0'03)0(1	0'0	1 0,07	0,00	00'0	00'0	0,35	0,04	0,11	60'0	0'0	0,13	0'02	0,01	0'0	0,02	0'0	0'0
WHEAT	Aver. Test Weigh	tt 0,14	0,18	0'0	0,	0,16	3 0,07	0,02	0,03	0,45	0,11	0,27	0,16	0,15	0,13	0,31	0,31	0,27	0'02	0,40	0,29
FLOUR	Protein Conten	tt 0,14	0,21	0'0	0,11	6 1,00	00'0	0,20	0'0	0'0	0'0	0,11	00'0	0'0	0'0	0,19	0,26	0,14	00'0	0,12	0,10
FLOUR	Moisture	90 ⁽ 0	0'02)0'0	00	7 0,00	1,00	0,14	0,15	0'02	0,08	1010	0,25	0'04	0,03	00'0	001	0'02	0,16	00'0	0'0
FLOUR	Ash Rati	e 0,03	0,02)0 [;] 0	00	2 0,2(0,14	1,00	00'0	0'0	0,02	00'0	0,18	00'0	00'0	00'0	0,02	0,14	00'0	0'0	60'0
FLOUR	Falling Numbe	ir 0,03	0,20	00'0	00	3 0,07	7 0,15	00'0	1,00	0'02	0'03	00'0	0,15	90'0	0'02	0,01	0'02	0,13	0,08	0,03	0,02
FLOUR	Alveo. F	0,10	0'0	0,35	0,4	5 0,06	3 0,05	0'04	0'02	1,00	0,37	0,70	0,18	0,11	0,15	0;30	0,33	0,37	0,04	0,33	0,33
FLOUR	Alveo. C	9,02	0'0	70'0	1,0	1	90'0	0,02	0,03	0,37	1,00	0,88	0,17	00'0	0'0	0,08	0,15	0,01	0,03	0,04	0,03
FLOUR	ANeo. P.I.	- 0'00	0'0	0,11	0,2	7 0,11	10'0	00'0	00'0	0/'0	0,88	1,00	0'0	0'02	0'0	0,21	0,28	0,10	0,04	0,17	0,13
FLOUR	Aheo. W	0,02	0,13	50'0	11,0	9,00) 0,25	0,18	0,15	0,18	0,17	1010	1,00	0,22	0,13	0,16	0,13	0,42	0'03	0,26	0,33
BREAD	Water Absorption	n 0,21	0'0	0'0	10	5 0,06	50,04	00'0	0'0	0,11	00'0	0'02	0,22	1,00	0'0	0,25	0,32	0,14	0,14	0,31	0,24
BREAD	Weigh	ti 0,04	0'0	0,15	0,1,	3 0,01	0,03	00'0	0'02	0,15	0'0	90 ¹ 0	0,13	0'04	1,00	0,65	0,14	0,00	0,02	0'0	0,02
BREAD	Bread vol. after 3h	n. 0,12	0,17	90'0	5 0,3	1 0,15	00'0	00'0	0,01	0,30	0,08	0,21	0,16	0,25	0,65	1,00	0,50	0'0	0'04	0,32	0,14
BREAD	Bread vol. after 4h	,00	0'0	0'0	0,3	1 0,2(9,01	0,02	0'02	0,33	0,15	0,28	0,13	0,32	0,14	0,50	1,00	0,47	0,28	0,44	0,58
BREAD	Dough Grade	90 ⁰	0,08	70'0	0,2	7 0,14	0'02	0,14	0,13	0,37	0,01	0,10	0,42	0,14	0'0	60'0	0,47	1,00	0,20	0,38	0,84
BREAD	Bread Grade	9 0'01	0'0	70'0	00	5 0,00	0,16	00'0	0,08	0'0	0,03	10'0	0,03	0,14	0,02	0'0	0,28	0,20	1,00	0,16	0,55
BREAD	Crumb Grade	5 0,07	0,03	0'0	0,4	0,12	0,00	0'0	0,03	0,33	0'04	0,17	0,26	0,31	0'0	0,32	0,44	0,38	0,16	1,00	0,55
BREAD	Total Score	900 e	0,02	0'0	1 0,2	9 0,1(00'0	60'0	0,02	0,33	0'03	0,13	0,33	0,24	0,02	0,14	0,58	0,84	0,55	0,55	, 0

APPENDIX B: QUALITY TESTS ON DIFFERENT BLENDS OF WHEAT AND ADDITIVES

1. Independent Variables

					INDEPEND	ENT VARIAE	BLES													
			Cafe Franch		INPUT															
			Wheat	CWRS																
				onno		F Flour		F				C Flour		F			Weight	Weight	Weight	
					Weight	Protein	F Falling	Liquefactio		F Baguette	Weight	Protein	C Falling	Liquefactio		Weight	Acid	enzyme	enzyme	Total
Test Nbr.	Date	Test nbr.	Vessel	Vessel	Soft Wheat	content	Number	n Number	F Alveo W	Vol./g	hard wheat	content	Number	n Number	C Alveo W	gluten	ascorbic	mix 1	mix 2	Weight
					Wsw	FPC _{sw}	FLN _{sw}	LNR _{sw}	ALW _{sw}	BVL _{sw}	Whw	FPC _{hw}	FLN _{hw}	LNR _{hw}	ALW _{hw}	Walt	Waac	W _{en1}	W _{en2}	W _{TOT}
1	22/06/2010)	1 Silvaplana	Durban Bulker	919,92	10,4	344	15,23	3 197	8,75	79,99	14,8	493	3 11,05	559	1	0,080		0,008	1 000,0
2	22/06/2010)	2 Silvaplana	Durban Bulker	899,92	10,4	344	15,23	3 197	8,75	99,99	14,8	493	3 11,05	559)	0,080		0,008	1 000,0
3	22/06/2010)	3 Silvaplana	Durban Bulker	879,92	10,4	344	15,23	3 197	8,75	9 119,99	14,8	493	3 11,05	559	1	0,080		0,008	1 000,0
4	17/08/2010		1 Vogue Eva	N/A	999,92	11,0	312	2 16,57	203	3 10,08	3 70.00		400				0,024	0,056		1 000,0
5	17/08/2010		2 Vogue Eva	Durban Bulker	919,93	11,0	312	10,5/	203	10,00	3 79,95	14,8	5 493 403	11,05	500 500		0,024	0,056		1 000,0
7	17/08/2010		4 Voque Eva	Durban Bulker	879.93	11.0	312	16,57	200	3 10,00	119.99	14,0	493	3 11.05	5 559	1	0.024	0.056		1 000,0
8	17/08/2010)	5 Silvretta	Durban Bulker	949.92	10.9	329	15.83	200	9 51	50.00	14.8	493	3 11.05	5 559		0.024	0.056		1 000,0
9	18/08/2010)	1 Andra	Durban Bulker	949,92	10,9	323	16,09	212	2 9,70	5 50,00	14,8	493	3 11,05	5 559	1	0,024	0,056	1	1 000,0
10	18/08/2010)	2 Andra	Durban Bulker	950,00	10,9	323	16,09	212	9,70	5 50,00	14,8	493	8 11,05	559)				1 000,0
11	18/08/2010)	3 Andra	Durban Bulker	949,95	10,9	323	16,09	212	9,70	5 50,00	14,8	493	8 11,05	5 559	1	0,040	1	0,008	1 000,0
12	18/08/2010)	4 Andra	Durban Bulker	949,97	10,9	323	16,09	9 212	9,76	5 50,00	14,8	493	3 11,05	5 559	1	0,024		0,012	1 000,0
13	26/08/2010)	1 Vogue Eva	Durban Bulker	949,97	11,0	312	16,57	203	3 10,08	3 50,00	14,8	493	3 11,05	5 559	1	0,024		0,012	1 000,0
14	26/08/2010		2 Vogue Eva	N/A	999,96	11,0	312	2 16,57	203	3 10,08	3						0,024		0,012	. 1 000,0
15	26/08/2010		3 Vogue Eva	N/A	997,57	11,0	314	10,5/	203	10,00	5					2,4	+ 0,024		0,012	1 000,0
17	20/00/2010	,	4 Vogue Liva 1 Andra	Durban Bulker	930,90	10.0	312	16.00	200	2 0.7	50.00	14.8	103	11.05	550	4,0	0,024		0,012	1 000,0
18	31/08/2010	,	2 Andra	Durban Bulker	950.00	10,3	32	16.09	212	9.7	5 50.00	14,0	493	11.05	5 559		0,024		0,012	1 000,0
19	31/08/2010)	3 Andra	Durban Bulker	949,95	10,9	323	16,09	212	2 9.70	50,00	14,8	493	3 11,05	5 559	1		0,056	1	1 000,0
20	31/08/2010)	4 Andra	Durban Bulker	949,92	10,9	323	16,09	212	9,70	5 50,00	14,8	493	8 11,05	5 559	1	0,024	0,056		1 000,0
21	15/09/2010)	1 Explorius	N/A	1 000,00	10,9	354	14,85	5 204	10,50)									1 000,0
22	15/09/2010)	2 Explorius	N/A	999,92	10,9	354	14,85	5 204	10,50)						0,024	0,056		1 000,0
23	15/09/2010		3 Explorius	N/A	999,92	10,9	354	14,85	5 204	10,50)						0,024	0,056		1 000,0
24	15/09/2010		4 Explorius	Durban Bulker	899,93	10,9	354	14,85	204	10,50	99,99	14,8	493	11,05	559		0,024	0,056		1 000,0
25	15/09/2010		D EXPIORUS 1 Explorition	Durban Bulker	849,93	10,9	354	14,85	204	10,50	149,95	14,8	493	11,05	555	1	0,024	0,056	0.010	1 000,0
20	16/09/2010		2 Explorius	Durban Bulker	8/0 03	10,9	35	14,00	5 204 5 207	10,50	149,95	14,0	493	11,05	550		0,024	0.056	0,012	1 000,0
27	16/09/2010		3 Explorius	Durban Bulker	849.92	10,9	354	14,00	5 204	10,50	149,95	14,0	493	3 11.05	5 559	1	0.024	0.056	0.012	1 000,0
29	16/09/2010)	4 Explorius	Durban Bulker	849.93	10.9	354	14.85	5 204	10,5	149.99	14.8	493	3 11.05	5 559	1	0.024	0.056		1 000.0
30	16/09/2010)	5 Explorius	Durban Bulker	849,91	10,9	354	14,85	5 204	10,50	149,98	14,8	493	3 11,05	5 559	1	0,048	0,056	i	1 000,0
31	16/09/2010)	6 Explorius	Durban Bulker	849,89	10,9	354	14,85	5 204	10,50	149,98	14,8	493	3 11,05	559)	0,072	0,056	i	1 000,0
32	07/10/2010)	1 Pan Bless	Durban Bulker	949,91	10,9	339	15,42	2 220	11,2	\$ 50,00	14,8	493	3 11,05	559)	0,040	0,056		1 000,0
33	07/10/2010)	2 Pan Bless	Durban Bulker	948,39	10,9	339	15,42	2 220	11,24	49,92	14,8	493	3 11,05	5 559	1,6	6 0,040	0,056		1 000,0
34	07/10/2010)	3 Pan Bless	Durban Bulker	946,12	10,9	339	15,42	2 220	11,2	1 49,80	14,8	3 493	3 11,05	5 559	4,0	0,040	0,056		1 000,0
35	15/12/2010		1 Great Success	Federal Kumano	949,91	10,9	34	15,35	233	10,52	2 50,00	15,4	535	10,26	595		0,040	0,056		1 000,0
30	15/12/2010		3 Great Success	Federal Kumano	947,03	10,9	34	15,35	233	10,5	49,00	15,4	535	10,20	500	2,4	+ 0,040	0,056		1 000,0
38	31/01/2011		1 African Hawk	N/A	999.90	10,3	34	15,00	7 202	2 10,5	7	10,1	1 300	, 10,20	5 333	, J,2	0.040	0.056		1 000,0
39	31/01/2011		2 African Hawk	N/A	995.92	10.8	343	15.27	202	11,0	7					4.0	0.040	0.056		1 000.0
40	01/02/2011		1 African Hawk	N/A	999,90	10,8	343	15,27	202	2 11,03	7						0,040	0,056	1	1 000,0
41	01/02/2011		2 African Hawk	N/A	991,97	10,8	343	15,27	202	11,0	7					7,9	9 0,040	0,056		1 000,0
42	24/03/2011		1 African Orchid	N/A	1 000,00	10,7	372	14,22	2 225	5 11,8	3									1 000,0
43	24/03/2011		2 African Orchid	GreenWing	950,00	10,7	372	2 14,22	2 225	5 11,8	3 50,00	15,6	6 424	12,66	6 415	i				1 000,0
44	24/03/2011		3 African Orchid	GreenWing	920,00	10,7	372	2 14,22	2 225	11,8	8 80,00	15,6	6 424	12,66	6 415					1 000,0
45	24/03/2011		4 African Orchid	GreenWing	900,00	10,7	3/2	2 14,22	2 225	11,8	3 100,00	15,6	5 424	12,60	6 415					1 000,0
40	24/03/2011		6 African Orchid	GreenWing	850.00	10,7	372	14,22	22.	11,8	150.00	15,0	0 424 3 /2/	12,00	3 410					1 000,0
48	24/03/2011		7 African Orchid	N/A	999.95	10,7	372	14,22	22.	11,0	2	10,0	, 121	12,00	, 410		0.040		0.012	1 000,0
49	24/03/2011		8 African Orchid	GreenWing	949,95	10,7	372	14,22	2 225	11,0	50,00	15,6	6 424	12,66	6 415		0,040		0,012	1 000,0
50	24/03/2011		9 African Orchid	GreenWing	919,95	10,7	372	14,22	225	5 11,8	8 80,00	15,6	424	12,66	6 415	i	0,040	1	0,012	1 000,0
51	24/03/2011	1	10 African Orchid	GreenWing	899,95	10,7	372	14,22	225	11,8	99,99	15,6	6 424	12,66	6 415	;	0,040		0,012	1 000,0
52	24/03/2011	1	1 African Orchid	GreenWing	879,95	10,7	372	14,22	225	11,8	119,99	15,6	6 424	12,66	6 415	i	0,040		0,012	1 000,0
53	24/03/2011	1	2 African Orchid	GreenWing	849,96	10,7	372	14,22	2 225	5 11,8	149,99	15,6	6 424	12,66	6 415		0,040		0,012	1 000,0
54	26/05/2011		1 Ainu Princess	GreenWing	947,63	10,9	363	14,53	5 224	11,3	5 49,88	15,6	i 424	12,66	415	2,4	4 0,040	0,056		1 000,0
CC	26/05/2011		2 AITU Princess	GreenWing	947,63	10,9	36	14,53	224	11,3	49,88	15,6	424	12,60	415	2,4	+ 0,040	0,058		1 000,0
57	26/05/2011		4 Ainu Princess	GreenWing	950,00	10,9	JDL PAC	14,53	, <u>22</u> 4 3 20/	11,3	5 50,00 ; <u>40</u> 80	15,0	, 424 , /2/	12,00	, 415 , /15		1			1 000,0
58	26/05/2011		5 Ainu Princess	GreenWina	946.12	10,9	363	14,53	3 224	11,5	49,80	15.6	424	12,00	6 415	4,0	0.040	0.056		1 000,0
59	08/06/2011		1 Ainu Princess	GreenWing	947,63	10.7	36	14,39	220	11,3	49,88	15.6	6 424	12,66	6 415	2.4	4 0,040	0,056		1 000.0
60	08/06/2011		2 Ainu Princess	GreenWing	899,91	10,7	36	14,39	220	11,24	99,99	15,6	6 424	12,66	6 415		0,040	0,056		1 000,0
61	01/09/2011		1 Maori Maiden	Federal Leda	947,63	11,6	346	5 15,15	5 212	2 10,7	49,88	15,4	598	9,26	387	2,4	4 0,040	0,056		1 000,0
62	01/09/2011		2 Maori Maiden	N/A	997,47	11,6	346	5 15,15	5 212	10,7	3					2,4	4 0,080	0,056	i	1 000,0
63	01/09/2011		3 Maori Maiden	N/A	997,49	11,6	346	5 15,15	212	2 10,7	3					2,4	4 0,064	0,056		1 000,0
64	02/09/2011		1 Maori Maiden	Federal Leda	949,91	11,6	346	5 15,15	212	10,7	3 50,00	15,4	598	9,26	387		0,040	0,056		1 000,0
60	02/09/2011		2 Maori Maidan	rederal Leda	899,91	11,6	34	15,15	212	10,7	3 99,99	15,4	598	9,26	38/		0,040	0,056		1 000,0
67	02/09/2011		4 Maori Maiden	N/A	999,90	11,6	346	15,15	, 212 5 213	10,7:	, 1					24	4 0,040	0,056		1 000,0
68	17/09/2011		1 Maori Maiden	Global Glory	949.91	11.6	346	15,15	5 212	2 10,7	50.00	15.1	439	12.27	337	, 2,-	0.040	0.056	1	1 000.0
69	17/09/2011		2 Maori Maiden	Global Glory	919,91	11.6	346	15,15	5 212	10,7	3 79,99	15,1	439	12,27	337		0,040	0,056		1 000.0
70	17/09/2011		3 Maori Maiden	Global Glory	899,91	11,6	346	15,15	5 212	10,7	99,99	15,1	439	12,27	337		0,040	0,056		1 000,0
71	22/09/2011		1 Moleson	Global Glory	849,92	11,2	319	16,26	6 227	11,8	149,99	15,1	439	12,27	337		0,040	0,056		1 000,0
72	22/09/2011		2 Moleson	Global Glory	919,91	11,2	319	16,26	6 227	11,8	1 79,99	15,1	439	12,27	337	1	0,040	0,056		1 000,0
73	22/09/2011		3 Moleson	Global Glory	899,91	11,2	319	16,26	5 227	11,8	1 99,99	15,1	439	12,27	337	·	0,040	0,056	i	1 000,0
70	Oher																			
73	Observation	15			026.04	10.00	246.04	15.45	015.44	10.0	00.47	45.40		44 57	A7E 40		2 0.007	0.054	0.010	1000 /
	Standard D	eviation		-	48.69	0.30	19.46	0.76	5 10.08	0.81	38.72	0.36	46.10	0.97	7 47 3,40 7 88.46	, 3,4 1.5	5 0,037	0,000	0,012	0.0
	Minimum				849,89	10,40	312.00	14,22	197,00	8,79	49,80	14,80	424,00	9,26	337,00	1.6	6 0,024	0,056	0,008	1000.0
	Maximum				1000,00	11,60	372,00	16,57	233,00	11,88	3 150,00	15,60	598,00	12,66	599,00	7,9	9 0,080	0,056	0,012	1000,0

2. Dependent Variables

					DEPENDEN	T VARIABLES			
			0.65		OUTPUT				
			Soft French	CIMIDO					
			vvneat	CWRS			F		
					Flour Protein	Flour Falling	Liquefaction	Flour Alveo	Baguette
Test Nbr.	Date	Test nbr.	Vessel	Vessel	content	Number	Number	W	Vol /g
					FDC			AL \A/	
					FPC _{FLR}	FLINFLR	LINK _{FLR}	ALVVFLR	BVL _{FLR}
1	22/06/2010		1 Silvaplana	Durban Bulker	10,6	340	15,38	225	9,42
2	22/06/2010	1 1	2 Silvaplana	Durban Bulker	10,8	341	15,35	235	10,30
3	22/06/2010	:	3 Silvaplana	Durban Bulker	11,0	353	14,89	242	9,25
4	17/08/2010	-	1 Vogue Eva	N/A	11,0	312	16,57	205	10,08
5	17/08/2010	1 2	2 Vogue Eva	Durban Bulker	11,2	340	15,38	240	11,45
6	17/08/2010	1 3	3 Vogue Eva	Durban Bulker	11,3	331	15,75	245	12,51
7	17/08/2010	1 4	4 Vogue Eva	Durban Bulker	11,3	335	15,58	250	11,19
8	17/08/2010	1	5 Silvretta	Durban Bulker	11,0	328	15,87	247	9,94
9	18/08/2010		1 Andra	Durban Bulker	10,7	343	15,27	230	12,11
10	18/08/2010		2 Andra	Durban Bulker	10,7	315	16,44	228	9,50
11	18/08/2010		3 Andra	Durban Bulker	10,7	307	16,81	230	9,68
12	18/08/2010	1 4	4 Andra	Durban Bulker	10,7	305	16,90	227	8,92
13	26/08/2010		1 Voque Eva	Durban Bulker	11.0	340	15.38	225	9.30
14	26/08/2010		2 Voque Eva	N/A	10.7	328	15.87	206	9.52
15	26/08/2010		3 Voque Eva	N/A	10.9	330	15 79	205	9.65
16	26/08/2010		1 Voque Eva	N/A	11,0	332	15,73	205	9,00
17	21/08/2010		1 Andro	Durbon Bulker	11,0	320	15,71	200	10.50
10	21/09/2010		Andra	Durban Bulker	11,0	339	10,42	231	10,52
10	31/08/2010			Durban Bulker	11,0	3/1	14,25	225	9,19
19	31/08/2010			Durban Bulker	11,0	353	14,89	235	10,56
20	31/08/2010	4	+ Andra	Durban Bulker	11,0	339	15,42	240	12,11
21	15/09/2010		L Explorius	N/A					10,60
22	15/09/2010	2	∠ Explorius	N/A					10,61
23	15/09/2010		3 ⊨xplorius	N/A					10,58
24	15/09/2010	4	4 Explorius	Durban Bulker					10,92
25	15/09/2010	1	5 Explorius	Durban Bulker					12,45
26	16/09/2010		1 Explorius	Durban Bulker					4,62
27	16/09/2010		2 Explorius	Durban Bulker					12,56
28	16/09/2010		3 Explorius	Durban Bulker					13,32
29	16/09/2010	. 4	4 Explorius	Durban Bulker					12,38
30	16/09/2010		5 Explorius	Durban Bulker					11,38
31	16/09/2010		6 Explorius	Durban Bulker					12,07
32	07/10/2010		1 Pan Bless	Durban Bulker	11.0	350	15.00	240	12.44
33	07/10/2010		2 Pan Bless	Durban Bulker	11.3	347	15 11	245	11 41
34	07/10/2010		B Pan Bless	Durban Bulker	11.3	345	15 19	245	12 35
35	15/12/2010		1 Groat Succose	Endoral Kumano	10.9	300	16,13	240	10.91
36	15/12/2010		Great Success	Federal Kumano	11,0	201	17,60	260	11.04
37	15/12/2010		Creat Success	Federal Kumano	11,0	231	17,00	200	10.75
37	31/01/2011		African Howk		11,2	333	15,67	207	12,75
30	31/01/2011			NVA NVA	10,0	330	15,79	203	11,10
39	31/01/2011		Arrican Hawk	NVA NVA	11,0	322	16,13	210	12,32
40	01/02/2011		African Hawk	N/A	10,8	329	15,83	209	11,88
41	01/02/2011	à	2 African Hawk	NVA	11,6	338	15,46	209	12,22
42	24/03/2011	-	African Orchid	N/A	10,7	362	14,56	227	
43	24/03/2011	-	2 African Orchid	GreenWing	10,8	359	14,67	230	
44	24/03/2011	:	3 African Orchid	GreenWing	11,0	357	14,74	235	
45	24/03/2011	4	4 African Orchid	GreenWing	11,2	366	14,42	243	
46	24/03/2011		5 African Orchid	GreenWing	11,4	357	14,74	250	1
47	24/03/2011	6	6 African Orchid	GreenWing	11,6	395	13,48	256	1
48	24/03/2011	1	7 African Orchid	N/A	10,8	378	14,02	228	12,45
49	24/03/2011	8	3 African Orchid	GreenWing	11,0	349	15,04	237	12,62
50	24/03/2011	9	African Orchid	GreenWing	11,0	376	14,08	250	11,62
51	24/03/2011	10	African Orchid	GreenWing	11,1	381	13,92	247	12,62
52	24/03/2011	1.	1 African Orchid	GreenWing	11,2	362	14,56	249	11,54
53	24/03/2011	12	2 African Orchid	GreenWing	11.3	362	14,56	259	11,28
54	26/05/2011		1 Ainu Princess	GreenWina	11.1	369	14.32	235	11.57
55	26/05/2011	2	2 Ainu Princess	GreenWing	11.1	353	14,89	238	11,82
56	26/05/2011		3 Ainu Princess	GreenWing	10 9	354	14.85	232	10.92
57	26/05/2011		4 Ainu Princess	GreenWing	11 3	360	14.32	235	11 50
58	26/05/2011	-	5 Ainu Princess	GreenWing	11 0	374	14 15	241	11 45
50	08/06/2011		1 Ainu Princess	GreenWing	11,0	374	14,13	241	12 61
60	08/06/2011			GreenWing	11,0	247	15 11	230	12,01
61	01/00/2011		1 Maari Maidan	Endoral Lodo	11,0	347	15,11	∠40	12,04
60	01/00/2011		Maori Maidan	N/A					12,90
62	01/09/2011		2 Iviaori Maiden	N/A	-				11,85
03	01/09/2011		1 Moori Maiden	Tederal Lada					12,71
64	02/09/2011		Naori Maiden	Federal Leda					12,95
65	02/09/2011			Federal Leda					13,08
66	02/09/2011		viaori Maiden	N/A					11,73
67	02/09/2011	4	+ iviaori Maiden	IN/A					12,77
68	17/09/2011		i waori Maiden	Global Glory	11,2			230	12,14
69	17/09/2011	2	2 Maori Maiden	Global Glory	11,6			233	11,89
70	17/09/2011	:	3 Maori Maiden	Global Glory	11,9			232	13,01
71	22/09/2011	•	1 Moleson	Global Glory	11,3			224	12,24
72	22/09/2011	2	2 Moleson	Global Glory	11,6			243	13,33
73	22/09/2011	:	3 Moleson	Global Glory	11,7			250	13,45
73	Observation	ns							
	Average				11,08	346,40	15,19	234,50	11,49
	Standard D	eviation			0,29	21,70	0,85	14,79	1,46
	Minimum				10,60	291,00	13,48	205,00	4,62
	Maximum				11,90	395,00	17,60	260,00	13,45

CFU: Decision metric metri metric metri metric metric metric metric metric metric metric me	FUL content Way method is manual content content content content content is manual is	Chur Meetine Me	Tetra Negr Negr </th <th>CRUI Werk Werk Werk Werk Werk Merk <th< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>FFbur Protein heat content</th><th>č</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>UNII-ON</th><th></th></th<></th>	CRUI Werk Werk Werk Werk Werk Merk Merk <th< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>FFbur Protein heat content</th><th>č</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>UNII-ON</th><th></th></th<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FFbur Protein heat content	č										UNII-ON	
PDC ₁₀ Wate Wate Wate Wate Wate Wate PDC ₁₀	FPCs Wash Wash Wash Wash Wash Mach Mach FPCs	PCC Wart Wart Wart Wart Wart PCC	FCbox Wast Wast Wast Wast Wast FCbcas	FCCsss 000 164 000 165 165 165 165 165 165 165 165 165 165	FCCs_m Ware Ware Ware Ware Ware Ware Ware PCCs_m <		t Price	four Negrt tent guten	Weght Act ascolotic	Weight enzyme mix 1	Weght enzyme mk 2	Total Weight					Flour Protein content	
118 1000 103 01 110 01 15 1000 01 01 01 01 16 1000 01 01 01 01 15 1000 01 01 01 01 16 1000 01 01 01 01 16 1000 01 01 01 01 16 1000 01 01 01 01 16 1000 01 01 01 01 16 1000 01 01 01 01 16 1000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 01 16 000 01 01 01 17	118 110 110 110 110 110 110 118 119 110 110 110 111 111 118 110 100 100 100 100 100 118 1000 100 100 100 100 100 118 1000 91 100 100 100 100 119 1000 91 100 100 100 100 110 1000 91 100 100 110 110 111 1000 100 100 100 100 100 112 1000 100 100 100 100 100 112 1000 100 100 100 100 100 112 1000 100 100 100 100 100 113 1000 100 100 100 100 100 114 1000 100 100 100 100 100 115 1000 100 100 100 100 100 116 1000 100 100 100 100 100 117	0 11 110 103 01 110 103 01 0 15 100 103 01 103 01 01 0 15 100 103 01 103 01 01 0 15 100 103 01 103 113 113 0 15 100 103 01 103 113 113 0 15 01 100 103 01 113 15 01 100 103 01 113 113 15 01 100 103 01 113 113 15 01 100 103 01 113 113 15 01 100 103 01 113 113 110 100 100 103 02 113 113 110 100 100 100 101 113 113 110 100 100 100 101 101 110 100 100 100 101 101 110 100 100 100 101 101 110 100	000 113 1000 103 014 110 017 000 115 1000 107 003 014 110 017 000 155 1000 001 103 001 103 017 000 156 1000 001 103 003 113 113 01 1000 001 103 003 113 113 01 1000 100 100 103 003 113 01 1000 100 103 003 113 113 01 1000 100 100 103 113 113 01 1000 100 103 03 113 113 01 1000 103 03 113 113 113 01 1000 100 103 03 113 113 01 1000 100 103 103 113 113 01 1000 100 103 103 113 113 01 1000 100 103 103 113 113 01 1000 1000 103 103 113 <t< td=""><td>0000 113 1100 113 1100 113 0000 124 125 1100 110 110 0000 125 128 123 110 111 0000 126 128 123 111 111 0000 126 128 123 111 112 0000 126 128 123 111 112 0000 126 128 123 111 113 0000 120 128 123 111 113 0000 120 120 123 123 113 0000 120 120 123 123 113 0000 120 120 123 123 113 0000 120 120 123 123 114 0000 120 120 123 123 0000 120 120 123 116 0000 120 123 123 116 0000 120 120 123 116 0000 120 120 123 116 0000 120 120 123 116 0000</td><td>000 113 110 001 111 110 001 000 125 100 001 001 001 001 000 125 100 001 001 001 001 000 125 100 001 001 001 001 000 126 100 001 001 001 001 000 126 100 001 001 001 001 000 120 100 001 001 001 001 000 120 100 001 001 001 001 000 100 100 001 001 001 001 001 100 100 001 001 001 001 001 100 100 001 001 001 001 001 100 001 001 001 001 001 001 100 001 001 001 001 001 001 100 001 001 001 001 001 001 100 001 001 001 001 001 001 10</td><td>With</td><td>u.</td><td>DChue Wee</td><td>Waar</td><td>Wart</td><td>Web</td><td>WTDT</td><td>(Wsv/WTOT) x FPCsw</td><td>(Whw/WTOT) x FPChw</td><td>(W_{ge}/W_{T0T}) x 64</td><td>Predicted FP C_{FLB}</td><td>FPCer</td><td></td></t<>	0000 113 1100 113 1100 113 0000 124 125 1100 110 110 0000 125 128 123 110 111 0000 126 128 123 111 111 0000 126 128 123 111 112 0000 126 128 123 111 112 0000 126 128 123 111 113 0000 120 128 123 111 113 0000 120 120 123 123 113 0000 120 120 123 123 113 0000 120 120 123 123 113 0000 120 120 123 123 114 0000 120 120 123 123 0000 120 120 123 116 0000 120 123 123 116 0000 120 120 123 116 0000 120 120 123 116 0000 120 120 123 116 0000	000 113 110 001 111 110 001 000 125 100 001 001 001 001 000 125 100 001 001 001 001 000 125 100 001 001 001 001 000 126 100 001 001 001 001 000 126 100 001 001 001 001 000 120 100 001 001 001 001 000 120 100 001 001 001 001 000 100 100 001 001 001 001 001 100 100 001 001 001 001 001 100 100 001 001 001 001 001 100 001 001 001 001 001 001 100 001 001 001 001 001 001 100 001 001 001 001 001 001 100 001 001 001 001 001 001 10	With	u.	DChue Wee	Waar	Wart	Web	WTDT	(Wsv/WTOT) x FPCsw	(Whw/WTOT) x FPChw	(W _{ge} /W _{T0T}) x 64	Predicted FP C _{FLB}	FPCer	
148 1000 103 074 110 110 110 156 1000 107 071 075 108 106 156 10000 107 073 111 112 112 156 10000 107 073 112 112 112 156 10000 922 156 111 109 112 158 10000 107 073 073 111 109 158 10000 107 073 112 113 113 158 10000 107 073 073 114 109 159 10000 107 073 073 113 113 150 1000 1000 107 073 113 113 150 1000 1000 107 073 113 113 114 100 100 100 107 113 114 1000 100 100 100 107 113 114 114 100 100 100 107 113 116 114 100 100 100 100 101 101 <t< td=""><td>118 1000 103 071 110 110 156 1000 101 07 100 101 156 1000 101 07 100 101 156 1000 101 07 101 100 156 1000 101 07 111 111 156 1000 101 07 111 111 156 1000 103 078 111 111 156 100 100 103 078 111 156 100 100 103 078 113 116 161 100 100 101 078 113 116 161 100 100 101 078 113 116 161 100 100 101 078 113 109 161 100 100 101 101 101 101 161 100 100 101 101 101 161 100 100 101 101 101 161 100 100 101 101 101 161 100 100 101 10</td><td>0 118 1000 101 100 101 0 15 1000 101 005 101 101 0 15 1000 101 005 113 114 110 0 15 28 1000 103 005 114 100 0 15 28 1000 103 005 114 100 15 16 1000 103 005 114 100 16 1000 100 100 103 100 16 16 1000 103 100 16 16 1000 103 100 16 16 1000 103 100 16 16 100 103 100 16 160 103 100 103 16 160 103 100 100 118 1000 103 100 103 118 1000 103 100 103 118 1000 103 100 100 119 1000 103 100 103 119 1000 103 100 103 <</td><td>00 16 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>000 14 1000 103 074 110 110 100 000 155 1000 001 03 113 111</td><td>00 16 100 01 110 110 10 00 15 39 10 10 10 10 10 00 15 39 100 01 01 10 11 00 15 39 100 01 01 11 11 01 100 01 01 01 01 01 11 01 100 01 01 01 01 01 11 01 100 01 01 01 01 01 11 01 100 01 01 01 01 01 01 01 100 01 01 01 01 01 01 01 100 01 01 01 01 01 01 01 100 01 01 01 01 01 01 01 100 01 0</td><td></td><td>00'00</td><td>11.8</td><td></td><td></td><td>1</td><td>1 000.00</td><td>10.36</td><td>0.74</td><td></td><td>11,10</td><td>10.7</td><td></td></t<>	118 1000 103 071 110 110 156 1000 101 07 100 101 156 1000 101 07 100 101 156 1000 101 07 101 100 156 1000 101 07 111 111 156 1000 101 07 111 111 156 1000 103 078 111 111 156 100 100 103 078 111 156 100 100 103 078 113 116 161 100 100 101 078 113 116 161 100 100 101 078 113 116 161 100 100 101 078 113 109 161 100 100 101 101 101 101 161 100 100 101 101 101 161 100 100 101 101 101 161 100 100 101 101 101 161 100 100 101 10	0 118 1000 101 100 101 0 15 1000 101 005 101 101 0 15 1000 101 005 113 114 110 0 15 28 1000 103 005 114 100 0 15 28 1000 103 005 114 100 15 16 1000 103 005 114 100 16 1000 100 100 103 100 16 16 1000 103 100 16 16 1000 103 100 16 16 1000 103 100 16 16 100 103 100 16 160 103 100 103 16 160 103 100 100 118 1000 103 100 103 118 1000 103 100 103 118 1000 103 100 100 119 1000 103 100 103 119 1000 103 100 103 <	00 16 10 10 10 10 10 10 10 10 10 10 10 10 10	000 14 1000 103 074 110 110 100 000 155 1000 001 03 113 111	00 16 100 01 110 110 10 00 15 39 10 10 10 10 10 00 15 39 100 01 01 10 11 00 15 39 100 01 01 11 11 01 100 01 01 01 01 01 11 01 100 01 01 01 01 01 11 01 100 01 01 01 01 01 11 01 100 01 01 01 01 01 01 01 100 01 01 01 01 01 01 01 100 01 01 01 01 01 01 01 100 01 01 01 01 01 01 01 100 01 0		00'00	11.8			1	1 000.00	10.36	0.74		11,10	10.7	
15 1000 101 078 1000 101 100 101 15 10000 924 125 1114 112 111 15 10000 924 125 1114 113 111 15 10000 924 125 1114 113 111 15 10000 924 123 1114 113 114 15 1000 103 023 013 113 114 114 100 100 100 101 114 103 114 100 100 100 101 114 103 114 100 100 100 100 101 101 114 100 100 100 101 101 101 114 100 100 100 101 101 114 100 100 100 101 101 114 100 100 100 101 101 114 100 100 100 101 101 114 100 100 100 101 101 114 100 100 100 101	156 1000 101 078 100 101 156 1000 94 125 111 112 113 156 1000 94 125 111 113 113 156 138 0.00 94 113 114 109 156 138 0.00 103 0.05 113 114 156 138 0.00 103 0.05 113 114 156 138 0.00 103 0.05 113 113 156 138 0.00 103 0.05 113 100 159 1000 100 100 0.05 113 100 150 128 0.00 103 0.05 113 100 151 128 0.00 100 0.00 100 101 151 0.00 0.00 0.00 0.00 100 0.01 153 128 0.00 0.00 0.00 0.00 0.01 159 128 0.00 0.00 0.00 0.01 0.01 159 128 0.00 0.00 0.00 0.01 0.01 1	1 1 <td>000 15 1000 1017 173 1018 <td< td=""><td>000 15 1000 101 0.8 0.8 010 15 100 101 0.8 114 010 15 100 101 0.8 114 010 15 100 100 101 100 010 15 100 100 101 100 010 15 100 100 101 100 010 100 100 100 100 101 010 100 100 100 100 101 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 110 100 100</td><td>000 15 100 101 03 12 103 03 000 15 1000 92 15 114 115 000 15 1000 103 03 114 113 000 15 000 100 103 03 114 103 010 150 1000 103 03 114 103 010 150 1000 100 103 03 114 103 010 150 1000 100 100 103 103 010 150 100 100 100 103 103 011 1000 100 100 100 103 103 011 1000 100 100 100 100 103 011 1000 100 100 100 100 103 011 1000 100 100 100 100 100 011 1000 100 100 100 100 100 011 1000 100 100 100 100 100 011 1000 100 100 100 100 1</td><td></td><td>000</td><td>14.8</td><td></td><td></td><td></td><td>1000.00</td><td>10.36</td><td>0.74</td><td></td><td>11,10</td><td>11,0</td><td></td></td<></td>	000 15 1000 1017 173 1018 <td< td=""><td>000 15 1000 101 0.8 0.8 010 15 100 101 0.8 114 010 15 100 101 0.8 114 010 15 100 100 101 100 010 15 100 100 101 100 010 15 100 100 101 100 010 100 100 100 100 101 010 100 100 100 100 101 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 110 100 100</td><td>000 15 100 101 03 12 103 03 000 15 1000 92 15 114 115 000 15 1000 103 03 114 113 000 15 000 100 103 03 114 103 010 150 1000 103 03 114 103 010 150 1000 100 103 03 114 103 010 150 1000 100 100 103 103 010 150 100 100 100 103 103 011 1000 100 100 100 103 103 011 1000 100 100 100 100 103 011 1000 100 100 100 100 103 011 1000 100 100 100 100 100 011 1000 100 100 100 100 100 011 1000 100 100 100 100 100 011 1000 100 100 100 100 1</td><td></td><td>000</td><td>14.8</td><td></td><td></td><td></td><td>1000.00</td><td>10.36</td><td>0.74</td><td></td><td>11,10</td><td>11,0</td><td></td></td<>	000 15 1000 101 0.8 0.8 010 15 100 101 0.8 114 010 15 100 101 0.8 114 010 15 100 100 101 100 010 15 100 100 101 100 010 15 100 100 101 100 010 100 100 100 100 101 010 100 100 100 100 101 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 010 100 100 100 100 100 110 100 100	000 15 100 101 03 12 103 03 000 15 1000 92 15 114 115 000 15 1000 103 03 114 113 000 15 000 100 103 03 114 103 010 150 1000 103 03 114 103 010 150 1000 100 103 03 114 103 010 150 1000 100 100 103 103 010 150 100 100 100 103 103 011 1000 100 100 100 103 103 011 1000 100 100 100 100 103 011 1000 100 100 100 100 103 011 1000 100 100 100 100 100 011 1000 100 100 100 100 100 011 1000 100 100 100 100 100 011 1000 100 100 100 100 1		000	14.8				1000.00	10.36	0.74		11,10	11,0	
16 1000 94 15 110 111 16 1000 94 15 111 113 16 1000 94 13 111 113 16 1000 94 13 114 113 16 1000 101 0 10 10 16 1000 101 0 101 0 16 1000 101 0 10 10 16 100 100 101 0 10 16 100 100 101 0 10 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100 100 16 100 100 100 100	110 110 110 110 111 111 111 111 111 111 112 10000 92 175 111 111 115 10000 92 175 111 111 116 10000 92 175 111 116 116 10000 100 100 101 101 116 10000 100 100 101 111 118 10000 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 101 101 119 100 100 100 <	0 55 58 100 92 15 0 56 38 100 103 03 11 0 15 0 100 103 03 11 0 15 0 100 103 03 11 0 14 1000 103 03 03 113 14 1000 103 03 03 113 116 15 1000 100 103 03 113 116 14 1000 100 103 03 113 116 140 000 100 000 100 000 100 140 000 100 000 100 000 140 000 100 000 100 000 140 000 100 000 100 000 140 000 100 000 100 000 141 140 116 116 116 141 140 000 100 100 116 141 140 100 100 116 116 141 140 100 100 116<	000 15 100 92 12 010 15 100 92 13 010 15 100 92 13 010 15 00 13 11 010 15 00 10 10 010 16 100 103 07 11 011 100 103 07 11 11 011 100 103 07 11 11 010 100 100 101 10 11 011 100 100 101 11 11 011 100 100 101 11 11 011 100 101 101 11 11 011 100 101 101 11 11 011 100 101 101 11 11 011 100 101 101 11 11 011 101 101 101 11 11 011 101 101 101 11 11 011 101 101 101 11 11 011 101 101 101	000 15 100 00 11 1	000 15 100 101 100 11 000 15 100 101 101 11 11 000 15 100 101 101 11 11 000 15 100 100 101 11 11 010 150 100 101 101 11 11 010 110 100 101 101 11 11 010 110 100 101 101 11 11 010 110 100 101 101 11 11 010 110 100 101 101 11 11 010 110 100 101 101 101 010 110 101 101 101 101 010 110 101 101 101 101 010 110 101 101 101 101 010 110 101 101 101 101 010 110 101 101 101 101 010 100 101 101 101 101 0110 101 101 <td></td> <td>0005</td> <td>15.6</td> <td></td> <td></td> <td></td> <td>10000</td> <td>1017</td> <td>0.78</td> <td></td> <td>10.0</td> <td>10.1</td> <td></td>		0005	15.6				10000	1017	0.78		10.0	10.1	
156 1000 960 15 110 111 156 38 1000 912 18 111 156 38 1000 912 111 116 156 1000 910 03 03 111 152 100 1000 103 03 111 158 1000 100 103 03 111 158 100 100 103 03 111 159 100 100 101 101 101 159 39 03 03 112 116 159 39 100 101 101 101 150 100 101 101 101 101 159 39 100 101 101 101 159 100 101 101 101 101 150 100 101 101 101 101 150 100 101 101 101 101 150 100 101 101 101 116 150 100 101 101 101 116 150 101 101 <	156 1000 912 156 110 111 111 156 39 1000 912 18 111 116 156 1000 912 100 912 111 116 156 1000 912 100 103 013 111 1000 1000 103 013 013 111 116 1100 1000 1000 100 103 113 116 1110 1000 100 100 103 113 116 1110 1000 100 100 103 113 116 1110 1000 100 100 103 113 116 1110 1000 100 100 103 113 116 1110 1000 100 100 103 116 116 1110 1000 100 101 103 116 116 1110 1000 100 101 103 116 116 1110 1000 101 101 103 116 116 1110 1000 101 101 103 116 116	00 15 1000 9.2 15 119 112 01 15 38 1000 9.2 18 114 109 01 100 100 103 0.3 114 109 01 100 100 103 0.3 114 109 01 100 100 103 0.3 114 109 01 100 100 100 0.3 114 109 110 110 100 0.3 113 116 113 110 110 0.3 100 0.3 113 116 111 110 0.3 0.3 113 0.3 113 111 110 0.3 0.3 113 116 113 111 100 0.3 0.3 113 116 113 111 100 0.3 0.3 113 116 116 111 100 0.3 0.3 0.3 113 116 111 100 0.3 0.3 0.3 113 116 111 100 0.3 0.3 0.3 0.3 112 111	000 15 100 95 15 110 112 000 15 1000 92 19 113 113 000 15 1000 92 19 114 103 000 15 1000 101 03 114 103 000 15 000 101 03 114 103 010 100 100 101 03 114 103 011 000 100 100 001 103 116 012 000 100 001 001 100 101 118 1000 100 100 100 100 101 119 1000 100 100 100 100 100 119 1000 100 100 100 100 100 119 1000 100 100 100 100 100 119 1000 100 100 100 100 100 119 1000 100 100 100 100 100 119 1000 100 100 100 100 100 119 1000 </td <td>000 155 110 000 112<td>000 155 1100 96 155 110 112 112 000 156 100 00 0 0 0 0 111 113 113 000 156 100 0 0 0 0 111 113 113 000 150 0 0 0 0 0 0 111 113 113 010 150 0</td><td>1</td><td>0000</td><td>156</td><td></td><td></td><td></td><td>1000.00</td><td>18.6</td><td>1,25</td><td></td><td>11.09</td><td>11.0</td><td></td></td>	000 155 110 000 112 <td>000 155 1100 96 155 110 112 112 000 156 100 00 0 0 0 0 111 113 113 000 156 100 0 0 0 0 111 113 113 000 150 0 0 0 0 0 0 111 113 113 010 150 0</td> <td>1</td> <td>0000</td> <td>156</td> <td></td> <td></td> <td></td> <td>1000.00</td> <td>18.6</td> <td>1,25</td> <td></td> <td>11.09</td> <td>11.0</td> <td></td>	000 155 1100 96 155 110 112 112 000 156 100 00 0 0 0 0 111 113 113 000 156 100 0 0 0 0 111 113 113 000 150 0 0 0 0 0 0 111 113 113 010 150 0	1	0000	156				1000.00	18.6	1,25		11.09	11.0	
156 1000 9.4 1.6 11.3 11.4 156 38 1000 0.35 0.3 0.3 11.3 11.3 156 38 1000 0.35 0.3 0.3 0.3 11.3 11.3 156 100 0.05 0.05 0.3 0.3 0.3 0.3 11.3 150 100 0.00 100 0.01 0.3 0.3 0.3 0.3 140 100 0.00 0.00 1.13 0.3 0.3 0.3 0.3 140 1000 0.00 0.00 0.3 0.3 0.3 0.3 0.3 140 1000 0.00 0.00 0.3 0.3 0.3 0.3 0.3 140 1000 0.30 0.3 0.3 0.3 0.3 0.3 0.3 140 1000 0.30 0.3 0.3 0.3 0.3 0.3 0.3 140 1000 0.3 0.3 0.3 0.3 0.3 0.3 0.3 140 1000 0.3 0.3 0.3 0.3 0.3 0.3 0.3 140 1000 0.3	0 156 1000 9.2 111 1124 111 0 156 336 10000 103 0.3 111 10 1 10000 103 0.3 0.3 111 10 1 10000 103 0.3 0.3 111 10 1 10000 1000 103 0.3 113 113 1 1000 1000 1000 0.3 0.3 113 100 1 1000 1000 0.3 0.3 0.3 113 100 1 1480 1000 0.3 0.3 0.3 100 100 1 140 1000 0.3 0.3 120 100 1 140 1000 0.3 120 100 1 1000 0.3 100 100 100 1 1000 100 100 100 100 1 1000 100 100 100 100 1 1000 100 100 100 110 1 1000 100 100 100 110 1 1000 100 100	00 156 15 38 16 15 38 17 11 17 10 10 15 38 17 11 17 10 10 10 10 15 18 11 19 15 19	000 156 1000 9.2 111.1 112.9 114.4 000 156 336 1000 103 0.3 114.4 10.9 010 156 0.4 1000 103 0.3 114.4 10.9 010 156 0.4 0.00 103 0.3 113.4 113.4 010 156 0.4 0.00 103 0.3 113.7 113.6 011 156 0.4 0.00 103 0.3 113.7 113.6 011 156 156 0.00 103 0.00 103 011 156 156 0.00 103 113.7 113.6 011 156 156 0.00 103 113.7 113.6 011 156 156 0.00 103 114.7 115.6 011 156 156 0.00 103 114.7 116.6 011 156 156 0.05 117.7 116.6 116.7 011 156 156 0.05 117.7 116.6 116.7 012 156 156 0.05 117.7 116.6 116.6	000 156 1100 9.2 151 112 114 115 000 155 38 1000 103 0.3 114 113 000 155 128 0.03 103 0.3 114 103 000 155 128 0.03 103 0.3 111 0.3 000 156 0.3 100 0.3 0.3 113 116 113 001 150 0.3 100 0.3 0.3 113 116 113 001 150 0.3 100 0.3 0.3 113 116	000 156 111 1123 111 000 156 358 10000 103 103 111 000 156 100 103 103 103 111 000 156 100 103 103 111 106 010 150 100 103 103 111 106 011 100 100 100 103 111 106 012 100 100 100 103 111 106 013 100 100 100 100 103 116 014 100 100 100 100 103 116 015 106 100 100 100 100 106 016 108 100 100 100 100 100 016 108 100 100 100 100 100 016 108 108 108 108 116 116 116 100 100 100 100 116 100 100 100 100 100 116 100 100 100 100 1	÷	0000	15.6				1000.00	96	1,56		11,19	11.2	
156 1000 103 2.34 11.14 11.6 15.6 38 1000 103 0.3 11.3 11.3 15.2 0.40 1000 103 0.3 11.3 11.3 16.6 1000 103 0.3 0.3 11.3 11.3 10.8 1.0 1000 1001 0.3 0.3 11.3 11.8 1000 1000 1000 100 11.3 11.6 11.8 1000 1000 1000 1000 11.3 11.6 11.8 1000 1000 1000 1000 11.3 11.6 11.8 1000 1000 1000 1000 11.3 11.6 11.8 1000 1000 100 1000 11.3 11.6 11.8 1000 100 100 100 11.3 11.6 11.9 1000 100 100 100 11.3 11.6 11.9 1000 100 100 100 11.3 11.6 11.9 1000 100 100 100 11.3 11.6 11.9 1000 100 100 100 11.3	0 156 1114 116 15 336 10000 103 0.73 15 10000 103 0.73 1114 116 16 1000 103 0.73 113 113 16 1000 103 0.73 113 113 16 1000 1000 1000 101 0.75 16 000 1000 1000 1000 113 16 1000 1000 1000 100 113 16 1000 1000 1000 1000 100 16 1000 1000 1000 1000 100 16 160 000 1000 1000 100 16 1000 1000 1000 1000 100 16 1000 1000 1000 1000 100 16 1000 1000 1000 1000 100 16 1000 1000 1000 1000 100 16 1000 1000 1000 1000 100 16 1000 1000 1000 1000 100 16 1000 1000 1	00 156 10000 103 0.3 114 116 01 15.2 0.00 1031 0.73 0.73 113 113 02 15.2 0.00 1000 101 0.73 113 113 03 15.2 0.00 1000 100 101 0 11 1000 100 100 101 0 10 11 1000 100 100 101 0.11 10 11 1000 100 100 100 101 0.11 11 1000 100 100 100 100 101 11 1000 100 100 100 100 100 11 1000 100 100 100 100 100 11 1000 100 100 100 100 100 11 1000 100 234 0.23 116 116 11 1000 100 100 100 100 100 11 1000 100 100 100 100 100 11 1000 100 100 100 100 100	000 156 114 114 116 000 156 39 234 114 116 000 156 39 03 113 113 010 100 103 03 03 113 113 010 100 100 103 03 113 116 011 100 100 103 03 113 116 011 100 100 103 103 103 116 011 100 100 103 103 103 103 011 106 100 103 103 103 103 011 106 100 103 103 103 103 011 106 100 103 103 103 103 011 106 100 103 103 103 103 011 106 100 103 103 103 103 011 106 100 103 103 104 106 011 106 100 103 103 106 106 011 106 100 103 104 106	0000 156 10000 103 073 114 116 000 156 358 10000 103 073 073 114 115 114 115 114 115 114 115 114 115 114 115 114 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115<	000 15 38 1144 116 010 15 38 113 113 113 010 15 38 113 113 113 010 15 100 010 113 113 011 100 010 113 113 113 011 100 010 113 010 113 011 100 010 113 010 113 010 011 100 010 010 113 010 010 114 116 011 100 010	22	0000	15.6				1 000.00	342	1.87		11.29	11.4	
156 38 1000 103 0.3 111 10 15.4 0.0 1000 103 0.3 113 113 0.5 1.6 0.0 101 0.3 113 116 0.5 1.6 0.0 101 0.3 113 116 0.5 1.6 0.8 0.8 117 0.3 116 0.5 0.0 100 0.0 107 0.3 116 11.80 0.0 0.0 0.0 107 0.3 116 11.80 0.0 0.0 0.0 107 0.3 116 11.80 0.0 0.0 0.0 107 0.3 116 11.80 0.0 0.0 0.0 107 0.3 1160 11.90 0.0 0.0 0.0 107 0.3 0.3 11.91 0.0 0.0 0.0 107 0.3 0.3 11.91 0.0 0.0 0.0 107 0.3 0.3 11.91 0.0 0.0 0.0 107 0.3 0.3 11.91 0.0 0.0 0.0 0.3 0.3 0.3 <td< td=""><td>0 156 338 1000 1031 0.78 0.28 113 100 2 0.35 126 0.03 1000 1011 0.16 100 2 0.35 126 0.03 112 0.16 0.01 1 1000 1000 1000 1000 112 0.01 1 1000 0.01 0.02 112 0.01 1 1000 0.01 0.03 100 0.01 1 1000 0.01 0.02 112 0.03 1 1000 0.01 0.01 0.02 112 0.03 1 1000 0.01 0.01 0.02 112 0.03 1 1000 0.01 0.03 100 0.01 0.01 1 1000 0.03 0.03 100 0.03 100 1 1000 0.03 100 0.03 100 100 1 100 100 0.03 100 0.03 100 1 100 100 100 0.03 100 0.03 1 100 100 100 0.03 100 0.03</td><td>00 156 389 10000 1031 0.78 0.33 1114 009 22 0.05 1.05 0.05 1000 1013 0.78 0.16 101 23 0.05 1.29 0.66 0.03 117 11.60 11.3 11.60 23 0.05 1.24 0.000 10.00 0.01 0.01 0.01 14.80 369 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.02 1.12 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.02 1.12 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.02 1.12 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 0.01 0.01</td><td>00 156 336 10000 1031 0.38 1114 109 212 0.33 126 0.33 0.33 0.33 0.31</td></td<> <td>00 156 38 10000 103 0.3 111 0.9 212 0.00 15 0.00 10000 1000 10 10 212 0.00 15 0.00 1000 1000 10 11 10 212 0.00 100 0.01 0.01 0.01 10 10 212 0.00 100 0.01 0.01 0.01 10 213 0.00 100 0.01 0.01 0.01 10 000 100 0.01 0.01 0.01 0.01 10 000 0.00 100 0.01 0.01 0.01 10 000 100 0.01 0.01 0.01 0.01 10 000 0.00 100 0.01 0.01 0.01 10 000 0.00 0.01 0.01 0.01 0.01 10 10 000 0.00 0.0</td> <td>00 156 38 10000 101 0.03 101 0.03 322 0.08 1.0 0.01 10000 101 0.03 116 103 322 0.08 1.0 0.03 1000 0.03 116 103 323 0.08 1.00 0.01 1000 100 0.01 100 1400 1000 0.01 1000 1000 100 0.01 100 1400 1000 0.01 1000 1000 1000 100 100 1400 1000 0.01 0.00 1000 1000 100 100 1400 1000 1000 1000 1000 1000 100 100 1400 1000 1000 1000 1000 1000 100 100 1400 1000 1000 1000 1000 1000 100 100 1400 1400 1400 1400</td> <td>15</td> <td>000</td> <td>15.6</td> <td></td> <td></td> <td></td> <td>1 000,000</td> <td>9.10</td> <td>234</td> <td></td> <td>11,11</td> <td>11.6</td> <td></td>	0 156 338 1000 1031 0.78 0.28 113 100 2 0.35 126 0.03 1000 1011 0.16 100 2 0.35 126 0.03 112 0.16 0.01 1 1000 1000 1000 1000 112 0.01 1 1000 0.01 0.02 112 0.01 1 1000 0.01 0.03 100 0.01 1 1000 0.01 0.02 112 0.03 1 1000 0.01 0.01 0.02 112 0.03 1 1000 0.01 0.01 0.02 112 0.03 1 1000 0.01 0.03 100 0.01 0.01 1 1000 0.03 0.03 100 0.03 100 1 1000 0.03 100 0.03 100 100 1 100 100 0.03 100 0.03 100 1 100 100 100 0.03 100 0.03 1 100 100 100 0.03 100 0.03	00 156 389 10000 1031 0.78 0.33 1114 009 22 0.05 1.05 0.05 1000 1013 0.78 0.16 101 23 0.05 1.29 0.66 0.03 117 11.60 11.3 11.60 23 0.05 1.24 0.000 10.00 0.01 0.01 0.01 14.80 369 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.02 1.12 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.02 1.12 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 10.00 0.02 1.12 0.01 14.80 0.000 10.00 0.01 0.01 0.01 14.80 0.000 0.01 0.01	00 156 336 10000 1031 0.38 1114 109 212 0.33 126 0.33 0.33 0.33 0.31	00 156 38 10000 103 0.3 111 0.9 212 0.00 15 0.00 10000 1000 10 10 212 0.00 15 0.00 1000 1000 10 11 10 212 0.00 100 0.01 0.01 0.01 10 10 212 0.00 100 0.01 0.01 0.01 10 213 0.00 100 0.01 0.01 0.01 10 000 100 0.01 0.01 0.01 0.01 10 000 0.00 100 0.01 0.01 0.01 10 000 100 0.01 0.01 0.01 0.01 10 000 0.00 100 0.01 0.01 0.01 10 000 0.00 0.01 0.01 0.01 0.01 10 10 000 0.00 0.0	00 156 38 10000 101 0.03 101 0.03 322 0.08 1.0 0.01 10000 101 0.03 116 103 322 0.08 1.0 0.03 1000 0.03 116 103 323 0.08 1.00 0.01 1000 100 0.01 100 1400 1000 0.01 1000 1000 100 0.01 100 1400 1000 0.01 1000 1000 1000 100 100 1400 1000 0.01 0.00 1000 1000 100 100 1400 1000 1000 1000 1000 1000 100 100 1400 1000 1000 1000 1000 1000 100 100 1400 1000 1000 1000 1000 1000 100 100 1400 1400 1400 1400	15	000	15.6				1 000,000	9.10	234		11,11	11.6	
156 384 10000 1031 0.78 0.25 113 113 152 0.0 0.0 0.0 0.0 0 10 0 10 148 0.0 0.0 0.0 0.0 0.0 113 0.00 100 0 10	0 156 338 10000 1031 0.78 0.25 11.3 11.3 1 1 1 0 100 101 10 10 1 1 0 100 0 0 11 0 10 1 1 0 0 0 0 0 11 0 10 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 10 10 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 1 10 10 10 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 1 1 1 0 0 <td>0 156 38 10000 1031 0.78 0.25 1135 113 22 051 0.0 1000 010 010 117 0116 113 23 051 0.0 010 010 010 010 116 011 1480 0000 0100 010 010 010 011 011 011 1480 01000 010 010 010 010 010 010 010 010 1480 01550 39 0000 010<!--</td--><td>680 156 38 10000 1031 0.38 113 113 223 134 0.0 100 0.0 100 10 10 233 134 0.0 0.0 102 103 0.0 10 148 0.00 100 0.0 0.0 1.17 0.10 0.0 150 396 0.00 0.0 0.0 1.12 0.10 0.0 160 160 0.0 0.0 0.0 0.0 1.12 0.10 0.0 160 160 0.00 1.00 2.3 0.2 1.13 0.10 0.0 160 160 1.00 0.0 1.0 0.2 1.13 0.10 0.0 160 160 10.0 2.3 0.2 1.13 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.100 0.116 0.116 0.116 0.116 0.116 <td< td=""><td>800 156 338 1000 101 0.33 11.3 11.3 810 12 0.40 0000 010 101 101 101 812 125 0.40 0000 010 010 101 101 812 126 0.40 0000 010 010 101 011<</td><td>00 156 58 1133 1133 113 01 02 126 03 103 103 01 16 38 100 010 101 103 01 16 100 010 010 101 103 01 16 100 010 010 101 103 01 16 100 010 100 103 103 01 16 00 100 100 100 103 01 16 00 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 100 100 100 100 100 103 01 100 100 100 100</td><td>47</td><td>000</td><td>15.6</td><td></td><td></td><td></td><td>1 000,000</td><td>10.36</td><td>0.78</td><td></td><td>11.14</td><td>10.9</td><td></td></td<></td></td>	0 156 38 10000 1031 0.78 0.25 1135 113 22 051 0.0 1000 010 010 117 0116 113 23 051 0.0 010 010 010 010 116 011 1480 0000 0100 010 010 010 011 011 011 1480 01000 010 010 010 010 010 010 010 010 1480 01550 39 0000 010 </td <td>680 156 38 10000 1031 0.38 113 113 223 134 0.0 100 0.0 100 10 10 233 134 0.0 0.0 102 103 0.0 10 148 0.00 100 0.0 0.0 1.17 0.10 0.0 150 396 0.00 0.0 0.0 1.12 0.10 0.0 160 160 0.0 0.0 0.0 0.0 1.12 0.10 0.0 160 160 0.00 1.00 2.3 0.2 1.13 0.10 0.0 160 160 1.00 0.0 1.0 0.2 1.13 0.10 0.0 160 160 10.0 2.3 0.2 1.13 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.100 0.116 0.116 0.116 0.116 0.116 <td< td=""><td>800 156 338 1000 101 0.33 11.3 11.3 810 12 0.40 0000 010 101 101 101 812 125 0.40 0000 010 010 101 101 812 126 0.40 0000 010 010 101 011<</td><td>00 156 58 1133 1133 113 01 02 126 03 103 103 01 16 38 100 010 101 103 01 16 100 010 010 101 103 01 16 100 010 010 101 103 01 16 100 010 100 103 103 01 16 00 100 100 100 103 01 16 00 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 100 100 100 100 100 103 01 100 100 100 100</td><td>47</td><td>000</td><td>15.6</td><td></td><td></td><td></td><td>1 000,000</td><td>10.36</td><td>0.78</td><td></td><td>11.14</td><td>10.9</td><td></td></td<></td>	680 156 38 10000 1031 0.38 113 113 223 134 0.0 100 0.0 100 10 10 233 134 0.0 0.0 102 103 0.0 10 148 0.00 100 0.0 0.0 1.17 0.10 0.0 150 396 0.00 0.0 0.0 1.12 0.10 0.0 160 160 0.0 0.0 0.0 0.0 1.12 0.10 0.0 160 160 0.00 1.00 2.3 0.2 1.13 0.10 0.0 160 160 1.00 0.0 1.0 0.2 1.13 0.10 0.0 160 160 10.0 2.3 0.2 1.13 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.100 0.116 0.116 0.116 0.116 0.116 <td< td=""><td>800 156 338 1000 101 0.33 11.3 11.3 810 12 0.40 0000 010 101 101 101 812 125 0.40 0000 010 010 101 101 812 126 0.40 0000 010 010 101 011<</td><td>00 156 58 1133 1133 113 01 02 126 03 103 103 01 16 38 100 010 101 103 01 16 100 010 010 101 103 01 16 100 010 010 101 103 01 16 100 010 100 103 103 01 16 00 100 100 100 103 01 16 00 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 100 100 100 100 100 103 01 100 100 100 100</td><td>47</td><td>000</td><td>15.6</td><td></td><td></td><td></td><td>1 000,000</td><td>10.36</td><td>0.78</td><td></td><td>11.14</td><td>10.9</td><td></td></td<>	800 156 338 1000 101 0.33 11.3 11.3 810 12 0.40 0000 010 101 101 101 812 125 0.40 0000 010 010 101 101 812 126 0.40 0000 010 010 101 011<	00 156 58 1133 1133 113 01 02 126 03 103 103 01 16 38 100 010 101 103 01 16 100 010 010 101 103 01 16 100 010 010 101 103 01 16 100 010 100 103 103 01 16 00 100 100 100 103 01 16 00 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 16 100 100 100 100 103 01 100 100 100 100 100 103 01 100 100 100 100	47	000	15.6				1 000,000	10.36	0.78		11.14	10.9	
122 0.00 100 0.01 100 101 1180 0.05 0.08 0.12 0.09 0.01 1180 0.00 0.01 0.01 0.01 0.01 1180 0.00 0.01 0.01 0.01 0.01 1180 0.00 0.01 0.01 0.01 0.01 1180 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	3 152 0.4 10 10 1 126 0 113 116 1 10 10 10 10 1 10 10 113 010 1 0 10 113 010 1 0 0 0 0 1 0 10 10 10 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 <td>32 152 0.0 100 101 10 10 1180 0.0 100 0.0 177 0.0 0.0 1180 0.0 0.0 0.0 0.0 100 100 1180 0.0 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.0 0.0 0.0 0.0 0.0 0.0 1180 0.0 0.0 0.0 0.0 0.0 0.0 1180 0.0 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>312 0.0 132 0.0 10 10 118 0.0 0.0 0.0 1.1 0.0 118 0.00 0.0 0.0 1.1 0.0 118 0.00 0.0 0.0 1.1 0.0 118 0.000 0.0 0.0 0.0 0.0 118 0.000 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0<td>10 12 0.0 10 10 10 10 11 03 03 03 03 17 03 110 11 03 03 03 03 17 03 100 11 03 03 03 03 10 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 03 03 03 11 04 04 04 04 04 04 04 11 04 04 04 04 04 04 04 11 04 04 <</td><td>323 152 0.0 100 000 010 010 010 010 324 156 0.0 000 010 010 010 010 010 110 150 39 0000 100 000 000 100 000 110 150 23 0000 100 000 000 100 000 100 110 150 23 0000 100 000 100 000 100 000 100 000 100</td><td></td><td>980</td><td>15.6</td><td>8</td><td></td><td></td><td>1 000,00</td><td>10.31</td><td>0,78</td><td>0.25</td><td>11.35</td><td>11.3</td><td></td></td>	32 152 0.0 100 101 10 10 1180 0.0 100 0.0 177 0.0 0.0 1180 0.0 0.0 0.0 0.0 100 100 1180 0.0 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.000 0.0 0.0 0.0 0.0 0.0 1180 0.0 0.0 0.0 0.0 0.0 0.0 1180 0.0 0.0 0.0 0.0 0.0 0.0 1180 0.0 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 0.0	312 0.0 132 0.0 10 10 118 0.0 0.0 0.0 1.1 0.0 118 0.00 0.0 0.0 1.1 0.0 118 0.00 0.0 0.0 1.1 0.0 118 0.000 0.0 0.0 0.0 0.0 118 0.000 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 0.0 0.0 0.0 0.0 1190 0.0 <td>10 12 0.0 10 10 10 10 11 03 03 03 03 17 03 110 11 03 03 03 03 17 03 100 11 03 03 03 03 10 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 03 03 03 11 04 04 04 04 04 04 04 11 04 04 04 04 04 04 04 11 04 04 <</td> <td>323 152 0.0 100 000 010 010 010 010 324 156 0.0 000 010 010 010 010 010 110 150 39 0000 100 000 000 100 000 110 150 23 0000 100 000 000 100 000 100 110 150 23 0000 100 000 100 000 100 000 100 000 100</td> <td></td> <td>980</td> <td>15.6</td> <td>8</td> <td></td> <td></td> <td>1 000,00</td> <td>10.31</td> <td>0,78</td> <td>0.25</td> <td>11.35</td> <td>11.3</td> <td></td>	10 12 0.0 10 10 10 10 11 03 03 03 03 17 03 110 11 03 03 03 03 17 03 100 11 03 03 03 03 10 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 100 100 100 11 03 03 03 03 03 03 03 11 04 04 04 04 04 04 04 11 04 04 04 04 04 04 04 11 04 04 <	323 152 0.0 100 000 010 010 010 010 324 156 0.0 000 010 010 010 010 010 110 150 39 0000 100 000 000 100 000 110 150 23 0000 100 000 000 100 000 100 110 150 23 0000 100 000 100 000 100 000 100 000 100		980	15.6	8			1 000,00	10.31	0,78	0.25	11.35	11.3	
152 0.00 100 100 100 163 126 0.03 117 0.03 100 1180 336 0.00 117 0.00 0.00 1180 366 0.03 0.03 100 0.00 1180 366 0.03 112 0.03 1180 366 0.03 112 0.03 1180 24 0.03 113 0.03 1180 1000 0.01 24 0.03 0.03 1180 1000 0.01 0.01 0.03 116 1180 1000 0.01 0.01 0.03 116 1180 1000 0.03 100 0.03 116 1180 1000 0.03 118 116 1180 1000 100 118 116 1190 1000 100 116 116 1190 1000 116 116 116 1190 119 118 116 116 1190 119 116 116 116 1190 119 116 116 116 1190 119 116 116	8 15.2 0.40 1000 1000 113 116 0 1140 0.81 0.81 0.81 0.01 0.01 1 1000 0.01 0.81 0.81 0.01 0.01 1 1160 0.91 0.81 0.81 0.01 0.01 1 1160 0.91 0.01 0.01 0.01 1 1160 2.34 0.25 11500 1160 1 1000 1000 1000 2.34 0.25 1160 1 1000 1000 2.34 0.25 11500 1160 1 1 1 1.32 0.02 11500 1160 1 1 1.32 0.23 112801 1160 1 1 1.32 0.25 11500 1160 1 1 1.32 0.25 11500 1160 1 1 1.32 1.41 1.41 1.42 1 1 1.41 1.41 1.41 1.42 1 1 1.41 1.42 1.42 1.42 1 1 1.42 1.41 1.42 1.42 1 <td>38 15,2 0.00 1000 101 105 21 0.05 1.06 0.05 105 105 1 0.05 0.05 0.05 107 0.01 1 0.05 0.05 0.05 0.05 0.01 0.0 156 0.05 0.05 0.03 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td> <td>338 132 0.00 1115 1105 128 128 0.00 172 100 138 139 0.00 172 100 148 0.00 100 9.0 100 148 0.00 100 2.34 0.25 1529 1160 148 0.00 100 2.34 0.25 1529 1160 148 0.00 100 2.34 0.25 1529 1160 149 0.00 100 2.34 0.25 1000 100 148 0.00 100 2.34 0.25 1160 149 0.00 100 2.34 0.25 1000 149 0.00 100 2.34 0.25 1000 149 0.00 100 2.34 0.25 1000 140 0.00 100 2.34 0.05 1000 141 0.00 100 100 100 100 142 0.00 100 0.05 100 100 142 0.00 100 100 0.05 100 145 0.00 0.00 100 100 0.05 10</td> <td>338 132 0.00 1100 1105 1105 1105 1200 126 0.00 117 010 010 010 1200 1200 0.00 172 010 010 010 1200 1000 0</td> <td>33 15.2 0.00 113 113 113 113 11 100 0.01 0.03 0.03 0.03 0.03 11 100 0.03 0.03 0.03 0.03 0.03 11 0.000 0.01 0.03 0.03 0.03 0.03 11 0.000 0.00 0.03 0.03 0.03 0.03 0.03 11 0.000 0.00 0.03 0.03 0.03 0.03 0.03 0.03 11 0.000 0.03 0.03 0.03 0.03 0.03 0.03 0.03 11 0.000 0.03</td> <td></td> <td>10</td> <td>10</td> <td></td>	38 15,2 0.00 1000 101 105 21 0.05 1.06 0.05 105 105 1 0.05 0.05 0.05 107 0.01 1 0.05 0.05 0.05 0.05 0.01 0.0 156 0.05 0.05 0.03 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	338 132 0.00 1115 1105 128 128 0.00 172 100 138 139 0.00 172 100 148 0.00 100 9.0 100 148 0.00 100 2.34 0.25 1529 1160 148 0.00 100 2.34 0.25 1529 1160 148 0.00 100 2.34 0.25 1529 1160 149 0.00 100 2.34 0.25 1000 100 148 0.00 100 2.34 0.25 1160 149 0.00 100 2.34 0.25 1000 149 0.00 100 2.34 0.25 1000 149 0.00 100 2.34 0.25 1000 140 0.00 100 2.34 0.05 1000 141 0.00 100 100 100 100 142 0.00 100 0.05 100 100 142 0.00 100 100 0.05 100 145 0.00 0.00 100 100 0.05 10	338 132 0.00 1100 1105 1105 1105 1200 126 0.00 117 010 010 010 1200 1200 0.00 172 010 010 010 1200 1000 0	33 15.2 0.00 113 113 113 113 11 100 0.01 0.03 0.03 0.03 0.03 11 100 0.03 0.03 0.03 0.03 0.03 11 0.000 0.01 0.03 0.03 0.03 0.03 11 0.000 0.00 0.03 0.03 0.03 0.03 0.03 11 0.000 0.00 0.03 0.03 0.03 0.03 0.03 0.03 11 0.000 0.03 0.03 0.03 0.03 0.03 0.03 0.03 11 0.000 0.03											10	10	
0.03 1.05 0.03 0.03 0.03 11100 0.01 0.03 9.0 0.03 0.03 11100 0.01 0.01 0.01 0.01 0.01 0.01 11500 0.39 0.01 0.01 0.01 0.01 0.01 0.01 11500 0.39 0.02 0.02 0.02 1.020 0.01 0.02 11500 0.01 0.02 0.02 0.02 1.020 0.02 1.020 0.02 11500 0.02 0.02 0.02 0.02 1.020 0.02 1.020 0.02 1.020 0.02 1.020 0.02 1.020 0.02 1.020 0.02 1.020 0.02 0.	2 0 05 12 1 100 0 00 1 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 0.03 1.06 0.01 0.01 1100 100 9.03 9.03 9.03 100 0.01 1100 100 0.03 9.03 100 0.03 100 100 0.01 1100 100 2.34 0.02 100 <	22 0.05 1.06 0.01 0	22 108 1.05 0.00 0.01 0.01 00 150 3.9 0.00 0.01 0.01 01 150 3.9 0.00 0.01 0.01 01 150 2.34 0.2 1.20 0.01 01 150 2.34 0.2 1.20 0.01 01 150 2.34 0.2 1.20 0.01 01 150 2.34 0.2 1.20 0.01 01 1000 101 0.2 1.20 0.00 0.01 02 10 0.0 1.0 0.0 1.0 0.0 1.0 02 10 0.0 1.0 0.0 1.0 0.0 1.0 0.0 03 10 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 04 10 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 </td <td>22 108 105 001</td> <td>8</td> <td>80</td> <td>15,42 0</td> <td>07</td> <td></td> <td></td> <td>1000.000</td> <td>10.02</td> <td>1,08</td> <td>000</td> <td>11.13</td> <td>11,06</td> <td></td>	22 108 105 001	8	80	15,42 0	07			1000.000	10.02	1,08	000	11.13	11,06	
148 910 001 001 001 1150 336 10000 1010 2.44 0.25 1329 1150 R 0.061695 R 0.061695 R 0.050005 1150 R 0.0750005 R 0.051005 R 0.051005 R 0.0750005 R 0.051005 R 0.051005 R 0.07000 2.04 0.25 112001 1160 R 0.07000 2.04 0.05 1100 1160 R 0.07000 2.04 0.05 1100 1160 R 0.07000 10.00 10.00 10.00 11000 1160 R 0.07000 10.00 10.00 10.00 11000 11600 R 0.07000 10.00 10.00 10.00 11000 11600 R 0.07000 10.00 10.00 10.00 10.00 11000 R 0.07000 10.00 10.00 10.00 10.00 11000 R 0.07000 10.00 10.00 10.00 10.00 10.00 R 0.07000 10.00 10.00 10.00 10.00 <td< td=""><td>0 1148 11480 336 10000 1000 1000 1000 1000 1000 1120 10000 1120 10000 1120 1000 1120 1000 1120 1000 1120 1000 1</td><td>1480 1550 1600 1550 1560 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1160</td><td>14.80 39.0 1000 911 910 910 911</td><td>14.80 910 10.70 10.70 115.90 338 0.05651639 10.70 115.00 2.34 0.25 13.29 11.60 115.00 2.34 0.25 13.29 11.60 115.00 2.34 0.25 13.29 11.60 115.00 2.34 0.25 13.29 11.60 115.00 115.00 11.50 12.90 11.60 115.00 115.00 11.50 12.90 11.60 115.00 115.00 11.60 11.60 11.60 115.00 115.00 11.60 11.60 11.60 115.00 111.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60</td><td>14.80 1000 1010 2.31 0.05 9.0 0.010 115.0 369 1000 1010 2.31 0.25 8 056005 1160 115.0 369 1000 1010 2.31 0.25 7 000 010 115.0 369 1000 1010 2.31 0.25 1000 1160</td><td>43</td><td>22</td><td>0.35</td><td>25</td><td></td><td></td><td></td><td>0.51</td><td>0,68</td><td>0.08</td><td>127</td><td>0.31</td><td></td></td<>	0 1148 11480 336 10000 1000 1000 1000 1000 1000 1120 10000 1120 10000 1120 1000 1120 1000 1120 1000 1120 1000 1	1480 1550 1600 1550 1560 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1160	14.80 39.0 1000 911 910 910 911	14.80 910 10.70 10.70 115.90 338 0.05651639 10.70 115.00 2.34 0.25 13.29 11.60 115.00 2.34 0.25 13.29 11.60 115.00 2.34 0.25 13.29 11.60 115.00 2.34 0.25 13.29 11.60 115.00 115.00 11.50 12.90 11.60 115.00 115.00 11.50 12.90 11.60 115.00 115.00 11.60 11.60 11.60 115.00 115.00 11.60 11.60 11.60 115.00 111.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60 11.60 11.60 11.60 115.00 11.60	14.80 1000 1010 2.31 0.05 9.0 0.010 115.0 369 1000 1010 2.31 0.25 8 056005 1160 115.0 369 1000 1010 2.31 0.25 7 000 010 115.0 369 1000 1010 2.31 0.25 1000 1160	43	22	0.35	25				0.51	0,68	0.08	127	0.31	
1580 338 10.00 11.00 2.14 0.05 13.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	0 1500 330 1000 1150 1324 10.00 R 0.050059 A m = m2 R 0.01000518 A m = m2 R 0.0100518 A	00 1500 330 1100 1110 234 0.02 1100 1100 234 110	00 1500 338 10.000 15.0 10.00 2.4 15.0 11.0 12.9 11.6 0 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9	00 1550 389 R 00651990 R 00651990 R 00651990 R 0055006 R 005500 R 0055006 R 0055006 R 0055006 R 0055006 R 0055006 R 0055006 R 005500 R 0055000 R 0055000 R 0055000000 R 0055000000000000000000000000000000000	00 1560 338 10000 1000 1000 1			14.80				1000.00	9.10			9,10	10,70	
R 066169 R 0750066 R 0750066 R 0750066 R 0710465 FO m1 = m2 Critical rate 2 01 10453 FO m1 = m2 Critical rate 2 01 10453 FO m1 = m2 R e cantol relation esten 5% beneficies	R 000000 R 0100000 R 0100000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 010000000 R 010000000 R 010000000 R 010000000 R 01000000 R 010000000 R 010000000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 01000000 R 0100000 R 010000 R 010000 R 010000 R 010000 R 010000 R 010000 R 010000 R 010000 R 0100000 R 010000 R 01000 R 01000 R 01000 R 010000 R 010000 R 01000 R 01000 R 010000 R 010000 R 01000 R 0100000 R 01000 R 010000 R 0100000 R 010000 R 010000 R 010000 R 0100000 R 0100000 R 0100000 R 0100000000 R 010000000 R 01000000 R 01000000 R 01000000000000 R 0100000000000000000000000000000000000	R 0100006 R 0100006 R 0100068 H0 m1 = m2 MINHORTERS ND m1 = m2 R 01000068 H0 m1 = m2 R 01000068 H0 m1 = m2 R 0100068 H0 m1 = m2 R 010000068 H0 m1 = m2 R 0100068 H0 m1 = m2 R 0100068 H0 m1 =	R 0,000109 R 0,000069 R 0,000006 R 0,0000068 H0 mt = m2 11661 (114901 0,0001148 H2 2010 to see 5% hereorser We cannot excit the unity potess 100 100 100 100 100 100 100 1	R 066169 R 0730006 R 0730006 R 0730006 R 0.020006 R 0.02000 R 0.0200 R 0.0	R 0.066169 R 0.00006 R 0.00006 R 0.00006 R 0.00006 R 0.0000 R 0.00000 R 0.00000 R 0.00000 R 0.00000 R 0.00	150	8	1560	8			1000.00	10.70	234	029	13.29	11.60	
Treat Null-Hiotityses Ho m 1 = m2 Treat 0.176031 Bigges of freexin 10 Concalitate 2.011 hos seed 5% beend 59 Concalitate 2.011 hos seed 5% beend 59	A MIHAOTHSK HO MI = m2 T Test 0174991 CODAIN 10 State 5 Meeding Cotatione 2 101 Moster 5 Meeding Me cannot elect the numportess	441-Hudores +0 mt = m2 Trest 0.12801 0.0000 0.000	Numericanses Numericanses Autri- of 11000055 0.11000055 0.11 m i = 12 Autri- of 11000005 0.110000 0.110000 0.11 m i = 12 Autri- of 11000005 0.110000 0.110000 0.110000 0.110000 Autri- of 11000000 0.1100000 0.11000000000 0.11000000000 0.11	MultiHoortess MultiPostess	Image: Section of the section of th											α μ	0.8661989 0.7503006	
Contrast values of theory of the second seco	of 141	egree of freeout concate terms and the concate terms and the conc		Image: Second	Contract the contract of the contract o											TTet	Will Hipothesis H0 m1 = n 0.1720011	12
Critical trade 2.101 Ino see: 5% earlot sg	20141			 	E 200 Into seed. 5% beneficing E 200 Into seed. 5% beneficing E 200 Into seed. 5% beneficing E 4 E 4 E 200 Into seed. 5% beneficing											decrees of freedom	18	
				Me cannot eject tre full hjortess												critical tvalue	2.101 two sided. 5%	level of signific
																8	Ve cannot reject the nullin	pothess
				Lover Liber	Litter Litter User													
				Libertish gook gook	Libert 200 Libert													
				Lover Lover Lover Lover	Liber 261 Liber 2004 Liber 261 Liber 2004													
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1													
				6 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 1 1 1 1 1 1 1 1 1 1 1 1 1		_											
				Lover Lover Lover Lover Lover Joseph and Lover L	Liber Liber Liber Liber Liber Sales Sale	Significance.												
				NOTICE INTERNATION AND A REPORT OF	AN 12024791 2010 2010 111 15200205 44702012 12470506			Lowe	r Upper									
		Lover Upper	Lover Upper		\$100.127 127.127.127.127.127.127.127.127.127.127.	10mEr	17 N N	per95% 30,0%	20,0%									

APPENDIX C: TEST OF EQUATION FPC1 ON FLOURS MADE OF WHEAT AND GLUTEN ONLY

APPENDIX D: TEST OF EQUATION FPC1 ON FLOURS MADE OF WHEAT AND ADDITIVES

1. Data

													,0%	4321	4116	
													Upper 90,	3, 13562,	1,00096	
													Lower 90,0%	-0,125653128	0,709620534	
													Upper 95%	3,458641468	1,029820592	
								Significance F	1,53063E-13				Lo wer 95%	-0,448670275	0,680764059	
								F	96,61608784				P-value	0,128269637	1, 53063E-13	
								MS	2,840874443	0,029403741			t Stat	1,545112835	9,829348292	
								SS	2,840874443	1,558398284	4,399272727	Standard	Error	0,974029574	0,087014144	
	atistics	0,803591949	0,64576002	0,639076247	0,171475191	55		df	1	53	54		Coefficients	1,504985596	0,855292325	
SUMMARY OUTPUT	Regression Stu	Multiple R	R Square	Adjusted R Square	Standard Error	Observations	ANOVA		Regression	Residual	Total			Intercept	Predicted FPCFLR	

2. Regression Analysis

APPENDIX E: TEST OF EQUATION LNR1 ON FLOURS MADE OF WHEAT ONLY

INCERPICENT VROALES DEPOCENT VROALE OUTPUT OUTPUT OUTPUT OUTPUT	r range Location	Uke LNRee XLNRe XLNR. LNR LNR LNRed	315 16.44 15.28 0.55 15.26 15.44	371 1425 1528 055 1523 1425	32 145 142 142 142	269 1467 1351 063 14.14 1467	357 14.74 13.08 101 14.09 14.74	366 1442 1280 127 14.05 1442	357 1474 1251 152 14.05 14.74	266 1348 1209 190 1598 1348	204 1485 1380 063 14.43 14.85	6	359.56 14.68 13.52 0.90 14.51 14.68	2081 078 114 058 0.76 0.78	315.00 13.48 12.09 13.48 13.48 13.48		X 026206	HL 0720300	Nul Hippthess H0 mt = m2	1 TISS 0.47.0824	orgeneration record in the control of the of semicance	We canor read the null hippiness												
00																	10005000	20010020	NulHipotes	04708224	212 7	We cannot re												
		redicted VR	15.23	229	14 22	12.14	14,00	14,06	14,00	13.90	14,42	0	18.51	9/0	52 F	ľ	x a	¥		T 165	official trajue													
ß		Wrot) P	0.65	1920		063	101	127	152	199	063		060	050						ş	g.													
BUTVARAB		01) (W	1528	1528	1422	13.51	13.08	12.80	12.51	12.09	13,80		1362	134	12.09																			
NDEPEND		(W _{sw} /W ₁ ×LNR	10																															
	etecon oe	e e	1644	1425	1156	1467	1474	1442	1474	1348	14,85		1468	0.78	13.48																			
	nor Faltrg Lou	UL o	315	5	3	625	18	19	199	98	75		35956	20.81	31500																			
	0. 2	u																																
	Toal	Wrot	1000 00	1000.00	1000.00	1000.00	1000.00	1000,000	1000.000	1000.00	1000,00		1000.00		100.00																			
	Weght enzyme mix 2	W.c.	7112																															
	Weght enzyme mit 1	M.	ß																															
	Wept Aca asconc	M	-																															
	Weght	W.,	14																															
	F Liquefactio nNurther	No.	10.11	11.05		12 66	12 66	12.66	26	26	12.B		12 X	10	85																			
	C Faling Number	H.		34		10	10	10	10	12	10		392.22	150.09																				
	Weght. Tard wheat	W	20.00	20.02		50.00	80.08	100,001	120.00	150.00	50,00		72.22	45.22	AL 10																			
	F Liquefactio nNumber	R	200	16.09	14 22	11 22	14.22	11,22	11.22	14.22	14,53		14,67	0.81	14.22															ign (cance ?	030020			
	F Failing	EN.	202	12	22	372	372	22	22	372	33		360.11	2125	2300															14.	2.65700016			
	Megr. SoftWheat	M	0000	00.005	1 000.00	00.026	00.025	0006	880.00	850.00	00/05		21.25	52	8 62															MS.	132735099	0,49956365		
	testror		0	2	-	2	0	-4	ND.	¢	60	50		nation																13	132735099	道思言	 4,000,000	4.000 000
	Cate		18082010	3108/2010	24032011	24032011	24032011	24032011	2403/2011	24/03/2011	26052011	Observation	Aeate	Sandard D.										Ser.	0.52,63671	0,27513876	0.0758016	106290/0	05	6		-	10	
								42	10	13	18	0											Indino	macion Cra			Square	na	8					

APPENDIX F: TEST OF EQUATION LNR1 ON FLOURS MADE OF WHEAT AND ADDITIVES

1. Data

OUTPUT		UNR _{6.6}	153	14.89	1657	15.75	121	12.01	16.44	16.81	2 2 2	15.87	12.12	1542	14,25	1542	1500	1511	10.14	17.60	15.67	1613	15 15 15 15 15 15 15 15 15 15 15 15 15 1	195	1467	1442	1474	1402	1504	13.92	S 55	222	14.85	14.32	1461	67	1980	13.45	110	reasH0 m1 = m2
			8	133	155	502	165	82	283	503	2 22	159	651	123	583	282	183	0:0	*00	505	105	19	122	12	100	8	88	12	111	907	87	22	445	27	55	67 S	180	398	R 0.40596	NultHipot Test 1.167977
		Predicted LNR					-					-								-						-														F
		V _{hw} /W _{TOT}) LNR _{hw}	0.00	133		110	131	200	055	220	020			0,55	055	250 1950	020	2200	120	051	051				101	127	152		101	127	151	88	063	88	121	063	090	190		
NPUT		(M ₂ ,/M ₇₀₇) (/ × LNR ₄₀ ×	1011	1340	1657	2571	2	1204	122	1528	1575	1657	125	1528	1528	1528	1465	1463	1251	252	31	18	1521	122	1351	1260	1251	1423	1351	12.80	1251	12	13.80	1375	122	35.71	441	1205		
	Latercon Uniter	LNR	88 N 92 V	18	50 S	8 10	18 I 12 I	a t g y	4.6	16 1 20 8	8 19	la gr	2 F 4	4 4	20 S	2 42 8 44	89	\$2.4 12.4	2 K	198	10 P	19	12 H 23 H	2 18 2 22	2 2	4	2, 19 2, 19	8	4) 1 2 8	13.92	18 18 2 2	24 2 24 2	18	12 12 16 12	5 2 2	â	180	12 45 15 45 15 45		
	Four Failing Number	FLN	95	353	312	3.57	200	8	315	202	83	100	332	339	371	800	350	5	9, 92	5	333	1	8) 2) 2)	8	359	286	367	378	310	361	92 92 92	692	12	690	185	on ser	02.12	29100		
	351 8601	Vror	1 000.00	1 000 00	1 000,00	1000	1 000.00	1 0000	1 000 00	1 000,00	1 00 00	1 000.00	1 000 00	1 000 00	1 000 00	1 000 00	1 000.00	1 000.00	1 0000	1 000.00	1 000.00	1 000.00	1 000.00	1 000 00	1 000.00	1 000.00	1 000.00	1 000 00	1 000 00	1 000.00	1 000 00	1 000,00	1 000.00	1 000 00	1 000 00	1000	800	1000.00		
	Vege 2 vege	Nee V	500	000						1000	000	0.01	5 5	000														0.01	500	0.01	500					.000	500	0.01		
	Vept -	Near			8	5 8	81	88							244	58	900	88	88	50	88	88	900									900		900	88	000	000	900		
	Wepht Add acorbic	W	800	88	81	3.8	8	3.6	1	33	38	80	88	8		00	30	88	500	00	330	30	330	5				80	880	200	330	3300		200	33	ω. C	88	0.0		
	Megric Streen	Wes											399.5					1,60	05.7	2.39	3.19	3.96	7 01									827		3.98	239	106	173	191		
	Cudedio Number	LNR.	1100	1105		1105	1105	1105	1105	1105	1105			11.05	1105	1105	1105	1105	11,00	10.26	10.26				1266	1266	1266		1266	12.66	1266	1266	1266	1266	1266	1121	039	1026 1266		
	CF SING Number	FLN	8 8	3 23		<u>8</u> 5	1 2 1 2 1	574	1	<u>第</u> 1	8 8			84	29 5	8.8	182	88	3 10	123	83				Q Q	4	ġġ		\$ \$	4	4 ¢	¢ (4	44	144	57 638	102.88	205.00		
	Weght had wheet	When	8 8 P 8	119.99		2.8	8.91	202	888	81	8.88			30.00	88	2008	30,00	99.9	38	8 9	202				88	100.001	188		88	8	8.8	88 99 9	8008	8.8	98	20	15.04	150,00		
	Loudsold n Number	LIR.	1251 2251	1523	1657	1651	1991	1000	1609	16.09	16.57	16.57	16.51	16.09	1609	1609	15.42	\$1.5 \$1.5	14.26	15.35	1535	15.27	15.27	1422	1.22	1422	1422	1422	1422	1422	1422	211	1453	14.53	1439	2121	0.85	14.22		
	PT STO	FUN	33	t.B.	322	375	B	3 5	12	81	35	32	30	8	22	33	185	88	Ro Inte	3	3.5	88	39	(E	66	16	E E	5	55	372	55	89	12	RF	l le le	a. 12	12.22	312.00		
	Weght Soft Wheat	Www	25,616	52,923	26,086	55 98 S	06.619	1999	880.00	8.99.6	10.000	86.66	05 965	16.96	20000	56.66	16.8-6	80.990	10000	90.63	898	66.985	26,865	1000.000	20065	00,005	00000	56 666	8886	26,660	8880	19.79	00 056	946.22	89.58	12 20	192.98	1000,000		
	Testnor.			1 (5)		4 10		13 10	- 14	0.1		ear	., .,	-			-	cre		-	e) •	- 14			C4 (*)		0.0	-	0 0	10	= 11			-9 67		μ	LOCEVE			
			89	122	81	100	8	33	8	81	28	8	28	8	88	28	8	88	15	80	83	10	100	5	55	10	E 6	E	55	100	5.5	195	5	100	199	are	00	6.5		

MARY OUTPUT									
Regression St	a tistics								
le R	0,637157201								
re	0,405969298								
ed R Square	0,393330347								
ard Error	0,663873913								
vations	49								
A									
	df	SS	MS	F	Significance F				
ssion	1	14,15641756	14,15641756	32,12048966	8,5446E-07				
lal	47	20,71424292	0,440728573						
	48	34,87066048							
		Standard							
	Co efficien ts	Error	t Stat	P-value	Lo wer 95%	Upper 95%	Lower 90,0%	Upper 90, 0%	
ept	5,4524267	1,729352498	3, 152871786	0,002815112	1,973418274	8,931435126	2,550699931	8,354153469	
ted LNR	0,649469325	0,1145955	5,667494125	8, 5446E-07	0,418932918	0,880005732	0,457186473	0,841752177	

2. Regression Analysis

APPENDIX G: TEST OF EQUATION LNR2

1. Data

												/00 001	upper 30,0%	3,740825975	8,158017624	23,4696785	
												/00 00	LUWEI JU,U%	-0,198557011	-62,88838624	-330,4791521	
													0/06 Jaddo	4,137257167	15,30761712	59,08854507	
								Significance F	0,28627398			010	LUWEI 33%	-0,594988203	-70,03798573	-366,0980187	
								F 5	1,295289092			 C	r-vulue	0,137721334	0,201668415	0,151762843	
								MS	0,681231382	0,525929992		+ C+++	ו זומו	1,518106907	-1,300574696	-1,464402031	
								SS	1,362462764	18,93347972	20,29594248	 Standard		1,166673093	21,04084017	104,8241764	
	atistics	0,259094211	0,06712981	0,015303688	0,725210309	39		df	2	36	38	Conficients	rue]]ILIETILS	1,771134482	-27,36518431	-153,5047368	
SUMMARY OUTPUT	Regression Stu	Multiple R	R Square	Adjusted R Square	Standard Error	Observations	ANOVA		Regression	Residual	Total			Intercept	Wen1	Wen2	

2. Regression Analysis

APPENDIX H: TEST OF EQUATION ALW1 ON FLOURS MADE OF WHEAT

ONLY

Image: black													NDEPENDENT V	RIABLES		ā	EPENDENT VA	ARIABLE
Image: bit is the set of the se													NPUT			0	UTPUT	
	TestNbr.	口能	Testnbr	Weght Soft Wheat	F Alkeo W	Weght hard wheat	C Aveo W	Weight	Weght Acd ascorbic	Weght enzyme mk 1	Weight enzyme mix2	Total Weght				ũ >	our Aveo	
0 00000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000				W	ALW	W	ALW	Waa	Wase	W	Wend	Wtor	(W _{sw} / W _{TOT}) x ALW _{bw}	(Whw/WTOT X ALWhw) Predicted ALWFLR	4	LWap	
0 3100001 2 0000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 20 000 2	0	18/08/2010	0	2 95000	212	50.00	633	£	1		4	1 000 00	20.		22 226		228	
6 200011 1 1000 224 200 224 200 224 226 <td>\$2</td> <td>31/08/2010</td> <td>0</td> <td>2 950,00</td> <td>212</td> <td>50,00</td> <td>529</td> <td></td> <td></td> <td></td> <td></td> <td>1 000,000</td> <td>8</td> <td></td> <td>22 22</td> <td></td> <td>225</td> <td></td>	\$2	31/08/2010	0	2 950,00	212	50,00	529					1 000,000	8		22 22		225	
6 200011 2 0000 21 0000 21 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 200 22 2	8	24/03/201		1 1 000.00	22							1 000,000	2	-	22		222	
4 200011 5 0000 25 0000 25 0000 25 2000 25	9	24/03/201	-	2 950,00	222	50,00	415					1 000,000	211		235 235		230	
6 200011 6 000 25 000 45 20 <th< td=""><td>4</td><td>24/03/201</td><td>-</td><td>3 920,00</td><td>22</td><td>80,00</td><td>415</td><td></td><td></td><td></td><td></td><td>1 000,000</td><td>201</td><td></td><td>33 240</td><td></td><td>235</td><td></td></th<>	4	24/03/201	-	3 920,00	22	80,00	415					1 000,000	201		33 240		235	
6 200011 5 0000 23 230	4	24/03/201	-	4 900,00	22	100,00	415					1 000/00	202		12 244		243	
# 2002011 5 6000 25 5000 25 5000 25 200201 2000 25 200201 2000 </td <td>4</td> <td>24/03/201</td> <td>-</td> <td>5 880,00</td> <td>22</td> <td>120,00</td> <td>415</td> <td></td> <td></td> <td></td> <td></td> <td>1 000,000</td> <td>190</td> <td></td> <td>50 246</td> <td>-</td> <td>250</td> <td></td>	4	24/03/201	-	5 880,00	22	120,00	415					1 000,000	190		50 246	-	250	
6 00001 3 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 0000 41 </td <td>4</td> <td>24/03/201</td> <td>-</td> <td>6 850,00</td> <td>22</td> <td>150.00</td> <td>415</td> <td></td> <td></td> <td></td> <td></td> <td>1 000,000</td> <td>161</td> <td></td> <td>254 254</td> <td></td> <td>256</td> <td></td>	4	24/03/201	-	6 850,00	22	150.00	415					1 000,000	161		254 254		256	
9 Openantial Sem	8	26/05/201	-	3 950,00	224	50,00	415					1 000,000	212		21 234		232	
Memory Immunity S200 S201 S201 S202	o	Observatio	SU												G	0	0	
Immunity 6423 523 533 5		Average		927.78	222.00	72.22	400,89					1000,000	206,90	31,	57 237,47		236,22	
Immune 5000 2010 3000 2010 <		Standard C	De vation	45,22	5,68	45,22	162,75						10,01	18,	14 9,52		10,97	
Maximum 10000 25.00 55.00 <		Mnimum		850,00	212,00							1000,00	191.25		225,00	-	225,00	
Mithologie Common control Mithologie Common control Mithologie Common control Mithologie		Maemum		1000,00	225,00	150,00	559,00					1000,000	225.00	62,	25 253,50		256,00	
Minicipal Minicipal Minicipal Minicipal Minicipal Minicipal SMMARYOUTH Minicipal																		
Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta SUMMAY OUTUT Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta SUMMAY OUTUT Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta SUMMAY OUTUT Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta Mitholices Monta															L	080/00610 3		
Mit Hydrores H0 mt = m2 Mit Hydrores H0 mt = m2 Summari OUTUF Emmarine Emmarin Emmarine Emmarin															č	0,964624		
The field The field <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Nill Hundhese</td><td>CH0-m1=m2</td><td></td></t<>																Nill Hundhese	CH0-m1=m2	
American Interest American Interest Sequences of reaction Seq															116	1 0.2580967	2117.111 ALS	
Methodistic 2000 2010															degrees of freedom	16		
Summary OrTifut Image: second se															critical tvalue	2,12		
MMMINDITI MMMINDITI <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>We cannot rej</td><td>ect the null hypo</td><td>othesis</td></t<>																We cannot rej	ect the null hypo	othesis
Regression Strates Constant Constant <td>SUMMARY OUTPUT</td> <td></td>	SUMMARY OUTPUT																	
Mutuber Restance Mutuber Constant <	Constant and a second	a later																
Multice R Oder-SSL Autoria R Oder-SSL	regression and	SUSCIO-	1															
Notate Nature Matter Stretefere Useration (1992) Useration (1992) <thuseration (1992) Useration (1992) <thuser< td=""><td>MutipleR</td><td>0.9667595</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thuser<></thuseration 	MutipleR	0.9667595	2															
Malacted Source 0.032684 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0.0126844 0	Risquare	0,95465239	10															
Maxmemory Lithology Lithology <thlithology< th=""> Lithology <thlithology< th=""> Lithology <thlithology< th=""> <thlithology< th=""> <thlit< td=""><td>Adjusted R Square</td><td>6-97576-0</td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlit<></thlithology<></thlithology<></thlithology<></thlithology<>	Adjusted R Square	6-97576-0	9															
Observationsi 9 ANOVA af s Spervationsi af s Spervationsi af s	Standard Error	101100657																
ANOVA of S MS F Sepritorie I	Observations		71															
af SS A6 F Spartemer F Regression 1 300,55214 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,520 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,521 300,520,521 300,520,521 300,520	ANOVA																	
Regrution 1 000.5621.4 000.7620.2 213-066 05 1 <th1< th=""> 1 1</th1<>		of	SS	345	ч,	Sgnificance F												
Retribute 7 8.33936166 3.3336166 3.33361666 3.33361666 3.3	Regression		1 900,56212	4 900,552124	1 100,072892	213436-05												
Total 8 943355566 1 <th1< th=""> 1 1 <!--</td--><td>Residual</td><td>-</td><td>7 62,993431</td><td>6 8,99906166</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Residual	-	7 62,993431	6 8,99906166														
Storotret Exercise Exercise Exercise Lower Lower Lower Lower Lower Storotret Lower Lower <thlower< th=""> <thlower< th=""> Lower<!--</td--><td>Total</td><td></td><td>963,55559</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlower<></thlower<>	Total		963,55559	10														
Coefficients Enror 1 Start P-undue Lower 55% Upper Intercest -28.5660007 SLATUSS -0.0740796 0.31911006 -90.55% 90.0% Predicted ALVELS -1.1142751 0.11116677 1.0035639 2.37765148 -0.9024021 1.32534621																		
hrevest 2830007 24701284 -10774076 0.2021026 90.370707 24.2051606 78.55604 21.755601 Predicted ALWFLR 1.11427561 0.1113677 10005403 2.1342645 0.9502677 1.25550461 1.25550461		Chattiniante	Standard	, Cer	Punchage	1 mailer OC 40	I Imar 000	Lower	Upper en rec									
Predicted ALWER 1.11427951 0.11136577 1.00035639 2.13425 05 0.50005475 1.37756442 0.90024202 1.32530461	far sector	in socard	N 10 1010	10001	A 51011010	CT0707070	21 2021200	TO CACONE	110002110									
	Predicted ALWFLR	1.1142736:	1 0.1113867	6279 2000 CT	1 2.1343E-05	0.85088575	871994/ET	0.9032425	1.32530461									

APPENDIX I: TEST OF EQUATION ALW1 ON FLOURS MADE OF WHEAT AND ADDITIVES

1. Data

Wepht enzyme Total Pour Aveo Weght W	(Waw/Wrot) (Whw/Wrot) Predicted X41W	700,000 X ALVV _{hw} X ALVV _{hw} ALVVLK ALVV _{ER} ALVV _{ER} 200,000 131 45 226 225	000000 177 56 233 240 000000 173 67 240 242 242	000 203 45 23 240 240 240	00 183 56 239 245 00 179 56 239 240 270 28 226 240 240 270 28 226 240 240	21 22 22 22 22 22 22 22 22 22 22 22 22 2	201 23 229 2200 201 28 229 2200 40 20 28 229 220 40 20 28 229 220	193 28 21 22 203 220 203 220 203 220 200	203 202 202 203 203 203 203 205 205 205 205 205 205 205 205 205 205	201 28 229 23 201 28 29 23 301 28 29 225 301 30		201 221 220 240 240 240 240 240 240 240 240 240	21 30 251 255 255 255 255 255 255 255 255 255	30 251 250 30 250 257 257	202 205 205 205 205	202 209 209 209 209	21 225 227 227 220	42 240 243 243 243 243 243 243 243 243 243 243	22 24 24	21 24 23 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23	50 248 249 57 248 249 57 243 249	21 233 235 21 233 235	21 234 232 21 233 235 235 235	21 223 241 21 229 241 41 238 239 241	17 218 230 272 278 230 273 273	24 22 34 224 22 51 243 223 243 224 223	27 226 243 34 238 250	55.45 55.55 55.55 25.45 230,64 234,50 16,25 14,47 14,79	67.07 253.50 206.00 253.50 260.00	R 0,8331306 Ra 0,8707327	T Test 1,3525064 TO m1 = 0.00 0627665 offeetom 1,3525064 0.00 06527655 offeetom 2,12
Weght enzyme Total mic2 Weght	(Wew/WTor) (Whw/WTor) Predicted x ALW. x ALW. ALWELR	VTOT X ALVV _{hw} X ALVV _{hw} ALVVFLK 1000,00 181 45 226	00000 177 56 233 00000 173 56 233	0000 203 203 203 203 203 203 203 203 203	00 183 56 239 00 179 67 239 00 240 240 240	23 239 26 23 239 28 229 28 229	201 231 232 201 233 232 233 233 233 233 233 233 233 233	193 28 203 221 203 223	203 202 202 202 700 700 700 700 700	201 20 201 20 201 20 201 20 202 20 20 20 20 20 20 20 20 20 20 20 20 20 2		2019 228 2297 2029 228 2297 2020 228 2297	252 252 202 12	30 251 30 251	202 201	202 200	21 225	2 2 2	3 22 2 2	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F 88	21 233	21 234	21 233 21 229 41 239	218	24 24 25 243 243	27 236 34 238	25.45 230.54 18.28 14.47	87.07 283,50	R 0,5331308 R ² 0,5707327	Null Hypohe T Test 1,332964 degrees offeedom 108 offoalt value 212
Weght enzyme Total mic2 Weight	(W _{sw} / Wrot) (W _{hw} / Wrot) Predicted x ALW x ALW ALWFLR	VTOT X ALVV _{hw} X ALVV _{hw} ALVVLK 1 200,00 X ALVV _{hw} 45 Z26	00000 1177 56 233 00000 117 56 233	0000 203 45 203 0000 187 45 203	00 183 06 239 00 179 067 240 240 207 239 240 240	201 28 28 28 201 28	22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	193 258 221 203 223	223	21 23 23 21 28 229 22 28 229 28 29	201 28 229 201 28 229	127 82 602 607 607 607 607 607 607 607 607 607 607	21 23 23 23	12 R	202	202	21	2 Q I	22 24 24	21 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	100	21 23	21 24 23 23	21 233	218	34 224 35 224 51 224	27 236 34 238	25,45 230,54 16,28 230,54	200,38 87,07 253,50	αä	T Test degrees of feedom onticoti tuste
Weght Veght enzyme Tolel mic2 Weght	(Wsw/WToT) (Whw/WToT) F x ALW. x ALW. A	VTOT X ALVV hvv X ALVV hvv 45 1 000,00 181 45	000000 177 56	203 203 45	00 00 00 00 00 00 00 00 00 00 00 00 00	23	1882	133 203 203 203 203 203 203 203 203 203 2	23	83 102 102 102 102 102 102 102 102 102 102	181	87 602 602 602 602 602 602 602 602 602 602	21 28 28	88			5	3 4 1	88	583	186	66	5.5	664	1: 6	182	27 34	25,45 15,28	10,10		-8
Weght enzyme mix2 Veight	(Wsw/WToT) (Wsw/WToT) (W	1 TOT X ALVV hw X / 181 181	00000	0000	0000	ົລົລ	តែតទ	8 A 1	888	តិតិត	āāi	881	3.8																		
Weght enzyme Total mix2 Weight	M-m	NTOT 1 000,00	00'000	0000	229								ri 11	ล็ลี	88	20	214	à 8	8 5 F	12.61	77 961 161	22	212 212	55 8 8 8	18	668	88	206,18	172,34		
Weght enzyme mix2 V	5		1.1.1	88	10001	1 000,000	1 000 00	1 000 00	00000	00000	000001	1 000,000	1 00 000	1 000,000	1 000,00	1 000,000	1 000,000	1 000,000	0000		1 00 00	1 000,000	1 00 00	1 00 00	00,000 1	000001	1 000,00	1000,00	1000,00		
>	N	Nen2 001	001				100	000	000	1000									.00	9999	100							000	0,01		
Weight enzyme mix 1	N	V en 1		90'0	90'0 90'0	00'0				A MA	88	800	88	800	800	90'0						90°0		8000	900	900	90'0	0,03	0,06		
Weight Add ascorbio	M	W aao	88	88	888 888	0,02	888	988 888	888	ding.	800	5 8 8	88	88	88	900			200	8888	588	88		888	88	555	880	880	0,08		
Weght gluten	M	M at							2,38 3,98			1,80	05°0	2,39	96'E	7,94						2,39	3.98	96°0 9730				0,83	7,94		
C Alveo W	AL W.	ALWhw 559	0.00	699	699 699	609	699 999 988	0 00 00	011	699 699	690 690	899 899	6690 6690	689 689			415	4 4	14	4 4 0 0 1	1 4 4	4 4 100	4 4	444	337	337 337	337	377,94	00'683		
Weght hardwheat	W.	W hw 79.99	865	864	99,99 119,99 50,00	50,00	80.05	20,00	W V2	50,03	888	49.00 49.00	49,80 50,00	40 40 40 80 40 80 80 80 80 80 80 80 80 80 80 80 80 80			50.00	100,00	150,00	50,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,0000 20,0000 20,0000 20,00000000	98'611 98'611	4 4 8 8	49.80	8 8 8 8	50.03	99,89 149,89	8.62	57.47	150,00		
T F AVMO VV	AI W.	ALW sw 197	- 65 E	88	288	212	10 10	888	888	122					222	202	aai	881		1881	22.2	ää	88	8 8 8 8	112	212	88	218,13	233,00		
Weight Soft Whea	M	1 919,92	20.08	889.6	6 869.9 4 879.9 8 989.9	1 949.9	0.4 ·	5 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 887.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	2000 2000 2000	n an	NOT CHARACTER	1080 I	10 81.00 80.00 80.00	1 999.9	1 999.9	2 960,0	4 900,00	0.030	- 00 00	1 879,94 1 879,94 1 879,94	1 87.0 87.0	4 960,0	1080		3 899.9	2 919,9 3 839,9	2.4 2.8	849,9 1000,00		
Testnbr.		5	22	22	222	55	225	221	2 2 5	2 2 2	2 2 1	221	22	55			==:		:			==		5 5 5				tons Deviation			
Date		22/08/20	22/08/20	17/08/20	17/08/20 17/08/20	18/08/20	18.08/20	26/08/20	260820	31/08/20	31/08/20	0201/10	15/12/20	15/12/20	31,01/20	01/02/20	24/03/20	2403/20	2403/20	2403/20	2403/20	26/05/20	26/05/20	28/06/20 06/06/20	17/09/20	17/09/20	22/09/20	Observat Average Standard	Minimum		

2. Regression Analysis

SUMMARY OUTPUT									
Regression S	tatistics								
Multiple R	0,93313057								
R Square	0,87073266								
Adjusted R Square	0,868293654								
Standard Error	5,366939993								
Observations	55								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	1	10283,13108	10283,13108	357,0030221	3,31971E-25				
Residual	53	1526,614379	28,80404489						
Total	54	11809,74545							
		Standard							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90,0%	Upper 90,0%	
Intercept	<i>Coefficients</i> 14,52045148	Standard Error 11,66545287	t Stat 1,24473963	<i>P-value</i> 0,218703532	<i>Lower 95%</i> -8,877483343	<i>Upper 95%</i> 37,91838631	<i>Lower 90,0%</i> -5,008872574	<i>Upper 90,0%</i> 34,04977554	
Intercept Predicted ALWFLR	<i>Coefficients</i> 14,52045148 0,953525494	Standard Error 11,66545287 0,050465707	<i>t Stat</i> 1,24473963 18,8945236	<i>P-value</i> 0,218703532 3,31971E-25	<i>Lower 95%</i> -8,877483343 0,852304107	<i>Upper 95%</i> 37,91838631 1,054746882	<i>Lower 90,0%</i> -5,008872574 0,869040034	<i>Upper 90,0%</i> 34,04977554 1,038010954	
Intercept Predicted ALWFLR	<i>Coefficients</i> 14,52045148 0,953525494	Standard Error 11,66545287 0,050465707	t Stat 1,24473963 18,8945236	<i>P-value</i> 0,218703532 3,31971E-25	<i>Lower 95%</i> -8,877483343 0,852304107	<i>Upper 95%</i> 37,91838631 1,054746882	<i>Lower 90,0%</i> -5,008872574 0,869040034	<i>Upper 90,0%</i> 34,04977554 1,038010954	

APPENDIX J: TEST OF EQUATION ALW2

1. Data

2. Regression Analysis

SUMMARY OUTPUT									
Regression S	tatistics								
Multiple R	0,384311734								
R Square	0,147695509								
Adjusted R Square	0,086816617								
Standard Error	4,943635564								
Observations	46								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	3	177,8749126	59,29163753	2,42605448	0,07889624				
Residual	42	1026,460369	24,43953259						
Total	45	1204,335281							
		Standard							
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90,0%	Upper 90,0%	
Intercept	-0,623622097	4,354141948	-0,143225027	0,886797422	-9,41063619	8,163391997	-7,947081413	6,69983722	
Wglt	0,49384076	0,432405153	1,142078806	0,259890635	-0,378788156	1,366469676	-0,233444106	1,221125626	
Wen1	110,3011424	77,70213402	1,419538135	0,163122125	-46,50811069	267,1103955	-20,39014514	240,9924299	
Wen2	272,3459866	398,1872629	0,683964586	0,497754127	-531,2284335	1075,920407	-397,3860192	942,0779924	

APPENDIX K: TEST OF EQUATION BVL1

1. Data

I VARIABLE																																																										
DEPENDEN	Beguette Vol./g		BWLFLR	08.01	576	8,01	12.51	61.11	8.0	12.11	86	25,0	8,6	2,000	86	52.02	E C	12,11	09'01	10.01	82,01	10/20	12.58	13,22	12,38	11,8	12.4	14,11	8.7	22	12,75	5,11	8,11	12,22	5.5	11/02	12.62	2 8 = :	1211	2011	25,01	8.5	12.61	12.04	51 : 26 2	8 12	12,98	13.08	22.11	12,14	87.11	13.01	12.24	13,23	2	10.11	121	13,45
			2	000	0.01						100	0.0	600	550	0.0	0.01								0.0											0.0	0.0	0.01	600	1010																	800	80	0,01
			Wen			88	88	80.0	88	8							80	8		81	8 8	88	8	800	81	88	8	81	88	88	80	88	8	8					8	8		8	88	80	88	88	8	80	87	88	8	8	8 8	88	3	8	8	80
			Went	2 00	8	80	1 9	2	8	2	4	10	89	40	10	5		5		8		40	10	2	8	8 5	4	2 :	1 2	1 1	4	2 2	4	4	2.2	. 4	A	4 3		A		2		4	2 9	2 5	2	z	3 1		t X	2	4 1	2 2		.8	8	0
			Wasc	800	00	000	00	00	00	00	00	00	000	3 6	000	00		0'0		00	00	00	00	0'0	00	000	00	00	300	200	00	000	00	00	000	00	0'0	000	200	00		00	00	00	88	00	00	00	000	200	0'0	00	00	00		00	8	0'0
			V _{at}											020	3,98													1,80	0 D.''	2.39	3,19	100		7,94					2.39	2,39		396 9 0 0	239		2,39	2.29			000	202						0,92	1,56	7,94
ES		(TOT NTOT)	LW hur V	1 06/92	67,07	12.14	1.05.92	67.07	8.1	88	8 12	22,25	27,96			81	8.8	8.12				88	38	87.02 75	3	\$ 3 3 3	25,25	27.80	5 8	8 8 9 8	28'92 79				37.02	33,25	41,50	8/8 8/9	RR	02.02	20,75	20.02	8.8	41,50	19,30		19,35	38,70		10,00	38,82	35,75	8 8	8 R 8		27,98	19.12 19.12	200
INDEPENDENT VARAE INPUT		(W _{sv} / W _{TOT}) (W	xBVL _{SW} x/	1910	7,73	10,08	206	8.87	9,10	17 B	126	1276	896	autro Anna	10.04	12.6	12.6	126	10,50	10,50	10,50	9 S	5	88	26/2	35.0	10,66	10,66	20105	156	86	11,07	11,07	10,98	11,88	10.93	69/01	10,45	1075	10,75	10,78	10.74	10.65	10,12	10,17	10.701	10,19	906	10,73	10,19	9,87	996	10,01	10,85		10,13	0,85	11,88
	Total Neight		Wron	1 00000	1 000,000	1 000 00	1 00000	1 000,000	1 000/00	00000	1 00000	1 000/00	1 000/00		1 000 00	1 000/00	1 00000	1 000,000	1 000,000	1 000/00	1 000,00	00000	1 000 00	1 000,00	1 000,00	000001	1 000,00	1 000/00	00000	1 00000	1 000,000	1 000 00	1 000,000	1 000,000	1 000/00	1 000,000	1 000/00	1 0000	1 00000	1 000,000	1 000/00	1 00 00	1 000,000	1 000,00	1 000/00	10000	1 000,000	1 000,000	1 000/00	1 000.00	1 000,000	1 000,000	0000	1 000,00	-	1000,000	00001	1000,000
	leght reyne		Ven2	100	00						100	00	1000	500	100	00								000											000	100	000	000	20																	8	000	000
	N B C		ent V			88	88	90'0	88	8							000	800		80	B	880	800	90'0	88	88	800	80	88	88	9000	880	800	800					900	800		200	80	9010	88	800	80	800	880	880	80	80	88	88	-	8	80	80'0
	N N N N		ac W	800	90'0	88	200	0.02	80	2010	100	000	88	38	80	80		0,02		80	80	200	100	0.02	80	8 60	500	800	5 8	58	50	88	500	500	88	100	100	88	500	800		200	800	50	800	000	500	100	800	50	100	80	8	88	5	88	800	0,08
			Wa											2.20	3.80													81	8.7	239	3.19	36	}	7,94					2.39	238		88	239		28	2.20	3		8.	RN						.260	3,5	7.95
	Weig W		W Nat	892	899	ana	88	609	692 H	B	5	692	899			88	B	88			-	Ba	1	699	82	8	699	88	B 8	88	88				416	46	416	415	415	415	415	415	416	415	387		138	387		102	337	337	100	337	ł	331	8	00,0
	at CAvec		ALW	8 8	8	g	3 8	8	8 8	88	38	8	8			81	8.8	88			2	R S	8 88	\$	8 :	8 8	8	81 8	8.8	3 88	8				8	18	8	8 8	8 88	18	8	88	3 88	8	8		8	8		8	8	8 :	8B 1	\$ \$	2	29	1	69 98
	Weght		When	28	119.	R	8	119.	8.	8.8	38	8	8			81	8.8	8			1	Ba	149	149.	149.	141 G41	8	\$	₽ ₽	3.4	49.				8	8	8	119.	6	4	8	4 4	4	8	4		8	8		8	R	8	- F	P 8	š	8	¥	149.
	E Baguette Vol /g		BVL _{5w}	6 K 6	K.9	20.01	20.02	10,05	0,1	100	20	6	0,01		20,01	K 1	R P O	10	20.5%	20,22	20.5	20,50	2.02	10.50	10,50	201	2.11	21		1 101	20.5	811	2710	11.0	11.8	1 11	11.8	28 2		12	21	24 2	17	212	1,02	2.02	10,72	10,73	10.7	10.01	10,77	10,77	3	34 34		10,72	00	11,00
	Weight Soft Wheat		Wsw	2 889.92	3 879,92	7 900.92 919.92	3 899.93	4 879.93	5 949,92	1 949/92	3 949.95	4 949.97	1 949.97	2 000,000	4 966.98	1 949.97	2 90000	4 949,92	1 1 000,000	2 999.92	3 99992	1 04043	2 849.93	3 849,92	4 849,93	10.000 B	1 949.91	2 948,39	- 0400.	2 947.63	3 945,88	1 999.90 566.90	1 9999.90	2 361,97	7 999.95 949.95	919,95	10 899,955	11 879,95 249,945	1 94783	2 947,63	3 960,000	4 946/22	1 947.83	2 899.91	1 947.63	07 100 C	1 949,91	2 899.91	3 966,90	1 949.91	2 919,91	3 896.91	1 849,92	3 8991	-	940,39	47,53	1000/000
	Test rb					0.0							0.1			0.1			0					0				0			6					-																				2	Pueston	
	di la come		- moson	2208/2010	2208/2010	17/08/2011	17/08/2010	17/08/2010	17/08/2011	1078081	1808/2010	1808/2010	28082010	290000000	26082010	31/08/2015	31082015	31092010	15/09/2010	1509201	1026061	10080001	18/09/2010	1026081	1009201	1008000	01/02/01/10	01/0201/20	AND CONTRACTOR	15/12/2010	15/12/2010	3101/201	01/02/2011	01/02/2011	2403/201	2403/201	24/03/201	2403/201	2905/2011	26/05/2011	2805/201	2805201	0808201	08/08/201	1026010	0000000	1026020	1026020	1026020	17/09/2011	10260/11	102/60/21	102/09/22	1026022	-	Observato	Standard L	Maximum
	A. M			- 14	0	4 4	0	-		л Ç	2 1	12	2	t 4	2.65	17	10 g	202	21	22	53	28	27	28	59	8:	ŝ	33	4 H	88	37	8 g	9	41	4 4 9	2	51	22 22	3 2	12	8	51 8.0	0.00	00	10	83	64	8	8 8	10	50	2	1	12	2	8		

2. Regression Analysis

SUMMARY OUTPUT									
Regression State	istics								
Multiple R	0,809258544								
R Square	0,654899391								
Adjusted R Square	0,619804414								
Standard Error	0,743173194								
Observations	66								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	6	61,83878472	10,30646412	18,66077268	4,99257E-12				
Residual	59	32,5860774	0,552306397						
Total	65	94,42486212		-					
		Standard							
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90,0%	Upper 90,0%	
Intercept	-1,02368998	1,598446392	-0,640428096	0,524373888	-4,222173795	2,174793836	-3,694842608	1,647462649	
(Wsw / WTOT) x BVLsw	1,048220541	0,152271909	6,883873391	4,25263E-09	0,743525158	1,352915924	0,793760015	1,302681066	
(Whw / WTOT) x ALWhw	0,029520273	0,005339277	5,528889854	7,70595E-07	0,018836405	0,040204141	0,020597845	0,038442701	
Wglt	0,015928725	0,065370127	0,243669784	0,808331866	-0,114876596	0,146734046	-0,093310839	0,125168289	
Waac	6,930560558	5,513647052	1,25698299	0,213713261	-4,102221616	17,96334273	-2,283256614	16,14437773	
Wen1	23,02090359	5,998494894	3,837779976	0,000305001	11,01794314	35,02386405	12,99686057	33,04494662	
Wen2	15,09429886	31,34194498	0,481600579	0,63187128	-47,62078766	77,80938539	-37,28100703	67,46960475	
APPENDIX L: TEST OF EQUATION BVL2

1. Data

DEPENDENT WARABLE OUTRUT	Baguerre Ver/s		BMrug	10.30	85	10.08	12.61	11,19 9.94	12.11	9.50	908 06 0	02.6	9,52	266	10.52	10.06	10.60	10.61	10.92	12.56	13.32	9077L	12.07	11.11	12.35	11.04	12.75	12.32	11.88	12.45	11.62	12.62	1911	11.57	11.82	11.50	11.42	1264	12.95	12.1	13.05	11.73	12.14	11,89	12.24	13.33 13.45	2	11.01	0.92 13.45	
			en2 D.M	500	6.0						500	60	0.0	500	0.0						0.0									500	500	50	50															880	0.0	1
			ent W			880	0.06	880	800							900	3	900	88	800	900	990	800	88	800	88	800	800	8 80					0.06	900		0.0	88	88	800	88	88	880	800	88	900	}	100 000	0.06	
			M Date	80	800	33	002	000	189		38	000	000	100	000	0.00	-	800	8	18	000	18	001	5	100	ţġ	100	100	3 3	100	13	004	19	505	ŧ		100	i đ	t 88	900	ē ē	100	13	100	ġ	#00	5	88	900	1
			Var W										11.2	-15,87										2.55	-15,87	673	-10.17	-15,87	-62.98					67.6	212	-15,87	10,01-) j	229	£15		-	2					180° 178°	-62.98	
			/at -1										000	398										180	336	239	919	336	194					239	539	3.96	200		239	239		000	673					092 158	162	1
		(W hw/ W TOT)	ALW _{NV} V	R +215-	-450.8	2008.	-3124.31	10.664+-	-761.00	-181.2	-781.15	9192r			121.15	C1.167-	0010.0		10,4010-	R. 628-	22 62 P.	90'600L-	20.620L-	22.07.0	3,77,8 8,77,7	-020,00	21,169-			4 44	10011	- 1722.07	-3214 B	4254	100	# 124	1224	S 124-	912.8	1	081475- 0817641-		-283.87	R 924	40000-	728.17 74.5511-	1. (mail 1.	-1370.10 2057.45	00.6204-	
STRA		(When / WTOT) -(X ALW hu X	8,8	67.07	4.72	06/30	00.00	1.95	2138	8 8 F	26.12			8 5 8 5	81	20		8.8	3 23	10.00	3 83	23 F	27.90	19 29	2 22 9 9	8.8			Pa. 144	2 2 2	41.50	8.8	8.8 1	228	18	10.11	214	8.6		9 P. 99		76.05	8 F 8 F	5 82 83 82 83	88	1.100	24.90 24.90	80.04	
NDEPBNDENT VIK NPUT		$(W_{\rm Sw}/W_{\rm TOT})$	X BNLav	5.2	12.1	976	20'6	10.0	12.6	17.6	5 0	86	10.08	10.01	Et o	D F	10.50	05.01 05.01	96	8 8	8	2 X 0	99 ș	10,08	10.02 8 9 9	R Bi	86	11.00	11.07	11 28	10.80	10.08	10,10	10.75	10.10 10.10	10.74	10.14	10.12	10.17	R.01	8.6 8	10,75	10.15	10.0	10.05	10.8		10,15 0.85	7.75	
	Toal		WTOT	1 000,00	1000,00	100000	1 000/00	1 000 00	100000	1000,00	100000	1 000 00	1 000 00	100000	100000	100000	100000	100000	1 000 00	100000	1 000.00	100000	1 000 00	100000	100000	100000	100000	1 000,00	100000	100000	100000	1000100	100000	1 00000	100000	1000.00	100000	100000	100000	100000	100000	100000	1 00000	1000,00	100000	100000	And in case of	1000.00	100000	-
	Weght enzyme mir 2		Wen2	000	0.0						500	10 0	0.0	10'0	60						0.0									800	500	0.0	500															880	0.0	
	Weight enzyme mit 1		Want			900	000	900	900							000	83	000	200	800	900	800	900	800	900	000	008	900	900					000	800		000	200	800	900	8 8	800	88	900	900	900	3	004	000	
	Wegh: Acd ascoroc		Waac	800	0.00	80	0.0	800	80		580	80	800	380	0.0	2.00	1	80	88	180	88	0.00	1000	500	500	500	800	50	330	300	500	50	500	50	80		500	50	3800	0.0	500	500	550	800	50	300	-	80	0.0	
	Weght		Wat										02.0	3.98										1,80	3.98	2.39	3,19	3,96	1.94					2.39	2.38	3.96	80'S		2.39	2.39			1.22					1,58	7.94	
	C Alveo VI		ALW hu	68	623	523	623	622	62	623	62 62	88			633 633	622	070		622	62	68	68	622	68	62		88				04	415	94	94	94	19	410	19	321		19		337	22	8 8	12 12	3	356.31 225.60	599.00	
	Neght Meght		N hu	8.65	119.39	29.88	66.66	119.98	50.00	50.00	808	80.00			50.00 50.00	80'00 80'00	W/W		8666	8 6H	8651	Ret	149.86	8 64	49.80	864	10 GF			N 12	00.05	8.66	R 8 64	88 65	80.02	49.80	00 61 10 61	8.88	88 52		88.68		50.00	8.61	8 8 6±	8.62	-	83 82 82 82 82 82 82 82 82 82 82 82 82 82 8	149.88	
	isp.ene d./c		BM.av	4.7	2.75	8 8	10.06	20.02	1 2	20	200	10.08	8 2 2	201	12 N 0	2.5	2.2	88	8	2 2 2	89	2 2 2	333		7 0	1 11	222	1011	551	31 1		1911		11	14 14	11.12		17	88	23	2 2 3	23	223	222	2 1 1	33		87.0 77.0	8.73	
	Wepht =		Wav	3 669	2619	319.32	888.90	05.678	2676	350.00	8676	15 676	2666 K	8998	15.646	8.646	100000	2600.5C	35.662	05 67 8	849.50	16.648	80.648	St 876	21.946	10,040	240 m	395.50	35166	36666	8 616	2668	8648	347.65	947.65	946.22	1046	6669	347.65	8-166	16.669	06,666	16'6*6	919.91	25 678	919.91 899.91		940'39 970'39	100000	
	Tes: rbr				e		10	7 6		64	0.0	-						N.P	4		ei •	1 10	0.	- 14	en •	- 14	0.	- 14		1-1	0 0	10	121	-		4		14		103	- 0					CI (1)		evation		
	Date		22080210	2206/2010	2206/2010	1708/210	1708/2011	1708/2011	1508/2010	18/08/2010	1508/210	2608/2010	2608/2010	2608/2010	3108/201	3108/2010	1509/2010	1509/2010	1509/2010	1009/2001	1609/2010	10102/60/01	1609/2010	0710/2010	0710/201	1512/210	1512/2010	3101/201	0102/2010	2403/201	2403/2011	2403/201	2403/2011	2605/2011	2605/211	2005/2011	102/00/02	0006/2010	102-6010	0109/201	102/0020	0209/201	102/60/L1	102-6011	2209/21	2209/2011		A erge Stardard D	Marinum	
	Teg No.			- 14	e9 -	+ 10	10	- 0	0	6	E 14	12	2 5	9 19	t= 8	Ø 8	1.5	ផន	75.2	a ta	คร	18	55 8	1 13	あき	8 19	6 8	8	9 4	φs	8 9	5 I	8 18	訪	18 18	16	8 8	8	58	13 :	8 8	18 1	8 6	18 F	2 F.	RR	2 8	в		

2. Regression Analysis

SUMMARY OUTPUT									
Regression Statist	tics								
Multiple R	0,81144489								
R Square	0,65844281								
Adjusted R Square	0,610504959								
Standard Error	0,752207168								
Observations	66								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	8	62,17337157	7,771671446	13,73534261	7,18822E-11				
Residual	57	32,25149055	0,565815624						
Total	65	94,42486212							
		Standard							
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90,0%	Upper 90,0%	
Intercept	-1,155983662	1,627365011	-0,710340738	0,480389167	-4,414725861	2,102758536	-3,876984973	1,565017648	
(Wsw / WTOT) x BVLsw	1,048789	0,1543427	6,79519667	6,97607E-09	0,739723077	1,357854923	0,790723547	1,306854453	
(Whw / WTOT) x ALWhw	0,037374935	0,011740049	3,183541703	0,002357669	0,013865893	0,060883976	0,017745234	0,057004635	
-((Whw / WTOT) x ALWhw) ²	0,00010226	0,000134884	0,758136989	0,451492256	-0,00016784	0,000372361	-0,000123269	0,00032779	
Wglt	-0,004726989	0,142739632	-0,033116163	0,973697647	-0,29055817	0,281104192	-0,243391777	0,2339378	
-Wglt ²	-0,004964337	0,024562627	-0,20210937	0,840550849	-0,05415015	0,044221475	-0,04603376	0,036105085	
Waac	6,954831844	5,615083137	1,238598196	0,22057102	-4,289178103	18,19884179	-2,433749375	16,34341306	
Wen1	23,96187908	6,197020818	3,866677196	0,000285425	11,55255904	36,37119912	13,60028125	34,32347691	
Wen2	18,59552486	32,10703875	0,579172841	0,564754516	-45,69771074	82,88876046	-35,08837147	72,27942118	

APPENDIX M: QUALITY TESTS OF ACTUAL FLOURS

1. February 2011

FEBRUAR	Y 2011				
Date	code	Prot	тсн	W	Vol.
04/02/11	1	10,8	354	243	
04/02/11	2	10,6	347	248	
04/02/11	3	10,6	361	252	12,18
05/02/11	1	10,9	372	235	
05/02/11	2	11,1	385	241	12,12
07/02/11	1	10,9	378	224	
07/02/11	2	11,0	381	222	12,67
08/02/11	1	10,9	370	256	
08/02/11	2	11,1	368	245	
08/02/11	3	11,2	377	235	12,24
09/02/11	1	11,0	372	232	
09/02/11	2	11,0	372	225	
09/02/11	3	11,1	381	236	12,57
10/02/11	1	10,9	384	230	
10/02/11	2	11,0	371	238	
10/02/11	3	11,2	376	223	12,57
11/02/11	1	10,8	368	234	
11/02/11	2	10,9	377	246	
11/02/11	3	11,0	377	239	13,43
12/02/11	1	10,8	354	240	
12/02/11	2	10,9	362	233	
12/02/11	3	10,9	355	224	12,29
14/02/11	1	11,0	349	278	
14/02/11	2	11,0	352	278	12,09
	Average	10,9	368	240	12,46
	Standard deviation	0,2	12	15	0,42
	n	24	24	24	9
3	Av-(3std/n ^{1/2})	10,8	361	231	12,04
3	Av+(3std/n ^{1/2})	11,0	376	249	12,88
	MODEL EQUATIONS	10,9	377	243	12,80
			14,052		
		ОК	ERR	ОК	ОК

2. May 2011

MAY 2011					
Date	code	Prot	тсн	W	Vol.
14/05/11	1	10,9	368	199	
14/05/11	2	11,0	385	202	
14/05/11	3	11,0	394	209	11,79
16/05/11	1	11,0	387	228	12,67
17/05/11	1	10,9	351	205	
17/05/11	2	11,0	379	212	12,84
18/05/11	1	10,9	352	190	
18/05/11	2	11,0	374	201	
18/05/11	3	11,1	336	211	11,76
19/05/11	1	10,9	388	236	
19/05/11	2	11,0	349	238	
19/05/11	3	11,2	378	241	12,29
20/05/11	1	10,9	395	232	
20/05/11	2	10,9	355	225	
20/05/11	3	11,0	369	222	12,44
21/05/11	1	10,8	357	237	
21/05/11	2	10,9	362	237	
21/05/11	3	11,0	374	207	11,47
22/05/11	1	10,9	351	232	
22/05/11	2	10,9	368	265	
22/05/11	3	11,0	365	243	11,76
23/05/11	1	10,9	348	225	
23/05/11	2	11,0	357	234	11,92
24/05/11	1	10,9	361	232	
24/05/11	2	11,1	368	256	12,91
25/05/11	1	10,9	372	215	
25/05/11	2	11,0	354	231	11,38
26/05/11	1	10,9	339	227	
26/05/11	2	11,1	344	245	12,89
27/05/11	1	10,9	352	210	
27/05/11	2	11,0	356	223	12,83
28/05/11	1	10,8	352	222	
28/05/11	2	11,0	365	243	11,35
30/05/11	1	11,0	364	225	13,08
31/05/11	1	11,0	373	224	
	Average	11,0	364	225	12,23
	Standard deviation	0,1	15	17	0,62
	n	35	35	35	15
3	Av-(3std/n ^{1/2})	10,9	356	217	11,74
3	Av+(3std/n ^{1/2})	11,0	372	234	12,71
	MODEL EQUATIONS	11,0	329	230	11,10
			15,833		
		OK	ERR	OK	ERR

3. August 2011

AUGUST 2	2011		T.C		
Date 22/09/11	code 1	Prot 11.1	TCH 261	W 224	Vol.
23/08/11	2	11,1	358	234	
23/08/11	3	11,1	367	248	12,34
24/08/11	1	11,1	349	227	
24/08/11	2	11,2	354	241	
24/08/11	3	11,4	370	265	12,20
25/08/11	1	11,2	357	238	
25/08/11	2	11,2	354	238	
25/08/11	3	11,3	351	259	12,59
26/08/11	2	11,2	353	230	
26/08/11	3	11.4	363	238	12.51
27/08/11	1	11,2	390	282	,
27/08/11	2	11,3	377	231	12,32
29/08/11	1	11,4	387	266	12,83
31/08/11	1	11,0	375	262	
31/08/11	2	11,2	364	254	11,88
01/09/11	1	11,1	384	264	
01/09/11	2	11,2	376	264	12,99
02/09/11	1	11,2	373	234	
02/09/11	2	11,3	3/6	232	12,26
03/09/11	1	11,2	3/5	224	11 07
05/09/11	1	11,4	361	207	11,02
05/09/11	2	11,3	329	233	12.48
06/09/11	1	11.0	358	250	,.0
06/09/11	2	11,2	374	231	12,12
07/09/11	1	11,0	357	229	
07/09/11	2	11,1	372	228	12,20
08/09/11	1	10,8	362	226	
08/09/11	2	11,0	362	243	12,32
09/09/11	1	10,8	357	252	
09/09/11	2	10,9	361	265	
09/09/11	3	11,0	356	223	12,20
10/09/11	1	10,8	367	235	
10/09/11	2	11,0	300	241	12 17
12/09/11	1	10.9	366	247	12,17
12/09/11	2	11.0	384	261	
12/09/11	3	11,1	381	246	12,20
13/09/11	1	11,0	354	240	
13/09/11	2	11,1	368	246	
13/09/11	3	11,1	358	262	12,83
14/09/11	1	10,9	361	230	
14/09/11	2	11,0	358	263	40.00
14/09/11	3	11,2	354	260	12,32
15/09/11	2	10.0	349	249	
15/09/11	3	10,5	348	250	12 20
16/09/11	1	10.8	376	235	12,20
16/09/11	2	10,8	372	209	
16/09/11	3	11,0	364	229	11,81
17/09/11	1	10,8	362	255	12,73
19/09/11	1	11,0	346	261	12,71
20/09/11	1	10,6	350	240	
20/09/11	2	10,8	351	244	
20/09/11	3	10,9	345	240	12,20
21/09/11	1	10,8	352	246	
21/09/11	2	11.0	342	219	17 67
21/09/11	3	10 0	340	242	12,07
22/09/11	2	10,0	351	221	
22/09/11	3	11.1	348	244	12.22
23/09/11	1	10,8	360	228	-,
23/09/11	2	10,9	365	281	12,93
24/09/11	1	10,9	332	237	12,33
26/09/11	1	10,9	363	238	12,26
	Average	11,1	360	244	12,37
	standard deviation	0,2	13	15	0,31
	n	67	67	67	29
~	A., (2-t-d / 1/2)				40.40
3	Av-(3std/n ')	11,0	356	238	12,19
3	Av+(3sta/n ')	11,1	365	249	12,54
		11.0	262	240	11 20
	WODEL EQUATIONS	11,0	303	249	11,30
		ОК	OK	ОК	ERR

4. February 2012

FEBRUAR	Y 2012				
Date	code	Prot	тсн	W	Vol.
01/02/12	1	11,3	349	274	
01/02/12	2	11,0	345	242	
01/02/12	3	11,1	348	236	
01/02/12	4	11,2	347	256	12,55
01/02/12	5	11,3	337	293	
02/02/12	1	11,4	337	272	
02/02/12	2	11,4	339	279	
02/02/12	3	11,3	348	256	12,59
02/02/12	4	11,2	343	283	
03/02/12	1	11,4	340	278	
03/02/12	2	11,4	344	265	
03/02/12	3	11,3	346	239	12,61
06/02/12	1	11,5	347	275	
06/02/12	2	11,5	347	275	
06/02/12	3	11,3	338	286	12,98
07/02/12	1	11,4	340	239	
07/02/12	2	11,4	353	304	13,18
08/02/12	1	11,3	352	273	
08/02/12	2	11,3	345	286	
08/02/12	3	11,3	355	252	12,92
09/02/12	1	11,3	339	279	
09/02/12	2	11,3	341	255	
09/02/12	3	11,3	361	307	13,06
10/02/12	1	11,3	347	267	
10/02/12	2	11,4	355	254	
10/02/12	3	11,3	368	306	13,07
11/02/12	1	11,2	351	267	
11/02/12	2	11,3	345	262	
11/02/12	3	11,2	357	279	13,25
11/02/12	4	11,2	357	279	
14/02/12	1	11,3	347	293	
14/02/12	2	11,5	351	281	
14/02/12	3	11,2	349	300	12,96
15/02/12	1	11,2	347	291	
15/02/12	2	11,3	336	260	
15/02/12	3	11,2	342	295	13,83
16/02/12	1	11,1	329	291	
16/02/12	2	11,2	351	260	
16/02/12	3	11,2	341	254	13,13
	Average	11,3	347	273	13,01
	Standard deviation	0,1	8	19	0,35
	n	39	39	39	12
3	Av-(3std/n ^{1/2})	11,2	343	264	12,71
3	Av+(3std/n ^{1/2})	11,3	350	282	13,31
	MODEL EQUATIONS	11,6	347	278	13,50
			15,131		
		ERR	ОК	ОК	ERR