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Abstract 

Polymeric membranes have been playing important roles in gas or liquid separations. 

Polyimide polymers are of interest due to their commercially availability along with good 

transport, thermal and mechanical properties. In this study, two common commercial polyimide 

polymers, Matrimid and P84 were blended, to combine the good transport property of Matrimid 

with the plasticization resistance of P84. Matrimid/P84 blend solutions ranging from 0-100 wt. % 

Matrimid were prepared to make blend films. Physical properties (density, d-spacing, thickness), 

transport properties (permeability of H2, N2, CH4, Ar, He, CO2, and gas pairs selectivity), thermal 

property (mass loss curves of TGA), and liquid solutes (water, methanol, toluene, butanol, 1-

propanol, 2-propanol) desorption behavior were measured or characterized.  

Rules of changing behavior of the properties with mass fraction of Matrimid were 

investigated, summarized, and interpreted mathematically. As Matrimid mass fraction increases, 

there are more mobility and space between polymer chains, therefore there are smaller density, 

larger d-spacing, larger fractional free volume (FFV) and larger permeability. The selectivity-

permeability relationship follows the trade-off line. Thermal mass loss curve of the blend films in 

air have presented intermediate characteristic with rising fraction of Matrimid compared to 

individual polymers. A partial-miscible behavior has been found from the correlation between 

permeability and FFV. The desorption behavior was found to be reasonably described by the case 

III model, where the diffusion rate is similar with relaxation rate of polymers.  
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Chapter 1 - Introduction 

 1.1 Gas Separation Membrane 

A membrane, is defined as a selective barrier that allows the passage of certain constituents 

and retains others [1]. The schematic diagram of a membrane is shown in Figure 1.1.  Membranes 

have gained an important place in chemical technology and are used in a broad range of 

applications, such as artificial kidney, gas separation, pervaporation, carrier-facilitated transport 

[2] and fuel cells.  

Figure 1.1 Membrane  

Membrane reactor for biomass derived biofuels is a promising application for two reasons. 

In terms of reactor, membrane reactors are increasingly replacing conventional separation, process 

and conversion technologies across a wide range of applications. The enhanced efficiency and 

great economic potential have brought increasing interest in the study of membrane [3]. As shown 

in Figure 1.2, membrane reactors achieve efficiencies by combining in one unit a reactor that 

generates a product with a semipermeable membrane that extracts the product. What’s more, 

removal of a product increases the residence time for a given volume of reactor and drives 

equilibrium-limited reactions towards completion, and finally a higher conversion is obtained [4].   
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Figure 1.2 Simple Module Structure of Membrane Reactor 

 Gas separation membranes in this study are of interest for the high selectivity, and 

asymmetric structure of the membrane is of interest for the great transport properties. The 

asymmetric membrane was made with Loeb-Sourirajan method [2] and form a two-layer structure 

as shown in Figure 1.3. The asymmetric membranes have a very thin surface layer which greatly 

enhances separation properties and permeation rates, and a much thicker and porous substructure 

which is used as mechanical support.  

 

Figure 1.3 SEM Cross-Section of PEI Membrane.  
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            Ideal gas separation membranes are supposed to have pores as small as 3-5 Å, which is 

within the range of thermal motion of the polymer chains in which situation, the transport 

mechanism can be best described by solution-diffusion model. In this model, permeants dissolve 

in the membrane material and then diffuse through the membrane down a concentration gradient. 

Permeants are separated because of differences in their solubilities in the membrane [2]. This 

model is based on Fick’s Law. But in real processes, this model can not apply to all situations. 

When the pore is larger than 5 Å, Knudsen diffusion model will apply for membranes. The 

Knudsen diffusion model is considered when the pore radius decreases to be smaller than the mean 

free path (commonly 500-2000 Å) of gas molecules. Diffusion gas molecules will have more 

collision with the pore walls other with each other. At every collision with the pore walls, the gas 

molecules are momentarily adsorbed and then reflected in a random direction [2]. The Knudsen 

selectivity equals the inverse square root ratio of the molecular weights of the gases [5], which is 

a simple judgment of the existence of Knudsen diffusion pores. Molecular sieving, or pore-flow 

model are suitable for membranes with pores size larger than 10-15 Å. In this model, permeants 

are transported by pressure-driven convective flow through tiny pores. Separation occurs because 

smaller molecules have higher diffusion rates than larger molecules. Membranes that fit solution-

diffusion model are desired in this study.          

             Properties of membrane desired in this study are high transport performance, high 

mechanical strength, strong thermal stability, strong chemical stability, as well as commercial 

availability. In general, polymeric materials do not simultaneously meet all of these criteria. For 

example, highly permeable polymers exhibit moderate to low selectivity values while materials 

with high resistance to harsh chemical environments or plasticizing gases are either difficult to 

process or are very expensive. Compared with other modification techniques such as crosslinking 
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[6] or even with the synthesis of entirely new materials, polymer blending is preferred due to 

simplicity, reproducibility, and commercial benefits [7]. Membrane blending has been widely used 

for the property improvement of pure membranes for various applications.  

           Sulfonated polyimide (SPI) was blended with sulfonated poly(phenylene arylene) (SPA) to 

enhance the membrane’s stability in water and methanol solution to make proton exchange 

membrane for fuel cell application [8]. Polybenzimidazole (PBI) was blended into Nafion proton 

conduction membrane in order to reduce methanol permeability for a direct methanol fuel cell 

membrane [9].  In the cross-linked sulfonated poly(arylene ether sulfone) (cSPAES)/sulfonated 

polyimide (SPI) blend membranes for fuel cell application, the stability of blend membranes in 

water and methanol solutions was significantly improved by the introduction of SPI [10]. Proton 

conductive membranes made from sulphonated poly(ether ether ketone) (SPEEK) /Matrimid 

showed that the addition of polyimide has decreased the methanol crossover [11]. Poly(styrene-b-

vinylbenzylphosphonic acid) (PS-b-PVBPA) were blended with poly(2,6-dimethyl-1,4-phenylene 

oxide) (PPO) to obtained polymer electrolyte membranes (PEM) for higher temperature 

applications because of the high glass transition temperature of PPO [12]. SPESc was reported to 

be able to reduce the water uptake caused by the sulfonation, which is a process to enhance the 

conductivity of SPEEK membrane for the fuel cell application [13]. The PES/PVP membrane for 

water electrolysis application possesses combined advantages of the hydrophobic and hydrophilic 

components; specifically, both good mechanical strength and excellent hydrophilicity have been 

achieved simultaneously [14]. Blend membranes for polymer electrolyte fuel cell applications 

prepared from sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated polynaphthalimide 

(SPI), were moderately anisotropic and had the advantages of the smaller in-plane membrane 

swelling and the larger through plane conductivity compared to SPAES and SPI, respectively [15]. 
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            Polysulphone (PSF) was blended with Matrimid to increase the critical plasticization 

pressure of polyimide based membrane for CO2/CH4 separations [16]. PIM-1/Torlon blend 

membranes were prepared to enhance plasticization resistance of pure PIM-1 membrane [17, 18] 

for gas separation application. Polyethersulfone (PES) was blended with Matrimid for gas 

separation, because PES exhibits high chemical resistance thermal and dimensional stability and 

high selectivity values while Matrimid have good transport performance but have low chemical 

resistance [19, 20, 21, 22]. Polyimide was added to enhance the mechanical strength of thermal 

rearranged poly (benzoxazole) (PBO) for CO2 separation [23]. In polysulfone/polyimide (PSF/PI) 

blended for CO2/CH4 separation, thermal stability was improved with the addition of PI [24]. 

PEEK of excellent anti-plasticization properties and Matrimid of superior gas separation 

properties, good mechanical properties and thermal stability were blended for CO2 separation [25]. 

The high selectivity of PES and high permeability of Matrimid were combined for O2/N2 gas 

separation [26]. With the introduction of multitrifluoromethylated polyimide (12F-PI) to 

sulfophenylated polyetheretherketone (Ph-SPEEK), an obvious improvement in dimension 

stability, oxidative stability, mechanical properties, and proton conductivity could be observed in 

the blend membrane in comparison with pure Ph-SPEEK [27]. Considerable increments in gas 

permeability were observed by adding only 5 or 10 wt% PIM-1 to Ultem polyetherimide without 

much compromising gas pair selectivity [28].  

             For toluene/iso-octane separation, PBI was added to Matrimid due to its enhanced 

chemical stability, diffusivity and solubility selectivity for toluene [29]. A small amount of 

addition of PBI was demonstrated to significantly stabilize Matrimid’s polymeric chains for high-

temperature pervaporation and remarkably enhance the selectivity and permeance for the 

dehydration of tert-butanol/water mixtures [30]. PBI and Matrimid were also blended for N2/CH4, 
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CO2/CH4 gas separation [31, 32]. Novel solvent resistant nanofiltration (SRNF) membranes from 

blends of polyphenylsulfone (PPSU)/Matrimid showed potential for filtrations in organic solvents, 

including alcohols, alkanes, ketones and alkyl acetates, for most of which they showed a 

reasonable or good solvent stability [33]. Polydimethylsiloxane (PDMS)/polyimide blended  

interpenetrating polymer network (IPN) pervaporation membrane for methanol/toluene azeotrope 

separation, had demonstrated higher performance than the pristine PDMS membrane, in terms of 

thermal and mechanical stability and selectivity [34]. 

            The carbon molecular sieving membranes were prepared from the polymer blend of 

polyphenylene oxide (PPO) and polypyrrolidone (PVP) as thermally stable and labile polymer, 

respectively. And the blend membrane showed higher permeation performance in comparison with 

those of the PPO derived carbon membrane [35, 36]. In the polyetherimide (PEI)/multi-wall carbon 

nanotubes (MWCNTs) composite carbon membrane, MWCNTs offered a favorable effect on 

increasing gas permeability by decreasing the gas diffusion resistance [37].  Introduction of 

thermally labile polymer PVP to PI carbon molecular sieve (CMS) membrane had improved gas 

permeation performance [38].  

            Polyimide polymers are of interest because polyimide membranes are used as functional 

materials for gas separation because they have better permeability-selectivity balance compared 

with conventional glassy polymers [39].  Matrimid is considered as the membrane polymer, for its 

relatively high gas permeability and selectivity, along with excellent mechanical properties, 

solubility in non-hazard organic solvents as well as commercial availability [40]. However, 

Matrimid is easy to be plasticized by CO2 and swollen by organic chemicals. Blending a polymer 

(Matrimid in this study) with weak plasticization resistance with another polymer with high 

plasticization resistance is expected to enhance the plasticization resistance of the former polymer. 
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Therefore, P84, another commercial polyimide membrane, which has lower gas permeability yet 

much stronger plasticization resistance than Matrimid, is a good choice in the consideration of 

blending. Wessling’s group [41] and Koops’ group [42] showed that the resistance of Matrimid 

against plasticization induced by CO2 can be increased by blending Matrimid with P84, which also 

increased CO2/CH4 selectivity. To the knowledge of the author, there is no complete study of the 

physical, thermal, transport properties of Matrimid/P84 blend membrane yet.  

 1.2 Polymer Blends 

               In the study of polymer blends, the miscibility of the polymers are of vital important and 

desired for improving the properties of membrane. As defined [43], a miscible polymer blend is a 

blend of two or more amorphous polymers homogeneous down to the molecular level and fulfilling 

the thermodynamic conditions for a miscible multicomponent system. An immiscible polymer 

blend is the blend that does not comply with the thermodynamic conditions of phase stability. The 

term compatible polymer blend indicates a commercially attractive polymer mixture that is visibly 

homogeneous, frequently with improved physical properties compared with the constituent 

polymers. In this section, the thermodynamic behaviors of polymer blends have been discussed.  

             In systems of miscible blend, the various components have the thermodynamic ability to 

be mixed at the molecular level. Since these systems form only one miscible amorphous phase, 

interphase stress transfer is not an issue and the physical properties of miscible blends approach 

and frequently exceed those expected for a random copolymer comprised of the same chemical 

constituents. Only in this way can the component physical properties be efficiently utilized to give 

blends with the desired properties. 

            Homogeneous miscibility in polymer blends requires a negative free energy of mixing [44]: 

∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥                                                 (1.1) 
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            Where ∆𝐻𝑚𝑖𝑥 is the enthalpy change of mixing and ∆𝑆𝑚𝑖𝑥 is the entropy change of mixing.  

            As shown in Figure 1.4 which was modified from the diagram in reference [45], there are 

three possible ways in which the free energy of mixing may vary with the composition of the 

overall mixture (𝜑𝑖= volume fraction of component i). Case A represents completely immiscible 

blends of which the free energy of mixing is above zero for the whole content range. But a negative 

free energy of mixing does not assure complete miscibility as Case C illustrates. Here the free 

energy of mixing shows a reversed curvature in the mid-composition range, and thus the mixture 

can develop an even lower free energy in this range by splitting into two phases with compositions 

given by the two minima. This results in a miscibility gap or partial miscibility.  

Figure 1.4 Free Energy of Mixing for Binary Mixtures. A: completely immiscible;  

B: completely miscible; C: partially miscible 

            A complete statement of the thermodynamic criteria for miscibility is that Eq. (1.2) is 

satisfied over the range of concentration of interest [46]. This is the only thermodynamically valid 

definition of miscibility. While there are no direct means of measuring free energy, many 

experimental observations can be related to it.  

[
𝜕2∆𝐺𝑚𝑖𝑥

𝜕𝜑2
2 ]

𝑇,𝑝

> 0                                                          (1.2) 
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             The simplest model for polymer-polymer mixtures is the Flory-Huggins theory. This 

assumes that the heat of mixing follows a quadratic dependence on composition, i.e., a van Laar 

type expression,  

∆𝐻𝑚𝑖𝑥 = 𝐵𝑉𝜑1𝜑2                                                            (1.3)                                                          

            Where V is the volume of the mixture and B is the mixing energy density characteristic of 

polymer-polymer segmental interactions in the blend.  

            From the calculation of a lattice model, the entropy of mixing ∆𝑆𝑚𝑖𝑥 is negligible when 

polymers have very high molecular weights [45]. Therefore it is suggested and certificated that 

polymer pairs which show exothermic heats of mixing (∆Hmix < 0) are miscible. 

            Thermodynamically, there are three important temperatures related to the miscible 

behavior of polymer blends, which are the glass transition temperature (𝑇𝑔), lower critical solution 

temperature (LCST) and upper critical solution temperature (UCST), as shown in Figure 1.5.  

            When the temperature is above 𝑇𝑔, the polymer is in rubbery state. The polymer has very 

high free volume, which is the space not occupied by polymer chains. The structure of rubbery 

polymer is not rigid and transport of permeates through the polymer is also very fast. As the 

temperature goes down, free volume is decreased and structure is more rigid. The transport rate 

through polymer is smaller than before. At  𝑇𝑔, there is a rapid change of the state of polymer. The 

free volume is rapidly decreased and mobility of polymer chains has been also reduced rapidly. 

The structure of polymer is very rigid and transport rate is very slow. At this time, the polymer is 

in the state of glass. Each polymer has a unique glass transition temperature. And a completely 

miscible blends is supposed to have a unique glass transition temperature. It is a most commonly 

used way to test the miscibility of polymer blends by observing the glass transition temperature.  
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Figure 1.5  Phase Diagram Showing LCST and UCST Behavior for Polymer Blends 

             Figure 1.5 was modified from the diagram in reference [47], and shows the phase diagram 

for polymer blends. Binodal curves define the two-phase region. The spinodal curve defines the 

region of absolute instability of the polymer blend. The point common to the binodal and spinodal 

curves is the critical point. The region between a binodal curve and a spinodal curve is the 

metastable region. The region between the two binodal lines represents a single phase.  

           Highly miscible polymers exhibit single phase behavior over the entire temperature-volume 

fraction space available for experimental verification. But if UCST or LCST behavior exists, the 

miscibility cannot be determined. At low temperatures, the UCST cannot be determined due to the 

glassy state restricting molecular motion (phase separation); and at higher temperatures, polymer 

degradation occurs before phase separation can be observed. With highly immiscible polymer 
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blends, the phase diagram is virtually all in the two phase region with the binodal curves virtually 

overlapping the y axis at 0 and 1.0 volume fraction.  

            Matrimid and P84, which are polymer materials studied in this thesis, have similar glass 

transition temperatures from the characterization of differential scanning calorimetry (DSC). 

Therefore, it is very difficult to tell the miscibility of the blends from the glass transition 

temperature. In the other side, the miscibility was discussed in the view of the transport behavior 

of the blends. When two polymer are completely miscible, there is a linear relationship between 

logarithmic permeability of a certain gas and reciprocal fractional free volume of the membrane. 

The detailed discussion of transport behavior could be found in Chapter 3.  

 1.3 This Study 

To study blend membranes, what is of vital important is the characterization of blend dense 

films, which could provide fundamental information of physical, thermal, and transport properties 

of polymers. Therefore, in this study, Matrimid/P84 blend solutions have been prepared and cast 

carefully into dense films. The physical properties (density and d-spacing) was measured and the 

changing rules with polymer composition has been discussed. And the thermal degradation 

behavior of blends was measured by TGA. Gas flux tests of CH4, N2, Ar, CO2, H2, He were 

processed with a constant volume apparatus and the permeability and selectivity were calculated. 

Mathematical models have been applied to explain the relationship between permeability and 

selectivity, permeability and fractional free volume, permeability and volume composition. The 

transport behavior of the blend films has a partial miscible characteristic.  

Desorption of water, methanol, 1-propanol, 2-propanol, butanol, toluene in blend films 

have been processed at room temperature. Diffusion coefficients of desorption of diffusion 

coefficients were calculated with three mathematical models.  
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Chapter 2 - Characterization of Physical and Thermal Properties of 

Matrimid/P84 Blend Films 

 2.1 Introduction 

            Polyimide gas separation membranes are promising in the application of membrane 

reactors transferring biomass into biofuels or biochemical. Polyimide (Matrimid, P84, etc.) 

membranes have the advantage of better permeability-selectivity balance than conventional glassy 

polymers [39]. Matrimid is a common commercial polyimide polymer with relatively high gas 

permeability and selectivity, along with excellent mechanical properties, solubility in non-hazard 

organic solvents as well as commercial availability [48]. However, good solubility of Matrimid in 

organic solvents makes it easy to swell in the environment of organic chemicals, thus deteriorating 

the separation performance of membranes. The presence of solvent plasticization causes the 

transport rates of all penetrants in a mixture to increase, which may result in significant selectivity 

losses because the increase for the slower permeating component is larger than for the faster 

permeating component [49]. P84 is another commercial polyimide polymer which shows ability 

against plasticization but lower permeability than Matrimid. Blending Matrimid with P84 can 

increase the resistance of Matrimid against plasticization induced by CO2 as well as increasing 

CO2/CH4 selectivity [41, 42]. Also Matrimid/P84 blend membrane was found to achieve H2/N2 

selectivity comparable with pure Matrimid membranes [50]. Therefore, it is reasonable to expect 

a blended Matrimid/P84 membrane which combines the advantages of two current commercial 

polymers as well as avoiding the cost of synthesizing new polymers.  

             The study of properties of dense films can provide fundamental data for further research 

of membranes. In this chapter, a series of mass ratios of Matrimid/P84 blended films were 
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prepared. Physical and thermal properties were measured with TGA. Density, d-spacing, and FFV 

have apparent trend of changing with mass fraction of Matrimid. Rules between TGA curves and 

film composition were also discussed and interpreted.  

 2.2 Experimental 

 2.2.1 Materials  

             Matrimid 5218 (poly [3, 3’4, 4’-benzophenone tetracarboxylic dianhydride and 5(6)-

amino-1-(4’-aminophenyl-1, 3-trimethylindane)], BTDA-DAPI) was supplied by Huntsman 

Advanced Materials Americas Inc. P84 (copolyimide of 3, 3’4, 4’-benzophenone tetracarboxylic 

dianhydride and 80% methylphenylenediamine + 20% methylenediamine) was provided by HP 

Polymer Inc. NMP (N-Methyl-2-pyrrolidone, purity 99%) was supplied by Sigma-Aldrich. 

Methanol (purity 99.9%) was supplied by Fisher Scientific            

Figure 2.1 Chemical Structures of Matrimid and P84 

             Figure 2.1 represents chemical structures of Matrimid and P84.The similar aromatic 

structures indicate the strong chemical stability of both the two polymers. As shown below, both 

polymers have a BTDA structure on the left side. While on the right side, Matrimid have an extra 
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pentacyclic ring with three methyl groups, which could occupy more space than P84. It is 

reasonable to expect that Matrimid have a larger fractional free volume. 

 2.2.2 Preparation of Matrimid/P84 Blend Films  

The films were prepared by a casting method. Polymer solutions (20 wt. % polymer/80 wt. 

% NMP) with various compositions of 0/100, 10/90, 25/75, 50/50, 75/25, 90/10,100/0 g/g were 

prepared from Matrimid and P84 according to the following steps.  

Firstly, polymer powders were dissolved by NMP in glass jars under room temperature. 

The jars were capped and settled in the hood under room temperature without stirring for at least 

a week until totally dissolved (there were no visible polymer powder particles and the solution is 

visibly transparent while the color is evenly distributed).   

The solutions were poured on a glass plate and cast with a casting knife with a very slow 

rate under room temperature, with the thickness set to 50μm. Subsequently, films were dried in a 

vacuum oven at 50˚C for 12 hours, and then at 100˚C for 12 hours, and finally 150 ˚C for 48 hours 

to get rid of the solvent residues.  

The films were taken out of the oven, and peeled off the glass plate with a bit of water after 

cooling down to room temperature. The films were wiped with soft tissues and kept in the oven at 

100 ˚C overnight to remove any water residues. Naturally cooled films were conserved in a 

container with drierite (anhydrous Calcium Sulfate) inside.  

 2.2.3 Density Measurement 

            Density of films were measured with a density gradient column. A metal bucket was loaded 

at the bottom of the column before a soft tube was inserted to the bottom of the column. A series 

of Ca(NO3)2·4H2O solutions in water were prepared with the density range from 1.0 g/cm3 to 1.5 
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g/cm3 (density step is 0.05 g/cm3). The solutions were slowly added to the bottom of the column 

through the soft tube at the sequence from smaller density to bigger density. Standard density beans 

were wetted with water before dropped into the column from the top. Positions of the beans were 

recorded after 24 hours of settlement. A linear equation was calculated from bean density and bean 

position ( 𝑦 = 0.0025𝑥 + 1.1164, 𝑅2 = 0.9981) , the value of R2 is reliable for the density 

measurement (Details of the calibration of density gradient column can be viewed in Appendix 

A.1.).  Sample films of different polymer compositions into smal1 pieces of an area < 1cm3 and of 

different shapes. The positions of samples were recorded and transferred into density values from 

the density-position relationship equation.   Detailed calibration of the density gradient column is 

shown in Appendix A.1.  

            Fractional free volume (FFV) is an important semi-empirical parameter that correlates the 

permeation properties of polymers with their chemical structure. It is the fraction of the space filled 

by the polymer that is not occupied by the atoms that make up the polymer chains [2], and is 

usually defined as  

𝐹𝐹𝑉 =
𝑉 − 𝑉0

𝑉
                                                                         (2.1) 

            Where 𝑉 = 1/𝜌 is the specific volume of the polymer (cm3/g), 𝑉0 is the volume occupied 

by the molecules themselves (cm3/g). A common approach to get 𝑉0 is Bondi’s group contribution 

method [51] where the occupied volume is computed from the van der Waals volumes, (𝑉𝑤)𝑘, of 

the various groups in the polymer structure by  

𝑉0 = 1.3𝑉𝑤                                                                             (2.2) 

𝑉𝑤 = ∑(𝑉𝑤)𝑘 × 𝑛𝑘                                                               (2.3) 
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            Where 𝑛𝑘 is the number of group k in one repeat unit of the polymer, and (𝑉𝑤)𝑘 (cm3/g) is 

the van der Waals volume of group k. The values of (𝑉𝑤)𝑘 were obtained from two resources: Park 

and Paul [52] (Resource I), van Krevelen and Nijenhuis [53] (Resource II).  Therefore there were 

two groups of calculations of FFV and the detailed calculation process can be viewed in Appendix 

A.2.  

 2.2.4 Thickness Measurement  

            The films were cut into 13.8 cm2 round stamps as below. Thickness was measured with a 

Mitutoyo digital micrometer (accuracy: 0.001mm) at five spots distributed evenly on each sample 

stamp, as shown in Figure 2.2.   

 Figure 2.2 Measured Spots Distribution on a Sample Film Stamp  

 2.2.5 X-ray Diffraction Characterization 

Film d-spacing was determined by X-ray diffraction analysis (XRD) using a MiniFlex II 

X-ray diffractrometer using Cu Kα radiation with a wavelength (λ) =1.54Å at room temperature. 

XRD was run from 4-40 degree at the speed of 0.5.  

Average d-spacing was determined based on Bragg’s Law:  

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃                                                                         (2.4) 
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Where n is an integral number (1, 2, 3 …), λ denotes the X-ray wavelength, d stands for 

the intersegmental spacing between two polymer chains and θ indicates the diffraction angle. The 

value of 2θ can be obtained by capturing the peak of the scanning curve generated by XRD. In 

this study, n was 1 in the calculation.   

  2.2.6 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was conducted with a Pyris 1 TGA analyzer. TGA 

characterizations were run under air flow and nitrogen flow separately.  

For TGA in air flow, the films were pretreated as the following: The pure Matrimid and 

50%Matrimid films were heated in a vacuum oven at 200 ˚C for a week, immersed in methanol 

for 5 days and dried in the vacuum oven at 200 ˚C for 3 hours. The pure P84, 10%Matrimid, 

25%Matrimid, and 75%Matrimid films were heated in a vacuum oven at 200 ˚C for two weeks,  

immersed in methanol for three times with each time being three hours, and then dried in the 

vacuum oven over night. 

For each time of TGA measurement run in air flow, 5-10 mg of samples were weighed and 

added to a platinum pan. The pan was heated from room temperature to 100 ˚C at a heating rate of 

10 ˚C/min to remove any water residues, held at 100 ˚C for 10 min, and then heated to 800 ˚C at 

10 ˚C/min and allowed to cool down to room temperature under an air atmosphere at a flow rate 

of 20ml/min. The mass loss curve versus temperature were generated by Pyris TGA software. And 

the mass loss was normalized to be 1 at 100 ˚C.  

For TGA in nitrogen flow, all the samples were dried in a vacuum oven at 150 ̊ C overnight 

to remove solvent residues. And TGA measurement steps were conducted as above except that 

some of the samples were only heated to 500 ˚C.  
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 2.3 Results and Discussion 

 2.3.1 Observation of Stamps of Matrimid/P84 Blend Films 

Figure 2.3 provided photos of stamps of Matrimid/P84 Blend Films of five compositions. 

The background of the photos are white paper with green grids. As can be observed from the 

photos, all the films have a color of light yellow and transparent. Words under the films can be 

clearly seen through the films. Only the 50%Matrimid film is a little more turbid than the others, 

which might not be observed from the photos due to photographic technique limitations.  What’s 

more, the films are pliable with smooth surface.  

             

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Photos of Stamps of Matrimid/P84 Blend Films 

 2.3.2 Density of Matrimid/P84 Blend Films 

Figure 2.4 shows the density of blend films from 0 wt. % to 100 wt. % Matrimid. The 

density presents a linear relationship with mass fraction of Matrimid. This is reasonable since P84 

has a larger density than Matrimid compared with reference density of pure Matrimid and pure 
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P84. The density of pure Matrimid has a range of 1.17~1.262 g/cm3 [16, 39, 54, 55]. Pure P84 is 

1.355, 1.336g/cm3 [56, 57]. Figure 2.5 presents the calculated FFV values from equation (4) from 

two groups of calculations. Both groups of FFV increase with Matrimid mass fraction, which is 

reasonable because denser polymer should have smaller d-spacing.  

Figure 2.4 Correlation of Film Density with Mass Fraction of Matrimid 

Figure 2.5 FFV of Matrimid/P84 Blend Films from Two Groups of Calculations 
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 2.3.3 d-spacing of Matrimid/P84 Blend Films 

            An example of raw data for pure Matrimid is shown as Figure 2.6. The d-spacing can be 

visualized as the average spacing between the centers of the chains in the molecular matrix [58] 

and it is calculated with Bragg’s Equation (Eq. 2.4).  

Figure 2.6 An Example of Raw XRD Data of Pure Matrimid Film 

Figure 2.7 d-spacing of Matrimid/P84 Blend Films 
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            Figure 2.7 indicates the d-spacing of Matrimid/P84 Blend Films. Each point represents the 

d-spacing value of one single sample. There is a trend that d-spacing increases with mass fraction 

of Matrimid, which is consistent with density versus Matrimid mass fraction, and FFV versus 

Matrimid mass fraction. P84 has more compact structure and smaller d-spacing than Matrimid. 

With decreasing Matrimid (or increasing P84) mass fraction, the shift in d-spacing indicates a 

reduction in the polymer inter-chain distance and free volume, leading towards a tighter and 

narrower structure.  

 2.3.4 TGA of Matrimid/P84 Blend Films in Air 

            Figure 2.8 shows TGA data of Matrimid/P84 blend films in air flow. Pure Matrimid mass 

loss curve stays stable before 500 ˚C, and after 500 ˚C, the mass loss decreases at a rapid rate, 

which is in agreement with reference [39]. For pure P84, the mass loss curve represent a “three-

stage” characteristic: stable when T<300 ˚C; slowly decreases when 300 ˚C<T<500 ˚C; rapidly 

decreases when T>500 ̊ C, which is also in agreement with reference [59, 60]. The mass loss curves 

of blend films present intermediate characteristics from pure Matrimid to pure P84.  

            From Figure 2.8, the blend curves are mostly within the range of individual polymer curves 

in the temperature range of 300-550 ˚C. The 75%Matrimid film curve is almost the same as pure 

Matrimid until 500 ˚C from where the 75 % curve decreases quicker than the pure Matrimid curve. 

Except for 50% Matrimid, mass loss rate during 300-550 ˚C is in the order of pure P84> 10% 

Matrimid>25% Matrimid>75% Matrimid>pure Matrimid. 50% Matrimid films have an abnormal 

larger mass loss from 100-200 ˚C, and the possible reason would be some residual solvent.  
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           Figure 2.8 TGA Mass Loss Curves of Matrimid/P84 in Air Flow 

             Pyrolysis process of polyimide films consists of two processes [61]: carbonization at a 

low-temperature range of 300-700 ˚C and graphitization at a high temperature of pyrolysis (>700 

˚C). In the carbonization process, the most weight loss of polyimides is induced by the expelling 

of noncarbon atoms (N, O) as different gases. The rates of weight loss are related to the chemical 

structures of polyimide. However, the chain conformation of carbonized materials will be retained 

as that of polyimide in the carbonization process. When the pyrolysis temperature increases up to 

700 ˚C, the linkage of independent aromatic rings is induced by dehydrogenization and 
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denitrogenization. The amorphous carbon will move toward to the graphitic state which is more 

thermodynamically stable.  

 2.3.5 TGA of Matrimid/P84 Blend Films in N2 

Figure 2.9 TGA Mass Loss Curves of Matrimid/P84 in N2 flow 

            Figure 2.9 is TGA curve of Matrimid/P84 blend films in Nitrogen flow. All the curves have 

similar characteristics of “three-stage”, but there is no apparent correlation between the mass loss 
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and polymer composition. TGA mass fraction curves of samples in nitrogen decrease at a relative 

low temperature (<300 ˚C), which is abnormal compared with TGA in air and as shown in a 

reference [39], both of which have a slope change at about 500 ˚C for pure Matrimid. 

One should compare the pretreatment of films for TGA in air and TGA in nitrogen. The 

films test in nitrogen flow were not preheated and solvent exchanged as samples tested in air flow. 

It is possible that a considerable amount of mass loss at the first stage is contributed by residual 

solvent.  

 2.4 Conclusion 

In this study, the measurement of density, and characterization of XRD, TGA in N2, and 

TGA in air have been applied to Matrimid/P84 blend films. FFV and d-spacing have been 

calculated.  

Density, d-spacing, and FFV of blend films follow the same pattern: more rigid (high P84 

content) films, have less space, higher density, and smaller FFV.  

For TGA in air, pure Matrimid mass loss curve is stable until 500˚C, while pure P84 

presents a three-stage characteristic, and begins to have slow mass loss from 300-500 ̊ C, and rapid 

mass loss from 500 ˚C. Both are consistent with reported studies. And the blend films are 

presenting an intermediate characteristic with rising mass fraction of Matrimid compared to 

individual polymers.  

For TGA in nitrogen, there is no apparent rationale. All the films present a three-stage 

characteristic in the mass loss curves. The larger mass loss at the first stage is possibly caused by 

residual solvent due to differences in pre-treatment.  
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Chapter 3 - Transport Property of Matrimid/P84 Blend Films 

 3.1 Introduction 

            Polyimide gas separation membranes are promising in the application of membrane 

reactors transferring biomass into biofuels or biochemical. Polyimide (Matrimid, P84, etc.) 

membranes have the advantage of better permeability-selectivity balance than conventional glassy 

polymers [39]. Matrimid is a common commercial polyimide polymer with relatively high gas 

permeability and selectivity, along with excellent mechanical properties, solubility in non-hazard 

organic solvents as well as commercial availability [48]. However, good solubility of Matrimid in 

organic solvents makes it easy to swell in the environment of organic chemicals, thus deteriorating 

the separation performance of membranes. The presence of solvent plasticization causes the 

transport rates of all penetrants in a mixture to increase, which may result in significant selectivity 

losses because the increase for the slower permeating component is larger than for the faster 

permeating component [49]. P84 is another commercial polyimide polymer which shows ability 

against plasticization but lower permeability than Matrimid. Blending Matrimid with P84 can 

increase the resistance of Matrimid against plasticization induced by CO2 as well as increasing 

CO2/CH4 selectivity [41, 42]. Also Matrimid/P84 blend membrane was found to achieve H2/N2 

selectivity comparable with pure Matrimid membranes [50]. Therefore, it is reasonable to expect 

a blended Matrimid/P84 membrane which combines the advantages of two current commercial 

polymers as well as avoiding the cost of synthesizing new polymers.  

           The study of properties of dense films can provide fundamental data for further research of 

membranes. In this chapter, a series of ratios of Matrimid/P84 blended films were prepared before 

the single gas permeability was measured. The relationship of permeability-selectivity, 

permeability-FFV, and permeability-volume fraction of Matrimid have been discussed and applied 
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to available mathematical models. The Matrimid/P84 blend films in this study present the behavior 

of partial-miscible blends.   

 3.2 Experimental 

 3.2.1 Materials  

            Matrimid 5218 (poly [3, 3’4, 4’-benzophenone tetracarboxylic dianhydride and 5(6)-

amino-1-(4’-aminophenyl-1, 3-trimethylindane)], BTDA-DAPI) was supplied by Huntsman 

Advanced Materials Americas Inc. P84 (copolyimide of 3, 3’4, 4’-benzophenone tetracarboxylic 

dianhydride and 80% methylphenylenediamine + 20% methylenediamine) was provided by HP 

Polymer Inc. NMP (N-Methyl-2-pyrrolidone, purity 99%) was supplied by Sigma-Aldrich.  

            Figure 3.1 represents chemical structures of Matrimid and P84. The similar aromatic 

structures indicate the strong chemical stability of both the two polymers.  

Figure 3.1 Chemical Structures of Matrimid and P84 
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 3.2.2 Preparation of Matrimid/P84 Blend Films  

The films were prepared by a casting method. Polymer solutions (20 wt. % polymer/80 wt. 

% NMP) with various compositions of 0/100, 10/90, 25/75, 50/50, 75/25, 90/10,100/0 g/g were 

prepared from Matrimid and P84 according to the following steps.  

Firstly, polymer powders were dissolved by NMP in glass jars under room temperature. 

The jars were capped and settled in the hood under room temperature without stirring for at least 

a week until totally dissolved (there were no visible polymer powder particles and the solution is 

visibly transparent while the color is evenly distributed).   

The solutions were poured on a glass plate and cast with a casting knife with a very slow 

rate under room temperature, with the thickness set to 50μm. Subsequently, films were dried in a 

vacuum oven at 50˚C for 12 hours, and then at 100˚C for 12 hours, and finally 150 ˚C for 48 hours 

to get rid of the solvent residues.  

The films were taken out of the oven, and peeled off the glass plate with a bit of water after 

cooling down to room temperature. The films were wiped with soft tissues and kept in the oven at 

100 ˚C overnight to remove any water residues. Naturally cooled films were conserved in a 

container with drierite (anhydrous Calcium Sulfate) inside.  
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3.2.3 Gas Permeability Measurement 

 

Figure 3.2 Schematic Diagram of Gas Permeability Measurement Apparatus 

 

Figure 3.3 Detailed Structure of Diffusion Cell 

             The permeability was measured using variable-pressure constant-volume method. Figure 

3.2 shows the schematic diagram of gas permeability measurement apparatus. The diffusion cell 

was employed that was separated into two compartments by a sample film (see in Figure3.3). 
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Before measuring gas flux, the system was kept under vacuum to remove residual air or other 

gases to obtain accurate measurements. The sample film, totally devoid of adsorbed gases, came 

in contact with the test gas at the top surface. The upstream pressure P0 of input feed was kept 

constant, while an increase in downstream pressure 𝑃 of the permeation chamber was directly 

measured by a pressure transducer (reading range 0-10 torr, accuracy 0.001torr).  

            Each sample was tested for 3 times for each kind of gas.  

            The downstream pressure increase rate 𝑑𝑝/𝑑𝑡  was measured under the temperature of 

35˚C, and upstream pressure of 132 psig (10atm). The measurement sequence of single gas 

permeability was according to the sequence of the kinetic diameter of the gas molecules: CH4 (3.80 

Å)>N2 (3.64 Å)>Ar (3.40Å)>CO2 (3.30 Å)>H2 (2.89 Å)>He (2.60 Å) [62, 63].  And the 

permeability is calculated from the following relationship 

 𝑃𝐴 =
273.15 × 1010𝑉𝑙

760𝐴𝑇 (
𝑃0 × 76

14.7
)

× (
𝑑𝑝

𝑑𝑡
)                                        (3.1) 

            Where  PA is permeability of gas A through films in Barrer (1Barrer=1×10-10cm3(STP)-

cm/cm2sec cmHg), and V is the volume of downstream chamber (cm3). l is the average film 

thickness (cm). 𝑇 is the operating temperature (K). 𝐴 is the effective area of film (cm2), 𝑃0  is 

upstream pressure (psia). The ideal selectivity from gas A to gas B is defined as below: 

𝛼𝐴/𝐵 =
𝑃𝐴

𝑃𝐵
                                                                             (3.2) 
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 3.3 Results and Discussion 

 3.3.1 Permeability and Mass Fraction of Matrimid 

Figure 3.4 Permeability of Matrimid/P84 Blend Films 
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Figure 3.4 is a summary of permeabilities of each single gas for Matrimid/P84 blend films. 

It is apparent that for all gases, the permeability of pure Matrimid films is larger than that of pure 

P84 films, and the permeability of blend films are bracketed by pure polymers. And there is an 

apparent trend that the permeability of each gas increases with Matrimid content. 

For smaller gas molecules He, H2, CO2 and Ar, from 0-50 Matrimid wt. %, the rate of 

increase is slower than that for 50-100 Matrimid wt. %. It demonstrates that the permeability of 

50/50 blend films is more like that of pure P84 film than that of pure Matrimid.  

For larger gas molecules CH4 and N2, there is no sudden change in the rate of increase. 

The permeability increases smoothly as Matrimid wt. % increases. But the permeability of 50/50 

blend film is still more similar to pure P84 than that pure Matrimid. 

For each sample film, the permeability values of gases follow the sequence of 

CH4<N2<Ar<CO2<H2<He, which is the opposite of gas molecular kinetic diameters.  

In conclusion, permeability of each gas has an apparent increasing trend when Matrimid 

mass fraction increases. For small molecule gases H2, He, CO2, Ar, there are two stages where the 

increasing rate of the first stage is slower than that of the second stage. For large molecules N2 and 

CH4, the increase is smooth with Matrimid mass fraction.  

 3.3.2 Selectivity and Permeability 

 A plot of selectivity versus permeability in relation to Robeson’s upper bound limit line 

[64] to show the tradeoff between permeability and permselectivity is presented in Figure 3.5 and 

Figure 3.6 for the gas pair H2/N2 and CO2/CH4, separately. Each point in the figure represent the 

transport data for one sample stamp. 

Figure 3.5 indicates transport properties for gas pair H2/N2. The selectivity-permeability 

relationship follows generally follows the trend of the trade-off line of Robeson. Similar to 
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reference [31, 65] , pure P84 films have lower permeability but higher selectivity than pure 

Matrimid films. Both this study and reports in the literature have results in the same general range, 

and all below the Robeson upper limit line.  

 

Figure 3.5 Permselectivity of H2/N2 versus H2 permeability. 10 atm, 35 ̊C 

Figure 3.6 indicates transport properties for gas pair CO2/CH4. There is no apparent relation 

between permselectivity and permeability of the films. The selectivity-permeability relationship 

follows generally follows the trend of the trade-off line of Robeson. CO2/CH4 selectivity is closer 

to other groups [66, 67, 68, 69, 31, 70, 65] than that of H2/N2. Pure P84 film has been reported 

elsewhere to have a smaller permeability but higher selectivity than in this study. Pure Matrimid 

films reported elsewhere have larger permeability but the selectivity is comparable to this study.  

Both this study and reports in the literature have results in the same general range, and all below 

the Robeson upper limit line.  
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Figure 3.6 Permselectivity of CO2/CH4 versus CO2 permeability. 10 atm, 35 ̊C 

A complete summary of permeability and selectivity of Matrimid/P84 blend films was 

shown in Appendix B.  

 3.3.3 Permeability and Polymer Volume Fraction 

             In Robeson’s paper [71], models have been talked about to predict the permeability of 

miscible blends and partial-miscible blends. For miscible blends, a mostly commonly used 

equation was applied 

𝑙𝑛 𝑃𝑏 = 𝜙1𝑙𝑛𝑃1 + 𝜙2𝑙𝑛𝑃2                                                      (3.3) 

            Where 𝑃𝑏, 𝑃𝑏, and 𝑃2 are the permeability of the blend, pure Matrimid and pure P84. 𝜙1 

and 𝜙2  are the respective volume fractions of Matrimid and P84. The volume fraction was 

calculated from the following equation [72, 73]:  
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𝜙1 =

𝑤1
𝜌1

𝑤1
𝜌1

+
𝑤2
𝜌2

                                                                      (3.4) 

            Where 𝜌1, 𝜌2 are the densities of pure Matrimid and pure P84 films, and 𝑤1, 𝑤2 are the 

mass fraction of pure Matrimid and pure P84 films. Volume fraction can be calculated by [74] 

𝜙1 =  𝑤1 ×
𝜌𝑏𝑙𝑒𝑛𝑑

𝜌1
                                                                (3.5) 

            The comparison of volume fractions calculated from two methods is shown in Table 3.1. 

The results have very small difference which won’t influence the discussion in this part. In the 

following discussion, the volume fraction calculated from equation (3.5) is employed.  

Table 3.1 Comparison of Two Methods of Calculation of Volume Fraction 

Matrimid Density Matrimid1 Matrimid2 

wt. % g/cc vol. % vol.% 

0.00 1.35 0.000 0.000 

0.25 1.33 0.265 0.266 

0.50 1.31 0.519 0.524 

0.75 1.28 0.764 0.768 

1.00 1.25 1.000 1.000 
1 is calculated from equation (3.4); 2 is calculated from equation (3.5). 

           For partial-miscible blends, there were four models talked about in Robeson’s paper [71]: 

parallel model, series model, Maxwell model and EBM model, with the equations in the below 

         Parallel Model                     𝑃𝑏 = 𝜙1𝑃1 + 𝜙2𝑃2                                                                     (3.6)          

          Series Model 

    𝑃𝑏 =
𝑃1𝑃2

𝜙1𝑃2 + 𝜙2𝑃1
                                                                     (3.7) 

           Maxwell’s Model  

𝑃𝑏 = 𝑃𝑚

𝑃𝑏 + 2𝑃𝑚 − 2𝜙𝑏(𝑃𝑚 − 𝑃𝑏)

𝑃𝑏 + 2𝑃𝑚 + 𝜙𝑏(𝑃𝑚 + 𝑃𝑏)
                                        (3.8) 
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             Where b is the blend, m is the continuous phase, and d is the dispersed phase.               

             EBM model (the Equivalent Box Model) 

𝑃𝑏 = 𝑃1𝜙1𝑝 + 𝑃2𝜙2𝑝 +
(𝜙1𝑠 + 𝜙1𝑠)2

𝜙1𝑠

𝑃1
+

𝜙2𝑠

𝑃2

                                       (3.9) 

            Where b is for blend, m is for continuous phase, d is for dispersed phase, P is for 

permeability, and ϕ is for volume fraction, 1 and 2 are for two components. 𝜙1𝑝, 𝜙2𝑝, 𝜙1𝑠, 𝜙1𝑠 are 

defined by the expressions 

            𝜙1𝑝 = [(𝜙1 − 𝜙1𝑐𝑟)/(1 − 𝜙1𝑐𝑟)]𝑇1         𝜙1𝑠 = 𝜙1 − 𝜙1𝑝                        (3.10)                  

       𝜙2𝑝 = [(𝜙2 − 𝜙2𝑐𝑟)/(1 − 𝜙2𝑐𝑟)]𝑇2         𝜙2𝑠 = 𝜙2 − 𝜙2𝑝                       (3.11) 

            Where 𝜙1𝑐𝑟 , 𝜙1𝑐𝑟 are critical threshold percolation values of component 1 and 2, and 𝑇1, 𝑇2 

are the critical universal exponents for the components. For discrete spherical domains,  

𝜙1𝑐𝑟 = 𝜙1𝑐𝑟 = 0.156 

𝑇1 = 𝑇2 = 1.833   

            But in the regions of low concentration  

𝜙1𝑝 = 0       𝜙1𝑠 = 𝜙1    (𝑤ℎ𝑒𝑛 0 < 𝜙1 < 𝜙1𝑐𝑟) 

𝜙2𝑝 = 0       𝜙2𝑠 = 𝜙2    (𝑤ℎ𝑒𝑛 0 < 𝜙2 < 𝜙2𝑐𝑟) 

            Figure 3.7 is a summary of the six models applied to correlate permeability of CH4 and 

volume fraction of Matrimid. And apparently the Series Model has the best simulation of the real 

experimental data. All the data fits in the series model and the blend films present a partial-miscible 

characteristic here. Therefore, the series model has been selected as the model to describe the 

relationship between P and volume fraction for other gases.  
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Figure 3.7 Correlation of P(CH4) with Matrimid vol. % with Six Models for Matrimid/P84 

Blend Films 

            Figure 3.8 is the correlation of permeability of N2 with volume fraction of Matrimid. 

Similar as the performance of N2, the experimental data fits in the series model quite well with the 

consideration of error bars and the polymer blends present partial-miscible behavior.  

            Figure 3.9 is the correlation of permeability of Ar with volume fraction of Matrimid. The 

average value of permeability is above but near the miscible line at 76.3 vol. %. While at 51.8 vol. 

%, the average permeability is below but near the series model line. But considering the error bars, 

the permeability of Ar generally follows the Series Model line. And the blends represent partial-

miscible characteristic.  
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Figure 3.8 Correlation of P(N2) with Matrimid vol. % with Series Model for Matrimid/P84 

Blend Films 

 Figure 3.9 Correlation of P(Ar) with Matrimid vol. % with Series Model for Matrimid/P84 

Blend Films 
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            Figure 3.10 is the correlation of permeability of CO2 with volume fraction of Matrimid. 

The average value of permeability is above but near the series line at 76.3 vol. %. While at 51.8 

vol. %, the average permeability is slightly below but near the series model line. But considering 

the error bars, the permeability of CO2 can fit in the series model. And the blends represent partial-

miscible characteristic. In reference [75], the correlation of permeability of CO2 and volume 

fraction also fits the Series Model.  

           H2 and He have very similar transport behavior, as shown in Figure 3.11 and 3.12. The 

average value of permeability is above but near the miscible line at 76.3 vol. %. While at 51.8 vol. 

%, the average permeability is slightly below but near the series model line. But taking the error 

bars into account, the permeability of H2 and He can be considered to fit in the series model. And 

the blends represent partial-miscible characteristic. 

                  

Figure 3.10 Correlation of P(CO2) with Matrimid vol. % with Series Model for 

Matrimid/P84 Blend Films 
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Figure 3.11 Correlation of P(H2) with Matrimid vol. % with Series Model for 

Matrimid/P84 Blend Films  

Figure 3.12 Correlation of P(He) with Matrimid vol. % with Series Model for 

Matrimid/P84 Blend Films  
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 3.3.4 Permeability and Fractional Free Volume (FFV) 

            Free volume is an intrinsic property of the polymer matrix and arises from the gaps left 

between entangled polymers chains [76]. Permeability is defined as the product of the diffusion 

coefficient and the sorption coefficient, as shown in equation (3.3).   

𝑃 = 𝐷 ∙ 𝑆                                                                             (3.12) 

            Where P is permeability, D is the diffusion coefficient and S is the sorption coefficient. It 

has been indicated that free volume is among the most important factors that influence the diffusion 

coefficient, and the solubility also depends on free volume [2, 52, 76]. Greater free volume always 

means higher capacity of absorption and higher mobility of the molecules within matrix. The gas 

permeability is often correlated with the fractional free volume (FFV) in an amorphous polymer 

through the following equation [52] 

𝑃 = 𝐴𝑒𝑥𝑝 (−
𝐵

𝐹𝐹𝑉
)                                                               (3.13) 

Which can be transformed into 

𝑙𝑛𝑃 = 𝑚 + 𝑛 ×
1

𝐹𝐹𝑉
                                                               (3.14) 

Where A, B, m, and n are adjustable constants.  

The calculation of fractional free volume has been discussed in Chapter 2 and there are two 

groups of FFV which were calculated from two different database of van der Waal’s volumes, and 

for convenience, the two database were referred as Resource I [52] and Resource II [53].  

The algorithm of the permeability as a function of reciprocal fractional free volume is 

shown in Figure 3.13 (Resource I) and Figure 3.14 (Resource II). Dashed lines are simulated linear 

trend lines. Figure 3.13 shows that except for small deviations for Argon, a linear relation exists 

between 𝑙𝑛𝑃 and 1/𝐹𝐹𝑉, which is in agreement with equation (3.13). The permeability decreases 
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with increasing reciprocal fractional free volume, in another word, the permeability increases with 

increasing fractional free volume. Same rules appeared in Figure 3.14.  

 

Figure 3.13 Correlation of CH4, N2, Ar CO2, He, and H2 permeability with 1/FFV. For each 

gas, from left to right, the data points represent films of 100, 75, 50, 25, 0wt%Matrimid. 

FFV is calculated from Resource I [52] 

 

Figure 3.14 Correlation of CH4, N2, Ar CO2, He, and H2 permeability with 1/FFV. For each 

gas, from left to right, the data points represent films of 100, 75, 50, 25, 0wt%Matrimid. 

FFV is calculated from Resource II [53] 
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 3.4 Conclusion 

In this chapter, transport properties of Matrimid/P84 blend films were measured and 

discussed. The blend films exhibit partial-miscibility behavior.  

Permeability of each gas has an apparent increasing trend when Matrimid mass fraction 

increases. For small molecule gases H2, He, CO2, Ar, there are two stages where the increasing 

rate of the first stage is slower than that of the second stage. For large molecules N2 and CH4, the 

increase is smooth with Matrimid mass fraction.  

The selectivity-permeability relationship for gas pair H2/N2 and CO2/CH4 followed the 

trend of the trade off line of Robeson. The transport data in this study is in a reasonable range in 

comparison with reference. Both the data points in this study and in reference are below the 

Robeson’s upper limit line. Therefore, there is still large space for the enhancement of the transport 

properties of the Matrimid/P84 blend films.  

           The relationship between permeability and Matrimid volume fraction has been rationalized 

by applying a logarithmic relationship and the experimental data generally fits the series model 

line indicating that the blend films are partial-miscible.  

            The correlation of logarithm of permeability and reciprocal FFV indicates a linear 

relationship between the two parameters, which leads to a conclusion that permeability strongly 

depends on FFV. As 1/FFV increases, or as FFV decreases, the mobility of polymer is decreased 

and the structure is more rigid, and the space between polymer chains is reduced, therefore the 

permeability decreases.  
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Chapter 4 - Desorption of Liquid Solutes in Matrimid/P84 Blend 

Films 

  4.1 Introduction 

            Polyimide membrane is of interest because of the commercial availability and great 

transport properties. Combination of Matrimid which has higher permeability and selectivity, and 

P84 which has plasticization resistance, can hopefully develop blend membranes with a 

combination of the advantages of the two polymers. The sorption behavior of water or organic 

solvents in polymeric membrane materials such as polyimide, has a strong effect on the separation 

efficiency of the dense polymeric membranes.  

There are three modes of transport to explain the mechanism of desorption in this study 

[77]:  

(I) case I or Fick diffusion, occurred when the diffusion rate of penetrant molecules is 

much slower than the polymer chain relaxation; the flux follows the Fick’s Law 

and the solute dissolves into the polymer matrix and subsequently diffuses across 

the membrane due to the concentration gradient [78] 

(II) case II diffusion, occurred when the penetrant diffusion rate is much faster than the 

polymer chain relaxation; the diffusion has a sharp front and a linear kinetics and 

essentially no concentration gradient behind the front 

(III) case III or anomalous diffusion, occurred when the penetrant mobility and polymer 

chain relaxation rates are similar and two-stage sorption behavior can be observed 

sometimes. 
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In Wang’s paper [79], a combination of Fickian and case II mechanism were applied to 

study vapor desorption of dense films and the model used can fit the experimental data well. In 

Sun’s paper [80], a two-stage sorption models (case III) was used to describe the desorption 

behavior of water vapor in PHEMA membrane and can simulate the experimental data in an almost 

perfect way.  

In Sun’s model, the slow relaxation of the polymer chains due to sorption of penetrant is 

used to interpret the anomalies in the sorption kinetics. When a penetrant enters the polymer 

matrix, motions of whole or portions of glassy polymer chains are not sufficiently rapid to 

completely homogenize the penetrant’s environment. Penetrants can thus potentially rest the holes 

or irregular cavities with very different intrinsic diffusional mobilities.  

The relative magnitude of the rates of diffusion and relaxation processes is a major factor 

determining the anomalous effects in polymer-penetrant diffusion. A diffusion Deborah number 

( (𝐷𝐸𝐵)𝐷) [77, 81]was proposed to characterize this quantity:  

(𝐷𝐸𝐵)𝐷 =
𝑡𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛

𝑡𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
=

𝜆𝑚

𝜃𝐷
                                                   (4.1) 

Where 𝜆𝑚 is the characteristic time of the relaxation and 

   𝜃𝐷 =
𝐿0

2

𝐷
                                                                 (4.2)  

Where L0 is the sample dimension in the direction of transport and D is the diffusion 

coefficient. 

If the relaxation follows a first-order kinetics [82], the characteristic time 𝜆𝑚 is represented 

by the reciprocal of the first-order rate constant k: 

𝜆𝑚 =
1

𝑘
                                                                      (4.3) 

             Therefore the diffusion Deborah number can be expressed as  
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(𝐷𝐸𝐵)𝐷 =
𝐷

𝑘𝐿0
2                                                                    (4.4) 

Which is proportional to the ratio of the diffusion rate of a penetrant to the relaxation rate 

of the polymer system. When both the rate of diffusion and relaxation are similar in magnitude, 

anomalous diffusion dominate. On the other hand, when one of them is much larger than the other, 

Fickian diffusion will be in domain.  

When (𝐷𝐸𝐵)𝐷 ≫ 1, the diffusion is much faster than the rate of the polymer relaxation 

and the glassy state is preserved, the ‘elastic’ Fickian diffusion prevails. While for(𝐷𝐸𝐵)𝐷 ≪ 1, 

the polymer relaxes to a rubbery state in a speed much faster than the diffusion of the penetrant, 

the ‘viscous’ Fickian diffusion is expected. If (𝐷𝐸𝐵)𝐷 is of the order of unity, the diffusion process 

can be described as ‘viscoelastic’.  

Two-stage sorption is one of the notable non-Fickian features of glassy polymer system 

[82, 83, 84].  In this study, two-stage desorption from a desorption experimental of different 

solvent in Matrimid/P84 blend films were observed. Correlation of the data with mathematical 

models to track down the kinetic and equilibrium parameters of the system. The variable surface-

concentration model proposed by Long and Richman gave a satisfactory fitting of the experimental 

data.  

            In this chapter, a series of mass ratios of Matrimid/P84 blended films were prepared. And 

the desorption of water, methanol, toluene, 1-propanol, 2-propanol, and butanol for the blend films 

have been studied experimentally and interpreted mathematically with three models. By 

comparing some similar and different features of these three models, a general discussion of the 

advantages and limitations of these models is presented.  
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 4.2 Experimental  

 4.2.1 Materials   

            Matrimid 5218 (poly [3, 3’4, 4’-benzophenone tetracarboxylic dianhydride and 5(6)-

amino-1-(4’-aminophenyl-1, 3-trimethylindane)], BTDA-DAPI) was supplied by Huntsman 

Advanced Materials Americas Inc. P84 (copolyimide of 3, 3’4, 4’-benzophenone tetracarboxylic 

dianhydride and 80% methylphenylenediamine + 20% methylenediamine) was provided by HP 

Polymer Inc. NMP (N-Methyl-2-pyrrolidone, purity 99%) was supplied by Sigma-Aldrich. 2-

propanol (purity 99.9%), 1-butanol (purity 99.9%), toluene (purity 99.9%), methanol (purity 

99.9%), and 1-propanol (purity 99.9%) were supplied by Fisher Scientific. All solvents were used 

as received. Water was deionized water supplied directly to the lab.   

 4.2.2 Preparation of Matrimid/P84 Blend Films  

The films were prepared by a casting method. Polymer solutions (20 wt. % polymer/80 wt. 

% NMP) with various compositions of 0/100, 10/90, 25/75, 50/50, 75/25, 90/10,100/0 g/g were 

prepared from Matrimid and P84 according to the following steps.  

Firstly, polymer powders were dissolved by NMP in glass jars under room temperature. 

The jars were capped and settled in the hood under room temperature without stirring for at least 

a week until totally dissolved (there were no visible polymer powder particles and the solution is 

visibly transparent while the color is evenly distributed).   

The solutions were poured on a glass plate and cast with a casting knife with a very slow 

rate under room temperature, with the thickness set to 50μm. Subsequently, films were dried in a 
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vacuum oven at 50˚C for 12 hours, and then at 100˚C for 12 hours, and finally 150 ˚C for 48 hours 

to get rid of the solvent residues.  

            The films were taken out of the oven, and peeled off the glass plate with a bit of water 

after cooling down to room temperature. The films were wiped with soft tissues and kept in the 

oven at 100 ˚C overnight to remove any water residues. Naturally cooled films were conserved in 

a container with drierite (anhydrous Calcium Sulfate) inside.  

 4.2.3 Desorption Measurement of Liquid Solutes in Matrimid/P84 Blend Films 

              Dense films were cut into stamps, dried in the oven at 100˚C overnight and weighed 

before immersed into solvents (n-butane, water, toluene, methanol, 1-propanol, 2-propanol). The 

samples were weighed before immersion, then weighed again after a week and maintained in 

solvent bath for three month.   

            For each solvent desorption measurement, a sample was taken out of the solvent bath, 

wiped gently and quickly, and put on the zeroed digital scale (accuracy=0.001g). Consider the time 

as zero when the sample was put on the scale and record the mass at the initial time. Read the scale 

for every 10 seconds for the first 1 minutes, every 30 seconds for the following 5 minutes, every 

60 seconds for the following 5 minutes, every 5 minutes for the following 30 minutes, every 15~20 

minutes for the following time. The total measure time varies from 2 hours to one week.  

            The sample was dried at 120 ˚C overnight before taken out. Mass and Thickness measured 

again.  

            Because the mathematical models used in this study are all used in the form of sorption, 

the mass uptake is also presented in the form of sorption. The uptake of desorption has been 

transferred in to the form of sorption by the way of: 
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(
𝑀𝑡

𝑀∞
)𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = (1 −

𝑀𝑡

𝑀∞
)𝑑𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛                                          (4.5) 

      Where (𝑀𝑡)desorption equals to mass at time t deducted by mass of dry film, (𝑀𝑡)desorption 

equals to mass at time zero deducted by mass of dry film. And every 
𝑀𝑡

𝑀∞
 that appears in the 

following content represents mass uptake in sorption.  

 4.2 Mathematical Models for Desorption 

 4.2.1 Crank’s Model 

A model from Crank [85] was applied in this paper to calculate diffusion coefficient of 

desorption: 

𝑀𝑡

𝑀∞
= 1 −

8

𝜋2
∑

1

(2𝑚 − 1)2
𝑒𝑥𝑝 [−

𝐷(2𝑚 + 1)2𝜋2𝑡

𝑙2

∞

𝑚=0

]                            (4.6) 

Where 𝑀𝑡  is the total amount of penetrant A (solute) absorbed by the polymer at time t, 

𝑀∞ is the equilibrium sorption mass and D is the Fickian diffusion coefficient.  

 4.2.2 Wang’s Model 

Wang and his coworkers [79] had studied the diffusion of organic vapors in glassy 

polymers in terms of a combination of Fickian and case II mechanism. The model used is shown 

below:  

𝑀𝑡

𝑀∞
= 1 − ∑

4𝑛2𝜋2 (1 − (−1)𝑛 𝑐𝑜𝑠ℎ (
𝜐𝑙
2𝐷

))

((
𝜐𝑙
2𝐷

)
2

+ (𝑛𝜋)2)

2

∞

𝑁=0

× 𝑒𝑥𝑝 (− (
𝑛2𝜋2𝐷

𝑙2
+

𝜐2

4𝐷
) 𝑡)        (4.7) 
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          Where 𝑀𝑡 is the total amount of penetrant (solute) absorbed by the polymer at time t, 𝑀∞ is 

the equilibrium uptake mass and D is the Fickian diffusion coefficient. 𝜐 is the velocity of case II 

diffusion and has been used as a stress coefficient to represent the effect of the differential stress 

on transport properties. 𝑙 is the thickness.  The value of  (
𝑣𝑙

2𝐷
) in the calculation of this study was 

1.  

 4.2.3 Variable Surface-Concentration Model 

A model proposed by Long and Richman [83] to provide a reasonable explanation for two-

stage sorption behavior. This model was transformed into a more generalized way by Sun [80] as 

below, assuming that the concentration at the film surface jumps to 𝐶0 as soon as the film contacts 

the vapor and then reaches a final concentration 𝐶∞ following a first order relaxation process. It is 

also assumed that the concentration of penetrant is symmetric at the center of the film.  

𝑀𝑡

𝑀∞
= 𝜙 (1 −

8

𝜋2
∑

exp (
−(2𝑛 + 1)2𝜋2𝜃

4 )

(2𝑛 + 1)2

∞

𝑛=0

) 

+(1 − 𝜙) (1 −
𝑡𝑎𝑛√𝜓exp (−𝜓𝜃)

√𝜓
−

8

𝜋2
∑

exp (
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 And the dimensionless variables are  

𝜃 =
𝐷0𝑡

𝐿2
       𝜓 =

𝑘𝐿2

𝐷0
       𝜙 =

𝐶0

𝐶∞
                                           (4.9) 

            Where 𝐿 is the half-thickness of the film, 𝑘 is the rate constant of the relaxation process, 𝜃 

is the dimentionless time, 𝜓  is the inverse of the diffusion Deborah number and 𝜙  is the 

equilibrium ratio constant which represents the ratio of the equilibriums of the first stage to that of 

the second stage in the sorption. The first part on the right-hand side of equation (4.7) is the 
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classical Fickian diffusion to the quasi-equilibrium (first stage), and is the weight uptake for the 

penetrant which enters due to diffusion down the concentration gradient set up by the initial surface 

concentration. The second part is for the penetrant which enters as a result of the time dependence 

of the surface concentration change.  

 4.3 Results and Discussion 

 4.3.1 Investigation of Experimental Data 

The experimental desorption data were first plotted in the form of uptake versus time. As 

shown in Figure 4.1, curves for blend films of successive desorption data for water in the form of 

𝑀𝑡

𝑀∞
 versus the square root of time were plotted as a standard example to show the desorption 

characteristics of all the solvents . The curves have an obvious two-stage characteristic. The first 

stage is linear, and the second stage is plateau. All the curves of solvents do not reach 

1(representing complete desorption), and possible reasons could be the polymerization or 

clustering of solutes due to hydrogen bonding [86] and trapping skinning [87] during desorption.  

Figure 4.1 Desorption Data of Water in Matrimid/P84 Blend Films. Room temperature, 

1atm.  
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The polymerization process is considered to be a purely random formation of hydrogen 

bonds. Cavities have been indicated to be present in glassy polymers [86]. As shown in Figure 4.2, 

penetrant molecules would be preferentially sorbed in cavities rather than the denser region of the 

matrix considering the need of degree of expansion. Despite the sorptive capacity of polymers, the 

polar groups of the polymers would also donate centers of nucleation for cluster growth. Formation 

of clusters would cause the decrease of diffusion coefficient with concentration.  

Figure 4.2 Polymerization of Penetrants in the Films 

Figure 4.3 Skinning Trapping  

As shown in Figure 4.3, Matrimid and P84 are glassy polymers when dried but in a rubbery 

state when saturated. The penetrates diffuse through glassy polymers in a slow rate but travel 

through rubbery polymers quickly. During the desorption of such a saturated film, often a glassy 
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region, or skin, develops at the exposed surface. The phenomenon that the film during desorption 

may have a glassy skin and rubbery inside material, is called literal skinning [87]. Then desorption 

process will be slowed by the skin due to the smaller diffusion coefficient of the glassy region. 

Trapping skinning is an anomalous special case of the skinning effect in which an increase in the 

force driving the desorption will actually decrease the accumulated flux through the boundary. 

This process is dominated by the viscoelastic stress, which is related the relaxation time of 

polymers, which is infinite in glassy polymers and instantaneous in rubbery polymers.  

4.3.2 General Comparison of Three Models 

Three mathematical models have been applied to fit the experimental data. Diffusion 

coefficients and relative parameters were calculated from the models and shown as below. From 

Table 4.1~4.3, the diffusion coefficient of solvent in Matrimid/P84 blend films are in the range of 

10-8~10-10 cm2/s. The experimental results show significant differences in the sorption speed of 

solute liquids in the two polyimides. The desorption of toluene, 1-propanol, water, methanol is 

very fast compared to the desorption of 2-propanol and butanol. Table 4.4 are the parameters for 

Model III. 
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Table 4.1 Summary of Diffusion Coefficients Calculated from Model I 

Solvents M0 M10 M25 M50 M75 M90 M100 

Water  0.90   1.07 1.84 1.72   3.88 

Methanol      2.26 3.46 1.98   6.24 

1-Propanol      0.01 4.40 5.11   1.55 

Butanol    0.08   0.04 0.10 0.25 0.39 

Toluene        2.54 5.23 3.55   

2-Propanol          0.07 0.13 0.08 

       Unit: 108 cm2/s  

       Condition: Room Temperature, 1atm 

Table 4.2 Summary of Diffusion Coefficients Calculated from Model II 

Solvents M0 M10 M25 M50 M75 M90 M100 

Water  0.23   0.25 0.50 0.50   1.00 

Methanol      0.50 0.90 0.50   1.40 

1-Propanol      0.002 1.00 1.40   0.40 

Butanol    0.04   0.01 0.03 0.05 0.10 

Toluene        0.58 1.20 0.08   

2-Propanol          0.02 0.03 0.02 

       Unit: 108 cm2/s  

       Condition: Room Temperature, 1atm 

Table 4.3 Summary of Diffusion Coefficients Calculated from Model III 

Solvents M0 M10 M25 M50 M75 M90 M100 

Water  1.10   1.20 1.50 2.00   1.50 

Methanol      1.50 3.00 1.20   4.00 

1-Propanol      0.012 2.50 3.00   1.30 

Butanol    0.15   0.035 0.07 0.10 0.25 

Toluene        1.50 2.50 2.00   

2-Propanol          0.20 0.30 0.26 

       Unit: 10-8 cm2/s  

       Condition: Room Temperature, 1atm 
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Table 4.4 Parameters of Model III 

  k*106 (s-1) 

  M0 M10 M25 M50 M75 M90 M100 

Water 0.00488   0.0158 0.651 2.33   4.03 

Methanol    37.2 69.4 51.0   172 

1-Propanol     0.281 0.796 52.8   3.36 

Butanol   0.619   0.258 0.283 0.434 0.510 

Toluene       0.851 2.75 2.70   

2-Propanol         3.20 4.45 4.07 

 

 

  ψ=k*L2/D0 

  M0 M10 M25 M50 M75 M90 M100 

Water 0.000001   0.00001 0.001 0.001   0.002 

Methanol    0.02 0.05 0.035   0.04 

1-Propanol     0.015 0.0007 0.015   0.002 

Butanol   0.0023   0.015 0.0034 0.003 0.002 

Toluene       0.0012 0.0012 0.004   

2-Propanol         0.011 0.0095 0.011 

              Ψ is dimensionless. 

 

  ф=C0/Cf 

  M0 M10 M25 M50 M75 M90 M100 

Water 0.48   0.52 0.57 0.70   0.80 

Methanol    0.55 0.50 0.60   0.65 

1-Propanol     0.40 0.50 0.62   0.55 

Butanol   0.53   0.36 0.48 0.52 0.52 

Toluene       0.62 0.72 0.72   

2-Propanol         0.30 0.32 0.30 

              ф is dimensionless. 
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(a) 

 (b) 

Figure 4.4 Modelling of the Experimental Data for Water Desorption in 50 Matrimid % 

Blend Film. (a) Short time range (b) Whole time range. Room temperature, 1atm.  

From Figure 4.4, all the three models can simulate the experimental data reasonably well 

for short time stage. Only Model III can fit the second stage well, which became a plateau before 

reaching 1.  
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 4.3.3 Mass Fraction of Matrimid and Diffusion Coefficients in Three Models 

           The values of diffusion coefficients calculated from three models were summarized in 

Figure 4.5~Figure 4.10, and each figure is for one single solvent with the comparison of three 

models. I, II, II represent the three mathematical models.  

Figure 4.5 Comparison of Butanol Diffusion Coefficients of Three Models versus Mass 

Fraction of Matrimid. Room temperature, 1 atm.  

For the desorption of butanol, as shown in Figure 4.5, for all models diffusion coefficients 

increase from 50%-100% Matrimid. D has a relatively high value at 10wt% Matrimid. The 

thickness of samples of 10%, 50%, 75%, 90%, 100%  are 0.00472, .00902, 0.0058, 0.00526, 

0.00626 cm, and the weights are: 0.0922, 0.4042, 0.2691, 0.2234, 0.3093 g. Considering the 

thickness and small mass of 10wt% sample, D value at 10wt% may be less reliable.  

D values for each fraction are in a sequence of: Model I> Model III> Model II, except that 

for the 10wt% Matrimid, D of model III is the largest one.  
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Figure 4.6 Comparison of Water Diffusion Coefficients of Three Models versus Mass 

Fraction of Matrimid. Room temperature, 1 atm. 

 

Figure 4.7 Comparison of Toluene Diffusion Coefficients of Three Models versus Mass 

Fraction of Matrimid. Room temperature, 1 atm. 
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             Figure 4.6 is the desorption diffusion coefficients of water versus Matrimid mass fraction. 

For model I, II and III, D is increasing with Matrimid. Model II has the lowest values for each 

mass fraction. The D of Model I is similar to or slightly smaller than the D of Model of II when 

the Matrimid fraction is 0 and 25wt%. But when Matrimid fraction is 50-100wt%, D of Model I is 

the largest. The calculated D for pure Matrimid is smaller than reference data [78], but of the same 

magnitude.  

            For the desorption of toluene, as shown in Figure 4.7, the changing trend of diffusion 

coefficient versus Matrimid% has a maximum for each mass fraction, D follows the sequence: 

75wt%Matrimid> 50wt% Matrimid> 90wt% Matrimid. For each model, D follows the sequence: 

Model I > Model III > Model II. Compared with the reference diffusion coefficients of individual 

polymers, the results in this study for toluene are higher than reference value, but of the same 

magnitude. 

            As Figure 4.8 indicates, the diffusion coefficient of methanol increases with mass fraction 

of Matrimid for all three models, except that D is lower than nearby values at 75% Matrimid. The 

diffusion coefficient values at each mass fraction is following the sequence: Model I> Model III> 

Model II. And the Ds of three models for pure P84 are similar.  

            In Figure 4.9, for all three models, the diffusion coefficient of 1-Propanol increases with 

mass fraction of Matrimid from 25% to 75% Matrimid, and then falls down to pure Matrimid. The 

sequence of D values are: Model I>Model III> Model II, except that D of pure Matrimid for Model 

III is lower than the other two.  

            In Figure 4.10, for all three models, the diffusion coefficients of 2-propanol increase from 

75% to 90% Matrimid and falls down to 100% Matrimid. The sequence of D values are: Model 

III>Model I> Model II. Reference [88] diffusion coefficients for individual polymer films were 
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also marked in the figure. It is apparent that results from this study are in the same magnitude with 

reference values. What’s more, D of pure Matrimid calculated from Model I is quite close with 

reference value.  

 

Figure 4.8 Comparison of Methanol Diffusion Coefficients of Three Models versus Mass 

Fraction of Matrimid. Room temperature, 1 atm. 

Figure 4.9 Comparison of 1-Propanol Diffusion Coefficients of Three Models versus Mass 

Fraction of Matrimid. Room temperature, 1 atm. 

   

0.0

2.0

4.0

6.0

8.0

25 50 75 100

D
·1

0
8

cm
2
/s

Mass Fraction of Matrimid/%

Methanol I Methanol II Methanol III

0

1

2

3

4

5

6

25 50 75 100

D
·1

0
8

cm
2
/s

Mass Fraction of Matrimid/%

1-Propanol I 1-Propanol II 1-Propanol III



 

60 

Figure 4.10 Comparison of 2-Propanol Diffusion Coefficients of Three Models versus Mass 

Fraction of Matrimid. Room temperature, 1 atm. 

 4.3.4 Diffusion Coefficients and Relaxation Rate Constant k 

From section 4.3.3, it is easy to find out water and butanol present similar desorption 

characteristic, which is that D increases with Matrimid mass fraction, if not considering 

10%Matrimid (which is not reliable) for butanol. And methanol also presents similar trend except 

that a lower D at 75%Matrimid. While different from methanol, the desorption of toluene, 1-

propanol, and 2-propanol have larger D at 75% Matrimid.  Since it is concluded that Model III is 

the best of the three models to simulate the desorption behavior of liquid solutes in this study, the 

theory of Model III is discussed here to explain the behavior. As talked above, when case III 

applies, the relaxation rate and diffusion rate are similar ((𝐷𝐸𝐵)𝐷 ≈ 1). Therefore, it is reasonable 

to predict that the changing rule of diffusion coefficient versus film composition in Model III has 

a parallel relationship with that of relaxation constant k versus film composition.  

Figure 4.11 shows the similar trend of k with Matrimid% for 1-Propanol, 2-Proponal, and 

Toluene. They all have a larger relaxation constant k at 75%Matrimid than other fraction. The 
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trend of k is consistent with the trend of diffusion coefficient for Toluene, 1-Propanol, and 2-

Proponal, as shown in and Figure 4.7, Figure 4.10, and Figure 4.11.   

 Figure 4.12 shows that k of methanol increases with Matrimid mass fraction except the 

lower k at 75%Matrimid, and the same relationship between D of methanol and Matrimid mass 

fraction has been found.    

In Figure 4.13 and Figure 4.14, k for water and butanol increases with mass fraction, and 

same relationship have been found between D and Matrimid mass fraction, again, as in Figure 4.6 

and Figure 4.5.  

            From the discussion in this section, the changing behavior of D versus Matrimid mass 

fraction follows the changing behavior of k versus Matrimid mass fraction. This results is in 

agreement with the prediction made before. Model III is further proved to be an appropriate model 

to simulate and explain the desorption behavior of the liquid solutes in this study. In conclusion, 

the diffusion of the desorption in this study follows the mechanism of case III, which is anomalous 

diffusion, where relaxation rate and diffusion rate are similar.  

 

Figure 4.11 Values of k for 1-Propanol, 2-Propanol, and Toluene.  
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Figure 4.12 Values of k for Methanol 

 

Figure 4.13 Values of k for Water 

 

Figure 4.14 Values of k for Butanol 
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 4.4 Conclusion 

In this study, desorption data of water, methanol, toluene, 1-propanol, 2-propanol, and 

butanol were obtained from experiments and simulated with three models of mechanisms of 

standard Fickian, combination of Fickian and case II, and case III. The third model has been proved 

to best fit the experimental data.  

The desorption uptake versus time have a strong two-stage characteristic, which have a 

rapid increase at first and then a very slow increase or a plateau. The uptake cannot reach 1 for 

each solvent, possibly because of penetrant clustering and skinning trapping.  

The diffusion coefficients have been calculated with three models. In model III, the 

changing rule of diffusion coefficient with mass fraction of Matrimid is in consistence with 

changing rule of relaxation rate constant k with mass fraction. And this is in agreement with the 

condition of model III that the relaxation rate and diffusion rate are similar. Model III is again been 

approved to be suitable to explain the desorption behaviors in this study, which is anomalous 

diffusion.  
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Chapter 5 - Conclusion 

In this study, Matrimid/P84 blend films were prepared and characterized for physical, 

thermal, and transport properties. Relative mathematical models or equations have been applied to 

simulate the experimental results and explain the behavior of the blend films.  

            The blend films were visibly transparent and the color was distributed evenly on the film 

sheet. As the content of P84 increases, the blend films have less space, smaller d-spacing, higher 

density and smaller FFV. Thermal mass loss curve of the blend films in air have presented 

intermediate characteristic with rising fraction of Matrimid compared to individual polymers. But 

for TGA in nitrogen, no apparent rationale have been found, possibly caused by residual solvent 

due to differences in pre-treatment.  

Permeability of each gas increases with the mass fraction of Matrimid, due to the increasing 

fractional free volume. A linear relationship has been found between lnP and 1/FFV. The 

selectivity-permeability relationship of gas pair H2/N2 and CO2/CH4 followed the trend of the trade 

off line of Robeson. The transport data in this study is in a reasonable range in comparison with 

reference. Both the data points in this study and in reference are below the Robeson’s upper limit 

line. Therefore, there is still large space for the enhancement of the transport properties of the 

Matrimid/P84 blend films. The relationship between permeability and Matrimid volume fraction 

has been rationalized by applying a logarithmic relationship and the experimental data generally 

fits the series model line indicating that the blend films are partial-miscible. In another word, the 

blend films exhibited partial-miscibility behavior.  

The desorption behavior of water, methanol, toluene, 1-propanol, 2-propanol, and butanol 

have been simulated with three models and only case III model can reasonably describe the two-

stage characteristic of the uptake curve. In this case, the relaxation rate and diffusion rate are 
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similar, which have been proved by the similar changing behaviors of diffusion coefficient and 

relaxation rate constant as Matrimid mass fraction increases.  

Further study would be the preparation and characterization of the Matrimid/P84 blend 

membranes. Physical, thermal and transport properties should be measured. Plasticization pressure 

should be measured. The influence of temperature on the permeability of blend membranes should 

be studied. And furthermore, crosslinking should be applied to improve the transport behavior of 

blend membranes. 
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Appendix A - Physical Properties of Matrimid/P84 Blend Films 

 A.1 Density 

Table A.1 Calibration of Density Gradient Column with Standard Density Beans 

Color of Beans Position of Beans Density 

    g/cm3 

Red 26.8 1.18 

White 32.8 1.20 

Blue 47.2 1.24 

Green 51.4 1.25 

Red 55.8 1.26 

Yellow 64.8 1.28 

Brown 73.3 1.30 

Green 88.0 1.34 

Clean 96.0 1.36 
 

Figure A.1 Calibration of Density Gradient Column 

y = 0.0025x + 1.1164
R² = 0.9981

1.16

1.18

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1.34

1.36

1.38

20.0 40.0 60.0 80.0 100.0

d
en

si
ty

 (
g

/c
m

3
)

Position of Standard Beans



 

76 

            R2=0.9981, is approaching 1, which indicates that the distribution of the standard density 

beans in the density gradient column are very linear. The column can function in a satisfactory 

way for the measurement. The absolute error of position reading is ±0.1. Then the absolute error 

of density is 0.0025×(±0.1)= ±0.00025 g/cm3, which is very small and can be negligible. 

Table A.2 Density of Matrimid/P84 Blend Films 

Matrimid Position Density 

wt. %   g/cm3 

0 92.0 1.35 

25 85.0 1.33 

50 76.3 1.31 

75 65.0 1.28 

100 55.0 1.25 

 

Figure A.2 Density of Matrimid/P84 Blend Films 
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 A.2 FFV 

             Values of van der Waal’s volume of group k were obtained from two resources: van 

Krevelen and Nijenhuis’s book [53] (Resource I), Park and Paul’s paper [52] (Resource II). The 

difference of values of 𝑉𝑤  caused difference of calculated fractional free volumes from two 

resources. Table A.3~A.5 were calculated from the Resource I and Table A.6~A.8 were calculated 

from Resource II.   

               Values of van der Waals volumes from the literature were in the unit of cm3/mol, which 

were transferred to cm3/g as below  

𝑉𝑤 =
∑(𝑉𝑤)𝑘𝑛𝑘

∑(𝑀𝑊)𝑘𝑛𝑘
=

𝑐𝑚3/𝑚𝑜𝑙

𝑔/𝑚𝑜𝑙
= 𝑐𝑚3/𝑔 

                The van der Waal’s volumes of blends were calculated by the equation [89, 90, 91] 

(𝑉𝑤)𝑏𝑙𝑒𝑛𝑑𝑠 = 𝑤1(𝑉𝑤)1 + 𝑤2(𝑉𝑤)2           [
𝑐𝑚3

𝑔
]     

                 Where 𝑤1, 𝑤2 are the mass fraction of individual polymers, and (𝑉𝑤)1, (𝑉𝑤)2 are the 

van der Waal’s volumes of individual polymers. FFV is calculated from equation (2.1) and 

equation (2.2).  

                  Below are the chemical structures of Matrimid and P84.  
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Table A.3 Vw and MW of Groups in Matrimid (Resource I) 

Chemical Chemical  Vw MW n 

Formula Structure cm3/mol g/mol   

C8H3NO2 

 

69.4 145.11 2 

CO 

 

11.7 28.01 1 

C6H4 

 

43.3 76.10 1 

C6H3 

 

41.7 75.09 1 

C3H6 

 

30.7 42.08 1 

CH2 

 

10.23 14.03 1 

C 

 

3.3 12.01 1 

CH3 

 

13.67 15.03 1 
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Table A.4 Vw and MW of Groups in P84 (Resource I) 

Chemical  Chemical  Vw MW n 

Formula Structure cm3/mol g/mol   

C8H3NO2 

 

69.4 145.11 2 

CO 

 

11.7 28.01 1 

C6H4 

 

43.3 76.10 2X20% 

CH2 

 

10.23 14.03 1X20% 

C6H3 

 

41.7 75.09 1X80% 

CH3 

 

13.67 15.03 1X80% 
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Table A.5 FFV of Matrimid/P84 Blend Films (Resource I)  

  Matrimid Vw MW Vw V0 Density V FFV 

  wt. % cc/mol g/mol cc/g cc/g g/cc cc/g   

Referencea 0% 194.5 423.6 0.459 0.597 1.336 0.75 0.203 

This Study 

0% 214.162 423.572 0.506 0.657 1.346 0.74 0.115 

25%     0.512 0.666 1.329 0.75 0.116 

50%     0.518 0.674 1.307 0.77 0.119 

75%     0.525 0.682 1.279 0.78 0.128 

100% 293.4 552.57 0.531 0.690 1.254 0.80 0.134 

Referencea 100% 273.1 568.6 0.480 0.624 1.241 0.81 0.225 

Reference a is from [57].  

Table A.6 FFV of Matrimid/P84 Blend Films (Resource II) 

  Matrimid Vw MW Vw V0 Density V FFV 

  wt. % cc/mol g/mol cc/g cc/g g/cc cc/g   

Referencea 0 194.5 423.6 0.459 0.597 1.336 0.75 0.203 

This Study 

0 208.5 423.6 0.492 0.640 1.35 0.74 0.136 

25     0.499 0.649 1.33 0.75 0.137 

50     0.506 0.658 1.31 0.76 0.138 

75     0.513 0.667 1.28 0.78 0.146 

100 287.6 552.5 0.520 0.677 1.25 0.80 0.154 

Referencea 100 273.1 568.6 0.480 0.624 1.241 0.81 0.225 

Reference a is from [57].  
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Table A.7 Vw and MW of Groups in Matrimid (Resource II) 

Chemical  Chemical  Vw MW n 

Formula Structure cc/mol g/mol   

N 

 

4.33 14.01 2 

CO(aromatic) 

 

11.7 28.01 4 

CO(aliphatic) 

 

8.5 28.01 1 

C6H3 

 

40.8 75.08 3 

C6H4 

 

43.32 76.09 1 

CH2 

 

10.23 14.03 1 

C 

 

3.33 12.01 2 

CH3 

 

13.67 15.03 3 
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Table A.8 Vw and MW of Groups in P84 (Resource II) 

Chemical  Chemical  Vw MW n 

Formula Structure cc/mol g/mol   

N 

 

4.33 14.01 2 

CO(aromatic) 

 

11.7 28.01 4 

CO(aliphatic) 

 

8.5 28.01 1 

C6H3 

 

40.8 75.08 2 

C7H6 

 

54.47 90.12 0.8 

C13H10 

 

96.87 166.21 0.2 
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Appendix B - Permeability of Matrimid/P84 Blend Films 

Each sample were tested for three times to get the average permeability and average error. 

For each [gas, composition] group, there were three samples tested (except for 50%Matrimid, four 

samples were tested). Below are the kinetic diameters of gas molecules and the summaries of the 

permeabilities of gases for various composition.  

 

Table B.1 Kinetic Diameters and Molecular Weights of Gases  

Gas kinetic diameter MW 

  Å g/mol 

CH4 3.80 16.044 

N2 3.64 28.0134 

Ar 3.40 39.948 

CO2 3.30 44.01 

H2 2.89 2.016 

He 2.60 4.002602 
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Table B.2 Summary of Permeability of H2 in Matrimid/P84 Blend Films 

Matrimid P Relative Error Absolute Error 𝑃̅ 

wt. % barrer   barrer barrer 

0 

6.38 ± 12.08% ± 0.770 

5.99 ± 0.499 5.20 ± 2.49% ± 0.129 

6.38 ± 9.39% ± 0.599 

25 

7.29 ± 10.85% ± 0.790 

6.96 ± 0.627 7.22 ± 8.24% ± 0.595 

6.37 ± 7.79% ± 0.497 

50 

8.16 ± 7.16% ± 0.584 

7.60 ± 0.620 
7.16 ± 9.09% ± 0.651 

7.43 ± 3.51% ± 0.260 

7.65 ± 12.87% ± 0.985 

75 

11.4 ± 1.72% ± 0.196 

11.8 ± 0.887 12.0 ± 11.09% ± 1.33 

11.9 ± 9.49% ± 1.13 

100 

12.1 ± 3.04% ± 0.368 

14.0 ± 0.765 13.8 ± 3.34% ± 0.461 

16.1 ± 9.10% ± 1.46 

Figure B.1 Permeability of H2 vs. Matrimid Mass Fraction for Matrimid/P84 Blend Film 
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Table B.3 Summary of Permeability of He in Matrimid/P84 Blend Films 

Matrimid P Relative Error Absolute Error 𝑃̅ 
wt. % barrer   barrer barrer 

0 

7.16 ± 12.08% ± 0.864 

6.72 ± 0.560 5.85 ± 2.49% ± 0.145 

7.15 ± 9.39% ± 0.671 

25 

8.39 ± 8.24% ± 0.692 

7.91 ± 0.714 7.01 ± 7.79% ± 0.546 

8.33 ± 10.85% ± 0.904 

50 

8.18 ± 8.24% ± 0.674 

8.28 ± 0.774 
8.67 ± 7.16% ± 0.621 

7.78 ± 9.09% ± 0.708 

8.49 ± 12.87% ± 1.093 

75 

12.5 ± 9.49% ± 1.184 

12.1 ± 0.922 12.5 ± 11.09% ± 1.39 

11.4 ± 1.72% ± 0.20 

100 

15.5 ± 9.11% ± 1.414 

13.9 ± 0.750 12.1 ± 3.04% ± 0.367 

14.0 ± 3.34% ± 0.47 
 

Figure B.2 Permeability of He vs. Matrimid Mass Fraction for Matrimid/P84 Blend Film 
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Table B.4 Summary of Permeability of CO2 in Matrimid/P84 Blend Films 

Matrimid P Relative Error Absolute Error 𝑃̅ 
wt. % barrer   barrer barrer 

0 

1.58 ± 7.79% ± 0.123 

1.54 ± 0.105 1.34 ± 2.49% ± 0.033 

1.68 ± 9.39% ± 0.158 

25 

1.97 ± 8.24% ± 0.162 

1.81 ± 0.162 1.63 ± 7.79% ± 0.127 

1.82 ± 10.85% ± 0.197 

50 

1.70 ± 3.51% ± 0.060 

2.16 ± 0.181 
2.17 ± 7.16% ± 0.156 

2.80 ± 9.09% ± 0.254 

1.98 ± 12.87% ± 0.254 

75 

3.4 ± 9.49% ± 0.326 

3.5 ± 0.261 3.6 ± 11.09% ± 0.40 

3.5 ± 1.72% ± 0.06 

100 

5.3 ± 9.10% ± 0.483 

4.9 ± 0.261 4.7 ± 3.04% ± 0.143 

4.7 ± 3.34% ± 0.16 

Figure B.3 Permeability of CO2 vs. Matrimid Mass Fraction for Matrimid/P84 Blend Film 
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Table B.5 Summary of Permeability of Ar in Matrimid/P84 Blend Films 

Matrimid P Relative Error Absolute Error 𝑃̅ 
wt. % barrer   barrer barrer 

0 

0.13 ± 12.08% ± 0.016 

0.13 ± 0.010 0.13 ± 2.49% ± 0.003 

0.13 ± 9.39% ± 0.012 

25 

0.15 ± 8.24% ± 0.012 

0.16 ± 0.015 0.16 ± 7.79% ± 0.013 

0.18 ± 10.85% ± 0.019 

50 

0.14 ± 3.51% ± 0.005 

0.19 ± 0.016 
0.19 ± 7.16% ± 0.014 

0.25 ± 9.09% ± 0.023 

0.17 ± 12.87% ± 0.022 

75 

0.3 ± 9.49% ± 0.027 

0.4 ± 0.035 0.6 ± 11.09% ± 0.07 

0.3 ± 1.72% ± 0.01 

100 
0.6 ± 9.11% ± 0.054 

0.5 ± 0.023 
0.4 ± 3.34% ± 0.01 

 

 

Figure B.4 Permeability of Ar vs. Matrimid Mass Fraction for Matrimid/P84 Blend Film 
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Table B.6 Summary of Permeability of N2 in Matrimid/P84 Blend Films 

Matrimid P Relative Error Absolute Error 𝑃̅ 
wt. % barrer   barrer barrer 

0 

0.06 ± 12.08% ± 0.007 

0.06 ± 0.005 0.05 ± 2.49% ± 0.001 

0.06 ± 9.39% ± 0.006 

25 

0.07 ± 8.24% ± 0.006 

0.07 ± 0.006 0.06 ± 7.80% ± 0.005 

0.07 ± 10.85% ± 0.007 

50 

0.06 ± 3.51% ± 0.002 

0.08 ± 0.007 
0.08 ± 7.16% ± 0.006 

0.11 ± 9.09% ± 0.010 

0.08 ± 12.87% ± 0.010 

75 

0.1 ± 9.49% ± 0.011 

0.1 ± 0.010 0.2 ± 11.09% ± 0.02 

0.1 ± 1.72% ± 0.00 

100 

0.2 ± 9.10% ± 0.017 

0.2 ± 0.011 0.3 ± 3.04% ± 0.010 

0.2 ± 3.34% ± 0.01 
 

 

Figure B.5 Permeability of N2 vs. Matrimid Mass Fraction for Matrimid/P84 Blend Film 
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Table B.7 Summary of Permeability of CH4 in Matrimid/P84 Blend Films 

Matrimid P Relative Error Absolute Error 𝑃̅ 
wt. % barrer   barrer barrer 

0 

0.04 ± 12.08% ± 0.005 

0.04 ± 0.003 0.04 ± 2.49% ± 0.001 

0.05 ± 9.39% ± 0.005 

25 

0.05 ± 8.24% ± 0.004 

0.05 ± 0.004 0.05 ± 7.79% ± 0.004 

0.05 ± 10.85% ± 0.005 

50 

0.04 ± 3.51% ± 0.001 

0.07 ± 0.005 
0.07 ± 7.16% ± 0.005 

0.10 ± 9.09% ± 0.009 

0.06 ± 9.39% ± 0.006 

75 

0.1 ± 9.49% ± 0.009 

0.1 ± 0.007 0.1 ± 11.09% ± 0.01 

0.1 ± 1.72% ± 0.00 

100 

0.2 ± 9.10% ± 0.015 

0.2 ± 0.008 0.2 ± 3.04% ± 0.005 

0.1 ± 3.34% ± 0.00 
 

Figure B.6 Permeability of CH4 vs. Matrimid Mass Fraction for Matrimid/P84 Blend Film 
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Table B.8 Summary of Selectivity for Matrimid/P84 Blend Films 

Matrimid wt.% 0 25 50 75 100 

He/CH4 90.3 124 123 163 161 

He/N2 62.1 91.7 101 118 121 

He/Ar 27.7 28.8 44.0 48.5 51.3 

He/CO2 2.84 3.46 3.83 4.37 4.36 

He/H2 0.993 1.03 1.09 1.14 1.12 

H2/CH4 90.9 121 113 144 143 

H2/N2 62.5 89.4 92.6 104 108 

H2/CO2 2.86 3.37 3.52 3.85 3.89 

H2/Ar 27.9 28.1 40.4 42.7 45.7 

CO2/CH4 31.8 35.8 32.0 37.4 36.8 

CO2/N2 21.9 26.5 26.3 27.1 27.6 

CO2/Ar 9.78 8.33 11.5 11.1 11.8 

Ar/CH4 3.25 4.29 2.79 3.37 3.13 

Ar/N2 2.24 3.18 2.29 2.44 2.35 

N2/CH4 1.45 1.35 1.22 1.38 1.33 
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Figure B.7 Selectivity vs. P(H2) for H2/N2 Gas Pair in Comparison with Reference and 

Robeson Upper Limit Line. Each data in this study is the average value with error bars, 

from left to right, the content is from 0%Matrimid to 100%Matrimid 
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Figure B.8 Selectivity vs. P(CO2) for CO2/CH4 N2 Gas Pair in Comparison with Reference 

and Robeson Upper Limit Line. Each data in this study is the average value with error 

bars, from left to right, the content is from 0%Matrimid to 100%Matrimid 
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Figure B.9 Permeability versus Kinetic Diameter of Gas Molecules 
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Appendix C - Matrimid/PBI Blend Films 

 C.1 The Preparation of Matrimid/PBI Blend Films 

Figure C.1 Chemical Structure of PBI 

PBI has high thermal stability, and was added to Matrimid to produce a blend film with 

high transport performance and thermal stability.  

The films were prepared by a casting method. Polymer solutions (20 wt. % polymer/80 wt. 

% NMP) with various compositions of 0/100, 10/90, 25/75, 50/50, 75/25, 90/10,100/0 wt. % were 

prepared from Matrimid and PBI according to the following steps.  

Firstly, 18.5 wt. % polymer powders and 1.5 wt. % LiCl, were dried under vacuum at 120˚C 

overnight before used. Then 1.5 wt. % LiCl were dissolved in 80 wt. % NMP and stirred at 150 ˚C 

until totally dissolved. 18.5wt. % polymer powders were added to the solution and was capped and 

stirred at 250 ˚C for 24 hours.  

The hot solution was cast on a glass plate, which was preheated at 92.3 ˚C for at least one 

hours. The thickness was set to 600μm. Films were dried in a vacuum oven at 92.3˚C for 12 hours.   

The films were taken out of the oven, let cool down and peeled off the glass plate with a 

bit of water after cooling down to room temperature. The films were wiped with soft tissues and 

kept in the oven at 100 ˚C overnight to remove any water residues. Naturally cooled films were 

conserved in a container with desiccant inside.  
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 C.2 TGA in Air for Matrimid/PBI Blend Membrane 

The blend samples were immersed in methanol for 30 min for 3 times and immersed in 

hexane for 30min for 3 times and dried in a vacuum oven at 120 ˚C for two days before used in 

TGA test. 

   

Figure C.2 TGA Mass Loss Curve in air for Matrimid/PBI Blend Film. The mass loss shifts 

at 200, 250, 300 ˚C were because of the samples had been hold at those temperature for half 

an hour 
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Figure C.3 TGA Mass Loss Curve in air for Matrimid/PBI Blend Film. The mass loss of 

Figure C.2 was normalized to be 1 at 300 ˚C 

 

M0

M50

M50

M75

M100

0.5

0.6

0.7

0.8

0.9

1.0

300 400 500 600 700

M
as

s 
Lo

ss

T/˚C

M0 M25 M50 M50 M75 M100


