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Abstract 

 

Recent research on the communication of affection has illuminated its implications for mental 

and physical health.  In particular, affectionate communication has been shown to covary with 

healthy hormonal variation and accelerated recovery from stress.  The present study focuses on 

the association between marital affection and hormonal markers of stress regulation, including 

cortisol, dehydroepiandrosterone-sulfate (DHEA-S), and their ratio.  Twenty healthy adults and 

their spouses provided independent reports of their propensity for verbal, nonverbal, and support-

based expressions of affection prior to providing saliva samples that were assayed for cortisol 

and DHEA-S.  As hypothesized, spouses’ reports of verbal, nonverbal, and supportive affection 

significantly predicted participants’ waking cortisol levels, cortisol change, and cortisol:DHEA-S 

ratio.  Participants’ own reports of affection were predictive of cortisol:DHEA-S ratio for verbal 

affection behaviors only, and were not predictive of participants’ waking cortisol, cortisol 

change, or DHEA-S.  In addition, spouses’ reports of verbal, nonverbal, and supportive affection 

predicted participants’ evening cortisol levels.  Results illustrate that affectionate communication 

from one’s spouse is related to hormonal stress regulation and suggest the possibility that 

interventions designed to increase affectionate behavior in romantic relationships may have 

stress-ameliorating physiological effects. 
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Affectionate Communication Received from Spouses Predicts 

Stress Hormone Levels in Healthy Adults 

 

The expression of affection is among the most consequential communicative behaviors 

for the formation and maintenance of marriages and other significant pair bonds (Huston, 

Caughlin, Houts, Smith, & George, 2001; King & Christensen, 1983).  One reason why sharing 

affectionate communication may benefit marital partners is that it may help to diffuse the 

negative mental and physical effects of stress (see Floyd, 2006a).  Several recent investigations, 

detailed below, have demonstrated that affection exchange in personal relationships is associated 

with healthy stress regulation, which benefits individuals and may also benefit their relationships 

by extension.  The present study tests the hypothesis that spouses’ levels of affectionate 

communication with each other predict hormonal markers of stress regulation, including waking 

levels of the adrenal hormone cortisol, magnitude of morning-to-evening (diurnal) change in 

cortisol, levels of the adrenal prohormone dehydroepiandrosterone-sulfate (DHEA-S), and the 

cortisol:DHEA-S ratio (abbreviated hereafter as CDR).  As detailed below, stress is inversely 

related to affectionate communication, whereas it is directly related to CDR and inversely related 

to DHEA-S, waking cortisol, and diurnal variation in cortisol.  We expected, therefore, that 

marital affection predicts waking cortisol, cortisol variation, DHEA-S, and CDR, such that 

higher levels of affectionate behavior are associated with higher DHEA-S, waking cortisol, and 

cortisol variation levels and lower CDR scores.  For exploratory purposes, we also examined 

associations with cortisol levels measured at other points during the day.   
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Subsequently, we describe the relationship between affectionate communication and 

stress, and then provide detail regarding the biochemical markers of stress investigated herein.  

Specific hypotheses and research questions are then advanced. 

Affectionate Communication and Stress  

 The notion that affectionate behavior might ameliorate stress can trace its roots at least 

back to Harry Harlow’s pioneering research in the mid-20th Century.  Before Harlow’s work, 

experts discouraged overt expressions of affection between parents and children.  Psychologists 

predicted that receiving affectionate behavior would make children needy and demanding, and 

physicians warned that it would promote the spread of infectious diseases (Blum, 2002).  

Harlow’s now-classic experiments with infant macque monkeys suggested, however, that the 

need for affection is pervasive (even to the point of overriding more fundamental needs such as 

the need for food) and that receiving even inauthentic “expressions” of affection (via tactile 

contact with terrycloth-covered wire figures) induced calm and mitigated the effects of stressors 

(Harlow, 1958). 

In the last half century, various theories in the social sciences have taken up the question 

of why, and in what ways, affectionate behavior between humans might have some of the same 

stress-ameliorating psychological and physiological effects that Harlow observed among infant 

macques.  For instance, tend and befriend theory (TBT:  Taylor, Klein, Lewis, Gruenewald, 

Gurung, & Updegraff, 2000) provides that behavior aimed at fortifying personal relationships 

(such as the expression of affection) is beneficial for health because it ameliorates the 

physiological stress response.  In particular, TBT implicates the pituitary hormone oxytocin in 

the stress-reducing effects of tending and befriending behaviors.  Similarly, the stress-buffering 

hypothesis (SBH:  Cohen, Doyle, Skoner, & Gwaltney, 1997;) suggests that the more social 



Affectionate Communication     5 

support people receive from their personal relationships, the less susceptible they are to the 

negative effects of stressors.  Both TBT and SBH therefore imply that communicative behaviors 

aimed at building and maintaining significant, intimate, and supportive social relationships – 

such as the communication of affection – should be inversely associated with susceptibility to 

stress.  This is efficacious to health not only in its own right, but also in light of evidence that 

exaggerated cardiovascular and hormonal responses to stressors are associated with elevated risk 

of cardiovascular disease (Lynch, Everson, Kaplan, Salonen, & Salonen, 1998), as well as 

hypertension and associated organ damage (Manuck, Kasprowicz, & Muldoon, 1990).  

TBT and SBH both share conceptual space with affection exchange theory (AET:  Floyd, 

2002, 2006a), a neo-Darwinian theory providing that the tendency for humans to communicate 

affection is an adaptive mechanism for promoting the development of pair bonds.  Among its 

principal proposals is that conveying affection has stress-ameliorating physiological effects.  

Specifically, AET provides that expressing affection to loved ones initiates neuroendocrine 

processes that maximize reward and buffer the individual against the physiological effects of 

stress; AET further provides that these benefits are independent of those associated with 

receiving affectionate expressions.   

Multiple studies have illustrated this effect.  For instance, Floyd (2006b) examined the 

effects of expressed and received affection on diurnal variation in cortisol and found that, with 

the influence of received affection controlled for, expressed affection was directly related to the 

magnitude of morning-to-evening change in cortisol ( = .56), a pattern indicative of healthy 

stress regulation in the hypothalamic-pituitary-adrenal axis.  A subsequent experiment by Floyd, 

Mikkelson et al. (in press) showed that during episodes of acute stress (in which cortisol levels 

are typically elevated), expressing affection to a loved one accelerates the recovery of cortisol 
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levels to baseline values, relative to alternative activities.  Grewen, Girdler, Amico, and Light 

(2005) also found that engaging in nonverbal affectionate behaviors reduced cortisol levels for 

both men and women, and also elevated levels of oxytocin in women (see also Turner, Altemus, 

Enos, Cooper, & McGuinness, 1999).  Floyd, Mikkelson, Hesse, and Pauley (2007) 

demonstrated that expressing affection in writing significantly lowers total serum cholesterol 

(which is elevated by stress).  Finally, Floyd, Hesse, and Haynes (2007) reported a strong inverse 

association ( = -.85) between expressed affection and glycohemoglobin, an index of average 

blood glucose level (which is also elevated by stress), with the effects of received affection 

controlled for. 

Hormonal Stress Markers 

 From a physiological standpoint, the experience of stress is perhaps best understood as 

the body’s regulatory response to environmental threats, which include any perceived challenge 

to one’s physical, mental, emotional, financial, or social well-being.  Perception of a stressor 

initiates a cascade of physiological changes associated with the fight-or-flight response; among 

these is a multistage hormonal response regulated by the hypothalamic-pituitary-adrenal (HPA) 

axis.  Two results of this cascade are an elevated level of cortisol and a reduced level of DHEA-

S, as described below.  Importantly, even events that fail to elevate psychological distress can 

initiate a physiological stress response.  For instance, one commonly used laboratory stressor, the 

cold pressor test (e.g., Riozzi, Heagerty, Bing, Thurston, & Swales, 1987), requires participants 

to hold a forearm submerged in ice water.  Although most participants report that this is not a 

psychologically stressful experience, the typical participant experiences an immediate and 

pronounced physiological stress response.  In this section, we provide detail on cortisol and 

DHEA-S, and also on the cortisol:DHEA-S ratio, which are measured in this study. 
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 Cortisol.  Cortisol is a steroid hormone secreted by the adrenal gland.  In response to 

acute stressors, the HPA axis elevates the secretion of cortisol into the bloodstream.  

Approximately 95% of the secreted cortisol binds immediately to corticosteroid binding 

globulins and albumin, rendering it biologically inactive.  The remainder, known as free cortisol, 

remains biologically active in order to mobilize the body’s energy resources to mount an 

adequate defense against the stressor.  This involves various physiological effects, including an 

elevation in blood glucose, a diversion of energies from nonessential bodily systems, and an 

increase in immune sensitivity (Johnson, Karmilaris, Chrousos, & Gold, 1992; Sapolsky, 2002).  

Absent acute stressors, cortisol follows a diurnal rhythm wherein it peaks in the hour after 

waking and drops continually during the day, reaching its lowest point around midnight 

(Kirschbaum & Hellhammer, 1989).  Highly differentiated diurnal curves are indicative of 

healthy regulation of the body’s stress defenses, whereas “flattened” curves reflect dysregulation 

(Giese, Sephton, Abercrombie, Duran, & Spiegel, 2004).   

 Dehydroepiandrosterone-sulfate.  Dehydroepiandrosterone-sulfate (DHEA-S), a 

derivative of dehydroepiandrosterone, is also an adrenal steroid.  Unlike cortisol, DHEA-S is not 

a hormone itself, but rather an important prohormone, meaning that it is a substance that 

converts to other hormones (Labrie et al., 2005).  Specifically, DHEA-S is a precursor to 

androstenedione, testosterone, and estrogens in adolescents and adults (Labrie, Luu-The, Labrie, 

& Simard, 2001).  DHEA-S is more frequently studied in social science research because it has a 

longer half-life than DHEA and an absence of diurnal variation (Rosenfeld, Rosenberg, 

Fukushima, & Hellman, 1975).  DHEA and DHEA-S appear to have protective functions against 

a variety of conditions, including HIV (Loria, Inge, Cook, Szakal, & Regelson, 1988), Cushing’s 

disease (Yamaji, Ishibashi, Sekihara, Itabashi, & Yanaihara, 1984), Alzheimer’s disease 
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(Näsman et al., 1995), and some forms of cancer (Gordon, Helzlsouer, & Comstock, 1991).  

Importantly, whereas cortisol is elevated in response to stress, DHEA-S is decreased.  In a 

laboratory procedure involving experimentally induced acute stress, for instance, Whetzel, Ritter, 

and Klein (2006) found that participants experienced a 40% decrease in DHEA-S levels, on 

average, after just one 20-minute mental math (serial subtraction) stressor. 

 Cortisol:DHEA-S ratio.  Previous research has suggested that the ratio of cortisol to 

DHEA-S may be as reliable an indicator of stress, if not more so, than the absolute levels of 

either chemical (see, e.g., Cruess et al., 1999).  When mathematically expressed as cortisol 

divided by DHEA-S (rather than the obverse), CDR should show direct associations with stress, 

since stress increases levels of the numerator (cortisol) and decreases levels of the denominator 

(DHEA-S) (see Parker, Levin, & Lifrak, 1985).  Previous investigations have demonstrated that 

CDR is directly associated with multiple diverse forms of stress, including surgical stress (Ozasa, 

Kita, Inoue, & Mori, 1990), bodily stress due to anorexia nervosa (Zumoff et al., 1983) or injury 

(Butcher, Killampalli, Lascelles, Wang, Alpar, & Lord, 2005), laboratory induced stress 

(Whetzel et al., 2006) or fear (Grillon, Pine, Baas, Lawley, Ellis, & Charney, 2005), and the 

stress of military school (Morgan et al., 2004), and can be significantly decreased by a cognitive-

behavioral stress management intervention (Cruess et al., 1999).  

Hypotheses and Research Question 

 To the extent that higher levels of affectionate communication are predictive of lower 

levels of stress (as AET provides and as previous investigations, reported above, have shown), 

we can advance predictions about its association with hormonal stress markers based on the 

physiology of those markers.  Specific hypotheses are delineated subsequently. 
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 Cortisol.  Since circulating cortisol levels increase in response to acute stress, it may 

seem logical to predict that chronic stress is associated with elevated mean cortisol levels.  In 

fact, however, stress is indicated by the magnitude of morning-to-evening variation in cortisol, 

rather than by its mean level.  As discussed above, healthy regulation of the HPA axis is 

indicated by cortisol levels that are high upon awakening and drop sharply over the course of the 

day, whereas dysregulation is indicated by low waking levels and minimal diurnal variation.  

Multiple studies have confirmed that chronic stress is inversely related to waking cortisol level 

(Leucken, Dausch, Gulla, Hong, & Compas, 2004; Neylan et al., 2005; Yang et al., 2001) and to 

the magnitude of diurnal variation in cortisol (Chrousos & Gold, 1992; Heim, Ehlert, & 

Hellhammer, 2000).  When considered in concert with AET’s prediction that affectionate 

communication ameliorates stress, these observations give rise to two specific predictions: 

H1: In marital relationships, affectionate communication predicts waking cortisol level, 

such that higher amounts of affection correspond to higher waking values. 

H2: In marital relationships, affectionate communication predicts diurnal variation in 

cortisol, such that higher amounts of affection correspond to higher morning-to-

evening change in cortisol levels. 

 Although waking cortisol is the most directly implicated in stress, cortisol values at other 

points during the day may also be affected by spouses’ affectionate communication.  We 

addressed this possibility with a research question: 

RQ1: How, if at all, does marital affectionate communication predict cortisol levels at 

noon, afternoon, and evening? 
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 DHEA-S.  As indicated above, DHEA-S manifests an inverse relationship with stress.  To 

the extent that affectionate communication is similarly inversely related to stress, it is logical to 

hypothesize a direct relationship between affectionate communication and DHEA-S level: 

H3: In marital relationships, affectionate communication predicts mean 

dehydroepiandrosterone-sulfate, such that higher amounts of affection correspond 

to higher DHEA-S levels. 

 Cortisol:DHEA-S ratio.  CDR is elevated by stress, as detailed above.  To the extent to 

that affectionate communication ameliorates stress, it is therefore logical to hypothesize an 

inverse predictive association between affectionate expression in the marital relationship and 

CDR: 

H4: In marital relationships, affectionate communication predicts cortisol:DHEA-S 

ratio, such that higher amounts of affection correspond to lower ratio values. 

Method 

Participants  

Participants (n = 20) and their legal spouses (n = 20) were equal numbers of adult men 

and women composing 20 married couples.  Participants and spouses both ranged in age from 22 

to 57 years, with average ages of 40.50 years (SD = 13.59) for participants and 40.10 years (SD = 

14.12) for spouses.  The couples had been married an average of 13 years, 4 months (SD = 

135.81 months) and had an average of 2.5 children (SD = 4.73).  The majority (65% of 

participants, 90% of spouses) was Caucasian; 10% of participants and spouses were Hispanic, 

10% of participants were Asian, 5% of participants were Native American, and 10% of 

participants claimed other ethnic origins.  Half of the participants and spouses had at least a 4-
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year college degree, with 25% of participants and 20% of spouses holding a graduate degree.  A 

majority (60%) came from households earning more than $60,000 per year. 

Recruitment and Prescreening 

Undergraduate communication students at a large university in the southwestern United 

States were given extra course credit for recruiting qualified married couples to complete 

prescreening questionnaires.  To qualify, prospective participants had to be English-speaking 

adults (18+ years of age) who had been legally married for at least one year, and both the 

husband and wife had to agree to fill out a prescreening questionnaire asking about their 

medicinal use and history of illness.  The prescreening questionnaires were accompanied by 

postage-paid envelopes, which prospective participants used to return them to the researchers.  

Each was surveyed upon receipt to determine the eligibility of prospective participants. 

Stringent inclusion and exclusion criteria were imposed.  Prospective participants were 

considered eligible to take part in the study only if they:  a) were normotensive; b) reported no 

history of immune or endocrine disease, cancer of any form, kidney or liver disease, 

cardiological or respiratory problems, rheumatological disorders, or diabetes; c) had never had 

chemotherapy or chest radiation; d) were not currently taking steroidal medications, alpha or beta 

blockers, or oral contraceptives; e) were non-smokers; f) were not currently pregnant; g) were 

not currently breastfeeding; and, h) reported consuming no more than three caffeinated drinks 

per day and three alcoholic beverages per week, on average.   

One hundred forty three couples completed the prescreening form.  Among these, 34% of 

men and 41% of women met all of the qualifications for the study.  This sex difference was 

statistically significant, z = 2.20, p < .05.  From among these, 20 randomly selected couples, half 

including an eligible husband and half including an eligible wife, were contacted and invited to 
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take part in the study.  Three initially invited couples declined to participate; these were replaced 

with randomly selected alternates. 

Procedure 

Eligible couples who agreed to take part were sent by overnight delivery a package 

containing two questionnaires with postage-paid return envelopes, one kit for collecting saliva 

samples, and detailed instructions.  Participants and spouses independently completed 

questionnaires regarding their individual and relational communication patterns and mailed them 

separately to the researchers. 

In each couple, either the husband or the wife (whomever was assigned to be the 

participant) was then instructed to take four saliva samples over the course of a normal workday 

(as defined by the participant).  The samples were taken by unstimulated passive drool in marked 

plastic cryovials at awakening, noon, 4 p.m., and bedtime.  Participants were instructed to abstain 

from caffeine on the collection day and not to consume any food or beverage other than water for 

at least one hour prior to each collection.  Participants provided self-reports of their compliance 

with these instructions on a form submitted to the laboratory with their samples.  Noncompliance 

with the instructions would not necessarily invalidate a given sample; rather, it would simply 

increase measurement error (see, e.g., Wolkowitz & Rothschild, 2003).  After completing their 

salivary collections, participants sealed their collection wells first into a plastic biohazard bag 

and then into a marked cardboard box, and sent them via FedEx Clinical Pak to BioHealth 

Diagnostics, a service laboratory in San Diego, CA.  Clinical investigations have verified that 

salivary levels correlate closely with free plasma levels for both cortisol (Tunn, Möllmann, 

Barth, Derendorf, & Krieg, 1992) and DHEA-S (Lac, Lac, & Robert, 1993).  
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In consideration of their participation, each couple was subsequently sent $20 and an 

informational booklet about stress and adrenal health.  The spouse providing the saliva samples 

was also sent a copy of his or her assay results.  The research protocol was approved by the 

university’s institutional review board. 

Questionnaire Measure 

Affectionate communication was assessed with the factor-based Affectionate 

Communication Index (ACI:  Floyd & Morman, 1998).  The 18-item Likert-type scale indexes 

affection expressed through verbal behaviors (such as saying “I love you”), direct nonverbal 

behaviors (such as kissing or hugging), and social support behaviors (such as praising 

accomplishments or helping with problems).  The ACI has evidenced multiple forms of 

psychometric adequacy, including high internal, split-half, and test-retest reliability, and 

construct, convergent, discriminant, and predictive validity (for review, see Floyd & Mikkelson, 

2005).  In the present study, Cronbach’s alpha values for participants and spouses, respectively, 

were .84 and .92 for verbal affection, .92 and .88 for nonverbal affection, and .75 and .74 for 

supportive affection. 

Biochemical Measures 

Hormonal assays were performed by BioHealth Diagnostics Laboratory (San Diego, CA).  

Upon arrival, the saliva samples were frozen pending analysis.  On the day of the assays, the 

samples were thawed and centrifuged at 3000 rotations per minute for 15 minutes, and then 

assayed for cortisol and DHEA-S, as well as for other biochemical markers not reported here.  

BioHealth Diagnostics is a CLIA-certified laboratory, meaning that it maintains standards of 

quality as specified by the Clinical Laboratory Improvement Amendments enacted by Congress 

in 1988 (license 05D0982456). 
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Cortisol.  The saliva samples were assayed for free cortisol, expressed in nanomoles per 

liter (nMol/L), using a commercially available, highly sensitive enzyme immunoassay cleared 

for use as an in vitro diagnostic measure of adrenal function (Salimetrics, State College, PA).  In 

the assay, salivary cortisol competes with cortisol linked to horseradish peroxidase for the 

antibody binding sites.  After incubation, the amount of cortisol peroxidase detected is inversely 

proportional to the amount of salivary cortisol present.  The test is sensitive enough to detect 

cortisol levels as small as <0.003 micrograms per deciliter (g/dL) and has an average intra-

assay coefficient of variation of 3.50% and average inter-assay coefficient of variation of 5.08% 

(both of which are measures of reliability wherein lower percentages represent greater 

reliability). 

DHEA-S.  Samples were assayed for average DHEA-S, expressed in nanograms per 

milliliter (ng/mL), using a commercially available competitive enzyme immunoassay 

(Salimetrics, State College, PA).  The assay uses a microtitre plate coated with rabbit antibodies 

to DHEA-S.  Salivary estradiol competes with DHEA-S linked to horseradish peroxidase for the 

antibody binding sites.  After incubation, the amount of DHEA-S peroxidase detected is 

inversely proportional to the amount of salivary DHEA-S present.  The test can detect DHEA-S 

levels as small as 5 picograms per milliliter (pg/mL) and has an average intra-assay coefficient of 

variation of 5.60% and average inter-assay coefficient of variation of 8.20%. 

Results 

Descriptive Statistics 

 Affectionate communication.  Descriptive statistics for participants’ and spouses’ reports 

of verbal, nonverbal, and supportive affectionate communication appear in Table 1.  A mixed-

model MANOVA indicated no significant differences by sex or role (participant vs. spouse) on 
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any of the forms of affectionate communication (all ps > .05).  Participants’ verbal affection was 

inversely related to participants’ age, r (18) = -.50, p = .026.  Spouses’ verbal affection was 

likewise inversely related to spouses’ age, r (18) = -.57, p = .008.  Age was unrelated to 

nonverbal and supportive forms of affectionate behavior for both participants and spouses. 

 Biochemical measures.  Cortisol routinely shows strong diurnal variation, typically 

peaking within the hour after awakening and then dropping continuously during the day, 

reaching its lowest level around midnight (Kirchbaum & Hellhammer, 1989).  By contrast, 

DHEA-S does not evidence diurnal variation, with levels remaining stable throughout the day 

(Diagnostic Systems Laboratory, 1995).  To establish the CDR while accounting for diurnal 

variation in cortisol, therefore, we calculated the ratio based on cortisol values summed across 

the four data collection periods.  Ratio values represent the sum of cortisol values divided by 

DHEA-S.  To index cortisol change over the day, we computed linear orthogonal polynomials 

using a formula espoused by Pennebaker, Mayne, and Francis (1997) (who computed similar 

polynomials to index change in the linguistic features of expressive writing).  The specific 

formula was:   

(evening cortisol x 3) + (afternoon cortisol x 1) – (noon cortisol x 1) – (waking cortisol x 3) 

Descriptive statistics for DHEA-S, CDR, cortisol change, and average cortisol values at 

awakening, noon, afternoon, and evening appear in Table 2.  Women and men differed 

significantly on waking cortisol, with women (M = 21.39 nMol/L, SD = 5.24) evidencing higher 

levels than men (M = 16.19, SD = 4.40), t (18) = -2.40, p = .027, d = -1.13. Women also had 

higher evening cortisol values (M = 2.58 nMol/L, SD = 1.17) than did men (M = 1.53, SD = 

0.98), t (18) = -2.18, p = .043, d = -1.03.  Finally, women evidenced greater morning-to-evening 

cortisol change (M = -58.57, SD = 14.81) than did men (M = -45.88, SD = 11.61), t (18) = 2.13, p 
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= .047, d = 1.00.  There were no significant sex differences on the other cortisol values, DHEA-

S, or CDR.  Participant and spouse ages showed no significant zero-order correlations with any 

of the biochemical outcomes.   

Hypotheses and Research Question 

 The hypotheses predicted that affectionate communication within marital relationships 

predicts participants’ waking cortisol (H1), cortisol change (H2), DHEA-S (H3), and CDR (H4), 

such that higher levels of affectionate communication correspond to higher waking cortisol, 

greater cortisol change, higher DHEA-S, and lower CDR.  The research question asked whether 

cortisol values at noon, afternoon, and evening are predicted by marital affection.  To address the 

hypotheses and research question in tandem, we computed hierarchical linear regressions with 

the three forms of affectionate communication as criterion variables.   

Because we had reports of marital affection both from participants and from their 

spouses, we tested both.  We entered participant sex, participant age, and spouse age in the first 

step of each regression as control variables, as these have the potential to influence the 

biochemical outcomes (see, e.g., Laughlin & Barrett-Connor, 2000).  Initially, we also entered as 

a control variable the partner’s value for the specific form of affectionate behavior being tested 

(e.g., spouse’s verbal affection was a control variable when participant’s verbal affection was the 

predictor), but these control variables were nonsignificant in every regression and were therefore 

removed in the service of parsimony.   

Centered values for participants’ and spouses’ reports of verbal, nonverbal, and 

supportive affection were then entered as separate predictors in the second step of each 

regression.  Square-root transformed values for waking cortisol, cortisol change, DHEA-S, and 

CDR were each entered as the criterion variable.  (In the case of CDR, all control variables were 
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nonsignificant, so we removed them from the regressions, resulting in bivariate regressions with 

affectionate communication as the sole predictor variable.)  Although the biochemical variables 

were square-root transformed in the regression analyses, we report raw (non-transformed) values 

in the tables for ease of interpretation. 

Waking cortisol (H1).  When we analyzed participants’ reports of how much affection 

they express to their spouses, we found that neither their verbal, nonverbal, nor supportive forms 

of affectionate communication predicted their waking cortisol values.  When we analyzed 

spouses’ reports of how much affection they express to the participants, however, we found that 

participants’ waking cortisol was significantly predicted by spouses’ verbal affection,  = .59, p 

= .003; nonverbal affection,  = .45, p = .022; and supportive affection,  = .55, p = .007.  The 

hypothesis is fully supported with respect to how much affection participants receive from their 

spouses, but not supported with respect to how much affection participants express to their 

spouses.  Regression results appear in Table 3. 

Other cortisol values (RQ1).  Participants’ and spouses’ reports of verbal, nonverbal, and 

supportive affection were all unrelated to participants’ cortisol levels at noon and in the 

afternoon.  Participants’ reports were likewise unrelated to their evening cortisol levels.  

However, participants’ evening cortisol values were significantly predicted by their spouses’ 

verbal affection,  = .59, p = .01; nonverbal affection,  = .56, p = .01; and supportive affection, 

 = .58, p = .01.  Regression results appear in Table 4. 

Cortisol change (H2).  Cortisol change was calculated using linear orthogonal 

polynomials such that all values representing morning-to-evening reduction are negative, and 

greater morning-to-evening change is represented by scores with higher absolute value (i.e., -.74 

indexes greater change than -.21).  Therefore, the hypothesis that affectionate communication 
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predicts cortisol change, such that higher amounts of affection correspond to higher amounts of 

cortisol change, would be supported by beta scores that are negative, not positive.  Participants’ 

cortisol change was not predicted by their own verbal, nonverbal, or supportive affection.  It was, 

however, significantly predicted by their spouses’ verbal affection,  = -.55, p = .006; nonverbal 

affection,  = -.40, p = .04; and supportive affection,  = -.51, p = .01.  Regression results appear 

in Table 5.  The second hypothesis is supported with respect to spouses’ affectionate 

communication. 

DHEA-S (H3).  Participants’ mean DHEA-S levels were not predicted by their own 

verbal, nonverbal, or supportive affection, nor by their spouses’ verbal, nonverbal, or supportive 

affection.  The third hypothesis is unsupported. 

Cortisol:DHEA-S ratio (H4).  When we analyzed participants’ reports of how much 

affection they express to their spouses (using bivariate regressions, as indicated above), we found 

that only their verbal affection significantly predicted their CDR,  = -.51, p = .01.  The 

associations were inverse but nonsignificant for participants’ nonverbal and supportive affection.  

When we analyzed spouses’ reports of how much affection they express to the participants, 

however, we found that participants’ CDR was significantly predicted by spouses’ verbal 

affection,  = -.39, p = .045; nonverbal affection,  = -.42, p = .03; and supportive affection,  = 

-.41, p = .04.  The hypothesis is fully supported with respect to how much affection participants 

receive from their spouses, and partially supported with respect to how much affection 

participants express to their spouses.         

Discussion 

Recent research has illuminated the inverse association between affectionate 

communication and the physiological characteristics of stress, including diurnal cortisol variation 
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(Floyd, 2006b), cortisol reactivity (Floyd et al., in press), blood glucose (Floyd, Hesse et al., 

2007), and serum cholesterol (Floyd, Mikkelson et al., 2007).  The current study extended this 

line of research in two important ways:  first, it examined the relative influence of affection 

expressed to, and affection received from, a significant relational partner; second, it investigated 

the predictive associations between affectionate communication and multiple physiological stress 

markers in tandem. 

Among the innovative proposals of affection exchange theory is that affectionate 

communication elicits stress-ameliorating effects both when it is expressed and when it is 

received, and previous studies have confirmed that expressed and received affection account for 

unique (as well as shared) variance in outcomes related to physical and mental well-being 

(Floyd, Hess, Miczo, Halone, Mikkelson, & Tusing 2005), including assessments of stress and 

depression.  On this basis, we hypothesized that affectionate communication expressed from 

participants to their spouses, and affectionate communication received by participants from their 

spouses, would both predict the participants’ biochemical stress parameters.  Although earlier 

investigations had identified associations between affectionate behavior and cortisol, this study 

was the first also to examine DHEA-S and the cortisol:DHEA-S ratio, each of which is strongly 

implicated in the management of stress. 

Affectionate communication received from spouses was consistently more strongly 

related to healthy stress hormone levels than was participants’ affection expressed to their 

spouses.  Specifically, participants’ waking cortisol levels, evening cortisol levels, diurnal 

cortisol change, and CDR were all significantly predicted by how much verbal, nonverbal, and 

supportive affection they receive from their spouses (even when controlling for participants’ 

expressed affection).  These findings add to a growing body of evidence that affectionate 
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communication in personal relationships contributes to the efficient and effective management of 

physiological stress.   

This observation is provocative, given the number and variety of physical conditions that 

are exacerbated by stress, including coronary artery disease (Blascovich, Shiffert, & Katlin, 

1989), hypertension (Potempa, 1994), elevated cholesterol and cardiovascular disease (Roy, 

Kirschbaum, & Steptoe, 2001), and immunosuppression (Kiecolt-Glaser, Garner, Speicher, Penn, 

Holliday, & Glaser, 1984; Kiecolt-Glaser, Glaser, Shuttleworth, Dyer, Ogrocki, & Speicher, 

1987).  Since an individual’s hormonal stress parameters are predicted by the amount of 

affectionate communication he or she receives from a spouse, this fuels the possibility that 

behavioral interventions designed to increase affectionate communication with the marital 

relationship may improve these parameters (e.g., increasing 24-hour cortisol variance, reducing 

CDR values).  Indeed, some affection-oriented interventions have already shown efficacy in 

preliminary trials.  In two five-week randomized controlled trials, for instance, Floyd, Mikkelson 

et al. (2007) demonstrated that an affectionate writing intervention significantly lowered total 

serum cholesterol, and current research in our lab is testing the efficacy of nonverbal affection 

interventions for improving immunocompetence.  These efforts are useful because stress is such 

a pervasive public health threat; indeed, McEwan (1999) estimated the economic cost of stress 

and stress-related illness in the United States alone at nearly $200 billion annually.  Even 

interventions that manifest statistically small effects may therefore represent clinically significant 

improvements in health and quality of life.  

The sample size of the present study was small relative to that typically seen in 

interpersonal communication research; however, it was well within the norm for 

psychophysiological studies (e.g., Kurup & Kurup, 2003; Marazziti & Canale, 2004; van 
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Niekerk, Huppert, & Herbert, 2001), including psychophysiological studies conducted within the 

field of interpersonal communication (e.g., Floyd, 2006b; Tardy, Thompson, & Allen, 1989).  

The emergence of several significant predictive associations in the current study and the relative 

immunity of biochemical measures from the influence of social desirability biases both argue for 

the adequacy of the sample, although confidence in external validity would be enhanced with the 

inclusion of more couples. 

As described, participants were extensively prescreened and were subjected to numerous 

inclusion and exclusion criteria related to their health-related practices, medicinal use, and 

history of illnesses and therapies.  These criteria were necessary to ensure the efficacy of the 

salivary analyses; however, they resulted in a sample that was no doubt healthier, on average, 

than the population from which it was drawn.  This is a common conundrum in research using 

psychophysiological methods; whereas the sample must have specific characteristics to make the 

physiological measurements valid, those characteristics often reduce the sample’s external 

validity.  Replication of the procedures with a non-screened sample will not necessarily improve 

confidence in external validity, therefore, since violation of the inclusion and exclusion criteria 

may make the physiological measures inaccurate.   

These limitations aside, the present findings point clearly to a predictive association 

between affectionate communication received from a spouse and the management of one’s own 

hormonal stress markers.  This association appears to be relatively independent of the type of 

affectionate communication being expressed (predictive relationships having attained statistical 

significance for all three forms of affectionate communication, in most cases).  It is possible that 

this predictive association reflects a causal relationship wherein patterns of affection exchange 

determine, or partially determine, stress hormone levels.  It is also possible that both affection 
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exchange patterns and stress hormone levels are influenced by exogenous factors such as 

external sources of relational stress.  Such factors might mediate the association between 

affectionate communication and stress hormone levels, or they might render the association 

spurious.  Affection exchange theory would support the hypothesis that patterns of affection 

exchange exert genuine causal influences on stress hormone levels but would not necessarily rule 

out the possibility that such influences are mediated by exogenous factors.  Identifying the extent 

to which the affection-hormone association is directly causal, mediated, or the spurious result of 

a third variable will require additional experimental work, but these significant predictive 

associations provide ample warrant for such studies. 
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Table 1 

Descriptive Statistics for Participants’ and Spouses’ Affectionate Communication (N = 40) 

______________________________________________________________________________ 

 Participants’ Reports Spouses’ Reports 

Form of Affection Low/High M SD Low/High M SD 

______________________________________________________________________________ 

Verbal 2.80/7.00 5.25 1.13 1.60/7.00 4.79 1.70 

Nonverbal 2.25/7.00 5.26 1.31 2.00/7.00 4.82 1.30 

Support-Based 4.20/7.00 5.87 0.73 4.20/7.00 5.82 0.86 

______________________________________________________________________________ 

Notes.  All variables were measured on 1-7 scales wherein higher numbers indicate greater 

values.  None of the variables differed significantly by sex or by role (participant vs. spouse), all 

ps > .05.  
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Table 2 

Descriptive Statistics and Intercorrelations for Participants’ Biochemical Markers (N = 20) 

______________________________________________________________________________ 

Marker Low High M SD 2 3 4 5 6 7 

______________________________________________________________________________ 

1. Cortisol (waking) 10.3 26.8 18.79 5.41 .57 .28 .69 .64 .09 -.98 

2. Cortisol (noon) 4.4 11.3 7.82 1.71  .84 .27 .36 .21 -.59 

3. Cortisol (afternoon) 2.4 9.2 5.80 1.80   .04 .19 .19 -.28 

4. Cortisol (evening) 0.6 4.1 2.06 1.18    .54 -.03 -.56 

5. DHEA-S 1.73 6.28 3.02 1.06     -.64 -.60 

6. Cortisol:DHEA-S ratio 6.6 17.5 12.01 2.69      -.11 

7. Cortisol change -29.20 -75.30 -52.23 14.50       

______________________________________________________________________________ 

Notes.  Cortisol values are expressed in nMol/L.  DHEA-S values are expressed in ng/mL.  Cortisol:DHEA-S ratio represents cortisol 

sum divided by DHEA-S level.  Cortisol change is indexed by linear orthogonal polynomials.   
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Table 3 

Regressions Predicting Participants’ Waking Cortisol from Spouses’ Verbal, Nonverbal, and 

Supportive Affectionate Communication  

______________________________________________________________________________ 

Predictor Zero-order r B SE B 

______________________________________________________________________________ 

Step 1:  Participant sex .49 6.08 2.01 .58** 

Participant age .13 1.19 0.45 2.98* 

Spouse age .06 -1.18 0.43 -3.08* 

______________________________________________________________________________ 

Step 2:  Spouse verbal  .30 1.88 0.54 .59** 

R2 = .72; adjusted R2 = .64; F (4, 15) = 9.41, p = .001 

______________________________________________________________________________ 

Step 2:  Spouse nonverbal  .17 1.87 0.73 .45* 

R2 = .64; adjusted R2 = .55; F (4, 15) = 6.72, p = .003 

______________________________________________________________________________ 

Step 2:  Spouse supportive .05 3.48 1.11 .55** 

R2 = .69; adjusted R2 = .61; F (4, 15) = 8.29, p = .001 

______________________________________________________________________________ 

Notes.  *p < .05; **p < .01 
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Table 4 

Regressions Predicting Participants’ Evening Cortisol from Spouses’ Verbal, Nonverbal, and 

Supportive Affectionate Communication  

______________________________________________________________________________ 

Predictor Zero-order r B SE B 

______________________________________________________________________________ 

Step 1:  Participant sex .46 1.34 0.50 .59* 

Participant age -.17 0.04 0.11 .47 

Spouse age -.17 -0.07 0.11 -.84 

______________________________________________________________________________ 

Step 2:  Spouse verbal .48 0.41 0.15 .59* 

R2 = .56; adjusted R2 = .45; F (4, 15) = 4.84, p = .01 

______________________________________________________________________________ 

Step 2:  Spouse nonverbal .42 0.51 0.17 .56* 

R2 = .58; adjusted R2 = .47; F (4, 15) = 5.14, p = .008 

______________________________________________________________________________ 

Step 2:  Spouse supportive .26 0.80 0.29 .58* 

R2 = .56; adjusted R2 = .44; F (4, 15) = 5.76, p = .011 

______________________________________________________________________________ 

Notes.  *p < .05; **p < .01 
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Table 5 

Regressions Predicting Participants’ Cortisol Change  from Spouses’ Verbal, Nonverbal, and 

Supportive Affectionate Communication  

______________________________________________________________________________ 

Predictor Zero-order r B SE B 

______________________________________________________________________________ 

Step 1:  Participant sex -.45 -14.54 5.34 -.51* 

Participant age -.18 -3.59 1.18 -3.36** 

Spouse age -.10 3.48 1.14 3.39** 

______________________________________________________________________________ 

Step 2:  Spouse verbal -.25 -4.73 1.49 -.55** 

R2 = .70; adjusted R2 = .62; F (4, 15) = 8.66, p = .001 

______________________________________________________________________________ 

Step 2:  Spouse nonverbal -.11 -4.45 2.02 -.40* 

R2 = .62; adjusted R2 = .52; F (4, 15) = 6.11, p = .004 

______________________________________________________________________________ 

Step 2:  Spouse supportive -.01 -8.57 3.08 -.51* 

R2 = .67; adjusted R2 = .58; F (4, 15) = 7.54, p = .002 

______________________________________________________________________________ 

Notes.  *p < .05; **p < .01 
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