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Abstract

In animal science, challenge model studies often produce longitudinal data.  Many times

the lognormal distribution is useful in modeling the data at each time point.  Escherichia coli

O157 (E. coli O157) studies measure and record the concentration of colonies of the bacteria.

There are times when the concentration of colonies present is too low, falling below a limit of

detection.  In these cases a zero is recorded for the concentration.  Researchers employ a method

of enrichment to determine if E. coli O157 was truly not present.  This enrichment process

searches for bacteria colony concentrations a second time to confirm or refute the previous

measurement.  If enrichment comes back without evidence of any bacteria colonies present, a

zero remains as the observed concentration.  If enrichment comes back with presence of bacteria

colonies, a minimum value is imputed for the concentration.  At the conclusion of the study the

data are log10-transformed.  One problem with the transformation is that the log of zero is

mathematically undefined, so any observed concentrations still recorded as a zero after

enrichment can not be log-transformed.  Current practice carries the zero value from the

lognormal data to the normal data.  The purpose of this report is to evaluate methods for handling

missing data due to a limit of detection and to provide results for various analyses of the

longitudinal data.  Multiple methods of imputing a value for the missing data are compared.

Each method is analyzed by fitting three different models using SAS.  To determine which

method is most accurately explaining the data, a simulation study was conducted.
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CHAPTER 1 - Introduction

Longitudinal challenge model studies are common in animal sciences.  The data used in

this report come from a longitudinal challenge model study conducted by the Departments of

Diagnostic Medicine and Pathobiology, Animal Sciences and Industry, and Clinical Sciences at

Kansas State University (K-State) in 2007 and is described in Chapter 2.  The study was testing

for the effects of certain diets on the fecal shedding of E. coli O157 in orally inoculated calves.

Data collected were on the concentrations of colonies of the E. coli O157 bacteria.  These data

are believed to be lognormal, so a log10 transformation is applied to the data set before methods

for repeated measured are used to analyze the data.  However, some samples show little or no

evidence of bacterial colonies because either no bacteria were present or because the

concentration was below some limit of detection at the time of measurement.  In these cases, an

enrichment process is used to be certain that no bacteria is present in the sample.  If this

enrichment process does not show any signs of bacteria, then a concentration of zero is recorded.

If the enrichment process does show the presence of bacteria a value of one is recorded as the

concentration.  When the data is log transformed these zero values become problematic since the

log of zero is undefined.  

This report explores methods of analyzing longitudinal lognormal data that contain

values below a limit of detection.  These methods are presented and explained Chapter 3.  Before

analyses are compared, values below the limit of detection – which are initially recorded as zeros

– in the data set need to be addressed.  Several methods are proposed and can be organized into

two groups: before enrichment and after enrichment.  The before enrichment strategies do not

utilize any information obtained from the enrichment process.  The data sets from this group

have approximately 28% of their observations recorded as zeros.  For the strategies in this group

a positive value was imputed for all of the recorded zeros in the data set.  The after enrichment

strategies utilize the information provided by the enrichment process.  This information is

interpreted as identifying the true zeros from a group of all recorded zeros by looking at the

results of the enrichment as positive or negative.  Negative results mean the enrichment process

found no bacterial colonies present, thus it can be concluded that the recorded zero is a true zero.

Positive results mean that the enrichment process found some bacterial colonies and the recorded
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zero was a false zero.  The after enrichment strategies only impute a value for the false zeros.

The true zeros are left in the data set for analysis.  

After using each of the proposed methods on a preexisting lognormal longitudinal data

set, collected from  an Escherichia Coli O157 challenge study conducted at K-State, the methods

for addressing the missing values due a limit of detection are compared.  Each of the strategies

was then fit with three different models using methods for repeated measures and longitudinal

data within SAS's MIXED procedure.  Use of a spatial power structure for the covariance

seemed most appropriate for the data due to the unequal time spacing between measurements.  

To assess which strategy provided the most appropriate results, a simulation study is

performed, details of which are presented in Chapters 4 and 5.  Data were generated in R under

three conditions for the daily concentration means, two population variances, and two sample

sizes with a common spatial power covariance structure used for all simulations.  Type I error

rates and power comparisons are used to interpret results. 
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CHAPTER 2 - The Experiment and the Data

Escherichia coli O157 (E. coli O157) is one of many Escherichia coli bacteria strains.

The E. coli O157 bacterium produces a type of toxin called Shiga-toxin and is the most common

type of Shiga-toxin producing E. coli in North America.  The bacteria primarily affects humans

who contract E. coli O157 from livestock infected with the bacteria (“Distillers Grains” 2008).

The challenge study conducted at K-State discussed in this report used cattle to assess the

prevalence of E. coli O157 in fecal samples over time when given one of two diets.  The diets of

interest were high grain based diets with either 25% dried distiller's grain (DDG) or, serving as

the control, 0% DDG.   

DDG is a type of distillers grains.  Distillers grains is a feed supplement used in diets of

various livestock such as dairy, beef, swine, and poultry.  It is created as a by-product during

ethanol production (“By-Products” 2007).  It has previously been shown that when used in diets

for cattle, distillers grains increases daily weight gain (Jacob et al 2008).  This benefit, along

with the rise of ethanol production in the United States, will likely lead to increased usage of

distillers grains in cattle diets (“From Niche” 2006).  Thus, the potential effects of distillers

grains diets on various diseases is being be explored.  The challenge study performed at K-State

is a step in this direction.  An overview of the study follows.

From a total sample of ten Holstein bull calves, five were randomly assigned to the

control group and the other five to the treatment group.  The control diet was a steam-flaked corn

based high grain diet with 0% DDG; the treatment diet had 25% DDG.  The calves were adjusted

to their diets over a three week period, during which time they were housed in two separate pens,

one for each group.  After the calves were adjusted to their diets, they were moved to individual

pens, where they stayed for one week before being orally inoculated with E. coli O157.  The

study continued for six weeks after inoculation.  At the conclusion of the study, the calves were

euthanized and necropsied (Jacob et al 2008).

During the six week period, measurements were taken to assess the prevalence of E. coli

O157 in the calves through fecal samples.  A sample was taken for each calf before inoculation,

to be certain that the calves did not have E. coli O157 prior to inoculation.  That information was
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not used in the analyses of this paper.  The remaining measurements were taken three times a

week for each of the ten calves.  The control calves were always sampled before the DDG-

supplemented group.  Fecal samples were taken from the individual pens, weighed to

approximately one gram, then diluted and plated three times.  The plates were incubated

overnight and the following day the colonies of bacteria were counted for each of the three

plates.  A final response was computed by averaging the number of colonies found on the plates

and taking into account other measures such as sample weight and dilution of the plate.  If few or

no colonies were visible after the initial incubation, the sample underwent a secondary

incubation period, referred to as enrichment.    

After enrichment, the sample is again inspected for bacteria colonies.  If the sample is

negative (no bacteria colonies present), then a zero is recorded for the count.  If the sample is

positive (bacteria colonies are present), then the minimum number of colonies that could have

been present the previous day is recorded, one.  When the mean for the final response is

computed from the three plates the imputed values of zero or one are used.  The entering of zero

or one following enrichment serves two purposes:  it identifies false zeros and it serves as a

method of imputation which addresses the missing data.

A final response is computed using the values imputed after enrichment and the colony

counts observed.  The final response is the concentration measures in colony forming units per

gram (CFU).  Three counts of bacteria colonies from each sample are averaged; then sample

weight and plate dilution are used to compute the final CFU value.  

After either incubation period, the resulting CFU values for each day are assumed to

follow a lognormal distribution, thus the data are commonly log10 transformed so analyses can

model a normal response (logCFU).  This transformation can cause a mathematical problem.  If

the original recored value for a calf is zero, then it is not possible to log transform the value

because log10(0) is undefined.  The current method for handling this is to carry the zero from the

lognormal concentrations over to the log-transformed concentrations.  This method inaccurately

portrays the actual trend of the response.  A  value of 0 in the log10 transformed data implies a

value of 1 in the original CFU-value, which is incorrect.  

Under the assumption that the log-transformed data are normal, the data are analyzed

using methods for repeated measures with SAS's PROC MIXED.  In order to use PROC

MIXED, a covariance structure must be specified; the current analysis assumes a first order
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autoregressive covariance structure.  A first order autoregressive structure is commonly used to

model the correlation in a data set where values closer together in time are more highly

correlated than values further apart in time (Littell et all 2006).  

The researchers are looking for a difference in the amount of E. coli O157 present

between calves in the treatment group and cows in the control group over time.  The results from

their analysis show that the treatment by study date interaction is significant at the α=0.10 level

and almost significant at the α=0.05 level (P=0.07).  During the first several days of the study,

the daily means for both treatment groups are very similar, which is expected by researchers.

Early in the study the different treatments have not had time to have an effect, if any, on the

amount of E. coli O157 shed.  The resulting overlap may be concealing a difference in treatments

(see Figure 1).  Since the interaction effect is nearly significant, looking at the treatment effect

for each day may provide some additional information.  The study does this analysis and finds

that the two treatment groups differ on each of the last four days of the study, with the E. coli

O157 concentrations higher for the calves fed DDG (Jacob et al 2007).  

5
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In addition to the model fit by Jacob et al, two other models are fit in this paper.  The

original model used by Jacobs treats the study date as a qualitative variable.  The two additional

models treat study date as a continuous variable, in the first with a linear effect and in the second

with both a linear and quadratic effect.  Preliminary graphs, such as Figure 1, seem to suggest

that a quadratic relationship between Study Date and Treatment over the eighteen days is

plausible.
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CHAPTER 3 - Limit of Detection and the Proposed Analyses

A limit of detection (LOD) is the minimum value of a variable that can be measured.

During data collection, values less than the LOD can be viewed as missing values or as left-

censored values, but it is known that these values will be small.  In addition, some of the

observations left-censored by the LOD may actually be zero, not just a small undetectable value.

In the E. coli O157 study, counts of bacteria colonies are considered left-censored by the LOD

and were recorded as zero (notice that this does not necessarily mean the CFU value computed

for that sample is zero).  

To determine if the missing value is indeed a zero, the enrichment process is used to

identify which recorded zeros zeros are true zeros and which are false zeros.  The subsequent

filling in of zero or one for the count of one of the three plates from a sample is a form of

imputation that addresses the missing values caused by the LOD.  This method is examined

along with other methods of imputation which are based on already established procedures for

use when a limit of detection is the cause of missing data. 

 Often the LOD is claimed to be known.  However, there was no LOD reported in the K-

State study, but Van Baale et al (2003) report a LOD for a similar study.  The Van Baale et al

study also measures the concentration of E.coli O157 in fecal samples of cattle over time.  The

value of the LOD reported in this study may not be the same value as the LOD present in the K-

State study due to laboratory differences in techniques and resources, but it is evidence to

support the methods chosen in this paper which follow the same structure as methods currently

practiced by researchers and analysts.

When data are missing due to a LOD, it is known that the missing data are less than some

value.  Choosing an appropriate method for handling the missingness should utilize this

information by imputing a value that is small, relative to the observed data.  The method

currently used by the researchers is one such method, as are two methods proposed by Hornung

and Reed (1990).  

Hornung and Reed (1990) suggest substituting LOD/2 or LOD/√2 for missing values.  In

a longitudinal study, creating a histogram of the observed data for each time point data was
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collected will help in choosing which method, dividing by 2 or √2, will be more appropriate.

Hornung and Reed conclude that if a histogram shows a distribution where the frequencies start

small, rapidly increase, and then gradually decrease, dividing by √2 will provide better results.

But if the frequencies start out high, then gradually decrease, dividing by 2 would provide better

results.  In the data set discussed in this paper, the sample size is too small  to accurately assess

the shape of a histogram of the observed data for each day.  Thus, both methods are evaluated.

Since the LOD is unknown in the longitudinal E. coli O157 study the minimum observed value

is used in its place.  Note that this value may be much larger then the actual LOD.

There are many ways to go about handing missing data in a longitudinal study.  From

listwise deletion to using computer programs to perform multiple imputations, each method has

advantages and disadvantages.  One of the simplest approaches is listwise deletion, also known

as complete-case analysis.  If a subject has missing data, then the subject is ignored and not used

in any of the analyses done on that data set.  This is fine as long as the data are missing

completely at random (MCAR) (Allison 2001), meaning the probability of missing data does not

depend on the value of the missing data itself nor the value at any other time point for that

subject (Little and Rubin 2002).  Essentially, listwise deletion will result in a random sample of

the population if missing data is MCAR.  But, as is the case with a LOD, missing data are not

likely to be MCAR since the missingness depends on the value of the missing data.  Two other

common missing data mechanisms are missing at random (MAR) and not missing at random

(NMAR).  If the probability of missing data doesn't depend on the value of the missing data itself

only when the other variables are controlled, then data are said to be MAR (Gadbury et al 2003).

If the probability of missing data depends on the value of the missing data itself then the missing

data are said to be NMAR (Gadbury et al 2003).  The E. coli  O157 data under examination in

this paper is NMAR.  When using listwise deletion and missing data are MAR or NMAR, the

results obtained are often biased.  If used on these data, it will likely produce means which are

too large and variances which are too small at each time point.  Another disadvantage of listwise

deletion is that it reduces the sample size which results in larger standard errors (Allison 2001).

Since this study has five calves per treatment group with 28% of the data missing before the

enrichment process, there would likely not be enough observations to analyze the data if listwise

deletion was used.

8



Other ways to handle missing data involve imputing a single value for the missing data

and analyzing the completed data set; these methods are called single imputation methods.  If a

zero is chosen as the imputed value (as is currently done), then estimates of the mean will be too

low.  But leaving the values as missing will lead to estimates of the mean that are too high since

the small undetectable values are not included (Hornung and Reed 1990). Over time, methods

have been proposed and theoretical arguments made for values other than zero for use with

single imputation.  

Mean imputation, or marginal mean imputation, computes the mean for a variable, or

time point, using the observed responses and imputes the missing data with the calculated mean

(Little and Rubin 2002).  This method is not used for the data in this paper since the data is

missing due to a LOD.  It is known that the values are smaller then the minimum observed,

imputing the mean would not be the best way to employ this knowledge.  A more appropriate

method would utilize the information provided by a known LOD, or if the LOD is unknown, the

minimum observed value.  

A disadvantage to any method which imputes a single value for missing data is the

variance estimates tend to be low (Allison 2001, Gadbury et al 2003, PROC MI 2003).  More

complicated methods, such as multiple imputation, do not have this problem, but are more

complex to perform.  Multiple imputation is a method which imputes a set of possible values for

each missing observation (Little & Rubin 2002).  This creates multiple completed data sets

which undergo the same analyses.  The results are then combined to produce more accurate

estimates.  Multiple imputation utilizes the variability among the completed multiple data sets to

account for some of the sampling variability overlooked by single imputation (Allison 2001).

Multiple imputation using SAS's MI procedure was attempted but proved unsuccessful.  See

Chapter 6 for more information.

 The methods considered for imputing the false zeros in this paper are variations of single

imputation methods based on what was done in the E. coli O157 study and the methods proposed

by Hornung and Reed.  The methods considered can be organized into two groups, before

enrichment and after enrichment, and are used to create multiple data sets for analysis.  The

lognormal response on the original scale is colony forming units per gram (CFU); the log10-

transformed response is logCFU.  Since the data are highly skewed, log10 was used to transform

the data instead of the more common natural logarithm.  Three models with the normal response
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logCFU are fit to each to data set created under the proposed methods for handling the missing

data.  As explained previously, the LOD is unknown so the minimum observed response was

used in its place (CFU = 2.4762, logCFU = 0.39378).  

In some of the proposed methods, a portion of the CFU values remain zero.  When the

log-transformation is attempted, the issue of computing the log10(0) is again encountered.  It does

not seem appropriate to simply ignore these values or to carry the zeros to the log10-transformed

data set (although both methods are tested) as the information they provide will not properly be

used in either case.  Instead, any data set containing at least one zero was shifted in the positive

direction such that no zeros remained in the data.  The addition of a fixed value δ to every

observation in the original CFU data effects the mean, but not the variance.  However, the

magnitude of the fixed value can have an effect on the results after the log10-transformation

(Osborne 2002).  When working with the log-transformation, adding a fixed value less than one

would influence the transformation more than adding a fixed value greater than one.  This is due

to the inherent properties of the log-function; the slope is much steeper for values below 1 then it

is for values greater than one.  This paper looks at the effect of adding a small fixed value δ1=0.1

and a larger fixed value δ2=1 to all values in any data set where zeros are present before

transformation.  When imputing the missing data, the order stated by Hornung and Reed (1990)

was followed: CFU values are imputed before being transformed.  

The before enrichment methods, which do not utilize information provided by the

enrichment process, treat all of the unobserved values after the initial incubation process as

missing positive values below the LOD.  The before enrichment methods create five data sets,

one under each the following settings.  The methods are all implemented on the original

concentrations (CFU) before the transformation.

 1. Denoting all zero concentrations as missing values.

 2. Leaving zero concentrations as zero then adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

 3. Imputing 
minCFU

2
 for all zero concentrations.

 4. Imputing 
minCFU

2
 for all zero concentrations.  
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The after enrichment methods use the information provided by the enrichment process to

determine which of the recorded zeros are true zeros.  In the data sets resulting from these

methods, the unobserved values still remaining after the enrichment process are treated as

missing positive values due to a LOD and are the only values imputed.  The true zeros remain in

the data set.  The method of adding a fixed value δ to all values in the data set is used in all the

methods in this category, since all resulting data sets will contain zeros before the log-

transformation.  The smallest possible concentration referred to in method 6 refers to The after

enrichment methods create eight data sets, one under each of the following settings.  The

methods are all implemented on the original concentrations (CFU) before the transformation.

 5. Denoting the false zeros as missing values and adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

 6. Imputing the false zeros with the smallest possible concentration and adding:

 a) δ0=0 (this is the approach currently used by researchers).

 b) δ1=0.1 to all values in data set.

 c) δ2=1 to all values in data set.

 7. Imputing 
minCFU

2
 for the false zeros and adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

 8. Imputing 
minCFU

2
 for the false zeros and adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

Since the distribution of the response is assumed to be approximately normal after a log10-

transformation, SAS's MIXED procedure can be used without violating the requirement of a

normal response.  PROC MIXED allows for modeling a covariance structure, which is necessary

for a repeated measures or longitudinal study.  Another lesser known feature of PROC MIXED is

that it allows missing data.  When analyzing a data set such as the E. coli O157 data set where
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there are multiple observations for each subject over time, PROC MIXED uses all the data

available for each subject to analyze the data.  If subject j has a missing value at time ti  but an

observed value at time ti+1, PROC MIXED will not use subject j for analysis at time ti, but will

use subject j for analysis at time ti+1.

Under the current analysis used by researchers, the covariance structure modeled is first

order autoregressive.  A first order autoregressive model assumes that observations closer in time

will be more highly correlated than observations further apart in time, and it requires equal

spacing of the measurements (Littell et al 2006).  If σ2 is the overall variance and observations

one time unit apart have correlation ρ, then the covariance between observations one time unit

apart is Cov y t i
, yt i1

=
2
 , two time units apart Cov  yt i

, y t i2
=

2


2
,  and so on.  However,

in the E. coli O157 study data were collected on Monday, Wednesday, and Friday during the 6

weeks of data collection.  Therefore measurements are not equally spaced, instead they are

spaced by either two or three days.  A more appropriate choice for the covariance structure

would be a spatial covariance structure, such as spatial power law.  A spatial power law model is

similar to an autoregressive model in that observations closer in time are more correlated than

observations farther apart, but it does not require the time between observations to be equal.  If

σ2 is the overall variance and ρ is an autoregressive parameter, the covariance between two

observations y t i
 and y t j

 is given by (Littell et al 2006):

Cov  yt i
, y t j

=
2

∣t i­t j∣

    A slightly better fit is achieved when covariance is modeled with the spatial power law

instead of the first-order autoregressive structure.  Table 1 shows the fit statistics provided by

SAS for each.  Data were analyzed using the same code as currently used by researchers with a

first-order autoregressive structure, then with a spatial power law structure.  The method of

imputation used was the one currently used by researchers.  The AIC, AICC, and BIC are all

computed from the log likelihood value presented first, the smaller these values are the better the

fit.  They include a penalty for adding parameters which do not help the goodness of fit.  
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Fit Statistic

Covariance Structure

AR(1) SP(POW)

-2 Res Log Likelihood 395.1 391.0

AIC (smaller is better) 399.1 395.0

AICC (smaller is better) 399.2 395.1

BIC (smaller is better) 399.7 395.6

Table 1: Fit Statistics for Comparing Covariance Structures

Use of a new SAS procedure called GLIMMIX was considered.  PROC GLIMMIX does

not require the response to have a normal distribution.  Any response belonging to the

exponential family, conditional on random effects, can be modeled by specifying the distribution

it follows (SAS GLIMMIX 2006).  This means PROC GLIMMIX can model lognormal

distribution, so that a log-transformation of the data would not be required and all encounters

with log(0) would be avoided.  However, for a lognormal response PROC GLIMMIX models

log(response) as normal.  Thus if an observation equals zero GLIMMIX will ignore the

observation in its analyses, because the log(0) is undefined.  This does not offer any information

that could not be obtained from PROC MIXED, therefore PROC GLIMMIX was not used.

No matter which method of handling the missing values is used, the purpose of the study

is to detect a difference between the two treatment groups over time, if a difference exists.  To do

this three models were fit for each of the proposed methods.  Model 1 is a repeated measures

model and it mimics the model currently used by researchers.  This model treats the time (SDate)

as a categorical variable.  The variable trt is the categorical variable for treatment group, trt = 0

(No DDG), 1 (DDG).  

In models 2 and 3, the study date is treated as a continuous variable, in model 1 with a

linear effect and in model 3 with both linear and quadratic effects.  The response,

y i= y i t1
, y i t2

, ... , yi t18
 , is the log10CFU for each cow where i = 1, 2, ..., n and t1, t2, ..., t18 are the

study dates.  In the E. coli O157 study, n = 10 calves and (t1, t2, ..., t18) = (2, 4, 7, 9, 11, 14, 16,

18, 21, 23, 25, 28, 30, 32, 35, 37, 39, 42).  The model then fit is:

y i=X ii

13



Where in model 2,

X i=
1 t1 trt i t1⋅trt i

1 t2 trt i t 2⋅trt i

. . . .

. . . .

1 t18 trt i t18⋅trt i


and in model 3,

X i=
1 t1 t1

2
trt i t1⋅trt i t1

2
⋅trt i

1 t 2 t 2

2
trt i t2⋅trt i t2

2
⋅trt i

. . . . . .

. . . . . .

1 t18 t18

2
trt i t18⋅trt i t18

2
⋅trt i


Where 1,... ,18  are iid multivariate normal errors with mean 0 and covariance matrix Σ.  The

covariance is the same for all three models and is given by the matrix below.   Note that σ2 is the

overall variance, ρ is an autoregressive parameter explaining the correlation between responses at

different time points, and  d i , j=∣t i­t j∣  is the time lag (Davidian 2007),

i=
2

1 
d1,2 . 

d 1,18

1 . 
d 2,18

. .

1


.

Using the E. coli O157 data, each model was fit using each of the imputed data sets.  The

resulting p-values for the main effects and interaction are presented in Tables 2, 3, and 4.  Time

(SDate) was significant in every analysis (p-value < 0.0001), as was the quadratic effect of time

(SDate2) fit in model three (p-value < 0.0001).  The p-values from the F-tests for SDate and

SDate2 have been omitted from the tables.  P-values showing significance at the α = 0.05 level

are in blue, at the  α = 0.10 level in green.  

Estimate

Method for Handling Missing Data

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.7851 0.0456 0.1872 .2227 0.2760 0.0169 0.0903 0.2279 0.0652 0.2315 0.0640 0.2155 0.0661 0.2229

Trt*SDate 0.3617 0.0246 0.0594 0.0724 0.0842 0.0176 0.0628 0.0735 0.0348 0.0694 0.0394 0.0694 0.0404 0.0714

Table 2: P-values for Model 1 (SDate as factor)
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Estimate

 Method for Handling Missing Data

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.0095 0.0154 0.0513 0.0157 0.0150 0.0073 0.0074 0.0145 0.0123 0.0140 0.0140 0.0149 0.0136 0.0148

Trt*SDate 0.0013 0.0002 0.0007 0.0090 0.0011 <.0001 0.0002 0.0008 0.0003 0.0008 0.0003 0.0008 0.0003 0.0008

Table 3: P-values for Model 2 (SDate as continuous, linear)

Estimate

Method for Handling Missing Data

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.0106 0.0236 0.0094 0.0094 0.0084 0.0058 0.0043 0.0061 0.0060 0.0050 0.0081 0.0065 0.0072 0.0059

Trt*SDate 0.0905 0.1533 0.0954 0.0976 0.0925 0.0367 0.0404 0.0704 0.0543 0.0594 0.0684 0.0716 0.0622 0.0667

Trt*SDate2 0.4563 0.8923 0.6580 0.6547 0.6210 0.4741 0.4146 0.5554 0.5409 0.5039 0.6118 0.5617 0.5798 0.5383

Table 4: P-values for Model 3 (SDate as continuous, linear and quadratic)

Model 1 is the model currently fit by the researchers to the E. coli O157 data.  It treats

SDate as a categorical variable.  This model is the more conservative than model 2, finding a

significant interaction at the α = 0.05 level in six of the fourteen proposed imputation methods,

as opposed to all, and finding treatment significant at the α = 0.05 level only when method 5a is

used.  

Model 2 results are less varied.  Model 2 fits SDate as a continuous variable with a linear

effect only.  Results from this model always find the interaction between time and treatment to

be significant at the α = 0.05 level of significance, and using all methods except for 2b find the

treatment main effect significant at this level as well.  Although results from this model may be

the most attractive to researchers, a linear relationship is not evidenced in Figure 1 (page 5).  

Results from model 3 remain relatively consistent across the proposed methods.  The

quadratic interaction (Trt*SDate2) is not significant α = 0.05 level with any method, meaning the

two treatments do not have a differing effect on the quadratic coefficient in the model.  The

quadratic time term is significant (p-value < 0.0001) for all methods, so there is evidence of a

quadratic relationship over time, but it does not change with the treatment groups.  The p-values

for the treatment by time interaction (Trt*SDate) show significance at the α = 0.05 level of

significance for only two proposed methods, 5a and 5b.  These are both after enrichment

methods where the false zeros are treated as missing values.  In 5a, δ1 = 0.1 is added to all non-

missing values before the log-transformation.  In 5b δ2 = 1 is added.  The treatment effect (Trt) is

significant in every method proposed at the α = 0.05 level of significance. 
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With the addition of either δ1 = 0.1 or δ2 = 1, a pattern appears.  When fitting model 1,

methods 2a, 5a, 6b, 7a, and 8a, all of which add  δ1 = 0.1 reach the same conclusion about the

treatment by time interaction, it is significant at the α = 0.05 level.  The only other method to

reach this conclusion is method 1.  This means that the addition of a small constant, such as  δ1 =

0.1, or a larger constant, such as δ2 = 1, has a large impact upon the conclusions drawn.  The

small constant shows significance more often then the large constant.  The simulation study may

help to determine which is more appropriate.  

Examining fit statistics helps in determining which model is more appropriate.  By

comparing any one fit statistic provided in the PROC MIXED output across all models the most

adequate model can be identified.  For each of the five fit statistics provided, the conclusions

drawn were the same.  Therefore, only one criterion is reported in Table 5 below. Corrected

Akaike Information Criteron (AICC) converges to AIC as sample size increases and is

recommended for use when sample sizes are small (Hurvich and Tsai 1991).  Since the sample

sizes in the E. coli  O157 study are small, AICC is presented.  

AICC

Method for Handling Missing Data

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Model 1 285.4 488.9 414.5 409.5 400.2 333.9 315.7 395.1 431.7 389.3 433.8 396.0 431.3 393.3

Model 2 363.8 570.4 488.0 482.0 471.9 411.5 392.5 465.1 502.7 459.2 506.2 467.3 503.1 464.1

Model 3 368.7 569.6 485.3 479.3 469.2 416.2 394.3 462.1 500.0 456.0 503.9 464.3 500.7 461.0

Table 5: AICC for all models and methods

When interpreting the AICC values provided by SAS, the lower the value the better the

model fits the data.  So, from looking at the values in Table 5, it is easy to see that the AICC

values for Model 1 are smaller then the AICC values for Models 2 and 3.  This would mean that

Model 1 is providing a better fit to the data than models 2 and 3, which supports the analysis

currently done in the E. coli O157 study.  It can also be seen that almost every AICC value from

Model 3 is less than its corresponding AICC value for Model 2; the model where a continuous

study date has both a quadratic and linear effect is a better fit then the model without the

quadratic effect.  This should be expected since the data do not appear to follow a linear trend.  
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It is hard to draw conclusions based on the information from this one data set alone.  The

simulation results should help to identify which of the methods for handling the data missing due

to a LOD provide the best results.  
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CHAPTER 4 - Simulation Study

To help support and draw conclusions from analyses performed on the E. coli O157 data,

a simulation study was conducted.  Data were generated using R to have similar daily means and

variances with a similar covariance structure to the the E. coli O157 data (see Appendix A for

code).  Three models for daily means were considered, along with two variances, two sample

sizes, and a common covariance structure.  Missingness due to an LOD was simulated before

each of the proposed methods was applied to create a new data set for analysis.  The same three

models were fit to the generated data as were to the E. coli O157 data.

When modeling the daily means to use for generating data, piecewise linear functions

were created that were similar to the patterns and values of the actual data.  They model the

response which is assumed to follow a lognormal distribution.  The overall shape of each model

is a simplified version of what is occurring in the actual data; means start high, then drop of

quickly before leveling out.  

Under the null hypothesis, there is no difference in means of the treatment groups.  Daily

means were generated using the following model, a plot of which can be seen in Figure 2.  The

study dates (ti) used to generate the means are identical to the study dates used in the E. coli

O157 study where (t1, t2, ..., t18) = (2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 25, 28, 30, 32, 35, 37, 39, 42).

i = 5.4­0.2⋅t i , if t i17

2.84 – 0.04⋅t i , if 17≤t i29

1.804 – 0.003⋅t i , if 29≤t i

18



Under the parallel alternative hypothesis, the difference between the means of the

treatment groups is constant throughout the study.  This does not reflect the actual pattern seen in

the E. coli O157 study, but the constant difference in treatment means between groups should

make it easier to detect if the proposed methods are performing as should be expected.  The

difference between the two treatment groups is similar to the difference seen in the second half

of the E. coli O157 study.  This is the part of the study where the No DDG treatment group

begins to separate from the DDG treatment group.  The mean difference between treatment

groups from study dates 23 through 42 is 1.08, the difference used under the null hypothesis is

1.18.  Means for the parallel hypothesis were generated under the following model for the No

DDG treatment (Figure 3).  

i = 4.636­0.2⋅t i , if t i17

2.076 – 0.04⋅t i , if 17≤t i29

1.04 – 0.003⋅t i , if 29≤t i
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And the following model for the DDG treatment:

i = 5.816­0.2⋅t i , if t i17

3.256 – 0.04⋅t i , if 17≤t i29

2.22 – 0.003⋅t i , if 29≤t i

The second alternative hypothesis, the nonparallel hypothesis, more closely resembles the

pattern seen in the E. coli  O157 data.  The difference between the means of the two treatment

groups at the end of the study is equal to the difference seen in the parallel hypothesis, however

the difference is not constant each day of the study.  The treatment groups start out the same then

as time progresses, the difference between the treatment means grows.  This reflects what could

be logically expected.  Before treatments have a chance to take an effect, the response from each

group should be similar.  If there is a treatment difference, it should become more evident as

time passes.  Daily means for each treatment group under the nonparallel hypothesis were

generated under the following model for  the No DDG treatment group (see Figure 4):

20
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i = 5.4­0.2⋅t i , if t i15

3.66 – 0.084⋅t i , if 15≤t i29

  1.52 – 0.01⋅t i , if 29≤t i

And the following conditions for the DDG treatment:

i = 5.4­0.2⋅t i , if t i15

2.852 – 0.018⋅t i , if 15≤t i29

2.404 – 0.002⋅t i , if 29≤t i

The variance was assumed constant for both treatment groups and over all time points.

Two variances were compared, a small variance, S

2
=0.4  and a large variance, L

2
=1.5 .  The

values chosen were based on the variances computed each day from the actual data for each

treatment group.

Data were also generated under two sample sizes.  A small sample of five subjects per

treatment mimics the sample sizes in the E. coli O157 study.  A larger sample of fifteen subjects

21
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per treatment group was also used to see if the conclusions drawn for small samples were

consistent with those for larger samples.  The sample sizes chosen are consistent with similar

studies as well. 

The same covariance structure was used for each simulation scenario.  A spatial power

correlation structure with =0.95  was used to compute the covariance matrix required for R.

The value chosen for ρ reflects the highest observed correlation in the E. coli O157 data.

Multivariate normal data representing the logCFU were generated 1000 times under each of the

twelve condition combinations.  It is assumed that the original CFU data follow a lognormal

distribution, therefore the generated data were exponentiated (base e) before the proposed

strategies were imposed after which the response underwent a log10-transformation for analyses.

In order to simulate missing data due to a LOD, a value for the LOD had to be set.  The

E. coli O157 data were used to determine the value used for the generated data.  In the actual

data, approximately 28% of the observations were less then the LOD before enrichment.

Therefore, the 28th percentile was computed under each hypothesis, the average found and used

as the LOD for the generated data.  Once set, the same LOD was used for every method and

model.

To model the enrichment process as accurately as possible, two issues had to be

addressed: 1) which values less than the LOD are true zeros and 2) what values should be

imputed for the false zeros.  To determine which values less than the LOD were true zeros,

random Bernoulli data were generated, where the probability of success depended on the study

date.  A success means the lognormal value generated may be a true zero.  The actual data

provided reason to believe that as the study progressed, the chances of a data value being less

then the LOD increased.  Each random Bernoulli value generated was paired with one value

from the generated multivariate normal (MVN) data.  If the MVN data value was less then the

LOD and the Bernoulli value was 1, the MVN value was a true zero.  If the MVN value was less

then the LOD but the Bernoulli value was 0, the MVN value was a false zero, i.e. a positive

missing value below the LOD.  If the MVN value was greater than the LOD, no matter what the

Bernoulli value, the MVN value remained as the observed value.  This resulted in approximately

8% of the data being recorded as a true zero after the enrichment process, which is consistent

with the actual E. coli O157 data.
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The second issue to be addressed is what value to impute.  The enrichment process in the

E. coli O157 study showed that the CFU values computed from the imputed enrichment values

were distributed N(0.5, 0.008) after the log transformation and were not correlated to the study

date.  Since the generated data produced values slightly larger than the original E. coli O157

data, the mean of the enrichment values needed to be shifted as well.  Therefore random values

generated under a N(0.873, 0.008) distribution were used to represent the enrichment values in

the generated data set.  It is worth noting that although the methods chosen to estimate the

enrichment process are based on the patterns seen in the actual data, the fact that the enrichment

process is only estimated in the generated data means one should interpret results with caution.  

The tables in Appendix B show the results of the simulations.  Provided are the Type I

error rates and the power of each of the three models using each of the proposed methods for

each of the twelve generation conditions.  Chapter 5 describes the results in more detail.
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CHAPTER 5 - Results

When looking at the Type I error rates and power from the simulations, it is important to

understand what should be expected as a result of the models under which the data were

generated and analyzed.  Under all hypotheses, there is a significant time (SDate) and, where

applicable, time by time interaction (SDate2).  For data generated under the null hypothesis the

same mean model was used for each treatment group.  Therefore, it is known that there is no

significant treatment main effect (Trt), no significant treatment by time interaction (Trt*SDate),

and, where applicable, no significant treatment by time by time interaction (Trt*SDate2).  This

should be reflected in the Type I error rates.  With an α = 0.05 level of significance, non-

significant effects should have Type I error rates of approximately 0.05.  

For data generated under the parallel hypothesis a different mean model was used to

generate data for each treatment group.  It is known that the treatment main effect is significant,

along with the time main effect and time quadratic effect.  But the interactions, treatment by time

and treatment by time by time, are still not significant.  So if a test is performing well, it will find

the significant effects while maintaining a Type I error rate of approximately 0.05 for the non-

significant effects.

Since the data generated under the nonparallel hypothesis also used different mean

models it is known there is a significant treatment main effect, time main effect, and time

quadratic effect, as well as a significant treatment by time interaction.  The only effect which

should not show as significant is the quadratic interaction of treatment and time.  Therefore, a

test that is performing well will find the effects known to be significant, while keeping the Type I

error rate of the non-significant term near 0.05.    

The selected tables and discussion presented in this chapter provide a summary of all

three models fit, under each of the methods proposed.  The complete tables containing the Type I

error rates and power are provided in Appendix B.  All values are color coded throughout the

tables.  Blue values are used for Type I error rates which are smaller than expected, or

conservative.  Red values are used for Type I error rates which are larger than expected, or

liberal.  Green values are used to show the tests with the highest power.  It should be noted that
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error rates for the variable SDate and SDate2 are omitted from the tables.  These two effects

were consistently significant, as is expected.  In the pages that follow, the proposed methods will

be compared by each model and then across all three models fit.

To determine if observed Type I error rates were statistically different than the expected

0.05, a 95% margin of error was computed.  Type I error rates within the margin of error were

deemed acceptable.  Value too low are liberal and too high are conservative.  To determine if

two powers were statistically different or not, a hypothesis test for two population proportions

was conducted at the α = 0.05 level of significance.

Model 1

At the α = 0.05 level of significance, the observed Type I error rates under the null

hypothesis should be 0.050.  If results show error rates greater than this, the method used is said

to be liberal and will not be considered as a choice for use with the longitudinal lognormal data

analysis.  Tables 6 through 11 show the Type I error rates from fitting Model 1, where SDate is a

categorical variable.  This is the model currently fit by researchers.

Null

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt,    0.043

0.037

0.127

0.114

0.122

0.095

0.087

0.066

0.072

0.058

0.039

0.039

0.038

0.039

0.058

0.046

0.059

0.048

0.053

0.044

0.095

0.071

0.080

0.060

0.077

0.060

0.064

0.051

Trt*  

SDate

0.023

0.017

0.053

0.043

0.045

0.034

0.028

0.024

0.028

0.025

0.035

0.035

0.023

0.018

0.038

0.034

0.035

0.033

0.037

0.035

0.024

0.024

0.027

0.026

0.025

0.022

0.031

0.025

Table 6: Model 1, Under Null Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt,    0.041

0.034

0.114

0.111

0.104

0.089

0.079

0.056

0.067

0.045

0.033

0.035

0.034

0.030

0.040

0.027

0.040

0.033

0.031

0.025

0.076

0.055

0.073

0.049

0.064

0.044

0.057

0.038

Trt*   

SDate

0.039

0.038

0.064

0.047

0.055

0.043

0.038

0.043

0.041

0.039

0.038

0.041

0.034

0.034

0.047

0.045

0.044

0.045

0.051

0.047

0.042

0.040

0.037

0.039

0.039

0.040

0.039

0.037

Table 7: Model 1, Under Null Hypothesis, n=15 per treatment
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For data generated under the null hypothesis, it can be seen that none of the methods are

too liberal in detecting significant interactions.  This is expected, as data were generated such

that no interaction existed. When looking at the Type I error rates for testing significant

treatment effect, the different methods start to show how well they actually perform.  Methods 2a

and 2b consistently have high Type I error rates under both sample sizes and variances.  These

methods treat all the missing values as zeros, then add either δ1 = 0.1 (2a) or δ2 = 1 (2b).  This

poor performance shows theses methods are not good alternatives to the method already used

and will not be considered further.  

The method maintaining an acceptable Type I error rate is 8 in wich the true zeros were

kept, the false zeros were imputed with minCFU/√2, then δ2 = 1 was added to all values.  This

method provided Type I error rates near 0.05 for treatment effect under both sample sizes and

variances.  

Six other methods also provided acceptable Type I error rates when fitting model 1on

data generated under the null hypothesis: 1, 5a, 5b, 6a, 6b, and 6c.  Methods 6a, 6b, and 6c are

variations on the enrichment process already used.  Simulating what is currently done is method

6a; adding δ1 = 0.1 is method 6b; adding δ2 = 1 is method 6c.  All six of these methods provide

Type I error rates near 0.05 with small sample size, but can be conservative when the sample size

is large.  Since it is known that this is actually the case, these methods will still be considered in

the power study.  

Of the five remaining models fit under model 1, three may still be reasonable methods to

use.  The two that are most questionable are methods 3 and 7a.  Both of these methods have high

Type I error rates for small sample sizes with either variance and also for large sample size with

small variance.  Therefore these two methods will also be removed from consideration.  That

leaves methods 4, 7b, and 8a.  With small sample size and small variance, these three methods

were liberal.  With large variance all three methods have Type I error rates near 0.05.  Their

inconsistent performance makes it hard to remove them from consideration. Therefore, these

methods will still be considered in the power analysis.
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Parallel

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.765

0.222

0.930

0.502

0.938

0.466

0.910

0.382

0.878

0.323

0.700

0.217

0.741

0.216

0.680

0.231

0.544

0.199

0.642

0.217

0.854

0.333

0.884

0.332

0.782

0.275

0.834

0.286

Trt*

SDate 

0.037

0.028

0.239

0.041

0.097

0.027

0.072

0.042

0.072

0.049

0.195

0.055

0.074

0.030

0.341

0.083

0.258

0.068

0.345

0.089

0.033

0.028

0.045

0.044

0.043

0.035

0.075

0.050

Table 8: Model 1, Under Parallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.999

0.728

1.000

0.927

1.000

0.913

1.000

0.867

1.000

0.837

0.997

0.713

0.999

0.704

0.996

0.721

0.998

0.699

0.998

0.702

1.000

0.852

1.000

0.842

0.999

0.816

1.000

0.805

Trt*

SDate 

0.090

0.068

0.630

0.058

0.199

0.041

0.069

0.056

0.207

0.095

0.153

0.064

0.126

0.060

0.897

0.270

0.834

0.251

0.923

0.291

0.063

0.056

0.098

0.082

0.162

0.087

0.290

0.114

Table 9: Model 1, Under Parallel Hypothesis, n=15 per treatment

For data generated under the parallel hypothesis, there were problems in detecting a

significant interaction too often, i.e. high Type I error rates for treatment by time interaction.

Data were generated so that there was a treatment effect, but not an interaction between

treatment and time.  The extremely high Type I error rates for some of the methods make it easy

to remove them from consideration, in particular, methods 6a, 6b, and 6c are all performing very

poorly; their Type I error rates are near 0.90.  

After removing methods 2a, 2b, 3, 7a, and methods 6a, 6b, and 6c (the methods shaded in

gray), the power of the remaining methods can be compared.  Even though for the large sample

size  and small variance almost all methods had powers close to 1.000, under other conditions a

few stand out.  Under both variances and sample sizes, methods 4 and 7b provide the highest

power.  Method 8b performs just as well as 4 and 7b  when sample size and variance are small,

but not as well otherwise. The Type I error rates for the treatment by time interaction are large

for all three methods, with 0.098 (from 7b) as the smallest.  

Methods 1, 5a, 5b, and 8a have good power, but they are not consistently as high as

methods 4, 7b, and 8b.  
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Nonparallel

Estimate Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.345

0.060

0.420

0.269

0.387

0.212

0.373

0.141

0.366

0.117

0.312

0.053

0.326

0.048

0.125

0.069

0.327

0.075

0.336

0.065

0.344

0.146

0.351

0.121

0.339

0.115

0.346

0.107

Trt*

SDate 

0.340

0.036

0.307

0.092

0.367

0.074

0.386

0.053

0.387

0.052

0.346

0.031

0.328

0.031

0.107

0.045

0.321

0.042

0.346

0.042

0.354

0.054

0.366

0.051

0.359

0.044

0.365

0.051

Table 10: Model 1, Under Nonparallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.658

0.198

0.979

0.521

0.956

0.422

0.884

0.305

0.802

0.256

0.648

0.127

0.617

0.142

0.390

0.133

0.346

0.152

0.342

0.125

0.859

0.306

0.833

0.265

0.763

0.261

0.724

0.225

Trt*

SDate 

0.764

0.142

0.947

0.275

0.948

0.250

0.952

0.252

0.938

0.241

0.813

0.091

0.749

0.108

0.471

0.115

0.395

0.086

0.430

0.112

0.933

0.213

0.931

0.233

0.891

0.185

0.905

0.215

Table 11: Model 1, Under Nonparallel Hypothesis, n=15 per treatment

For data generated under the nonparallel hypothesis, both treatment effect and the

interaction effect should be significant.  After removing the methods shaded in gray from

consideration, those methods with the highest power can be seen.  Consistent with data generated

under the parallel hypothesis, methods 4 and 7b are consistently providing the highest power.

Although, under various conditions other methods perform just as well.  For small sample size,

each of the remaining methods performs similarly, with 4, 7b, 8a, and 8b providing powers that

are not significantly different from each other.  Looking at the larger sample sizes a more

detailed picture can be seen.  

As stated, methods 4 and 7b are consistently doing well, but these methods also have

higher Type I error rates than may be acceptable.  However the methods with the closest power

to 4 and 7b are methods 8a and 8b, which do not have problems with liberal Type I error rates.

The amount of power gained by using either method 4 or 7b seems to outweigh the loss of

accuracy from the Type I error rates suggesting that these methods will provide better results

than the others.  
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Under the small sample size, small variance condition Type I error rates for 4 and 7b are

0.072 and 0.080 respectively.  Their corresponding power under the parallel hypothesis are 0.878

and 0.884 (two of the highest), and under the nonparallel hypothesis the corresponding powers

are 0.802 and 0.833 (two of the highest).  For model 8b, where the Type I error rate is not liberal

at 0.064, the power under the parallel hypothesis is 0.834 and under the nonparallel the power is

0.346.  The difference in Type I error rates, approximately 0.01, is not very large considering the

increase in power, approximately 0.04 (parallel) and 0.50 (nonparallel).  

When fitting model 1, using either method 4 and 7b appears to provide the highest power

with the reasonable Type I error rates.  Method 4 imputes minCFU/2 for all zero concentration,

method 7b imputes minCFU/2 for false zeros then adds δ2 = 1 to all values. If using one of these

methods, it would be wise to use a slightly lower level of significance for tests to account for the

seemingly liberal nature of these methods.  If the Type I error rate issue can not be compromised,

method 8b will provide reliable results.  

Model 2

For model 2, the performance of all 14 methods is relatively similar.  For data generated

under the null hypothesis, Type I error rates are only above what should be expected for two

methods, 6b and 6c, occurring only when the variance and sample size are large.  For the rest of

the cases, Type I Error rates are near 0.05 or lower.  For data generated under the parallel

hypothesis, some methods are too liberal in detecting a significant interaction, specifically

methods 6a, 6b, and 6c.  Methods 4, 7b, and 8b had relatively high power under all conditions

for model 2.  For data generated under the nonparallel hypothesis, the performance of all

methods was relatively similar.  Complete results for fitting model 2 are presented as tables in

Appendix B.  Despite the results, this model is believed to be inadequate for the data which were

not generated to follow a single linear trend, as is suggested by fitting model 2.   
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Model 3

When fitting model 3, where time is a continuous variable having both linear and

quadratic effects, there are multiple methods performing poorly.  Tables 12 through 17 show the

results from fitting this model with data generated under each of the three hypotheses.  

Null

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt   

        

0.086

0.089

0.000

0.000

0.002

0.017

0.038

0.067

0.076

0.096

0.073

0.073

0.094

0.088

0.142

0.136

0.129

0.122

0.154

0.143

0.039

0.059

0.065

0.088

0.065

0.083

0.094

0.107

Trt*  

SDate 

0.050

0.049

0.014

0.013

0.010

0.014

0.025

0.034

0.040

0.053

0.049

0.050

0.053

0.046

0.034

0.076

0.035

0.068

0.043

0.082

0.023

0.033

0.032

0.043

0.035

0.043

0.044

0.058

Trt*

SDate2

0.042

0.025

0.019

0.018

0.017

0.018

0.025

0.024

0.023

0.029

0.064

0.038

0.050

0.028

0.022

0.037

0.024

0.041

0.026

0.040

0.031

0.026

0.027

0.026

0.033

0.032

0.030

0.034

Table 12: Model 3, Under Null Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.069

0.078

0.000

0.000

0.002

0.015

0.026

0.057

0.054

0.080

0.053

0.070

0.072

0.087

0.108

0.135

0.099

0.130

0.120

0.142

0.023

0.056

0.044

0.073

0.048

0.077

0.075

0.096

Trt*

SDate 

0.039

0.035

0.007

0.010

0.009

0.014

0.016

0.030

0.026

0.043

0.037

0.039

0.045

0.039

0.029

0.064

0.027

0.066

0.036

0.075

0.016

0.033

0.018

0.039

0.022

0.043

0.028

0.049

Trt*

SDate2

0.038

0.039

0.016

0.013

0.018

0.014

0.022

0.027

0.025

0.032

0.048

0.044

0.040

0.040

0.017

0.042

0.022

0.045

0.020

0.046

0.027

0.031

0.026

0.030

0.036

0.035

0.028

0.039

Table 13: Model 3, Under Null Hypothesis, n=15 per treatment

Under the null hypothesis it is known that the quadratic effect for each treatment is the

same (Trt*SDate2 is not significant), the linear interaction (Trt*SDate) is not significant, and the

treatment effect (Trt) is not significant.  Therefore the Type I error rates for all three should be

approximately 0.05.  None of the methods have Type I error rates too high when testing for

significant quadratic interaction, but a few do for the Trt*SDate interaction term.  They are the

three methods simulating the currently used enrichment methods (6a, 6b, and 6c) when the

variance is large.  These three methods also provide the highest Type I error rates for the
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treatment main effect under both sample sizes and variances.  If model 3 will be fit, these

methods should not be used.  

Additionally, methods 1, 5b, and 8b show high Type I error rates for both sample sizes

and variances.  Although not as liberal as the three methods discussed above, these methods are

not performing well enough to be taken into consideration, therefore they will be removed from

the power study.  

Of the eight remaining methods, those maintaining the expected Type I error rates are

methods 2a, 2b, and 7a.  These methods are not liberal under any of the tested conditions.

Method 3 is borderline.  It is conservative when sample size is large and variance is small (α =

0.026), it is liberal when sample size is small and variance is large (α = 0.067), and it is

maintaining an expected Type I error rate in the other two conditions (α = 0.038, 0.057).  Since

the Type I error rate is not very large this model will still be considered in the power study.  

Four methods which are slightly liberal, but may have high enough power to make them

contenders are methods 4, 5a, 7b, and 8a.  For all four, they are liberal under every condition

except for small variance with large sample size, where all are meeting expectations.  Although

liberal, the Type I error rates are not as liberal as other methods which are performing poorly.

These methods will not be removed from consideration.  Their performance under the other two

hypothesis will be considered first.  

Parallel

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.748

0.354

0.006

0.031

0.374

0.205

0.746

0.352

0.815

0.414

0.631

0.283

0.734

0.342

0.866

0.497

0.795

0.438

0.867

0.506

0.678

0.326

0.794

0.385

0.728

0.350

0.825

0.428

Trt*

SDate 

0.043

0.049

0.276

0.039

0.067

0.016

0.022

0.047

0.039

0.081

0.050

0.064

0.040

0.065

0.337

0.208

0.318

0.197

0.408

0.232

0.025

0.049

0.040

0.071

0.052

0.093

0.110

0.121

Trt*

Sdate2 

0.068

0.027

0.140

0.035

0.050

0.011

0.028

0.025

0.032

0.041

0.163

0.065

0.054

0.046

0.117

0.115

0.149

0.145

0.160

0.133

0.039

0.050

0.035

0.045

0.062

0.075

0.053

0.070

Table 14: Model 3, Under Parallel Hypothesis, n=5 per treatment
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Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 1.000

0.780

0.050

0.119

0.972

0.600

0.999

0.778

1.000

0.820

0.997

0.759

1.000

0.786

1.000

0.882

1.000

0.878

1.000

0.887

0.998

0.773

1.000

0.810

1.000

0.812

1.000

0.841

Trt*

SDate 

0.075

0.056

0.661

0.081

0.175

0.016

0.013

0.069

0.088

0.141

0.065

0.066

0.048

0.079

0.745

0.383

0.742

0.391

0.832

0.430

0.020

0.083

0.054

0.122

0.115

0.151

0.236

0.203

Trt*

SDate2 

0.238

0.029

0.308

0.049

0.096

0.015

0.028

0.036

0.019

0.058

0.200

0.038

0.147

0.027

0.256

0.164

0.302

0.187

0.334

0.199

0.028

0.050

0.023

0.060

0.048

0.075

0.065

0.088

Table 15: Model 3, Under Parallel Hypothesis, n=15 per treatment

For data generated under the parallel hypothesis, it is known that the only effect which

should be significant is the treatment effect.  The other two estimates should have Type I error

rates near 0.05.  The three most problematic methods are again methods 6a, 6b, and 6c.  They

have consistently high Type I error rates for treatment by time interaction for both sample sizes

and variances, further showing that these are not the optimal methods.  In addition, method 8b is

also performing poorly.  The Type I error rates seen from method 8b are not as high as for 6a,

6b, and 6c, but are still too high to consider.  In addition, when variance is small, the Type I error

rates from methods 2a and 2b are too high.  Methods 5b and 8a are also liberal under various

conditions.  None of these methods will be considered.

From the remaining methods, methods 4 and 7b appear to be consistently having the best

power.  But recall that the Type I error rate from methods 4 and 7b are higher than should be

expected.  Even though these methods have a higher power, if the Type I error rate can not be

adjusted, then it may not be best to use these methods.  If Type I error rates can not be comprised

methods 3 and 7a can be used.  These two methods produce the highest power among methods

while maintaining acceptable Type I error rates.

Method 1, which is consistently liberal under the null hypothesis, has mixed results for

data generated under the nonparallel hypothesis.  When sample size is large and variance is

small, the Type I error rate is much larger than the acceptable 0.05.  The power of method 1

varies under different sample size and variance combinations, this method is not worth

considering since it is not clear whether it out performs the other methods.  Method 5a performs

much better when the sample size is small then when it is large.  When sample size is large,

method 5a is liberal with moderately high power.  When sample size is small, method 5a is still
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slightly liberal, but the power does not compete with other methods.  It is not the worst choice,

but it is clear that better methods exist.

  

Nonparallel

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.052

0.078

0.021

0.004

0.034

0.024

0.045

0.050

0.050

0.071

0.038

0.059

0.051

0.074

0.082

0.128

0.048

0.112

0.058

0.138

0.033

0.048

0.048

0.066

0.040

0.065

0.052

0.093

Trt*

SDate 

0.153

0.055

0.069

0.033

0.111

0.039

0.134

0.057

0.140

0.063

0.107

0.054

0.122

0.055

0.064

0.059

0.097

0.054

0.111

0.063

0.093

0.051

0.112

0.059

0.098

0.058

0.114

0.064

Trt*

SDate2

0.040

0.032

0.028

0.024

0.029

0.024

0.034

0.032

0.035

0.035

0.046

0.036

0.037

0.032

0.025

0.029

0.042

0.031

0.037

0.030

0.044

0.031

0.040

0.033

0.044

0.034

0.039

0.034

Table 16: Model 3, Under Nonparallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6ca 7a 7b 8a 8b

Trt 0.098

0.107

0.003

0.002

0.020

0.027

0.061

0.078

0.085

0.096

0.076

0.079

0.098

0.100

0.089

0.143

0.085

0.133

0.113

0.148

0.054

0.075

0.083

0.096

0.070

0.096

0.094

0.112

Trt*

SDate 

0.547

0.144

0.253

0.065

0.306

0.068

0.388

0.120

0.393

0.137

0.410

0.101

0.485

0.130

0.179

0.111

0.149

0.083

0.173

0.114

0.305

0.090

0.346

0.121

0.294

0.094

0.344

0.128

Trt*

SDate2

0.168

0.048

0.027

0.021

0.020

0.019

0.038

0.027

0.060

0.032

0.139

0.046

0.139

0.051

0.031

0.032

0.054

0.030

0.047

0.035

0.042

0.028

0.040

0.034

0.055

0.030

0.055

0.038

Table 17: Model 3, Under Nonparallel Hypothesis, n=15 per treatment

The nonparallel hypothesis generates data under a model that resembles the actual E. coli

O157 more closely.  Results drawn from this data will provide the strongest recommendations

for what could done with the actual data.  The only effect which should not be significant is the

quadratic interaction (Trt*SDate2).  The only time the Type I error rate is too high for this effect

is under methods 1, 5a, and 5b, when variance is small and sample size is large.  Every other

condition and model provides acceptable, or conservative, Type I error rates.

In general, the power results from fitting model 3 under the nonparallel hypothesis are

quite low.  Method 4 consistently provides the highest power under all conditions tested.  But,

the issue again arises of the high Type I error rate.  As long as it is reasonable to perform tests at

a lower level of significance, method 4 should be used.  The same is true of method 7b, a liberal
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method with relatively high power.  If the level of significance remains at the customary 0.05,

then method 3 should be used, otherwise methods 4 and 7b perform well.

All Models

The performance of the methods when fitting model 1 is practically opposite of the

performance of the methods when fitting model 3.  Methods 2a and 2b performed well under

model 3, but poorly under model 1.  Method 8b performed poorly under model 3, but well under

model 1.  Despite this contradiction, methods 4 and 7b perform relatively well under each model.

Method 4 imputes minCFU/√2.  Method 7b adds δ2 = 1 to all observations after imputing

minCFU/2 for the false zeros. 

There isn't a single method which is consistently high in power for all three methods with

acceptable Type I error rates.  This means that the method used will vary depending on the

model to be fit.  To summarize, for Model 1 the following methods are inadequate for use: 2a,

2b, 3, 6a, 6b, 6c, and 7a, while method 8b performs well.  For Model 3 the following methods

are not adequate: 1, 2a, 2b, 5b, 6a, 6b, 6c, 8a and 8b, while method 3 performs well.  For both

models, methods 4 and 7b also perform relatively well, although these methods have slightly

liberal observed Type I error rates.

As long as one is willing to accept slightly high Type I error rates and account for them

by using a lesser level of significance, models 4 and 7b perform relatively well under all

conditions tested.  The methods performing best in each of model 1 and model 3 perform poorly

in the other model, thus unless it is known what model will be fit recommending just one model

to use is difficult

As for the appropriateness of adding a constant, it is not clear whether adding  δ1 = 0.1 or

δ2 = 1 is more appropriate.  Under various models and conditions, the two approaches out

perform each other.  However, since method 7b (δ2 = 1) is a relatively good performer over its

counterpart 7a (δ1 = 0.1), one may tend to believe that adding 1 is more appropriate then adding

0.1 to all values in the data set.
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CHAPTER 6 - Discussion

Results from the simulation study help in determining which method is the best for each

of the models fit and which method is best regardless of the model fit.  When fitting model 1,

with time as a categorical variable, method 8b is the best in terms of both Type I error rate and

power.  Method 8b imputes minCFU/√2 for the false zeros then adds δ2 = 1 to all values in the

data set.  Methods 4 and 7b are liberal in terms of Type I error rates, but have high power.

Method 4 imputes  minCFU/√2 for all zero concentrations.  Method 7b imputes minCFU/2 for

false zeros then adds δ2 = 1 to all values in the data set.  When fitting model 3, with time as a

continuous variable with both linear and quadratic effect, method 3 is the best in terms of both

Type I error rate and power.  Method 3 imputes minCFU/2 for all zero concentration.  Similarly

to fitting model 1, methods 4 and 7b are liberal in terms of Type I error rates, but have high

power for this model.

Methods 6a, 6b, and 6c, the three methods simulating on the enrichment process currently

used, showed to be among the worst.  Method 6a simulates the process currently used by

researchers.  Method 6b simulates the current process then adds δ1 = 0.1 to all values in the data

set and method 6c adds δ2 = 1 to all values in the data set.  When fitting Model 1, these three

methods had high Type I error rates for the treatment by time interaction under the parallel

hypothesis and low power under the nonparallel hypothesis.  When fitting Model 3, these three

methods had high Type I error rates under both the null and parallel hypothesis.  However, since

these simulations are based on a strict set of conditions for the data, it would not be correct to

reject the current enrichment process.  All that can be said, is that under the conditions used for

the data generation, manipulation, and analysis, the three methods attempting to simulate the

current enrichment process perform poorly.  Under different conditions, this may not be the case.

According to the actual E. coli O157 data, it seems that Model 1 provides the best fit.

Therefore, the recommended method to be used is Method 8b.  Table 18 shows the resulting p-

values for model 1 under all 14 methods (as did Table 2).  All methods besides the best three

have been shaded.  At the α = 0.05 level of significance, none of the top three methods show a

significant interaction, although at the α = 0.10 level of significance, all three do.  Also, none of
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the three recommended methods show a significant treatment effect.  The identical conclusions

reached by these three methods help to support adequacy of each.  

Estimate

Method for Handling Missing Data

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.7851 0.0456 0.1872 .2227 0.2760 0.0169 0.0903 0.2279 0.0652 0.2315 0.0640 0.2155 0.0661 0.2229

Trt*SDate 0.3617 0.0246 0.0594 0.0724 0.0842 0.0176 0.0628 0.0735 0.0348 0.0694 0.0394 0.0694 0.0404 0.0714

Table 18: P-values for Model 1 (SDate as factor)

Table 19 below shows the results of fitting Model 3 after applying each of the 14

proposed methods (as does Table 4).  The three remaining unshaded methods correspond to the

top three methods found in the simulation study.  Even though this method did not provide the

lowest fit statistics (per Chapter 3), it is of interest to see how the three methods chosen perform.

All three methods show that the quadratic interaction is not significant, the interaction between

treatment and time is significant at the α = 0.10 level of significance, but not at the α = 0.05

level, and the treatment effect is significant at the α = 0.01 level of significance.  Again, the

conclusions drawn from all three methods are identical, supporting the adequacy of each model.

Estimate

Method for Handling Missing Data

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.0106 0.0236 0.0094 0.0094 0.0084 0.0058 0.0043 0.0061 0.0060 0.0050 0.0081 0.0065 0.0072 0.0059

Trt*SDate 0.0905 0.1533 0.0954 0.0976 0.0925 0.0367 0.0404 0.0704 0.0543 0.0594 0.0684 0.0716 0.0622 0.0667

Trt*SDate2 0.4563 0.8923 0.6580 0.6547 0.6210 0.4741 0.4146 0.5554 0.5409 0.5039 0.6118 0.5617 0.5798 0.5383

Table 19: P-values for Model 3 (SDate as continuous, linear and quadratic)

Recall that in Figure 1 (page 11) there appeared to be a quadratic relationship between

treatment and time, not simply a linear relationship.  Model 3 was fit to see if this model could

stand up to the model currently used by the researchers by taking advantage of the quadratic

pattern.  Results from the simulation suggest that the answer is no, observed power from

methods fit under Model 3 do not have as high of power as methods fit under Model 1.  Perhaps

this is due to the way the data were generated.  To see if Model 3 would perform well under

more extreme conditions, a second short simulation was conducted.  Data were generated under a
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second nonparallel hypothesis where the difference in the treatment groups was double what it

originally was by the end of the study.  Figure 5 below shows a plot of the model used for to

generate the means of each treatment group.  Sample size was fixed at 15 subjects per treatment

group.  The same two variances were used as the previous simulations as was the same

covariance matrix.  

 Tables 20 and 21 below show the resulting Type I error rates and power after fitting

models 1 and 3 only, model 2 is not of interest.  The methods removed from consideration were

the ones deemed inadequate in the initial simulation, and are shaded in gray.  The red values are

liberal, the blue values conservative, and the green values show the methods with highest power.

After generating the data, the same LOD was applied and the same proposed methods were used

to create fourteen data sets for analysis.  After analyzing the data, it was found that model 1 still

had higher power than model 3, although the power achieved in model 3 is higher than it was

under the initial simulation.  Table 20 can be compared to table 11 on page 13, and table 21 to

table 13.  
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Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.748

0.370

1.000

0.864

1.000

0.758

0.990

0.571

0.972

0.483

0.830

0.243

0.790

0.272

0.483

0.239

0.431

0.261

0.433

0.220

0.989

0.568

0.979

0.509

0.961

0.492

0.952

0.436

Trt*

SDate 

0.977

0.267

1.000

0.687

1.000

0.643

1.000

0.571

0.997

0.502

0.982

0.172

0.982

0.212

0.669

0.213

0.579

0.163

0.646

0.189

1.000

1.486

0.997

0.511

0.992

0.407

0.990

0.416

Table 20: Model 1, Under Second Nonparallel Hypothesis

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.074

0.096

0.113

0.009

0.114

0.043

0.102

0.088

0.107

0.106

0.057

0.079

0.088

0.096

0.105

0.148

0.082

0.146

0.113

0.157

0.085

0.084

0.109

0.102

0.082

0.103

0.110

0.124

Trt*

SDate 

0.813

0.244

0.896

0.229

0.876

0.233

0.812

0.259

0.740

0.259

0.322

0.178

0.466

0.218

0.222

0.147

0.188

0.121

0.215

0.150

0.677

0.206

0.723

0.241

0.552

0.194

0.622

0.236

Trt*

SDate2

0.031

0.067

0.052

0.034

0.062

0.036

0.111

0.051

0.126

0.061

0.316

0.057

0.069

0.065

0.057

0.051

0.050

0.043

0.053

0.060

0.075

0.044

0.088

0.052

0.085

0.048

0.095

0.060

Table 21: Model 3, Under Second Nonparallel Hypothesis

This second simulation reinforces some of the conclusions drawn from the previous

simulation.  When fitting model 1, the power achieved is near 1 for almost all methods, but

methods 6a, 6b, and 6c have power near 0.400 and 0.600 for the treatment and treatment by time

interaction, respectively, both of which are considerably lower than the other methods.  When

fitting model 3, a similar trend is seen, although methods 5a and 5b are also performing poorly in

this case.  In summary, if the difference in treatments is exaggerated, then model 3 performs

better then when the difference in treatments is relatively small, yet it is still outperformed by

model 1.

The type of challenge model study reflected in these simulations is common in animal

science, where the data collected are assumed lognormal and small values are undetectable due

to a limit of detection.  What this simulation study has shown is that the method currently used

by researchers in conjunction with their enrichment process is not the most appropriate method.

Although, the model being fit to the data is appropriate when the covariance structure is changed,

imputing a 0 when no bacteria colonies are found after enrichment or a 1 if colonies are found

does not accurately explain what is happening.  If this model is to be fit in the future and if the
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enrichment process is still going to be performed, then a better method to use would be to impute

minCFU/2 for samples showing positive enrichment.  The simulation study evidenced that this

method performs well under various sample sizes and variances.  

A Second E. coli O157 Study

Studies such as the E. coli O157 challenge model study performed at K-State in 2007 are

common.  Many times these studies have small sample sizes due to the high cost of the subjects

involved.  Having a reliable method for analyzing the data is crucial to maximizing the efficiency

of such studies.  In an attempt to illustrate the use of the recommendations above, a second study

was analyzed.  One year following the E. coli O157 study, a similar study was conducted at K-

State.  The second study compared four treatments and the response was also the E. coli O157

concentrations found in fecal sample of cattle.  There were eight subjects in three of the

treatment groups and seven in the fourth.  A plot of the means for each treatment group

throughout the study can be seen in Figure 6.   

After fitting the models and methods proposed in this report, none of the methods found

significance in the treatment main effect, in the treatment by time linear interaction, nor in the
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treatment by time by time quadratic interaction.  This is expected as the plot above does not

suggest a difference in treatments.

Future Work

There are still many other approaches that can be taken to explore the information

provided in the E. coli O157 data and other longitudinal lognormal data sets similar to it.  Fitting

the data with a nonlinear mixed model composed of a lognormal distribution and a discrete

distribution may provided a more accurate fit to the data.  One of the underlying assumptions of

these types of studies is that the data collected at each day follow a lognormal distribution.  A

data set with a lognormal distribution can not contain zeros.  This contradicts another assumption

of this report, that it is possible to have no E. coli O157 bacteria present in a sample.  A logical

way to think of how both of these assumptions can be valid is to think of the data at each time

point as having a zero-inflated lognormal distribution.  A zero-inflated lognormal distribution is

a mixture of two distributions, a continuous lognormal distribution and a discrete distribution

where the probability of an observation equaling zero is one. In order to fit a model to a response

with a zero-inflated lognormal distribution, a procedure in SAS called NLMIXED could be used.

It allows the conditional distribution of the data, given the random effects, to be specified

(NLMIXED 1999).   In fact, the programing required for NLMIXED was attempted, but without

success.  Perhaps the sample sizes are too small to use this procedure to adequately fit a

nonlinear mixed model. 

Another model which may more accurately represent the trends seen in a longitudinal

challenge model study would weight the responses taken after a specific time point more heavily

then those before.  It seems logical that a difference in treatments would not appear in the

beginning of a study because the treatments have not had time to take effect, but would appear

towards the end, as displayed under the nonparallel hypotheses.  Knowing when the differences

occur in the treatment groups would aid greatly in building such a model.  Further research could

be done to explore where the treatments begin to differ, then analyze the data accordingly.  This

would make it easier to find any differences in the treatment groups since the initial period where

all treatments are behaving similarly would be weighted less heavily.

There exist other methods for handling missing data due to a LOD not considered in this

paper, not just other models.  For example, if the first missing response is at time ti, the average
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of the responses at times ti-1 and ti+1 could be imputed for the missing value.  If the data in the ti+1

location is also missing, then a zero would be used to compute the average.  This method would

help account for the variability of the responses for each subject.  A problem is that if one of the

values being averaged is not a zero, then the mean imputed will likely be a value that is greater

then the actual missing response.  Knowing the data is missing due to a LOD, we should expect

the missing value to be smaller then its neighboring responses.  

Another method that could be used is multiple imputation.  Multiple imputation involves

imputing a set of plausible values for a missing variable instead of just one value.  By imputing a

set of say five plausible values for each missing value, five different complete data sets are

created.  Each data set can then undergo the same analysis.  The variability between the results

for each analyzed data set is used to account for the sampling variability that would have

naturally occurred if the values were observed.  Using appropriate methods, the five results are

combined to provide a more reliable set of estimates for the problem at hand.  Multiple

imputation requires more time and more work, but results in estimates that are consistent,

asymptotically efficient, and asymptotically normal when data are MAR (Allison 2001).

However, it is known that the data of concern in this report is NMAR.  Results reached from

multiple imputation methods may be be as consistent and efficient as if data were MAR.

Originally, multiple imputation was to be one of the methods proposed, but the

combination of small sample size, missing data, and correlation present in the E. coli O157 data

set did not allow for it.  The SAS procedures MI and MIANALYZE were to be used to impute

and combine the results received from PROC MIXED.  PROC MI uses the inputted data and the

Expectation-Maximization (EM) algorithm to create initial parameter estimates, one of which is

covariance (PROC MI 2003).  The E. coli O157 data were not sufficient to develop a reliable

estimate of covariance.  During the EM process the covariance matrix computed was singular

and even though the imputation was carried out, a small simulation study proved the results to be

unreliable.  Thus, a method involving multiple imputation was not examined.

An issue not addressed in the simulations, but important to drawing conclusions is the

proportion of data missing.  The E. coli O157 data set analyzed in this report had approximately

28% of it data missing before the enrichment process was undergone, and only 8% deemed

missing after the true zeros were determined.  If these percentages change, then it is likely that
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results from simulations will change.  Further work should explore various percents of

missingness.
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CHAPTER 7 - Conclusion

In challenge model studies, the data collected is often longitudinal data assumed to

follow a lognormal distribution.  The study used in this paper measures the E. coli O157

concentrations of cattle over a period of one and half months.  The longitudinal lognormal data

has missing data due to a limit of detection (LOD).  This issue is not unique to the data set

addressed in this paper, it is a common method of imputation is currently used to address the

problems caused by the missing data.  In this paper, new strategies for addressing missing data

due to a LOD have been explored through use of a simulation study and application to real data

sets.  These strategies include different methods for handling the missing values and different

models for fitting the data after using one of the proposed methods.  

Three models were fit.  Model 1 is a repeated measures model which treats time as a

categorical variable.  This is the model currently used by researchers to analyze longitudinal

lognormal data.  Models 2 and 3 fit time as a continuous variable.  In Model 2, time has only a

linear effect.  In Model 3, time has both a linear and quadratic effect.  After analysis, it has been

shown that the most appropriate of these three models is model 1.  It provides the best fit

statistics for the E. coli O157 data and the highest power for the simulations.  Model 2 does not

adequately represent the trend seen in the data and its use is not recommended.  Model 3,

although more appropriate then model 2, does not represent the data as well as model 1.  Model 1

provided the most adequate fit of the three models tested.

When fitting Model 1, one method of addressing the missing values consistently

performed better then, or as good as, the rest, method 8b.  This method imputes minCFU/√2 for

the false zero then adds δ2 = 1 to all values in the data set prior to taking a log10 transformation.

The simulations showed that this method produced Type I error rates near 0.05 under almost all

conditions tested and provided power as high or higher than the other methods tested.  

When fitting Model 3, simulation results show the most appropriate method to use to

address the missing values is method 3.  This method does not require the researchers to go

through the enrichment process.  Method 3 simply imputes minCFU/2 for all recorded zero
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concentrations.  This method produces the most consistent Type I error rates and highest power

for model 3.

Two methods performed relatively well across all models in terms of power, but had

moderately liberal Type I error rates.  These were methods 4 and 7b.  Method 4 imputes

minCFU/√2 for all zero concentrations.  Method 7b imputes minCFU/2 for the false zeros then

adds δ2 = 1 to all values in the data set.  If these methods are used, selecting a smaller level of

significance is suggested, to accommodate the more liberal results.  

Under model 1, the three suggested methods came to the same conclusions for the E. coli

O157 data, the treatment by time interaction was not significant at the α = 0.05 level of

significance, but was significant at the  α = 0.10 level.  The treatment effect was not significant.

Under model 3, the three suggested methods also came to the same conclusions for the E. coli

O157 data.  The treatment by time by time quadratic interaction was not significant, the

treatment by time interaction was not significant at the α = 0.05 level of significance, but was

significant at the  α = 0.10 level, and the treatment effect was significant at the α = 0.01 level of

significance, accommodating for the liberal Type I error rates of methods 4 and 7b.  

In conclusion, simulation results show that to achieve the best power with the most

accurate results, longitudinal lognormal data with missing values due to a LOD should be

analyzed using a repeated measures model that treats time as categorical.  To help alleviate

problems caused by data missing due to a LOD, the current process of enrichment can be done to

determine which recorded values of zero at true zeros and which are false.  Instead of imputing a

1 for samples with positive enrichment results, the minimum observed response divided by √2

should be imputed for the missing CFU values.  Samples with negative enrichment results should

be left as zero.  Then before the analysis is done, δ2 = 1 should be added to all values prior to the

log10 transformation.  This shift of the data will allow the log10 transformation to be correctly

applied.
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Appendix  -A  Simulation Code

Code used for data generation in R can be found in section A.1.  The SAS code used for

model fitting can be found in section A.2.  

A.1: R code

sdate<-c(2,4,7,9,11,14,16,18,21,23,25,28,30,32,35,37,39,42) #vector of collection days

n<-1000 # n is number of simulations

cows<-5 # cows is number of cows per trt group

#########################################################################################

# Setting the values for the means under the different hypotheses #

#########################################################################################

#this function computes the values to use for the mean under the null hypothesis

nullmeans<-function(x){

  means<-0

  for (i in 1:length(x)) {

    if (x[i]<17) {means[i]<-(5.4-.2*x[i])}

#depending on the time into the study, different lines are used

    else if (x[i]<29) means[i]<-(2.84-.04*x[i])

    else means[i]<- {(1.804-.003*x[i])}

  }

  m0<<-means

#m0 is the vector of means to be outputted and used by SAS

  return(means)

}

#this function computes the values to use for the mean under the alternative hypothesis with parallel lines

parmeans<-function(x){

  means1<-0

means2<-0

  for (i in 1:length(x)) {

    if (x[i]<17) {means1[i]<-(5.816-.2*x[i])}

    else if (x[i]<29) means1[i]<-(3.256-.04*x[i])

    else means1[i]<- {(2.22-.003*x[i])}

  }

  for (i in 1:length(x)) {

    if (x[i]<17) {means2[i]<-(4.636-.2*x[i])}

    else if (x[i]<29) means2[i]<-(2.076-.04*x[i])

    else means2[i]<- {(1.04-.003*x[i])}

}

  m1<<-means1

  m2<<-means2

#m1 is the vector of means for the DGS group, m2 is the means for the No DGS group
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}

#this function computes the values to use for the mean under the alternative hypothesis with nonparallel lines

altmeans<-function(x){

  means3<-0

means4<-0

  for (i in 1:length(x)) {

    if (x[i]<15) {means3[i]<-(5.4-.2*x[i])}

    else if (x[i]<29) means3[i]<-(2.852-.018*x[i])

    else means3[i]<- {(2.404-.002*x[i])}

  }

  for (i in 1:length(x)) {

    if (x[i]<15) {means4[i]<-(5.4-.2*x[i])}

    else if (x[i]<29) means4[i]<-(3.66-.084*x[i])

    else means4[i]<- {(1.52-.01*x[i])}

}

  m3<<-means3

  m4<<-means4

#m3 is the vector of means for the DGS group, m4 is the means for the No DGS group

}

#creates m0 to use for data generation under null

nullmeans(sdate)

#creates m1 and m2 to use for data generation under parallel alt, DGS and noDGS groups

parmeans(sdate)

#creates m3 and m4 to use for data generation under nonparallel alt, DGS and noDGS groups

altmeans(sdate)

#########################################################################################

# Generating the Data for the Simulations #

#########################################################################################

library(mvtnorm)

#correlation matrix for all sims with spatial power law format

spcorr<-

matrix(c(1.000,0.950,0.857,0.815,0.774,0.698,0.663,0.630,0.569,0.540,0.513,0.463,0.440,0.418,0.377,0.358,0.

341,0.307,0.950,1.000,0.903,0.857,0.815,0.735,0.698,0.663,0.599,0.569,0.540,0.488,0.463,0.440,0.397,0.377,

0.358,0.324,0.857,0.903,1.000,0.950,0.903,0.815,0.774,0.735,0.663,0.630,0.599,0.540,0.513,0.488,0.440,0.41

8,0.397,0.358,0.815,0.857,0.950,1.000,0.950,0.857,0.815,0.774,0.698,0.663,0.630,0.569,0.540,0.513,0.463,0.4

40,0.418,0.377,0.774,0.815,0.903,0.950,1.000,0.903,0.857,0.815,0.735,0.698,0.663,0.599,0.569,0.540,0.488,0.

463,0.440,0.397,0.698,0.735,0.815,0.857,0.903,1.000,0.950,0.903,0.815,0.774,0.735,0.663,0.630,0.599,0.540,

0.513,0.488,0.440,0.663,0.698,0.774,0.815,0.857,0.950,1.000,0.950,0.857,0.815,0.774,0.698,0.663,0.630,0.56

9,0.540,0.513,0.463,0.630,0.663,0.735,0.774,0.815,0.903,0.950,1.000,0.903,0.857,0.815,0.735,0.698,0.663,0.5

99,0.569,0.540,0.488,0.569,0.599,0.663,0.698,0.735,0.815,0.857,0.903,1.000,0.950,0.903,0.815,0.774,0.735,0.

663,0.630,0.599,0.540,0.540,0.569,0.630,0.663,0.698,0.774,0.815,0.857,0.950,1.000,0.950,0.857,0.815,0.774,

0.698,0.663,0.630,0.569,0.513,0.540,0.599,0.630,0.663,0.735,0.774,0.815,0.903,0.950,1.000,0.903,0.857,0.81

5,0.735,0.698,0.663,0.599,0.463,0.488,0.540,0.569,0.599,0.663,0.698,0.735,0.815,0.857,0.903,1.000,0.950,0.9

03,0.815,0.774,0.735,0.663,0.440,0.463,0.513,0.540,0.569,0.630,0.663,0.698,0.774,0.815,0.857,0.950,1.000,0.

950,0.857,0.815,0.774,0.698,0.418,0.440,0.488,0.513,0.540,0.599,0.630,0.663,0.735,0.774,0.815,0.903,0.950,

1.000,0.903,0.857,0.815,0.735,0.377,0.397,0.440,0.463,0.488,0.540,0.569,0.599,0.663,0.698,0.735,0.815,0.85

7,0.903,1.000,0.950,0.903,0.815,0.358,0.377,0.418,0.440,0.463,0.513,0.540,0.569,0.630,0.663,0.698,0.774,0.8

15,0.857,0.950,1.000,0.950,0.857,0.341,0.358,0.397,0.418,0.440,0.488,0.513,0.540,0.599,0.630,0.663,0.735,0.
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774,0.815,0.903,0.950,1.000,0.903,0.307,0.324,0.358,0.377,0.397,0.440,0.463,0.488,0.540,0.569,0.599,0.663,

0.698,0.735,0.815,0.857,0.903,1.000),18,18,byrow=T)

#########################################################################################

# Using Small Varinace #

#########################################################################################

svari<-.4 #value of variance (constant for all days), repeat with 1.5

ssigma<-svari*spcorr #sigma is the covariance matrix

#empty matrix that will store all the generated values under the null hypothesis

log_h0mxs<-matrix(0,2*cows*length(sdate),n)

for (i in 1:n) 

log_h0mxs[,i]<-matrix(rmvnorm(n=10,mean=m0,sigma=ssigma),2*cows*length(sdate),1,byrow=T)

h0mxs<-exp(log_h0mxs)

#for DGS group under parallel alt

log_h1mxs<-matrix(0,cows*length(sdate),n)

for (i in 1:n) 

log_h1mxs[,i]<-matrix(rmvnorm(n=5,mean=m1,sigma=ssigma),cows*length(sdate),1,byrow=T)

#for No DGS group under parallel alt

log_h2mxs<-matrix(0,cows*length(sdate),n)

for (i in 1:n) 

log_h2mxs[,i]<-matrix(rmvnorm(n=5,mean=m2,sigma=ssigma),cows*length(sdate),1,byrow=T)

log_hpmxs<-rbind(log_h1mxs,log_h2mxs)

#matrix of values under parallel alt

hpmxs<-exp(log_hpmxs)

#matrix of values for mean under nonparallel alt for DGS group

log_h3mxs<-matrix(0,cows*length(sdate),n)

for (i in 1:n) 

log_h3mxs[,i]<-matrix(rmvnorm(n=5,mean=m3,sigma=ssigma),cows*length(sdate),1,byrow=T)

#matrix of mean values under nonparallel alt for No DGS group

log_h4mxs<-matrix(0,cows*length(sdate),n)

for (i in 1:n) 

log_h4mxs[,i]<-matrix(rmvnorm(n=5,mean=m4,sigma=ssigma),cows*length(sdate),1,byrow=T)

log_hnpmxs<-rbind(log_h3mxs,log_h4mxs)

#matrix of values for mean under nonparallel alt

hnpmxs<-exp(log_hnpmxs)

#study data vector for null

SDV0<-

matrix(c(rep(2,2*cows),rep(4,2*cows),rep(7,2*cows),rep(9,2*cows),rep(11,2*cows),rep(14,2*cows),rep(16,2

*cows),rep(18,2*cows),rep(21,2*cows),rep(23,2*cows),rep(25,2*cows),rep(28,2*cows),rep(30,2*cows),rep(3

2,2*cows),rep(35,2*cows),rep(37,2*cows),rep(39,2*cows),rep(42,2*cows)),2*cows*length(sdate),1)

#study date vector for alternatives

SDVA<-

matrix(rep(c(rep(2,cows),rep(4,cows),rep(7,cows),rep(9,cows),rep(11,cows),rep(14,cows),rep(16,cows),rep(18

,cows),rep(21,cows),rep(23,cows),rep(25,cows),rep(28,cows),rep(30,cows),rep(32,cows),rep(35,cows),rep(37,

cows),rep(39,cows),rep(42,cows)),2),2*cows*length(sdate),1)
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#treatment vector for use with null

TRTV0<-matrix(rep(c(rep(1,cows),rep(0,cows)),length(sdate)),2*cows*length(sdate),1)

#treatment vector for use with both alts

TRTVA<-matrix(c(rep(1,cows*length(sdate)),rep(0,cows*length(sdate))),2*cows*length(sdate),1)

#id vector for null

IDV0<-matrix(c(rep(1:(2*cows),length(sdate))),2*cows*length(sdate),1)

#id vector for alternatives

IDVA<-matrix(c(rep(1:cows,length(sdate)),rep((1+cows):(2*cows),length(sdate))),2*cows*length(sdate),1)

#this matrix will be used for null hypothesis

Predictors0<-cbind(IDV0,SDV0,TRTV0)

#this matrix will be used for alternative hypotheses

PredictorsA<-cbind(IDVA,SDVA,TRTVA)

#creating enrichment results to be used for all hypotheses.

p<-sdate/100

Enrich<-matrix(1,2*cows*length(sdate),n)

for (i in 1:n)

Enrich[,i]<-rbinom(2*cows*length(sdate),1,p)

Data0s<-cbind(Predictors0,h0mxs,Enrich)

DataPs<-cbind(PredictorsA,hpmxs,Enrich)

DataNPs<-cbind(PredictorsA,hnpmxs,Enrich)

write.table(Data0s[,1:(n+3)],file="E data under null small var.txt",quote=F,row.names=F)

write.table(DataPs[,1:(n+3)],file="E data under parallel atl small var.txt",quote=F,row.names=F)

write.table(DataNPs[,1:(n+3)],file="E data under nonparallel alt small var.txt",quote=F,row.names=F)

#########################################################################################

# Creating Data Set for Post-Enrichment Use #

#########################################################################################

# Finding the LOD #

#########################################################################################

#since 28% of data was missing before enrichment, looked for 28th percentile of generated data

mine0s<-apply(Data0s[,4:(n+3)],2,sort)

fifty0s<-mine0s[round(.28*2*cows*length(sdate),0),]

LOD0s<-mean(fifty0s)

mineps<-apply(DataPs[,4:(n+3)],2,sort)

fiftyps<-mineps[round(.28*2*cows*length(sdate),0),]

LODps<-mean(fiftyps)

minenps<-apply(DataNPs[,4:(n+3)],2,sort)

fiftynps<-minenps[round(.28*2*cows*length(sdate),0),]

LODnps<-mean(fiftynps)

LODs<-mean(c(LOD0s,LODps,LODnps))

#using mean of all 3 LOD's as LOD

LOD<- 4.8

#########################################################################################

# Under Null Hypothesis #

#########################################################################################
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#we need to create a data set where the true values are present 

#do this by checking the enrichment values.  If Enrichment = 1 and Generated Value is less than LOD, the

value is a true zero.  

Data0Es<-Data0s[,1:(n+3)]

for (i in 1:2*cows*length(sdate)){

for (j in 4:(n+3)){

k<-j+n

if(Data0s[i,j]<LOD && Data0s[i,k]==1) Data0Es[i,j]<-0

}  }  

write.table(Data0Es,file="E data under null post enrichment small var.txt",quote=F,row.names=F)

#########################################################################################

# Under Parallel Hypothesis #

#########################################################################################

DataPEs<-DataPs[,1:(n+3)]

for (i in 1:2*cows*length(sdate)){

for (j in 4:(n+3)){

k<-j+n

if(DataPs[i,j]<LOD && DataPs[i,k]==1) DataPEs[i,j]<-0

}  }  

write.table(DataPEs,file="E data under parallel alt post enrichment small var.txt",quote=F,row.names=F)

#########################################################################################

# Under Nonparallel Hypothesis #

#########################################################################################

DataNPEs<-DataNPs[,1:(n+3)]

for (i in 1:2*cows*length(sdate)){

for (j in 4:(n+3)){

k<-j+n

if(DataNPs[i,j]<LOD && DataNPs[i,k]==1) DataNPEs[i,j]<-0

}  }  

write.table(DataNPEs,file="E data under nonparallel alt post enrichment small var.txt",quote=F,row.names=F)

A.2: SAS code

For E.coli O157 data

ods listing;

******************************************************

** Original E. Coli Data       **

*****************************************************;

libname Ecoli "c:\SAS\library";

data Ecoli.smallpre;

Z='09'X;

infile "C:\...\smallunequaldate.txt" firstobs=2 dlm=Z dsd;

input Trt $ Day ID $ LgCFU Enr $ LgEnr CFU SDate;

SDate1=SDate;

SDate2=SDate*SDate;

run;
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proc print data=Ecoli.smallpre (where=(SDate>37));

run;

******************************************************

** Creating the data sets **

** with the proposed methods **

*****************************************************;

title "1: All Zeros as missing";

data small_allmissing;

set ecoli.smallpre;

if LgCFU=0 then LgCFU=".";

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

*proc print data=smallpre_allmissing (where=(SDate>37));

*run;

title "2a: All Zeros Stay";

data small_allzerosstayA;

set Ecoli.smallpre;

LgCFU=log10(CFU+.1);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "2b: All Zeros Stay";

data small_allzerosstayB;

set Ecoli.smallpre;

LgCFU=log10(CFU+1);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "3: All 0's with minCFU/2";

proc means data=small_allminover2;

var LgCFU;

run;

*we can see that the miniumum observed LgCFU is 0.39378;

data small_allminover2;

set small_allmissing;

if LgCFU="." then LgCFU=log10((10**.39378)/2);

keep trt ID LgCFU SDate SDate1 SDate2;

run;

title "4: All zero's with minCFU/sqrt 2";

data small_allminoversqrt2;

set small_allmissing;

if LgCFU="." then LgCFU=log10((10**.39378)/sqrt(2));

keep trt ID LgCFU SDate SDate1 SDate2;

run;

title "5a: False missing";

data small_falsemissingA;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=.;

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+.1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "5b: False missing";

data small_falsemissingB;
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set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=.;

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "6: False Enrichement";

data small_falseenriched;

set Ecoli.smallpre;

if LgCFU=0 and Enr="+" then LgCFU=LgEnr;

if LgCFU=0 and Enr="-" then LgCFU=0;

else LgCFU=LgCFU;

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "6a: False Enrichement";

data small_falseenrichedA;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=10**LgEnr;

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+.1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "6b: False Enrichement";

data small_falseenrichedB;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=10**LgEnr;

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "7a: False minCFU/2";

data small_falseminover2A;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=(10**.39378/2);

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+.1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "7b: False minCFU/2";

data small_falseminover2B;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=(10**.39378/2);

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "8a: False minCFU/sqrt2";
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data small_falseminoversqrt2A;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=(10**.39378/sqrt(2));

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+.1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

title "8b: False minCFU/sqrt2";

data small_falseminoversqrt2B;

set Ecoli.smallpre;

if CFU=0 and Enr='+' then CFU=(10**.39378/2);

if CFU=0 and Enr='-' then CFU=0;

else CFU=CFU;

CFU=CFU+1;

LgCFU=log10(CFU);

keep Trt ID LgCFU SDate SDate1 SDate2;

run;

******************************************

** Analysis **

** SDate as Class **

*****************************************;

ods listing close;

ods pdf file="c:\sas\Cow Data Analyses.pdf";

To analyze all 14 methods, copy same code as below.  Change the data set name;

title "1: All zeros missing";

proc mixed data=small_allmissing;

class ID trt SDate;

model LgCFU=trt|SDate/ddfm=kr;

repeated/subject=id(trt) type=sp(pow) (SDate1);

run;

.

.

.

******************************************

** Analysis **

** SDate as Linear **

*****************************************;

To analyze all 14 methods, copy same code as below.  Change the data set name;

title "1: All zeros missing";

proc mixed data=small_allmissing;

class ID trt;

model LgCFU=trt|SDate/ddfm=kr;

repeated/subject=id(trt) type=sp(pow) (SDate1);

run;

.

.

.

******************************************

** Analysis **

** SDate as Quadratic **

*****************************************;
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To analyze all 14 methods, copy same code as below.  Change the data set name;

title "1: All zeros missing";

proc mixed data=small_allmissing;

class ID trt;

model LgCFU=trt|SDate SDate2 SDate2*Trt/ddfm=kr;

repeated/subject=id(trt) type=sp(pow) (SDate1);

run;

.

.

.

ods pdf close;

ods listing;

For Simulated Data

This is not the entire code.  If it was all included, this paper would have over 1000 sheets.

Instead, use this portion of the code provided and change file names and re-run for the datasets

generated under each of the four conditions (small and large sample size; small and large

variance).

Reading in the Generated Data

title "Under Null (small, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.NULL01 

     DATAFILE= "C:\...\data under null small var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Null Hypothesis Post Enrichment (small, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.null01E

     DATAFILE= "C:\...\data under null post enrichment small var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Under Null (big, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.NULL01B 

     DATAFILE= "C:\...\data under null big var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Null Hypothesis Post Enrichment (big, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.null01Eb

     DATAFILE= "C:\...\data under null post enrichment big var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 
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RUN;

title "Under Parallel (small, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.par01

     DATAFILE= "C:\...\data under parallel atl small var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x;

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Parallel Hypothesis Post Enrichment (small, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.par01E

     DATAFILE= "C:\...\data under parallel alt post enrichment small var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Under Parallel (big, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.par01b

     DATAFILE= "C:\...\data under parallel atl big var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x;

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Parallel Hypothesis Post Enrichment (big, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.par01Eb

     DATAFILE= "C:\...\data under parallel alt post enrichment big var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Under NonParallel (small, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.npar01

     DATAFILE= "C:\...\data under nonparallel alt small var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x;

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "NonParallel Hypothesis Post Enrichment (small, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.npar01E

     DATAFILE= "C:\...\data under nonparallel alt post enrichment small

var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

title "Under NonParallel (big, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.npar01b

     DATAFILE= "C:\...\data under nonparallel alt big var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x;

     GETNAMES=YES;
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     DATAROW=2; 

RUN;

title "NonParallel Hypothesis Post Enrichment (big, n=5)";

Libname ecoli "C:\SAS\EColi";

PROC IMPORT OUT= ecoli.npar01Eb

     DATAFILE= "C:\...\data under nonparallel alt post enrichment big var.txt" 

            DBMS=DLM REPLACE;

     DELIMITER='20'x; 

     GETNAMES=YES;

     DATAROW=2; 

RUN;

Analyzing the Data

/*********************************************************************

** Code for Reading, Creating, and Analysing   **

** Data Under the Null Hypothesis          **

** Using small Variance **

*********************************************************************/

*LOD of CFU=4.8;

*1000 reps;

/*********************************************************************

** Before Enrichment **

*********************************************************************/

ods listing;

title "0: Under Null, no missing values";

data null01_15; *renaming the predictors;

set ecoli.E15null01;

ID=V1;

SDate=V2;

Trt=V3;

SDate1=V2;

SDate2=V2*V2;

drop V1 V2 V3;

run;

data null02_15;

set null01_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null02_15;

set null02_15;

lgCFU=log10(CFU);

run;

*proc print data=null02_15 (obs=10);

*run;

title "1: Under Null, All missing";

data null_allmissing_15;

set null01_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 then test[I]=.;

end;

drop I;

run;

data null_allmissing_15;

set null_allmissing_15;

array fix[1000] V4-V1003;
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do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_allmissing_15;

set null_allmissing_15;

lgCFU=log10(CFU);

run;

*proc print data=null_allmissing_15 (obs=10);

*run;

title "2a: Under Null, All Zeros";

data null_allzerosstay_15;

set null01_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 then test[I]=0;

end;

drop I;

run;

data null_allzerosstay_15;

set null_allzerosstay_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_allzerosstayA_15;

set null_allzerosstay_15;

lgCFU=log10(CFU+.1);

run;

*proc print data=null_allzerosstayA_15 (obs=10);

*run;

title "2b: Under Null, All Zeros";

data null_allzerosstayB_15;

set null_allzerosstay_15;

lgCFU=log10(CFU+1);

run;

*proc print data=null_allzerosstayB_15 (obs=10);

*run;

title "3:  Under Null, All Min CFU/2";

data null_allminover2_15;

set null01_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 then test[I]=4.8/2;

end;

drop I;

run;

data null_allminover2_15;

set null_allminover2_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;
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run;

data null_allminover2_15;

set null_allminover2_15;

lgCFU=log10(CFU);

run;

*proc print data=null_allminover2_15 (obs=10);

*run;

title "4: Under Null, All Min CFU/sqrt2";

data null_allminoversqrt2_15;

set null01_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 then test[I]=4.8/sqrt(2);

end;

drop I;

run;

data null_allminoversqrt2_15;

set null_allminoversqrt2_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_allminoversqrt2_15;

set null_allminoversqrt2_15;

lgCFU=log10(CFU);

run;

*proc print data=null_allminoversqrt2_15 (obs=10);

*run;

/*********************************************************************

** After Enrichment **

*********************************************************************/

title "Under Null, With true zeros identified";

data null01E_15; 

set ecoli.E15null01E;

ID=V1;  

SDate=V2;  

Trt=V3; *renaming the predictors;

SDate1=V2;

SDate2=V2*V2;

drop V1 V2 V3;

run;

*proc print data=null01E_15 (obs=10);

*run;

title "5a: Under Null, False missing";

data null_falsemissing_15;

set null01E_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 and test[I]^=0 then test[I]=.;

end;

drop I;

run;

data null_falsemissing_15;

set null_falsemissing_15;

array fix[1000] V4-V1003;
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do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_falsemissingA_15;

set null_falsemissing_15;

lgCFU=log10(CFU + .1);

run;

*proc print data=null_falsemissingA_15 (obs=10);

*run;

title "5b: Under Null, False missing";

data null_falsemissingB_15;

set null_falsemissing_15;

lgCFU=log10(CFU + 1);

run;

*proc print data=null_falsemissingB_15 (obs=10);

*run;

title "6a: Under Null, False Enriched Values";

data null_falseenriched_15;

set null01E_15;

array test[1000] V4-V1003;

*this array replaces the false zeros with a random normal number;

do I=1 to 1000;

if test[I]<4.8 and test[I]^=0 then test[I]=10**(.873+.008*rannor(22));

end;

run;

data null_falseenriched_15;

set null_falseenriched_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_falseenrichedA_15;

set null_falseenriched_15;

lgCFU=log10(CFU + .1);

run;

*proc print data=null_falseenrichedA_15 (obs=10);

*run;

title "6b: Under Null, False Enriched Values";

data null_falseenrichedB_15;

set null_falseenriched_15;

lgCFU=log10(CFU + 1);

run;

*proc print data=null_falseenrichedB_15 (obs=10);

*run;

title "7a: Under Null, False Min CFU/2";

data null_falseminover2_15;

set null01E_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 and test[I]^=0 then test[I]=4.8/2;

end;

drop I;

run;
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data null_falseminover2_15;

set null_falseminover2_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_falseminover2A_15;

set null_falseminover2_15;

lgCFU=log10(CFU+.1);

run;

*proc print data=null_falseminLgover2A_15 (obs=10);

*run;

title "7b: Under Null, False Min CFU/2";

data null_falseminover2B_15;

set null_falseminover2_15;

lgCFU=log10(CFU+1);

run;

*proc print data=null_falseminLgover2B_15 (obs=10);

*run;

title "8a: Under Null, False Min CFU/sqrt2";

data null_falseminoversqrt2_15;

set null01E_15;

array test[1000] V4-V1003;

do I=1 to 1000;

if test[I]<4.8 and test[I]^=0 then test[I]=4.8/sqrt(2);

end;

drop I;

run;

data null_falseminoversqrt2_15;

set null_falseminoversqrt2_15;

array fix[1000] V4-V1003;

do Sim=1 to 1000;

CFU=fix[Sim];

output;

end;

drop V4-V1003;

run;

data null_falseminoversqrt2A_15;

set null_falseminoversqrt2_15;

lgCFU=log10(CFU+.1);

run;

*proc print data=null_falseminLgoversqrt2A_15 (obs=10);

*run;

title "8b: Under Null, False Min CFU/sqrt2";

data null_falseminoversqrt2B_15;

set null_falseminoversqrt2_15;

lgCFU=log10(CFU+1);

run;

proc print data=null_falseminoversqrt2B_15 (obs=10);

run;

/*********************************************************************

** The Analyses **

**********************************************************************

** SDate as Class **
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*********************************************************************/

ods listing close;

To analyze all 14 methods, copy same code as below.  

Change the data set name and the output set nams;

title "0: Null, No Missing Values";

proc sort data=null02_15;

by Sim;

proc mixed data=null02_15;

by Sim;

class ID trt SDate;

model LgCFU=trt|SDate/ddfm=kr;

repeated/subject=id(trt) type=sp(pow) (SDate1);

ods output tests3=PVal00_15 FitStatistics=fit00_15;

run;

.

.

.

/*********************************************************************

** Results of F-tests for each Analysis **

*********************************************************************;

To look at results from simulations, the p-values were summarized.

To do this for all 14 methods, copy the code below and change the data set

names and the name of the pdf created;

data PVals00_15;

set PVal00_15;

if Effect='Trt' and ProbF >.05 then ptrt95=0;

else if Effect='Trt' and ProbF <=.05 then ptrt95=1;

if Effect='SDate' and ProbF <=.05 then pSDate95=1;

else if effect='SDate' and ProbF >.05 then pSDate95=0;

if Effect='Trt*SDate' and ProbF <=.05 then pTrtbyDate95=1;

else if effect='Trt*SDate' and ProbF >.05 then pTrtbyDate95=0;

run;

ods pdf file="c:\SAS\E15PValueNullClass.pdf" startpage=never;

title "0: P-Values for Null, No Missing, Small";

proc means data=PVals00_15 mean std;

var ptrt95 pSDate95 pTrtbyDate95;

run;

.

.

.

ods pdf close;

ods listing;

/*********************************************************************

** Mixed: SDate as Continuous with Linear Effect **

*********************************************************************/

To analyze all 14 methods, copy same code as below.  

Change the data set name and the output set nams;

ods listing close;

title "0: Null, No Missing Values";

proc sort data=null02;

by Sim;

proc mixed data=null02;

by Sim;
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class ID trt;

model LgCFU=trt|SDate/ddfm=kr;

repeated/subject=id(trt) type=sp(pow) (SDate);

ods output tests3=PValL00 FitStatistics=fitL00;

run;

.

.

.

/*********************************************************************

** Results of F-tests for each Analysis

**

*********************************************************************/

To look at results from simulations, the p-values were summarized.

To do this for all 14 methods, copy the code below and change the data set

names and the name of the pdf created;

title "0: P-Values for Null, No Missing, Small";

data PValsL00;

set PValL00;

if Effect='Trt' and ProbF >.05 then ptrt95=0;

else if Effect='Trt' and ProbF <=.05 then ptrt95=1;

if Effect='SDate' and ProbF <=.05 then pSDate95=1;

else if effect='SDate' and ProbF >.05 then pSDate95=0;

if Effect='SDate*Trt' and ProbF <=.05 then pTrtbyDate95=1;

else if effect='SDate*Trt' and ProbF >.05 then pTrtbyDate95=0;

run;

ods pdf file="c:\SAS\E15PValueNullLinear.pdf" startpage=never;

title "0: P-Values for Null, No Missing, Small";

proc means data=PValsL00 mean std;

var ptrt95 pSDate95 pTrtbyDate95;

run;

.

.

.

ods pdf close;

ods listing;

/*********************************************************************

** Mixed: SDate as Continuous with Quadratic

**

*********************************************************************/

To analyze all 14 methods, copy same code as below.  

Change the data set name and the output set nams;

ods listing close;

title "0: Null, No Missing Values";

proc sort data=null02;

by Sim;

proc mixed data=null02;

by Sim;

class ID trt;

model LgCFU=trt|SDate SDate2 trt*SDate2/ddfm=kr;

repeated/subject=id(trt) type=sp(pow) (SDate);

ods output tests3=PValQ00 FitStatistics=fitQ00;

run;

.

.

.
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/*********************************************************************

** Results of F-tests for each Analysis

**

*********************************************************************/

To look at results from simulations, the p-values were summarized.

To do this for all 14 methods, copy the code below and change the data set

names and the name of the pdf created;

data PValsQ00;

set PValQ00;

if Effect='Trt' and ProbF >.05 then ptrt95=0;

else if Effect='Trt' and ProbF <=.05 then ptrt95=1;

if Effect='SDate' and ProbF <=.05 then pSDate95=1;

else if effect='SDate' and ProbF >.05 then pSDate95=0;

if Effect='SDate*Trt' and ProbF <=.05 then pTrtbyDate95=1;

else if effect='SDate*Trt' and ProbF >.05 then pTrtbyDate95=0;

if Effect='SDate2' and ProbF <=.05 then pSDate295=1;

else if effect="SDate2" and ProbF > .05 then pSDate295=0;

if Effect="SDate2*Trt" and ProbF <= .05 then pTrtbySDate295=1;

else if Effect="SDate2*Trt" and ProbF > .05 then pTrtbySDate295=0;

run;

ods pdf file="c:\SAS\E15PValueNullQuadratic.pdf" startpage=never;

title "0: P-Values for Null, No Missing, Small";

proc means data=PValsQ00 mean std;

var ptrt95 pSDate95 pTrtbyDate95 pSDate295 pTrtbySDate295;

run;

.

.

.

ods pdf close;

ods listing;
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Appendix  -B  Tables of Results from Simulation Study

Before Enrichment Methods:

 1. Denoting all zero concentrations as missing values.

 2. Leaving zero concentrations as zero then adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

 3. Imputing 
minCFU

2
 for all zero concentrations.

 4. Imputing 
minCFU

2
 for all zero concentrations.  

After Enrichment Methods:

 5. Denoting the false zeros as missing values and adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

 6. Imputing the false zeros with the enrichment values and adding:

 a) nothing (this is the approach currently used by researchers).

 b) δ1=0.1 to all values in data set.

 c) δ2=1 to all values in data set.

 7. Imputing 
minCFU

2
 for the false zeros and adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.

 8. Imputing 
minCFU

2
 for the false zeros and adding:

 a) δ1=0.1 to all values in data set.

 b) δ2=1 to all values in data set.
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MODEL 1: SDate as Categorical

NULL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt,    0.043

0.037

0.127

0.114

0.122

0.095

0.087

0.066

0.072

0.058

0.039

0.039

0.038

0.039

0.058

0.046

0.059

0.048

0.053

0.044

0.095

0.071

0.080

0.060

0.077

0.060

0.064

0.051

Trt*  

SDate

0.023

0.017

0.053

0.043

0.045

0.034

0.028

0.024

0.028

0.025

0.035

0.035

0.023

0.018

0.038

0.034

0.035

0.033

0.037

0.035

0.024

0.024

0.027

0.026

0.025

0.022

0.031

0.025

Table 22: Model 1, Under Null Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt,    0.041

0.034

0.114

0.111

0.104

0.089

0.079

0.056

0.067

0.045

0.033

0.035

0.034

0.030

0.040

0.027

0.040

0.033

0.031

0.025

0.076

0.055

0.073

0.049

0.064

0.044

0.057

0.038

Trt*   

SDate

0.039

0.038

0.064

0.047

0.055

0.043

0.038

0.043

0.041

0.039

0.038

0.041

0.034

0.034

0.047

0.045

0.044

0.045

0.051

0.047

0.042

0.040

0.037

0.039

0.039

0.040

0.039

0.037

Table 23: Model 1, Under Null Hypothesis, n=15 per treatment

PARALLEL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.765

0.222

0.930

0.502

0.938

0.466

0.910

0.382

0.878

0.323

0.700

0.217

0.741

0.216

0.680

0.231

0.544

0.199

0.642

0.217

0.854

0.333

0.884

0.332

0.782

0.275

0.834

0.286

Trt*

SDate 

0.037

0.028

0.239

0.041

0.097

0.027

0.072

0.042

0.072

0.049

0.195

0.055

0.074

0.030

0.341

0.083

0.258

0.068

0.345

0.089

0.033

0.028

0.045

0.044

0.043

0.035

0.075

0.050

Table 24: Model 1, Under Parallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.999

0.728

1.000

0.927

1.000

0.913

1.000

0.867

1.000

0.837

0.997

0.713

0.999

0.704

0.996

0.721

0.998

0.699

0.998

0.702

1.000

0.852

1.000

0.842

0.999

0.816

1.000

0.805

Trt*

SDate 

0.090

0.068

0.630

0.058

0.199

0.041

0.069

0.056

0.207

0.095

0.153

0.064

0.126

0.060

0.897

0.270

0.834

0.251

0.923

0.291

0.063

0.056

0.098

0.082

0.162

0.087

0.290

0.114

Table 25: Model 1, Under Parallel Hypothesis, n=15 per treatment
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NONPARALLEL

Estimate Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.345

0.060

0.420

0.269

0.387

0.212

0.373

0.141

0.366

0.117

0.312

0.053

0.326

0.048

0.125

0.069

0.327

0.075

0.336

0.065

0.344

0.146

0.351

0.121

0.339

0.115

0.346

0.107

Trt*

SDate 

0.340

0.036

0.307

0.092

0.367

0.074

0.386

0.053

0.387

0.052

0.346

0.031

0.328

0.031

0.107

0.045

0.321

0.042

0.346

0.042

0.354

0.054

0.366

0.051

0.359

0.044

0.365

0.051

Table 26: Model 1, Under Nonparallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.658

0.198

0.979

0.521

0.956

0.422

0.884

0.305

0.802

0.256

0.648

0.127

0.617

0.142

0.390

0.133

0.346

0.152

0.342

0.125

0.859

0.306

0.833

0.265

0.763

0.261

0.724

0.225

Trt*

SDate 

0.764

0.142

0.947

0.275

0.948

0.250

0.952

0.252

0.938

0.241

0.813

0.091

0.749

0.108

0.471

0.115

0.395

0.086

0.430

0.112

0.933

0.213

0.931

0.233

0.891

0.185

0.905

0.215

Table 27: Model 1, Under Nonparallel Hypothesis, n=15 per treatment

MODEL 2: SDate as Continuous with Linear Effect

NULL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt,    0.043

0.037

0.001

0.009

0.002

0.020

0.003

0.025

0.004

0.040

0.001

0.026

0.004

0.030

0.009

0.056

0.010

0.054

0.010

0.056

0.003

0.025

0.004

0.036

0.003

0.040

0.006

0.042

Trt*   

SDate   

0.023

0.017

0.027

0.027

0.008

0.014

0.003

0.019

0.005

0.028

0.043

0.049

0.033

0.037

0.003

0.033

0.005

0.037

0.003

0.039

0.006

0.023

0.004

0.026

0.007

0.029

0.004

0.029

Table 28: Model 2, Under Null Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt   0.041

0.034

0.000

0.004

0.002

0.013

0.007

0.034

0.007

0.044

0.004

0.035

0.005

0.039

0.011

0.064

0.012

0.066

0.012

0.071

0.006

0.034

0.007

0.042

0.006

0.046

0.008

0.051

Trt*  

SDate

0.039

0.038

0.026

0.015

0.005

0.011

0.006

0.013

0.006

0.024

0.041

0.037

0.032

0.030

0.001

0.036

0.040

0.036

0.003

0.036

0.008

0.019

0.007

0.019

0.011

0.026

0.005

0.030

Table 29: Model 2, Under Null Hypothesis, n=15 per treatment

67



 S

2

L

2

 S

2

L

2

 S

2

L

2

 S

2

L

2

 S

2

 L

2

 S

2

 L

2

 S

2

L

2

 S

2

L

2

PARALLEL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.224

0.222

0.111

0.087

0.349

0.191

0.484

0.267

0.545

0.294

0.174

0.165

0.262

0.207

0.596

0.346

0.481

0.301

0.611

0.349

0.409

0.233

0.521

0.284

0.441

0.254

0.561

0.304

Trt*

SDate 

0.293

0.028

0.239

0.025

0.022

0.009

0.004

0.041

0.021

0.060

0.344

0.074

0.239

0.057

0.217

0.130

0.207

0.126

0.245

0.140

0.014

0.043

0.016

0.053

0.027

0.063

0.045

0.085

Table 30: Model 2, Under Parallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.914

0.728

0.675

0.347

0.949

0.621

0.991

0.747

0.997

0.772

0.895

0.648

0.928

0.684

0.996

0.810

0.996

0.799

1.000

0.815

0.986

0.744

0.994

0.766

0.991

0.757

0.996

0.780

Trt*

SDate 

0.478

0.068

0.681

0.050

0.043

0.014

0.016

0.073

0.122

0.146

0.551

0.067

0.425

0.056

0.819

0.038

0.724

0.362

0.873

0.411

0.013

0.071

0.061

0.115

0.105

0.129

0.224

0.195

Table 31: Model 2, Under Parallel Hypothesis, n=15 per treatment

NONPARALLEL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.345

0.060

0.006

0.011

0.008

0.024

0.008

0.038

0.008

0.043

0.006

0.028

0.007

0.029

0.013

0.056

0.007

0.059

0.009

0.059

0.007

0.038

0.007

0.042

0.007

0.045

0.008

0.049

Trt*

SDate 

0.340

0.036

0.521

0.192

0.467

0.146

0.438

0.100

0.408

0.087

0.517

0.141

0.479

0.157

0.045

0.060

0.409

0.055

0.363

0.061

0.482

0.090

0.429

0.087

0.459

0.079

0.410

0.086

Table 32: Model 2, Under Nonparallel Hypothesis, n=5

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.658

0.198

0.023

0.013

0.010

0.031

0.011

0.045

0.011

0.050

0.021

0.050

0.027

0.054

0.011

0.077

0.016

0.076

0.017

0.078

0.010

0.044

0.013

0.050

0.011

0.052

0.015

0.061

Trt*

SDate 

0.764

0.142

0.998

0.582

0.994

0.481

0.956

0.382

0.858

0.342

0.995

0.390

0.993

0.458

0.188

0.168

0.216

0.144

0.175

0.165

0.955

0.331

0.912

0.335

0.875

0.281

0.805

0.302

Table 33: Model 2, Under Nonparallel Hypothesis, n=15 per treatment
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MODEL 3: SDate as Continuous with Linear and Quadratic Effect

NULL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt   0.086

0.089

0.000

0.000

0.002

0.017

0.038

0.067

0.076

0.096

0.073

0.073

0.094

0.088

0.142

0.136

0.129

0.122

0.154

0.143

0.039

0.059

0.065

0.088

0.065

0.083

0.094

0.107

Trt*  

SDate 

0.050

0.049

0.014

0.013

0.010

0.014

0.025

0.034

0.040

0.053

0.049

0.050

0.053

0.046

0.034

0.076

0.035

0.068

0.043

0.082

0.023

0.033

0.032

0.043

0.035

0.043

0.044

0.058

Trt*

SDate2 

0.042

0.025

0.019

0.018

0.017

0.018

0.025

0.024

0.023

0.029

0.064

0.038

0.050

0.028

0.022

0.037

0.024

0.041

0.026

0.040

0.031

0.026

0.027

0.026

0.033

0.032

0.030

0.034

Table 34: Model 3, Under Null Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.069

0.078

0.000

0.000

0.002

0.015

0.026

0.057

0.054

0.080

0.053

0.070

0.072

0.087

0.108

0.135

0.099

0.130

0.120

0.142

0.023

0.056

0.044

0.073

0.048

0.077

0.075

0.096

Trt*

SDate 

0.039

0.035

0.007

0.010

0.009

0.014

0.016

0.030

0.026

0.043

0.037

0.039

0.045

0.039

0.029

0.064

0.027

0.066

0.036

0.075

0.016

0.033

0.018

0.039

0.022

0.043

0.028

0.049

Trt*

SDate2

0.038

0.039

0.016

0.013

0.018

0.014

0.022

0.027

0.025

0.032

0.048

0.044

0.040

0.040

0.017

0.042

0.022

0.045

0.020

0.046

0.027

0.031

0.026

0.030

0.036

0.035

0.028

0.039

Table 35: Model 3, Under Null Hypothesis, n=15 per treatment

PARALLEL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.748

0.354

0.006

0.031

0.374

0.205

0.746

0.352

0.815

0.414

0.631

0.283

0.734

0.342

0.866

0.497

0.795

0.438

0.867

0.506

0.678

0.326

0.794

0.385

0.728

0.350

0.825

0.428

Trt*

SDate 

0.043

0.049

0.276

0.039

0.067

0.016

0.022

0.047

0.039

0.081

0.050

0.064

0.040

0.065

0.337

0.208

0.318

0.197

0.408

0.232

0.025

0.049

0.040

0.071

0.052

0.093

0.110

0.121

Trt*

Sdate2 

0.068

0.027

0.140

0.035

0.050

0.011

0.028

0.025

0.032

0.041

0.163

0.065

0.054

0.046

0.117

0.115

0.149

0.145

0.160

0.133

0.039

0.050

0.035

0.045

0.062

0.075

0.053

0.070

Table 36: Model 3, Under Parallel Hypothesis, n=5 per treatment
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Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 1.000

0.780

0.050

0.119

0.972

0.600

0.999

0.778

1.000

0.820

0.997

0.759

1.000

0.786

1.000

0.882

1.000

0.878

1.000

0.887

0.998

0.773

1.000

0.810

1.000

0.812

1.000

0.841

Trt*

SDate 

0.075

0.056

0.661

0.081

0.175

0.016

0.013

0.069

0.088

0.141

0.065

0.066

0.048

0.079

0.745

0.383

0.742

0.391

0.832

0.430

0.020

0.083

0.054

0.122

0.115

0.151

0.236

0.203

Trt*

SDate2 

0.238

0.029

0.308

0.049

0.096

0.015

0.028

0.036

0.019

0.058

0.200

0.038

0.147

0.027

0.256

0.164

0.302

0.187

0.334

0.199

0.028

0.050

0.023

0.060

0.048

0.075

0.065

0.088

Table 37: Model 3, Under Parallel Hypothesis, n=15 per treatment

NONPARALLEL

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6c 7a 7b 8a 8b

Trt 0.052

0.078

0.021

0.004

0.034

0.024

0.045

0.050

0.050

0.071

0.038

0.059

0.051

0.074

0.082

0.128

0.048

0.112

0.058

0.138

0.033

0.048

0.048

0.066

0.040

0.065

0.052

0.093

Trt*

SDate 

0.153

0.055

0.069

0.033

0.111

0.039

0.134

0.057

0.140

0.063

0.107

0.054

0.122

0.055

0.064

0.059

0.097

0.054

0.111

0.063

0.093

0.051

0.112

0.059

0.098

0.058

0.114

0.064

Trt*

SDate2

0.040

0.032

0.028

0.024

0.029

0.024

0.034

0.032

0.035

0.035

0.046

0.036

0.037

0.032

0.025

0.029

0.042

0.031

0.037

0.030

0.044

0.031

0.040

0.033

0.044

0.034

0.039

0.034

Table 38: Model 3, Under Nonparallel Hypothesis, n=5 per treatment

Estimate

Method For Handling Missing Values

1 2a 2b 3 4 5a 5b 6a 6b 6ca 7a 7b 8a 8b

Trt 0.098

0.107

0.003

0.002

0.020

0.027

0.061

0.078

0.085

0.096

0.076

0.079

0.098

0.100

0.089

0.143

0.085

0.133

0.113

0.148

0.054

0.075

0.083

0.096

0.070

0.096

0.094

0.112

Trt*

SDate 

0.547

0.144

0.253

0.065

0.306

0.068

0.388

0.120

0.393

0.137

0.410

0.101

0.485

0.130

0.179

0.111

0.149

0.083

0.173

0.114

0.305

0.090

0.346

0.121

0.294

0.094

0.344

0.128

Trt*

SDate2

0.168

0.048

0.027

0.021

0.020

0.019

0.038

0.027

0.060

0.032

0.139

0.046

0.139

0.051

0.031

0.032

0.054

0.030

0.047

0.035

0.042

0.028

0.040

0.034

0.055

0.030

0.055

0.038

Table 39: Model 3, Under Nonparallel Hypothesis, n=15 per treatment
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