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ABSTRACT (200 words maximum) 43 

Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have 44 

conducted laboratory and modeling studies to better understand the interplay between 45 

microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of 46 

microorganisms adapting to high pressure CO2 conditions and identify factors that may 47 

influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive 48 

exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell 49 

walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically 50 

or within biofilm. Column experiments show that, following exposure to acidic water, biomass 51 

can remain intact in porous media and continue to alter hydraulic conductivity. Our research 52 

also shows that geochemical changes triggered by CO2 injection can alter energy available to 53 

populations of subsurface anaerobes and that microbial feedbacks on this effect can influence 54 

carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how 55 

subsurface microorganisms can influence GCS. We conclude that microbial presence and 56 

activities can have important implications on carbon storage and that their presence should not 57 

be overlooked in further GCS research. 58 

  59 
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1. Introduction 60 

Geologic carbon storage (GCS) involves the capture, compression, injection, and storage 61 

of anthropogenic carbon dioxide (CO2) in order to mitigate carbon emissions to the 62 

atmosphere. Deep (>1 km below the ground surface) sedimentary formations are one of the 63 

largest sets of likely injection targets. Pore waters in potential storage reservoirs are typically 64 

saline with ionic strengths ranging from that of seawater to levels near those of fluids saturated 65 

with halite. Injected CO2 will exist as a supercritical phase, given the ranges of pressures and 66 

temperatures at these depths (10 to 30 MPa and 310 to 380 K). High concentrations of 67 

dissolved CO2 will alter groundwater pH and dissolved inorganic carbon (DIC) concentration, 68 

increase levels of dissolved ions, and cause both mineral dissolution and precipitation (Kaszuba 69 

and Janecky, 2009; Lu et al., 2010). 70 

Benson et al. (2005) describes the four trapping mechanisms for GCS: structural, 71 

residual, solubility, and mineral. It is well recognized that these mechanisms are driven by 72 

geochemical and hydrological processes. Microbial processes may also be important, however, 73 

because microorganisms can influence hydrological and geochemical processes in subsurface 74 

environments (Baker et al., 2010; Banks et al., 2010; Davidson et al., 2011; Fredrickson et al., 75 

1998; Gorbushina, 2007; Onstott et al., 1998; Pedersen et al., 1996; Sahl et al., 2008). For 76 

example, microbial biomass can enhance precipitation of carbonate minerals (Cunningham et 77 

al., 2009; Kandianis et al., 2008; Mitchell et al., 2010), clog porous media (Baveye et al., 1998), 78 

and alter water chemistry on a regional scale (Flynn et al., 2013; Kirk et al., 2015).  79 

Microbial life extends deep into the subsurface, including depths of interest to GCS. The 80 

depth limit of microbial life in the subsurface is somewhat uncertain. However, active 81 
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microorganisms have been confirmed at depths greater than 3 km (Kieft et al., 2005). Their 82 

ability to adapt to a wide range of environmental conditions (Pikuta et al., 2007) together with 83 

the vast size of the habitable subsurface allow subsurface microbes to play a major role in 84 

mediating global-scale biogeochemical processes (Colwell and D'Hondt, 2013; Orcutt et al., 85 

2013; Parkes et al., 2014). 86 

Changes in conditions following CO2 injection will impose stress on indigenous 87 

microorganisms, potentially triggering changes in community composition (Mu et al., 2014; 88 

Peet et al., 2015; Wilkins et al., 2014). Where CO2 exists as a supercritical phase, it may dissolve 89 

cell membranes and cause cell death (Dillow et al., 1999; White et al., 2006). High levels of CO2 90 

in an aqueous solution can also be toxic to microbes because CO2 can pass through cell 91 

membranes, acidify cytoplasm, and disrupt cellular functions (Ballestra et al., 1996). 92 

In addition to changes in community composition driven by CO2 stress, CO2 injection 93 

may also shift community composition by altering redox disequilibrium. When CO2 dissolves 94 

into water, carbonic acid is produced, which can then dissociate into protons and dissolved 95 

inorganic carbon species: 96 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻𝐶𝑂3
− + 𝐻+ ↔ 𝐶𝑂3

2− + 2𝐻+    97 

Because many of the redox reactions used as a source of energy by microbes include dissolved 98 

inorganic carbon species as well as hydrogen ions, changes in CO2 abundance affects the extent 99 

to which those reactions are out of equilibrium (Harvey et al., 2013; Kirk, 2011; Mayumi et al., 100 

2013; Ohtomo et al., 2013). Such changes can significantly affect microbial activity because the 101 

amount of energy that is available in the environment for microbial reactions affects the ability 102 

of microorganisms to compete with one another. Microorganisms that conserve energy from 103 
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more energetically favorable reactions can grow faster, and thus catalyze their reaction more 104 

rapidly, than those using less favorable reactions (Jin, 2012; LaRowe and Amend, 2015; Lovley 105 

and Goodwin, 1988; Roden and Jin, 2011). 106 

In this paper, we examine geomicrobiological studies conducted at the Center for 107 

Frontiers of Subsurface Energy Security (CFSES) within the context of the interplay between 108 

microbiology and GCS. In other words, we consider what our findings tell us about how GCS 109 

could affect subsurface microbes and in turn, how subsurface microbes could affect GCS. Given 110 

the potential for microorganisms to influence the geochemistry and hydrodynamics of the 111 

subsurface, understanding this interplay may be a key to ensuring secure carbon storage. 112 

Moreover, this knowledge can provide a basis for developing biological strategies to enhance 113 

GCS reservoir performance (Mitchell et al., 2010). 114 

CFSES is an Energy Frontier Research Center established by the Office of Science, Basic 115 

Energy Sciences program in the U.S. Department of Energy in 2009 and chosen for renewal until 116 

2018. Researchers at CFSES have taken many different approaches to better understand the 117 

interplay between GCS and subsurface microbiology. Our research has identified and 118 

characterized an isolate from a CO2-rich spring (Santillan et al., 2015). We used pure-culture 119 

batch reactor experiments to test the influence of mineralogy on the ability of cells to survive 120 

exposure to high-pressure CO2 (Santillan et al., 2013). We considered how decreasing pH, a 121 

geochemical change caused by CO2 injection, will affect the stability of bioclogging in porous 122 

media (Kirk et al., 2012). And, we used bioenergetics and mixed-community bioreactor 123 

experiments to assess potential changes in the relative significance of different microbial 124 

processes in response to increasing CO2 abundance (Kirk, 2011; Kirk et al., 2013). These efforts 125 
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provide insight into both sides of the two-way interactions between GCS and subsurface 126 

microorganisms. 127 

 128 

2. Methods 129 

 The content below provides a brief summary of methods used in our investigations. For 130 

more details about these methods as well as our results, please refer back to the publications 131 

associated with each study. 132 

 133 

2.1. Isolation 134 

A capnophile, an microbe capable of growth in the presence of high concentrations of 135 

CO2, was isolated and characterized as part of our effort to learn about properties of microbes 136 

in aqueous environments with high CO2 levels (Santillan et al., 2015). The isolate was collected 137 

from Crystal Geyser spring, Utah, USA. The site is considered an analog site for GCS research 138 

and provides the opportunity to study a subsurface microbial community that has been 139 

exposed to elevated CO2 over a long period of time (Emerson et al., 2015). CO2 has been leaking 140 

from the subsurface near the geyser for over 400,000 years (Burnside et al., 2013). 141 

Samples of water and microbial biomass were collected at 9.7 m depth in the spring 142 

outlet using aseptic techniques. Cultures were prepared immediately by placing filtered 143 

biomass in serum bottles that contained Luria Bertain broth amended with 15 g L-1 NaCl. The 144 

bottles were then placed within a pressure vessel and pressurized to 1 MPa with ultrapure CO2. 145 

Cultures were incubated for about 1 month and then re-cultured multiple times to cultures 146 
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containing Tryptic soy broth with 15 g L-1 NaCl. After three transfers, the cultures were diluted 147 

to extinction to obtain an isolate. 148 

The isolate discussed in this paper, designated CG-1, was assessed for growth under 149 

various conditions that focused on CO2, temperature, salinity, pH, carbon substrates, electron 150 

acceptors, and fermentation capability. Cloning was performed on GC-1 to determine its 16S 151 

gene identity through the Basic Local Alignment Search Tool search (BLASTn) search 152 

(http://blast.ncbi.nlm.nih.gov/). A phylogenetic tree relating the isolate to related sequences 153 

was made using CLUSTALX (Chenna et al., 2003). Cell morphology was characterized using 154 

transmission electron microscopy (TEM). Lipid samples were processed according to Rodriguez-155 

Ruiz et al. (1998) and analyzed using gas chromatography mass spectrometry (GCMS). 156 

 157 

2.2. Pure-culture experiments 158 

Pure-culture experiments were performed to examine factors influencing the ability of 159 

cells to survive exposure to high-pressure CO2 (Santillan et al., 2013). Experiments were 160 

conducted with three model organisms: Shewanella oneidensis strain MR-1 (ATCC BA-1096), 161 

Geobacillus stearothermophilus (ATCC 7953), and Methanothermobacter thermoautitrophicus 162 

(ATCC 29096). These organisms allowed the experiments to include variation in metabolic 163 

reactions as well as cell wall structure and composition. S. oneidensis is a Gram negative 164 

bacterium that was grown under iron-reducing conditions, G. stearothermophilus is a Gram 165 

positive aerobic bacterium that is capable of sporulation, and M. thermoautitrophicus is a 166 

methanogenic archaeaon. Species closely related to G. stearothermophilus and M. 167 

thermoautitrophicus have been detected in the deep subsurface (Kawaguchi et al., 2010; 168 

http://blast.ncbi.nlm.nih.gov/
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Nazina et al., 2001). S. oneidensis is widespread in soils and shallow sediment and has been 169 

studied within the context of CO2 leakage to shallow groundwater from deep storage (Wu et al., 170 

2010). 171 

Organisms were grown to stationary phase in batch cultures and then placed in pressure 172 

vessels (Parr instruments) and exposed to elevated CO2 pressure at 30°C for time periods 173 

ranging from 1 to 24 hr. CO2 pressures tested ranged from 0.3 to 6.5 MPa. At the end of the 174 

exposure period, pressure was slowly released over a period of about 2 min to limit potential 175 

impacts of pressure change on cell survival. The cultures were then removed from the pressure 176 

vessels and sonicated to disperse biofilm and attached cells. Cell survival was quantified using 177 

cultivation. Cultivable S. oneidensis and G. stearothermophilus cells were enumerated using the 178 

pour plate method. M. thermoautitrophicus cells were was cultivated in liquid anaerobic 179 

cultures with low CO2 content. Growth was periodically assessed in the cultures by measuring 180 

optical density at 680 nm. Iron reducing activity of S. oneidensis was evaluated by measuring 181 

ferrous iron concentration using the ferrozine method (Stookey, 1970). Methanogenesis by M. 182 

thermoautitrophicus was evaluated by measuring CH4 partial pressure using gas 183 

chromatography.  184 

S. oneidensis, the model organism most susceptible to CO2 exposure of those tested, 185 

was selected for a second set of experiments that examined the effects of mineral solid phases 186 

on CO2 toxicity (Santillan et al., 2013). Minerals and rock samples (Ward’s Natural Science, 187 

Rochester, NY) were crushed to the size of coarse sand, cleaned of any magnetite they may 188 

have contained using a hand magnet, and sterilized at 121 °C for 30 min. Test tubes with 10 mL 189 

of growth medium and 1 g of autoclaved mineral were inoculated with S. oneidensis and 190 
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anaerobically incubated at 30 °C for 3 days. Test cultures were then exposed to 2.5 MPa CO2 for 191 

up to 8 h. The impact of CO2 exposure on cell survival was assessed by comparing the culturable 192 

cell content of test cultures to identical cultures that were not exposed to high-pressure CO2. In 193 

both cases, the cultures were sonicated prior to culturing to disperse cells and cell survival was 194 

evaluated using pour plating. Samples of minerals and cells were imaged using scanning 195 

electron microscopy (SEM) following termination of the experiments. 196 

For our pure-culture tests, control experiments were performed to assess the impact of 197 

sonication and pressure changes on cell survival. Results indicate that neither factor 198 

significantly impacted the culturable cell concentrations we measured. A set of control 199 

experiments was also included to examine the extent to which biofilm protected cells during 200 

exposure to high-pressure CO2. For those controls, the cultures were sonicated prior to CO2 201 

exposure to disperse biofilm cells.  202 

 203 

2.3. Bioclogging experiments 204 

Column experiments were performed to examine how sudden acidification of water 205 

would impact the stability of biofilm in porous media (Kirk et al., 2012). The experiments were 206 

run in 10 cm long square capillary tubes with a 1 mm2 cross-sectional area packed with 105–207 

150 μm diameter glass beads. Each experiment had three phases: pre-growth, growth at pH 208 

7.2, and acidic pH, which started four days after inoculation. The acidic phases of six 209 

biologically-active experiments received medium with an average pH of 4.0 and six additional 210 

experiments received medium with an average pH of 5.7. Abiological-control experiments were 211 
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also performed at pH 4 (two) and pH 5.7 (one). Experiments were terminated after hydraulic 212 

conductivity was stable for at least 24 h. 213 

Artificial Na-Cl type groundwater with glucose and bicarbonate was used as the aqueous 214 

medium. Rhodamine, a fluorescent dye, was included for pore-space imaging. pH was adjusted 215 

using HCl. Medium was pumped through the columns at 0.015 mL min−1 (specific discharge of 216 

22 m day−1) using syringe pump. After the hydraulic properties were allowed to stabilize for at 217 

least three days, the system was inoculated with an average of 8.4 log colony forming units 218 

(CFU; stdev 0.3) of Pseudomonas fluorescens tagged with a green fluorescent protein (GFP). 219 

Biofilm production by P. fluorescens is well characterized, including growth in flowing systems 220 

(e.g., Pereira et al., 2002; Simoes et al., 2007; Simoes et al., 2005). A strain tagged with GFP was 221 

chosen to allow biomass growth to be monitored nondestructively. Following inoculation, flow 222 

was stopped for 2 h to allow initial cell attachment and growth to occur. Cells injected into the 223 

control experiments were heat-sterilized before injection. 224 

The average saturated hydraulic conductivity over the entire length of each column was 225 

evaluated for each of the three phases of the experiments based on pressure measurements. 226 

Pores and biomass were imaged with a scanning laser confocal microscope during the 227 

experiments. Culturable cell concentrations in column effluent were measured periodically 228 

throughout the experiment by plating effluent samples. For two pH 4 and three pH 5.7 229 

experiments, effluent cell abundance was also quantified using live-dead staining. This 230 

approach provides a measure of cell viability that, unlike plating, is not influence by any 231 

cultivation bias. After the experiments were terminated, the culturable cell content of 1 cm 232 

column segments was measured in one pH 4 and one pH 5.7 experiment.  233 
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 234 

2.4. Mixed-community experiments 235 

Experiments were carried out with bioreactors containing a mixed-microbial community 236 

to examine how changes in CO2 abundance could alter interactions between groups of 237 

microbes that naturally co-exist (Kirk et al., 2013). Unlike the pure-culture experiments, which 238 

isolate factors that influence cell survival, these experiments consider how an increase in CO2 239 

could affect interactions between different functional groups of microorganisms. 240 

The experiments were carried out in duplicate using anoxic semi-continuous 241 

bioreactors. Microbes and groundwater for the experiments were obtained from a freshwater 242 

aquifer. Two sets of experiments were performed: one with low CO2 partial pressure (~0.002 243 

MPa) in the headspace of the reactors and one with high CO2 partial pressure (~0.1 MPa). 244 

Hereafter, we refer to these experiments as the low-CO2 bioreactors and high-CO2 bioreactors, 245 

respectively. A fluid residence time of 35 days was maintained in the reactors by replacing one-246 

fifth of the aqueous volume with fresh medium every seven days. The aqueous medium was 247 

composed of groundwater amended with small amounts of acetate (250 µM), phosphate (1 248 

µM), and ammonium (50 µM) to stimulate microbial activity. Synthetic goethite (1 mmol) and 249 

sulfate (500 µM influent concentration) were also available in each reactor to serve as electron 250 

acceptors. 251 

Reactors were incubated for 15 weeks. During that time, influent medium and reactor 252 

effluent were regularly sampled and analyzed using a variety of techniques. The ferrozine 253 

method was used to analyze ferrous iron concentration (Stookey, 1970). Ion chromatography 254 

was used to analyze anion concentrations. Gran alkalinity titrations were used to evaluate 255 
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alkalinity. Atomic adsorption and inductively coupled plasma optical emissions spectroscopy 256 

were used to measure cation concentrations. Rates of acetate oxidation, iron reduction, and 257 

sulfate reduction were directly evaluated using mass-balance calculations based on measured 258 

reactor chemistry. 259 

Well-mixed samples of reactor solids and fluid were collected at the end of the 260 

incubations for analysis of reactor solid phases and microbial community composition. Total 261 

community DNA was extracted from microbial samples using an Ultraclean® Microbial DNA 262 

Isolation Kit (MO BIO) and then sequenced using 454 pyrosequencing. Sequences were then 263 

processed using QIIME (Caporaso et al., 2010). During processing, the software used 264 

AmpliconNoise to remove sequencing errors (Quince et al., 2011). 265 

 266 

2.5. Numerical analysis 267 

Bioenergetics calculations were used to consider how increasing CO2 abundance affects 268 

redox disequilibrium and, in turn, microbial activity. Calculations were performed using data 269 

collected during two field CO2-injection experiments (Kirk, 2011) and with data collected from 270 

the mixed-community experiments (Kirk et al., 2013). In both cases, the calculations assessed 271 

changes in energy available (∆𝐺𝐴) for microbial metabolism. As defined previously (Bethke et 272 

al., 2011), ∆𝐺𝐴 is the negative of the free energy change of microbial metabolic reaction (∆𝐺𝑟) 273 

and can be calculated in units of kJ∙mol-1 as follows: 274 

∆𝐺𝐴 = −∆𝐺𝑟 = −[∆𝐺𝑇
° +  𝑅𝑇𝑙𝑛 ∏(𝛾𝑖 × 𝑚𝑖)𝑣𝑖]

𝑖

 277 

where ∆𝐺𝑇
°  is the standard Gibbs free-energy change for reaction r at temperature T (°K), R 275 

represents the gas constant (kJ∙mol-1∙K-1), 𝛾𝑖 and 𝑚𝑖 are the activity coefficient (molal-1) and 276 
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molality of the 𝑖th chemical species in the reaction, and 𝑣𝑖 is the stoichiometric coefficient of 278 

that species, which is positive for products and negative for reactants. 279 

Standard Gibbs free energy values at in situ temperature were calculated using the 280 

Geochemists Workbench® software package (Bethke, 2009) and the Lawrence Livermore 281 

National Laboratory thermodynamic database (Delany and Lundeen, 1990). Activities were 282 

calculated from chemical data with Geochemists Workbench® software using an extended form 283 

of the Debye-Hückel equation, the B-dot equation (Helgeson, 1969). 284 

Calculations for the mixed-community experiments considered iron reduction and 285 

sulfate reduction, the two groups of microorganisms that account for all of the microbial 286 

activity during the experiments. Calculations for the field studies considered iron reduction, 287 

sulfate reduction, and methanogenesis. Those groups were selected because they are the three 288 

most common groups of respiring microorganisms in the subsurface (Bethke et al., 2011; Lovley 289 

and Chapelle, 1995; McMahon and Chapelle, 2008). As such, they are likely present in many 290 

potential storage reservoirs that contain active microbial populations. 291 

Field experiment data used in our calculations was collected during the Frio Formation 292 

experiment and the Zero Emissions Research and Technology (ZERT) experiment (Kharaka et al., 293 

2006; Kharaka et al., 2010). To account for errors associated with activity modeling and 294 

uncertainty regarding electron donor concentrations, results from the bioenergetics analysis of 295 

the field data are normalized relative to conditions present prior to CO2 injection, as follows: 296 

∆𝐺𝐴
𝐶𝑂2 − ∆𝐺𝐴

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = ∆𝐺𝐴
𝑛  297 

where the superscript “CO2” designates each value calculated during or after CO2 injection 298 

began, “initial” designates the value calculated prior to injection, and “n” represents the 299 
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normalized value. As such, our analysis of the field data considered how energy available 300 

changed as a result of CO2 injection, not absolute values of energy available. 301 

 302 

3. Results and discussion 303 

The integration of our studies yields insight into the interplay between subsurface 304 

microbes and GCS beyond that possible within each individual study. In the subsections that 305 

follow, we examine the results of our studies within the context of these two-way interactions. 306 

 307 

3.1 Impacts of GCS on microbiology 308 

3.1.1. Factors influencing cell survival 309 

Results of our isolation and pure-culture experiments indicate that cells that have 310 

properties that limit CO2 accumulation in their cytoplasm are better able to survive exposure to 311 

high pressure CO2. These properties include the make-up of their cell wall and membranes, the 312 

nature of their metabolic reactions, and whether they exist within biofilm. 313 

We found that isolate CG-1 exhibits a fermentative metabolism and was most related 314 

(98.5%) to Lactobacillus casei (Santillan et al., 2015). It grows at CO2 partial pressures between 315 

0 and 1.0 MPa and is able to survive for at least 5 days at 2.5 MPa CO2 and for at least 1 day at 5 316 

MPa CO2. CG-1 morphology and fatty acid composition both vary with CO2 partial pressure. 317 

Images collected from cultures with 0.1 MPa CO2 show rod-shaped cells. In images collected 318 

from cultures with 1 MPa CO2, however, cells are generally smaller and encased in capsular 319 

material (Figure 1). With increasing CO2 partial pressure, monounsaturated fatty acids 320 

decreased in relative abundance while saturated fatty acids increased. Production of capsular 321 
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material and the changes in lipid composition at high CO2 levels are consistent with a decrease 322 

in the flexibility and perhaps permeability of the cells. 323 

 Strains tested in our pure-culture experiments varied in their ability to survive exposure 324 

to high-pressure CO2 (Santillan et al., 2013). For all organisms, survival was best at low CO2 325 

pressures but decreased as pressures increased. S. oneidensis cells were the most sensitive to 326 

increased CO2 while G. stearothermophilus cells were the most resilient. 327 

G. stearothermophilus cells may have been better able to survive than the other strains 328 

because they possess Gram positive cell walls as well as the capacity to form endospores. Cell 329 

wall and membrane composition influence the extent to which CO2 can penetrate cells 330 

(Bertoloni et al., 2006; Zhang et al., 2006). Gram positive cell walls are more rigid and less 331 

permeable than Gram negative cell walls. Sporulation can provide a mechanism by which cells 332 

can reduce themselves into a more durable form until CO2 stress is removed (Furukawa et al., 333 

2004; Watanabe et al., 2003). 334 

Differences in survival between M. thermoautitrophicus and S. oneidensis cells may also 335 

reflect differences in the ability of CO2 to penetrate the cells. Archaea, such as M. 336 

thermoautitrophicus, possess cell membranes that differ considerably from those of Bacteria. 337 

Because of those differences, they are thought to generally be better able to withstand 338 

extreme conditions (Arakawa et al., 1999; Gambacorta et al., 1994). In addition, differences in 339 

metabolism between the strains may have also contributed to variation in cell survival. Unlike S. 340 

oneidensis, M. thermoautitrophicus cells consume CO2 in their catabolic reaction, potentially 341 

helping them limit accumulation of CO2 within their cytoplasm. The isolation process of CG-1 342 

suggests it may similarly benefit from intracellular CO2 consumption. Many fermenters utilize 343 
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CO2 in metabolic processes, such as amino acid synthesis or through C1 metabolism (Arioli et al., 344 

2009; Bringel et al., 2008; Song et al., 2007). 345 

Results from our experiments that included minerals, indicate that the mere presence of 346 

a mineral can enhance the ability of S. oneidensis cells to survive exposure to high pressure CO2 347 

(Santillan et al., 2013). With the exception of kaolinite, cell survival was higher in cultures 348 

containing minerals than those without (Figure 2). We hypothesize that these results reflect the 349 

shelter provided by biofilm. Unlike planktonic cells, biofilm cells are surrounded by extracellular 350 

polymeric substances (EPS), which limits their exposure to environmental stresses such as high-351 

pressure CO2 (Mitchell et al., 2008; Mitchell et al., 2009). Surface area available for biofilm 352 

formation was greater in cultures that contained minerals than those that did not. SEM images 353 

(not shown) confirm that biofilm formation did occur on mineral surfaces during the 354 

experiment. 355 

 356 

3.1.2. Persistence of attached biomass 357 

Results from our column experiments show that biofilm can remain largely intact 358 

following sudden acidification of water, even if considerable cell death occurs (Kirk et al., 2012). 359 

After 4 days of growth at pH 7.2, a 0.67 log reduction in the overall hydraulic conductivity of the 360 

columns occurred, on average (Figure 3). Acidification caused hydraulic conductivity to increase 361 

significantly in all but one pH 5.7 experiment as well as extensive cell death and stress, 362 

particularly in pH 4 experiments. However, the columns remained significantly clogged relative 363 

to pre-growth conditions. Following acidification, log reductions in hydraulic conductivity 364 

averaged 0.43 and 0.65 in pH 4 and pH 5.7 experiments, respectively. 365 
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 366 

3.1.3. Shifts in microbial reactions 367 

Our mixed-community experiments and numerical analyses show that increasing CO2 368 

concentration favors microbial reactions that consume acid. As a result, microbial communities 369 

that emerge following injection of CO2 may differ from indigenous communities not only 370 

because they are better at tolerating CO2 stress but also because the balance between different 371 

microbial reactions has shifted. 372 

Microbial activity differed considerably between the high- and low-CO2 bioreactors in 373 

our mixed-community experiments (Kirk et al., 2013). Mass-balance calculations demonstrate 374 

that sulfate reduction was dominant in reactors with low CO2 content. The reaction consumed 375 

85% of the acetate after acetate consumption reached steady state while iron reduction 376 

accounted for only 15% on average (Figure 4). In contrast, iron reduction was dominant during 377 

that same interval in reactors with high CO2 content, accounting for at least 90% of the acetate 378 

consumption while sulfate reduction consumed a negligible amount (<1%).  379 

Results of our microbial community analyses agree with our mass-balance calculations 380 

(Kirk et al., 2013). Sequences classified in groups that contain species related to iron reduction 381 

were abundant in samples from all biologically-active reactors but more than twice as abundant 382 

in the high-CO2 reactor samples compared to the low-CO2 reactor samples. Moreover, 383 

sequences classified in groups relating to sulfate reducers were abundant in the low-CO2 384 

reactor samples but nearly absent from the high-CO2 reactor samples. 385 

Bioenergetics calculations show that the rate of microbial iron reduction may have 386 

varied in response to differences in thermodynamic controls (Kirk et al., 2013). Iron reduction 387 
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was much more energetically favorable in reactors that hosted more rapid iron reduction, the 388 

high-CO2 reactors, than those with slower iron reduction rates, the low-CO2 reactors. After 389 

acetate consumption stabilized, energy available for microbial iron reduction was 114 kJ mol-1 390 

and 60 kJ mol-1, on average in the high- and low-CO2 bioreactors, respectively. 391 

In contrast, thermodynamic controls on microbial sulfate reduction could not be 392 

responsible for variation in the rate of that reaction. Energy available for sulfate reduction 393 

varied little, averaging a maximum of 65 kJ mol-1 and 62 kJ mol-1 in the high- and low-CO2 394 

reactors, respectively. Instead, we hypothesize that the rate of sulfate reduction varied in 395 

response to competition for electron donor from iron reduction (Kirk et al., 2013). Where 396 

energy available for microbial iron reduction was high, the reaction occurred rapidly and little 397 

electron donor remained for sulfate reduction. However, where energy available for iron 398 

reduction was low, the reaction slowed, allowing sulfate reduction to consume excess electron 399 

donor. 400 

Bioenergetic calculations performed using data from the field CO2-injection experiments 401 

provide results that parallel those from the mixed-community experiments. CO2 injection 402 

benefitted iron reduction much more than sulfate reduction or methanogenesis at both field 403 

sites (Kirk, 2011). For both acetotrophic and hydrogentrophic reactions, the energy available for 404 

iron reduction increased considerably for all three iron minerals considered as electron 405 

acceptors in iron-reduction reactions (Figure 5). In contrast, energy available for sulfate 406 

reduction and methanogenesis varied relatively little. 407 

In both sets of calculations, the energy advantage gained by iron reduction with 408 

increased CO2 levels primarily reflects changes in pH. Reduction of ferric iron in oxides and 409 
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oxyhydroxides consumes a large number of protons. As such, the energy yield of iron reduction 410 

increases sharply as pH decreases. Sulfate reduction and methanogenesis, however, consume 411 

relatively few protons. As such, the energy yield of those reactions does not vary strongly with 412 

pH. 413 

Our numerical and mixed-culture studies indicate that CO2 injection has the potential to 414 

stimulate microbial iron reduction where ferric iron is available. At first glance, these results 415 

seem to be in conflict with our isolate experiments. In those experiments, S. oneidensis, an 416 

organism capable of dissimilatory iron reduction, showed greater sensitivity to elevated CO2 417 

than M. thermoautitrophicus, a methanogen. However, individual isolates are not 418 

representative of an entire metabolic group of microorganisms. Cells capable of dissimilatory 419 

iron reduction, for example, have broad phylogenetic diversity and have been identified across 420 

a wide range of chemical and physical conditions, including at extreme acidic pH and salinity 421 

(Emmerich et al., 2012; Itoh et al., 2011; Lu et al., 2010; Weber et al., 2006). The mixed-422 

community of iron-reducing microorganisms that may exist in a GCS reservoir, therefore, may 423 

be better able to adapt to an increase in the abundance of CO2 than the individual isolate we 424 

tested. 425 

 426 

3.2. Impacts of microbiology on GCS 427 

3.2.1. Impacts of microbiology on flow 428 

Similar to our findings, previous studies have shown that biofilm can remain largely 429 

intact in porous media during exposure to supercritical CO2 (Mitchell et al., 2008; Mitchell et al., 430 

2009). Combined with our efforts, the results of these studies provide compelling evidence that 431 
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hydraulic conductivity will change little in response to biofilm redistribution following injection 432 

of CO2 into GCS reservoirs where biofilms are present. If microbial biomass influences hydraulic 433 

conductivity before CO2 is injection into a GCS, our results and those of previous studies suggest 434 

it will influence hydraulic conductivity afterward as well. 435 

These findings imply that, in biologically activity GCS reservoirs, microbial biofilms can 436 

influence the flow of CO2 and water away from injection wells. Consistent with this implication, 437 

previous studies found that microbial activity significantly decreased the injectivity of a CO2-438 

injection well at the Ketzin site (Morozova et al., 2010; Zettlitzer et al., 2010). In addition, 439 

biofilm on a mineral surface may alter the wettability of those minerals, which is a major 440 

control on residual trapping of CO2 (Chaudhary et al., 2013). 441 

 442 

3.2.2. Impacts of microbiology on solution and mineral trapping 443 

Results of the mixed-community experiments show that, where CO2 injection stimulates 444 

microbial iron reduction, solubility trapping may be enhanced. Because microbial reduction of 445 

ferric iron in iron oxides and oxyhydroxides consumes a large number of protons, the reaction 446 

works to convert CO2 into carbonate alkalinity, thereby enhancing storage of inorganic carbon 447 

in solution (Kirk et al., 2013). Reflecting this relationship, the increase in carbonate alkalinity 448 

caused by microbial activity in high-CO2 bioreactors was six-fold greater than that in the low-449 

CO2 bioreactors (Figure 6). Mitchell et al. (2010) describe a similar effect during bacterial 450 

hydrolysis of urea batch reactor experiments containing elevated CO2 content. The results of 451 

these studies suggest that we may need to consider the response of the microbial community 452 

to CO2 injection in order to accurately predict rates of solution trapping in GCS reservoirs. 453 
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In addition to solution trapping, microbial activity also has the potential to impact 454 

mineral trapping. Alkalinity generation by acid-consuming microorganisms works to increase 455 

the saturation state of carbonate minerals such as calcite (CaCO3) and siderite (FeCO3) (Kirk et 456 

al., 2013; Mitchell et al., 2010). Moreover, cells and biofilms can also facilitate carbonate 457 

mineralization by providing nucleation cites (Benzerara et al., 2011; Mitchell and Ferris, 2006). 458 

Hence, rates of mineral trapping may also be influenced by the response of the microbial 459 

community to CO2 injection. 460 

 461 

3.5. Future research 462 

Our efforts and those of many other researchers have to date been weighted toward 463 

understanding one side of the interplay between microbiology and GCS: the impact of GCS on 464 

microbial activity. This area of research is important. We can understand how microbes will 465 

affect GCS without knowing what physical and functional characteristics GCS reservoirs will 466 

select for. However, we suggest that more attention needs to be paid to the impact of 467 

microbiology on GCS. 468 

Many questions about this component of GCS geomicrobiology remain unresolved. 469 

Little is known about the nature of microbial impacts on GCS and their relative significance. For 470 

example, how will alkalinity production by acid-consuming microorganisms compare to that 471 

generated by abiological reactions between CO2 and minerals? We also do not have a clear 472 

basis for identifying which GCS reservoirs are more likely to host significant microbial impacts. 473 

Should our attention focus on organic-rich reservoirs (e.g., depleted oil reservoirs and coalbeds) 474 

or will microbial reaction rates be significant relative to the time scale of GCS in all reservoirs? 475 
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Answering these questions will constrain the extent to which numerical models need to include 476 

microbial activity to accurately simulate the long-term fate of CO2 in the subsurface. 477 

Future laboratory research needs to simulate conditions consistent with GCS reservoirs. 478 

GCS reservoirs will commonly be anoxic, with heterogeneous mineralogy and microbiology and 479 

elevated pressure, temperature, and salinity. Many recent laboratory studies were performed 480 

under relevant conditions (e.g., Dupraz et al., 2013; Mayumi et al., 2013; Ohtomo et al., 2013; 481 

Peet et al., 2015; Wilkins et al., 2014). However, most of what we know about the impact of 482 

high pressure CO2 on microbiology stems from food industry research into CO2 as a sterilizing 483 

agent (e.g., Amanatidou et al., 1999; Spilimbergo et al., 2002; Watanabe et al., 2003; Zhang et 484 

al., 2006). Follow-up experiments are warranted to test some of the research questions in those 485 

studies under conditions consistent with GCS reservoirs. 486 

Lastly, we suggest that addition research should examine microbiological mechanisms 487 

that could create an energy return on subsurface CO2 injection. For example, recent research 488 

has found evidence that CO2 injection can stimulate biological conversion of crude oil into 489 

natural gas (Mayumi et al., 2013). CO2 injection into depleted or heavy oil reservoirs, therefore, 490 

may provide a strategy to enhance energy recovery from those systems and alleviate some of 491 

the economic burden of GCS. 492 

 493 

4. Conclusions 494 

Geomicrobiology studies performed by CFSES examine impacts of GCS on subsurface 495 

microbiology. Pure-culture and isolation studies identify factors that may influence survival, 496 

including environmental, biochemical, and structural characteristics. Our column experiments 497 
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show that biofilm can remain largely intact following sudden acidification of water, even if 498 

significant cell death and stress occurs. Mixed-community experiments and thermodynamic 499 

calculations show that the balance between microbial reactions can shift in response to 500 

changes in fluid chemistry caused by increasing CO2 levels. Collectively, these efforts add to the 501 

growing body of evidence that microbial life will persist in GCS reservoirs, likely defined by 502 

communities that differ from those present prior to injection. Our work suggests that 503 

communities will change in response to differences in the ability of cells to tolerate elevated 504 

CO2 levels as well as shifts in the balance of microbial reactions. 505 

These studies also shed light on potential impacts of subsurface microbial communities 506 

on GCS. Subsurface biomass may influence the hydrodynamics of porous media in GCS 507 

reservoirs, affecting flow away from injection wells and capillary trapping of CO2. Coupled with 508 

this effect, by catalyzing oxidation-reduction reactions, microorganisms can affect the rate and 509 

form of solubility and mineral trapping. The potential importance of microbial activity in GCS 510 

reservoirs, therefore, should not be overlooked. 511 
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TOC figure. This paper integrates geomicrobiology research performed by the Center for 792 

Frontiers in Subsurface Energy Security to better understand the interplay between geological 793 

carbon storage (GCS) and subsurface microorganisms. 794 
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Figure 1. Bright-field TEM images of CG-1 at 0.1 MPa CO2 (A,C) and 1.0 MPa CO2 (B,D). Arrows 799 

in: (B) show invaginations in CO2 exposed cells that may suggest cell division; (C) show the 800 

intact cell wall for organisms at low CO2 exposure; (D) show the capsular material present for 801 

CO2 exposed cells. Modified after Santillan et al. (2015). 802 
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Figure 2. Variation with culture mineralogy in the abundance of culturable Shewanella 807 

oneidensis MR1 cells following incubation in the presence and absence (control) of high-808 

pressure CO2. Chart modified after Santillan et al., 2013. 809 
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Figure 3. Typical variation in hydraulic conductivity of column reactors during bioclogging 

experiments.

 

 

Figure 4. Average overall rate of acetate oxidation and the rate of acetate oxidation by iron reducers 

and sulfate reducers in the mixed-culture bioreactor experiments during the final 8 weeks of the 

incubations. Error bars show standard deviation. 
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Figure 5. Change in energy available for iron reduction, sulfate reduction, and methanogenesis as a 

result of CO2 injection during field CO2-injection experiments. Values show the average difference 

between energy available prior to CO2 injection and during. Three values were averaged for the Frio 

Formation experiment and eight for the ZERT experiment. Error bars show standard deviation. 

Calculations for iron reduction considered three sources of ferric iron (Fe(III)): goethite (FeOOH), 

hematite (Fe2O3), and magnetite (Fe2O3). All reactions were written on the basis of eight electron 

transfers with acetate or hydrogen serving as electron donors. 

 

 

 

 

 

 

 

 

Figure 6. Average alkalinity content of effluent from the mixed-culture bioreactor experiments during 

the final 8 weeks of the incubations. Results are shown for biologically-active (i.e., live) bioreactors as 

well as corresponding sterile control reactors. Error bars show standard deviation. 

 


