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1 INTRODUCTION

In some applications failure rates are viewed as random variables,
following a known type of distribution, e.g., a gamma distribution.
Often the parameters of the known type of failure rate distribution are
unknown. The integration of the failure rate distribution times the pro-
bability of failure in a test time (e.g., a Poisson distribution) over
all failure rate space (0 to «) yields a marginal probability distribu-
tion, i.e., the probability of failure during a given test time for a
process with a known type of failure rate distribution. This marginal
distribution leads to Bayesian analysis, or Bayesian estimation [1]. Imn
Bayesian estimation sample evidence obtained through direct observation
is combined with prior information about the failure rate distribution,
to make estimates of the parameters of their distribution.

If a group of items or components are required to perform a certain
task, the components either operate or fail to operate. For example,
when switched on a light bulb will light or remain dark. These kinds of
components may be viewed in two ways, classical or Bayesian.

When a group of similar components is viewed in a classical sense
all of the components are assumed to be completely identical. Because
they are assumed identical all of the components are assumed to have the
same probability of failure when energized or the same probability of
failure per unit time. For example, all the light bulbs produced in a
certain batch may be assumed to have a 0.01% probability of failing to
light when turned on (i.e., once per one hundred tries the light bulb
will fail) and may have a 25% probability of failing during a year of
operation. If the same group of components is viewed in a Bayesian sense,

the components are not assumed to be identical but are viewed as having



differences. Thus, instead of there being only one prcbability of fail-
ure on demand or only one failure rate, each component has its own prob-
ability of failure or failure rate. The collection of probabilities,
one for each component, taken together form a failure rate probahility
distribution.

A failure rate distribution may be generated experimentally by col-
lecting data on the failures of components. For example a collection of
light bulbs may be set up to be turned on and off. A count made of the
number of times a given light bulb is turned on and off before it fails.
The collection of the number of times of failure during a testing time
describes the failure rate distribution.

Much work has been done with functions which can be used to model
failure rate distributions, such as which functions are suitable and how
can the parameters of a failure rate distribution be estimated [2]. One
of the desirable characteristics of a function which is to be used as a
failure rate distribution is that it may assume many different shapes by
varying the distribution parameters. This variability of shape is re-
quired so that the function used will match the actual shape of the fail-
rate distribution.

After a modeling function has been chosen a group of components may
be observed and a failure rate found for each component. With this infor-
mation the parameters of the modeling function for the failure rate dis-
tribution may be estimated for that group of components.

Another separate group of components may be observed and a failure
rate found for each component. From the collecticn of failure rates,
estimates may be made of parameters of the failure rate distribution for
that group of components. If the two groups of components tested are

similar, e.g., 100 watt light bulbs made by diffaerent companies, the



question may be asked, are all the components from the same failure rate
distribution or does each collection of components come from a different
failure rate distribution?

In order to answer this question a test must be made of the equality
of parameters between the two collections. This question is of major im-
portance to this research work.

In this work an attempt to distinguish between simulated failure data

from different failure rate distribution is made. In addition an attempt
is made to answer the questions how similar can failure rate distributions
be before data from each cannot be distinguished?

In order to answer this question sets of failure data were simulated
from an assumed failure rate distribution function with known parameters.
The simulated data were used to estimate parameters of the failure rate
distributions for the data sets. The likelihocod ratio test was used to
compare data sets. From the results of the likelihood ratio tests, power
curves were generated. The power curves were used to draw conclusions
about how dissimiliar distributions must be in order to be confident that

data are from different distributions.



2 THEORY

2.1 Failure Models

The safe operation of a nuclear power plant requires the use of
hundreds of systems and components. These sy=tcms and components can be
divided into two groups, those which are normally active and those which
are normally inactive. Normally active components would include items
such as cooling pumps, motors, monitors, plus hundreds of others. These
components remain in use the entire time the plant is operating. The
other class of components, those which are normally inactive, are only
energized under very special circumstances. Probably the best example
of a normally inactive component is a standby diesel genmerator. The gen-
erator sits idle not operating until the plant loses power, at which point
the generator 1is required to gtart with little delay.

A failure rate or a mean time to failure may be associated with com-
ponents which are normally active. A failure rate (A) is a measure of
the average number of failures per unit time. An alternate way of view-
ing the failure rate the probability of experiencing F failures in T com-
ponent hours of operation. For a given pump this means failing F times
in T total hours of operation. The mean time to failure is the inverse
of the failure rate (1/A) and gives the expected length of time for a com-
ponent to operate before failing. One would like to have a model which
estimates the faiiure rate and thus the mean time to failure for a given
group of components.

For components which are normally inactive one wishes to find the
probability of a failure-on-demand (p). This means one wants to find the
probability that when a component or system i1s activated, energized, or

turned on, it will fail to do what it is intended to do. For example,



the probability of failure-on-demand for a diesel generator is the prob-

ability that the diesel will not start when the start button is depressed.

2.1.1 Homogeneous Model

Two different models may be used to describe component and system
failures. The first of these models, the homogeneous model, is the simp-
ler of the two. In this model the failure rate, A, or the failure-on-de-
mand probability, p, (depending on which type of component is being consi-
dered) is assumed to be some unknown constant. This unknown is assumed
to be equal for all elements in that particular class of components. For
example, the failure rate of pumps of type x is assumed to be A for each
and every pump of type x.

For the failure-on-demand case the probability of observing F fail-

ures in T demands is given by the binominal distribution
T F I-F
£(Flp,t) = () p (L-p) (2.1)

where p is the probability of failure-on-demand and is a fixed but gener-
ally unknown constant.

For the failure rate case it is assumed that a component which fails
is immediately brought back into operation with its A remaining unchanged.
With this information the probability of having F failures in T amount

of time is given by the Poisson distributiom,

oyt &

TTERD e

£(F|N,T) =

where (F+1) is the gamma function.



The maximum likelihood method (to be explained later) yields an es-

timate for A (for faillures with Poisson prabability of occurring) of

~ n n
A= I F,/I T., (2.3)
i, Todmi =

i.e., the total number of failures divided by the total test time.
For components which are designed to have a very low probability of fail-
ure the classical homogeneous model often fails, i.e., it predicts fail-

ure rates to be zero, an uncomfortable prediction.

2.1.2 Compound Model

The second more complex model known as the compound model is better
equipped to handle low probabilities of failure. In this model the fail-
ure parameter, either A or p is assumed to vary from component-to-com-
ponent within the class but remains constant for the compoment. The
parameters are assumed to be distributed as some function g(£), where
£ is either A or p. This distribution is called the failure rate 1 on-
demand prior distribution, (or prior distribution, for gimplicity) since
it may be determined by previous knowledge of the components in a given
class. With g(&) known, the probability of experiencing F failure in T

demands (or in T amount of time) is given by the marginal distribution

h(F(T) =/  £(F|5,T) g(8) dg, (2.4)
allg
where f(FIE,T) is called the likelihood or conditional distribution. For
the fallure rate case of f(F[E,T) ig the Poisson distribution [given pre-
viously Eq. (2.3)] and for the failure-on-demand case f(F[E,) is the bi-

nomial distribution [Eq. (2.1)].



The marginal distribution, for f(F[E,T) a Poisson and g(&) a gamma

distribution [see Eq. (2.7)] is given by

I (F+a) )

a(F|T) = TE)TER) (g,

: (2.5}

This compound model yields a fairly simple analytical expression; the
gamma and Poisson distributions are said to be conjugates.

The prior distribution, which is the distribution of the failure
parameter & among some class of components, must be described by some
function. There are many requirements that this functiom should satisfy
[3] one of which is that it should have several free parameters. The
free parameters should be able to vary the shape of the function over a
wide range. Thus once a function has been chosen the task is to vary
these parameters to fit the data. Six functions have been suggested as
possible candidates for the failure-on-demand case. These functions are:
a beta, the lognormals, two log gammas, and a logbeta. For failure-rate
case suggested candidates are: gamma, Weibull, lognormal, and logbeta.
The function most commonly used for the failure rate case and the one
used here is the gamma function. Only the failure rate with the gamma
distribution will be studied in this work because it is by far the most

common one and the mathematics are greatly simplified.

2.2 Notes on the Gamma Distribution

Since the gamma distribution is to be used as the prior distribution,
a brief discussion about the distribution is in order. The gamma distri-

bution is given by



1 xa-l e—x/ﬁ

£(x) = ————
a%r (%) _p (q)

, for x>0, « >0, 8 >0, (2.6)

, elsewhere,

where T'(a) is the gamma function evaluated at o. For convenience some-

times a parameter, T, is defined, as v = 1/B. Hence Eq. (2.6) becomes

f(x) = FEG) g1 e T forx>0, >0, 8 >0

=0 , elsewhere. (2.7)

The mean and variance of the gamma distribution are given by [4]:
U = aB, (2.8)

and

2 2
c = aB . (2.9)

The mode or maximum point of the distribution is found at x = (o-1),
provided that o > 1 (the only case for which a mode exists). For the
gamma distribution with o < 1, the shape is nonmodel, exponentially shaped.
One of the main reasons the gamma distribution was chosen as a prior
distribution is because of the large number of shapes the distribution
can assume. The parameter, ¢, is called the shape parameter while B8 is
called the scale parameter. By varying the value of o the shape of the
distribution is changed. A listing is given below of how the distribu-
tion behaves for different ranges of the shape parameter [5]. Some typi-
cal plots are shown in Figs. 2.1, 2.2, 2.3, 2.4, and 2.5.

For

]
8

a < 1 £(0)

£'(0) =

|
B
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o =1 (0 =3
£1(0) = 3z
1<a<2 £(0) =0
£1(0) = =
o =2 £(0) =0
£1(0) = 57
o> 2 £1(0) = 0
£7(0) = 0

2.3 Estimation of Gamma Parameters

Several methods may be used for estimating the parameters of a gamma
distribution from a set of failure rate data. In the program GAMMA
MODIFIED' (see Section 3.2.1) three empirical estimation techniques are
used: 1) matching the data moments to those of the prior distributilon;
ii) matching the data moments to those of the marginal distribution, and

iii) maximizing the likelihood of the compound marginal distribution.

2.3.1 Matching Moments to the Prior Method (MMPM)

In the matching moments te the prior distribution method, the esti-
mated failure rate for each component is given by i = Fi/Ti’ for 1 = 1,
2, +.., n. The mean and the variance of the failure rate estimators %
and 82 are calculated. These estimators are equated to the mean and
variance of the gamma distribution {(shown previously as 4 = af and
g2 = aBZ).

Explicitly X and 52 may be written as

n
'E Cffﬁ (2.10)
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and

F
2 1 B w2 L n 1 — 5
- B O - = (G - 0T (21D
i=1 i=1 i

—_ 2
Equating A and S° to the mean and variance of the gamma distribution gives

p(e,B) = & (2.12)

02(a,8) = S (2.13)
QY

Y (2.14)
and

~ Az 2

o Be = 8~. (2.15)

Solving Eq. (2.13) and (2.14) simultaneously yields the expressions

b

T2 j ol

o = A"/S (2.16)
and

R 5 -

B = S7/X, (2.17)

for the estimates of the prior distribution parameters. The estimates,

~

o and 8, will always to positive.

2.3.2 Marginal Matching Moments Method (MMMM)

The marginal distribution h(FilTi,a,B), gives the probability of hav-
ing F failures in time T when a distribution with parameters ¢ and B is
specified. Thus the marginal distribution can bé used instead of the prior
distribution when estimating o« and P by matching the data moments to the

moments of the marginal distribution.
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The data mean and variance, X and 82, are equated to the expected
value of mean and variance for the marginal distribution. If Wy and Wy

are defined as the mean and variance of any prior distribution, it can

be shown for any prior distribution that the expected values of A and S2

are [2]
EQ) = w (2.18)
and
w, n
2y o ki -
E(S") =wy #2= ¥ Ly~d (2.19)
i=1
Thus when the prior distribution is the gamma distribution with w, = aB
and W, = aB? the marginal matching moments equations are
E(A) = X = ap (2.20)
and
2 2 ag o -1
E(S°) = 8 = ap?2 += I T, 2 ,21)
ooy 1

Solving these equation simultaneously yields the following for o and B.

" _ 7 r
o = )\2/[52 P l] {2.22)
n . i
i=1
" T R iy _
8= [s2 -% DT, LA (2.23)
i=1

These estimators are not necessarily positive. In the situation

n
where SZ/A < s z Ti_l negative values for the estimators will result.
i=1 "

Negative values for o and B have no meaning (i.e., the gamma distribution

requires o and B to be greater than zero); so if negative estimators are
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encountered they should be ignored (i.e., the analysis of a set of data

yielding negative estimators by MMMM is igmored).

2.3.3 Marginal Maximum Likelihood Method (MMMLM).

The maximum likelihood estimators are the values of a and B which
maximize the likelihood function for the given failure data (Fi,Ti). The
likelihood function and maximum likelihood estimators will be discussed
in detail later but for continuity they are discussed briefly here.

In the compound model each component is assumed to be independent.
Thus the probability L of observing (Fl,Tl), (F2,T2), — (Fn,Tn) is
the product of the probability of observing each pair of (Fi,Ti)
separately or

n I’(Fim)(TiB)Fi

L(a,B) = T = (2.24)
i=1 I'(a)T (Fi+l) (].-i-TiB) (Fi+0a) (Tia) i

Thus the maximum likelihood parameter estimators are those values of & and
B which maximuze L (o,8) for the given failure data. It can be shown [3]

that maximizing these equations leads to

F n TiFi n Ti
a=[> - I —=—]/ & (2.26)
2] jal l+BTi 1=1 l+BTi
and
n Fiﬂl 1
‘Z [ .Z a;; - in (l+BTi)] = 0, (2.27)
i=1 i=1

where F = ZFi the total number of failures.
These equations cannot be solved analytically for o and £ but they

may be solved by numerical means [3]. If Eq. (2.26) is substituted into
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Eq. (2.27) the resulting equation is a function of B only. The resulting
only. The resulting equation may be sclved for é, which may then be sub-
stituted into Eq. (2.27) in order to find &. The value for é is found in
the program GAMMA MODIFIED (see Section 3.2.1) using the subroutine DRTMI.
DRIMI is a modification of the routine taken from the IBM "Scientific Sub-

routine Package'.

2.4 Hypothesis Testing Concepts

Much of the work dome with distributions such as the gamma, logbeta,
lognormal, and many others is devoted to trying to estimate the values of
the parameters of the function. For example, one may want to find the
mean life of an electrically operated valve. The ultimate purpose of
this information is generally to help answer a question about the valve.
The question could be: will the valve have a long enough life for the
intended application; is one company's valve better than another company's;
does one manufacturing process create a longer lived valve than others; or
many other possible questions. Answering any of these questions or making
a decision as to which valve or process is better, should not be made by
a guess but should be backed by clear statistical reasoning.

An experiment involving random variables may be performed and de-
cisions may be made based on the values assumed by the random variables.
The experiment may be a survey, a sample of product output, pressing the
start button on a diesel generator, measuring the lifetime of a valve or
almost anything. If the experiments are repeated the sample results will
usually be different, e.g., a diesel may start 18 out of 20 times in the
first experiment but only 15 out of 20 in the second. This demonstrates
that there is a certain amount of uncertainty in the results. Chance occ-

curance in a random sample does not follow a regular pattern. Thus one
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attempts to formulate procedures and rules of action for making decisions.
The purpose is not to make statements which are 100% correct, that would
be impossible, but to say things, make inferences which have a certain
probability of being correct.

A statistical hypothesis is an assertion or conjecture about the dis-
tribution of one or more random wvariables. There are two types of statis-
tical hypothesis: 1) a hypothesis that the population has a certain dis-
tribution function, e.g., normal or chi squared, 2) a hypothesis that a
population parameter has a specified value, e.g., u = 20 or o, = 15, In
this work we are concerned with the second type of hypothesis.

Suppose a new process has been proposed for making valves. It is
hoped that the new process will produce valves with an operating lifetime
longer than valves produced with the old process or at least as long. A
hypothesis may be formulated which says: the proposed process is no bet-
ter than the standard process. We hope that the hypothesis will be re-
jected.

There are several steps required in testing whether a hypothesis can
be accepted or rejected.

1. Make a hypothesis regarding an event A of interest.

2. Select or construct a mathematical model that describes that

probability, P(A).

3, TFormulate a decision rule based on the model that specifies when

to accept and when to reject the hypothesis.

Many times a primary or null hypothesis, Ho’ is tested against some
alternative hypothesis. This says that if the null hypothesis is not
accepted the alternate hypothesis is accepted. For example, a pipe may
have a diameter specification of 0.5+0.004 in. A primary hypothesis is

thﬁt the pipe being produced is centered at 0.500 in. An alternate
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hypothesis may be that the pipe being produced is centered at 0.503 in.
The null hypothesis may be written as
HO: u = 0.500,
and the alternate hypothesis may be written as
Hl: u = 0.503.
In another notation By ™ 0.500 and p; = 0.503.

If the two hypotheses, the null and the alternate, completely define
the two distributions and all the other parameters are known then the
hypothesis is known as a simple hypothesis. Suppose that under the null
hypothesis the density function is f(x;uo) and under the alternate hypo-
thesis the density function is f(x;ul). It is assumed that if there are
any other parameters besides the mean u they are known. Thus the two
hypotheses completely define the distribution. If instead any of the
parameters are not specified, the hypothesis is known as a composite hypo-
thesis.

When a hypothesis is tested there are two possible actions, accept
or reject Ho' However, when HO is accepted or rejected there are four
possible outcomes:

l. rejecting HO when H0 is true

2. accepting Ho when Ho is true

3. accepting Ho when HO is false

4, rejecting I-I0 when Ho is false.

The probabilities of these ocutcomes may be written as:

1. « = P(rejecting H when H  is true)

2. 1l-o = P(accepting HO when H0 is true)

3. B8 = P(accepting Ho when HO is false)

4, 1-B = P(rejecting HO when H0 is false)
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The two possible decisions errors 1. and 3., above are called type I
and type II errors. A type I error (or an error of the first kind) is a
rejection of the null hypothesis when in fact it is true (Case 1, above).
A type II error is an acceptance of Ho when it is false (Case 3, above).
Thus @ = P (type I error) and B = P(type II error). These concepts may
be illustrated by a plot of density function.

Suppose that we plot the density function of some null hypothesis
say p{x;9} (see Fig. 2.6).
Because the plot is of a density function we know that the probability
that an observation x taken at random from a population with the density
function p{x} lies between X and Xy is given by the area under the curve

from X, to X . To find that area one evaluates the integral

*y
Jx pix} dx, (2.28)
a

which may be graphically shown as in Fig. 2.7. Any probability demsity

must satisfy the condition p{x} > 0 and

@

f pix} dx = 1. (2.29)
Suppose that we make some null hypothesis, Ho’ which has a density

function p{x,eo}. We also suppose that the alternative hypothesis H

has a density function P{x,el}. The two hypotheses completely describe

the distributions, if there are other parameters they are assumed known.

We are going to take some observation x and we want a criterion for accept-

ing or rejecting the null hypothesis. To do this we choose some value of

x known as X, Choosing this EN divides the density function into two
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X

Figure 2.6 Density function
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regions. If the observation falls in the region above X, the critical
region, the null hypothesis is rejected.

The area of the critical region in the plot of the null hypothesis
is a. In this region the null hypothesis has been rejected when in fact
it is true, thus a type I error has been committed. The value for o can
be controlled by choosing X . Commonly chosen values for o are 0.05 or
0.01 so that an error is only committed rarely. The numerical value for
a is known as the significance level of the test. There are examples in
everyday life where some hypothesis i1s made and tested with a small value
of o, Probably the best example is the court room.

If a person is on trial for some crime they allegecly committed, the
null hypothesls is made that the person is, in fact, innocent. The pro-
secution must prove beyond a reasonable doubt that the person is, in
fact, guilty. The burden of proof is on the prosecution. The statement,
"proof must be beyond a reasonable doubt," is equivalent to saying "o must
be small'". The court would rather let some criminals go free so that an

innocent person is only very rarely convicted*.

2.5 Likelihood Ratio Test

The test that is used in this work to test the equality (or inequal-
ity) of prior parameters is the likelihood ratio test. This test can be
used to determine whether two functions can be thought of as the same fun-
ction. To do this a value called the likelihoed is found for each function
and these values are compared. From this comparison a determination of
equality of inequality may be made. The details of this process follow.

The likelihood function of n random variables Xyy Ko weey X is de-

fined as L = p(xlze) . p(xz:ﬁ) sas p(xnza), where p(x;98) is some
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distribution function which has one free parameter 6. If the function
has more than one free parameter, then the likelihood function may be re-
written as

L(Sl,ez, § 5 5% ek) = p(xl’el’GZ’ v wowy Bk) . p(KZ’el’BZ’ o Gk)

e p(xn9el!62! Ry ek) (2-30)
or
n

= : 2
k) izl p(xi391192) tury ek)s (—-31)

L(el,ez, ‘uw
where k is the number of free parameters.
For an example of how the likelihood ratic test operates, assume we
L.
are given the normal distribution f(x;u,x?) = (2rg2)7 exp(*(x—u)2/202),
where the distribution parameters are the mean, u, and variance, o2,

From the distribution we take a random sample composed of n elements,

X enay X o
1*%2r cr Fp

The likelihood is then defined as

L
- 1
i=1 /2mg2

[
u

exp[-(xi-u)z / 25%]. (2.32)

When actual values for Xy are substituted and the function is ewvaluated,

L is equal to a real value.

*The Wichita Eagle of May 25, 1981 records a case of an individual who
was convicted twice {(after his first trial was overturned) and was due
for yet a third trial (the prosecution was convinced he would be con-
victed a third time when the actual criminal confessed). Certainly in
this case the o value was too large, allowing for a trial of another
sort to recover lost wages and reputation!
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Continuing the example; say one has some feel for what the parameter

values are, the parameters in this case being u and g2, Say v = 0 and
02 = 1. With this knowledge a null hypothesis may be made HO: v =0 and
02 = 1. Some alternate hypothesis, Hy, may also be made, for example

H,: p=1and 02 = 2. The likelihood for the null hypothesis would be

n
1 1 2
L = 1T éxpl~ == (x,~0)"] (2.33)
°  i<1 vZm1 21 i
which reduces to
n
1 2
L = I —— expl-75 (x,)7] (2.34)
®  jai V21 I

n
L1 = I 1 exp[- Eif (xi—l)2 (2.35)
i=1 v27m2
which reduces to
n
L = I L expl- 1 -1 (2.36)
i=1 2v/7

The likelihood ratio is defined as L = LO/Ll. In this case the likeli-
hood ratio is

. 1 2. 1 2

L= I 2°exp[-% (x,)" ++ (x,-1)71. (2.37)
; 2 i 4 i
i=1
The value for the likelihood ratio will lie somewhere between zero

and infinity. If L = 1 then the value of the likelihood of the null hypo-

thesis is equal to the value of the alternate hypothesis, i.e., LD = Ll.
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Likewise, if the likelihood ratio is less than one, the likelihood of the
alternate hypothesis is greater than the likelihood of the null hypothe-
sis.

If we are given some function we will want to find the wvalues of the
parameters which yield the maximum value for the likelihood. The usual
method for finding a maximum of a functicn is applied. For a function
with only one parameter this means taking the first derivative with re-
spect to the parameter, setting equal to zero, and solving for the para-
meter. For functions with multiple parameters the likelihood may be maxi-
mized by setting the partial derivative of L with respect to the parameters
equal to zero, i.e.,

LI ) T (2.38)

3 1 862 BBH

Many times when maximizing the likelihood 1t is more convenient to
maximize its leogarithm, which will give the same result. For multiple

parameters this would be

= = = 0. (2.39)

The values of the parameters obtained are called the maximum likelihood
estimators (MLEs). Sometimes the value of one parameter will depend upon
the value of another parameter. In this case a set of simultaneous equa-
tions must be solved. The normal distribution again provides a good ex-
ample.

The likelihood function of the normal is:



1 1 2 1 1 2
L = expl- 57 (x,-w)"] . exp [~ 5= (x_-uw)71,
/2167 on 7o 207 T
(2.40)
or
1 .n 1 2 2
L= ( ) expl- 507 I (%Wl (2.41)
2o i=1
The logarithm of the likelihoed is
1 s S 5
1n(L) = nln ( ). = T [ £ (xi-u) . (2.42)
2mg i=1

Taking the derivative with respect to the mean, u, setting the derivative

to zero, and solving yields

z (xi-ﬁ) =0, (2.43)

(2.44)

| ac =]
f]

i=1

To obtain the maximum likelihood estimation of o2 the logarithm of L is

differentiated with respect to 02; the result is equated to zero; and

~ A

since u is already known, [Eq. (2.46)] substitution for u gives

n P
D (xi~u)2. (2.46)
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In the preceding the value of 0% was maximized; we might just as
easily have decided to maximize o. It can be shown [6] that when ¢ is

maximized the result is

A__l._ _i 5
g = [rl X (xi ) I x.). (2.47)

n
T X.). (2.48)

Comparing this result to that of o2, Eq. (2.46) we see that

A A

g2 = g2, (2.49)

Equation (2.49) demonstrates a general property of maximum likeli-
hood estimators called invariance. Invariance says that if some function
of 8, say £(8), is a single-valued function of 6, and é is the maximum
likelihood estimator of 8, then fEG) is the maximum likelihood estimator

£(8), [7], i.e.,
£(8) = £¢8). (2.50)

Assume that we have information on the failure rates of a certain type
of pump that twﬁ companies produce. Fdr company one we know that the
distribution of the pump failure-rate has the form g(al,Bl). For

company two the form is g(az,az). A random sampling of failure rates
may be obtained from each distribution. For company one the sampling

would consist of the points Fil/Til where 1 = 1, 2, ..., n. For company
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two the set of failures per unit time consists of the points FiZ/TiZ,
where 1 = 1, 2, ..., m. The question arises can all these data be thought
of as coming from one distribution or must each company's data be treated
separately. In other words when dealing with these pumps can we treat
all the pumps as having the same failure rate distribution or will we
have to say pumps from, company one have a certain failure rate distribu-
tion and those from company two a different distribution. To make a de-
termination of whether the fallure rate distributions for pumps from the
two companies are the same, the likelihood ratio may be employved.

Two hypotheses are made. The null hypothesis, Ho’ is that all the

data are from the same distribution. The alternate hypothesis, Hl, is

that the data are from different distributions. Stated explicitly;

HO: a = a, and Bl = 52 (2.51)
le oy # a, or Bl # 82 or both.
The likelihood of the null hypothesis is
o B By
L = I h(z=;a ,RY I hiz—; a_,B). (2:52)
S gwl 1" R gy - #08

Since the null hypothesis says that all the data are from the same dis-

~

tribution, some o may be found to maximize L The likelihood of the

0
alternate hypothesis is
B Ll
L = T h(z= e,8) 0 hig—; 2,,8)) (2.53)

i=1 i1l i=1 i2
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The alternate hypothesis says that the parameters of the first distribu-
tion are not necessarily equal to the parameters of the second one; thus
the maximum likelihood estimators are not necessarily the same for both
groups. Equation (2.53) can be thought of as the likelihood of a fun-

ction with four free parameters al,uz,Bl, and The maximum likelihood

5
estimators are found in the standard way. The values which maximize L1

are o and 82.

1% 8y
The likelihood ratio, L, is LO/Ll with the MLEs applied. The likeli-
hood ratio will glways be less than or equal to one. When the MLEs are
found for Egq. (2.52) the entire function is maximized. In Eq. (2.53),
when the estimators are found, both sections of the function are maximi-
zed separately. This means that if the distributions are the same maxi-
mizing each section separately makes no difference as compared to maximi-
zing the entire function. If the distributions are different, maximizing
separately will yield a larger value than maximizing as one. Thus if L

is close to unity then we do not have to reject HO, it can be said that
the distributions are the same. On the other hand if L is close to zero,
HO must be rejected. We must say the data came from different distribu-
tions.

How close is close? To find how close is close enough to accept or
reject, we define a test statistic T as T = -2logL. This test statistic
can be shown to be distributed as Chi-squared, distribution with the
number of degrees of freedom equal to the number of free parameters [4].
Thus, if we want to be 95% confident of our hypothesis HO, we will say
reject HO, if T > yx2 (2,0.05), where 2 is the number of degrees of free-

dom, and 0.05 is the significance level.
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2.6 Data Simulation

Often it is necessary to know how some system will perform or react
to a stimulus or change, but direct experimentation is impossible. An
example of this problem would be to try to predict how some epidemic is
going to spread. Obviocusly one does not want to infect a population to
find out what will happen. In order to predict what may happen without
performing an actual experiment, simulation techniques may be used. In
our case we need to make estimates of how many failures we expect when
the probability of failure is described by a certain distribution.

When the prior distribution being used is the gamma distribution, we

say previously (Eq. (2.5)) that the marginal distribution is:

(F+a) TFta

T(a)T(F+1) (T+T)F+a

b(F|T,x,B) = : (2.54)

where T = 1/B8. This gives the probability of having F failures in a
given time T with the parameters of the gamma function being o and B.
Since F can only have integer values it is not difficult to form a dis-
crete cumulative distribution. An example of a cumulative distribution
generated from a distribution with the parameters; T = 10,000 hrs.,
o =1.1, and 8 = 20,000 is shown in Fig. 2.8

The cumulative distribution is formed by starting with the proba-
bility of zero failures and adding to it the probability of one failure
and then adding to that two failures etc. until the cumulative probability
approaches one. Thus, the cumulative distribution is the sum (for the
discrete case) or area (for the continuocus case) under the probability
distribution function up to a specified value of the independent variable.

The value of the cumulative distribution will range between zero and unity.
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Figure 2.9 Number of failures corresponding to a

generated random number of 0.781,
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For simulation of data a convenient procedure 1s to generate a ran-
dom number between zero and unity. Use this number as the value of the
cumulative distribution for which a value of the independent variable
(in our case number of failures) is sought. For example, if the gener-
ated random number is 0.781 the corresponding number of failures (using
the above distribution) is 1, as shown in Fig. 2.9. This is the simula-
tion of one datum from a distribution with T = 10,000 hrs., a = 1.1, and
B = 20,000 (t = 5x10'5)

If this process is repeated a set of failures is produced. Thus
data from different distributions may be generated allowing one to test
hypotheses about the distributions knowing what the true results should

be.

2.7 Power
Suppose that data have been simulated from a normal distribution with
a mean u, = 0 and a variance of ¢¢ =1, i.e., N(0,1). Data are then simu-

lated from another normal distribution with a mean u2 = 1 and the same

variance, i.e., N(1,1). A null hypothesis is made that all the data came

from the same distribution.

HO: Ul o Uz,

and the alternative hypothesis is made that the data come from different

distributions

Hl: Hy # Moo
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In order to test these hypotheses, the likelihood ratioc test is used.
After all the estimators have been found and the likelihood ratio evalu-
ated, the test statistic is evaluated and a determination is made either
to accept or reject the null hypothesis at a certain significance level,
If data are simulated and the process 1s repeated many times for the same
distributions, a count can be made of the number of times the null hypo-
thesis is rejected and the number of sets of data. The simulated data
are used to find failure rate distribution parameters; often no estima-
tors are found (for reasons to be discussed below). Thus the number of
sets of data to be used is that number of data sets which vields estima-
tors. Power can then be defined as the ratic of the number of times HO
is rejected to the number of data sets which yield estimators.

If in the example, the mean of the second distribution was the same
as the mean of the first, Wy = Wy = 0, the power would just be equal to
the probability of a type I error, a, l.e., the probability of rejecting
HO when it is in fact true. Ideally when the two parameters belng tested

are identical the power should be equal to zero. Similarly when the two

parameters are not equal (e.g. u., = 0, Hys = 0.1) the power should

1
ideally equal unity.

Power may be generated for any combination of parameter values from
the first and second distributions. If the parameter from the first dis-
tribution is held constant and the value of the parameter from the second
function is allowed to vary, a power functiom is produced. The power fun~
ction may be illustrated by plotting power versus the value of the second
parameter or by pletting power versus the difference between the value of
the parameter of the second function and the value of the parameter of

the first as shown in Figs. 2.10 and 2.11 for o = 0.053. Note when

ul = uz the value of power equals 0.05. As ”2 gets further away from ul



1.0

Power

«,

YT
M2

Figure 2.10 Power versus value of second parameter u,.

1.0

Power

. ! T | |
IIIVII
Ao o
Mo Ha
Figure 2.11 Power versus value of difference between standard

parameter and second parameter.

1.0

Power

p—t
M= e

Figure 2.12 Ideal Power Curve.
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the power goes to unity. An ideal power curve is shown in Fig. 2.12. 1In

this case the hypothesis test always yields the correct conclusion.
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3 CODE OPERATION

In this section a general overview is given of the operation of the
computer codes used in this work. No attempt is made to detail code
operation line by line. Instead this section is designed to outline the
major steps in the programs and describe how to use the codes. A listing

of the codes may be found in the Appendix.

3.1 Generate

3.1.1 Description

The purpose of the code GENERATE is to produce sets of simulated fail-
ure data. Given two sets of parameters for gamma prior distributions the
program GENERATE will simulate failure data for each distribution and
write the simulated data onto magnetic tape. The program may be thought
of as being in two major sections: 1) determination of the cumulative
distribution and 2) simulation of data.

The marginal distribution [Eq. (2.5)}] shown earlier as

I (F4) F ®

TETEH) (g,

h(F|T,a,B)) = y (3.1)

is used to form the cumulative distribution. Initially given values for
time (T), alpha (o), and beta (B) are read in from cards. The number of
failures (F) is set equal to zero and from Eq. (3.1), the probability of
having zero failures in T hours of operation with parameters o and 8 is
calculated. This probability of zero failures is the first point in the
discrete cumulative distribution. F is incremented by one and a new prob-
ability is found (i.e., the probability of having 1 failure in T hours of
operation with parameters a and B). This probability of one failure is

added to the probability of zero failure to yield the second point in the
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cumulative distribution. This process of incrementing ¥, calculating a
probability, and summing is continued until the cumulatiwve probability
is very close to unity (0.99999 for this work). The cumulative distribu-
tion is printed out, and the process is repeated for the second set of
parameters.

The second section of the program simulates failure data. A random
number between zero and unity is generated using the subroutine RANDU.
A determination is made of the value of F in the cumulative distribution
corresponding to the random number. Thus a simulated number of failures
is produced which is paired with the corresponding operation time of the
distribution being used. Two groups of failure data pairs are produced,
one for each of the distributions being tested. After the two groups of
pairs have been produced they are printed out and also written onto mag-
netic tape.
3.1.2 Input

In order to operate GENERATE four input cards are required.

Card 1

First distribution parameters; TIME (in hrs.), ALPHA, BETA.

FORMAT (E13.5,7X,E13.5,7X,E13.5)

Card 2

Second distribution parameters; TIME2 (in hrs.), ALPHA2, BETA2

FORMAT (E13.5,7X,E13.5,7%,E13.5)

Card 3

Number of failure data pairs per set

FORMAT (I6)
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Card 4
Number of data sets required
FORMAT (I6)
3.1.3 Sample Output
Input parameters

First distribution

TIME = 10,000 (hrs.)
ALPHA = 1.5
BETA = (0,00005

Second distribution
TIME = 10,000 (hrs.)

ALPHA 1.5

fl

It

BETA 0.00001

Number of failure data pairs per set = 10

Number of data sets = 250

3.2 GAMMA MODIFIED

3.2.1 Description

The program GAMMA MODIFIED is a modification of the program GAMMAS
written by J.K. Shultis in June, 1980. The original GAMMAS program
worked with failure data to give estimates of the gamma prior distribution
parameters for both the homogeneous and compound model plus other prop-
erties of the data. The GAMMA MODIFIED program retains the parameter esti-
mation for the compound model and has sections added to find likelihood
ratios and power.

GAMMA: MODIFIED reads the sets of failure rate data put oun tape by
GENERATE. The data are on tape in the following order: a group from the

first distribution, a group from the second distribution, ete, In order
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Table 3.1 Sample output from GENERATE

TIME= Q,1CC0QD0 Q5hRS. ALFHA= 0,.,150000 Ol BETA= (C.500CQC-04

CLMULAT I C QISTRIBLTION
F= CUMULATIVE PROGEABILITY
«544330 CO
C.B1£5Q0 Q0
526500 CO
C.57400C Q0
C+99C54C GQ
C.55£60QC CO
C.SSE790 QG
€.55557C 0Q
C.555850 0C
C.855550 CC
C.55658C CO
C+5595990C Q0

PO WU~ 0O

—

TIME2= C.1CO0CC QSHRS. ALPRA2= Q.15000C Al EETAZ2= (Q.1C0000-Ca

CLUMULATIVE CISTRIBLTICA

F= CUNULATIVE PRCBABILITY
C.B86&78C CQ

C.S584580 00

C.99€41C CQ

C.G5%84C 02

C.595580 QQ

C.1CLC00 Q1

LV RS TU R o ]

SET MLMBER 1

FIRST CISTRIBUTICN hF AT

10000
16000
104G0
10000
13603
10Ca0
10400
100¢a
1guco
1cqoc

FO0O000Q—~—~ 000

SECCNL OISTRIBLTICA

1¢ccg
IReJale]s]
14842040
1ccoa
1ccoac
14600
icgcac
10004
16C00
LCCac

OO0 OO000

SET MLMBER 2

FIRST CISTRIBLTIGN N AT
3 14¢a¢
1 133¢cQ



C
2
Q
1
1
G
i
¢

SECCNC QDISTRIBLTICH
G
1
2
o
g
G
c
q
g
<

SET MULMBER 3

FIRST CISTRIBLTICM b
g
¢
1
c
1
o
G
v
a
2

SECCANC CISTRIBLTICH
8
G
G
C
G
“
c
c
aJ
Q

SET NLMBER 4

FIRST CISTRIBUTICN Y
¢
Q
1
¢
¢
L
G
2
13
G

1cCcao
1g04gc
ldwuy
1C0QccC
Lguac
100CQ
1CCLcC
1occe

1Cc0¢
10000
10C0¢
10CG¢C
1GGea
10000
1acoc
10000
10308
1cidc

nNT
100040
13G0Q
10Ga0
igocc
LGoae
1900¢
1agaa
loucge
tccoc
16C0¢C

1¢cad
104goa
100040
Lccao
1604Q¢
13000
L00CQ
10c¢0Q
16000
1ogaa

AT
100QcC
1GCa0
1¢dca
1accea
194ca
1Ccca
LogaQ
16coa
12cac
1CAGa
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SECCNC CISTRIBLTICN

SET NLMBER 5

FIRST CISTRIBUTICN

SECCAC DISTRIELTICN

SET NLMBER ¢

FIRST CISTRIBUTICN

SECCMC CISTRIBLTICA

FOOOOrrO0OO00

M

= mO~O0oWwWoo

i~~~ OO0O000 000

MF

N, OdRO~ O

o000 00
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10¢00
133d90
Lccco
10Ga0
10000
L1ccaon
10000
10000
1¢C0a
10Q00

NT
10000
1cCca
l1agaac
iQoao
13cce
1g00¢C
100400
1Ccoaq
10004
10Qaa

14006
16000
1Ccoa
1¢cC0a
10000
1CGCC
10000
1g000
1CaGa
1dcea

AT
10000
1CCcce
1G0CQC
10060
1gcQa
10304GQ
16000
l1acCCa
1C0Q¢
10000

10000
10000
1CCCQ
1¢a4Q0
12000
L8CCC
t1dcca



b4

iccaco
1c0do
pegel oy

[eY =2

SET NLMBER 7

FIRST LISTRIBLTICN NF KT

1CGCo
r00ac
10000
L10goao
10004
1040040
1CCao
1000¢
1¢goa
l1acce

WMOOoOr~ONOO OO

SECCNT CISTRIBLTICN

134900
1CGao
Loaago
10004
1écoc
10000
104004
1CCGC
1ocao
14000

OOoOGrraOoOoOno

SET AUMBER 8

FIRST LISTRIBUTICA NF NT

1ccaoc
loQac
LG00Q
iccoc
100Q¢C
100040
1¢3a¢C
1000¢
1ca00
1ccco

Wm0~ O

SECCNC CISTRIBLTICN

1asoa
LCCGC
10¢0cC
13000
13cca
10000
10000
1CcaQ
10000
10000

COoOOGO0OO0 00

SET MLMEBER 9

FIRST CISTRIBLTICA nF AT
1 1CCCC



SECCNC DISTRIBLTICN

SET MLNMEER 10

FIRST CISTRIBLTION

SECCNC CISTRIBLTICA

PP OO~O0000

— OO0~ 00— CGer0

MF

VOOO-rOOoOOLOO

OO OO0O0O0 0
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10¢00
1GQ0a
1cccea
1ccoa
10000
Loccao
1aQaa
100040
1coo0

l1ccac
l1aQac
19000
1¢ace
10000
1¢0&0
1CCaa
jReJelele
10004
1¢Cea

AT
1gcoa
10000
10000
100Q0
16aqa
1CCa0
1000G
10000
190040
10000

LoGcae
l1doac
1G0QQ
1Ccca
LGaoa
13CGa
1GCCe
10QQ¢
13000
1cCce
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to find maximum likelihood ratio between two groups of data it was shown
in Section 2.5 that estimators must be found for each group taken separ-
ately and then for the combination of the two groups. To determine the
likelihood ratio between data from the first and second distributions,
GAMMA MODIFIED finds estimators for the first group of data, the second
group, and for the combination of the first and second group. Next esti-
mators are found for the third group, the fourth group, and finally the
combination of the third and fourth groups. This process is repeated
until estimators have been found for each pair of data groups (one from
the first distribution and one group from the second distribution). Esti-
mators are calculated in each case using all three techniques, matching
data moments to the prior distribution, matching data moments to the mar-
ginal distribution, nad maximizing the likelihood function.

After the three sets of estimators are found for each of the two
groups of data, the likelihood ratio is evaluated using each set of esti-
mators. Since there is now a set of likelihood ratios for each estimation
technique three values of power are calculated. The test statistic
t = -2+1n(L) (where L is the likelihood ratio) is calculated for each
likelihood ratio and tested against the vlaue of xz (2,0.05). If t > xz
(2,0.05) the null hypothesis that all the data came from the same distri-
bution is rejected. Thus for each estimation technique the value of
power is then found as the number of times t is found to be significant
(i.e., Ho is rejected) divided by the number of likelihood ratios found.

Summarizing:

1) Failure rate data are read off tape.
2) Prior parameter estimators are found using the three estimation

techniques.
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3) Likelihood ratios are evaluated for each pair of data sets and for
each estimation technique.
4) Three values of power are found, one for each estimation technique.
3.2.2 Input
On tape
Failure rate data prior; number of failures, time (in hours).
FORMAT (18,18)
On cards
Card 1
Number of points, number of sets.
FORMAT (I8,18)
3.2.3 Sample Qutput
Input parameters
Number of points = 10

Number of sets = 10

3.3 GAMMA GENERATE

3.3.1 Description

When failure data are only needed for the determination of estimators
and power, it is not necessary to record permanently the large sets of
failure data required. It would be convenient to have one code which simu-
lates failure data, produces estimators, and calculates power. This is the
purpose of the code GAMMA GENERATE, to eleviate the need to write failure
data onto tape and then read it off again. The code is simply a mating of
the codes GENERATE and GAMMA MODIFIED, previously described.

The code operates as follows. Initial values are read for two dis-
tributions along with the number of failure data pairs per set and the
number of data sets required, as in the program GENFRATE. The parameters

of the first distribution are held constant throughout the entire program



PCWER=
PCHER=

PCHWER=

Table 3.2

3.12500C+00
0. C

2.0

Sample output from GAMMA MODIFIED

NUMBER OQF PTS5. USED= 3 ESTIMATICN METHCD NC.
NUMBER OF PTS. USED= L ESTIMATION METHCD NO.
NUMBER OF PTS. USED= o ESTIMATICN METHCD NC.
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while the beta value of the second distribution (BETA2) may be allowed to
vary. Cumulative distributions are formed for each set of parameters and
from them sets of failure data are generated. The three parameter esti-
mation techniques, matching moments to the prior, matching moments to the
marginal, and maximum likelihocod, are used to make parameter estimates.
Power is then calculated for each estimation technique and the result is
written out.

To this point operation has been exactly the same as in GENERATE and
GAMMA MODIFIED. Instead of terminating the program at this point, the
value of BETAZ is changed by a preset increment, a new cumulative distri-
bution for the second set of parameters is calculated using the new wvalue
for BETA2, and the procedure for finding power is repeated. Incrementing
BETA? allows a set of powers to be generated. The size of the increment
and the final value for BETAZ may be set within the program.

Output from the program consists of listing distribution parameters,
cumulative distributions, the power for each combination of parameters
using each estimation technique, and the number of points used in the cal-
culation of power.

3.3.2 Input
Cards
Card 1
First distribution parameters: TIME (in hours), ALPHA, BETA.
FORMAT (E13.5,7%X,E13.5,7%,E13.5)
Card 2
Second distribution parameters: TIME2 (in hours), ALPHAZ, BETA2

FORMAT (E13.5,7X,E13,5,7X,E13.5)
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Card 3
Number of failure data palrs per set.
FORMAT (16)
Card 4
Number of data sets
FORMAT (13)

3.3.3 Sample Output

Input parameters

First distribution

TIME = 10,000 (hrs.)
ALPHA = 2.0
BETA = 0.00005

Number of failure data pairs per set = 10
Number of data sets = 250

Sacond distribution

TIME2 = 10,000 (hrs.)
ALPHA2 = 2.0
BETA2 = 0.00004

Number of failure data pairs per set = 10

Number of data sets = 250

3.4 GAMMAP GENERATE

3.4,1 Description

The code GAMMAP GENERATE is nearly the same as the code GAMMA GENER-
ATE, the only difference being that matching moments to the prior is the
only parameter estimation technique used, i.e., the section to estimate
prior parameters using the techniques for matching moments to the marginal

and maximum likelihood have been eliminated.



TIME=

Table 3.3

0.10000QC+Q5HRS .
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Sample output from GAMMA GENERATE

ALPFA=

CLNMULATIVE DISTRIELTICA
CUMULATIVE PROBABILITY

F=

C.20CCO0+C1

— -
NEEO DD wmsuwmen

TIMEZ2=

CUMULATIVE CISTRIBUTIGA
CUMULATIVE PRTOEABILITY

F=

O 0 =D AR P WO

—

PCWER=
PCKER=
PCWER=

C.74C74LC+CO
0.88889C+00
Ca95473L+00
C.58217D+00
£.99314C+0Q0
0.557410+00
Q+999030+00
G« 995640 +00
L.965870+0Q
0.595550 +04)
0.59%580+00
C.5959590+00

0.10000D+C5HRS .

Q.51C200+40
G.3801750+C0
J.92670C+C0
C.GT430D+00
Q.99130C+00
0.58712C+00
L.555C70+CC
0.595170C+00
LeG95510+C0
0.595570+4Q0
Ce$9%99C+Q0

C.36CLCC~C1
0.869570-G2

C.2435L00-01

ALPEAZ=

NUMBER CF PTS.
NUMBER OF PTS. USED=

MNUMBER OF PTS.

0.20CCCC+CL

LSEG=

LSED=

0
[2¥]

BETA

ZETAZ= (.49

2549

ESTIMAICH

C.5CCCCL-C4

(@]
[#
[=]
[w]
I

METRC

€3

0

ESTIMAICN METHCE

&~

ESTIMAICHK McTRCE

™

Ve
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3.4.2 Input
Cards
Card 1
First distribution parameters: TIME (in hours), ALPHA, BETA.
FORMAT (E13.5,7X,E13,5,7X,E13.5)
Card 2
Second distribution parameters: TIME2 (in hours), ALPHA, BETA2.
Card 3
Number of failure data pairs per set.
FORMAT (I3)
3.4.3 GSample Output
Input parameters

First distribution

TIME = 10,000 (hrs.)
AILPHA = 2.0
BETA = 0.00005

Number of failure data pairs per set = 10
Number of data sets = 250
Second distribution
TIME2 = 10,000 (hrs.)
ALPHA2 = 2.0
BETAZ = 0.00004

Number of failure data pairs per set = 10

It

Number of data sets 250



TIME=

CLMULATIVE NTSTRIBUTICN
CUMULATIVE PROBABILITY

F=

Wi~ PNn =0

TIME2=

Table 3.4

0.10C000+05kRS.

0.444440+00
0.74C740+00
0.688890+00
G.954730+00
C«.S8217C+00
0.992140+04Q
CeS5741LC+00
£.999030+00
0.99584C+00
0.55587D+0Q
C.995S50+00C
G+995S8CL+0Q
C«55559C+00

0.100000+05HRS .
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Sample output from GAMMAF GENERATE.

ALPHA=

ALPHAZ2=

CLUMMULATIVE OISTRIBUTICN

F=

INDE NS U O

0.56689C-01
C. 142CTD+GO
C.24180C+Q0
0.342090+G0
Q.437600+00
G.52453C+Q0
CebC256D+Q0
0.47CL50+Q0
C.T2EC9C+Q0
C.777130+00Q
C.8L824L+G0
C.852400+00Q
C.83C600+00
C.502740+0Q
C.922€30+CQ
C.937580+00
C.55C41C+00
€.56C430+00
C.S6E50C+00
C.9T74%6D+00
G.980140+Q0
0.984260+00
C.587550+CQ
C.99C17C+C0
G.59224C+00
C.593890+00
G.99519C+Q0Q
Ca956220+00
0.997030+30
C.597670+00
C.55817D+0Q0
Q.S9€E570+C0Q
C.SSEBBC+00
Ce595120+00
0.99531C+0Q
Ce555460+400
C+935580+00

CUMULATIVE PROBABILITY

C.20000D+01

$.2000C0+0C1

BETA=

EETAZ=

C.5Q000CC-04

C.220CCD-C3
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a8
39
40
4l
42
43
44
45
46
47
<8
49
5¢
€1

PCWER=

0.59S670+00
C.599750+0C
0.9958QC+00
0.%55850+CQ
0.955880+00Q
C.999510+00
€.5999930+00
0.599540+00
0.659960+00
£.59%57D+00
C.99597C0+C0
Ce595580+00
0.539%580+00
C«599990+00
€.555990+00

0.5160CC0+00

54

MUMBER CF PT3. USED=

250

ESTIMATICAN METHCD

NCa

i
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4 Data Simulation and Analysis

4.1 Generation of Power Curves

4.1.1 General Procedure
Below is a general procedure for obtaining a power curve for any gen-
eral distribution with variable parameters. [Note that the value of the
variable parameter chosen for testing must remain constant (in the stan-
dard distribution) throughout the production of the power curve.]
1) Choose which parameter will be the variable parameter.
2) Set all other parameters to constants.
3) Choose a value for which the variable parameter is to be tested
against (a standard value).
4) Choose an initial starting value for the variable parameter.
5) Simulate data from the two separate distributioms.
6) TFind estimators of the parameters for each group of data separ-
ately and for the data from both distributions grouped together.
7) Find likelihood values for all data sets for which estimators
were formed by all three estimation methods.
8) Calculate likelihood ratic calculate test statistic, compare to
x2(2,0.05), and make decision to accept or reject HO.
9) Repeat steps 5-8
10) Calculate power, i.e., number of times HO was correctly rejected
divided by the number of data sets for which estimators were cal-
cuable.
11) Increment the value of the variable parameter in the second dis-
tribution and repeat steps 5-10.
The number of times steps 5-8 are repeated is set in the computer pro-
grams by the number of sets of data to be generated. The amount that the
variable parameter is to be incremented (in this case BETA2Z) 1is also set

within the programs.
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4,1.2 Parameters set in Programs

In this work the gamma distribution was used. Variable parameters
of the gamma distribution are ALPHA, BETA, and test time, TIME. BETA
was chosen as the v#riable parameter to be tested.

The value of BETA in the standard distribution was set at 0.00005.
Thus when data are simulated from the standard distribution and from some
distribution where the wvalue of beta (called BETA2 in the alternate dis-
tribution) has been varied, the null hypothesis is

HO: All the data came from a distribution with a value of
BETA of 0.00005.
The alternate hypothesis is
Hl: The data came from different distributions.

Power is then the ratio of the number of times Ho is correctly re-
jected to the total number of data sets for which estimators were found,
i,e., the number of times data are found to come from different distribu-
tions divided by the number of times estimators are found.#®

For example, say the MMMM (marginal matching moments method) was able
to find estimators for only 151 sets of data out of 250 generated sets of
data. With these 151 estimators it was found that the null hypothesis
(all data came from a distribution with a beta of 0.00005) was rejected
31 times. Thus power equals 31/151 or 0.2053, not 31/250 or 0.124.

Throughout this work test time was held constant at 10,000 hours

(which is approximately one year), although it is possible to vary time

*#It is important to note that power has been defined as the number of
times Ho is rejected over the number of times estimators were found.
Power iS not defined as the number of times H_ is correctly rejected
over the number of sets of data. If estimatoPs cannot be found for

a particular set of data the set is not used in the calculation of
power.
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in the computer codes. Power curves were generatad for value of ALPHA

of 1.0, 1.5, 2.0, 2.5. ALPHA is the shape parameter of the gamma distri-
bution so power curves were generated for each shape that the distribution
may assume (see Sec. 2.2). The number of points per data set used
throughout was ten. The number of data sets generated for each computa-
tion of power was 250. The test to accept or reject was made at the 0.05

significance level.

4.2 Results

The codes GAMMA GENERATE and GAMMAP MODIFIED were used to produce
the following tables. Tables 4.1, 4.2, and 4.3 use MMPM (matching mo-
ments to the prior method), MMMM (matching moments to the marginal me-
thod), and MMIM (marginal maximum likelihood method), respectively, as
the parameter estimation techniques. All have an ALPHA value of 1.5.
Tables 4.4, 4.5, and 4.6 have an ALPHA of 2.0 and use the MMPM, MMMM, and
MMIM, respectively. In Tables 4.7, 4.8, 4.9, and 4.10 the MMPM and the
values for ALPHA of 1.0, 1.5, 2.0, and 2.5 were used. Each table is for
one value of ALPHA and one estimation technique. Each table 1lists the
value of BETA2, the power, and the number of points used in the calcula-
tion of power. The distribution with the given value of BETAZ is always
compared to a distribution whose BETA value is 0.00005.

These data are used to plot power curves, Following each table is

a corresponding plot of power versus BETAZ2.
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Table 4,1 Power for alpha=1.5, using MMPM

BETA2 POWER NO. OF POINTS USED
(xlO_S)

1.0 0.09290 183
2.0 0.03766 239
3,0 0.02449 245
4,0 0.01606 249
5.0 0.00803 249
6.0 0.01205 249
7.0 0.02000 250
8.0 0.06855 248
9.0 0.06800 250
10.0 0.09639 249
12.0 0.11200 250
14.0 0.27016 248
16.0 0,37200 250
18.0 0.44980 249
20,0 0.51200 250
22.0 0,61847 249
24,0 0.64516 248
26,0 0.73092 249
28.0 0.76800 250
30.0 0.82400 250
32.0 0,84800 250

34,0 0.88353 249
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1.00

0.80

0.60}

0.40 |-

0.20-

I | |

Figure 4.1

7 14 21 28
Beta 2(X10(-5))

Power Curve for = = 1.5 using MMPM.
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Table 4.2 Power for alpha=1,5, using MMMM

BETAZ POWER NO. OF POINIS USED
(xlO-S)

1.8 0.03846 26
2,0 0.01613 62
3.0 0.00000 83
4,0 0.00000 13
5.0 0.00746 134
6.0 0.00000 104
7.0 0.01398 143
8.0 0.02290 131
9.0 0.06569 137
10.0 0.07857 140
oy 0.10759 158
14.0 0.21192 151
16.0 0.31250 160
18.0 0.36306 157
20,0 0.51136 176
22.0 0.60403 149
24,0 0.55747 174
26,0 0.68072 166
28.0 0.71166 163
30.0 0.75301 166
32,0 0.73885 157

34,0 Cl,B31.33 166
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1.00—

0.80-

0.60¢

Power

0.20

0 I l l
0 7 14 21 28 35

Beta 2(X10(-5))

Figure 4.2  Power Curve for « = 1.5 using MMMM.
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Table 4,3 Power for alpha=1.5, using MMLM

BETAZ POWER NO. OF PQINTS USED
(x10™)

1.0 0.11111 18
2.0 0.04878 41
3.0 0.0 60
4.0 0.06154 65
5.0 0.07292 96
6.0 0.05128 78
7.0 0.05882 102
8.0 0.07609 92
9.0 0.13333 90
10.0 0.25000 1064
12.0 0.39655 116
14.0 0.54310 116
16.0 0.69167 120
18.0 0.73171 123
20.0 0.83007 153
22.0 0.93443 122
2.0 0.89583 144
26.0 0.92754 138
28.0 0.94853 136
30.0 0.97101 138
32.0 0.96825 126

34.0 0.99231 130
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1.00

0.80

Power

0.40

0.20

0 | | | |
0 7 14 2 1 28 35

Beta 2(X10(-5))

Figure 4.3 Power Curve for = = 1,5 using MMLM.
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Table 4.4 Power for alpha=2.0, using MMPM

BETAZ POWER NO. OF POINTS USED
(2163
1.0 0.21154 208
200 0.07347 245
3.0 0.03239 247
4.0 0.01600 250
5.0 0.01200 250
6.0 0.02000 250
7.0 0.04418 249
8.0 0.06400 250
9.0 0.11200 250
10.0 0.09600 250
11.0 (0.18870 249
12.0 0.25600 250
13.0 0.28800 250
14.0 0.33200 250
15.0 0.46400 250
16.0 0.48996 249
17.0 0.49200 250
18.0 0.58400 250
19.0 0.63600 250
20.0 0.63200 250
21.0 0.76000 250
22.0 0.74800 250
23.0 0.74400 250
2.0 0.82731 249
25.0 0.86400 250
26.0 0.87200 250
27.0 0.88000 250
28.0 0.94400 250
29.0 0.88755 249
30.0 0.92000 250
31,0 0.93200 250
32.0 0.94800 250
33.0 0.94800 250
34.0 0.97200 250
35.0 0.97200 250
36.0 0.99200 250
37.0 0.97600 250
38.0 0.99200 250
39.0 0.97600 250

40,0 0.96800 250
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Beta 2(X10(-5))

Figure 4,4 Power Curve for = = 2,0 for MMPM.
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Table 4,5 Power for alpha=2.0, using MMMM

BETA2 POWER NO. OF POINTS USED
(x10“5)

1.0 0,08108 37
2.0 0.0 80
3.0 0.0 100
4.0 0.0 119
5,0 0.00735 136
6.0 0.01818 110
7.0 0.02721 147
8.0 0.05436 129
9,0 0.06164 146
10.0 0,09589 146
11.0 0.20530 151
12.0 0.25806 155
13.0 0.29518 166
14.0 0.34783 184
15.0 0.43382 136
16.0 0.47674 172
17.0 0.48447 161
18.0 0.57558 122
19.0 0.60606 165
20.0 0.58491 159
21.0 0.73810 207

22.0 0.72000 150
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Beta 2(X10(-5))
Figure 4.5 Power Curve for = = 2.0 using MMMM.
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Table 4.6 Power for alpha=2.,0, using MMLM

BETAZ POWER NO. OF POINTS USED
€10™)

1.0 0.17857 28
2.0 0,08929 56
3.0 0.01429 70
4,0 0,06060 66
5.0 0.01099 91
6.0 0.04168 72
7.0 (.08929 112
8.0 0.13592 103
9,0 0.22414 116
10.0 0,25439 114
11.0 0.42400 125
12.0 0.50388 129
13.0 0,54098 122
14.0 0.69863 146
15.0 0,74312 109
16.0 0.70803 137
17.0 0.80451 133
18.0 0.86330 139
19,0 0.86822 129
20.0 0,87200 125
21.0 0.91852 135
22.0 0.91870 123
23.0 0.93431 137
24.0 0.96552 145
25.0 0,95444 150
26.0 0,96296 135
27.0 0,96875 160
28.0 1.0000Q 123
29,0 0,99320 147
30.0 1,00000 141
31.0 0.99315 146
32.0 0.99291 141
33.0 0.98496 133
34.0 0.99291 141
35.0 0.98450 129
37.0 0.99248 133
38.0 0.98630 146
39.0 1.00000 138

40.0 1.00000 137
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Figure 4.6  Power Curve for = = 2.0 using MMLM.
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Table 4.7 Power for alpha=1.0, using MMPM

BETAZ2 POWER NO. OF POINTS USED
(x10~°

0.1 0.03704 27
0;2 0.01923 52
0.3 0.03509 57
0.4 0.01266 79
0.5 0.02020 99
0.6 0.03704 108
0.7 0.03760 133
0.8 0.01653 121
0.9 0.02667 150
1.0 0.01936 155
2.0 0,00985 203
Sl 0.00000 226
4.0 0.00000 236
5.0 0,00823 243
6.0 0.01660 241
7.0 001397 242
8.0 0.03306 242
9,0 0.03674 245
10.0 0.05518 249
11.0 0.09465 243
12.0 0.06910 245
13,0 0.10976 248
14,0 0.11647 249
15:0 0.20988 243
16.0 0.21545 246
L7 0 0.19919 246
18.0 0.25000 248
19440 0.29918 244
20.0 0.28160 245
21,0 0.32530 249
22,0 0.41975 243
23.¢ 0.41463 246
24,0 0.41057 246
25.0 0.47581 248
26.0 0.53689 244
27.0 0,49388 245
28.0 0.34508 244
29.0 0.58367 245
30.0 0.63306 248
31.0 0,61538 247
32.0 0.61044 249
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table 4.7 continued

BETAZ POWER NO. OF POINTS USED
(x10~2)

33.0 0.67490 243"
34.0 0.69512 246
35.0 0.69919 246
36.0 0.75806 248
37.0 0,75820 244
38,0 0.70612 245
39.0 0,75000 244
40.0 0.78776 245
41.0 0.80645 248
42.0 0.80162 247
43.0 0.82305 243
44,0 0,83065 248
45.0 0.85484 248
46,0 0.81967 244
47,0 0.85246 244
48,0 0.85950 242
49,0 0.86008 243

50.0 0.87347 245
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Figure 4.7 Power Curve for = = 1,0 using MMPM.
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Table 4,8 Power for alpha=l1.5, using MMPM

BETA2 POWER NO. OF POINTS USED
(xlB_S)
9 & 0.21875 32
0.2 0.10000 70
0.3 0.09302 86
0.4 0.14815 108
0.5 0.16438 146
0.6 0.08392 143
0.7 0.16352 159
0.8 0,08745 161
0.9 0.10053 189
1.0 0.09290 183
2.0 0.03766 239
3.0 0.0445 245
4.0 0.1606 249
5.0 0.00832 249
6.0 0.01205 249
7.0 0.02000 250
28,0 0.06855 . 248
9.0 0,06800 250
10.0 0.09639 249
11.0 0,Q7600 250
0 0.18952 248
13.0 0.22400 250
14.0 0.24900 249
15.0 0.,27200 249
16.0 0.37750 249
17,0 0.37500 248
18,0 0.41767 249
19.0 0.49200 250
20.0 0.52800 250
91,0 0.53600 250
2208 0.67871 249
23,0 0.64800 250
24,0 0.68800 250
25.0 0.68675 249
26.0 0.73200 250
27,0 0.73896 249
28.0 0.73577 246
29.0 0.78000 250
30,0 0.87200 250
31.0 0.81600 250

32,0 0.856Q0 250




74

table 4.8 continued

BETA?Z FOWER NO. OF POINTS USED
£x107)

33.0 0.87500 249
34,0 0.87200 250
35.0 0.91968 249
36.0 0.86690 248
37.0 0.90760 249
38.0 0.92800 250
39.0 0.94400 250
40.0 0.93600 250
41,0 0.96386 249
42,0 0.95600 250
43,0 0.98000 250
44,0 0.95582 249
45,0 0,97200 250
46,0 0,94378 249
47 .0 0.96341 246
48 .0 0.97200 250
49,0 0.97200 250

50,0 0,98800 250
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Figure 4.8 Power Curve for = = 1,5 using MMPM.



Table 4.9 Power for alpha=2,0, using MMPM

BETAZ2 POWER NO. OF POINTS USED
(x10‘5)
0.1 0,51282 39
0.2 0.30952 84
0.3 0.28696 115
0.4 0.33083 133
0.5 0.28902 173
0.6 0.24855 173
0.7 0.30270 185
0.8 0.25926 189
0.9 0.18779 213
1.0 0.16432 213
2.0 0.07347 245
3,0 0.03239 247
4,0 0.16000 250
5.0 0,12000 250
6.0 0,02000 250
7.0 0.04417 249
8,0 0.06400 250
9.0 0.11200 250
10.0 0.,18000 250
11.0 0.18876 249
12,0 0.25600 250
13.0 0,28800 250
14,0 0,32300 250
15.0 0.,46400 250
16.0 0.48996 249
17.0 0.49200 250
18.0 0.61044 249
19.0 0.62800 250
20.0 0.68000 250
21.0 0.74000 250
22.0 0.80800 250
23,0 0,74297 249
24.0 0.81200 250
25,0 0.85200 250
26.0 0.87600 250
27.0 0.86800 250
28.0 0.91200 250
29.0 0.91200 250
30.0 0.93600 250
31,0 0.93200 250

32.0 0.91600 250
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table 4.9 continued

BETA2 POWER NO. OF POINTS USED
(xlO-S)

33.0 0.95984 249
34,0 0.94800 250
35,0 0.96400 250
36.0 0.96400 250
37.0 0.99600Q 250
38.0 0.97590 249
39.0 0.99600 250
40,0 0.99200 250
41,0 0.99600 250
42.0 (0.98400 258
43.0 0.99600 250
44,0 0.98000 250
45,0 0,99200 250
46,0 0.99600 250
47,0 1.00000 250
48,0 0.99200 250
49.0 0.99600 250

50.0 1.00000 250
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Figure 4.9  Power Curve for = = 2.0 using MMPM.
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Table 4.10 Power for alpha=2.5, using MMPM

BETA2 POWER NO. OF POINTS USED
(xlO_s)
0.1 0.68519 54
0.2 0.54082 98
0.3 0.50781 128
0.4 0.53459 159
0.5 0.47312 186
0.6 0.38421 190
0.7 0.47619 210
0.8 0.37864 206
0.9 0.37391 230
L) 0.33190 232
2.0 0,11245 249
3.0 0,05622 249
4,0 0.04000 250
5.0 0.02000 250
6.0 0,02000 250
7.0 0,02800 250
8.0 0.0400Q 250
9.0 0.13200 250
10,0 0.11200 250
11.0 0,28000 250
12:0 0,31600 250
13.0 0,37200 250
14.0 0,43600 250
15.0 0,56000 250
16.0 0.56400 250
17.0 0.69200 250
18.0 0.72400 250
19.0 0.74800 250
20.0 0.80000 250
21.0 0.85200 250
22.0 0.81600 250
23.0 0.86400 250
24,0 0.90800 250
25,0 3.93600 250
26.0 0.92400 250
27.0 0.96400 250
28.0 0.95600 250
29,0 0.96400 250
30.0 0.97600 250
31.0 0.97200 250

32.0 0.98000 250




table 4,10 continued
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BETAZ POWER NO, OF PQINTS USED
(x107°)

33,0 0.96800 250
34.0 1.00000 250
35.0 0.98800 250
36.0 0.99600 250
37.0 0.99600 250
38.0 1.00000 250
39,0 0.99200 250
40,0 0.99600 250
41.0 0.99200 250
42.0 0.99600 250
43.0 0.99200 250
44.0 1.00000 250
45.0 1,00000 250
46.0 1.00000 250
47.0 100000 250
48.0 1.00000 250
49.0 1.00000 250
50.0 1.00000 250

e e
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Figure 4.10 Power Curve for « = 2.5 using MAIPM,
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4.3 Analysis

For the MMMM and MMIM many sets of data were excluded from the calcu-
lation of power (see Tables 4.2, 4.3, 4.5, and 4.6). TFor example, from
Table 4.3 (with a = 1.5) the MMIM with BETA2 = 0.00002 yields omnly 41
out of 250 simulated data sets useful in the calculation of power. With
the same ALPHA and BETA but using the MMMM (Table 4.2) 62 out of 250 sim-
ulated data sets were useful in the calculation of power. However for the
same parameters, the MMPM (Table 4.l1) yielded 239 (out of 250) useful data
sets. This illustrates the tendency that over the entire range of BETA2
the MMMM and MMLM consistently vield nonuseful parameter estimates for a
large number of sets of failure data. This is in contrast to the MMPM,
which consistently uses a very large number of the failure data sets.

Checks were placed in the programs to find where and why the analysis
of a failure data set failed. For MMMM many of the data sets yielded neg-
ative parameter estimates. As mentioned previously, a negative parameter
estimate is not allowed (see definition of the gamma distribution) and
therefore cannot be used for the calculation of any likelihood or a likeli-
hood ratio. Thus, whenever a set of failure data yielded a negative esti-
mator the data set was not used in the calculation of power.

For the MMLM many sets of data estimators could just not be found (a
convergence problem). The subroutine DRTMI in the codes GAMMA GENERATE
and GAMMA MODIFIED is responsible for finding the parameter estimates.

The subroutine sets a minimum and maximum value between which the esti-
mators are to be found and then proceeds in an iterative process to find
them. If the parameter estimates cannot be found in this manner for a
set of failure data a likelihood cannot be found for the set, and the set

is dropped from the calculation of power. Thus any set of data which
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failed to yield parameter estimates was not used in the calculation of
power.

For the MMPM the only time parameters could not be found was for
failure data sets in which there were no failures. If in a given simu-
lated failure data set, there are zero fallures the MMPM cannot find
parameter estimates, and, thus, a likelihood cannot be found. Hence, the
set of failure data was not used to calculate the power. As the product
of ALPHA times BETA decreases the probability of failures decreases so
at lower values of ALPHA and BETA the number of data sets rejected by the
MMPM increases. Even so the MMPM yields by far the largest number of
parameter estimates which may be used in the calculation of power.

Whenever parameter estimates can be found it is possible to find
likelihoods. By taking the natural logarithm of the likelihood function
in the programs, problems with underflow have been eliminated in the cal-
culation of likelihoods. Thus the major weakness of the programs does
not lie in the calculation of likelihoods or in the calculation of likeli-
hood ratios but in the parameter estimation techniques!

This work has shown that power curves can be generated from simulated
failure data. The following observations about these power curves (Figs.
4.1 to 4,10) are of interest: 1). They are not symmetrical about
BETAZ = 0.00005 (note: BETAl = 0.00005), because the allowed beta para-
meter space is zero to infinity. Perhaps an equal logarithmic mesh for
the Betal parameter between 0.00005 and zero would have revealed a power
curve "pulse" which approaches unity as BETA2 approached zero. 2). All
power curves exhibit a stochastic rather than a smooth behavior. For ex-
ample, note that at BETA2 = 0.00005, where power should equal 0.05 (since
BETAl = (0.00005 and the level of significance equals 0.05), the power

actually varies from 0.07 to 0.007. For ALPHA = 1.5 and the MMMM power
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curve, the power was zero for BETA? equal to 0.00003, 0.00004, and 0.00006,
Since the procedure for generating the power curves is stochastic, a repe-
tition of the procedure would yield a distribution of power values for each
value of BETAZ; at BETA2 = 0.00005 the power distribution would have an
expected value of 0.05. 3). All power curves appear to approach unity
asymptotically for large values of BETA2. 4). Each power curve has a
shape which approximates a negative pulse.

The power curve negative pulse behavior is of interest for further
analysis. One of the ways a pulse width is commonly characterized (in
spectroscopy) is by its full width at half maximum (FWHM) height. To

help characterize a power curve consider its full width at half minimum,

or since all the power curves have a maximum value of unity and a minimum
value near zero (theoretically 0.05), full width at 0.5 (FWO0.5).

For BETAZ values at which power equals 0.5 (end points of the FWO0.5),
the null hypothesis (i.e., the data sets are from the same gamma distribu-
tion) is correctly rejected only 507 of the time. Thus, if each half of
the power pulse (divide the pulse at BETAZ = 0.00005) is thought of as a
cumulative distribution, the derivative of each half would yield a curve
with its most probable wvalue at the BETAZ value which defines the FW0.5
end point.

Ideally (as shown in Fig. 2.12) a power curve for a two sided test
should dip to zero at a single point and should be unity at all other
points. Thus for the ideal case the FWO.5 equals zero. In actuality the
smaller the value of FW0.5, or the steeper the sides of the power curve,
the better the test is at differentiating between distributions. Thus a
power curve with a FW0.5 of 0.00001 uses a technique which is better at
differentiating between distributions than a technique which produces a

power curve with a FW0.5 of 0.00025.
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Table 4.11 gives a listing of FW0.5 for the generated power curves.
For a given ALPHA value, the MMLM yields the smallest value of FWO.S5.

The values of FW0.5 generated by MMPM and MMMM are equal, and are 30% to
40% larger than the FWO.5 from the MMIM.

As the value of ALPHA increases the value of FWO.5 decreases. Thus,
as the value of failure rate for which the gamma distribution is a maxi-
mum (the mode) increases, which occurs for gamma distributions as the
ALPHA parameter increases, a data set from a gamma distribution with a BETA
parameter nearer to that value of the parent distribution can be more cor-
rectly identified (i.e., HO correctly rejected more often).

The power curve allows the analyst a choice of signifcance level or
percentage of time which Ho is correctly rejected. For example, con-
sider the power curve for ALPHA = 2.0 and the MMPM. The 0.05 significance
level (957% confidence of correctly rejecting HD) occurs at a BETAZ2 equal
to about 0.00033, while the 0.0l significance level occurs at about
0.000365. Hence to answer the principal objective gquestion for this work-
how close together (or in shape) can failure rate distributions be to one
another before they cannot be distinguished from one another - one must
select the level of significance which is acceptable before a definitive
answer 1s possible,

The MMPM may be the better parameter estimation procedure even though
the FWO0.5 for this method is larger than the other methods. Actual data
are sometimes hard to obtain and or very expensive to obtain. If it is
difficult to obtain data or the data are scarce, one would like to use as
much of the data as possible. One does not want to waste or throw out
data. As mentioned earlier the MMPMis able to find estimators for every
case where there are some failures observed. For the MMMM and MMIM, how-

ever, allowable estimators are not found for many sets of data, hence,



86

Table 4.11 FW0.5 for generated power curves

%*

EWO. 5.

Alpha Estimation Technique (x10 )
1.5 MMPM 17.6
L5 MMMM 17.6
1.5 MMLM 13.3
2.0 MMPM 16.8
2.0 MMMM 16.8
2.0 MMLM 12.0
1.0 MMPM 5.0
145 MMPM 19.0
2.0 MMPM 17.5
2.5 MMPM 14.0

*FW0.5 is full width at 0.5. Note that power can
vary between 1.0 and 0.0; thus, FWO.5 is nearly
equivalent to a full width at half maximizying (a
term often used in spectroscopy to characterize the
width of spectral peaks).
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both methods are wasteful of precious data. Thus even though the MMLM
both methods are wasteful of precious data. Thus even though the MMLM
appears to have the smallest value of FWO0.5, if it cannot find a power
because it camnot use the data, the estimation method is of questionable
value. Hence, a compromise may be called for; perhaps the MMPM should
be used.

Another advantage of using the MMPM is cost. The code GAMMA GENERATE
is fairly expensive to rum. All operations must be repeated three times,
once for each estimation technique. The calculation of prior parameters
using the MMIM increases the cost even more since an 1lterative process
1s required. The code GAMMAP MODIFIED, which is just the code GAMMA GEN-
ERATE with the MMMM and MMIM removed, costs less than one fourth the amount
that the code GAMMA GENERATE costs to run for the analysis of equivalent
failure data sets. Therefore the MMPM (as the parameter estimation tech-
nique) in the production of power curves is the best technique for two
reasons: 1) MMPM uses more of the available data than either MMMM or MMIM
and 2) MMPM costs less to produce results.

From all of the above, there conclusions may be drawn:

1) Power curves can be generated using simulated failure data.

2) As alpha increases, power curves have a smaller value of FWO.5
and thus are better at distinguishing between different distribu-
tions.

3) MMPM is the best estimation technique to use in the generation

of power curves.
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Computer Code Listing for

GENERATE
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RS R EERER RS SR E 2 R R RE RS RS R R R SRR R R R RS R R AR RS S RS R 2 L 2 4

» L
* (CENERATE %
x *
* 3
® GIVYEN TWO SETS CF PARAMETERS (TIME, ALFFA, ANC BETA) ThIS *
# PRCGRAM GENERATES ThE CUMULATIVE MARGINAL OISTRIBUTION *
* FQR EACH SET. FRCM THE CUMLLATIVE CISTRIBUTICN ThE PROGRAM ¥
* SIMULATES FAILURE DATA (NUMBER GCF FAILURES PER A GIVEN TIME). *
* THE MUMBER OF DESIREC SETS CF FAILURE CATA MAY BE SPECIFIED *
*# ALCNG wWITH THE NUMBER CF DATA PAIRS PER SET. *
* AFTER THE FAILURE RATE INFCRMATICN [S GENERATED [T [S WRITTEN *
* (NTC TAPE. *
* L
- *
* INPUT CARCS *
* L 3
. CARD 1 FIRST DISTRIBUTICN PARAMETERS TIME, ALPHA,BETA. *
* FCRMAT({EL3Cs TX+EL2.5+7X9EL3.5) *
* L]
* CARD 2 SECCND DISTRIEBLTICN PARAMETERS TIME, ALPHA, *
* BETA. »
* FCRMAT(EL3 .54 7X4EL3.5¢7XyE12.5) L
= *
* CARC 3 MUMBER CF CATA FPAIRS PER SET. »
* FCRMAT(I6) *
* *
* CARD 4 MNUMBER CF SETS. *
* FCRMAT(I6) *
x *
ZXR I A X ILREZXERNEELXRZRXIRERILXFER XS YL XA IBR XL XS X AR E S XX EB AL EPEX SR

PROGRANM [S IN OCUBLE PRECISICA

[MPLICIT REAL*8{A=h,C-1)

DIMENSICN HARRAY[30),YARRAY{3C),NF(L10QCC) AT{10000)yNF2(L3000Q)AT2
#(10CQ0C)

INTEGER F,CCUNT,FARRAY ,JCLATZ

LET TFE STARTING VALUE FOR RAMNCU ARBITRARILY EQLAL 12345

[x=1234°%

REAC IN AND ESTABLISH CLMULATIVE OISTRIZUTICN FCR ALPHAL & EBETAL
REAC [N VALUES FGR TIME(=T) ANC THE GAMMA FUNCTICA

PARAMETERS (ALPHA AND B2ETA).

REAC(S,1)T,ALPHA,BETA
FCRNATIEL3W5,TX,E13.5,7TX,EL3.5)

WRITE (& 2)T JALPHA,BETA

FCRMAT('1', " TIME=? JEL3.5, "FRS."y5X, "ALPHA=1,EL12.5,3X,"BETA=" ,EL3.5
/)

TAU=1.0/8ETA

CCUNT=C

CLD=0

0C 3 I=1,206G

CCUNT=CCLAT+L

F=l-1

TCP={DGAMMA{F+ALPHA)I¥ (T*oF |3 (TAU*XALPFA)

BCT=(CGAMMA (ALPHA) ) ¥ (DGAMMA(F+1.0G+00) 1#{(T+TAU)33 (F+ALPRA))
CLO=CLC+{TC?/BCT)

HARRAY([)=CLD
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L

11

12

13

IF{HARRAY(])oGTo0.59995)IGCTC 5

CONTIME

WRITE(&+4)

FCRMAT(" ', 'NOT ENCUGH TINES THRCUGE LLCF TO GET CUMULATIVE OISTRI
FBUT ICNLGTY 4099999 )

GCTL 2¢C¢C

WRITE CUMULATIVE DISTRIBUTICN 1

WRITE{6+€)

FCRMATL2Q ", "CUMULATIVE CISTRIELTION®)
WRITE{6,7)

FCRMAT(! ', F=1,58X,"CUMILATIVE PRUOBAEBILITY")
OC § I=1,C0UNT

F=1=1

HRITE(&lE’F:HﬂRRﬂY([)

FCRMAT(' *,13+5XsE13.51

CCNTIMNUE

REAC IN AND ESTABLISH CLMULATIVE OISTRIBLTICN FCR ALPHAZ & BETAZ
REAC IN VALUES FOR TIME(=T) ANL THE GAMMA FUNCTICN
PARAMETERS (ALPHA AND Z2ETA

AEAD 1G,T2,ALPHAZ,8ETAZ
FCRMAT(EL13.5,7TX4EL3.54TXsE13. 5}
WRITE(6,11)T2,ALPHA2,BETA2

FCRMAT (1=t , *TIMEZ=',EL245+"HRS4'y 5Xy *ALPPA2=",E13.5,3X,"BETA2=",EL
/3.5)

TAUZ=L.C/BETAZ

CCUANT2=C

gLb=a

bC 12 [=1,200

CCUNT2=CCLNT2+1

F=1-1

TOP=(CGANMALF+ALPHAZ 1) ${T2#4F 1 9(TAU2Z#SALPHAR)
BCT=(CGANMA{ALPHAZ) ) (CCAMMA(F+1.00+00)) 9 ({T2+4TAU2)*#(F+ALPHA2))
GLD=CLC+(TCP/3CT}

YZRRAY (1)=CLD

[F(YARRAY{I1.3T.0459955)GCTC 14

CONTINUE

WRITE(E,12)

FCR¥AT(* ¥, 'NOT ENCUGH TIMES THRCUGh LCGP 10 GET CUMULATIVE DISTRI
FBUTICNGGT .0.G9599")

sCTC 200¢C

WRITE CUMLLATIVE OISTRIBUTICA 2

WRI{TE(& 1E)}

FCRMAT(YC !y 'CUMULATIVE DISTRIELTICN?')
ARITE(&,41E}

FCRNATIL! 1, 0F=0 86X, 'CUMLATIVE PRCEABILITY)
0C 18 I=L,.COUNT2

F=I-1

WRITELE1T)F,YARRAY(I1}

FCRMAT(' ',[3.5%,E13.5)

CONTINUE
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SECTICN TC GENERATE FREQUENCIES

REAC NUMBER OF CATA PAIRS PER SET

REAL 19.A
FCRMATI(IG)

REAC N2, THE NUMBER OF SETS DESIRED

REAC 2Q0,A2

FCRMAT(I3)

J1=0

DC 1800 M=1,N2
WRITEtE,210M
FCRMAT[¥C?, 'SET NUMBER',13)

DISTRIZLTICN NUMBER L

WRITE(&,121)

FCRMATLIQY ,'FIRST CISTRIBUTICA NF
N IS THFE MJMBER OF DATA PCINTS DESIRELC
DC 26 J=l.N

J1=J1l+1

GENERATE RANCCM NUMBERS

CALL RANCUI(IX.IY U

Ix=1Y

SINCE CUMULATIVE CANLY GCES UP TO Q0.9995S,
TRE R<Ne [54LE«Ca95999.

IF(ULGT .CL59999)GATC 22

FINGC WKHAT F CORRESPCNCS TG R.N.

BC 23 K=1,C0UNT

UPPER=HARRAY(K)

IFIUSLT.UPPERIGCTO 24

CENTINUE

NF[J1)=K=1

NT(J1}=T

#RITE[&L25INFLJL) yNT(JL)

FCRMATH Y ¢ ,189X,[8,2%x,[81
WRITE(S 28 INFLJL)NTLILY

FCRMATLIB,13)

CCNTINUE

DISTRIBUTICN MUMBER 2

WwRITE{6,12€8)

FCRMAT{'C*,'SECCND DISTRIBUTICA*}
OC 31 Jd=1.N

JisJdl+l

GENERATE RANCCM NUMBERS

CALL RAMBL{IXx,IY,U)

Ix=1Y

SINCE CUMULATIVE CNLY GLES UP TD 0.9955%,
THE RaN. ISelE.C.95699
[F(U.GT.L.999991G0T0 27

FIND WwHAT F CLRRESPCACS TC Rah.

NTY)

MuUST CRECK TQ SEE THAT

MUST CHECK TQ SEE ThAT
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130
3G
1cco

2CC1
2CCGC
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OC 28 K=1,C0ULNT2
UPPER=YARRAY(K)
IFIL.LT.UPPERIGCTCO 25
CCNTINLE

NF2lJdLl)=K=-1

NT2(Jil=T2
mRITELE12QINF2LJL)/NT2IJLD
FCRNAT(Y ',19X,[8,2X,18)
#RITE(S,3CINF2(JL),NT2(JL)
FCRMAT(I8,18)

CCNTINLE

CONTINLE

WRITE(E,2C01)
FCRMAT{"1','END"!

STICP

EAD

SUBRCUTINE RANOUIEIX,IY,YFL)
REAL*8 YFL

[Y=[X%£5539

[FLIY)IS 6,46
[Y=1Y+2147483847+1

YFL=TIY

YFL=YFL#*,4656£613E-5

RETLRA

ENG
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Computer Code Listing for

GAMMA MODIFIED
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FBEIFBHIRFREREB S AR E I REEIX AT U XS XL BRI R SE R EREEETBE R BEEXX LR RE R KR X

GAMMA MODIFIED

ThH1S PROGRAM [5 A NMCODIFICATICN CF TRE PRCGRAM (AMMAS
WwRITTEN BY J.K, SRHULTIS IN JUNE OF 1980. THIS PROGRAM REALCS
SETS OF FAILURE RATE DATA FROM TAPE, ESTIMATES PARAMETERS.
FINDS THE LIKELIMOGD RATIC BETWEEN SETS CF DATA, AND
CALCULATES POAER.

THE STATISTICAL MCGDEL ASSUMED [§ THE CCHPCUND POISSGN=GAMMA
MODEL IN WHICH THE FAILURE RATES FOR EACH COMPONENT MAY VaRyY
ACCCRCING TC A GAMMA PRIOR DISTRIBUT{CAN. ThE PARAMETERS CF
THE GAMMA PRICR ARE ESTIMATED FROM ThE GIVEN ATTRIBUTE QJATA dY
THRE FCLLOWING METHCDS;

{1} MATCHING UNWEIGHTEC CATA MCMEATS TC THE PRIOR
OISTRIBUTION

{2) MATCHING UNWEIGHTED CATA MCMEATS TC ThE MARGINAL
DISTRIBUTION

OISTRIBUTICN

INPLT DATA
CN TAPE;
FAILURE RATE LCATA, NULMBER OF FAILURES., NF, TIME (IN
HCURS) » NT / FCRMAT(I3.18)

CN CARDS;

EE R O AR PN A R K I S BN SRR R R IR R A ST A

CARD 1 NUMBER CF PCINTS NNN NUMBER CF SETS N2 / FORMAT
(13,131

CARD 2 TITLE / FORMATI(10AB)

DARRYL DRAYER, KANSAS STATE UNIVERSITY 4/381

L B R R BRI I R N R S B R B R R R RN B B AR N B R R

*
*
*
*
=
*
SR F AR R E T E AR F A AT R E AR A F I AT X I E DL AR AL XA R PR LK ISR ERR K FRRRAF S

IMPLICIT REAL*8({A~r,0-1}

REAL®S LAM{S00J),LAMLL500C0), LAMU(5000)

REAL#8 TITLE(1O0),IC{S0Q0)+LAMBAR LAMLOw yLAMLP LNPRCB , VAR 4}
REAL®8 ALP{4)B8ET{4) +ALIKEL5,5000)

REAL®9 ARATIOQ{3,5300}

COMMON JOTA/ID NF{500C) +NT{5000) »NN(STOC), NeNJATA, [PRT,NITER,J
EXTERNAL FN

SET PRINTER UNIT=6&; SET REACER LNIT=6; REL. ACC CF PERCENTILES
[5 SET BY EPPS; MAX NUMBER GF ITERATIONS FCR EVALUATING PERCENTILE
SET 8Y VARIABLE NITER

[PRT 4

IRCR 5



[aN e

98

NTER = 20

REAM IN hUMBER CF PCIANTS ANN, & NUMBER CF SETS,
READ LsNNN,NZ

FORMAT(13,13)

REAQ CATA OFF TAPE & SET ARRAYS
L=28NNNANZ

00 4 I=1.,L

REACI9 2 INFLL),NTLI)
FORMAT(I8,18)

NN{T)=1

IDil)=1

CONTINUE

J=1

NECONT=C

NCOUNT=Q

NCGLOJ=J

NOATA=J+NNN=1

CCAT INUE

FCT=0.1
GMIN=C.0
IMAX=0.0
EPS=C.CCCL

CALCULATE TOTAL NuMBER QF CCMPCNENTS N

8

N = )

DO 8 I=J,NDATA

IF [NNUL)GLELQ) NNLULY = 1
N=N+NAN(T )

CALCULATE MEAN ANC VARIANCE CF THE OATA

100

121

SUMT = 2.9

SUMF = C.2

SUMFT = (.0

SUMFTZ = 2.0

SUMTT = 0.0

00 9 I=J,NOATA

TT = NT(I)

SUMT = SLAT#TTENNLT)
SUMT I = SUMTI+NN(II/TT
SUMF = SUMF+NFLTI®NNLL)
AA = NFLTH/TT

SUMFT = SUMFT+AA*AN(T)
SUMFTZ = SUMFT2+AA#AMII)*AA
IF (SUMFT .EQ.C.C)GOTO 100
S0TO 141

ALP(1)=0C.0

3ET(1}=0.0

ALP{2)=0.0

BET(21=0.0

ALP({3}=C.q

dET{3)1=0.0

GOT1a L3

UM EAN = SUMFT/N

LYAR = (SUMFT2-UMEAN®UMEAN®N |/ (N=1)

BEGIN ANALYSIS FCR CCMPCUNC MOSELS

N2 -
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L

C CALCULATE MATCHING MOMENTS ESTIMATGRS
BETAUP = UVAR/JUMEAN
ALPHULP = UMEAN/BETAUP
BETAUM = (UVAR=UMEAN®SUMTI/N]/UMEAN
[F{BETALM.EQ.0.DJ)GCTC 102
ALPHUM = UMEAN/BETAUM
GOTa 1463

102 ALPHUM=(.0

Ck#x  UNWZIGHTED MATCHIMG MCMENTS ESTIMATORS TC TRE PRIOR - METHOD 1
103 AAA=ALPRUP

B38 = 3cTAUP

MWPL1)=AAA

3ETI{1}=£88

C*s% UNWEIGHTED MATCHING MOMENTS TC THE MARGINAL — #cTHCD 2
13 AAA = ALPHUNM
BBB = 3ETAUM
ALP(2}=4AAA
BETiZ2) =888
[FIBET(2).LE.J.001GOTG 12

Cosx  MAXIMUM LIKELIHGDO E£STIMATCRS - METHCL 3

[F (BMINJEG.D.0) BMIN = BETAUP*Q,01
IF (BMAX.EQeU.0] BMAX = LQO0.C*BETAUP
CALL CRTMI (BETA,FFyFN,BMINBMAX,EPS,NITER,[ER}
IF (IEANELJIGLTO LL
CALL MLGAMP (FFF,ALPHA,BETA)
AAA = ALPHA
B82 = 3ETA
ALP{31=A2A
BET(3)=883
SOTC 13

11 CONTINUE
ALP{3)=0.0
dETI31=0.0
s0T0 L3

am,

12 ALP(3)=C.0
3ET{31=0.0
12 NCLUNT=NCOUNT+L

FIND LIKELIHOCD FCR EACH GROUP

(B NE N ol

CD 25 [=1.3
IF(BET{I).LE.Q.001G4TC 19
SETIL)=1.00/BET(I)
FIRST=1.00

00 1le 12=J.NDATA

AT=NT (12)
CGPS=NF(I2)+ALPL]) B
{F(GOPS.GT.55.0001GQTQ 17
[FLALP{I1).LE.3CO}IGETC 19
[FIBET(1) LE.Q.D0)GLTC LS
[F{COCPSLT.0.02)1GOTO 1
XL=NF ([2I+ALP (1}

X2=NF{ {2}
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33

100

X3=NT(12)}

Xa=ALP{[}

X5=BET{ [}

Xe=rF([2)+1.00

XT=NT(I[2)+BET(I)
TOP=DLGAMAIXT)+X2*CLOGI X3 ) +X420L0OGL X5)
30T=CLGAMA{ X4 ) +DLGAMA (X6 )+X1#CLOGIXT)
CIF=T7CP-BCT

IF(DIF4LT.~100.J001GC0TC 22
[F(DIF.GT.170.00C)IGOTD 21
ALIKEUNCCUNT, L)=0EXP(CIF)*FIRST

[F(CABS(ALIKE(NCOUNT [ 1} 4L T4l O0=50) ALIKE(NCGUNT [ )=043
FIRST=ALIKE{NCCUNT, L)

CCNT INUE

cGaoTC 25

AL IKE{NCCUNT,1)=0

AR ITE(& 18 INCOINT . ]

FORMAT('0*, 'LIKELIHCOOD RATIC FOR ALIKE{(*',I3,I3,t) SET EQUAL TU ZER
/C BECAUSE CGAMMA [5 TCO LARGE TO EVALUATEY)

GUTG 25

AL [IKE[NCCUNT, 1 =0

GLTC 25

wRITE(&9s 22 INCOUNT,I

ALIKE(NCOUNT [ )=0

FORMAT(*Q* y'ALIKE{ ", [3,13,%) 5ET EQUAL TC Q BECALSE CF POWER')
GOTO 25

WRITE(&,24)NCCUNT 1

FORMAT (v v, VALIKE(*,I3,[3,') SET EQUAL TC ZERC BECAUSE CF UNDERFLC
/mt)

AL IKE(NCCUNT [ =0

CONTINUE

IFINCCUNTLEQ.2)0TO 26

[F(MCCUNT.EQ.3)GGTO 27

J= J+NKN

GOTC 6

J=NCLDJ

NDATA={2*NNN)+J-1

G077

CONTINUE

N2CONT=N2CUNT+1

DC 32 [=L,3

0O 28 13C=1,3

[F{ALIKE(I30,1).E<.d.0)GUTO 30

CCNTINLE

ARATIC( I ,N2CONT)sALINE(3, 1)/ {ALIKE(L, T)*ALIKE(2,[])
GGTC 32

ARATIC(TI,N2CONTI=0.0

CONTINUE

J=J+ 2ENAN

[F{M2CCNT LEQ.NZ2IGOTO 33

SLTC S

CONTINUE

00 33 I=1,3
NREJET=Q
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SUEROQUTINE MLGAMP (FN,ALPHA,EETA}
CEEBEXFXBAXE AN EENBRRRA S TR AR R R RN BN RARRA R R A SRR LR R AT AR S F R R R AR R R R R

C* %
C* THIS SUBROUTINE EVALUATES ALPHA AND THE FUNCTICN FN w#HBSE Z2ERG *
C* GIVES THE VALUE OF BETA FCR THE MAXIMUM LIKELI®IOD ESTIMATORS. *
C=* 3

CABBARIEFT ISR EABE TR TR AR R S AV S XA R R RN M E RN F AR E TR ARL KRR R R RN
IMPLICIT REAL*B({A-H,C-1)
COMMON /OTA/IDUMMY(LCCCC)+NF{5000) NT(SCGO) 4ANN{50001 yN¢NDATA,IPRT,

/NITER+J2
c
C CALCULATE ALPHA AS A FUNCTION OF SETA
SUML = C.
SUMZ = 0.
FF = 0.
0C 1 J=J2,.NDATA
FF = FFR+NFI{JIJI*NN(J)
A = NNGJIENTLUN /L +BETARNT L J))
SUML = SLM1+A
1 3UMZ = SUMZ2+A=NF{J)
ALPHA = (FF/BETA-SUM2)/5UM]
C
c CALCULATE FUALPHA,BETA}

FiN = 0.

CO & J=J2,NDATA

A = DLOG{L.+BETASNT(J))
SUM = Q.

NNN o= NFLU)

IF [NNNaEGed} GG TO 3
00 2 K=1,NNN

2 SUM = 3SLM+Ll./{ALPHA+K=1.])
3 FN = FN+{A—=SUMI]I=*NN(J)
4 CONTIMUE

RETURN

END

AEAL FUNCTICN FN®8(X)

Ci*‘t*#‘*3*!*#*‘*****#***3******#*#tt‘#*#t#t*##ﬂ!##******#**3*#*83$¥#**#
E ]

Ce .
C* THIS FUNCTICN EVALUATES TRE AUXILARY LIKELIRCGCD FUNCTIUN Fih WhiScE *
C* ?ZERQ GIVES ThE VALUE COF THE BETA PARAMETER. THIS SUBROGUTINE SIMPLY #
C¥ CALLS MLGAMP AHERE THE ACTUAL EVALUATIGN [5 PERFORMED. ¥
C *
CRREE AR SRR IE N SR RERIR R AR S TR RS KRR L KR AR I RI ARG FR LR TL XA LTI FARBRAR RS F

REAL*E ALPHA+X

CALL MLGAMP (FNysALPHA,X)

RETURN

EMD
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SUBRCUTINE DRTMI (XyFyFCT, AL I ,XR] EPS+1END+IER,NOCGPS)
CHEdR M RAEEXFAXBANKRRXSERKXE0REE JATM][ FREFEREFAAREXFERBXDEBBABX B FSE B XS

Cx *
C* THIS SUBRQUTINE SOLVES A NONLINEAR EQUATION OF THE FORM FETI(X1=Q x
C#* 3Y THE HMUELLER'S [TERATICA METHCC. »
C* THIS PRCURAM [S TAKEN FRCM ThE [BM SSP (RTM[) AND MODIFIED TO WORK #
C* IN DOUBLE PRECISICN. *
C* *
Ce INPUT VARIABLES: *
C» X = RETURNED VALUE CF THE ZERC ]
C* F = VALUE OF TEFE FUNCTION FCT AT THE ZEROQ *
C=x FCT = EXTERNAL FUMNMCTICN WHOSE ZERC IS TC BE FGQUND *
C* XLI = LEFT BOUNDARY OF ThE X=AXI[S TO 3E SEARCHED FJR RCCT *
Cx XRT = RIGHT BCUNCARY OF Xx=AX}S TC BE SEARCHED FOR AcOT #
C= EPS = ACCURACY COF DESIRED RESLLT *
L= [END = MAXIMUM NUMBER OF ITERATIONS TQ BE USED x
C* IER = ERROR RETURN COCE; =0 [F CESIREC ACCURACY ALHIEVED *
C= *
MEE 2 EI 2SS E R ES L LSS AR R EE Eo 2 Rt R R R R R ER RERSE SRR E 2 L LR

[MPLICIT REAL*B8(A=H,0-ZL)

C
C
c FREPARE [TERATION
IER = ¢
XL = XLI
XR = XRI
X = XL
TOL = X
F = FCTL(TOL)
IF {(F] Lslésl
1 fFL = F
X = XR
TOL = X
F = FCTITCL)Y
IF [F)] 241642
2 FR = F
IF {OSIGN(L.00,FL)I+DSIGN(L1.DQ,FR}) 25,3425
C
C BASIC ASSUMPTICN FL*FH LESS TrAN J [3 SATISFIEL.
C GENERATE TOLERANCE FOR FUNCTICN VALUES.
31 =240
TOLF = 100.*EPS
c
C START ITERATICN LCCP
4 [ = [+1
C
53 STARY B1SeCTICN LCCP
20 13 K=1,1END
A = & (XL+XR)
TOL = X
F = FCT(TOL)
IF (F)} 5,168,5
5 [F (DSIGN{l«D0+F)+*CSICGN( L4UQsFR)) Ty8&,7
C

C INTERCHANGE XL AND XR IN GROER TG GET THE SAME SIGN I[N F AND FR
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L2
13

L4
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17

i3

13

21

22
23

TOL = XL
XL = XFR

XR = TQL
TOL = FL
FL = FAR

FR = T4L
TAL = F=FL
A = F*TCL
A= A+A

IF (A=FR®(FR=FL)I 8,9,9
IF (1-[END) L7,17,9

XR = X

FR = F

TEST CN SATISFACTCRY ACCURACY [N BISECTICA LCCP
TCL = EPS

A = CAB8SI(XR]

[F lA=1ls) 1ls1ll,10

TCL = TCL*A

[F (DABS(XR=XLJ-TCL) 12,12,13

IF (QABS{FR=-FL)=TOLF) l4:sL1l4y12

CCNTINUE

EMC OF 8ISECTION LOGP

NO CGNVERGENCE AFTER [END ITERATICN STEPS FCLLCAED BY I[END
SUCCESSIVE STEPS OF BISECTICN OR STEACILY INCREASING FUNCTICN
VALUES AT RIGHT BCUNDS. ERROR RETURM.

[ER = 1

IF [CABS{FR)=DABS{FL)) 16,16,15

X = XL

F = FL

RE TURN

CCMFUTATION OF ITERATEC X-VALLE 3Y IMVERSE PARASCLIC INTERPOLATICA
A = FR=F

CX = (A=XL)¥FL®( L. +F*(A=TCL) /(A® (FR=FL}1)/TCL
XM = X

FM = F

K = XL-CX

TOL = X

F = FCTL{TCL)
[F (F] 13+16+13

TEST CN SATISFACTCORY ACCURACY IN ITEKATICMN LCCP
TCL = EPS

A=CaABS(X)

[F [A=1.) 204520416

TOL = TCL=4A

[F {(DABS(CX)=TCL) 21s21,22

[F (CABS(F)=TOLF) 16,1622

PREPARATION CF NEXT BISECTION LGOP
[F (OSIGN{L.D0,F}+0SIGN{LaDOsFL)) 24,23+2%

XR = X
FR = F
6 TG 4
XL = A
FL = F
AR = XM
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FR = FM
GOTa 4
END OF ITERATIGN LOOP

ERACR RETURN IN CASE CF WRCNG INPLT DATA
[ER = 2

RETURN

END
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Computer Ccde Listing for

GAMMA GENERATE
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GAMNA GENERATE

GENERATE

GIVEN TwO SETS OF PARAMETERS (TI[ME€, ALPHA, AND BETA] THIS
SECTICN GENERATES THE CUMULATIVE MARGIMAL OISTRIBUTICN

FGR EACH S5ET. FROM TrE CUMULATIVE CISTRIBUTICN THE PRUGRAM
SIMULATES FAILURE CATA (MLPMBER GF FAILURES PER A GIVEN TIME).
THE NUMBER OF OESI{RED SETS OF FAILLRE JATA MAY 3E SPECIFIED
ALCNG Ww[TH THE NUMBER CF CATA PAJRS PER 3ET.

»
4
3
*
*
»
*
*
4
x
EY
3
GAMMA - E
THE SECCOND SECTICN CF THE FRCOGRAM IS A MCCIFICATICN UF ThE L]
PRCGRAM GAMMAB WR[TTEN BY JeK. SHULTIS IN JUNE CF 1934, THIS *
SECTICN TAKES 3ET CF FAILLRE RATE [CATA FACM GENERATE, *
ESTIMATES PRIOR PARAMETERS, FINCS THE LIRELIACCD RATIC BETWEENS
SETS OF DATA, ANLC CALCULATES PCWER. Trhc STATISTICAL “MLDEL ¥
ASSUMED [S THE COMPCUAMD PCISSCA-GAMMA MCDEL IN WRICH THE *
FAILURE RATES FOR EACH COMFOMENT MAY VARY ACCCORDING TG A -
GAMMA PRICR DISTRIBUTICN. THE PARAMETERS CF THRE GAMMA PRICR #
ARE ESTIMATED BY THREE METFODS: MATCHING UNWEIGHTED DATA *
MCMENTS TO THE PRICRs FATCRING UNWEIGFTEC CATA MOMENTS TO THE #
MARGINAL, AND MAXIMUM LIKELIHCCOD. *
*
]
*
2
»
EY
*
*
¥
3
EY
L]
#
*
L)
x
+
3
®
3
*
3
%
®

INPUT CARDS

CARD L FIRST DISTRIBLTION PARANETERS/ TIME, ALPFA, 3ETA.
FORMAT(EL3 459 TXeE13457X,513,5)

CARD 2 SECONO DISTRIBUTICON PARAMETERS TIME, ALPHA,
EETA.
FORMAT{EL3«5)TX E13.45,T%X4E13.5}

CARD 3 NUMBER LF FAILURE CATA FAIRS PER 5ET.
FCRMAT(I6)

CARD 4 NUMBER OF SETS.
FCRMAT(I6)

CARD 5 NUMBER COF CATA PA[RS PER 3ET & NUMBER CF SETS.
FCRMAT{I3,[3})

DARRYL CRAYER, KANSAS STATE UNIVERSITY «/4l

R IR R R N R N R B NE R B B O B R I RN R R R N N B AR R NN A BRSO NE EERE O R AR

FEFHAERBIRXEEBRE LI BN ARAF R H IR SLFH I DB F S VIR FEEI IR AR R AR ARXGRRE DR
PRCGRAM 15 IN DQUBLE PRECISICA

IMPLICIT REAL#8(A-#,0-1}

CIMENSICK HARRAY(99) s YARRAY{SG) 4NF2(1CACC,NT2{10000])

INTEGER F,CCUNT.FARRAY,CCUNTZ

REAL*8 ALP{(3).BET(3),ALIKE(3,10020)

REAL#®E ARATIO(3,10000)
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COMMON /OTA/NF{10000) yNT{LCOGC) yNN(L10OQOO) yAoNDAT Ay LPRT {NITER,J
EXTERNAL FN

Lat 2
SEEHY

GEMERATE SECTICN

L2 22 £
1XEER

100

101

102

103

104

105

106

LET THE STARTING VALUE FCR RAMNDU ARBITRARILY EQUAL 12345
IX=12345

READ IN AND ESTABLISH CUMULATIVE CISTRIBUTICN FOR ALPHAL & BETAL
READ IN VALUES FOR TIME(=T) AANU THE wAMMA FUNCTICN
PARAMETERS (ALPhA AND BETA).

REAC 10C.T1,ALPHA,BETA

FORMAT(EL345+7TXsEL345,7X,EL3.51)

WRITE(6,101)T1,ALPHA,BETA
FORMAT{'L",*TIME=",EL3.5y 'HRS 4"+ 5Xy "ALPFA=1,E13.5,3X,'BETA=,E13.¢
/)

READ 102,T2,ALPHA2,BETAZ

FORMAT(EL345,7X+E13.5,7XyE13.5)

REAC NUMEER OF LCATA PAIRS PER SET

REAC 1Q3,N
FORMAT(ILE)

REAC N2, ThE NUMBER CF SETS CESIREC

REAC 104,N2
FORMAT{I3]
READ IN MUMBER QF PCINTS NNN, & NUMBER CF SETS, N2.
REALC 10S5sNNN#N2
FCRMAT(I3,13)
TAU=1.0/BETA
COLNT=0
GLC=0
T=T1
0O l0é I=1,200
COUNT=CLULNT+L
F=1-1
TCP={CGAMMALF+ALPHAJ ) *{THHF) % (TAUR*AL FRA)
BUT=ICGAMMA(ALPHA) ) *(CGAMMA(F+L.OC+00Q 1} ( (T+TAL)#*{F+aLPHA))
CLC=CLO+(TGP/ECT)
RARRAY (1)=CLD
[F{HARRAY (1) «GT40.599991GLTC 109
CONT [MNUE
ARITE(&,107)
FORMAT(® ', 'NOT ENCUGH TIMES THkCUGH LCCP TC GET CUML3T.0.999951)
GOTG 2C€QQ

wRITE CUMULATIVE DISTRIBLTICN 1

CONTIMLE

wR ITELE,1L0)

FORMAT('Q"','CUMULATIVE ODISTRIEUTICA')
wRITE{&y1Ll1}

FORMATIY ' 4'F=",0A,'CLMULATIVE PROBAEILITY")
CO 113 [=1,C3LNT
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112
113

114

115

116

117
118

119

120
121

122

108

FsI-1
WRITE(6,112)F ,RARRAY (1)

FORMAT(" ',[3,5%X,E13.5)

CONT INUE

REAC IN AND ESTABLISH CUMULATIVE GISTRIBLTICN FOR ALPRAZ & BETAZ
READ IN VALUES FUR TIME(=T)] AND THE GAMMA FUNCTICN
PARAMETERS (ALPHA AND dETA
WRITE{&,+1141T2,ALPFA2,B3ETA2

FORMAT (=%, *TIME2=" ,ELZ2.5,"HRS. " v 53Xy "ALPHAZ=! ,E13.5)3X,"3ETA2=",E1l
/3.51)

TAUZ=1.0/BETAZ

COUNT2=0Q

CLC=Q

CO0 115 [=1,2C0

COUNT2=CCUNT2+1

F=1-1

TOP=CLGAMA(F+ALPHA2 )+Fa3CLCGIT2)+ALPHAZ*LLLEG(TALZ)
30T=0LGAMAIALPHAZ) +OLGAMA(F+1.J0+#00Q) +{(F+ALPFAZ)*CLOGITZ+TAU2)
CLL=CLC+CEXP{TCP-BQT]

YARRAY ([)=CLD

IF{YARRAY([).3T.0.999SS)IGCTC LL7

CONTINUE

WRITE(E,)L16)

FORMAT (' *,'NOT ENCUGE TIME TFRUUGH LCGP TUO GET CUMLGT.CaS55599")
GUTC 2CCC

aR ITE CUMULATIVE CISTRIBLTICN 2

aRITE(G,114)

FGRMAT(!1C? ,"CUMULATIVE OISTRIEUTICN"}

ARITE{£,115]

FORMAT (v ¢ ' F=1 06X, "CUNMULATIVE PRCBAEILITY"}

CO 121 I=1,CGUNT2

F=1-1

WRITE(&,120)F, YARRAY(])

FORMAT (' *,[3,:5X,E13.5)

CONTINUE

SECTICN TC GEMNERATE FREGUENCIES

J1=0

DO 131 M=1,N2

DISTRIBUTICN NUMBER 1

N IS TEHE NUMBER UF DATA PCINTS DESIREL

DO L25 J=L.NNN

Ji=Jl+l

GENERATE RANLCM NUMBERS

CALL RANCU(IXeiY,U)

[x=IY

SIMNCE CUMULATIYE ONLY GGES UP TG
THE ReNe I5.LE.D.59995.
[F{UaGT&Ca$95391G6CTC 122

e 9I99G,

MLST CRECK TC SEE Trarv
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FIND wHAT F CORRESPCNDS TO Rabhe
80 123 K=1,COUNT
UPPER=HARRAY (K)
IF{U.LTLLUPPER)GOTC 124

123 CONTINUE

124 NF{Jl)=K=-1
NT(J41)=T1
NNLJ1)=1

125 CDNTINLE

DISTRIBUTICN NUMBER 2

00 130 J=1NNN
Jl=Jdl+l
GENERATE RANCCGM NUMBERS
126 CALL RANCUILIXsIY, U}
IX=1Y
SINCE CUMULATIVE CAMLY GCES UP TG Cl.99999, MLST CRECK TU SEE ThHAT
THE ReNs IS.LE.0.5999%
IFIUGT.0.9999%)GCTC 126
FIND WhAT F CORRESPCNOS TG Rahe
Ca 12T K=1,COUNTZ
LPPER=YARRAY(K)
IF{ULLT.UPPER)IGOTG 128
127 CONTINGE
128 NFZ({Jli=K-1
NT2{Jl}=T2
AE{JLl)=K~-1
KT{Jll=T2
NNGJL)=1
129 CONTINUE
130 CONTINLE
131 CONTINUE
(e T L]
*¥RX R
GAMMA SECTICN
IRERS
SREER

SET PRINTER UMIT=6; SET REACER LN[T=3; REL. ACC CF PERCENTILES

I5 SET BY EPPS; MAX NUMBER CF ITERATICONS FUR CVALLATING PERCENTILE

SET BY VARIABLE NITER
[PRT = &
IRCR = §
NITER=20Q
L=2%NMA#N2
J=1
N2CONT=Q

200 NCCUNT={
NOLCJ=J

201 NOATA=J+nNNN-1

202 CONTINUE

PCT=Qd.1
8M {N=C.C
BMAX=C .0
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EPS=0.41
€ CALCULATE TCTAL NUMBER CF CCMFCNENTS A
N =0
CO 203 [=J,NCATA
[F (MNUI)JLE.G) NN(I) = 1
203 N=N+NN(T)

C

C CALCULATE MEAN AND VARIANCE GF THE 0aTA
SUMT = J.0
SUMF = C.0
SUMFT = (.0

SUMFT2 = Q.0
SUMTI = Q.0
CO 204 I=JNCATA
TT = NTLI)
SUMT = SUMT+TTaNNIT)
SUMTI = SUMTI+NNITI/ZTT
SUMF = SUMF+NF{TI®NN(]]}
AA = NFLIW/TT
SUMFT = SUMFT+AA®NNIT)
204 SUMFT2 = SUMFTZ+AAINNIT)*AA
IF(SUMFT.EQ.J.DC)GLTC 205
GOTC 206
205 ALP{Ll)=d.0
BET(1)=C.0
ALP(21=0.0
BET(21=23.3
ALF(3)=C.0
BET(3)=C.Q
GOTC 211
206 UMEAN = SUMFT/N
UVAR = (SUMFT2-UMEAN®UMEANSN} /(N=1}

c
C
C
Crxx BEGIN ANALYSIS FCR CCMPCUNC MCODEL;
c
C

CALCULATE VATCHING MOMENTS ESTI[MATURS

BETALP = UVAR/UMEAN
ALPRLP = UMEAN/BETAUP
BETAUM = (UVAR=UMEAN®SUMT [/N])/JUMEAN

IF{BETALM.EQ.Q.OU)GLTL 207
ALPHUM = UMEAN/BETAUM
GaTC 2¢8

227 ALPHUM=(C.0

Ce#x  UNWEIGKTED MATCHING MCMENTS ESTIMATORS TC THE PRILR = METHCZ I
208 AAA=ALFFUP
EBB = HETAUP
ALP(1)=AAA
BET(1)=EEB

C**s® UMWEIGRTED HMATCHING MCMENTS TC THE MARGINAL = NMETRCD 2
2C9 AAA = ALPHUM
EBE = BETAUM
ALPL2)=4AA
GET(2)=888

C#** MAXIMUM LIKELIHCCD ESTIMATCRS = VETHCLD 4
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IF (BMIN.EQ.Q.01 BMIN = BETAUF#0.0C1
[F (BMAX.EQ.Q.Q) BMAX 1CC.C*BETAL?
CALL ORTMI {BETAFF+FN)BMIN,BFaX EPSNITERyIER)
IF (IER.NE.Q)GOTC 210
CALL MLGAMP (FFF,ALPRA,BETA)
AAA = ALPHA
888 = BETA
ALP{3)=44A
BET{3)=888
GaT0 Zl1
210 CONTINUE
ALP(3)=0.0
BET(3)=C.0

]

GOTC 211

211 NCCUNT=NCOUNT+1
FINO LIKELIHQGD FCR EACH GRCUP
CO 218 I=1,3
IF{BET{1).LE.J.D01GLTC 213
BEY{[)=1.00/BET(1)
FIRST=C.CQ
0O 212 12=J,NDATA
AT=NTI(I2)
COPS=NF(I2)+ALP(I}
IF{ALPLI).LE.0.00)GOTC 213
IF(BETII}.LE.C.DQIGOIC 213
[F{OCPS.LT.0.00)G07T0 <13
XL=NF{l2i+ALP( 1)
X2=NF{12}
X3=NT(12)
Xa=ALP (1)
XS=BET([)
X6=NF (12)+1.00
XT=NT{IZ)+BET([]
TCP=CLGAMALXL) #+Xx2*DLCGIX3 ) +X420L0G(XE}
BOT=C0LGAMA{X4) +OLGAMA (X&) #XL#CLAGIXT)
CIF=TCP=BCT
ALIKE(NCCUNT » [)=0IF+FIRST

FIRST=ALIKE(NCOUNT, ()
212 CONTIMUE
GOTC 214
213 ALIKE{NCCUNT.[)=0
18 CONTINWE
[F(NCOUNTLEQ.2)GOTL 215
IF{NCCUNT.EQ.3)GLTC 220
J=J+NNN
GO07TC <01
219 J=NCLOJ
NDATA=(Z#NNN)+J-1
GOTD 202
220 CONTINUE
N2CONT=M2CONT +1
00 222 I=l.3
CO 221 [30=1,3
[FIALIKE{I30,1)4EQ.0.0)G0TC 222
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221 CONTINLUE
ARATICUL ,N2CONT)I=ALIKEI3+[)-ALIKE(L I} =aLIKE(2,1]
GOTC 223

222 CONTINLE
ARATIC(I,N2CONT)=0.0

223 CONTINUE
J=J+2ENNN
IFIN2CCNTLEQ.N2)GOTO 224
GOTo acc

224 CONTINUE

00 229 I=1,3
NREJET=Q
N3CONT =0
CO 225 J=l.N2
IF{ARATIC(I,4)EQ.Q.0)CG0OTO 228
N3CCNT=N3CONT+1
==2JOCO®ARATIO( 4 d)
THIS IS wHERE THE SIGMIFICANCE LEVEL CCMES IN
CH1=%.5510C
IF(CFI.GT.TIGOTC 225
NREJET=NREJET+1
225 CONTINUE
IFINREJET.EQ.QIGOTC 224
IF(N3CONT.EQ.DIGOTC 226
X10=NREJET
X11=N3CCAT
POWER=210/X11
6070 227
226 POWER=0.0
227 CONTINLE
WRITE(&+229)PONER,NICCKTy IsNREJET
228 FORMAT{'QY, 'POWER=Y ,C13.5,5%, 'NUKBER OF 275, LUSED=',16,34,'C3TINS
/10N METHCD NG.',L13,413)
229 CONTINUE
BETA2=8ETA2+0.00001
IF{BETA2.LE.Q0.Q0005)GCTC 108
2C00 STCP
END

REAL FLNCTICN FA®3(X)
Ctt"*“*‘**1*‘*#‘***‘#***#*4!t‘**ﬁ***:#i#*‘*t#t#t#t*&ltt**###*#*t#*###:
ce s
Cs THIS FUNCTICON EVALUATES ThE AUXILARY LIKELIACCD FUNCTICN FN wHGSE  #
C® ZERC GIVES THE VALUE GF THE BETA PARAMETER. ThIS SUBRCUTINE SIMPLY #
C+ CALLS MLGAMP WHERE THE ACTUAL EVALUATICA IS FERFCRMED. '
(of ] E ]
C“#t#****’*I**.it**t‘***#t#**#&#*iﬂ*#t**#*t!!ﬂtt‘t‘**#*t##**#*ﬂ*#t##t##

REAL®8 ALPHA,X

CALL MLGAMP (FNyALPHA,X]
RETURN

ENC
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SUBRCLTINE MLGAMP (FAh,ALFHA,BETA)
CERMPEAXSRBN AN PERR LA IR S AR NAN S EIE L IRR X FE R PRI R USRI RS KR EXFEEIER LT 5 h

C* »
C* THIS SUBROUTINE EVALUATES ALPHA AND THE FUNCTICN FN WHOSE ZERC ¥
C* GIVES ThE VALUE CF B8ETA FCR TrE MAX[MUA LIKELIFCCD ESTIMATORS. ®
C» *

R e R P Py s e
IMPLICIT REAL*8(A-h,C-1])
COMMGN /CTA/NFLLQ00Q),NTULCOGC) 4 NNILOGCQQ) A NCATA,LPRT,NITERJ2

C CALCULATE ALPHA AS A FUNCTICN CF cET2

SUM1 = Q.
SUMzZ = Q.
FF = Q.
CO 1 J=J2.NCATA
FF = FF+NFLJI®=NN(J)
A = NN(JI*NT(J)/(Lla+BETASNTLJ))
SUML = SLMLleA

1 SUM2 = SUMZ+AENF(J)
ALFHA = (FF/BETA-SUM2)/SUML

C CALCULATE F{ALPHA,BETA)

FN = 0.
CC 4 J=J2,NDATA
A = DLCGI1.+BETASNT(J))
SUM = (.
ANN = NF(J)
[F (NNN.EQ.Q) GC TC 3
CO 2 XK=l MMM

2 SUM = SUM+l./[ALPHA+K=-1.)

3 FN = FN+(A=3UM)*NN(J)

4 CONTINUE
RETURN
ENC
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SUBRCUTINE CRTMI (XeF FCT4XLI+XRI,EPSHyIENC+IERNCCCPS)

CHIXERIRISEISAIRABERIFEREXTNIRET DRTM] PR AR RS AR R RN F R AR X FE L WA F RIS B S

C*
C#
C*
C=
C*
Cx
C*
L=*
C*
C*
C*
C#*
C»
C»
C*
C=

EEIEEREERTRRT RN IS 2SR ER 2L 22224 2R RS2 R R R RS LR R 2 R R Oy

c
C
c

[aNakel

[N el OO0

THIS SUBROUTINE SOLVES A NOAMLINEAR EQUATICN CF THE FCRM FCT(X)=0
BY THE MUELLER'S ITERATICN METRCLC.
THIS FROGRAM [S TAKEM FRCM THE [EM SSP (RTMI) ANC MCOIFIED TU wiRK
IN COUBLE PRECISICN.

INPUT VARIABLES:
X = RETURNED VALUE CF THE LERC

F = VALUE CF TFE FUMCTICN FCT 4T THE ZERG

FCT = EXTERNAL FUNCTICN wHGSE LZERC (S TC EE FCUAMC

XLI = LEFT BCUNLCARY CF Tke X-AX1S TUL dE SEARCFED FCr RILT
XRI = RIGHT BOUNCARY CF x=-AXx]S TC Bt SEARCHEC FCR RCCT
EPS = ACCURACY GF CESIRED RESULT

[ENC = MAXIMUM NUMBER OF ITERATICNS TC BE USEC

IER = ERROR RETURN CODE; =C [F DESIRED ACCULRALY ACHlEvED

[MPLICIT REAL*3(A=H,0-1)

PREPARE ITERATICN
IER = C

XL = XxLI

XR = XAI

X = XL

0L = X

F = FCT{TOL)

[F (F) Ls16,1

FL = F
X = XR
TOL = X

F = FCT{(TCL)

IF (F) 24182

FR = F

{F (CSIGN{Ll,DO,FLI+OSIGNLLOCFRIY 254242

n

PASIC ASSUMPTICN FL*FR LESS THAN 2 IS5 SATISFicCe.
GENERATE TOLERANCE FCR FUMNCTICM vA4LUES.

I =4

TOLF = 100.*EPS

START ITERATICGN LAOCP
[ = [+l

START BISECTICN LCCP

00 12 K=1,IEND

X = JS5F(XL+XR)

TICL = X

F = FCT(TQL)

IF (F) S,1645

[F (CSIGN({L1.D0yF)*0OSIGNIL.DCsFRI] 7167

»
3
¥
2
¥
x
%
L3
%
%
¥
L]
Fl
*
%
*
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190
1L
12
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14
15
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17
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19
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22
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24
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INTERCFANGE XL ANGC XR IN CRDEF TG GET THE SAME SIGH IN F AND FR

TaL = xL
AL = XR

AR = TCL
oL = FL
FL = FR

FR = TQL
T0L = F=FL
A = F*TCL
A = A+A

IF (A-FR*(FR~FL)] 8:9,9
IF (I-IEND) 1741749

XR = X

FR = F

TEST CN SATISFACTCRY ACCLRACY IM 2ISECTICN LCCP
1oL = EPS

A = LABS(XR)

IF (A=-1.) 1141110

TOL = TCOL*A

IF (DABS(XR=XLJ=TCL) 12,12,13

IF (CABS(FR=FLJ)=TCOLF] 14,144,112

CONTINLE

ENC CF BISECTICN LOGP

NO CCNVERGENCE AFTER IENUO ITERATICM STEFS FCLLOWED BY [EMD
SUCCESSIVE STEPS OF BISECTICN CR STEALILY INCREASING FUNLTIUN
VALUES AT RIGHT BCUMNMCS. ERFCR RETURN.

IER = 1

IF (DABSIFR)-CABS{FL)] Lléy1&4+15

X = XL

F = FL

RETURN

CCMPUTATICN OF ITERATEL X-VALLE 3Y [NVERSE PARABULIC [NTERPCLATILH

A = FR-F

CX = (X=XL)SFL#*(Ll.+F*(A=TCL)/{AR(FR=FL)))/TCL
M = X

FM = F

X = XL~CX

oL = X

F = FCTLTCL)

IF (F) l8,14,18

TEST CN SATISFACTGCRY ACCURACY [N ITERATICN LCCP
TOL = EPS

4 = CABS(X)

IF {A=-l.) 20,20.l9

TOL = TCL*aA

IF {CABS(CX)-TCL) 214+21,22

IF (DABS(F)-TOLF} l&sl€&s22

PREPARATION UF NEXT BISECTICN LCGOP

IF {CSIGN{Ll.DOsFI+OSIGNILL.CC,FL) T 24422424
AR = X

FR = F

GO TC 4

w =X

FL = F
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XR = XM
FR = FN
GO TO 4
END CF ITERATICN LOGP

ERRGR RETURN IN CASE CF wRONC
IER = 2

RETURN

ENC

[INPUT CATA
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Computer Code Listing for

GAMMAP GENERATE
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(L AR REREE L 22 SRR ER AR RERE RS RS REER RS EEEEEEER RS L EERE 2SR R RS L R B D)

GAMMAP GENERATE

GENERATE

GIVEN TwO SETS CF PARAMETERS (TIME, ALPHA, AND BETA} THIS
SECTION GENERATES THE CUMULLATIVE MARGINAL DISTRIBUTICN

FCR EACH SET. FROM THE CUNULATIVE ODISTRIBLTICN THE PROGRAHM
SINMULATES FAILURE CATA (MUMBER CF FAILURES PER A GIVEN TIME).
THE NUMBER OF OESIRED SETS OF FAILURE ZATA MAY BE SPECIFIED
ALCNG wlTH THE MUMBER CF CATA PAIRS PER SET.

GAMNMA

THE SECCND SECTICN CF THE FROGRAM IS A MCCIFICATICN CF ThE
PRCGRAM GAMMAS WRITTEN 8Y JeK. SHULLTIS IN JUNE CF 19840. THI3
SECTICN TAKES SET LCF FAILLFRE RATE CATA FRCM GENERATE,
ESTIMATES PRIOR PARAMETERS, FIMNCS TRE LIKELIRCCY RATIU BETWEEA
SETS CF DATA, ANLC CALCULATES PCWER. THE STATISTICAL MCCEL
ASSUMED [S THE COMPCUND PCISSCA-GAMMA MCREL I[N whICH TRE
FAILURE RATES FCR EACh CCMFONENT MAY VARY ACCCROING TO A
GAMMA PRIOR OISTRIBLTICN. THE PARANETERS CF THE sAMMA PRIGR
ARE ESTIMATED BY MATChING UNWEIGHTED CATA MCMENTS TC THE
PRICR.

INPUT CARDS

CARD 1 FIRST CISTRIBUTION PARAMETEKS/ TIME, ALPHA, BETAa,.
FORMATIELIS5+TX)EL3u5+7TXyEL3LS)

CARD 2 SECCND OISTRIEUTICN PARAMETERS TIME:» ALPHA,
BETA.
FGRMAT(EL3.5,7X»E13.54TX+EL3.5)

CARD 3 NUMBER CF FAILURE CATA PAIRS PER 3ET.
FCRMAT( &)

CARD 4 NUMBER CF SETS.
FCRMAT(Ib)

CARC 5 NUMBER CF OATA PAIRS PER SET & NuM@ER OF 3ET3.
FORMATI(I3,13)

DARRYL CRAYER, KANSAS STATE UNIVERSITY 4/41

[ B HE BRI RN RE R R B R CNE OEE N R R BE R R B R B N BN R R R N CEE N RN R R N N
L R S B R R T S R T R R R PR SRR U U NN OO R ' S R PR R ey

T T R s R s L L T v g e
L R L e T e L s ]
PRCGRAM IS IN DOUBLE PRECISICA

IMPLICIT REAL®*B(A=-H,0-2)

DIMENSICN HARRAY(99) s YARRAY (S9) 4NF2(LGCTCC ) NT2(L300J) +NFLL3TCI)
/NT(LQCAC)+NNT10COQ)

INTEGER F.COUNT,FARRAY,CLUNTZ

REAL#*3 ALP{Ll).BET(L),ALIKE(Ll,l000C)
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REAL*8 ARATIC(1,10000)

c
C
c
C SET PRINTER UNIT=6i SET REAOER LAIT=5; REL. ACC CF PERCENTILES
€C 15 SET BY EPPS; MAX MNUMBER CF ITERATICNS FCR EVALLATIMG PERCENTILE
C SET BY VARIABLE NITER
IPRT = ¢
IRCR = 5§
NITER = 20
Cruenpiny
Crssasrn
C CENERATE SECTICN
CF*rthasa
CHrzxassaad
c LET THE STARTING VALUE FCR RANDJ ARBITRARILY EQUAL 12345
[X=12345
c
c REAOD IN AND ESTABLISH CUMMULATIVE CISTRIBUTICN FCR ALPHAL & BETAIL
C READ [N VALUES FOR TIME({=T) AND THE GAMMA FUACTICAN
c PARAMETERS [ALPHA ANC BETA).
C

REAC 10C,T1,ALPHA,B3ETA
100 FORMATI(EL3.5.7X4EL3.5,7X,EL3.5)
WRITE(&,LGLITL,ALPHA,BETA
L0l FORMAT( 'Lt ' TIME=" 4 EL345,"FRS 'y SXy"ALPFA=T JELZ.5, 3%, "8ETA=",E13.5
/1
REAL 1C2,T2,ALPHAZ,BETAZ
102 FORMATIEL3.5+7TXeEL3454TXyEL3.5)

REAC NUMEER CF LATA PAIRS FER SET

OO0

REAC 103 ,AN
103 FORMATI(I&)

READ N2» THE NUMBER CF SETS CESIREL

[aNaNal

REAC 1GC4,n2

104 FORMATI(II)

C READ IN NUMBER CF POINTS NNN, & NUMBER CF SETS, A2,

REALC 105 +MNN.N2

105 FORMAT(I3,13)
TAU=1.Q0/BETA
COUNT=C
CLC=0
=11
0O 106 [=1,244G
CCUNT=CLUNT+L
F=1I-1
TOP=(CGAMMA{F+ALPHA) )% {TasF)» (TAUSHALPHA)
BOT=(LGAMMA{ALPHA) ) * (CGAMMA(F+L,QC+00 ) ¥ (T+TAU)2¥(F+ALPHA) )
CLO=GLO+{TCP/B0T)
FARRAY{])=CLLC
[F{HARRAYL]) «GT.0.99999)GLT0 109

106 CONTINUE
WRITE{&6,+107)

107 FORMATI(' *, 'NOT ENGUGH TIMES THRCUGH LCCP TC GET CUM,.GT.Q.9G59937)
GOTC 2000



OO0

OO0

oo OoO0

aNaNalal

108
109
110

111

112
113

114

115
llé

117
118

113

120
121

120

WRITE CUMMULATIVE OISTRIBUTICH L

CONTINUE

WRITE(é,110)

FORMAT{'Q!, 'CUMULATIVE OISTRIBUTICN')
WRITE(&,1111

FORMAT (" *,%F=3,6X, "CLUMULATIVE PRCIABILLITYY)
0O 113 I=1,CQUNT

F=1-1

nRITE{&,y112)F,HARRAY(])

FORMAT(' " ,13,5X+E13.5)

CONT INUE

ESTABLISH CUMULATIVE CISTRIBUTICN FCR ALPRAZ & BETAZ

WwRITE(68,11l4)T2,ALPHAZ ,BETAZ
FORMAT('=4, ' TIME2=*,E13.5, HRS. ", 5%, "ALPHAZ=? ;E13.5,34,'3ETA2=

/3451

TAUZ=1.L0/BETA2

COUNTZ=Q

CLO=0

CO 115 I=1,2Q0

COUNTZ2=CLUNTZ2+1

F=1-1

TOP=OLGAMA(F+ALPHAZ)Y +F*0LCGIT2I+ALPRAZHLLTGITALZ)
BOT=CLGAMA{ALPHAZ!I +OLGAMA (F+1.00+QQ] v (F+ALPRAZ)FCLCGIT2+TAUZ)
CLC=CLC+CEXP(TLP-BOQT)

YARRAY (L)=CLD

IF(YARRAY (1) .GT.0.95959)GCTC 117

CONTINUE

WRITEl&,1163

FORMAT (' *, *NOT ENOUGH TIME TRROUGH LCCP TC GET CUM.GT.C0.99599' )
GOTO 2¢CC

aRITE CUMMULATIVE CISTRIBUTICN 2

ARITE(&,1148)

FORMAT{*Q" , " CUMMULATIVE CISTRIBUTICGN®)
WwRITE{&,115)

FORMAT [* '3 'F=?,6X, "CUMULATIVE PROBAEILITY'")
D0 121 [=1,CCUNT2

F=1=-1

WRITE(E4120Q)F ) YARRAY (1)

FGRMAT(* *,[3,5X4E13.5)

CONTINUE

SECTICN TO GENERATE FREQUENCIES

J1=0
CO L0QC k=1,N2

DISTRIBUTICN NUMBER 1
N I5 THE NUMBER OF DATA FCINTS OESIREL

CO 125 J=1,NNN
41l=41+1

-

-
(81
—
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C GENERATE RANCCM NUMBERS
122 CALL RANCL(IXsIY,U)
Ix=1Y
C SINCE CUMULATIVE CNLY GCES UF TC 3.99999s MUST CRECK TG SEE THAT
c THE ReMbe IS5.LE.Q.59999,
[FIU.GT.L.99999)1GCT0 122
c FIND wEAT F CORRESPCNGS TC R.AN.

DO 123 K=1,COUNT
UPPER=HARRAY (K)
IF(U.LT.UPPERIGOTO 124
123 CONTINUE
124 NF{Jl)=K=1

NT(J1)=T1
NNIJL)=1
125 CCNTINUE
c
c CISTRIBUTICN NUMBER 2
c
CO 130 J=L,NNN
Jl=Jlel
c GEMERATE RANDCM NLMBERS
L26 CALL RANCULIX, 1Y, U)
[X=1Y
c SINCE CUMULATIVE ONLY GGES ULF TQ C.9955G, MLST CrECK TC SEE THAT
c THE RaNe [15.LE.0.99599%

IF{U.GT.C.559994GCTA 126
c FINC WFAT F CCRRESPGNCS TO RN
DO 127 K=1,COUNT2
UPPER=YARRAY (K)
IF{U.LT.UPPERIGCTC 128
127 COANTINUE
128 NF2{Jl)=Kk=1
NT2(Jd1)=T2
NF(J1)=K=1
NTHd1l)=T2
NN (JLlial
129 CCATINLE
130 CCNTINLE
1COU CGMTINUE
CExsZXRX S
C¥3zsrdxs
C CAMMAP SECTICN
Crasbkdss
Crsxszsrxn
L=2¥NNASN2
Jal
N2CCNT=0
200 NCCUNT=Q
NCLDJ=J
201 NDATA=J ¢ANN=1
202 CONTINUE

c

[
PCT=0.1
gM IN=0.C
EMAX=0.0
gP§=0.0C01

C CALCULATE TCTAL NUMBER CF COMPONENTS N
N =20
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00 202 1=J,NBATA
[F INN{1].LE.O) NN(I) = |
203 N=N+NNI(T)

C

C CALCULATE MEAN ANC VARIANCE CF TiE DATA
SUNT = C.0
SUMF = 0.0
SUMFT = Q0.0
SUMFT2 = 0.0
SUMTI = C.0
DO 204 [=J,NCATA
TT = NTI(I)
SUMT = SUMT+TT*NN(I)
SUMTI = SUMTI+NN(I)/TT
SUMF = SUMF+NF{[)*NN(1)
AA = NFII)/TT
SUMFT = SUMFT+AA®NN{L)

2304 SUMFT2 = SUMFT2+AAENN{I)*AA
[F{SUMFT.EQ.J0.0Q)G0TO 205
GDTC 206

235 ALP(1l)=C.Q
BET(1)=C.Q
Gato 2Ce

206 UMEAN = SUMFT/N
LVAR = (SUMFT2-UMEAN®UMEANIN)/IN—-1]}

c
C
c
Cu#xk BEGIN ANALYSIS FCR CCMPCUMNC MCCEL;
C
C CALCULATE MATCHING MOMENTS ESTIMATORS
HETAUP = UVAR/UMEAN
ALPFUP = UMEAN/BETAUP

C*3%  UNWEIGRTED MATCHING MEMENTS ESTIMATORS 1L TRE PRICR = METHCC 1
207 AAAsALPHUP
BBA = BETAUP
ALP(1)=AAA
BET(Ll)=828

Cx¥x UNWEIGHTED MATCHING MCMENTS TC THE MARGINAL - METHCD 2
2C8 MCCULMNT=NCOUNT+]

C FINO LIKELIiHOOD FOR EACH GROUF
I=1
IF(BET{I).LE.Q.O0IGCTC 210
EET(I)=1.CA/8ETIL)
FIRST=C.0C
CO 209 [2=J,NCATA
AT=NT(I2)
COPS=NF{12}+aALP(])
IFLALPUI)«LEL.Q.CO)GATGC 210
IFABET(1)I.LE.Q.D0)GCTC 210
IF{00PS.LT.Q.D0)GCTC 210
XL=NF{IZ2)+ALP(I}
X2=NF([2)
X3=NT(12)
X4=aLP (1)
XS=8ET(I)
Xa=NF{IZ2i+1l.L0
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2138

219
220

221

222

123

XT=NT(I2)+BETI])
TOP=CLGAMA( X1} +X2*0LCG! ¥2)+X4*0LCG(X5)
BOT=CLGAMA (X4)+CLGAMA( XS )+X L #CLOGIXT)
CIF=TCP=-BCT

ALIKE{NCCUNT » I )=CIF+FIRST

FIRST=ALIKE(NCOUNT, L)
CONTINUE

GOTO 211

AL IKE(NCCUNT 1) =0
CONTINUE

IFINCCUNT .EQL21GOTG 212
[FIMCCUNT.EQe3)GCTC 213
J= J+NKN

GOTC 201

J=hOLCJ

NDATA= (Z¥NNNJ +d=1

GOTO 2c¢2

CONTINUE

N2CONT3N2CCONT+1

CO 214 [3Q0=1,3
[FIALIKE{I30,1).EQ.0.Q01)GLCTC 215
COMTINUE

ARATIGUI yN2CCNT)I=ALIKE(3,I)-ALIKE( Ly [)=ALIKE(2Zy])
GQTC 214

CONT INUE
ARATIGC (I N2CCNT)=d.0
CONTINUE

wEJ+2ENNN
IF(N2CCATLEQLN2IGLTC 217
GOTC 200

CONTINLE

NREJET=C

A3CONT=Q

CO Z1& J4=1l.N2
IF(ARATIC(LsJ)EQ.0.01GCTO 21E
N3CCNT=A3CCNT+1
T==2.0CC*ARATIC(I,J!

THIS IS WHERE THE SIGNIFICANCE LEVEL CCMES IN
CHI=S5.9510¢

IF(CFI.CT.TIGUTO 218
NREJET=AREJET+1

CONT INUE

IFINREJET.EQ.Q)GOTC 215
IFINICONTLEQC.QIGCTO 215
X1O=NREJET

XL 1=NICCNT

POWER=ALld/X11

GOTQ 220

POWER=3.C

COMTINUE
MRITE{&,22L) PORER ¢A3CCNT, I

FORMAT('Q" ,"POWER=",012.5,5X, 'MUMBER CF P7S. L3EI=",[ny34,"55T17AT

/TON METHCD NC.',I3)
CONTINUE
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BETA2=BETAZ+C.00001

IF(BETA2.LE.0.00033)GCTO 1C3
2C0Q sTCP

ENC
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ABSTRACT

The objective of this work was to use the likelihood ratio test to
answer the question: how close together (or in shape) can failure rate
distributions be to one another before they cannot be distinguished from
one another.

To answer this question a Bayesian (or compound model) analysis ap-
proach was used, i.e., a marginal probability distribution of number of
failures given test time was formed integrating the product of a gamma
failure rate distribution and a Poisson likelihoed distribution over all
figure rate space (0 to ®). Failure data sets of sample size ten were
generated by the inverse transformation method, i.e., a random number
from a uniform distribution was used as the marginal distribution cumu-
late with known parameters from which number of failures was extracted.
The various data sets were used to form likelihood ratic tests from which
power curves, i.e., percentage of time that data sets from different fail-
ure rate distributions were correctly identified as coming from different
distributions versus a measure (one of the parameters of the gamma distri-
bution) of the difference in the distributions, were formed. The power
curves were characterized by the full width at one half, since the power
curve should vary from unity (L00% correct detection) to zero (100% incor-
rect detection), to form conclusions about the simulated data, from which
an answer to the objective question can be formulated.

For the matching moments to the prior distribution method (MMPM),
approximately 96% of the 250 data sets were useful, i.e., only about 4%
of the data sets had no fialure, hence, failed to yield prior distribution
estimators, the only time for which the MMPM compound model analysis fails.

For the marginal maximum likelihood method (MMIM), only about 16% of the



data set yielded useful data, i.e., for about 84% of the data sets MMIM
failed to yield estimators because of iteration problems. Of the 250
data sets (sample size 10) only about 25% yielded acceptable (greater
than zero) estimators by the marginal matching moments method (MMMM).

The power curves were all shaped like a negative pulse with the min-
imum power value generally cccurring at BETA2 equal to 0.00005 and rang-
ing in value from 0.007 to 0.012. The MMMM and MMIM had lower FWO.5
values than the MMPM. Hence, these two methods should be capable of cor-
rectly rejecting the null hypothesis (discerning between data sets from
different gamma distributions)} for gamma distributions closer together
{or more similar in shape) more often than the MMPM. This ability not-
withstanding, the MMPM for estimating parameters of the gamma distribu-
tion for modeling failure rate data was judged best because of the per-
centage of data sets for which allowable estimators were found and the
cost of analyzing data by the MMPM is considerably less than the other

two methods.



