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 Summaries provide reviews of specific zoonoses and threats to human and 

animal health.    

 Genomic analysis and systems and computational biology are increasingly 

important research tools whatever emerging disease is being investigated. 

 The continuum of basic research leading to understanding a disease and then to 

managing that disease and finally to preventing it offers a pattern of scientific 

discovery that is relevant to many emerging zoonotic diseases. 
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Summary 

 

The 6th International Conference on Emerging Zoonoses, held at Cancun, Mexico, 

February 24-27, 2011, offered 84 participants from 18 countries a snapshot of current 

research in numerous zoonoses caused by viruses, bacteria or prions. Co-chaired by 

Professors Heinz Feldmann and Jürgen Richt, the conference explored 10 topics: (1) 

The ecology of emerging zoonotic diseases; (2) The role of wildlife in emerging 

zoonoses; (3) Cross-species transmission of zoonotic pathogens;(4) Emerging and 

neglected influenza viruses; (5) Hemorrhagic fever viruses; (6) Emerging bacterial 

diseases; (7) Outbreak responses to zoonotic diseases; (8) Food-borne zoonotic 

diseases; (9) Prion diseases; and (10) Modeling and prediction of emergence of 

zoonoses. Human medicine, veterinary medicine and environmental challenges are 

viewed as a unity, which must be considered under the umbrella of ‘One Health’. 

Several presentations attempted to integrate the insights gained from field data with 

mathematical models in the search for effective control measures of specific zoonoses. 

The overriding objective of the research presentations was to create, improve and use 

the tools essential to address the risk of contagions in a globalized society. In seeking to 

fulfil this objective, a three-step approach has often been applied: (1) use cultured cells, 

model and natural animal hosts and human clinical models to study infection; (2) 

combine traditional histopathological and biochemical approaches with functional 
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genomics, proteomics and computational biology; and (3) obtain signatures of virulence 

and insights into mechanisms of host defense response, immune evasion and 

pathogenesis. This meeting review summarizes 39 of the conference presentations and 

mentions briefly the 16 articles in this Special Supplement, most of which were 

presented at the conference in earlier versions. The full affiliations of all presenters and 

many colleagues have been included to facilitate further inquiries from readers. 

   

1.  The Ecology of Emerging Zoonotic Diseases 

As new zoonotic diseases continually emerge, one learns to expect the unexpected. The 

emerging zoonotic disease situations considered during the opening day of the Cancun 

Conference were the West Nile Virus, Lyme disease, interactions among multiple tick-

borne pathogens, Hantaviruses in the context of rodent dynamics, the Usutu virus (a 

mosquito-borne flavivirus) and a novel astrovirus enterotoxin. Furthermore, the 

importance of systems and computational biology was stressed, whatever emerging 

disease was being investigated (Poland et al., 2011). In addition to the summaries below 

of six presentations on this topic, this Special Supplement includes an article, 

Monitoring of West Nile Virus Infections in Germany by Dr. U. Ziegler et al. which 

identified West Nile Virus (WNV) antibodies in migratory birds, but not in resident 

birds, domestic poultry or in local horse populations throughout Germany. The WNV 

antibody-positive species were found in birds that migrate to tropical Africa or southern 

Europe; however, WNV-specific RNA could not be found in any of the samples. 

 

The Conference opened with a presentation from Professor M. A. Diuk-Wasser and her 

colleagues J. Simpson and C. M. Fosom-O’Keefe (all Yale School of Public Health, 

New Haven, CT, USA) and G. Molei, P. M. Armstrong, and T. G. Andreadis (Center 

for Vector Biology and Zoonotic Species at the Connecticut Agricultural Experiment 

Station, New Haven, CT, USA), Ecology of West Nile Virus in the Northeastern 

United States. Professor Diuk-Wasser began by noting that West Nile Virus (WNV) 

was introduced into New York City in 1999 by unknown means and was now 

considered endemic throughout the USA, with 29,700 human cases and 1,180 deaths in 

the USA since 1999. It had been hypothesized that increased biodiversity leads to a 

decreased risk of exposure to zoonotic pathogens (Keesing, Holt and Ostfeld, 2006). At 

issue is whether this ‘dilution effect’ or ‘Zooprophylaxis’ for vector-borne pathogens 

applies only when vectors are generalist feeders, because the link between host diversity 

and pathogen transmission might break down when vectors exhibit host preferences.   

  In the northeastern United States, WNV perpetuates in an enzootic transmission 

cycle involving Culex spp. mosquitoes and virus-competent avian hosts. Previous 

studies had detected that a large proportion of C. pipiens and C. restuans bloodmeals 

were derived from American robins (Turdus migratorius), suggesting a key role for this 

bird species in the WNV transmission cycle (Molaei et al, 2006; Kilpatrick et al, 2006). 

The New Haven-based research team tested for preferential feeding by conducting equal 

choice experiments (robins vs. other bird species) (Simpson et al., 2009) and by 

comparing the proportion of Culex spp. bloodmeals acquired from robins to the 

proportion of robins in the local bird community. Both methods indicated preferential 

feeding for robins. They were also able to identify robin communal roosts as 

amplification foci in greater New Haven (Diuk-Wasser et al., 2010). Then, through 

field-informed mathematical modeling, they determined that host preferences were 

indeed key drivers of WNV transmission, and that landscape attributes (such as 

urbanization), in combination with mosquito abundance and a measure of host 

community competence were the strongest predictors of pathogen prevalence (Simpson 

et al., 2011). Thus it was clear that pathogen prevalence and human risk of infection 
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were best predicted by assessing the relative pathogen competence and attractiveness to 

vectors of all species in the host community, rather than using simple measures of 

biodiversity. 

 

In the next presentation, Interactions among Multiple Tick-borne Pathogens in a 

Natural Reservoir Host, Professor Fish and his colleagues J. Brown, M. Fitzpatrick, S. 

Usmani-Brown, P. Cislo and P. Krause (Yale School of Public Health, New Haven, CT, 

USA) stressed that species interactions within a parasite community drive infection risk 

in a wildlife population (Telfer et al., 2010). At least five tick-borne pathogens are 

known to be transmitted by Ixodes scapularis, the principal vector of Lyme disease in 

the United States: (1) Borrelia burgdorferi, an agent of Lyme disease; (2) Anaplasma 

phagocytophilum, an agent of human anaplasmosis; (3) Babesia microti, an agent of 

human babesiosis; (4) Borrelia miyamotoi, an agent of relapsing fever; and (5) the 

Powassan encephalitis virus. Two or more of these pathogens can be transmitted either 

simultaneously by a single tick or sequentially by successive tick-bites, resulting in 240 

different permutations of mixed-infection studies. In the context of pathogen prevalence 

of Ixodes scapularis nymphs, Borrelia burgdorferi has been found in 19.8 percent of 

samples from the Northeast and Midwestern United States, while Babesia miroti has 

been found in 14.7 percent of samples from Block Island, Rhode Island. 

 Professor Fish explained that several types of co-infections have been explored 

in an experimental system employing laboratory colonies of I. scapularis ticks and 

Peromyscus leucopus white-footed mice, a natural reservoir host for these pathogens. 

Outcomes of mixed infections in mice have been measured by Ro, the fitness parameter 

and basic reproductive rate which indicates the number of secondary tick infections 

resulting from a primary infection (Levin and Fish, 2004). The observed outcomes of 

dual mixed infections have been variable with both positive and negative effects on Ro, 

while interactions have been mutual, unidirectional or null. These diverse pathogen 

interactions play an important role in determining the infection prevalence of host-

seeking nymphs in nature, and consequently, in the risk of infection for humans. 

   

Professor H. Henttonen (Finnish Forest Research Institute, Vantaa, Finland) and his 

team H. Leirs, E. R. Kallio, K. Tersago and L. Voutilainen in collaboration with 

University of Antwerp, Belgium; University of Liverpool, United Kingdom; and the 

Universities of Helsinki and Jyväskylä, Finland, studied Biome Specific Rodent 

Dynamics and Hanta Epidemiologies in Europe. Their research sought to understand 

the main biomes and forest coverage in Europe, the European hanta viruses and their 

carriers, and the biome specific dynamics of hanta virus carriers and the biome specific 

transmission dynamics and epidemiologies.    

Within the Bunyaviridae family of viruses, hantaviruses infect rodents (and 

insectivores) and cause haemorrhagic fever with renal syndrome (HFRS) in humans in 

the Old World and hantavirus cardiopulmonary syndrome (HCPS) in the New World. In 

a large European Union project, EDEN (Emerging Diseases in a Changing European 

Environment, 2011), rodent-borne (robo) viral infections have been studied, along with 

tick-borne pathogens, leishmaniasis, West Nile Virus, malaria and Rift Valley Fever. 

The most important aim of Professor Henttonen and his colleagues was to clarify the 

differences in boreal (Northern) and temperate Europe in the human epidemiology of 

nephropathia epidemica, by far the most common hantaviral disease in Europe, caused 

by Puumala hantavirus (PUUV). The population dynamics of the host species, the bank 

vole, differ greatly in various parts of Europe, driven by predation in the north and 

masting events in the temperate zone. Consequently, the causes of rodent fluctuations 

are different. In addition, the role of landscape patterns (homogenous Taiga vs. 
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fragmented temperate forests) in rodent/virus dispersal is significant, as well as local 

environmental conditions (e.g. temperature and moisture), which affect virus survival 

outside the host. For example, in room temperature PUUV remains infectious for at 

least two weeks outside the host, and possibly for much longer in cold temperatures and 

in moist conditions. These research findings are essential for human risk evaluation with 

regard to both long-term and seasonal occurrence of PUUV in the environment. In spite 

of chronic infection of bank voles and the excretion of PUUV in their faeces, urine and 

saliva, the shedding period is limited, which has significant implications for seasonal 

transmission dynamics in rodents. Thus within the same host/virus system, biome 

specific PUUV epidemiologies occur (Kallio et al., 2009. Tersago et al., 2009), thereby 

highlighting the need for geographically comparative studies in Europe (METLA, 

2012). 

 

Professor V. Sambri and his team, P. Gaibani, F. Cavrini, A. M. Pierro, M. P. Landini
 

and G. Rossini (all Regional Centre for Microbiological Emergencies [CRREM], Unit 

of Clinical Microbiology, St Orsola-Malpighi University Hospital, Bologna, Italy) 

investigated Usutu: A Novel Human Pathogenic Mosquito-borne Flavivirus. This 

virus belongs to the Japanese encephalitis serogroup within the mosquito-borne cluster 

of the genus Flavivirus in the family Flaviviridae. First isolated from mosquitoes of the 

genus Culex in South Africa in 1959, the Usutu virus (USUV) has since been isolated 

from mosquitoes, rodents and birds throughout Sub-Saharan Africa and Europe. The 

virus is thought to be maintained in nature in a mosquito-bird transmission cycle in 

areas with a minimum of at least ten hot days >30
o
C, but no mammalian reservoir has 

yet been identified.  

Professor Sambri pointed out that it was not until September 2009 that USUV 

was found in the liver of a patient who underwent an orthotropic liver transplant 

(Gaibani et al., 2010). Further study of the plasma and genome sequencing analysis 

confirmed the presence of USUV viremia. Then USUV was detected in the livers of an 

additional four patients from the same area suffering from acute meningo-encephalitis 

during 2008/2009. Both serological assay and molecular assay have been used as new 

tools for the diagnosis of USUV infection. Thus it is now clear that USUV is a new 

emerging flavivirus pathogenic for humans.  

Further studies are required to discover both the geographic distribution of this 

virus and the mechanisms by which humans acquire the virus. Since this conference 

presentation there has been increased awareness of the seriousness of USUV (Vázquez 

et al, 2011).  

 

According to the World Health Organization (WHO) and UNICEF (2009), 1.5 million 

children under the age of five die from diarrhea annually. Professor S. Schultz-Cherry 

and her colleagues, A. Burnham and P. Freiden (all Department of Infectious Diseases, 

St Jude Children’s Hospital, Memphis, TN, USA), L. A. Moser
 
(Department of Medical 

Microbiology and Immunology, University of Wisconsin, Madison, WI, USA) and M. 

D. Koci
 
(Department of Poultry Science, North Carolina State University, Raleigh, NC, 

USA) presented the evidence they had gathered on the Identification of a Novel 

Astrovirus Enterotoxin: Potential Zoonotic Risk? 
Astroviruses cause infections within the small intestine and are associated with 

at least 10 percent of all sporadic cases and greater than 25 percent of all hospitalised 

cases. These rapidly evolving, nonenveloped, single-stranded RNA viruses can be 

transmitted directly from infected individuals and animals, and indirectly through 

contaminated food and water. Professor Schultz-Cherry’s laboratory was the first to 

demonstrate that astroviruses induce diarrhea by a novel mechanism: they possess an 
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enterotoxin that disrupts intestinal epithelial barrier function independent of cellular 

damage or an inflammatory response (Koci et al., 2003). This occurs within 24 hours 

post-infection due to reorganization of the tight junction protein occludin and the actin 

cytoskeleton (Moser et al, 2007).  

In essence, within a complex pathogenic process, astroviruses cause diarrhea by 

increasing intestinal barrier permeability. This is the first evidence showing that a viral 

coat protein is an enterotoxin. Of great interest, the toxin can act independently of 

species barriers. Given the increasing isolation of astroviruses from diverse species, 

there is increasing evidence that toxicogenic astroviruses could be associated with 

zoonotic disease.  

 

Professor M. G. Katze (Department of Microbiology and Washington National Primate 

Research Center, University of Washington, Seattle, WA, USA) set out a unifying 

approach to molecular biology in his presentation, Systems and Computational 

biology: Emerging Tools for Exploring Emerging Viruses. He emphasized that 

modern day virologists and immunologists must do better in their search to understand 

how a virus kills and how effective vaccines can be developed, especially because 

traditional virology has yielded surprisingly little information about why some virus 

strains cause severe diseases while others remain innocuous. He pointed out that the 

case fatality rate for the 1918 influenza pandemic was about 2.5%, and that particular 

H1N1 virus may have infected as much as one-third of the world’s population. Issues 

arise not only in understanding a virus, but also in understanding how hosts respond. 

For example, the 1918 virus infection resulted in very high expression of inflammatory, 

antiviral and immune cell genes very early in host infection (Kash et al., 2006). 

Significant progress in overcoming existing and emerging viruses depends on 

biologists, mathematicians and computer specialists working together within a systems 

biology paradigm. Such research begins with either in vitro studies of virus replication 

on cell lines or primary cell cultures, moving to nonhuman primate models of virus 

infection. Then samples from the experiments are investigated at multiple time points 

and conditions; and high throughput data is then examined by data processing to prepare 

systematic evaluations of different host responses. Data integration involving data 

analysis and modeling of key genes and pathways is then possible, followed by iterative 

processing of host perturbations and the use of viral mutants to discover specific 

applications to translational research. Such a systems biology approach requires not 

only continuing experiments with virus-infected experimental systems but also 

significant efforts to maintain the hardware and software of an extensive lab 

computational infrastructure. It is this computing infrastructure, which permits the lab to 

go quickly from samples to pathway visualization, as the data analysis workflow moves 

from microarray images to gene expression data to pathway models. 

The mission of this ViroLab is to develop steadily over the years to come a 

virtual laboratory to confront the viruses involved in 14 infectious diseases—influenza, 

Ebola, Marburg, Hepatitis C, SARS-CoV, vaccinia, Herpes simplex, West Nile, HIV-1, 

SIV, measles, Lassa, Chikungunya and Dengue Fever. The three key characteristics of 

this integrated approach to so many infectious diseases are: (1) to use cell culture, 

primary cells, nonhuman primate and human clinical models to study viral infection; (2) 

to combine traditional histopathological, virological and biochemical approaches with 

functional genomics, proteomics and computational biology  (Haagmans et al., 2009); 

and (3) to obtain signatures of virulence and insights into mechanisms of host defense 

response, viral evasion and pathogenesis (Casadevaill et al., 2011). For example, with 

the study of all respiratory viral diseases a unifying hypothesis is that highly pathogenic 

respiratory viruses use both unique and common strategies to remodel the host cell to 
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enhance virus replication, regulate disease severity and promote virus transmission 

(Chang et al, 2011). 

A highly significant new tool for studying these emerging viruses is Next 

Generation Sequencing (NGS) which has already ‘changed the way we think about 

scientific approaches in basic, applied and clinical research’ to such an extent that ‘the 

potential of NGS is akin to the early days of Polymerase chain reaction (PCR), with 

one’s imagination being the primary limitation to its use’ (Peng et al, 2011). Already, a 

good understanding of the ‘timing’ and extent of immune (innate) mediated injury after 

virus infection has been achieved. Furthermore, molecular ‘disease’ signatures 

associated with different pathogens in multiple animal species have been described at 

microRNA, mRNA, protein level, metabolite and lipid levels. Such successful 

modelling of molecular events has made possible verifiable prediction about key nodes 

and bottlenecks, enabling the identification of novel host cell drug targets (Diamond et 

al, 2010). The translational impact of this research, in Professor Katze’s view, will be 

immense, revealing a completely new and expanded host defense repertoire consisting 

of non-annotated non-coding RNAs. 

 Despite all of these achievements, four crucial questions remain unanswered:  

(1) Is systems biology too complicated and too expensive to become the pre-eminent 

approach in virology and immunology? (2) Are mathematicians and computer scientists 

up to the challenges? (3) How will new technologies like Next Generation Sequencing 

impact virus systems biology research, especially in the context of RNA sequencing? 

and (4) How can new principal investigators best be identified and appointed? 

(ViroLab, 2012).  

   

2. The Role of Wildlife in Emerging Zoonoses  

It has long been recognized that the emergence of any zoonoses is a complex process 

involving ‘ecological interactions at the individual, species, community and global 

scale’ (Childs et al. 2007, p.2). This topic began with a presentation from Professor A. 

A. Aguirre that focused on the ecological framework in which any zoonotic disease 

should be considered. The role of bats as an important reservoir host for many 

dangerous zoonotic pathogens was then considered in some detail (cf. Daniels et al., 

2007; Field et al., 2007; Gonzalez et al., 2007; Wang and Eaton, 2007).    

 

Professor A. A. Aguirre (Department of Environmental Science and Policy, George 

Mason University and Executive Director, Smithsonian-Mason Global Conservation 

Studies Program, Front Royal, Virginia, USA) presented Emerging Zoonotic Diseases 

of Wildlife: Developing Global Capacity for Prediction and Prevention. He began 

by explaining that Conservation Medicine and more recently EcoHealth have 

emphasized the need to bridge disciplines, thereby linking human health, animal health, 

and ecosystem health under the paradigm that ‘health connects all species in the planet’ 

(Aguirre et al., 2002).  In his view, the recent convergence of global problems such as 

climate change, biodiversity loss, habitat fragmentation, globalization, infectious 

disease emergence and ecological health demands integrative approaches breaching 

disciplinary boundaries. The International Union for Conservation of Nature (IUCN) 

maintains a Red List of threatened species—an important initiative in view of the 869 

animal extinctions that have already occurred, of which 3.7 percent were caused by 

disease (Smith, K. F. et al., 2006).    

Professor Aguirre noted that the U.S. Agency for International Development 

(USAID) has been a major leader in the global response to the emergence and spread of 

Highly Pathogenic Avian Influenza (HPAI). Since mid-2005, it has programmed 

approximately $500 million to build capacities in more than 50 countries for monitoring 
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the spread of HPAI among wild bird populations, domestic poultry, and humans, and to 

mount a rapid and effective containment of the virus when it is found.  Recent analyses 

indicate that these efforts have contributed to significant downturns in reported poultry 

outbreaks and human infections and a dramatic reduction in the number of countries 

affected. Furthermore, the USAID Bureau for Global Health, Office of Health, 

Infectious Disease and Nutrition (GH/HIDN) recently funded two cooperative 

agreements, PREDICT and RESPOND, under its Avian and Pandemic Influenza and 

Zoonotic Disease Program to continue and expand this work. The goal of PREDICT is 

to establish a global early warning system for zoonotic disease emergence that is 

capable of detecting, tracking, and predicting the emergence of new infectious diseases 

in high-risk wildlife (e.g. bats, rodents, and non-human primates) that could pose a 

major threat to human health. The goal of RESPOND is to improve the capacity of 

countries in high-risk areas to respond to outbreaks of emergent zoonotic diseases that 

pose a serious threat to human health.  The geographic scope of this expanded effort is 

directed to zoonotic ‘hotspots’ of wildlife and domestic animal origins (Jones et al., 

2008).         

PREDICT includes a program of SMART (Strategic, Measurable, Adaptive, 

Responsive and Targeted) surveillance which focuses on preventing the “spilling over” 

from wildlife to humans or to halt these diseases rapidly after that spillover by 

understanding what factors induce emergence and rapidly identifying ways of 

prevention, control, and mitigation. The overall aim of SMART is to promote an 

integrated, global approach to emerging zoonoses. This integration requires 

commitment from a broad coalition of partners and stakeholders including government 

agencies, universities and non-governmental organizations, collaborating for specific 

purposes and to generate in the future new international structures able to respond to 

these emerging zoonoses. With 1.5 billion animals being imported into the United 

States each year, as well as an extensive international trade in illegal animal exports 

(Smith K. F. et al., 2009) and some 75 percent of emerging zoonoses worldwide having 

wildlife origins, Professor Aguirre stressed that EcoHealth has become a necessity, not 

an optional policy goal.   

Dr. G. A. Marsh and his colleague Dr. L.-F. Wang (Australian Animal Health 

Laboratory [AAHL], Geelong, Victoria, Australia) began their presentation, Bats: A 

Mixed Bag of New and Emerging Viruses, by pointing out that the “old” bat viruses 

were represented by many zoonotic pathogens, including Rabies virus, Yellow fever 

virus, St Louis and Japanese encephalitis viruses, and West Nile virus. Now bats have 

been identified as natural reservoirs for a number of new and emerging viruses—Ebola 

virus, Marburg virus, Hendra virus and SARS-like coronaviruses. There are some 1,000 

different bat species; and they often roost in high density colonies of over one million 

flying mammals, which have, in a very real sense, been travelling for millions of years, 

exposing themselves to many pathogens; therefore, the resulting complexity is not 

surprising.  Key research questions include: (1) Why do bats seem to be able to co-exist 

with a great diversity of viruses without showing disease signs? (2) What triggers the 

spillover of bat viruses into other animals? (3) Do bats control viral infection differently 

from other mammals? 

Attempts to isolate viruses from bats have generally been unsuccessful. Therefore, 

in an effort to improve the success rate for virus isolation, Dr. Marsh and his team have 

recently developed primary cell culture lines from numerous different species of bats 

(Crameri et al., 2009). The use of these bat cell lines, in combination with improved 

sampling techniques, has lead to recent isolation of Hendra virus from a number of bat 
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urine samples collected in several locations across Queensland, Australia, including 

those associated with human and horse virus spill-over events (Smith, I. et al, 2011). 

Furthermore, this henipavirus surveillance program has led to the isolation of a number 

of novel viruses from two different virus families, whose zoonotic potential is not yet 

known. In an attempt to understand virus/host interactions, as well as to provide insight 

into the key factors involved in future spill-over events, AAHL has launched a number 

of international collaborative projects in Southeast Asia and Ghana, West Africa.  

C. Kohl and her colleagues M. Sonntag, A. Nitsche and A. Kurth (Robert Koch 

Institute, Berlin, Germany), B. Harrach (Veterinary Medical Research Institute, 

Hungarian Academy of Sciences, Budapest, Hungary), K. Mühldorfer and G. Wibbelt 

(Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany) presented 

Adenovirus with Bat Origin: Possible Intra-Species Transmission. They reported 

that since bats have been reported as reservoir hosts of emerging pathogens, research 

interest in their inhabiting viruses has significantly increased. A novel bat Adenovirus 

(bat AdV-2) was isolated by cell-culture screening from organ tissue of free-ranging  

vespertilionid bats (Pipistrellus pipistrellus) in Germany (Sonntag et al., 2009). The 

phylogenetic analysis of the genome sequence of bat AdV-2 demonstrated a close 

relationship to canine adenovirus 1 and 2 (CAdV-1 and -2) (Kohl et al., 2012). The very 

similar genome organization supported the hypothesis of a shared ancient ancestor. 

Interestingly, both CAdVs are presenting untypical pathological features within the 

family Adenoviridae. These adenoviruses were found to have an unusually broad host 

range and are causing a rather higher pathogenicity in a variety of carnivore hosts. The 

untypical pathological features might be understood as signs of a missing adaptation 

host and could provide a model to study ancient inter-species transmission events. 

  

3. Cross-Species Transmission of Zoonotic Pathogens 

This section of the conference addressed cross species transmission of selected 

pathogens.  In addition to the summaries below of three presentations on this topic, this 

Special Supplement includes an article, Epidemiological Survey of Tryanosoma cruzi 

Infection in Domestic Owned Cats from the Tropical Southeast of Mexico by Dr. 

M. Jiménz-Coello et al. setting out how a significant public health problem in Mexico 

has been caused by the cross-species transmission of American Trypanosomiasis (AT) 

from triatomine bugs to domestic cats, representing a potential risk to humans. 

 

Speaking on behalf of an extensive team of collaborators from a number of 

institutions—C. Osborne, P. Cryan, T. J. O’Shea, L. M. Oko, C. Ndaluka, C. H. 

Calisher, A. Berglund, M. L. Klavetter, R. A. Bowen and K. V. Homes—Dr. S. R. 

Dominguez (Section on Pediatric Diseases, The Children’s Hospital, University of 

Colorado School of Medicine, Aurora, CO, USA) began by noting that the first 

pandemic of the 21st century, the deadly SARS virus, had its natural reservoir in bats.  

In his presentation, Alphacoronaviruses in New World Bats: Prevalence, 

Persistence, Phylogeny and Potential for Interaction with Humans, he suggested 

that bat coronaviruses (CoVs) may well be the ancestors of all group 1 and 2 CoVs. 

Today bats had become a primary species encountered by humans in terms of potential 

exposure to significant disease agents. Their research was tackling three important 

unanswered questions: (1) What is the prevalence and diversity of bat CoVs in New 

World bats? (2) Do bat CoVs persist in bat populations and/or individual bats? and (3) 

What are the potential interactions of infected bats with the human population? 

A three-year study (Osborne et al., 2011) had collected clinical and 

environmental samples from bats at 16 rural sites and 5 urban sites throughout 
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Colorado, as well as bat carcasses obtained from various counties throughout the state 

from the Colorado Department of Public Health and Environment. Of the 1,002 fecal or 

anal swab samples, 75, that is 7 percent, were positive for CoV RNA. The highest 

prevalence of the virus was in juvenile bats; and although rates of prevalence varied 

from year to year, late spring was the time when the virus peaked. Although bat CoVs 

persisted within bat populations and their roosts, individually tagged CoV-infected bats 

cleared their infections within 6 weeks without apparent illness. New world bats of the 

same species in geographically distinct locations and over the course of several years 

harbour similar CoVs; and some New World bat CoVs may be able to infect bats of 

different genera. Strikingly, bats, which had known or potential contact with humans 

had a high prevalence of 10 to 20 percent of CoV infection. It is clear that significant 

opportunities exist for zoonotic transmission of coronaviruses from bats to humans and 

vice versa, especially as more than 95 viruses have already been isolated from or 

detected in bat tissues. 

 

Noting that many mammalian and avian species in addition to bats are susceptible to 

coronavirus infection, Professor K. V. Holmes and her colleagues, K. Guo, Z. Qian and 

S. Wennier (Department of Microbiology, University of Colorado School of Medicine, 

Aurora, CO, USA) and G. Peng and F. Li (Department of Pharmacology, University of 

Minnesota Medical School, Minneapolis, MN, USA) presented the Emergence and 

Evolution of Alphacoronaviruses: Insights from Spike and Receptor Analysis. 
Some coronaviruses can only infect a single host species, while others can infect 

multiple species, because coronavirus host range is determined, in part, by specific 

interactions of the viral spike protein, S, with cellular receptor proteins that include 

ACE2, APN and CEACAM1. The recent emergence of SARS coronaviruses from 

civets, bats and/or other reservoir species into humans depended upon a few amino acid 

substitutions in the receptor-binding domain (RBD) of S from the animal viruses that 

allowed them to recognize human ACE2 instead of, or in addition to, receptors of their 

natural hosts (Li, 2008). 

Alphacoronaviruses of pigs, cats, dogs and human coronovirus 229E use APN 

receptors of the host species, and all four viruses recognize feline APN (Tusell et al., 

2007). In contrast, for human alphacoronavirus NL63, the receptor-binding motif 

(RBM) with its three loops in the RBD binds specifically to human ACE2. In the RBDs 

of the cat virus, FIPV, Professor Holmes and her research team predicted 3 loops 

structurally similar to the NL63 RBMs; and they constructed chimeric FIPV RBDs 

containing one, two or three RBMs from NL63. Receptor binding assays using enzyme-

linked immunoassays (ELISA), flow cytometry and co-immunoprecipitation identified 

3 loops (RBMs) in FIPV RBD that are required for binding to feline APN. Furthermore, 

substitution of only a few key amino acid residues within the RBMs of FIPV altered 

APN specificity and viral host range. Thus the emergence of alphacoronaviruses into 

new host species can occur when spontaneous mutations arise in the RBMs that permit 

binding to variants of the APN receptor protein expressed by different host species. 

  

  

Considering the interaction between human and swine H1N1 viruses since 1900, 

Professor H. D. Klenk (Institute of Virology, Philipps University, Marburg, Germany) 

presented the Mechanisms of Pathogenicity and Host Adaptation of Influenza 

Viruses in the Light of the New H1N1 Pandemic. He explained that there was now a 

clear scientific consensus that wild aquatic birds are the natural hosts for a large variety 

of influenza A viruses. Occasionally these viruses are transmitted from this reservoir to 

other species, such as chickens, pigs and humans, leading to devastating outbreaks in 
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domestic poultry and the possibility of human influenza pandemics. By the end of 

February 2010, there had been 15,921 deaths, with the World Health Organization later 

confirming cases in 171 countries and territories, with deaths in at least 139 countries 

and territories before the spread of the H1N1 virus diminished. However, Professor 

Klenk set out the evidence to support his view that the pathogenic and pandemic 

potential of this new H1N1 virus is not yet exhausted. 

The host range and pathogenicity of any virus are polygenic traits depend on the 

interaction of different viral proteins with specific host factors. It has long been known 

that proteolytic activation and receptor specificity of the hemagglutinin (HA) are 

important determinants for pathogenicity and interspecies transmission, respectively. 

There is now considerable evidence that HA mutations altering receptor specificity and 

cell tropism of the 2009 pandemic influenza A virus (H1N1v) are linked to the D222G 

amino acid substitution and are associated with a particularly severe outcome of 

infection (Liu et al., 2010).. It should be remembered that the viral polymerase has to 

enter the nucleus of the infected cell in order to promote replication and transcription of 

the viral genome. Adaptive mutations in polymerase subunits of avian viruses improve 

binding to importin Alpha, a component of the nuclear pore complex in mammalian 

cells. As a result, nuclear transport of these proteins and efficiency of replication are 

enhanced. Thus, the interaction of the viral polymerase with the nuclear import 

machinery is an important determinant of host range.  

Some of the structural features typical for avian viruses have been preserved in 

the polymerase of the 2009 pandemic influenza A virus (H1N1v) suggesting that this 

virus has the potential to further adapt to humans. Recent studies have shown that the 

NS1 protein, another important determinant of pathogenicity and host range, is 

SUMOylated, and that this modification enhances virus growth. Interestingly, NS1 of 

H1N1v is not SUMOylated (Xu et al., 2011). Taken together, these observations 

support the view that the pathogenic and pandemic potential of the new virus is not yet 

exhausted. Furthermore, because of the firm evidence of HA polymorphism in position 

222, mutants and other mutations with altered receptor specificity will have to be 

closely monitored.  

In the subsequent discussion it was noted that when a virus becomes highly 

pathogenic, this might block its spread if additional hosts are not readily available. 

Furthermore, the role of co-infection with bacterial inflection was highly relevant in the 

1918-1919 influenza pandemic and might well be relevant in a future pandemic. 

  

4. Emerging and Neglected Influenza Viruses 

There have been at least three influenza pandemics every century since 1700, with some 

evidence of earlier epidemics and pandemics after 1500. In The Cambridge World 

History of Human Disease, A. W. Crosby (1993; p. 810) has noted that although the 

black death and World Wars I and II killed higher percentages of the populations at risk, 

the 1918-1919 influenza pandemic was possibly ‘in terms of absolute numbers, the 

greatest single demographic shock that the human species has ever received’. The 

summaries below of seven presentations on this topic highlight the diversity of 

influenza viruses in North America (cf. Nelson et al., 2011), while other relevant 

research has been published with respect to Swine Influenza Viruses (SIVs) in Europe 

(Kyriakis et al., 2009)   

Considerable research has now been done  into how the Highly Pathogenic 

H5N1 Avian Influenza virus spreads from wild birds and ducks to chickens and other 

species, including humans (Rabinowitz et al., 2009; Ma et al, 2008). The studies of how 

influenza viruses can be genetically altered to become more transmissible have become 
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a matter of much controversy (Palese and Wang, 2012; L. H. Kahn, 2012). In addition 

to the summaries below, this Special Supplement includes an article, Lessons from 

Emergence of A/goose/ Guangdong/1996-like H5N1 Highly Pathogenic Avian 

Influenza Viruses and Recent influenza Surveillance Efforts in Southern China, in 

which Dr. X.-F. Wan has considered the emergence and ecology of Influenza A Viruses 

in Southern China, especially the highly pathogenic H5N1 virus.   

Backed by an extensive team of collaborators, Professor A. D. M. E. Osterhaus (Head, 

Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands) began 

his presentation, Emerging and Neglected Influenza Viruses, by explaining the 

complex aetiology of the Influenza A, B and C viruses. While humans can serve as host 

species for all three viruses, Influenza A can also be present in other mammals and 

avian species, Influenza B in seals, and Influenza C in pigs. The severity of the disease 

is relatively high with Influenza A, moderate with Influenza B and low with Influenza 

C, with the prevalence in humans high with both Influenza A and B viruses, but lower 

with Influenza C. Furthermore, a clear distinction needs to be made between seasonal 

influenza, avian influenza and pandemic influenza. There are two different mechanisms 

of host adaptation—sequential mutations and genome reassortment.  Most recently, the 

new H1N1 swine flu pandemic outbreak of 2009 drew attention to the speed with which 

an influenza virus could move around the world. However, the fact that this particular 

virus was not as virulent as first anticipated proved crucial in confronting the virus, even 

though it spreads rapidly among humans, unlike the much more virulent H5N1 avian flu 

virus, from which more than 300 people have died from more than 500 verified cases 

from 2003 to 2011 (WHO, 2012).  

 Although clinical evidence of H5N1 avian influenza appears predominantly in 

diving ducks, a number of dabbling duck species—Mallard, Teal, Wigeon and 

Gadwall—appear to spread H5N1, generally acquired from wild birds, without showing 

major signs of disease. The likelihood of a major pandemic linked to H5N1 has not 

decreased in the last five years, even though publicity has certainly decreased. 

Furthermore, Professor Osterhaus pointed out that the recent H1N1 pandemic influenza 

outbreak indicated that the scientific community was wrong in its earlier belief that ‘a 

pandemic strain could only arise from a subtype that had not previously been widely 

disseminated in humans [because] the H1N1 virus has shown that human varieties 

characterized by different hemagglutinin (HA) molecules may follow separate lines of 

evolution and may generate potentially pandemic strains within an existing human HA 

subtype. Hence, it is essential to develop methods for estimating how many 

antigenically different subtypes may reside within each HA type’ (cf. Rappuoli et al., 

2009).  

In the light of the continuing prevalence of many subtypes of influenza, there is 

a critical need for improved monitoring, especially in Asia and Africa, as part of a move 

from a reactive to a proactive approach, with greater research into the possibility of 

developing a universal vaccine. Although there are increasing opportunities for virus 

infections to emerge and spread rapidly in our global society, new tools are being 

provided by research in molecular biology, epidemiology, genomics and bioinformatics. 

Already early warning systems based on state of the art virus detection techniques, as 

well as targeted intervention strategies based on data about the mutual virus-host 

interaction have been instrumental in dealing with numerous viral threats, including 

SARS and avian influenza. 

 

The extensive research of the Department of Virology at Erasmus Medical Centre in 

Rotterdam was highlighted by a further presentation, Influenza Pneumonia: The Role 
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of the Alveolar Macrophage, given by Dr. D. van Riel. Highly pathogenic avian 

influenza (HPAI) H5N1 virus causes severe, often fatal, pneumonia in humans. The 

pathogenesis of HPAI H5N1 virus is not completely understood, although the alveolar 

macrophage (AM) is thought to play an important role. The AM resides in the 

pulmonary alveolus, the primary site of HPAI H5N1 virus replication in humans. It had 

been  shown previously that HPAI H5N1 virus attaches abundantly to these AM (van 

Riel et al., 2006). The aim of this study was to determine the response of primary 

human AM to HPAI H5N1 virus, seasonal H3N2 virus or pandemic H1N1 virus, and to 

compare these responses with that of macrophages cultured from monocytes.  

HPAIV H5N1 infection of AM compared to that of macrophages cultured from 

monocytes resulted in a lower percentage of infected cells (up to 25% versus up to 

84%), lower virus production and lower TNF-alpha induction. Infection of AM with 

H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) 

than with HPAI H5N1 virus, while virus production and TNF-alpha induction were 

comparable. In conclusion, this study revealed that macrophages cultured from 

monocytes are not a good model to study the interaction between AM and influenza 

viruses. Furthermore, the interaction between HPAI H5N1 virus and AM could 

contribute to the pathogenicity of this virus in humans, due to the relatively high 

percentage of infected cells rather than virus production or an excessive TNF-alpha 

induction (van Riel et al., 2011).   

 

Dr. E. A. Govorkova presented the study, Fitness of Highly Pathogenic H5N1 

Influenza Viruses in Ferrets, on behalf of a research team at St. Jude Children’s 

Research Hospital Center of Excellence for Influenza Research and Surveillance (St. 

Jude CEIRS), Memphis, TN, USA which included N. A. Ilyushina, B. M. Marathe and 

R. G. Webster. She began by pointing out that while the neuraminidase (NA) inhibitors 

are currently our first line of defense against a pandemic threat, the potential emergence 

of virulent and transmissible drug-resistant H5N1 viruses has important clinical 

implications (Writing Committee, 2008; White et al, 2009). 

      The St Jude’s CEIRS research team used reverse genetics techniques and generated 

two pairs of H5N1 recombinant viruses: A/Vietnam/1203/2004-like (HA clade 1) and 

A/Turkey/15/2006-like (HA clade 2.2). One virus of each pair was wild-type, while the 

other carried the H274Y NA mutation conferring resistance to NA inhibitor oseltamivir. 

Within each pair, the wild-type and oseltamivir-resistant virus caused disease of equal 

severity in ferrets and replicated to comparable virus titers in the upper respiratory tract. 

Then, in order to assess the fitness of drug-resistant H5N1 influenza viruses, the 

research team considered virus-virus interactions within the host by co-inoculating 

ferrets with mixtures of the oseltamivir-sensitive and oseltamivir–resistant H5N1 

viruses in varying ratios (e. g. 100/0; 80/20; 50/50; 20/80; 0/100). Using this novel 

approach, they demonstrated that the proportion of A/Vietnam/1203/2004-H274Y 

clones tended to increase while the proportion of A/Turkey/15/2006-H274Y clones 

tended to decrease. Their findings suggest that the H274Y NA mutation can affect the 

fitness of two H5N1 viruses differently and is dependent on background NA sequence. 

Dr. Govorkova pointed out that antigenic and genetic diversity, virulence, the degree of 

NA functional loss of H5N1 virus and differences in host immune response can also 

contribute to such differences. Therefore, the risk of emergence of drug-resistant 

influenza viruses with uncompromised fitness should be monitored closely and 

considered carefully in pandemic planning. 

In a collaboration with C. Corzo, K. Juleen and M. Gramer (University of Minnesota 

Veterinary Diagnostic Laboratory, St Paul, MN, USA) and J. Lowe (Carthage 

Veterinary Services, Carthage, IL, USA), Dr. R. Webby and his colleagues at St Jude 
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Children’s Research Hospital in Memphis, M. Ducatez, E. Stigger-Rosser, D. Wang and 

D. Darnell sought to answer the question: Is disease surveillance collected from 

diseased animals giving a true picture of swine flu activity in the United States?  

       They initiated an active surveillance program in healthy pigs in multiple sites in 

2009, during a period coincident with the emergence of the H1N1 pandemic in humans. 

Their study, Active Surveillance for Influenza Viruses in North America, presented 

an analysis from 12 months of data which indicated that similar viruses can be detected 

in both active and passive surveillance schemes, and that there has been an explosion of 

diversity in swine influenza viruses (SIV) in the United States. Not only were a number 

of pandemic H1N1 infections in swine detected, but a number of pandemic/endemic 

swine virus reassortants were found, albeit from healthy animals (Ducatez et al., 2009). 

Virologically, the pattern of disease surveillance grounded in the activities of state 

diagnostic laboratories collecting information from diseased animals is representative; 

however, epidemiologically this data from diseased animals is not representative. 

Reverse zoonoses have had a huge impact on SIV in the United States (Vincent et al, 

2008) and the pandemic virus is now endemic. However, in considering whether any 

particular reassortment causes alarm, it must be acknowledged that there is not yet a 

good model of risk, so H3, like H1, is going to be found in pigs for some time to come, 

but the consequences of this diversity in SIV are not yet clear.  

  

The extensive collaboration now taking place in the study of swine influenza was 

evident in the presentation by Dr. K. M. Lager (Virus and Prion Diseases of Livestock 

Research Unit, National Animal Disease Center, US Dept of Agriculture, Agricultural 

Research Service [USDA-ARS], Ames, IA, USA) on behalf of his colleagues P. C. 

Gauger, L. C. Miller and M. E. Kehrli, Jr., as well as other members of the research 

team, several with multiple institutional affiliations including D. A. Senne and D. L. 

Suarez (National Veterinary Services Laboratories, USDA, Veterinary Services, Ames, 

IA), D. E. Swayne (Southeast Poultry Research Laboratory, USDA-ARS, Athens, GA), 

and J. A. Richt and W. Ma (Kansas State University, Manhattan, KS, USA). Their 

consideration of The Mixing Vessel Pendulum began by explaining the three elements 

of how swine could be considered as a mixing vessel for influenza A viruses as formally 

proposed by Scholtissek et al (1985): (1) Swine are susceptible to infection with 

influenza A viruses from avian and human viruses; (2) The avian viruses can adapt 

within the pig, producing novel reassortants; and (3) These reassortants can then be 

shed and are infectious to man. The goal of this presentation was to test the first part of 

the mixing vessel hypothesis, concerned with the susceptibility of swine to avian and 

human influenza viruses, making use of both mixing vessel studies in pigs and genetic 

markers to investigate adaptation. 

     Dr. Lager noted that the emergence of the H5N1 highly pathogenic avian influenza 

virus that can transmit from avian species directly to man, and the presumption that the 

1918 H1N1 influenza jumped from birds to man has expanded our understanding of the 

swine mixing vessel hypothesis as a potential, but not exclusive, source of human 

pandemic viruses (Taubenberger et al, 2005). Moreover, the emergence of the 2009 

pandemic H1N1 virus has re-emphasised swine as a potential source of pandemic virus. 

In this study, all of the challenge viruses (avian H5, H7, H9) induced a similar effect in 

pigs; challenge viruses did replicate in pigs; the infections were subclinical with mild 

pneumonias; most infections resulted in seroconversion; and none of them transmitted 

to contact controls. This series of studies suggests pigs could be easily infected with 

avian viruses; however, an adaptation step is needed to generate fit viruses that transmit 

among swine. Parallel studies are currently underway testing the susceptibility of pigs to 

human seasonal influenza viruses. Future studies using reverse genetics could 
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investigate potential genetic markers for adaptation of avian viruses to swine which may 

provide insight into the interspecies transmission of influenza viruses. 

 

A further study of swine influenza viruses, In vitro and in vivo Characterization of 

Viral Reassortment between North American Triple Reassortant and Eurasian 

H1N1 Swine Influenza Viruses, was presented by Dr. W. Ma (Dept of Diagnostic 

Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 

Manhattan, KS, USA) on behalf of his colleagues Q. Liu, J. A. Richt and C. Qiao, as 

well as G. del Real (Department of Biotechnology, Instituto Nacional de 

Investigaciones Agrarias [INIA], Madrid, Spain), A. Garcia-Sastre (Department of 

Microbiology, Mount Sinai School of Medicine, New York City, USA) and R. J. 

Webby (St. Jude Children’s Research Hospital, Memphis, TN, USA). The 2009 

pandemic H1N1 virus (pH1N1) was derived through the reassortment of a North 

American triple reassortant swine influenza virus (SIV) and an avian-like Eurasian SIV. 

However, to date, the exact mechanisms by which the pH1N1 arose are not understood.  

        In this study an attempt was made to recreate the 2009 pandemic virus by co-

infecting cells (in vitro) or a group of pigs (in vivo) with Eurasian (SP04) and North 

American triple reassortant (KS07) SIVs (Ma et al., 2010a). Infected pigs were co-

housed with two groups of sentinel animals to investigate virus maintenance and 

transmission. The origin of each gene segment of viruses was determined which were 

isolated from supernatants collected from co-infected cells or nasal swabs and 

bronchioalveolar fluid samples collected from infected and sentinel animals. Different 

reassortant viruses were identified from co-infected cell lines; however no virus with the 

genotype of pH1N1 was found. Less reassortant viruses were found in the lungs of co-

infected pigs in contrast to those in co-infected cells. Interestingly, only the intact KS07 

was detected from nasal swabs from the second group of sentinel pigs. These results 

demonstrated multiple reassortant events can occur within the lower respiratory tract of 

the pig; however, only a specific gene constellation is able to be shed from the upper 

respiratory tract. However,, in this study it was not possible to generate the pH1N1 

constellation using co-infection with the techniques described above and previously 

(Ma et al., 2010b).   

 

In a collaboration among four institutions, Dr. S. E. Belisle (Department of 

Microbiology and Washington National Primate Research Center, University of 

Washington, Seattle, WA, USA) presented a Systems Biology Approach to 

Understanding Influenza across Species on behalf of her colleague, M. G. Katze (of 

the same Center), W. Ma and J. A. Richt (Dept of Diagnostic Medicine/Pathobiology, 

College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA), T. M. 

Tumpey (Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 

USA) and H. Feldmann (Rocky Mountain Laboratories, Hamilton, MT, USA). She 

began by reflecting on the ability of swine to act as a reservoir for many influenza 

viruses, becoming infected with low mortality, regardless of influenza virus strain. The 

objective of the study was to further understand the porcine response to influenza and to 

compare this response to other animals infected with the same virus.  

To accomplish this objective, they used statistical and functional analysis of 

global gene expression to compare host transcriptional response during acute infection 

by a contemporary H1N1 pandemic influenza virus (A/California/04/2009) in swine, 

non-human primates and mice. Using their data, they compared and contrasted the 

biological pathways most significantly associated with gene expression changes during 

acute infection across these species. Their goal was to leverage data collected in their 

previous studies (Ma et al., 2011; Safronetz et al., 2011) to better understand influenza 
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virus pathogenesis through a cross-species analysis that considered three crucial 

questions: (1) Which genes change over the course of acute infection? (2) What are the 

top functions altered during infection? (3) How does functional response compare 

across the three species?  

 Despite challenges to data integration and interpretation, including the 

differences in transcript representation and annotation on the microarrays for the 

different species, the researchers found notable differences in response to influenza in 

the lungs of the three species. Although similar functional groups of genes changed with 

infection in all three species, the nature of that response was species-specific. Swine 

exhibited an elevated transcriptional response that tapered by resolution of influenza. 

Mice exhibited a decrease in many acute phase and immune response genes quickly 

followed by a steady increase in expression. Host response in macaques was most 

pronounced and maintained over time. In considering the transcription of immune-

related genes in swine, mice and nonhuman primates, they found that although the 

number of immune-related genes changing in each species was similar, the precise 

genes changing were very different, with only 14 immune response genes commonly 

differentially expressed across all three species. This suggested that the nature of 

immune response within each species may be quite different. 

 In response to the perennial question after any scientific experiment, “Where do 

we go from here?” they offered four ideas: (1) Time series analysis could reveal unique 

response kinetics across species, thereby leading to targeted analysis; (2) Data 

integration across multiple data types, including transciptomics, proteomics, miRNA 

and NGS could generate a more complex, multidimensional view of response; (3) As 

annotation of the different species-specific genomes improves, this information could be 

integrated into future analyses, making a better understanding of the biological 

responses to infection possible; and (4) The gathering of this additional information 

could empower more precise analysis on what makes each species uniquely susceptible 

or resistant to influenza. In the firm view of these particular six researchers, studies such 

as this are necessary for a deeper understanding of influenza pathogenesis and 

demonstrate the utility of systems biology in the study of emerging viruses.  

  

5. Hemorrhagic Fever Viruses 

 Three relevant articles on this topic have been published below, highlighting the global 

dimensions of both infection and treatment, no matter where the virus first emerges. The 

need for geographical comparative studies of the emerging hantavirus, Puumala 

hantavirus (PUUV), has already been indicated by Professor Henttonen and his team in 

their presentation summarized above in the opening topic of this Meeting Review. In a 

further investigation into the same hantavirus, Dr. Eckerle and her colleagues have 

presented an article within this Special Supplement entitled Atypical Severe Puumala 

Hantavirus Infection and Virus Sequence Analysis of the Patient and Regional 

Reservoir Host. In this article they focus on the difficulties in the diagnosis and 

treatment of a single patient and performed virus sequence analysis showing regional 

clustering in reservoir and host. In their more wide-ranging conference presentation they 

investigated cytokine expression in a cohort of patients hospitalized with acute severe 

hantavirus infection during an epidemic in Germany in 2010 (cf. Faber et al, 2010). 

Elevated pro-inflammatory cytokines during the early phase of disease compared to 

healthy controls and increase of immunsuppressive TGF-β from early to later phase of 

disease supported the hypothesis of an immune-mediated pathogenesis of Puumala 

hantavirus (Sadeghi et al, 2011). This finding indicates that the immune status of the 

host for old-world hantaviruses plays an important role, not only the virus itself. 
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In a further article published in this Special Supplement, How Ebola Virus 

Counters the Interferon System, A. Kühl and S. Pöhlmann have reviewed which 

components of the innate immune system could be effective against the zoonotic 

transmission of Ebola virus (EBOV) to humans, which results in severe hemorrhagic 

fever and high case-fatality rates. Their focus is on how the interferon (IFN) system, as 

a key innate defense against viral infections, is targeted by distinct EBOV proteins, and 

on how specific effector molecules of the IFN system could form a potent barrier 

against the spread of EBOV in humans.  

Finally, in Lassa Fever in West Africa: Evidence for an Expanded Region of 

Endemicity, Dr. N. Sogoba and his colleagues H. Feldmann and D. Safronetz, have 

stressed the importance of increased surveillance for Lassa virus across West Africa. 

The seven presentations summarized below cover a number of hemorrhagic 

fever viruses. For example, an important example of a highly contagious and life 

threatening hemorrhagic fever virus is Crimean-Congo hemorrhagic fever virus 

(CCHFV), caused by a tick-borne virus of the Bunyaviridae family (Elliott. 1990) First 

recognized in the Crimea in 1944, with an identical virus isolated in the Congo in 1956, 

the incidence and geographical spread of this disease with its high human fatality rate 

have increased significantly in the past ten years. However, the causes of this increase 

are not yet clear (Maltezou and Papa, 2011). In the light of the need to develop new 

therapies and effective, safe vaccines, the next seven research presentations could prove 

to be of considerable significance, not only for CCHFV, but also for the Hendra, Nipah, 

Lujo and Ebola viruses. Although these viruses have certain common features in their 

causes and consequences, each hemorrhagic fever virus needs to be carefully studied as 

a distinct entity.    

 

Dr. R. Rodrigues and her colleagues G. Paranhos-Baccalà, and G. Vernet (all Emerging 

Pathogens Laboratory, Fondation Mérieux, Lyon, France), J.-M. Crance (Virology 

Laboratory, Institut de Recherche Biomédicale des Armées [IRBA], Grenoble, France) 

and C. N. Peyrefitte (both institutions) presented Crimean-Congo Hemorrhagic Fever 

Virus Infects Human Hepatocytes and Induces Apoptosis and IL-8 Secretion. She 

began by explaining that the knowledge of Crimean-Congo hemorrhagic fever virus 

(CCHFV) pathogenesis is improving, as recently new target cells have been identified 

such as antigen presenting cells (Peyrefitte et al., 2010). Moreover, it has already been 

shown, that CCHFV causes liver damage in infected patients and in the animal model 

(Bereczky et al., 2010). The research objectives were to consider: (1) How does 

CCHFV affect hepatocarcinoma cell lines? (2) Is CCHFV able to enter and replicate 

into these cell lines? and (3) Does CCHFV modulate the in vitro cellular response? 

To better understand the CCHFV pathogenesis in liver cells, they analyzed in 

vitro the host response induced after CCHFV infection in Huh7 (unable to produce IFN-

Beta) and Hep-G2 (capable of producing IFN-Beta) cell lines. They noticed that while 

in Huh7, CCHFV infection elicited at day 3 a cytopathogenic effect, no visible effect 

was seen in CCHFV-infected HepG2. This intriguing feature led them to analyse the 

viral parameters expecting a differential cellular response. Both cell lines were shown to 

be permissive to CCHFV and with a high viral yield as monitored by plaque titration 

assay, genomic and anti-genomic strand quantification. These CCHFV- infected 

hepatocarcinoma cell lines induced only IL-8 secretion. In addition, a pro-apoptotic 

effect was observed in Huh7 but not in HepG2. Interestingly, no type-I IFN was 

detected for Hep-G2 during the kinetic study, suggesting a strong inhibition of IFN 

secretion. They concluded that CCHFV does enter and replicate in hepatocytes and that 

hepatocytes could be involved in CCHF pathogenesis associated with antigen 

presenting cells for CCHFV dissemination. While CCHFV did not induce IFN-Beta 
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secretion in hepatocyte cell lines, CCHFV did induce the secretion of IL-1 in hepatocyte 

cell lines. Furthermore, CCHFV induced a higher secretion of IL-8 in the apoptotic 

Huh7 cell line than in the nonapoptotic Hep-G2 cell line. Thus this research indicated 

that IL-8 production and apoptosis seemed to be markers of CCHFV pathogenesis in 

hepatocyte cell lines.  

 

Professor T. W. Geisbert (University of Texas, Medical Branch, Galveston, TX, USA) 

presented an Evaluation of Countermeasures against Hendra and Nipah Viruses in 

Nonhuman Primate Models. He pointed out that the henipaviruses, Hendra virus 

(HeV) and Nipah virus (NiV) are enigmatic emerging pathogens that can cause severe 

and often fatal neurologic and/or respiratory disease in both animals and humans. 

Guinea pigs, hamsters, ferrets, and cats have been evaluated as animal models of human 

HeV infection. A research team led by Professor Geisbert recently evaluated African 

green monkeys as a nonhuman primate model for henipavirus infection and discovered 

that they are the first consistent and highly susceptible nonhuman primate models of 

HeV and NiV infection (Geisbert et al., 2010; Rockx et al, 2010). The severe respiratory 

pathology, neurological disease and generalized vasculitis manifested in both HeV- and 

NiV-infected African green monkeys provides an accurate reflection of what is 

observed in henipavirus-infected humans. These nonhuman primate models were then 

employed to evaluate several post exposure treatments including ribavirin (which did 

not work) and a human anti-henipavirus monoclonal antibody (which was successful).  

 

Dr. M. Faber, with his colleagues B. Dietzschold, J. Li, D. Curtis and C. Arbuzzese (all 

Department of Microbiology and Immunology, Thomas Jefferson University, 

Philadelphia, PA, USA), B. Rockx and H and F. Feldmann (Laboratory of Virology, 

National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA), H. 

Weingartl (National Centre for Foreign Animal Disease, Canadian Food Inspection 

Agency; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, 

Canada) and B. Horvat (INSERM, Lyon, France), considered the Nipah virus (NiV), a 

zoonotic paramyxovirus that can infect multiple species including humans, where it 

causes a lethal encephalopathy. Their research on A Single Immunization with Live-

Attenuated Recombinant Rabies Viruses Expressing the Nipah Recombinant 

Rabies Viruses Expressing the Nipah Virus (NiV) Glycoprotein Causes a Strong 

Anti-NiV Memory Response constructed live-attenuated recombinant rabies viruses 

(RVs) expressing the NiV G protein and tested them for their ability to trigger a primary 

or secondary virus-neutralizing antibody (VNA) response against NiV in mice.  

The research was motivated by the awareness that neutralizing antibodies are 

probably the major effectors against this viral infection. The rationale of using RV 

vectors for the development of a NiV vaccine was four-fold: (1) RV-vectored vaccines 

are not pathogenic regardless of the route of administration or the immune status of the 

host; (2) RV-based vaccines are very efficacious even after a single immunization by 

the oral route; (3) RV-based vaccines have the ability to target macrophages and 

dendritic cells, to induce TH1 T cell response and are capable of inducing long-lasting 

immunity; and (4) Post-exposure prophylaxis using recombinant RV vaccines is very 

effective, even when the CNS is already infected (Faber et al., 2009a; Faber et al., 

2009b). 

 The NiV G gene was inserted into the non-pathogenic RV vectors 

SPBAANGAS or SPBAANGAS-GAS, resulting in SPBAANGAS-NG or the 

double GAS variant SPBAANGAS-NG-GAS, respectively. Further research led to four 

significant conclusions: (1) There are no detectable amounts of NiV G present in 

recombinant NiVG-RV particles; (2) The presence of an NiV G gene does not increase, 
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but rather decreases the pathogenicity of the recombinant viruses; (3) Priming with 

NiVG-RV triggers a strong NiV G-specific memory response which correlates inversely 

with vaccine concentration used for the priming; and (4) a single immunization with 

NiVG-RV is probably sufficient to protect against a NiV challenge infection.  

 

Arenaviruses are rodent-borne bisegmented ambisense RNA viruses, which include 

Lassa fever virus, lymphocytic choriomeningitis (LCM) and Tacaribe viruses. Dr. E. 

Bergeron and his research team, A. K. Chakrabarti, C G. Albariño, L. K. McMullan, B. 

B. Bird, C. F. Spiropoulou and S. T. Nichol (all Viral Pathogens Branch, Centers for 

Disease Control and Prevention, Atlanta, GA, USA) and M. L. Khristova 

(Biotechnology Core Facility Branch, Centers for Disease Control and Prevention) 

presented the Reverse Genetic Generation of Lujo Virus, a Novel and Highly 

Pathogenic Arenavirus. The index case for this acute febrile illness virus was a travel 

agent living on a farm during 2008 in Lusaka, Zambia, who infected a local cleaner, as 

well as a paramedic and a nurse in Johannesburg, South Africa, all of whom died, with 

the paramedic infecting a further nurse who was treated with ribavirin and survived 

(Paweska et al, 2009). The name of the virus originated from the first two letters of the 

two key cities, LUsaka and JOhannesburg. Four of the five infected persons died of 

hemorrhagic fever-like symptoms (Paweska et al, 2009; Briese et al,2009) 

Viral genome sequencing revealed that this virus  differed from other 

arenaviruses by at least 36% and is highly pathogenic, with a case fatality rate (CFR) of 

80% (Paweska et al, 2009; Briese et al, 2009).  In view of the uniqueness and high 

virulence of Lujo virus (LJV), the research team developed a reverse genetics system to 

study the molecular characteristics of this novel arenavirus. This system will facilitate 

studies of LJV biology, development of antiviral screening assays and pathogenesis 

studies in animal models. 

 

T. Cutts (National Microbiology Laboratory, Public Health Agency of Canada, 

Canadian Science Centre for Human and Animal Health, Winnipeg, Manitoba, Canada) 

with his colleagues S. Theriault (Chief, Applied Biosafety Research Program, same 

Centre) and G. Kobinger (Chief, Special Pathogens Program, same Centre) presented 

Cytofix
TM

 Inactivation of VeroE6 Cells Infected with Zaire Ebola Virus (ZEBOV) 

both in vitro and in vivo. First, it was pointed out that removing infected tissues from 

high containment laboratories requires implementation of a number of different 

decontamination techniques to render the organism inert and is subject to flexibility 

according to the laws of the country in which the laboratory is located. According to the 

Canadian Biosafety Guidelines 4th edition, an organism may be removed from 

containment once it has been rendered inert, but no procedure is in place to validate 

these biosafety guidelines, and it is up to individuals to implement the relevant 

guidelines (Public Health Agency of Canada, 2004, p. 28. Chap. 3.1.4). Methods such 

as gamma irradiation, formalin fixation, acetone and methanol permeation, plus the use 

of various other chemical agents are common practices to preserve cellular tissue or 

blood components and to inactivate organisms (Villinger et al., 1999; Elliott et al., 

1982;  Mitchell and McCormick, 1984; Sanchez et al., 2007; Preuss et al., 1997).  Such 

methods still raise questions as to their effectiveness or their redundancy. Furthermore, 

these inactivation steps can lead to the alteration of the target organism possibly 

affecting the qualitative and quantitative results. The focus of the Applied Biosafety 

Research Program was to evaluate and develop technologies and procedures relevant to 

biocontainment in the context of the laboratory, as well as to prevent unintentional and 

intentional release of dangerous organisms into the environment. 
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Using the commercial product, Cytofix/Cytoperm
TM 

from BD Biosciences, this 

research sought to inactivate Vero E6 cells which had been infected with the deadly 

Zaire Ebola Virus (ZEBOV). The aim of the research was to determine the effectiveness 

and duration of Cytofix/Cytoperm for fixing the cellular material infected with ZEBOV. 

The VeroE6 cells were infected with the wild-type ZEBOV and a mouse adapted 

ZEBOV(MAZEBOV) and assayed after a 5 minute and 20 minute exposure to 

Cytofix™ followed by neutralization.  Samples of blood from a non human primate 

infected with ZEBOV were drawn at 7 dpi and assayed for effectiveness in the same 

manner as the in vitro studies with Cytofix™. In addition, Vero E6 cells infected with 

MAZEBOV were treated in the same manner and injected into BALB/c mice to 

compose the in vivo studies. Cytoxicity and neutralization assays were used to 

determine the effect (if any) the treatment had on both the virus and the health of host 

cells.  

Results of the tissue culture TCID50 assay showed that a 5 minute exposure to 

Cytofix™ inactivated a large portion of the cells containing infectious virions, while 

after a 20 minute exposure no detectable levels of virus were observed. Blood samples 

from the non-human primates showed similar results to the cell culture assay having no 

detectable virus from infected cells after 20 minutes of exposure. In vivo studies with 

mice showed that both a 5 minute and 20 minute exposure time to Cytofix™ had a 

100% survival rate after 28 days post infection while the positive controls succumbed 

after 4 to7 dpi. Because laboratories differ in their preferences of technique, the time of 

inactivation also varies. What this research demonstrated was the effectiveness of  a 

quick procedure of 20 minutes for inactivating viruses within cells infected with 

ZEBOV, thereby rendering organisms safe to remove from containment. 

 

The presentation at the Cancun Conference, Functional Analysis of the Ebola Virus 

Glycoprotein in Cell Lines from Potential Reservoir Bat Species  by A. Kühl, K. 

Grinβ, M. Kienne, T. S. Tsegaye (all Institute of Virology, Hanover Medical School, 

Hanover, Germany), M. Hoffmann and G. Herrler (Institute of Virology, University of 

Veterinary Medicine, Hanover), M. Müller and C. Drosten (Institute of Virology, 

University of Bonn Medical Center, Bonn, Germany) and S. Pöhlmann (Institute of 

Virology, Hanover and Department of Infection Biology, German Primate Center, 

Göttingen, Germany) has now been expanded and published in The Journal of 

Infectious Diseases (Kühl et al., 2011). Their focus was on how the EBOV-glycoprotein 

(EBOV-GP) facilitated viral entry and promoted viral release from human cells. They 

compared EBOV-GP interactions with human cells and cells from African fruit bats, 

leading to the finding that GP displayed similar biological properties in human and bat 

cells. The only exception was GP localization, which was to a greater extent 

intracellular in bat cells as compared to human cells. Collectively their results suggested 

that GP interactions with fruit bat and human cells are similar and do not limit EBOV 

tropism for certain bat species.    

 

The presentation by Dr. E. de Wit with her colleagues, V. J. Munster and H. Feldmann 

(all from the Laboratory of Virology, Division of Intramural Research, National 

Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 

MT, USA) and S. Metwally (FAO Reference Center for Vesicular Diseases, US 

Department of Agriculture, Animal and Plant Health Inspection Service, Foreign 

Animal Disease Diagnostic Laboratory, National Veterinary Service Laboratories, Plum 

Island Animal Disease Center, Greenport, NY, USA), Assessment of Rodents as 

Animal Models for Reston Ebolavirus has now been revised and published in The 

Journal of Infectious Diseases (de Wit et al., 2011). Although Reston Ebolavirus 
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(REBOV) has not yet been linked with disease in humans, the presence of antibodies 

against REBOV in people working closely with infected macaques and swine indicates 

that humans can be infected with this virus (Miller et al., 1990; Miranda et al., 1991; 

Barrette et al., 2009). However, research has been hampered by the fact that the only 

available disease model for REBOV to date has been cynomolgus macaques. 

 Seeking new REBOV disease models, the research team assessed various rodent 

models—the Balb/c mouse, Hartley guinea pig, Syrian hamster and STAT1
-/-

 mouse that 

lacked the signal transducer and activator of transcription 1 (Durbin et al., 1996). 

Although virus replication occurred in guinea pigs and hamsters, progression to disease 

was only observed upon inoculation of STAT1
-/-

 mice. Despite certain drawbacks set 

out in the journal article, the STAT1
-/-

 mouse can be used to investigate the determinants 

of differences in pathogenicity in various REBOV strains, as well as to assess 

vaccination and antiviral therapies (de Wit et al., 2011; Barrette et al., 2009; Durbin et 

al., 1996; Miranda et al., 1991; Miller et al., 1990).   

 

6. Emerging Bacterial Diseases 

The unity of human, animal and ecosystem health outlined by Professor Aguirre, as well 

as the interactions among multiple tick-borne pathogens in a natural reservoir host set 

out by Professor Fish and his research team, both summarized in Topic 1 above, 

highlight the necessity of cross-disciplinary collaboration in studying zoonotic bacterial 

diseases (Daszak et al., 2007, pp. 470-471). Such collaboration is especially important 

in studying tick-borne infectious disease, which emerged so extensively in the United 

States during the last three decades of the twentieth century (Paddock and Yabsley, 

2007, p. 290).  

Now, in an article published in this Special Supplement, Beyond Lyme: 

Etiology of Tick-Borne Human Disease with Emphasis on the Southeastern United 

States, Drs. Stomdahl and Hickling have explained that tick distributions are in flux, 

especially in the southeastern United States, requiring health providers to think ‘beyond 

Lyme’ in order to identify the specific tick species that bite humans and the different 

pathogens these ticks carry. In an international context, Drs. Wood and Artsob have set 

out the increasing importance of travel-associated rickettsioses in their article, Spotted 

Fever Group Rickettsiae: A Brief Review and a Canadian Perspective. In a third 

article published in this Special Supplement  Drs. Verma and Stevenson present an 

article on epidemiology of leptospirosis with its one million cases worldwide. In 

Leptospiral Uveitis – There’s More to It Than Meets the Eye! They hypothesize in 

detail about how the eye inflammation uveitis is triggered and stress the impact that 

‘understanding how this bacterium is able to induce this inflammatory process will be a 

key to the better management and prevention of the disease’. This continuum of basic 

research leading to understanding a disease and then to managing that disease and 

finally to preventing it offers a pattern of scientific discovery that is relevant to many 

other emerging zoonotic diseases. 

 

Supported by the work of eight collaborators, L. Joens (University of Arizona), C. 

Parker (US Dept of Agriculture), M. Hook (Texas A & M University) and D. Call, M. 

Hunzicker-Dunn, C. Kang, D. Shah and S. Simasko (all of Washington State 

University), as well as seven graduate students and post-docs, Professor M. E. Konkel 

(School of Molecular Biosciences, Washington State University, Pullman, Washington, 

USA) investigated the behaviour of Campylobacter jejuni. C. jejuni is one of the most 

common causes of bacterial gastroenteritis worldwide, causing some 400 to 500 million 

cases each year. Opening his presentation, The Foodborne Pathogen Campylobacter 

jejuni Exploits Mammalian Host Cell Receptors and Signaling Pathways, Professor 
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Konkel noted that the percent of C. jejuni isolates that are resistant to antibiotics is 

continuing to increase, and that C. jejuni infections are frequently associated with 

serious sequelae, including Guillain-Barré Syndrome. It is well understood that 

infection with C. jejuni is often a consequence of eating foods contaminated with 

undercooked poultry. However, C. jejuni pathogenesis is a highly complex process that 

is dependent on many factors including motility, adherence, cell invasion, protein 

secretion, intracellular survival, and toxin production. Acute illness, characterized by 

the presence of blood and leukocytes in stool samples, is specifically associated with C. 

jejuni invasion of intestinal epithelial cells. Dissecting bacteria-host cell interactions are 

critical to understanding the infection caused by C. jejuni. 

Previous work has shown that maximal invasion of host cells by C. jejuni is 

dependent on synthesis of the C. jejuni CadF and FlpA fibronectin (Fn) binding proteins 

and requires the secreted Campylobacter invasion antigens [Cia(s)] (Larson et al., 

2008). To test the hypothesis that maximal cell invasion requires specific signaling 

events, binding and internalization assays were performed in the presence of numerous 

inhibitors of cell signaling pathways. The research team found that C. jejuni cell 

invasion utilizes components of Focal Complexes (FCs), as invasion is significantly 

inhibited by wortmannin (an inhibitor of PI-3 kinase) and PP2 (a c-Src inhibitor). They 

further demonstrated that a wild-type strain of C. jejuni results in the activation of the 

Rho GTPase Rac1. These observations are consistent with the proposal that C. jejuni 

binding to host cell-associated Fn and secretion of the Cia proteins trigger integrin 

receptor activation, which in turn promotes intracellular signaling and actin cytoskeletal 

rearrangement. Based on these data, they concluded that C. jejuni utilizes a novel 

mechanism to promote host cell invasion. The research findings Professor Konkel 

presented were recently published in Cellular Microbiology (Eucker and Konkel, 2012). 

Simple, fast and specific tests for pathogen identification are essential for 

epidemiological investigation of numerous diseases. Within the field of 

immunodiagnostics, a quantitative determination of either antibody or antigen by 

antigen-antibody interaction can be made by lateral flow tests (also known as a dipstick 

or rapid tests). Dr. E. Baranova and her colleagues P. Solov’ev, N. Kolosova and S. 

Biketov (all State Research Center for Applied Microbiology, Obolensk, Russia) began 

the presentation, Development of Lateral Flow Tests for the Fast Identification of 

Zoonotic Disease Agents, by pointing out that lateral flow (LF) tests can be used in the 

field, as a diagnostic tool that produces results that can be read visually by the naked 

eye within 20 minutes after sample application. The creation of an algorithm for the 

development of an appropriate LF test to identify biopathogens requires the 

development of a target antigen, obtaining specific antibodies (Biketov et.al., 2010) and 

then creating a LF-test formulation to be trial tested. The target antigens must have the 

ability to induce species-specific antibodies, as well as be characterized by surface 

localization with multiple epitope presentation on the surface. The antibodies need to 

have a specificity and sensitivity sufficient for application in the LF detection format, as 

well as the capacity to be preserved after labelling with gold particles and after 

immobilization on a surface.  

Over a period of 22 months, the research team developed and tested in the field 

LF-tests for the detection of Bacillus anthracis which causes anthrax , Yersinia pestis 

which causes bubonic plague and Francisella tularensis which is the causative agent of 

tularaemia (or rabbit fever). All three of these LF-tests have now been made available as 

commercial products and are being used throughout Russia for the rapid identification 

of these dangerous pathogens. 
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Drs. J. D. Trujillo and P. L. Nara (Center for Advanced Host Defences, Immunobiotics 

and Translational Comparative Medicine, Iowa State University, Ames, Iowa, USA) 

have developed and validated a new approach to the diagnosis of infectious agents. Dr. 

Trujillo explained that they are employing novel Polymerase Chain Reaction (PCR) 

based methods for the detection and differentiation of current and emergent 

Mycoplasma species relevant to human and animal medicine and biodefense.  Their 

presentation, titled Novel SYBR
®
 Real-time PCR Assay for Detection and 

Differentiation of Mycoplasma Species in Biological Samples From Various Hosts, 

began by explaining the relevance of Mycoplasma species, which are endemic, strict or 

opportunistic pathogens in human and animal medicine. Moreover, Mycoplasma species 

are important re-emerging pathogens and foreign animal diseases. Importantly, 

Mycoplasma species are difficult to culture or are un-culturable, and thus are difficult to 

impossible to detect by conventional diagnostic methods. Moreover, current PCR 

methods have limited breath of species detection and differentiation, requiring the use 

of species specific assays which are costly and time consuming. Their goal was to 

develop a pilot Mycoplasma genus diagnostic assay to validate the novel application of 

High Resolution Melt (HRM) methodology for rapid, sensitive and cost effective 

detection and differentiation of various pathogenic mycoplasma species. 

Dr. Trujillo presented the validation and utilization of SYBR
®
 green dye in real-

time PCR (qPCR) Mycoplasma detection and differentiation assay (PanMYCO qPCR). 

This PCR assay utilizes primers specific for this genus (modified from S. C. Baird et al., 

1999). This PCR assay results in the generation of small DNA fragments of various 

base pair lengths called PCR amplicons. Each amplicon has a melt temperature (TM) 

that is determined following qPCR.  Sequence of amplicon representative of the 

Mycoplasma species present, defines the melt temperature (TM) and allows for the use 

of amplicons TM in species identification with limited resolution and excellent 

sensitivity. The PanMYCO qPCR assay has similar sensitivity to a conventional nested 

PCR assay for Mycoplasma bovis with a linear detection range of one colony forming 

unit (Trujillo et al, 2009). 

Additional work presented described increasing species resolution of this assay, 

by defining unique melt profiles for each Mycoplasma species amplicon utilizing 

Precision Melt software from Biorad, CA, USA to perform HRM analysis. Greater than 

30 different species of Mycoplasma found in bovine, caprine, ovine, avian and porcine 

hosts have been characterized with the PanMYCO qPCR and HRM analysis. 

Occasionally, this testing has resulted in the detection of multiple species in a single 

sample or discovery of novel or emergent Mycoplasma species. This data analysis 

method allows for the sensitive detection and rapid differentiation of numerous 

Mycoplasma species in many different hosts.  

Dr. Trujillo concluded that this novel real-time PCR assay can detect and 

potentially differentiate all known Mycoplasma species. Moreover, this presentation 

demonstrated the novel use of genus specific SYBR green PCR and HRM analysis for 

the detection, differentiation and discovery of medically important pathogens.  Several 

additional translational research projects have been launched to demonstrate the 

importance and utility of the PanMYCO qPCR assay in the context of infectious disease 

surveillance. One translational research project focuses on validation of this novel 

molecular methodology for field detection assays.  

 

7. Outbreak Responses to Zoonotic Diseases 

There is increasing awareness of the need for improved laboratory investigation, risk 

assessment, contingency planning and simulation exercises in order to respond 
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effectively to zoonotic diseases (Lipkin, 2008; Westergaard, 2008a and 2008b; Escorcia 

et al., 2012). In view of  the need to research into and respond to so many emerging 

zoonoses, it is relevant to note the four-fold classification of emerging zoonoses 

proposed earlier by Silvio Pitlik: Type 1: from wild animals to humans (Hanta); Type 

1+: from wild animals to humans, with further human-to-human transmission (AIDS); 

Type 2: from wild animals to domestic animals to humans (Avian flu); and Type 2+: 

from wild animals to domestic animals to humans, with further human-to-human 

transmission (SARS) (R. E. Kahn et al., p. 410, 2009). Confronting outbreaks of these 

emerging zoonoses is often possible with an imaginative combination of laboratory 

investigation and extensive fieldwork (Borchert et al., 2011; Robinson, 2011).  

Three distinctive articles appear below on outbreak responses to zoonotic 

diseases, highlighting the importance of linking together basic research, practical action 

and an integrated One Health-oriented approach. In Virus-like Particle-based 

Countermeasures against Rift Valley Fever Virus, Dr R. Koukuntla and his 

colleagues Dr. R. B. Mandell and Dr. R. Flick have outlined their pioneering work to 

create, develop and produce a virus-like particle (VLP)-based vaccine against Rift 

Valley fever virus (RVFV)—a dangerous arbovirus for which there is at present no US 

Food and Drug Administration (FDA) or US Department of Agriculture (USDA) 

approved vaccine. In Flexibility of Mobile Laboratory Unit in Support of Patient 

Management during the 2007 Ebola Zaire Outbreak in Democratic Republic of 

Congo, Dr. A. Grolla and nine co-authors from eight different institutions in five 

different countries have explained how two mobile laboratories were set up and capable 

of running within less than 24 hours of arrival, providing safe, accurate, rapid and 

reliable diagnostic services as the Ebola Zaire outbreak began in the Democratic 

Republic of the Congo. Finally, in Emerging and Exotic Zoonotic Disease 

Preparedness and Response in the United States: Coordination of the Animal 

Health Component, Dr. R. L. Levings has set out the integrated approach of 

Emergency Management and Diagnostics, Veterinary Services, Animal and Plant 

Health Inspection Service, United States Department of Agriculture in the prevention 

of, the preparedness for, the response to and the recovery from a zoonotic disease 

outbreak. In all three of these areas—basic research, practical action and an integrated 

One Health-oriented approach—much has been achieved in recent years, but much also 

remains to be achieved as soon as possible. Even when those diseases are not 

transmitted to humans there are substantive challenges, as highlighted in the next case 

study by Woods on combating brucellosis in cattle in Zimbabwe.   

 

In a practical, problem-oriented presentation, Dr. P. S. A. Woods (Veterinary Public 

Health Section, Faculty of Veterinary Science, University of  Pretoria, Onderstepoort, 

South Africa and University of Reading) with  R. S. Beardsley (Pharmaceutical Health 

Services Research, School of Pharmacy, University of Maryland, Baltimore, Maryland, 

USA) and N. M. Taylor (Veterinary Epidemiology and Economics Unit, School of 

Agriculture, Policy and Development, University of Reading, Reading, United 

Kingdom)  asked Can We Increase Farmers’ Perception of Their Brucellosis 

Susceptibility to Improve Adoption of Preventive Behaviors Amongst Small-Scale 

Dairy Farmers in Zimbabwe? She explained the background to the problem, 

presented a model that was used to develop a strategy to confront the disease, and then 

set out the results and recommendations of the research team. 

Brucellosis is an extremely infectious bacterium which causes abortion in cows, 

different syndromes in other animal species and malaria-like undulant fever, arthritis, 

depression and epididymitis in people. However, it had been controlled in Zimbabwe 

until 2001 when financial constraints forced the government veterinary services to 
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curtail disease surveillance and discontinue free vaccinations. Small-scale farmers did 

not seek vaccination from other sources, partly because they were unaware of the 

necessity of vaccination; and also at that time brucellosis was absent from small-scale 

farming areas. However, uncontrolled cattle movements from 2000 to 2009 linked to 

invasions of large-scale farms resulted in dispersal of possibly brucella-positive cattle 

and movement of the disease into small-scale herds. The result was that brucellosis 

became a potential problem in these herds and now presents a serious zoonotic threat. 

Preventing brucellosis requires movement control to stop brucella-positive cattle 

entering an area, as well as live vaccine for female calves. Although there is no human 

to human spread of the disease, it is essential that people do not handle new-born calves 

or abortions from brucella-positive cows, nor drink unpasteurized milk from brucella-

positive cows (Arimi et al., 2005). In essence, reducing the risk of brucellosis requires 

that farmers adopt appropriate preventive behaviors, with these control efforts and 

changes in behavior being community-directed in order to be sustainable. It was this 

stress upon community direction that formed the basis for funding by the Wellcome 

Trust to investigate the hypothesis that the level of a farmer’s knowledge about 

brucellosis would influence subsequent preventive behaviour. The approach, based 

partly on  the ‘Health Belief Model’ (Rosenstock et al., 1988) was grounded in the 

expectation that each small-scale farmer would make health behavior choices according 

to individual perceptions about the disease and personal beliefs about their abilities and 

the costs required to change the risks of their cattle and families acquiring the disease. 

In this project the independent variable was the level of an individual farmer’s 

knowledge about brucellosis, while the dependent variables were two key preventive 

behaviors—decreasing cattle disease by calfhood vaccination and preventing zoonotic 

disease by milk pasteurization.  

 The research was carried out in partnership with a national network of small-

scale dairy cooperatives with all activities conducted with existing local personnel. The 

aim was to tailor the educational program to the initial knowledge or awareness of each 

community of farmers, recognizing the considerable difference in knowledge levels 

between and within communities. Local teams, not outsiders, developed appropriate 

educational materials, targeting those with the lowest levels of knowledge. Completed 

survey questionnaires indicated a significant relationship between the initial level of 

farmers’ knowledge about brucellosis and their calf brucellosis vaccination practices.  

The range of brucellosis knowledge among some 210 small-scale farmers in Southern 

Zimbabwe was considerable, with 38 percent of farmers being unaware of the disease, 

12 percent having limited knowledge and 50 per cent having good knowledge. 

However, even amongst those farmers with a relatively high level of knowledge, 78 per 

cent of farmers had not vaccinated their calves at the time of the survey.  Furthermore, 

there was a disappointingly low uptake of milk boiling despite a significant increase in 

knowledge about raw milk as a mode of infection for humans. Although the information 

sessions did increase farmers’ awareness of the dangers of zoonotic brucellosis, an 

exaggerated perception of the effectiveness of calf vaccination decreased the likelihood 

of safe milk practices. This outcome indicated the importance of reaching the women 

who were responsible for milk and food preparation. 

 Ongoing research is investigating if increasing the role of nurses and 

environmental health technicians to emphasize human infection and to reach different 

family members, within a research paradigm which combined veterinary and human 

medicine would increase the uptake of milk hygiene practices. 

 

8. Food-borne Zoonotic Diseases 



 25 

There is increasing awareness of the need to balance transparency with carefully 

designed information disclosure strategies in the face of sudden outbreaks of food-borne 

diseases (National Research Council, 2011; Taylor, 2011). Both consumers and 

producers must be rapidly informed of any significant dangers with specific food 

products; however, considerable misinformation can be spread if laboratory results are 

incomplete or inconclusive (Palm et al., 2012). Recent experience with E.coli-infected 

sprouts in Germany and listeria-infected cantaloupes the United States has highlighted 

the difficulties in identifying the original source of a disease outbreak, as well as the 

swiftness with which an unexpected food-borne disease can cause sickness and death 

(Blaser, 2011; Buchholz et al., 2011; Frank et al, 2011; Armour, 2011). It should be 

noted that that there was no easily identified zoonotic link in either of these two food-

borne diseases derived from bacteria, which killed 29 people in the United States and 50 

throughout Europe during 2011; however, as Professor C. Kastner points out below, a 

significant number of these food-borne diseases do have a zoonotic origin (Parker et al., 

2011). 

 Two articles linked to this topic are published in this Special Supplement. First, 

there is Emerging Antimicrobial Resistance in Commensal E. Coli with Public 

Health Relevance by  Dr. A. Käsbohrer and her colleagues. Their aim was to assess the 

prevalence of and trends in antimicrobial resistance through active monitoring programs 

along the food production chains for poultry, pigs and cattle, as well as to collect 

isolates for resistance testing and then select certain isolates for further phenotypic and 

genotypic characterisation. The research team found alarming rates of resistance to 

antimicrobials in zoonotic bacteria and commensals, as set out in their article, which 

could compromise the effective treatment of human infections. This work provides a 

basis on which to improve both risk assessment and risk mitigation strategies in the face 

of the increasing antimicrobial resistance to zoonotic bacteria and parasitic organisms 

within both humans and animals. Second, in American Trypanosomiasis Infection in 

Fattening Pigs from the South-East of Mexico, M. Jiménz-Coello and her colleagues 

have investigated the extent to which the protozoa Trypanosoma cruzi (T. cruzi) is 

presenting in fattening pigs in Yucatan, Mexico, threatening parasitic infections in 

animals destined for human consumption.  

 

Tackling the question of how to refine national and international strategies to combat 

food-borne zoonotic diseases, Professor C. Kastner (Food Science Institute, Kansas 

State University, Manhattan, Kansas, USA) considered the public health and economic 

impact of Food-borne Zoonotic Diseases. He began by noting that each year in the 

United States, according to statistics from the Centers for Disease Control, 48 million 

people become sick from food-borne diseases, 128,000 are hospitalised, and 3,000 die. 

A significant portion of these diseases have a zoonotic origin, with extensive product 

recalls and domestic as well as international trade disruptions (Fung et al., 2001). 

Therefore, more than 20 years ago the US Department of Agriculture established a Food 

Safety Consortium (2011) which focuses on food-borne zoonotic diseases involving 

beef in Kansas, pork in Iowa and poultry in Arkansas. The continuing aim of that 

consortium is to develop long-term control strategies which identify the critical control 

points and control technologies, as well as short-term strategies to address incidental 

contamination, whether accidental or intentional. 

 The US livestock industry in general and Kansas in particular are vulnerable to 

food-borne zoonotic diseases. For example, in Kansas, sources of contamination include 

feed, feedlots (which vary in size from 1,000 to 150,000 head per lot) and packing 

plants (which vary in size from 3,000 to more than 5,000 head per day per plant). Beef 

processing points where mixing of different ingredients occurs are the most critical 
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points for both incidental and intentional contamination. In the light of these challenges, 

a Biosafety Level 3 research facility, the Biosecurity Research Institute (2011) has been 

built on the Kansas State University campus, to evaluate strategies to detect and control 

food-borne zoonotic diseases from production through processing.  

Furthermore, in Minneapolis, Minnesota, NCFPD (National Center for Food  

Production Defense, 2011) has been operational since 2004 as a Department of 

Homeland Security Center of Excellence. NCFPD has adopted a systems approach 

whose goals include to: (1) ensure significant improvements in supply chain security, 

preparedness and resiliency; (2) develop rapid and accurate methods to detect incidents 

of contamination and to identify the specific agent(s) involved; (3) apply strategies to 

reduce the risk of food-borne illness due to intentional contamination in the food supply 

chain and to develop the tools to facilitate recovery from contamination incidents; (4) 

deliver appropriate and credible risk communication messages to the public; and (5) 

develop and deliver high-quality education and training programs to develop a cadre of 

professionals equipped to deal with future threats to the food system. These research 

centers are essential to minimize the threat of food-borne zoonotic diseases. 

 

T. Cutts (National Microbiology Laboratory, Public Health Agency of Canada, 

Canadian Science Centre for Human and Animal Health, Winnipeg, Manitoba, Canada)  

presented Comparative Inactivation Studies of Listeria Monocytogenes at Room and 

Refrigeration Temperatures on behalf of a research team which included B. 

Carruthers, C.-L. Cross, S. Theriault (Chief, Applied Biosafety Research Program, same 

center) and himself. Listeria monocytogenes, a non-sporulating, gram-positive bacillus, 

is found chiefly in ruminants, but can affect all species and causes listeriosis, an 

infrequent but serious illness that affects the central nervous system of humans and 

domestic animals (Bortolussi, 2008; Chan and Weidmann, 2009). Listeriosis can be 

acquired from the consumption of contaminated foods and has an incubation period 

ranging from 2 to 70 days (Bortolussi, 2008; Chan and Weidmann, 2009). Because of 

this variable incubation period and the fact that listeriosis leads to a mortality rate of 20 

to 30 percent, the Applied Biosafety Research Program at the National Microbiology 

Laboratory of The Public Health Agency of Canada considered the significance of 

proper decontamination of listeria in food processing environments (Chan and 

Weidmann, 2009). The importance of this work is indicated by the fact that somewhere 

from 1 to 10 percent of ready-to-eat foods are thought to be contaminated with listeria 

(Health Canada, 2004). 

Recently, Listeria monocytogenes has gained notoriety because of its ability to 

grow at the low temperatures, high salt and low pH used in food processing plants 

(Bortolussi, 2008). Therefore, a study was undertaken to determine the bactericidal 

efficacy of various liquid disinfectants and the effect that low temperatures have on the 

ability of these disinfectants to inactivate L. monocytogenes at conditions found in food 

processing plants. 

At both room and refrigeration temperature (40), ethanol, Javex, SU393 and 

Peracetic acid (PAA) products outperformed all others. Surprisingly, there was no 

significant variation in performance at room temperature compared with refrigeration 

temperature. However, since some organisms undergo changes during a temperature 

shift, it is crucial to test each disinfectant at the temperature at which it will be 

employed. Bleach was found to be effective but is toxic, corrosive and residue forming, 

while the PAA and ethanol compounds do not form residues and are not corrosive. As a 

result of these studies major Canadian food processing plants have changed their 

decontamination procedures and are no longer using Quaternary Ammonium 

Compounds (Quats), which were previously used extensively. Positive relations have 
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been built up between companies and laboratories, leading to more relevant laboratory 

studies and industrial applications (Public Health Agency of Canada, 2012). 

 

9. Prion Diseases 

A prion (proteinaceous infectious particle) has been defined as a ‘malformed version of 

a normal cellular protein which apparently “replicates” by recruiting normal proteins to 

adopt its form, [thus becoming] capable of infecting other cells of the same, or a 

different organism’ (Thain and Hickman, 2004, p. 573; Prusiner, 2003). Although two 

Nobel Prizes in Medicine have been awarded for prion research, to Carleton Gajusek in 

1966 and to Stanley Prusiner in 1997, the precise nature of the infectious agent remains 

unclear to such an extent that controversy continues about whether a prion is solely 

protein (Brooks, 2011, pp. 75-100). Whatever the cause, prion diseases are fatal chronic 

neurological diseases that affect the brains and nervous systems of many mammals, 

including humans (Imran and Mahmood, 2011).   

Prions can be detected in tissues by a number of research techniques, including 

infective bioassay, animal inoculation, Western blot and immunochemistry. It is clear 

that prions can cause spongiform encephalopathies within both humans and animals 

(e.g. Creutzfeldt-Jakob disease, kuru, scrapie, transmissible mink encephalopathy, feline 

spongiform encephalopathy, and bovine spongiform encephalopathy) (Blood et al., 

2007, p. 1456). Summaries of the three presentations below offer further insights into 

the nature of prion diseases. 

 

In Prion Diseases, Professor J. J. Badiola and Dr. C. Akin (University of Zaragoza, 

Zaragoza, Spain) focused on the 1986 outbreak of bovine spongiform encephalopathy 

(BSE) (“mad cow disease”) in the United Kingdom, which led to a better understanding 

of the epidemiology and molecular characteristics of the disease. Epidemic BSE 

affected mainly the United Kingdom, with a total of 184,615 positive animals compared 

to 5,765 in all other member states of the European Union (OIE, 2012). Control and 

eradication of Transmissible spongiform encephalopathies (TSEs) became a priority, 

not only in Europe, but throughout the world. 

 In 2000, a reinforcement of the passive surveillance program and the 

establishment of an active one were established by the European Commission for all the 

European Union member states (European Commission, 2001). Passive surveillance, 

focused on animals with clinical signs of the disease, and active surveillance was carried 

out in the following target groups: healthy slaughtered; fallen stock; emergency 

slaughtered; and animals culled under BSE eradication. Apart from these measures, 

specific risk materials (e.g. tonsils, intestines, spleen, spinal cord and skull, including 

the brain and eyes) were defined and prohibited from being included in the human food 

chain. Moreover, a banning of all meat and bone meal for animal feed was established 

(European Commission, 2009).  

The result of these powerful eradication measures has been a rapidly decreasing 

number of new BSE cases, with less than 50 cases detected worldwide in 2010, 45 of 

which were in the European Union (OIE, 2012). The impressive containment of BSE in 

the United Kingdom from 35,090 reported cases in 1993 to 11 in 2010 is testimony to 

the determination with which scientists, politicians, civil servants and farmers have 

worked together to bring the disease under control. 

 

Professor C. I. Lasmézas (Dept of Infectology, The Scripps Research Institute, Scripps, 

Florida, USA) began her presentation, Zoonotic Potential of New Animal Prion 

Diseases: Assessment in Non-Human Primates, by noting that the first demonstration 

of the transmissibility of a prion disease to Non-Human Primates (NHPs) was made in 
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1966 by Carleton Gajdusek when he transmitted kuru to chimpanzees. Since then, 

animal and human prion diseases have been transmitted to a range of NHPs. 

Cynomolgus macaques have shown the highest selectivity with regards to the prion 

strain by which they can be infected and therefore seem to be the species of choice to 

assess the risk that any given animal prion strain can infectibe pathogenic for humans 

(Lasmézas, 1996).  

 Prions were thought to be very difficult to transmit from one species to another; 

however, the experience of studying scrapie highlights the difficulties inherent in 

studying prion diseases in the lab. Scrapie had been transmitted orally to other 

ruminants (goats) but only intracerebral inoculations had successfully transmitted 

scrapie to monkey, mouse or mink. However, the oral transmission of bovine 

spongiform encephalopathy (BSE) to domestic cats in 1990 forced a revision of this 

earlier belief. Transmissions of BSE have now occurred orally to sheep, goat, monkey, 

mink, cheetah, puma, cat and mouse. Intracerebral transmission of BSE has also 

occurred to pig. Furthermore, intraspecies oral transmission of BSE has taken place 

within numerous species— monkey, mink, sheep, goat, cow, hamster and mouse. vCJD 

(variant Creutzfeldt-Jakob Disease) is a new human disease, which was caused by 

eating ruminant-derived food products contaminated with BSE. vCJD poses a public 

health problem because of the absence of preclinical diagnostic test, the long incubation 

periods of prion diseases in humans (possibly extending up to 50 years) and the 

transmissibility of the disease by blood transfusion. 

The research team at the French Commissariat a l’Energie Atomique (CEA) 

demonstrated that bovine spongiform encephalopathy (BSE) was transmissible to 

macaques within 3 years with a 100% infection rate and caused a disease 

indistinguishable from the human variant of Creutzfeldt-Jakob disease (Lasmézas et al., 

1996). This provided a model to study carefully the peripheral pathogenesis of vCJD, 

the oral infectious dose of BSE, and evaluate the risk of human-to-human transmission 

of vCJD by blood transfusion (Herzog et al., 2004). Further, the research team used the 

macaque model to assess the zoonotic potential of emerging forms of BSE called L-or 

H-type. The L-type BSE presents with higher pathogenicity to macaques than classical 

BSE (Comoy et al, 2008). Therefore, continued precautionary measures remain 

necessary to protect the human food chain. Experiments are ongoing at the National 

Institute of Allergy and Infectious Disease, Hamilton, Montana, to assess the risk linked 

to chronic wasting disease that is spreading throughout the USA. The closing 

acknowledgements of Professor Lasmézas to 35 other researchers indicated both the 

complexity and importance of continuing work in prion diseases. Furthermore, since the 

Cancun Meeting further important research has been published (Hamir et al, 2011).  

 

Infectivity distribution studies of animals infected with BSE prions animals are a matter 

of considerable importance in seeking to elucidate the route of infectious prions from 

the gut to the central nervous system (CNS) in preclinical infected animals. Prof M. H. 

Groschup and his colleagues, A. Balkema-Buschmann, M. Kaatz, U. Ziegler and C. 

Hoffmann (all Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-

Institut, Greifswald-Insel Riems, Germany) along with A. Oelschlegel (Scripps Institute 

Florida, Jupiter, Florida, USA) and L. McIntyre (University of Calgary, Calgary, 

Canada) investigated the Early Spread of BSE Prions from the Gut via the 

Peripheral Nervous System to the Brain. There are a number of open questions about 

this lethal journey from the gut to the brain, including where in the gut the disease 

begins, the initial steps of the neuronal BSE pathogenesis, the ascension of BSE prions 

to the brain, the haematogenous spread and the centrifugal contamination of the 

periphery (Buschmann and Groschup, 2005; Hoffmann et al., 2007). The scale of the 
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research task was indicated by the fact that 1400 samples were collected from  per 

animal autopsy, leading to some 200,000 frozen samples collected and archived at the 

Friedrich-Loeffler-Institut. 

 Tissue samples were collected from the gut, the central and autonomous nervous 

system (ANS) of the challenged bovines and then examined for the presence of 

pathological prion proteins (PrP
Sc

). There was some variation among different animals. 

However, a distinct accumulation of PrP
Sc

 was observed in the distal ileum, confined to 

follicles and/or the enteric nervous system, in almost all animals (Hoffmann et al., 

2011). BSE prions were found in the sympathetic nervous system starting from 16 

months post inoculation (mpi) on as well as in the parasympathetic nervous system from 

20 mpi on (Kaatz et al., 2012). A clear dissociation of prion infectivity and detectable 

PrP
Sc

 deposition was obvious in tongue (Balkema-Buschmann et. al., 2011). The earliest 

presence of infectivity in the brainstem was detected at 24 mpi, while PrP
Sc

-

accumulation was detected first after 28 mpi. In summary, these results deciphered for 

the first time the centripetal spread of BSE prions along the ANS to the CNS starting 

already half way during the incubation period. BSE prions spread in cattle from the gut 

to the brain along the sympathetic, parasympathetic and spinal cord routes, possibly in 

that order of importance. Spinal cord involvement may even not be necessary at all, but 

BSE infectivity in the form of PrP
Sc

 spills over into the periphery already in the pre-

clinical phase.  

 

10. Modeling and Prediction of Emergence of Zoonoses 

The modeling and prediction of emerging zoonoses is a fast growing field of 

considerable complexity. Of the five papers relevant to this topic, two have been 

published in full below in this Special Supplement. Dr. G. Zanella and her colleagues 

consider Modelling Transmission of Bovine Tuberculosis in Red Deer and Wild 

Boar in Normandy, France. Their mathematical model of the Mycobacterium bovis 

infection within and between species takes into account the transmission of M. bovis 

through infected offal—the viscera of animals killed by hunters and left behind. When 

an animal was hunted in the Brotonne Forest in Normandy prior to 2002 it was 

eviscerated in situ and only the carcass taken away, with the raw viscera left behind. 

Since 2002, offal disposal has been required in Brotonne forest ; however, the 

regulation has not always been observed by hunters  (Unpublished correspondence with 

G. Zanella, December 16-17, 2011)   An important benefit of mathematical modelling is 

that it permits consideration of all the elements involved in disease transmission within 

a population, thereby complementing field data, as well as testing the effects of control 

measures. Thus the direct transmission of the M. bovis infection within the red deer and 

wild boar populations can be distinguished from indirect transmission through 

contaminated offal. The model indicates that offal destruction is the key factor in 

infection control for both red deer and wild boar. The authors conclude that, in 

principle, the structure of this model is relevant to situations where dead animals play an 

important role in disease transmission between two or more species.  

 

In a further article published in this Special Supplement, Constructing Ecological 

Networks: A Tool to Infer Risk of Transmission and Dispersal of Leishmaniasis, 

Dr. C. González-Salazar and Professor C. Stephens set out the role of ecological 

networks as a powerful tool for understanding and visualizing inter-species ecological 

and evolutionary interactions. Taking the example of leishmaniasis in Mexico, they 

show that such networks can be used not only to understand potential ecological 

interactions between species involved in the transmission of the disease, but also to 

identify the potential role of the environment in disease transmission and dispersal. 
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Strikingly, they show how potential interactions can be inferred from geographic data, 

rather than by direct observation. Their findings have led to the prediction of additional 

reservoirs in Mexico of many new species, including bats and squirrels. The resulting 

model can be used to understand and map potential transmission risk, as well as 

construct risk scenarios for the dispersal of leishmaniasis from one geographic region to 

another. Such a risk assessment tool for leishmaniasis will be especially useful in the 

light of the Bill and Melinda Gates Foundation decision in January 2012 to join with 13 

major pharmaceutical companies and the World Health Organization in targeting 

leishmaniasis as one of the neglected tropical diseases to receive improved drugs, 

diagnostics, vector control strategies and vaccines (Bill and Melinda Gates Foundation, 

2012; Boseley, 2012). However, the possibility of new reservoirs suggests it is hard to 

imagine that Leishmaniasis can be completely eradicated. Nevertheless, it is 

increasingly clear that leishmaniasis has a disturbing capacity to jump from species to 

species, so efforts to control the disease must be given a high priority (Unpublished 

correspondence with C. Stephens, February 1, 2012; cf. Flanagan et al, 2011). 

 

It is difficult to model and predict the distribution and impact of a new emerging virus. 

For example, the emergence in November 2011 in Europe of a midge-borne virus 

member of the Bunyaviridae family, named Schmallenberg virus after the location in 

Germany where it was first detected, has caused serious birth defects in lambs, goats 

and cattle (ECDPC, 2011). Scientists, farmers, veterinarians, public health officials and 

consumers are all confronted with the uncertainty inherent in facing a new animal 

pathogen (Farmers Weekly, 2012). Appropriately, at the same time as this new virus has 

emerged, the Animal Health and Veterinary Laboratories Agency (AHVLA) has set up 

a new independent advisory group to evaluate veterinary surveillance in England and 

Wales, although their original intent was in part to consider funding reductions  

(Trickett, 2012). 

 

Modeling risk factors for zoonotic influenza infections is challenging because 

the infections are often rare; the laboratory assays are often difficult and 

imprecise; and the most definitive studies require intensive resources. This was the view 

of Professor G. C. Gray (Emerging Pathogens Institute and College of Public Health 

and Health Professions, University of Florida, Gainesville, Florida, USA) in his 

presentation, Modeling Risk Factors for Zoonotic Influenza Infections in Man: 

Challenges and Strategies for Success. In particular, serologic detections of these 

infections in humans may be confounded by cross-reacting antibody, waning antibody 

from the infection of interest, inaccurate matching of the enzootic pathogen and the 

laboratory strain, laboratory errors, and weakly powered statistical comparisons.  

 The underlying question which Professor Gray and his research team is tackling 

is: Which human, animal and environmental factors predict disease? These three factors 

can be viewed as a Venn diagram with its intricate interactions. Like understanding 

cardiovascular disease, how a person acquires a zoonotic influenza infection is a 

complex process, and predictive laboratory assays are imprecise. For example, with 

avian influenza viruses (especially H5N1, popularly known as ‘Bird Flu’), poultry 

veterinarians, turkey workers, hunters and people without indoor plumbing may be at 

increased risk of AIV infection but infections are rare. Subclinical or mild infections do 

occur; and occasionally AIV causes severe disease in persons exposed to sick birds. 

Although AIV transmission from human-to-human seems rare, further cohort studies 

and more sensitive serological assays are needed.  

A basic scientist often tests hypotheses by: (1) carefully setting up an 

experimental setting; (2) isolating confounding factors; and (3) looking for statistically 
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significant associations with an outcome.  Such a process is not possible for a number of 

emerging disease problems such as human infections with swine influenza virus (SIV).  

Experimental studies are not possible.  Hence, epidemiologists must perform 

observational studies of people most likely to be infected with SIV and by looking at 

possible risk factor associations, infer causality.  One must first determine settings 

where the prevalence of SIV in expected to be high and then study those workers.  For 

example, SIVs are often endemic in large-scale modern production facilities. Risk 

factors for sow-herd SIV seropositivity involve pig density, whether there is an external 

source of breeding pigs, the total animals on the site and the closeness of barns. 

Similarly, risks factors for finisher-herd SIV positivity must be considered—the number 

of SIV positive sows, size of herd, pig farm density and farrow-to-finish type of farm 

(Poljak et al., 2008). However, SIV surveillance in pigs is largely passive and voluntary, 

so recognizing which pig workers to study is a challenge.  Detection of SIV infections 

in man often requires a sentinel event (e.g. human illness with pig exposure or sick 

pigs).  As pigs do not always have clinical signs of novel virus infection; and often there 

is no compensation system to protect pig farmers, the pork industry is reluctant to 

permit the study of their workers for SIV infection (Gray and Baker, 2011). Therefore, 

these observational studies are currently very difficult. 

 Professor Gray concluded by pointing out that although there are numerous 

challenges in conducting epidemiological studies for zoonotic influenza, there are six 

substantive ways to control confounding variables: (1) design every study carefully; (2) 

use non-animal-exposed controls; (3) employ validated laboratory assay using zoonotic 

influenza strains; (4) use multivariate modeling to examine cross-reacting serologic 

responses due to human viruses and vaccines; (5) consider proportional odds modeling; 

and (6) consider employing a second unique serologic test (See GPL, 2012).  

 

With the support of 26 co-authors from 21 different institutions, Dr. K. J. Linthicum 

(United States Department of Agriculture, Agricultural Research Service, Center for 

Medical, Agricultural & Veterinary Entomology, Gainesville, FL, USA) presented two 

case studies about Forecasting Emerging Vector-Borne Diseases. Dr. Linthicum 

began by pointing out that global climate variability, often linked to El Niño conditions, 

can be used to forecast emerging vector-borne disease spread in local areas (Linthicum 

et al., 1999). These forecasts are possible because specific pathogens, their vectors, and 

hosts are sensitive to temperature, moisture, and other ambient environmental 

conditions. With consistent and reliable satellite observations, global sea temperatures, 

climate and vegetation can be observed. 

 First, temperature plays a major role in its impact on Aides aegypti mosquitoes 

transmitting dengue hemorrhagic fever virus in Southeast Asia (Linthicum et al., 2008) 

and possibly also on how Ae. aegypti transmits chikungunya virus in Africa and Asia 

(Anyamba et al., 2012), as well as on how Anopheles species mosquitoes transmit P. 

vivax malaria in the Republic of Korea. Vectorial competence is dependent upon the 

Extrinsic Incubation (EI) period in the mosquito vector. The EI represents the time from 

ingestion of the virus while feeding on a viremic host to the virus arriving in the 

salivary glands. The shorter the EI period, which occurs during higher ambient 

temperatures, the greater the vectorial competence (Garrett-Jones and Shidrawi, 1969). 

If data are available for a specific local area on the daily human-biting rate (ha) of the 

mosquitoes, the daily rate of blood feeding (a) and the length of the EI cycle (n), it is 

possible to calculate vectorial capacity (Rattanarithikul et al., 1996).  

Second, accurate measurements and understanding of how exceptionally heavy 

rainfall and flooding affects Aides and Culex mosquitoes and the introduction of virus 

infected mosquitoes into susceptible vertebrate hosts enables forecasts to be made about 
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when and where Rift Valley fever (RVF) will develop in sub-Saharan Africa and 

Middle East (Anyamba et al., 2009). Outbreaks of Rift Valley Fever are known to 

follow periods of widespread and heavy rainfall associated with the development of a 

strong inter-tropical convergence zone over Eastern Africa (Davies et al., 1985). During 

periods of elevated transmission there is a significantly increased risk of globalization 

of these and other arboviruses; however, the forecasting methods described provide 2.5 

to 5 months early warning before an outbreak and provide ample time for disease 

mitigation before the first cases appear  (Anyamba et al., 2010).  

Furthermore, the emergence and expansion of a number of disease vectors (e .g. 

mosquitoes, mice, locust) often follow the trajectory of the green flush of vegetation in 

semi-arid lands. The ability to predict periods of elevated risk enables better prevention, 

containment, or exclusion strategies to be drawn up to limit globalization of emerging 

pathogens. Thus it has been possible for the Food & Agricultural Organization (FAO) to 

create a system of alerts—the Emergency Prevention System for Transboundary Animal 

and Plant Pests and Diseases (EMPRES, 2012).  

Subsequent to Dr Lithicum’s presentation, significant further work has been 

done to provide a genome-scale overview of gene expression in the malaria-transmitting 

mosquito Anopheles gambiae (McCallum et al, 2011), as well as to expand the 

VectorBase website with regularly updated genome information on two other mosquito 

species, Aedes aegypti and Culex quinquefasciatus and numerous other organisms, 

including the tick species Ixodes scapularis (Lawson et al, 2009; NIAID, 2012). The 

ultimate aim of this research is to create a database that will facilitate a systems-level 

view of gene expression for many different organisms. 

 

Reflecting on the numerous types of statistical analysis that are used to estimate 

confidence intervals for proportions in scientific studies, Dr. S. Guillossou and his 

colleagues Professors H. M. Scott and J. A. Richt (Dept. of Diagnostic Medicine and 

Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, 

Kansas, USA) utilized the final presentation of the conference, Estimates of Low 

Prevalences and Diagnostic Test Estimates: What Confidence Do We Really Have? 
to illustrate the differences, limits and sometimes chaotic behavior of different statistical 

approaches. Dr. Guillossou pointed out that there were more than 15 different methods 

for determining a 95 percent confidence interval of a proportion. He stressed that it is 

always important to report the method of statistical analysis being utilized. In his view, 

the Agresti-Coull interval approach presents a satisfactory compromise between 

computational requirements and coverage probability (Newcombe, 1998; Brown et al, 

2001). Ideally, the effects of coverage probability should be estimated and the most 

appropriate method chosen before reporting the findings or using proportions as inputs 

in any epidemiological study.  

 

Conclusion 

 What did this 6
th

 International Conference on Emerging Zoonoses achieve? 

There was the opportunity to meet old friends and make new friends, to share one’s 

academic work and to reflect on what lies ahead with emerging zoonoses. It is now clear 

that human medicine, veterinary medicine and environmental challenges are a unity 

which must be considered under the umbrella of ‘One Health’ (One Health Initiative, 

2012).  

Viruses are continuing to jump from animals to people with unexpected 

consequences, because the evolution of any virus is impossible to predict. Even the 

recent relatively mild swine flu virus infected 10 percent of the human population and 

killed some 100,000 people globally—far less than would have been the case if the 



 33 

virus had mutated to a more deadly form, as might easily have happened. The reality is, 

as Professor Nathan Wolfe, Professor in Human Biology at Stanford University, has 

commented: ‘As a species, we’re not that focused on the things that have the most 

potential to be devastating to us as a global population, such as viruses. Unless people 

take these things seriously, we’re going to look back and say we had all the tools 

necessary to try to address these risks, and we basically ignored them because they 

weren’t dramatic like a car accident or a hurricane’ (Geddes, 2011; Wolfe, 2011; L. H. 

Kahn, 2011). This conference, many others and the 7th International Conference on 

Emerging Zoonoses to be held in 2014 in Berlin are aimed at creating, improving and 

using the tools essential to address the risks of viral contagions in a global society. 
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