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Abstract

In present competitive market, there is growing concern for ascertaining and fulfilling the
individual customer’s wants and needs. Therefore, the focus of manufacturing has been shifting
from mass production to mass customization, which requires the manufacturers to introduce an
increasing number of products with shorter life span and at a lower cost. Also, another challenge
is to manage the variety of products in an environment where demands are stochastic and the
lead times to fulfill those demands are short.

The focus of this thesis is to develop and investigate platform based production strategies,
as opposed to producing each product independently, which would ensure the economic
production of the broader specialized products with small final assembly time and under demand
uncertainty.

The thesis proposes three different platform based production models. The first model
considers the economic production of products based on a single platform and with forecasted
demands of the products. The model is formulated as a general optimization problem that
considers the minimization of total production costs.

The second model is the extension of the first model and considers the production of
products based on multiple platforms and considers the minimization of total production costs
and the setup costs of having multiple platforms.

The third model is also an extension of the first model and considers the demands of the
products to be stochastic in nature. The model considers the minimization of total production
costs and shortage costs of lost demands and holding cost of surplus platforms under demand
uncertainties. The problem is modeled as a two stage stochastic programming with recourse.

As only the small instances of the models could be solved exactly in a reasonable time,
various heuristics are developed by combining the genetic evolutionary search approaches and
some operations research techniques to solve the realistic size problems. The various production
models are validated and the performances of the various heuristics tailored for the applications

are investigated by applying these solution approaches on a case of cordless drills.
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CHAPTER 1 - Introduction

This chapter provides the foundations for the principle objective of this dissertation,
which is to develop platform-based approaches to facilitate the economic production of a given
set of products (product family). The subject matter of this thesis falls in the intersection of
several areas of current research interest. These include: (1) using platform strategies to produce
products to realize mass customization, (2) formulating production planning problems as a
general optimization problems and solving them using optimization techniques, and in particular,
developing genetic evolutionary heuristics to efficiently solve the problems that are not solvable
exactly in a reasonable amount of time, and (3) capturing uncertainty in the model.

Section 1.1 contains the motivation for the research. Section 1.2 provides the foundation
and framework for investigating the proposed research, and the objective of this section is to
establish context for the reader. In Section 1.3, the objectives and contribution for the work are
described. Sections 1.1 -1.3 set the foundation for the chapters that follow, leading to the
development of three production models: (1) economic production of a product family using
single platform, (2) economic production of a product family using multiple platforms, and (3)
economic production for a product family under demand uncertainty using single platform.

Finally, Section 1.4 contains an overview of the dissertation.

1.1 Motivation

In today’s highly volatile market there is growing concern for ascertaining and fulfilling
the individual customer wants and needs. “The customers now have plenty of choice ... they
have become more aware...they select the product that most closely fulfills their opinion of
being the best value for the money...” (Hollins and Pugh, 1990). Therefore, “customers can no
longer be lumped together in a huge homogeneous market...” (Pine, 1993) rather this
competitive world of manufacturing requires the manufacturer to introduce an increasing number
of products with shorter life span and at a lower cost. This requires the producer to continuously
seek ways to reduce the production costs, while still offering attractive products. In the past, a

company could capture the market and enjoy high profits by producing large volume of the same



model, as the case of the Ford Model T automobile. Now, the focus in manufacturing has been
shifting from mass production to mass customization; a trend no longer limited to high value
products. This phenomenon is demonstrated by the fact that from 1973 to 1989, there has been a
70% increase in the number of car models produced in the US with commensurate drop in the
volume of production per model (McDuffie et al., 1996).

In this marketing environment, in a company, the marketing management demands for
the production of broader specialized product lines that would lead to higher market share.
Whereas, the operations management predicts that the cost and complexity would increase when
there is more product variety. In addition to that, one another challenge is to manage the variety
of products in an environment where demands are stochastic and the lead times to fulfill those
demands are short.

Consequently, companies are looking for strategies that would ensure the economic
production of broader specialized products with small final assembly time and under demand
uncertainty. Hence, the focus of this thesis is to develop and investigate such strategies.

Toward this end, the various strategies that have received significant attention in
literature and practice includes, but not limited to the use of concepts from delayed
differentiation (Lee 1996, Lee and Tang 1998, Swaminathan and Tayur 1998), exploiting
commonality at the product design state (Ulrich and Pearson 1993, Hayes et al. 1998), use of
lean manufacturing concepts (Womack et al. 1991), and product platform strategy (Meyer and
Lehnerd 1997). The platform-based production strategy is very widely implemented strategy to
create product families that provide sufficient variety for the market while maintaining
economies of scale (Simpson 2003).

The platform approach offers the advantage of developing several variants from a unified
platform with a considerable cost savings. Contrary to developing the product singly, when the
products are developed as a part of a family, i1.e. developing several variants from a platform, can
result in considerable cost saving. Products based on platform architecture can be varied more
easily by the introduction of new variant products without requiring the redesign of the whole
product. Variant products make use of the product platform as the starting point and add or
remove components to increase the number of features, performance, or variety of the base
product. Also, in an environment where demands are stochastic, this approach facilitates storing

of inventory in the form of semi-finished products on the basis of which the final products would



be produced with small final assembly time. Hence, this approach can provide cheap inventory
management and better response to customers while minimizing shortage and holding costs.

Because of its advantages, this approach has gained acceptance by many corporations as
the means to increase their product count without a cost-per-part increase. Black and Decker’s
applied this idea to its power tool products (Meyer and Lehnerd, 1997). Volkswagen used
platform architecture strategy and reduced development and production costs (Wilhelm, 1997).
Sony applied this approach for its product development process (Sanderson and Uzumeri, 1995).
AeroAstro Inc., used platform architecture with their multipurpose radio platform, and solved
many of the communication problems faced by spacecraft system designers (Caffrey et al.,
2002). HP’s Ink jet printer platform architecture is rejuvenated constantly and hence the
derivative products are constantly upgraded (Meyer, 1997).

In this thesis, we propose platform-based approaches for economic production of a
product family for various problem models. The foundations for developing those approaches are

presented in next section.

1.2 Research Focus — Research Issues and Hypotheses

This section provides the foundation and framework for investigating the proposed
research, and the objective of this section is to establish context for the reader.

The objective of this dissertation is to provide production approaches based on using
product platforms to ensure economic production of products. The research focus in this
dissertation can be captured by presenting the issues that need to be addressed in the form of
questions and providing answers in the form of hypotheses.

Research issue: How mass customization can be realized using platform strategy?

Hypothesis: The platforms can be mass produced and the products in a family can be produced
by adding and/or removing some components from the platforms.

Research issue: How customer responsiveness can be increased using platform strategy?
Hypothesis: The products, when their demands are realized, can be produced by adding and/ or
removing components to the platforms and hence the final assembly time is less.

Research issue: How uncertainty in demand of the products is addressed?

Hypothesis: The uncertainty in the model can be captured using stochastic programming.



Research issue: How the overall platform-based production approach is realized?
Hypothesis: The platform-based production approach can be modeled mathematically as a
general optimization problem and can be solved using exact and/or heuristic approaches.

These research issues and the hypotheses are explored in detail in the upcoming chapters

of this thesis. The resulting research contribution is presented in the next section.

1.3 Research Contributions

As mentioned earlier the subject matter of this thesis falls in the intersection of several
areas of current interest. The contributions from the dissertation in the mentioned research areas
are as follows.

The thesis proposes platform-based production approach for the economic production of
a given product family. Three different platform-based production models are developed, which
are as follows.

A single platform-based approach for the production of product family when the demands
of the products are forecasted demand values. The model considers the minimization of total
production cost that includes the costs of components, costs of mass assembly, and costs of
adding/removing components from the individual products, while considering the individual
demand and structure of each product type.

A multiple platform-based approach for the production of product family when the
demands of the products are forecasted demand values. The model considers the production of
products based on multiple platforms as opposed to single platform proposed in the first model
and considers the minimization of total production costs considered in first model plus the setup
costs of having platforms.

The third model is the single platform-based production approach for the production of
product family when the demands of the products are stochastic demand values. The model
consider the minimization of total production costs and shortage costs of lost demands and
holding cost of leftover platforms under demand uncertainties. The problem is modeled as a two
stage stochastic programming with recourse. The demand uncertainty is presented by two ways

(1) considering various demand scenarios with associated probabilities and (2) considering



probability distribution of demand of each product. By the use of small hypothetical cases
various investigations on the properties of stochastic program are done.

All the three types of production planning models are mathematically formulated and
formulations are improved by making non-linear constraints linear and by adding some valid
constraints to make it solvable exactly in less time. However, the realistic size models could not
be solved exactly in a reasonable amount of time. Therefore, various heuristics are developed by
combining the genetic search approach and some operations research techniques to solve the real
and large size instances of the problems. The heuristics tailored for the applications are validated
by comparing the results obtained by the exact method and that of the heuristic approaches, and
by applying these solution approaches on a case of cordless drills. The performances of various
heuristic approaches are investigated; some sensitivity analyses on various parameters of the

models and heuristics are done, and insights into the various proposed models are presented.

1.4 Overview of the Thesis

The objective of the introduction section was to provide the motivations, foundations and
context which provides the basis for the specific contributions that are made in this research. The
rest of the thesis is organized as follows.

Chapter 2 provides the background and related literature review on research areas such as
platform based production, and evolutionary genetic search to solve large scale optimization
problems. Various areas related to platform based production and design are reviewed, such as
platform and product family based production approach, various streams of research in platform
approaches, various platform strategies and platform techniques, and various optimization
techniques used in solving platform-based production and design problems for various
objectives.

Chapter 3 provides the overall problem description and assumptions, and the notations
and nomenclatures used throughout the thesis.

Chapter 4 considers the problem of determining a platform for the production of a
product family while minimizing the overall production cost. The problem is formulated as a
general optimization problem of minimizing the production cost using platform architecture

while satisfying the part assembly constraints. Both an optimal formulation and an evolutionary



strategy based on Genetic Algorithm are presented. The approaches are illustrated with an
example of a family of cordless drills presented in Section 3.3.

Chapter 5 considers the problem of proposing multiple platforms for the production of a
given product family while minimizing the overall production cost. The methodology considers
the demand for each product variant, with the decision variables as the optimal number of
platforms, optimal configuration of each platform, and assignment of the products to the
platforms. The problem is formulated as an integer program, and both the optimal formulation
and an evolutionary strategy based on Genetic Algorithm are presented. The approach is
illustrated with the example from a family of Cordless Drills.

Chapter 6 presents the third model where the demands are stochastic and the product
family is produced based on single platform. The problem is formulated as a two stage stochastic
programming model with recourse. The objective is to minimize the total production cost that
includes the cost of production of platforms, cost of production of products using the platforms,
holding cost for unused platforms and stock-out cost for lost demands. This problem is solved
using three approaches, exact method, a genetic algorithm based heuristic that combines integer
programming to solve the problem, and a pure probability based genetic search approach. The
three approaches are investigated and their importance for various problem instances is
presented. The approaches are illustrated and validated by using the same example of a family of
cordless drills.

Chapter 7 is the final chapter and contains a summary of the thesis and recommendations

for future work.



CHAPTER 2 - Background

2.1 Concept of Product Platform and Related Research

As concluded in the last chapter, a platform based production approach is used to
increase variety, increase customer responsiveness by shortening the final assembly time, reduce
overall production cost and hence, mass customization is realized. The following reviews the

concepts of product platforms, related research, and various relevant issues.

2.1.1 Product Family and Product Platform

A product family is a set of products considered together for production as they share
some common basic sets of attributes. A product family can be viewed as a set of variables such
as components, functions or features, etc. that remain constant from product to product, and
others that vary across the product line. The modification of features across the product line in a
given family can be done by scaling, or by addition and/ or removal of modules and/ or
components (Messac 2002a).

The product family considered here has stable core functionality, but has variability in
secondary functions, which are successful in their market niches. Usually the product family has
a long life cycle, which must adapt to a rapidly changing environment. The product family is
produced using the concepts of platforms, utilizing the commonality between the products.

Ulrich and Eppinger (2003) define a platform as a collection of assets, including
component designs, shared by multiple products. It can also be defined as a set of shared
functionality, components, subsystems and manufacturing processes across the product family
(Robertson and Ulrich 1998). More specifically, in this thesis, a platform is also considered to
be a set of shared components among multiple products. A product from a product family is
produced using a particular platform by adding or removing some of the components that are

assembled using the particular platform.



The platform is mass produced and the product family is derived using the platforms.

Figure 2.1 gives an example of product family and a platform.

A Platform

Figure 2.1 A product platform and a product family
In this example, the product family constitutes drills, saws and a light. The product
family shares some common components. The product platform, as shown in figure, could be a

set of components such as, a chuck, a spindle, a battery, power switch, etc.

2.1.2 Various streams of research

Various streams of research in the area of product platforms is greatly influenced by
contributions from Pine (1993) in the area of mass customization, Meyer and Lehnerd (1997) in
the area of platform concepts, Sanderson and Uzmeri (1996) in the area of managing product
families (Allada et al., 2006). Krishnan and Ulrich (2001), Simpson (2004), Jose and Tollenaere
(2005), and more recently Allada et al. (2006) have provided a review of various aspects of
product platform development methodologies. Simpson et al. (2006) provides an overview of
the platform concept, application areas, and ongoing research and expanding views on platforms
in academia and in industry.

There have been two streams of research in the area of product platform formation:

¢ Qualitative and/or conceptual model based approaches towards
Platform development (management domain), and

¢ Quantitative model based approaches (engineering domain)



Qualitative approaches model the issues related to market share of the products derived
based on platforms, desired financial performances, product introduction, etc. This type of
approaches deals with the platform and product family planning problems at a high level of
abstraction and with management perspective. For example, Maier and Fadel (2001) suggest a
selection platform based on the appropriate product family design, which is based on product
variability, and various market attributes such as market size, market type and number of target
market niches. Dahmus et al. (2001) suggests an appropriate platform based on strategies such as
price movements, cannibalization effects, optimal sales demand, etc. Shil and Allada (2005)
provides a methodology for evaluation of risk neutral product portfolio. They evaluate product
development projects by considering cannibalization effects and select the project with highest
utility value. Wilson and Norton (1989) provide a framework to determine the optimal entry
timing for a product line extension to protect against product cannibalization. Martin and Ishii
(1996), Martin and Ishii (1997), and Martin and Ishii (2002) develop product platform
architecture to gain competitive advantage by reducing the redesign efforts and time-to-market.
Kota et al. (2000) present an objective measure to capture the level of component commonality
in a product family. The underlying idea they propose is to minimize non-value added variations
across models within a product family without limiting customer choices. Park and Simpson
(2005) propose a cost estimation framework to support product family design.

Quantitative approaches focus on the engineering design and production aspect of
products based on platforms. The research in this area can be further divided in two three
categories:

e Scalable based platform formation problems
e Module based or configuration based platform formation problems

e Combination of both module based and scalable platform formation problems

Scale based product family design is a method by which some of the variables in a
product family are kept fixed while other variables, scaling variables, are “stretched” or “shrink”
to generate the variants within the product family. There are many examples in industry that
have used platform scaling to develop the product family to satisfy various market niches. Black
& Decker ( Lehnerd 1987), Rolls Royce (Rothwell and Gardiner 1990), Boeing (sabbagh 1996),
Honda (Naughton ef al. 1997) have successfully applied this strategy to produce product family



on the basis of platforms to satisfy target market niches. This area has been explored by various
researchers. For example, Simpson ef al. (2001) develop of a family of Universal electric motors
by finding the values of common variable (platform variables) and the values of scaling
variables, while minimizing the performance loss with respect to the individually optimized
family of products. Messac et al. (2002b) determine the common variables and the scalable
variables and their values and then decide the product variants around the platform. Hernandez et
al. (2003) develop a scalable product platform with the objective to minimize the material cost,
welding and forging cost, given the target specifications of the customizable product variants.
Module based product family design is a method by which the product family member
are derived by adding and/ or removing modules from the platform. This approach is more
prominent approach as this approach allows the platform leveraging for products from different
market segments too. This approach used the concept of modularity in product design (Baldwin
and Clark 2000, Ulrich and Eppinger 2000, Ericsson and Erixon 1999). There are many
examples in industry that have used module or configuration based platform approaches to
develop the product family to satisfy various market niches. Sony ( Sanderson and Uzumeri
1997), Volkswagen (Wilhelm 1997), Nippondenso Co. Ltd. (Whitney 1995), Hewlett Packard
(Feitzinger and Lee 1997) have successfully applied this strategy to produce a product family on
the basis of platforms to satisfy target market niches. There has been plethora of research in this
area. For instance, Fujita ef al. (1999) develop a modular platform for a family of products while
minimizing production cost, facility cost and material cost. Moor et al. (1999) proposes conjoint
analysis to design modular product platform. Siddique and Rosen (2000) design platforms by
exploiting assembly commonality of assembly processes of an existing set of products.
Gonzales-Zugasti and Otto (2000) present an optimization approach for designing product
families built on modular platforms. The method allows for the design of the modules that are
shared across multiple members of the family, or becomes the part of the platform, as well as the
variational modules. Many optimization approaches in platform based product development
considers module or configuration based structure of product family and platforms. The research

in this thesis falls in this category.

Some consider the combination of both module-based and scale-based platform

formation strategy together. Fujita and Yoshida, 2001 proposes a simultaneous optimization

10



method for both module combination and module attributes (design variables) of multiple
products to form a platform. Three types of modules are identified; the modules whose design
variables are common and have the same value are identified as common modules the modules
whose design variables are similar in nature are identified as scalable modules, the third type of
modules that are identified are the modules that lead to variety in the product family members.
This methodology combines both module and scalable platform formation approaches.

Figure 2.2 presents the various streams of research in the area of platform formation

approaches.
Various steams of research in product
platforms
Qualitative and/ or conceptual models Quantitative models
(Exemplified by business-oriented (Exemplified by engineering design
research and case studies) and production oriented research and
case studies)
Scalable based platform Module based or Combination of both
formation problems configuration based module based and scalable
(Some variable across the platform formation platform formation
product family are fixed problems (Modules are problems
and some are scaled to added or deleted to
generate product variants) generate product variants)

Figure 2.2 Various streams of research related to product platform formation problems

2.1.3 Platform Strategies
There are various strategies to implement platforms for the development or production of
the products in the family. The various platform strategies that are used are Horizontal

Leveraging, Vertical Leveraging, and Beachhead approach (Meyer and Lehnerd 1997). In
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vertical leveraging a platform is shared among the low-end, mid-range and high-end variants of a
family. In horizontal leveraging a product family consists of the variants of a product in the same
market segment. And, in case of the beachhead approach, the platform is shared between both
the types of variants of the product. Figure 2.3 presents the various platform leveraging

strategies.

F 3
High
end
-, o
- ‘-_‘r
-
i
F i
Low 5
':-J-.Id -“ll""ll'IIIIIIIIIIIIIIIIIIIIIII'-

-
4

Different market segments

#e=secec=aap Horizontal Leveraging
e — - Vertical Leveraging
o=+« == » p Beachhead Approach

Figure 2.3 Platform leveraging strategies

Most horizontal leveraging approaches take advantage of modular platform, and most
vertical leveraging take advantage of scalable platform (Simpson et al. 2001, Simpson 2003).
The Beachhead approach can deliver the highest benefits but this approach is most difficult to
implement (Simpson 2003).

Regardless of various platform formation strategies there are many techniques of
implementing these strategies reported in the literature.

Various techniques of implementing platform strategies presented in literature include,
but not limited to:

¢ Developing commonality matrices (Martin and Ishii 1997, Kota et al. 2000)

e Model based approach (Simpson et al. 1999, Farrell and Simpson 2001,
Nayak et al. 2002)

e Analytical and mathematical approach (Lee and Tang 1997,
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Swaminathan and Tayur, 1998)
e Optimization based approaches (Nelson et al. 2001, Gonzalez-Zugasti et al. 2000)

The research in this thesis falls in the category of the optimization based approaches for
platform formation. Therefore, the next section provides a review on optimization based

approaches for product formation problems.

2.1.4 Optimization based approaches for platform formation with various objectives

The platform design and selection concept have been used for various objectives. Such
as, reducing cost and simplifying the design effort (Simpson 2004), improving life-cycle design
(Ortega et al. 1999), optimizing production cost or profit, or reducing time to market (Krishnan
and Ulrich 2001). Martin and Ishii (1997) proposed methodologies that can help companies to
quantify the costs of providing variety and qualitatively guiding designers in developing products
that incur minimum variety costs. Simpson et al. (1999) proposed a model that uses the overall
design requirements, generating the product platform and resulting product family that best
satisfies the overall design requirements. Farrell and Simpson (2001) try to improve response to
customer request, reduce design cost and improve time to market for highly customized products
by designing product platforms. Sudjitanto and Otto (2001) uses a matrix to group modules for
platform determination in order to support multiple brands for platform cost saving as well as
revenue enhancing. Nayak et al. (2002) proposed a variation-based method for product family
design, which aims to satisfy the range of performance requirements for the whole product
family.

Besides, the platform optimization problem appears in a variety of forms in the literature
such as the product portfolio planning (Jiao and Zhang 2005) that finds an optimal set of
products and attributes to satisfy customer choices and maximize expected utility per cost, or
profit (Yano and Dobson 1998).

Most of the optimization approaches specify the platform a priori to the optimization to
make the problem more tractable (Simpson 2003). Simpson and D’Souza (2002) encourage the
use of optimization to explore varying levels of platform commonality for better platform
development. The research in this thesis tries to optimize the platform configuration and platform

based production simultaneously.
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Various solution methods for the platform optimization problem were implemented
including (but not limited to) Branch and Bound algorithm (Fujita and Yoshida 2001), Dynamic
Programming (Allada and Jiang 2002), agent based techniques (Rai and Allada 2003), Simulated
Annealing (Fujita ef al. 1999), Genetic Algorithms (Fujita and Yoshida 2001; Li and Azaram,
2002, Simpson and D’Souza 2002, Simpson and D’Souza 2004, Jiao and Zhang 2005).

2.2 Genetic search approaches for large scale optimization

While small-dimensioned problems can be solved to optimality, large-scale problems
require heuristic approaches such as Genetic Algorithms. During the last few decades, there has
been a growing interest in evolutionary algorithms partially due to the emergence of faster
computers. Genetic Algorithms have been studied in Goldberg (1989), Mitchell (1998), and a
review of GA applications is provided in Aytug et al. (2003).

The solution methodologies presented in this thesis exploit the principles of evolution and
mutation, and the concept of fitness. In general, the genetic search procedure starts with a
random generation of population of strings (chromosomes), where each string represents a
configuration (component set) of platform. The number of strings forming a population is termed
population size, which remains constant throughout this genetic search process. The cost
function, which should be minimized, is converted to a fitness value. A fitness function
evaluates each solution to decide whether it will contribute to the next generation of solutions.
The population then evolves through successive generations by the application of genetic
operators.

The various genetic operators are reproduction, cross-over and mutation. The
reproduction operator is an artificial version of natural selection, a Darwinian survival of the
fittest among string creatures (Goldberg 1989). In the process of reproduction, strings having
better fitness values have a higher probability of contributing one or more off-springs to the next
generation. Reproduction directs the algorithm towards convergence.

In the crossover operator, genes (fractions of the strings) are swapped between two parent
chromosomes in anticipation that the off-springs produced would be better than either of the
parents. The operator contributes to the exploration of the solution space. The mutation, which

creates a random variation in a string, reduces the chance of the algorithm converging to a local
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optimum. This approach uses the notation of (1 +1)-ES (Beyer and Schwefel 2002), implying a
constant population of size p, with A decedents created every iteration (for a total of pu+A

solutions) out of which the best p are selected for the next generation. The algorithm continues

until a pre-specified condition is met.
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CHAPTER 3 - Problem Environment

3.1 Background

This section provides the underlying assumptions and some hypotheses on the basis of
which three platform based production models (presented in Chapters 3, 4 and 5) are proposed
and developed.

In this research, a platform is considered to be a set of shared components among
multiple products. The platform is mass-produced, and a product from a product family is
produced using a platform by adding or removing some of the components that are assembled
using the platform. For instance, Figure 3.1 illustrates a hypothetical product family with four
products (P1, P2, P3, and P4), each consisting of a different collection of components from the
set {4, B, C,..., H}. Suppose a platform for this set of products is as shown in Figure 3.2. In this
case PI would be created by using the platform and removing G and adding C, and P3 would be
created by removing D and G and adding C and F.

A A A A
B C B F B C B C
D E D E F E G H
P1 P2 P3 P4

Figure 3.1 Example of a product family
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D E G

Figure 3.2 An example platform for the product family presented in Figure 3.1

A platform is only justified if the assembly of the components to the platform can be
done efficiently using mass production methods. Thus, adding and removing components from a
platform to fit a particular product typically costs more than if the item is included in the
platform.

In this research, we model and analyze the production of a family of products using
platforms that enable cost effective production with short final assembly time. The bill of
material of each product is considered to be binary. A binary bill of material for the product
family presented in Figure 3.1 is shown in Table 3.1.

Table 3.1 A binary bill of material for product family presented in Figure 3.1

Componentindex> | A | B| C | D | E | F | G| H
Products

Pl 1 1 1 1 1 0| 0| O

P2 1 1 0 1 1 1 0|0

P3 1 0 1 0 1 1 0] 0

P4 1 1 1 0| 0O 1 1

One complicating factor is that while determining the configuration of the platform (a set
of components forming a platform), the part assembly relationship is maintained. The part
assembly relationship for a product is presented by a matrix, and in order to manage the part
assembly relationship constraints, a Part Assembly Relationship matrix for a product is
determined. An element of Part Assembly Relationship matrix of product k, fx =1, represents
that component j precedes component / in product £ or component j is needed to be present in the
platform for the / to be included in the platform, as component / requires j to be assembled to

form a platform. An example, a PAR matrix for product P/ is shown in Table 3.2.
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Table 3.2 The PAR matrix for Product P/

A B C D E F G H
1 1

TQT™mg|Ia|w| >

As we will see, the PAR matrix is used to determine the feasibility of a platform
configuration.

Also, for some platform based production models presented in this research the part
assembly relationship matrix for the whole product family is used to determine the feasibility of
a platform configuration. The part assembly relationship matrix for the whole product family,
named as Overall PAR, is determined by taking all the PARs for all the products in the product
family and superimposing them to get a superset type of matrix. For example, Overall PAR for
the product family presented in Figure 3.1 would be as shown in Table 3.3.

Table 3.3 The Overall PAR matrix for Product family presented in Figure 3.1

A B C D E F G H
1 1 1

T Q| | m| O O @ >

The PAR matrix for a product and the Overall PAR matrix for a product family are used
to check and the feasibility of a given platform configuration in different platform based

production model presented in this thesis.
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3.2 Example Problem

This section provides a description of an example problem that will be used to illustrate

and numerically validate the proposed models and solution approaches proposed in this thesis.

and household applications. There are various types of drills available; however, for our purpose

We use an example of a family of cordless drills. These drills have varied construction

we consider five types (products): Heavy Duty, High Performance, High Value, Standard, and

Multipurpose Power drills as shown in Figure 3.3 (Sudjiato and Otto, 2001). The objective in

this example is to demonstrate the use of the heuristics to determine the optimal platform for the

product family. The binary bill of material for family of drills is provided in Table 3.4. The

information about the products and the components is provided in Table 3.5. The Table 3.6

provides the PAR matrix for “Heavy Duty” drill, for the sake of brevity the PAR matrix for all

the drills are not presented. Table 3.7 provides the Overall PAR for the whole drill family.

High Value Heavy Duty High Standard Multipurpose
Performance
Figure 3.3 The product family of the cordless drills
Table 3.4 The binary bill of material for the products

Component 21314 (567 |8 [9|10]11 (12|13 |14[15|16|17|18(19|20|21 22|23
# >
Component BIC/DIE(F|IG/H|I|J [K|L M|N|O|P |Q|R|S|T|U|V |W
index >
Products
Heavy duty 10O |1 |01l |O 1|1 |1 |1 1 0 [0 |1 1 1 |0
High Oj{rjof{of1rjyof{r{rjr |{r (o |1 1 {0 O |O |1 (O |1 |1 |O
performance
High value 0Ojoj1jojrjojrj1rj1r |r (o (o0 |0 O |1 JO [0 |O |O 1 |0
Standard oj(ojrjoj1rjoqjrjrjr |jr (o o (o |0 |1 |0 [0 |O |O 0 |1
Multi- oOj(ojr{of1ryof{rj{rjr {r (o (0 {0 |0 1 (0 [0 |0 0 |1
purpose
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Table 3.5 The various possible components for the product family with there cost

values

Comp | Comp. | Comp. Name Comp. Cost ($)
# Index
1 A Encasing 2
2 B Rough palm to permit positioning 1
3 C Padded palm to permit positioning 1.5
4 D Diamond palm to permit positioning 2
5 E Bevel 2 point to lock/unlock battery 3
6 F Straight 2 point to lock/unlock r battery | 2
7 G Square, 9.6 V, 2 pt. Electricity | 4

transmission
8 H Open, 9.6 V, 2 pt. Electricity | 4

transmission
9 I Chuck to secure/ unsecure bit 2
10 J Chuck teeth to register/ unregister bit 1
11 K Bit to act on object 2
12 L Thin button to input speed 1
13 M Wide button to input speed 1
14 N 16 slip clutch to transmit power 5
15 O 22 slip clutch to transmit power 6
16 P 6 slip clutch to transmit power 5
17 Q Solid shaft to transmit power 3
18 R Fine ring gear to switch speed 5
19 S Ring gear to switch speed 4
20 T Black oval button to unlock switch 1
21 U Black button to unlock switch 1
22 A" Variable speed to switch power 6
23 w 2 speed to switch power 4
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Table 3.6 The PAR matrix for the “Heavy Duty” drill

E

F

G

H

I

J

K

L

M

N

0]

P

Q

R

S

1

1

SIS CRRROIRICIZIZ HIA =T QT EHT O R >
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Table 3.7 The Overall PAR matrix for the family of cordless drills

A/IB/CIDIE/FIGH|I|J  KILIMN|O|PIQ|R|S|T|U|V|W
A 11111 1 1
B 1|11 1
C 1 1 1 1
D 1)1 1
E 1|1 1 1
F 1 1
G 1
H 1
I 1
J 1
K 1 1
L 1
M 1
N 1
(0] 1
P 1
Q 1 1
R 1
S 1
T 1
U 1|1
\% 1
\%Y%

3.3 Notations and Nomenclatures
This section provides the notations and nomenclatures used throughout the thesis.
o =12 .. |l | index the platforms, where [ is a set of platform types
e ;[ =1,2 .., M index the components, where M = total number of all distinct

components in a given product family, and |J | represents the set of components

e k=1,2... Nindex the products, where N is total of products in the given product family,

|K | represents the set of products.
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s=1,2,...,Sindex the demand scenarios considered in a stochastic demand model

Dy - demand of the ™ product. This demand is usually forecasted, since precise demand
may not be known with certainty at that decision point.

Ci= cost of the component j (purchasing price)

CP= cost of assembling a component j to form the platform (mass assembly)

CA= cost of manually adding a component to the platform to form a product (C4; > CP))
CR/= cost of removing a component from the platform to form a product (CR; > CP))

A; = the setup cost to construct platform i

h = per unit holding cost for the platforms

qi= per unit stock-out cost for product &

& = Vector of demands (£,,,&,,,....&y, ) in scenario s

ps = probability of occurrence of scenario s
V' is the given binary bill of material matrix of the family of products with element

- 1 if product k requires component j
& 710 otherwise

Jix are elements in the Part Assembly Relationship matrix of product & with

_ {1 if component j precedes [/ in product k
0 otherwise

itk

1 if component j precedes component / according to Overallpartassembly

Ju= 0

relationshp matrixof thegivenproduct family
otherwise

X = a binary matrix representing which platform contains which components with

1 if platform i contains component j

elementS,Xi, - {o otherwise

X =

1 if componentj becomes thepartof theplatform
0  otherwise

w = quantity of the platforms to be made
Y is a binary matrix that states that product k£ is made on platform i, with elements

_ {1 if product k£ is made using platform i

ki 0 otherwise
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vis = amount of product £ to be produced using platforms in scenario s

_ | 1if the j” componentis added manually to platformi to form product k
i 10 otherwise

a0 = 1  if component jis added manually to theplatform tomake product £
710 otherwise

— 1if the j” component is removed manually from platform i to form product &
10 otherwise

_J1  if component; is removed manuallyfromthe platform to make product &
&10 otherwise

u,, = Lost demand of product & in scenario s
v, = Leftover platforms in scenario s

PAR = Part Assembly Relationship Matrix for a Product

Overall PAR = Overall Part Assembly Relationship Matrix for all the products in the
given product family

ps = Crossover Probability

Ppm= Mutation Probability
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CHAPTER 4 - Economic Production of a Product Family using
Single Platform

4.1 Introduction

In this chapter, we model and analyze the production of a family of products based on
single platform which enables cost effective production with short final assembly time. We
consider a problem of selecting a platform for a product family while minimizing the overall
production cost which includes cost of components, cost of mass assembly, and cost of adding/
removing components to the platform. The problem is formulated as a general optimization
problem.

Both an optimal and an evolutionary strategy based on Genetic Algorithm are proposed
for the problem. The approaches are illustrated with an example of the family of cordless drills.
The example is used to provide insights to the effect of demand variance and various cost
components on the optimal configuration of the platform. Finally, we discuss the effectiveness

of the heuristic tailored for the application.

4.2 Model Formulation

The problem is to determine the optimal configuration of the platform for a given product
family to minimize the total production costs. Every product, , (1..., k..., N) may either be
assembled directly from its components, or from any platform whose component set overlap with
those required by product £.

The bill of material of the product family in terms of components is binary. While
determining the optimal configuration of the platform, the part family relationship is maintained.

Now, the optimal platform configuration determination problem can be formulated as

follows:

Minimize
N M M N M
;DkXZ;‘(CJ,+CP/.)-xj+kZ;Z;(Cj+CAJ)‘ajk-Dk+;Z(CRj—C].)~rjk‘Dk 4.1)
= Jj= =l j= =l j=

S.t.
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a,=[-x)v,  Vik (4.2)

e <(l=v,)x, Vjk (4.3)

Jjk =

X1 4, €00} Yk (4.4)

The objective (equation 4.1) is to minimize the total production cost, which includes the
cost of mass assembly (cost of producing platforms), cost of components, cost of adding
components on the platform to produce the products, and the cost of removing components from
the platforms. Constraint 4.2 ensures that a component is added to the platform only if it is
required in the product and is not in the platform. Constraint 4.3 ensures that a component may
be removed from the platform only if it is in the platform and not required in the product.
Example:

We illustrate the problem through an example. We use OPL 3.5 studio to find the
optimal solution to the above problem with various demand and cost data. The optimal
platforms for the various cases are shown in Table 4.1.

The various components costs are Cis=$10, $11, §12,...., $17; CR=$ 9 (for all j); CP; =
$6 (for all j); and C4;= $10 (for all ;).

Table 4.1 The optimal solution for the various cases

Demands Optimal Total Time
Platform Cost (8) (Seconds)
DI D2 D3 D4
250 250 250 250 AB 104550 | 78
350 150 250 250 AB 104550 | 7
250 450 150 150 AB 104550 | 61
800 50 50 100 ABCE 99700 | 0

From Table 4.1, we can see that when the demands of the products are similar and that

the optimal platform comprises the components are the most common across the product family.

Also, when the demand of a product is very high when compared to other products in the product
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family, the optimal platform configuration is more inclined towards the product with high

demand.

4.2 The Evolutionary Solution Methodology

We propose a very efficient evolutionary search based solution methodology for the
platform determination problem. The algorithm presented uses a variation mechanism that is
derived by inducing mutations to the entire (100%) population. This evolutionary strategy
provides sufficient exploration of the solution space, needed for a successful solution.

The algorithm starts with a small number of randomly generated solutions. These
solutions are tested for feasibility, and all infeasible solutions are modified to become feasible, as
shown in Section 4.3.1.

The algorithm tries to improve the feasible solutions using the evolutionary methodology.
The algorithm is terminated after a predefined number of iteration is reached, and the best
solution is anticipated to be the near optimal/optimal solution. The detailed explanation of the
algorithm is provided next, with a flow chart of the algorithm provided in Figure 4.1.

In the platform determination problem, we are given the binary bill of materials for all the
products in terms of components. Also, the part assembly relationship of the products is known
from the Part Assembly Relationship Matrix. A solution consists of the values of the binary
decision variable x; and the variables rj, indicating the parts removed from the platform. The
solution is represented by a string of length equal maximum number of distinct components in
the product family under question, M, and a matrix representing 7j;. An entry of ‘1’ at any
position j in the string x; represents component j that is in the platform. Each solution (or
chromosome) in the population is a feasible solution, which follows the part assembly
relationship for the product family under consideration. The lower the cost of a particular

solution, the higher the fitness value it possesses. The details of the algorithm are provided next.

4.3.1 Encoding and Initial Feasible Solution Generation
Solution Encoding
In the platform determination problem, we are given the binary bill of materials (v;) for
all the products. Also, the part assembly relationship of the products is provided in PAR Matrix.

For both the heuristic approaches, the chromosome is represented by a string of length equal to
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the maximum number of distinct components in the product family considered, M. A value of
‘I’at any position j in the string represents component j that is in the platform. An example

chromosome string for the product family shown is Figure 3.1 is presented below.

A B C D E F G H
1 1 1 0 0 0 0 0

This example chromosome string represents that components A, B, and C are in the
platform.

Each chromosome (or configuration of a platform which is the component set of a
platform) in the population is feasible if it follows the part assembly relationship for the product
family under consideration (such as in Table 3.2). Initially a population of chromosome is
randomly generated; therefore some of the solutions may not be feasible. Also, applying the
variation operator (mutation) create new temporary solution that may not be feasible.

If the solution is found infeasible it has to be corrected. Every time the chromosome is
altered in the course of iterations, it has to be checked for feasibility and corrected if not feasible.
Therefore, for this purpose a feasibility and correction algorithm is presented as follows.
Feasibility and correction algorithm

The idea behind the algorithm is that the feasibility of the solution is checked using the
Overall Part Assembly Relationship Matrix and if a platform is infeasible, the smallest numbers
of components are added to the platform to ensure a feasible solution.

Let P (a binary string) represents a random solution string. This solution may be feasible
or infeasible. Let 7} (a binary string) represents the 7™ column in the Overall PAR Matrix. For
example from Table 3.2, 7T5(or 7g)=[01 100000 ].

The Algorithm:

Step # 1: Determine all strings Q; = P AND T; for all j=1 in P

Step # 2: Compare Q; with T} bitwise

Step # 3: If any O, not equals 7; the solution is infeasible, go to step 4;

otherwise feasible go to step 5.

Step # 4: Create a new feasible P’ = [bitwise OR (7;)] OR P for all j=1 in P,

gotostep2. (where P’ is the corresponding feasible solution for

any infeasible solution P).
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Step 5: Stop

Example:

Let P be a randomly generated platform for the product family in Figure 3.1.

P=11,0,0,0,1,1,0,0]

Now from Table 3.2, 7,=10, 0, 0, 0, 0, 0, 0, 0]

Q;=(PAND T)= [0,0,0,0,0,0,0, 0]

Also:

Ts= [0,1,1,0,0,0,0,0]

Thus, Q5= [0, 0,0, 0, 0,0, 0, 0]

Ts=11,0,1,0,0,0,0,0]

And Q5= [1,0,0,0,0,0,0,0]

As the platform generated is infeasible and the solution is made feasible

by taking P’ = [bitwise OR (T;’s)] OR P

For this example, [bitwise OR (T}, Ts Ts)] =[1,1,1,0,0, 0, 0, 0].

And the feasible platform is:

P =11,1, 1,0, 1, 1, 0, 0], which coincidentally represents Product, P3 presented in
Figure 3.1.
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Generate L random solutions

l

Check for feasibility (make the infeasible

solutions feasible)

Evaluate the L solutions and store in archive

i=0

v

Make a copy of each solution
(population size = 2L)

}

Mutate solutions

A 4
Check and correct for feasibility

New population = best L from (2L + L) solutions

v

Update the archive

Yes

i< max_iteration

No

New population is the final population
The solution is reached

Figure 4.1 The flow chart of the evolutionary strategy
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4.3.2 Mutation
Given a solution S, a new solution S’ = mutation (S) can be built using a mutation operator. In
our case, we use a random mutation in the following way:
Generate two ransom numbers j and / such that 0 <j </ < M. Invert the bits in positions j and /
only.

The process can be represented as follows (Figure 4.2).

S= 1 1 1 0 0 0 0 0

!

1 1 0 0 1 0 0 0

S’ =

Figure 4.2 Mutation Operation
Next check the feasibility of S°. If it is not feasible, modify the string to become feasible as

shown in Section 4.3.1.

4.3.3 Building Each Generation

The algorithm starts with the random generation of L=10 solutions. The feasibility of
each solution is checked and if not feasible a corresponding feasible solution is generated as
explained above. These solutions are evaluated and kept in an archive. Then these solutions and
a copy of each of them are taken for mutation. After the mutation step we have 2L new
solutions. These solutions are checked and corrected for feasibility. These mutated feasible
solutions are evaluated and the best L of the L+2L solutions updates the archive (new initial
feasible population).

The population size is doubled during the phase mutation to make the search more
exploratory. Several other mutation techniques are investigated but the above mentioned

mutation technique works well for the problem under consideration.

4.3.4 Solution Evaluation
Each suggested platform has a cost function that shows the cost of converting the platform to
each of the products, given each product demand (production quantity). The cost calculations

follow this algorithm:
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For each component j in the platform Do
Cost = (C,+C))*2Dy,
For each product k Do:
Ifj is NOT in product k Then
If CR; > C;Then

e =0
Cost = Cost
Else

Cost = Cost + CR;*Dy,
End k
Endj
For each component j Not in platform Do
For each product k Do:
Ifj is in the product Then
ajx =1
Cost = Cost + Dy*(CA; + C))
EndIlf
End k
End ;

The algorithm is applied to the example problem presented in Section 3.2 and the results with the

computational insights are presented in the following Section.

4.4 Results and Discussions
A convergence plot for the case of demand vectors of [50, 250, 250, 250, 200] (for drills),
and costs, CP;, C4;, and CR; equals $1, $4 and $3 respectively for all j and £, is shown in Figure
4.3. It is obvious that the algorithm converges efficiently with relatively less iterations. Also,

the 7j matrix for that case is provided in Table 4.2.
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Figure 4.3 The convergence plot of the algorithm

Table 4.2 The rj Matrix

Component | 1|2 |3 415167891011 |12|13 (1415|1617 |18]19 (20|21
#->
Product

Heavy duty 1 1

High 1
performance

High value

Standard

Multi- 1
purpose

For further investigation we determine the optimal platform for various cases of demand

and CP;, CA; and CR; values. The results are summarized in Table 4.3.

33




Table 4.3 The platform and overall cost for various cases of demand and cost values

Demands Costs (CP;, CA; and CR)) | Platform Cost value ($)
200, 200, 200, 200,200 |2,4,3 1691011 62500
50, 250, 250, 250, 200 1468910111520 64425
250, 50, 250, 200, 250 14691011 61075
200, 250, 250, 50, 250 1691011 63275
250, 250, 200, 250, 50 1691011 64675
200, 200, 200, 200, 200 | 3.25, 3,2 - 57500
50, 250, 250, 250, 200 - 55425
250, 50, 250, 200, 250 - 56675
250, 200, 50, 250, 250 - 58300
200, 200, 200, 200,200 | 1,4,3 146891011 56100
50, 250, 250, 250, 200 1468910111622 51675
250, 50, 250, 200, 250 1468910111622 56675
200, 250, 250, 50, 250 1468910111721 59675
250, 250, 200, 250, 50 168910111721 64175
900, 25, 25, 25, 25 125791011 12 14 | 50438
18 20 22

Note: The demand vector represents the following order of products: Heavy Duty, High
Performance, High Value, Standard and Multi Purpose (P1, P2, P3, P4, and P5)

The following results are obtained;

1. From Table 3.4 and Table 4.3, it is obvious that when the demand of each product is
similar enough, platform elements are the elements that are the most common throughout
the product line, regardless of the components cost.

2. When the cost of mass assembly of each component in the platform exceeds or equals the
cost of manually adding the component to the platform, the production of platform should
not be justified. The results found in Table 4.3 support this conclusion.

3. When the demand of a particular product is very high with respect to others in the
product line, the platform components are those which are in that product, even if these
components are not shared by other products. For example, if the demand of Heavy Duty

drill is 900 and demand for the rest is equal 25 each, from Table 4.3 (and Table 3.4) we
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can see that the platform, in this case, is the whole Heavy Duty type drill itself. These

observations clearly show that the results obtained from the approach are consistent.
Comparison with the Optimal Algorithm:

Now we describe experimental results that compare the evolutionary algorithm to the
optimal solution obtained by solving the integer programming model. In this experiment, 6
different variants of the example problem with 23 components were solved. The OPL 3.5 takes
about 160 minutes to solve the example problem one time, whereas the heuristic takes less than a
minute to solve the problem one time. Each problem was solved 20 different times using the
heuristic approach by taking different initial solution (platform configuration) each time and the
best solution out of 20 runs is recorded, the average of the solutions obtained from 20 runs is
determined as well. Table 4.4 presents the results of the analysis in the following way. The first
column presents the parameters of the problem solved, followed by the optimal cost. The next
four columns represent the results of the evolutionary approach, starting with the best solution
achieved (from the 20 solved), followed by the percent difference between the optimal and the
best solution. Then, the average solution is presented with its percent deviation from the best
solution. From the table it is seen that the evolutionary approach found the optimal solution in
two problems (under the specific conditions of those problems were no platform was
recommended). The rest of the four problems show that the heuristic approach (evolutionary)

reached a very good solution — within about 1 percent in most cases.
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Table 4.4 Computational Analysis of Evolutionary Approach

Problem Optimal Evolutionary Approach
solution

Demand [Py, Py, P3, P4, Ps], Best %Difference Average | %Difference
Cost ( CPj, C4;and CR; ) in (Best vs. (Best vs.
dollars optimal) Average)
[200, 200, 200, 200, 200] 59900 62500 | 4.34 63025 0.8
(2,4,3)
[50, 250, 250, 250, 200] 58275 58425 | 0.257 59500 1.8
(2,4,3)
[200, 200, 200, 200, 200] 57500 57500 |0 57500 0
(3.25,3,2)
[50, 250, 250, 250, 200] 55425 55245 |0 55425 0
(3.25,3,2)
[200, 200, 200, 200, 200] 55400 56100 | 1.26 57200 3.24
(1,4,3)
[50, 250, 250, 250, 200] 51225 51425 | 0.39 51500 0.1
(1,4,3)

4.5 Conclusion

This chapter presents the concept of a common platform as a solution to the production of

a family of products in a cost effective manner. The chapter presents a description of the

problem followed by a mixed integer formulation presented as an optimization problem. Then an

evolutionary strategy based on Genetic Algorithm is proposed for the problem. The approach is

explained and illustrated using an example of a family of cordless drills. The heuristic approach

is found to very fast when compared to the exact approach, provided solution within 1% error for

most of problem instances. Also, the chapter provides insight into the effects of demand variance

and various cost components on the optimal configuration of the platform.
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CHAPTER 5 - Economic Production of a Product Family using
Multiple Platforms

5.1 Introduction

In this chapter, we present a methodology for selecting multiple platforms for the
production of a product family. The advantage for using multiple platforms over a single
platform is the ability to optimally match products to a particular platform. Most of the product
platform formation formulations consider only a single platform analysis.

The chapter presents two solution approaches to the problem — an exact solution and a
heuristic approach. The problem is solved exactly as an MIP problem where the constraints are
made linear and some valid cutting planes are suggested. Even with adding the cutting planes,
the MIP can require substantial computation time. Therefore, a genetic algorithm is presented
that can quickly provide good solutions even to large instances. Both of these approaches are
illustrated with a small numerical example and a larger example of a product family of Cordless
drills. These examples are used to provide insights to the effect of demand variance and various
cost components on the optimal configuration of the platforms. Also, the heuristic’s solution
quality is discussed by comparing the two approaches.

The contribution of this chapter is in introducing the problem of multiple platforms, and
providing an efficient mixed integer program. Moreover, the genetic algorithm is also unique
since it is searching for an unknown number of solutions corresponding to the platforms adopted

for the production.

5.2 Model Formulation

In this section we model and analyze the production of a family of products using
multiple platforms that enables cost effective production with short final assembly time. This
model enables the systematic determination of the optimal number of product platforms, the
configuration of each platform (its component set) and the assignment of each platform to the
various products in the family, while minimizing the overall product family production costs.

The optimal multiple-platform configuration determination problem can be formulated

as:
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Min Y33 (CP,+C,)x, vy -D, +

iel jeJ kekK

ZZ Z (CAJ +Cj)'aijk Vi D+

iel jeJ keK

ZZZ(CRJ_CJ)'njk'yki'Dk+ (.1

iel jeJ kekK

>4

iel
Subject to:
aijk:(l—xl.j)-vjk-yki Viel;jeJ;ke K (5.2)
rﬁks(l—vjk)-xij-yki Viel;jel;keK (5.3)
/]
Zykl. =1, VkekK (5.4)
i=1
X 2 fin VX Viel;jleJ;keK (5.5)
Ieil, 2, K} (5.6)
x; € 10,1y,¢e {0,1}a, € {0, 1} r, € {0, 1} (5.7)

Decision Variables: x;, yi, aj 7y The objective minimizes the cost, which includes the
setup costs for each platform, the optimal set of components to include in each platform, and the
optimal assignment of products to platforms. The first term in the objective function (Equation
5.1) represents the cost of production of platforms, second term represents the cost of adding
components manually to the various platforms to form different products, the third term
represents the cost of manually removing (and allowing for reuse) excessive components from
the platforms to form each product, and the final term represents the setup cost of constructing
the platforms.

Constraints (5.2) restrict component j to be added to platform i to make product & only if
the component is not already in that platform. Thus, component ;j is required for product &, and
product £ is assigned to platform i. Constraints (5.3) state that a component j may be removed
from platform i if that component is not required in product &, the component is assigned to
platform i and product £ is assigned to that platform. Constraints (5.4) ensure that each product is

made by only one platform. Constraints (5.5) check the assembly feasibility of each product that
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uses a platform so that if component / precedes component ; in a product k assigned to the
platform, and component / is assigned to the platform, then component j must be on the platform.
Constraints (5.6) represent that the optimal number of platforms is an integer and the maximum
number of platforms is limited by the total number of the products in the family, and Constraints

(5.7) ensure binary decision variables.

5.2.1 Improving the Formulation
In the formulation constraints (5.2), (5.3) and (5.5) are non-linear, which makes selecting a
solution procedure difficult at best. The following changes are made to constraints (5.2), (5.3)

and (5.5), which make the formulation linear.

a; +x,; <1 Viel;jeJ;kekK (5.8)
Ay +X,; 2V, Viel;jeJ;keK (5.9)
Vi 2 Ay Viel;jeJ;keK (5.10)
i 2 i Viel;jeJ;keK (5.11)
T X, +v, <2 Viel;jeJ;keK (5.12)
I+ x; 2 fipvy +x, Viel;j,leJ;keK (5.13)

Equations (5.8)-(5.10) replace the non-linear constraints (5.2), equations (5.11)-(5.12)
replace non-linear constraints (5.3) and equation (5.13) replaces the non-linear constraints (5.5).
The solution space is extremely large. For instance, the total possible platform configuration
being 2" | which is just one decision variable of the model.

To help reduce the search space we introduce some cutting planes. The first cut was added to
avoid the symmetrical nature of the problem. In this case the same solution can be represented in

|7] different ways by merely permuting the platforms. To eliminate symmetry the following

additional constraints are used:
dx; 2> x; Visel (5.14)
j j
ZykiZZyki Vi,sel (5.15)
k k

Another constraint that prevents the same component from being added and removed from

the same platform:
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Ay + 1y <1 Viel;jeJ;keK (5.16)
These cuts are included in the formulation and the model is solved. Adding cut (5.14)

reduces the computational time by more than 50%, while cuts (5.15) and (5.16) had a smaller

contribution.

5.2.2 An Illustrative Example
In this subsection a small example to illustrate the solution of the integer program is
presented. This example uses a family of four products having eight distinct components, as

shown in Figure 3.1. The cost of the components is given as

Component> A B C D E F G H

Cost ($)> 10 11 12 13 14 15 16 17

This example is solved optimally, and the results for the various cases of demand and costs
are shown in Table 5.1. The results presented in Table 5.1 show that utilizing multiple platforms
is economically justified. And this fact is even more pronounced when the setup cost of new

platforms is relatively small.

The following conclusions can be drawn from the results:

1. For some values of setup cost, proposing more than one platform is cost effective.

2. With a decrease in setup cost of the platforms, the optimal number of platforms increases.

3. From Figure 3.1 and Table 5.1, it is evident that when the demand of each product is
similar enough, platform elements are the elements that are the most common throughout
the product line, independent of the components cost.

4. When the cost of mass assembly of each component in the platform exceeds the cost of

manually adding the components to the platform, using platforms is not justified.
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Table 5.1 The platform and overall cost for various cases of demand, and cost

Setup cost Costs Demand Single Costin § | Multiple platforms | Costin $ Solution
% QA (CP; CA; CR)) platform (Single) (Multiple) | Time
(sec.)
1000 243) [250 250 250 250] [AB]* 79750 [AB] (2, 4)** 78750 128
[ABCE] (1,3)
[700 100 100 100] [ABCE] 77500 [AB] (2,3,4) 74900 130
[ABCDE] (1)
[100 700 100 100] [AB] 79900 [ABD] (2) 78900 115
[ABC] (1, 3, 4)
[100 100 700 100] [ABCE] | 78700 [AB] (1, 2,4) 76100 132
[ABCEF] (3)
[25 2525 925] [ABCGH] | 80150 [AB] (1, 2, 3) 78125 126
[ABCGH] (4)
(21.753) [ 250 250 250 250] | [-] *** 72500 [-] 72500 12
[700 100 100 100] [-] 72500 [-] 72500 12
100 243) [250 250 250 250] [AB] 78850 [-1(2) 76550 612
[ABCGH] (4)
[ABCE] (1,3)
[700 100 100 100] [ABCE] 76600 [-1() 74000 608
[AB] (2, 3,4)
[ABCDE] (1)
[25 2525 925] [ABCGH] | 79250 [-1(2) 76325 598

[ABCGH] (4)
[ABCE] (1,3)

* ‘[ 1" Represents the components set of the single platform and all the products in the product family is assigned to

it.

** <[ 1 () Represents the components set of a platform and ()’ represents the products set out of the product family

made from that platform
*** ¢[-]” Represents the platform doesn’t have any component in it

5. When the demand of a particular product is very high with respect to others in the

product line, the platform components are those that are in that product, even if other

products do not share these components. For example, if the demand of P4 (Figure 3.1)

is very high with respect to others in the family, the platform in this case is the product

P4 itself.

5.3 Genetic Algorithm Solution Methodology

Observe that even the very small problem solved in Section 5.2 required around 10

minutes to solve. The solution time increases exponentially as the larger problems were
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attempted, and the solution was not reached even in a week. Therefore, we present a genetic
algorithm (GA) based heuristic approach for the multiple-platform problem selection problem.

The algorithm starts by applying the genetic algorithm to a single platform model. Once
the near optimal solution for the model is obtained, the genetic algorithm is applied by
considering the number of optimal platform equals two for the model, and a near optimal
solution is obtained. This continues until |K| platforms have been analyzed. The smallest cost
solution for £ number of platforms is then reported as the solution to the multiple-platform
problem selection problem and |K] is the optimal number of platforms.

The genetic algorithm follows the steps presented in Section 5.3.1. The lower the cost-
value of a particular chromosome, the higher the fitness value it possesses. The algorithm
terminates after a pre-specified number of iterations and the best solution (with minimum cost

value) is reported.

5.3.1 The Genetic Algorithm
Input: 1= the population size
p.= the crossover probability
Pn=the mutation probability
T = the maximum number of generations (number of iterations)
P, = the population on the " iteration
Step # 1: Initialization
Generate a random initial population P, of size x and a random initial offspring
population P’y of size u, and apply feasibility and correction algorithm (described in

Section 4.3.1) to create Py and P’y and set /=0.

Step # 2: Fitness

P,[+[ épt UP,t;and

Calculate the fitness of each individual in P’;. The fitness, f,, of an individual p is
given by f, = %os fvalue Where value cost is the value of objective function for that
individual (solution).

Step # 3: Evolution
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Sort P’,; based on fitness value (in decreasing order) and truncate the size of P’ ; to the

best p solutions. P;; € P’y

Step # 4: Selection
Individuals from P, ; are selected for mating. The individuals, of the same number as the
population size, will be copied into a mating pool according to their fitness values. The
higher the fitness values the greater the probability of individuals to join the mating pool
(individuals may be selected for the mating pool more than one time.). The selection
procedure is done as follows.

Begin

p<0;

While (p< 1) do
Calculate the selection probability and cumulative probability for an individual p as

1, N -
Pr, = /Z: f Vp=12,.,N and Cr, :;Prk, Vp=1,2,..,N respectively; and
P

generate a random number 7, r € [0,1];
If r<Cr, then select the first individual; else, select the pth individual

Cr,,<r<Cr, Vp=2,3,.,N;

End if

p€ptl
End
Step # 5: Variation
Apply crossover with probability p. and mutation with probability p,, to P;:; to generate
P’;. With crossover probability p. we mean that on an average (p. * u) individuals
would undergo crossover to generate (p. * u) children. Then the mutation operator is
applied with a low mutation probability p,, on P,.;. After applying the crossover and
mutation operators, we get on an average (p. + p») * ¢ number of children, denoted as

P,[+[.

Step # 6: Feasibility and correction
Apply feasibility and correction algorithm to P’;;; to create Py and ¢ €¢+1.
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Step # 7. Termination

If ¢t = T, terminate and print the solutions in P, otherwise go to Step #2.

5.3.2 Solution Representation
The solution is represented using a matrix with ‘I ‘ rows and ‘J ‘ columns, where ‘J ‘ is the

maximum number of distinct components in the product family under consideration, as

th

illustrated in Figure 5.1. An entry of ‘1’ at the i, j position represents that the i~ platform

contains the /™ component.

Figure 5.1 Solution representation f0r|f| number of platforms

5.3.3 Generation of a Feasible Chromosome Population

Initially a population of solutions is randomly generated; therefore some of the solutions
may not be feasible. Also, applying the crossover, and mutation operators create new solutions
that may not be feasible.

The feasibility and correction algorithm is slightly different for multiple-platform model
as apposed to the single platform model as products that would be assigned to each of the
platforms in the platform-set is not known before hand. Therefore for the case of multiple-
platform model each of the platforms in a platform-set is checked for feasibility using the PARs
of the products in the product family as apposed to using the Overall PAR for the whole product
family. A feasible solution is a solution in which the configuration of each platform follows the
part assembly relationship of at least one of the products in the product family.

The feasibility and correction algorithm for the multiple-platform model follows the
following steps.

Let P; (a binary string) represents a configuration of platform ‘i’ generated randomly. In the

J|.

solution representation matrix this string P; is represented by the i row, columns 1...,
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Let Tjk (a binary string) represents the jth column in the PAR matrix for product ‘4’. (For an

example of PAR matrix, see Table 1).
Step # 1: Set i=0, k=1
Step # 2 update i=i+1; if i=|] | go to step 4, else go to Step # 3.

Step # 3: determine strings Q) = P; AND T} ; for all j=lin P;
Step # 4: compare Q' with T bitwise for all j
Step # S: if for any J, Qj not equals Tjk, go to Step # 6; otherwise platform ‘i’ is feasible, go to

Step # 2.
Step # 6: Update k=k+1; ifk=|K| go to Step 7, else go to Step # 3.

Step # 7: Create a new feasible P’ = [bitwise OR (Tj" s)] OR P; for all j=1 in P;, go to Step # 2.

(where P;’ is the corresponding feasible platform configuration for any infeasible P;).

Step # 8: Stop

5.3.4 Solution Evaluation
The fitness value (f,) of each solution in the population is calculated to assess the quality of
the solution relative to the rest of the solutions in the population. The selections of individuals
that are transferred into the next generation are based on their fitness values.
The cost calculations:
Step # 1: For each product k& produced using platform 7 in the solution calculate the cost of

making the platform as:

Gy = {Z (CPJ + Cj)-x,.j + Z(CAJ + Cz) y +), (CRJ - Cz) ik JDk +4,

jeJ jeJ jeJ

Where, x;= 1, if component j is in platform #; a;x =1, if component j is required in product k and
is not in platform i; r;3= 1, if component j is not required in product £ and CR;<C; (it pays to

remove the component and use it later).

Step # 2 Construct a square matrix, M, of elements Cys, Where M is the matrix made by

[l >

concatenating matrices M, :[Cki]‘k‘x‘,‘ and M, :[minme]{Ckm}]‘k‘x(‘k‘_‘,‘) side-by-side. Figure 5.2

gives an example matrix, M of 4 products and 2 platforms. Elements in all rows and the first two

45



columns (M;) represent the total cost of making product & using platform i. Two more dummy
columns (M;) are added in which every element in the row is the minimum of elements in the

same row of M;.

Step # 3 Solve the assignment problem represented by matrix M for optimal assignments of

[k
products to platforms, given the components set of each platform (see Figure 5.2b). Hence for
the example in Figure 5.2a, products numbered 1 and 4 would be assigned to platform #1,

products numbered 2 and 3 would be assigned to platform #2.

Step # 4 The sum of all C,.s gives the cost value of a chromosome.

Plat 1 | Plat2 | dl d2 Plat 1 | Plat2 | dl d2
Prod1 |2 3 2 2 Prod 1 C]]* C]z C]] C]]
Prod2 | 4 3 3 3 > Prod 2 C21 sz sz* sz
Prod 3 1 2 1 1 Prod 3 C31 C32* C31 C31
Prod4 | 3 4 3 3 Prod 4 C41 C42 C41 C41*

(2) (b)

Figure 5.2 (a) Matrix M used for product-platform assignment (b) The final assignment

5.4 Results and Discussions

We use the example presented in Section 3.2 to illustrate and numerically validate the
model and the approach presented in this chapter. Several instances of the problem are solved by
the exact method (using OPL 3.5) and by the genetic algorithm. Initially, the GA based
algorithm was run several times to make the appropriate choice of population size, number of
generations, and mutation rate. Based on these runs, a population size of 20, a maximum
generation limit of 400, a crossover probability of 0.8, and the mutation probability of 0.1 were
used for the remainder of the runs.

Comparative study: The results obtained, from the OPL 3.5 and the Genetic Algorithm
approach for the various instances of the problem, are shown in Table 5.2.

The results obtained for the family of drills is consistent with the results obtained for the
hypothetical smaller case presented in Section 3.2. The time required to solve the problem using
the GA based approach is not presented as for any instance since it was less than 120 seconds.

From the results it is obvious that the exact method can require substantial computational time.

46



As expected, the time required by the exact method increases exponentially with increase in the
number of platforms. A comparison of the solution quality using both approaches is presented in
Table 5.3 (for the same results presented in Table 5.2). As demonstrated by that table, the
heuristic approach reaches a very good solution — within less than 2.6 percent from the optimal

results in a reasonable amount of time.
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5.4.1 Analysis Using the Genetic Algorithm Results
Figure 5.3 presents the surface plot of the total production cost as a function of setup
costs and number of platforms. In this plot the demand of each product (drill) is considered to be
100 units, and CP;=$1, C4=$4, and CR=$3 (for all j). The plot shows that the when the setup
cost of the platform increase, it is more economical to reduce the number of platforms. When
setup cost is reduced, having more platforms result in lower production cost. We can see from

the figure that allowing multiple platforms with lower setup costs leads to lower total production

costs.

Total production cost ($)

Setup cost Number of platforms

Figure 5.3 Surface plot of Setup cost, number of platforms and total production cost
A convergence plot for the genetic algorithm is shown in Figure 5.4 for different numbers
of platforms. The graph shows the solution quality as a function of the number of generations. It

is evident that the algorithm converges efficiently.
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— — (1) number of platforms =1
(5) number of platforms =5
(3) number of platforms =3
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—— (4) number of platforms =4
- — — — (2) number of platforms =2

Total production cost ($)

| | | | T T ]
50 100 150 200 250 300 350 400
iterations(X 20)

Figure 5.4 Convergence plot for setup cost =$1000

5.5 Conclusions

This chapter introduces the concept of multiple platforms as a solution to the production
of a family of products in a cost effective manner. The model establishes that using multiple
platforms to produce a family of products, given low setup costs, is cheaper than using a single
platform. The chapter presents a description of the problem followed by a mixed integer
formulation presented as an optimization problem. Then an evolutionary strategy based on
Genetic Algorithm is proposed for the problem. The approach is explained and illustrated with
an example of a family of cordless drills. The chapter provides insight into the effects of demand
variance and various cost components on the optimal configuration of the platform, and

discusses the effectiveness of the heuristic tailored for that application.
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CHAPTER 6 - Economic Production of a Product Family under

Demand Uncertainty

6.1 Introduction

In this chapter, we propose a platform based approach for the production of a product
family under demand uncertainty. Using this approach, every product variant in the family may
either be assembled directly from its components, or from any platform whose component set
resembles those required by the product. The methodology seeks to minimize the overall
production costs of the products, which include the costs of production, and holding cost of
unused platform inventory and shortage cost of lost demands of products, while considering the
stochastic demand of each product type.

The advantage for using this platform based approach is that this approach enables the
economic production of customized products with much shorter final assembly lead times and
with decreased risk of losing demand or holding surplus inventory.

The problem is formulated as a two stage stochastic programming model with recourse.
First stage decision variables determine the configuration (components set of a platform), and the
quantity of the platforms (inventory level) to be produced. Second stage decision variables
determine the additional components that would be added to the platform to make a particular
product type, the components that would be removed from the platform to make a particular
product type, and the quantity of each product type to be produced.

The platform formation problem for the economic production of a product family with
stochastic demand of each of the product is modeled as a general optimization problem. The
chapter presents three solution approaches to the problem — an exact solution and two heuristic
approaches. The results obtained from the exact method are used to validate the model
formulation and measure the significance of using stochastic program for modeling the problem.
However, only a very small instance of the problem could be solved by exact approach using
OPL 3.5. Therefore, two heuristic methods that can provide good solutions to large instances of

the problem more quickly are developed. The first heuristic method combines a genetic search
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process and integer programming to provide a near optimal solution. The heuristic can solve
large instance of the problem in a reasonable time. However, with this approach the solution time
increases exponentially with increase in number of possible demand scenarios. To deal with
large number of demand scenarios a pure probability based genetic search process is proposed,
which is very fast even when a large number of demand scenarios is considered with slightly
inferior solution quality than that of the first heuristic method. Both of these methods are
illustrated with an example of a product family of cordless drills. The example is used to provide
insights to the effect of demand parameters and various cost components on the platform based
production approach. Also, the heuristics’ solution qualities are discussed by comparing the two

approaches.

6.2 The Model

In this section, we model and analyze the production of a family of products using
platforms that enables cost effective production with short final assembly time in an uncertain
demand environment. This model enables the determination of the optimal configuration of
product platform (its component set), the optimal inventory level of platform, and the optimal
number of each of the product that should be produced in each scenario, while minimizing the

overall production costs.

6.2.1 The Problem Statement

A production facility produces N types of products using the platforms (semi-finished
form of the products). The facility mass-produces the single type of platforms and keeps the
inventory of them.

The manufacturer experiences stochastic demand for each of the products. When the
order of a product comes in, some components may be manually added to the platform or some
components may be removed from it or both to make the product, and the product is shipped to
the customer within the due date. If the actual total demand of all the product types is more than
inventory level of the mass produced platforms, there would be some demand losses and
shortage cost would be incurred on the other hand, if the actual total demand of the product is
less than the inventory level of the platforms, all the demands would be satisfied, but the facility

would have to pay holding cost of unused platforms.
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The problem can be formulated as a two stage stochastic programming model with
recourse. The demand of each product is modeled as set of demand scenarios each with some
probability of occurrence.

First stage decision variables would be to:
e Decide the configuration (components set of a platform)
e Decide the quantity of the platforms (inventory level) to be produced
Second stage decision variables would be to:
e Decide the additional components that would be added to the platform to make a
particular product type
e Decide the components that would be removed from the platform to make a particular
product type
e Decide the quantity of each product type to be produced for each scenario

The objective is to minimize the total production cost that includes the cost of production

of platforms, cost of production of products using the platforms, holding cost of unused

platforms and stock-out cost of lost demands.

6.2.2 The Model Formulation

A production facility produces N types of products using the platforms (semi-finished
The following model (Model 1) of the problem is proposed.
Model 1

(CP +C)

M=

Min WX
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N M N M
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S.t

a,+x, <1 Vie{l2,.. .Mhke{l?2,.. N} (6.2)
a,+x,2v, Vjie{l2,...Mbke{l2,.. N} (6.3)
v, 2a, Vje{l2,.. .Mlkel{l2,.. N} (6.4)
X, 27, Vje{l2,...Mbkel{l2,. N} (6.5)
x4y, <2 Vjell2,...Mbke{l2,. N} (6.6)
N
w-v' = Z Ve Vsell2,..,S} (6.7)
Y g =&, Vsell2,..,Shkefl2,. . N} (6.8)
1+x‘, > f,+x, Vjile{l2,..,M} (6.9)
e{0l); a, {01} r, €01} ¥, 20, w=0; u, >0; v >0 (6.10)

The objective function (equation 6.1) represents the total production cost that includes
cost of making of the platforms, cost of assembling the products using the platforms, total stock-
out costs, and total holding cost under all possible scenarios. Constraints 6.2 — 6.4 state that
component j must be added to the platform to make product £ if j is not in the platform and is
required in product k. Constraints 6.5 -6.6 state that component j may be removed from the
platform to make product £ if that component is in the platform and is not required in product .
Constraints 6.7 express that for any scenario s, the total number of products produced cannot
exceed platform inventory level. Constraints 6.8 limit the total quantity of product £ produced to
the random demand value of product & for any scenario s. Constraints 6.9 check the assembly
feasibility of the platform while deciding the configuration of platform. These constraints states
that if component / is in the platform and according to part assembly relationship matrix if ;

S

precedes / ( 7/ =1) then j must also be present in the platform. Constraints 6.10 ensure the binary

and non-negativity nature of the decision variables.

6.2.3 An Illlustrative Example
A production facility produces N types of products using the platforms. In this section, a
small hypothetical example is used to illustrate the solution of the integer program and to
validate the stochastic model by calculating the stochastic solutions, expected value solutions,
and solutions in case of perfect information. The model is validated by showing that the value of

stochastic solutions, VSS, (expected value solution - stochastic solution) and expected value of
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Table 6.1 Binary bill of materials (vy) for the

perfect information, EVPI, (stochastic solution - solution in case of perfect information) are
positive for various instances of the example.

Stochastic solutions are determined by solving the stochastic integer program presented
in Model 1. Expected value solutions are determined by taking the value of w (number of
platforms to be mass produced) equal the sum of the expected demand of all the products and
solving the stochastic integer program with this fixed value of w. The solution in case of perfect
information is determined by solving the model by taking one scenario at a time with a given
demand value of that scenario and the cost value is obtained for that scenario; then weighted sum
of the costs for the all the scenarios, where the weight of a scenario equals the probability of the
occurrence of that scenario, gives the cost in case of the perfect information.

The example uses a family of three products (P17, P2, and P3). The binary bills of
materials of the products and PAR are shown in Table 6.1 and Table 6.2 respectively.

Table 6.2 The Overall PAR (f;;) for Product

products family
A B C D A B C D
A 1 1
P1 1 1 0 1
B 1
P2 1 1 1 0 C
P3 1 1 0 0 D
Data common for all the cases are presented below. The cost of the components is as
follows.

Component> A B C D
Cost ($)=> 10 11 12 13

Cost of assembling the platform = $2 per component for all the components.

Cost of adding components to the platform = $4 per component for all the components.

Cost of removing components form the platform = $2 per component.

This small example is solved exactly using OPL 3.5. The reason for taking such a small
size problem was that the OPL 3.5 took over 40 hours to solve the problem of this size. This

observation motivated us to propose heuristic based approaches to for large real size problems.
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Table 6.3 provides the solutions for the various cases of demand scenarios, various

shortage costs and holding cost, and various probabilities of occurrence of scenarios. From Table

6.3, following observations are made:

The positive values of VSS and EVPI (see last two columns of Table 6.3) supports the
correctness of the model and it is obvious that there is an advantage of using stochastic
model over expected solution approaches.

When the probability of occurrence of a particular scenario is high the solutions tends to
shift towards that scenario (Cases 1, 2, 3, and 5) except for the case of expected value
solutions. For a very symmetric case (Case # 4) all the three types of solutions are same,
which means for near symmetric cases using expected value solution approach would

work well.

Table 6.4 provides a sensitivity analysis on the holding cost and shortage cost using

various cases.

From Table 6.4, following observations can be made:

When the total demands of products are similar in various scenarios then the number of
products that should be made in each scenario depends solely on the shortage costs of the
products (Case # 1). Also, the shortage cost should be sufficiently high to justify the
production of products, as we have not considered the profit of production in our model
(See Case # 2).

When there is high variability in total demand in different scenarios the increase in

holding costs encourage lower production for given shortage costs (See Case # 3 and 4).
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Table 6.4 Sensitivity analysis on holding costs and shortage costs

Case#1 q1 92 93 Stochastic sol.
Obj. val. = $8790
h=$50/ $80/ $100 5100 $100  §100 W=250
Scenarios Pr. D1 D2 D3 Y2 Y2 Y2
S1 0.8 100 50 100 | 100 50 100
S2 0.2 50 100 50 50 100 50
Lo 2 q 92 43 Obj. val. = 5000
h=$50/$80/$100 520 820 820 W=0
Scenarios Pr. D1 D2 D3 Y2 Y2 Y2
S1 0.5 100 50 100 0 0 0
S2 0.5 50 100 50 0 0 0
Lo s 4 92 43 Obj. val. = 18825
h=$ 50 $102 $101  $100 w=320
Scenarios Pr. D1 D2 D3 Y2 Y2 Y2
S1 0.5 200 100 100 | 200 100 20
S2 0.5 100 50 50 100 50 50
LA 9 92 g3 Obj. val. = 27830
h=$100 $102 $101  $100 w=200
Scenarios Pr. D1 D2 D3 Y2 Y2 Y2
S1 0.5 200 100 100 |[200 0 0
S2 0.5 100 50 50 100 50 50

6.3 Solution Approaches

We propose genetic evolutionary based solution methodologies for the problem as a
genetic algorithm based heuristics are vastly used tool for optimization problems that have large
search spaces and with non-linear objective functions. The problem presented in this chapter falls
in that category. Usually such heuristic approaches are required to solve stochastic models
(Spall, 2003).

For this model, we proposed two types of heuristic approaches. The first heuristic
method, Genetic Algorithm with Integer Programming (GAIP), combines the genetic search
process and integer programming to provide a near optimal solution. The heuristic can solve a
large instance of the problem in a reasonable time; however the solution time increases
exponentially with increase in number of possible demand scenarios. The second heuristic

method, multiple-population Genetic Algorithm, is a pure probability based heuristic search

59



process (called PHA in rest of the thesis) that starts with multiple populations, and can solve the
instances of the problem with large number of demand scenarios.

The detailed explanations of the heuristic approaches are provided in sections 6.4 and 6.5.
However, the chromosome encoding and feasibility check process is the same for both
approaches. Also, the Solution Encoding approach and the Initial Feasible Population
Generation (feasibility and correction of platform configuration) algorithm used for the heuristic
approaches are identical to what used in solution methodology in Chapter 4, Section 4.3.1. Both

the heuristic solution approaches are presented in the following sections.

6.4 Genetic Algorithm with Integer Programming (GAIP)

In this method a genetic search algorithm, presented in Figure 6.3, is used to explore the
search space and an integer program (Model 2), presented in Section 6.4.1, is solved for each
chromosome to calculate its fitness value.

The solution methodology follows the strategy shown in the flowchart in Figure 6.1. A

chromosome string, x; , is generated probabilistically (randomly or using genetic operators) and
value of x; is fed to the Model 1 and the model reduces to a linear integer program (Model 2).

Solving this integer program provides the total cost of production (objective function value of
Model 2) and values of other decision variables such as the number of platforms to be mass-
produced, the components that should be added or removed to produce a particular product, the
number of each product produced using the mass-produced platforms. Now the genetic

operators are applied to alter the chromosome information (x; ) and then the new value of x; is

fed back to Model 1 to reduce it to Model 2 and Model 2 is solved to get new objective function

value and the solutions. This process is repeated until maximum number of iterations is reached.
Clearly, this approach combines the genetic search process and solving an integer

program. The genetic search process and solution process of integer program is explained in

detail in the following section.
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Initialization:

Main:

Start with a random feasible value of x =l

i€ i+l

\ 4

y

Determine the value of a; s and r, s from the value of

X

y

Feed in the values of a ;s and r; s, and x;to Model 1

and the model reduces to an integer program (Model 2)
in variables w, y,, v's and u,

y

Solve the integer program to calculate the total
production cost (objective function value) for given
demand scenarios

Perturb x, by using

genetic operators and
total production cost
corresponding to x;

/= maximum
iteration?

Return the solution, the value ofx;, a,, r,,

W, ¥, v'sandu, , and the total production cost
(objective function value)

Figure 6.1 The flow chart showing the solution strategy
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6.4.1Genetic Search Process
The search process starts with the encoding and the initial feasible solution generation, which is
explained in Section 4.1.1 and Section 4.1.2. The overall process is presented by a flow chart
shown in Figure 6.3. The details of the various steps presented in the flow chart are as follows.
Perturbing the values of x;js (Crossover and Mutation)

The crossover used for the exploration of search space. If the population size is 2L, L
random pairs of chromosomes are selected for crossover. The crossover operator is applied on
each of these pairs with crossover probability (here 0.8-0.9). The pairs that undergo crossover
generate that many pairs of children. The crossover operator used here is single point crossover.
In a single point crossover a crossover point (See Figure 6.2) is randomly selected on the pair of
chromosomes undergoing crossover and the bits on the chromosomes are exchanged about that

crossover point. Figure 6.2 explains the single point crossover operation.

Parent Children
| Crossover
ﬁ_} —
| |
Crossove

Figure 6.2 Crossover

The mutation process used here is identical to what presented in Section 4.3.2. The mutation is
applied on a string (chromosome) with a very low probability.

Next the children population and the mutant population obtained after the application of
crossover and mutation operators are checked for the feasibility. If any chromosome (string) is
not feasible, we modify the string to become feasible using Feasibility Check and Correction
Algorithm (the algorithm is presented in Section 4.3.1).

Building each Generation

The algorithm starts with the random generation of L solutions. The feasibility of each

solution is checked and if not feasible they are made feasible. These solutions are evaluated and

kept in an archive. Then these solutions and a copy of each of them are taken for crossover and
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mutation. After this step we get altered solutions (children and mutants). These solutions are
checked and corrected for feasibility. These mutated feasible solutions are evaluated and the
best L of the (Archive solutions + children and mutants solutions) updates the archive. The
process is repeated until the pre-specified maximum number of iterations is reached.

The population size is doubled during the crossover and mutation phase to make the
search more exploratory.
Evaluation and Calculation of Fitness

Each suggested platform has a cost function that shows the cost of converting the
platform to each of the products, given relevant data (various associated costs, demand in each

scenario, the probability values for each scenarios, etc.).
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Generate L random platforms’ configurations (pop)

Check for feasibility (make the infeasible
platform configurations feasible)

!

Evaluate the L solutions and store in archive (4rc)

A
i=0

A4

| Double the population (2L) by making a copy of

Yes

"| each string (pop’ =2 pop)

A 4

Crossover and Mutation is applied on pop’ to
generate an altered population set pop’’

'

Check and correct for feasibility

'

i=i+l

A\ 4

New population (pop) = best L from (pop’’ +Arc) chromosomes

|

Update the archive (4rc = pop)

i< max_iteration

No

New population is the final population

The solution is reached

Figure 6.3 The flow chart of the genetic search algorithm
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The cost calculations follow the following steps:

Step #1 From a suggested value of x;, determine the values of @, and r, . How this is

done is shown in the following pseudo-code below.
For each component j in the platform Do
For each product i Do
Ifj is NOT in product i Then
If CR; > C;  Then

rp =0
Else
Py =
Endi
Endj

For each component j Not in platform Do
For each product i Do
If'j is in the product Then

a, =1

Else

a, =0
EndIf
Endi

Endj

Step #2 Reduce Model 1 to an integer programming model (Model 2) by putting in the

values of x;, a;, and r; . The reduced model 2 is shown below.
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solutions are obtained in substantial amount of time.

Model 2 (Underlined variables are known)

ips[ii(CAj""Cj)'ajk Yis +i§:(CRj_Cj)"’J_'k'yksJ+

S.L.
w-vi= )y, Vsefl2,..S}

Vo ¥u, =&, Vse{l2,. .. Stke{l2,. N}

. - .
Vs 20;w20;v, 20;u,, =20

(6.11)

(6.12)

(6.13)
(6.14)

This integer program is solved to provide the solution and the value of the objective

function, which is the total production cost (Z"). How this integer program is solved is

explained in Section 6.4.2.

Step # 3 The fitness of the chromosome is given as fitness = yZ* .

6.4.2 Solving the Integer Program (Model 2)

Model 2 is an integer program. In general, solving an integer program is difficult and

always integral solutions will be obtained.
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However, it can be proved that the
constraints matrix of Model 2 is a Totally Unimodular Matrix (TUM) and the right hand side of

the all the constraints (b) are integers. Therefore, Model 2 can be solved as a linear program and

Proof for Total Unimodularity of the coefficient matrix of linear constraints of the Model 2:

The constraints of Model 2 can be rewritten as (in AX = b form),



N
Ww- Zyks+0xu,;s v =0 Vsell2..S)
k=1

Oxw+ ypo +ug +0xvy =& Vsell2,...Shke{l2,.. N}

The 4 matrix will have total number of rows, m = S + S*N and number of columns, n = [ +S*N
+ S*N + § (n= total number of variables the model).

The matrix A can be presented as

Amxn = (F(S+S.N)x19 G(S+S~N)><(S4N)’ H(S+S-N)X(S~N)9L(S+S~N)><S)
An example 4 matrix for number of scenarios (S) = 3 and number of products (N) = 5 is

presented below.

F G H L

O 1f-r -1 -1 -1 -1 0 0 0 0 O0f0O O O0OOOOOOO0OO0]-1
0> i1ro o o o0 o0-1-1-1-1-1{00200000U00O0°O0°O0]0 -

op,r o o 0 0 0 0 0 O Of1 00 O0OO0OOOOTO®O]|O

06,0 1.0 0 0 0 0 0 O OO 1 O O0OO0OOO0OOGO0OO]|O

0 06,0 o 1.0 0 0 0O O O OO O 1 O0O0OOOOO®O]O

0,0 o o1 0 06 00O O OJOOCOT1O0O0OO0OO0OO0O®O]|O

06,0 0o o 0 1 0 00 O O0OfJ0OOCOOCT1TUO0OO0OOO0O®O0O]|O

0,0 0o 0o 06 061 6 0 0 O0f0OO0COO0OO0OT>1IO0OOTO0OO|O

0,0 o 0o 0 0 061 0 0 0f0O0OO0OO0OO0OOT1UO0OO0O®O0O]|O

0; 06,0 0 0 60 0 06 061 0 O0f0OO0OOOCO0OOOTIO®O]|O

0,0 0o 0 0 0 0600 1 0f0OO0COO0OO0OOO0OOT1T®O0O}]O

6y,0 0 0 0 0 06 00 O 1100 O0O0OO0OO0OOGOTIIO

. . fom {1 fori=1,2,....S and j=I
F is a matrix with elements, ij =10 fori=S+l,...,.S+S"N and j=I

(Foralli=1,..,.S+S-N;j=1)

-1 for i=l,..,S and j:1+{i—1}-N+1,...,l+i-N
0 fori=l,...,S and j¢1+[i—lJ-N+1,...,l+i-N

G is a matrix with elements, g;; =11 o041 gL N and j=l+iS
0 fori=S+l,...,.S+SN and j# 1+i—-S

(Foralli=1,...8+S-N;j=1+1..,1+S-N)

67

eleoloNoloNoBelel=Rel =




0 fori=l,...,S and j=l4+S.N+L,...14+S.N+S.N

His a matrix with elements, by =1y for ;541 55 N and j=l+S.N+i-S
0 for i=S+1,...,S+S.N and j#I+S.N+i—S

-l fori=l,...,S and j=l+S.N+S.N+i

0 fori=l,...,S and j=I+S.N+S.N+i
0 fori=S+1,....S+S.N and j=I+S.N+S.N+,...1+S.N+S.N+S

L is a matrix with elements, lij =

From the definition of 4, and /;, H and L are portions of the identity matrices (/). A common

result states that B is a TUM if and only if 4 = (B, ) is also a TUM. Thus it is suffice to show
that B= (F, G) is a TUM. We will use a common theorem that states that 7 is a TUM if for

mxn
>e-Te,

i€ i€0,

everyQ {1,..,m}, there exist a partitionQ,, O, of O such that <1 for j=1,.,n to

prove that B is a TUM.

For the matrix B, we choose set

0 =1{1.3,5...,(2-i-1),.}u
{S+1L.,S+N}U{S+2-N+1,..,S+3-N}..U{S+(2:i=2)- N +1,..,S +(2-i—1)- N}...

forVi= 1,...,*y (if S = an even number ) or S"‘% (if S = an odd number)

Q) ={2,4,6,...,2+1,..}U
{S+N+1,..,S+2-NJU{S+3-N+1,...S+4-N}..U{S+(2-i-1)-N +1,...,S+(2-i)- N}u...

forVi= 1,...,% (if S = an even number ) or S_% (if S = an odd number)

(Refer the example matrix 4 presented above to see the partition of rows in two sets Q; and Q)

5, fy= 3 Sy |for j=1
. l€Q1 Q
Let ¢; is an element of B, then | 3 €~ 2 e |=

i
i<Q, ¥ i<0) for j=1+1,....1+S.N

2. 8™ 2 &
zte zeQ2

From the definition of f;,,

% if S=an even number
iele flj B S+% if S=an odd number

68



% if S=an even number
iezQz fij S+l 5 if S=an odd number
_ {0 if S=an even number
Therefore, | 3 f.— X f.|= {1 if S=an odd number

. iy . ij
i€ Q1 ie Q2
From the definition of g,

-1+ 5/ ) if S=an even number
& 877 & )'fS— dd numb
zte —1+ A 1f S=an odd number

2 g

“1+|S 2) if S=an even number
ieQ2 by

145 _%)if S=an odd number

_ 10 if S=an even number
Therefore, ) 2 g i . 2 g il {1 if S=an odd number
i€ Q1 ie Q2

Oorl fore. eF
Now, > oe.— 2 e.l|= !

ite ij ieQ2 ij Oorl forey,eG

Or, <1

>e-Te,

i€Q i€Q,

Which means B is a TUM and hence 4 is a TUM. O

The Model 2 is solved as a linear program using Simplex method which is very fast.

6.5 Pure Probability based Heuristic Approach (PHA)

The time taken by the GAIP approach, to solve the problem, increases exponentially with
the number of demand scenarios. To alleviate this problem we propose one more heuristic which
is a pure probability based genetic search process.

This is a multiple population genetic search heuristic. The heuristic starts with proposing
a population of chromosomes corresponding to each demand scenario. The underlying premises

behind developing this heuristic are as follows.
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Good chromosomes from each population are selected based on their performance (= the
total production cost value by using that platform to produce products for the demands in
that scenario) with respect to that corresponding demand scenario. The number of good
chromosomes selected from a scenario solution is proportional to the value of the
probability of occurrence of that scenario to improve the chances of getting more “traits”
of those chromosomes, which corresponds to a scenario with high probably of
occurrence, in the children population.

These selected “good” chromosomes are mixed together and they undergo crossover and
mutation in anticipation that children chromosomes would demonstrate overall good
performance for all the scenarios together. (During the course of the search process the
chromosomes are evaluated for their performance in each scenario and overall
performance in the entire scenarios).

The selection process directs the search process. The heuristic uses three levels of
selection process. First, the chromosomes are selected on the basis of their performance
with respect to a particular scenario and second, among these selected chromosomes and
their children chromosomes some chromosomes are selected further on the basis of their
overall performance in the entire demand scenarios. Finally, only those chromosomes are
selected for next iteration that has good overall performance in entire scenarios and good
performance in a particular scenario.

The algorithm for the approach is presented next, before some definitions are provided
that are used to explain the algorithm.

Definitions:

1. The objective value with respect to scenario ‘s’ (Obj,): The total cost of production
calculated considering that only scenario ‘s’ would be realized. For a given configuration
of platform (x;), the calculation of Obj follows the following steps:

Step # 1: Using x;, determine the values of a, and r, as presented in Section 6.4.1.

Step # 2: Put in these values in the following equation to get the value of Obj;.

N M N M
0bj, =3 (c,+C;)x; D+ DY (co+¢;)ay+(c, - ;) ra) Dy

k=1 j=1 k=1 j=1
Dy is the demand of product k& in scenario s.
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2. The expected object value (Objg): The total cost of platform based production
calculated considering the expected demand of the each of the product. This cost
calculation follows the same steps presented for the calculation of Obj, except that in

S
place of Dy, expected value of Dy, E(Dy), is used. E(D;)= Z(Ps xDy).
s=1

The pure probability based genetic search approach follows the following steps:

Step # 1: Corresponding to each scenario a random population (population size = psize)
of chromosomes is generated. Let pop, be the population of chromosomes corresponding
to scenario 5. And, Obyj; is calculated for all chromosomes in Ps.

Step # 2: Then take best ([PSX pops]-i-l), [x] is the greatest integer value of x,

chromosomes from each pop, and mix them to make a bigger population called pop .

Step # 3: Double the size of pop’ by making a copy of it. Perform crossover with high
crossover probability and mutation with low probability on doubled pop’ to generate
children and mutants. The crossover and mutation process is same as explained in
Section 6.4.1. This step is performed to explore search-space to look for potential
solutions. The children, mutants and the pop’ is combined to get a bigger population,
pop’’.

Step # 4: For each chromosome in pop’” all Obj, are determined and Objg 1s determined.
Step # 5: Sort the pop’’ by increasing value of Objg and take the top L (L= size of pop”)
chromosomes and rest of the chromosomes are discarded. The top L chromosomes are
called pop’”".

Step # 6: Take the best chromosome(s) (chromosome with minimum value of Objr)

from pop’’’. Use the x; value of this chromosome to calculate a;, and r, , and feed these

values in Model 1 to get Model 2. Solve Model 2 to get the object value (total production
cost) and the solutions corresponding to this chromosome. This is the solution for first

iteration.

Step # 7: Sort pop’’’ in increasing order of Obj, and take the top psize chromosomes to
get pop; for the next iteration. Do this for all s.
Step # 8: Increment the number of iteration. If number iteration is greater than maximum

number of iteration go to Step # 9, otherwise go to Step # 2.
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Step # 9: Terminate the algorithm, report the objective value and solutions of the last
iteration.
The crossover and mutation processes used in this approach are same as that of the GAIP. These
two approaches are used to solve the various instances of the case study presented in next
section. Also, some comparative studies are performed to expose the solution qualities of these

approaches and their suitability for the different instances of the problem.

6.6 Results and Discussions
Initially, the genetic search heuristics proposed in last section were run several times to
make the appropriate choice of population size, number of generations, and mutation rate. The
appropriate values of population sizes and maximum number of generations depend upon the
various instances of the problem taken. For all the instances and for both the approaches the

crossover probability is kept high (0.8-0.9) and the mutation probability is kept low (0.05-0.1).

6.6.1 Results and Analysis using GAIP
The search process starts with the encoding and the initial feasible solution generation,
Table 6.5 provides the comparison of solutions obtained from GAIP with the exact

solutions for the small example presented in Section 6.2.3.
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Table 6.5 The comparison of solutions obtained from GAIP with the exact solutions

Case#1 q1 q> qs; | Stochastic (optimal) | Stochastic (GAIP)
Ob;. val. = $8790 Obj. val. = $8790

Scenarios Pr. Dl D2 D3 Y1 Y2 Y3 Y1 Y2 Y3
S1 0.8 100 50 100 100 50 100 | 100 50 100
S2 02 50 100 50 50 100 50 50 100 50

LesE 2 4 42 45 | Obj.val.=6330 | Obj. val.=6330
hess  S200 $100 1 w=150 w=150
Scenarios Pr. DI D2 D3 Y1 Y2 Y3 Y1 Y2 Y3

S1 0.8 100 50 100 | 100 50 0 100 50 0
S2 0.2 50 100 50 50 100 0 50 100 0

LEREES 4 42 45 | Obj.val.=10365 | Obj. val. = 10365
h=g50  $100 $100 $100 w=200 w=200
Scenarios Pr. DI D2 D3 Y1 Y2 Y3 Y1 Y2 Y3

S1 0.1 200 200 100 0 100 100 0 100 100
S2 09 50 100 50 50 100 50 50 100 50

S 9 42 45 | Obj.val.=8725 | Obj. val.=8725
h=$ 50/80/100 $100 $100 $100 w=250 w=250
Scenarios Pr. DI D2 D3 Y1 Y2 Y3 Y1 Y2 Y3

S1 0.5 100 50 100 | 100 50 100 | 100 50 100
S2 0.5 50 100 100 50 100 100 | 50 100 100

SakE 9 42 45 | Obj.val.= 18835 | Obj. val. = 18835
h=$5 $100 $100 $100 w=500 w=500
Scenarios Pr. DI D2 D3 Y1 Y2 Y3 Y1 Y2 Y3

S1 0.9 200 200 100 | 200 200 100 | 200 200 100
S2 0.1 50 100 50 50 100 50 50 100 50

From Table 6.5, it is obvious that the GAIP provides the optimal solutions for the small
example. The rest of the results and analysis provided in this section are on the bigger example.
Table 6.6 provides the data for an instance of the bigger example. For this example, CP=$2,
CA4=$4, and CR=$2 (for all j). Table 6.7 presents the solution obtained using the GAIP for the

example.
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Table 6.6 Data for an example problem

Scenarios | Pr. Demand

P1 | P2 | P3| P4 | P5
S1 0.2 | 100 | 100 | 100 | 100 | 100
S2 0.8 | 200 | 200 | 200 | 200 | 200

Holding cost Shortage cost
(Platforms) P1 | P2 | P3 | P4 | P5
$10 100 | 100 | 100 | 100 | 100

Table 6.7 Solution obtained for the example using GAIP

Objective value = $ 54710

Number of platforms made = 600

Scenarios | Number of products made | Shortages of products Leftover
Pl [P2 [P3 P4 [P5 | Pl [P2 [P3 |pa [ps | Praomms

S1 100 | 100 | 100 | 100 | 100 |O |0 |O 0 0 | 100

S2 200 | 200 | O 0 2000 |0 |200({200(0 |O

Figure 6.4 shows the convergence plot of GAIP for the above case.
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. Figure 6.4 Convergence plot of GAIP
The graph shows the solution quality as a function of the number of generations. It is

evident that the algorithm converges efficiently.
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The heuristic is run 20 times, and the mean and ‘mean + standard deviation’ of best
solutions for all the runs at each iteration is plotted vs. number of iterations. The plot is shown in
Figure 6.5. From Figure 6.5 it is clear that the standard deviation kept decreasing with the
number of iterations and finally it becomes negligible which means that in almost all the runs the
heuristic hit the same solution at the end which in turn supports the global convergence and

repeatability of the heuristic.
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Figure 6.5 The plot of mean and ‘mean + standard deviation’ of the iteration best of all the

runs at each iteration vs. Iterations (using GAIP approach)

6.6.2 The solution quality of PHA and comparison with GAIP approach
Figure 6.6 shows a convergence plot of PHA for any instance of the example. This

approach requires more number of iterations than the GAIP, but it converges efficiently too.
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Figure 6.6 A convergence plot for the PHA

The graph shown in Figure 6.5 for the GAIP approach is also plotted for PHA approach
and is presented in Figure 6.7. Figure 6.7 supports the global convergence and repeatability of
the PHA approach.
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Figure 6.7 The plot of mean and ‘mean + standard deviation’ of the iteration best of
all the runs at each iteration vs. Iterations (using PHA approach)

Table 6.8 shows the comparison of results obtained from both the heuristics. The results
obtained from both the approaches prove that GAIP performs slightly better than PHA. Some

more comparisons between these two approaches are provided in following section.
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Table 6.8 Comparison of results obtained from both the heuristics

o # 1 q q> q3 q4 qs GAIP PHA
$200 $100 $200 $100 $ 100 [ W=500; Cost value=26895 W=500; Cost value=27985
h=%$5
Scenarios Pr. Dl D2 D3 D3 D5 Yl Y2 Y3 Y4 Y5 Yl Y2 Y3 Y4 Y5
S1 0.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
S2 0.2 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
oo #2 qi q> q3 q4 qs W=250; Cost value = 19720 W=250; Cost value = 20220
$200 $100 $200 $100 $100
h=$5
Scenarios Pr. DI D2 D3 D3 D5 YI Y2 Y3 Y4 Y5 YI Y2 Y3 Y4 Y5
S1 0.8 50 50 50 50 50 100 100 100 100 100 100 100 100 100 100
S2 0.2 100 100 100 100 100 100 0 100 50 O 100 0 100 50 0
qi q> q3 q4 qs W=250; Cost value= 21183 W=250; Cost value= 21758
Case #3
$100 $100 $100 $100 $100
h=$ 50
Scenarios Pr. Dl D2 D3 D3 D5 Yl Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5
S1 0.1 200 200 200 200 200 0 0 0 50 200 |O 0 0 50 200
S2 0.9 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
qi q> q3 q4 qs W=250; Cost value=50525 W=250; Cost value=52025
Case #4
$100 $100 $100 $100 S$100
h=$ 50/80/100
Scenarios Pr. Dl D2 D3 D3 D5 Yl Y2 Y3 Y4 Y5 Yl Y2 Y3 Y4 Y5
S1 0.5 200 200 200 200 200 0 200 50 O 0 0 0 0 50 200
S2 0.5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
W=1000; Cost value=57518 W=1000; Cost value=57368
Case #5 1 12 s 1 s
$100 $100 $100 $100 $100
h=$10
Scenarios Pr. DI D2 D3 D3 D5 YI Y2 Y3 Y4 Y5 YI Y2 Y3 Y4 Y5
S1 0.9 200 200 200 200 200 200 200 200 200 200 | 200 200 200 200 200
S2 0.1 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

6.6.3 Results when demand of each product is given in terms probability distribution

So far we considered the cases of scenario based demand realization. In this section we

would consider that instead of demand scenarios and their probability of occurrence, the demand

distribution of each of product is specified. For the cases here we assume that the demand of

each of the product follows a normal distribution with some mean and standard deviation.
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As the mathematical formulation of the model considers the scenario based demand
realization, we would convert the probability distribution based demand information into
scenario based demand realization. Since the normal distribution is a continuous distribution we
consider few discrete demand points on the demand distribution and calculate the probability
values of those demand points. The process of converting probability distribution based demand
information into scenario based demand realization is presented in Appendix A.

If number of discrete demand points taken on demand distribution of a product is m, after
converting this information into scenario based demand realization the total number of scenarios
would be equal to

§ = pmumber of products) ‘perefore, to keep the problem tractable we consider an example of
smaller product family, number of products in the family = 3 (first three products in the case
study) for further analysis on the results obtained by both the approaches.

For each product the demand follows a normal probability distribution and the mean and
standard deviation is known. Table 6.9 presents the results obtained by both the heuristic
approaches for the cases where mean of the demand of each of the product is fixed but with
increasing standard deviation. The data used for the results in Table 6.9 is as follows: shortage
cost = [$200, $100, $200] and holding cost=$10, number of demand points on the probability

distribution of each product =5

Table 6.9 Results obtained by both the approaches for different cases of demand

parameters
Case # Normal demand vector GAIP PHA
{(mean, std. dev.), (mean, std. dev.), Cost value Cost value
(mean, std. dev.)} (%) (%)
1 {(100, 5), (100, 5), (100, 5)} 19726 21428
2 {(100, 10), (100, 10), (100, 10)} 20708 24820
3 {(100, 20), (100, 20), (100, 20)} 23324 28318
4 {(100, 30), (100, 30), (100, 30)} 26895 30425

From Table 6.9, it is obvious that with increase in standard deviation of normal

probability distribution of demand, with all other things fixed, the cost value increases, i.e. with
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increase in variability in demand the stochastic model gives higher cost values. Also, from the
table it is clear that GAIP provides slightly better solution than PHA. However, we can see from
Table 6.10 that the time taken by GAIP to solve increases exponentially with increase in number
of demand points considered on the probability distribution, i.e. with increase in number of
scenarios. PHA is a very fast approach and more suitable where number of scenarios considered
is large.

Table 6.10* Comparison of computational time for both the approaches

Case # | # of demand points on the probability GAIP PHA
distribution Time in min. Time in min.
(approx.) (approx.)
1 3 61 12
2 5 438 31
3 7 1181 65

*Demand vector for all the three cases = {(100, 10), (100, 10), (100, 10)}

Figure 6.8 shows the effect of variance in the demand and the number of scenarios
considered in the stochastic model on the stochastic solution. Figure 6.8 is a plot of total
production cost vs. number of demand points considered on the demand distribution of each of
the product vs. the standard deviation in normal demand. The mean of the each of the product is
kept fixed to 100 units. We can see from the figure that with increase in number of demand
points considered on the probability distribution (more number of scenarios) the stochastic cost
value decreases; and with increase in the normal standard deviation the cost value increases.

These instances of the example are solved using GAIP approach.
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Figure 6.8 The effect of variance in demand and the number scenarios considered in

the stochastic model on the stochastic solution

The Figure 6.9 shows that the importance of stochastic model over other models. Figure
6.9 is a plot of objective (cost) value vs. standard deviation obtained from using the stochastic
model, expected solution model and for the case of perfect information for the example. All the
products have same mean values for their demand distribution and standard deviation is

increased for all the products. The models are solved using the GAIP approach.
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Figure 6.9 Various cost values with increasing standard deviation of the demand

distribution
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From Figure 6.9 we can conclude that we can use expected value model when the
variance in demand is not very high. However, if the variance in demand is significant the

stochastic model must be used.

6. 7 Conclusion

The chapter proposes the platform based optimization approach for the economic
production of a product family with demand uncertainty. The problem is formulated as a two-
stage stochastic integer program with recourse.

Only a very small instance of the problem could be solved by exact approach using OPL
3.5. Therefore, two heuristic methods, that can provide good solutions to large instances of the
problem more quickly, are developed. The first heuristic method that combines a genetic search
process and integer programming provide a near optimal solution and solves large instance of the
problem in a reasonable time, yet this approach takes long time to solve problems with large
number of demand scenarios. The second method - pure probability based genetic search
heuristic solves the problems with large number of demand scenarios very quickly but with
slightly inferior solution quality than the first heuristic approach.

The chapter establishes the use and importance of stochastic model for the platform based
production approach especially when the variance in demand is significant. The platform based
production approach is explained and illustrated with an example of a family of cordless drills.
The research in this chapter provides insight into the effects of demand variance, and various
cost components on the optimal platform strategy, and discusses the effectiveness of the

heuristics tailored for that application.
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CHAPTER 7 - Summary and Future Research

This thesis proposes and establishes the use of platform-based production approach to
economically realize mass customization, shorten final assembly time of products leading to
increase in customer responsiveness, and economically manage product variety even in uncertain
demand environment.

The thesis establishes the motivation, foundation and framework for investigating the
proposed research. It provides the background and related literature review on research areas
such as platform based production, evolutionary genetic search to solve large scale optimization
problems, the touch base on the overall problem environment and assumptions, to establish the
context for the readers and foundation leading to the development of three platform based
optimization models for the economic production of a given product family and proposing
various heuristic solution approaches to solve the problem model efficiently.

The first model considers single platform for the production of a given product family.
The model is formulated as a general optimization problem. The problem was solved exactly
using OPL 3.5. Also, an evolutionary strategy based heuristic was proposed for the problem. The
approach was explained and illustrated with an example of a family of cordless drills presented
in Section 3.2. The heuristic provided near optimal solution within 1% of error for most of the
problem instances, and in less time when compared to the time taken by the exact approach to
get the optimal solution.

The second model is the extension of the first model and considers the production of
products based on multiple platforms as opposed to a single platform proposed in first model.
The model establishes that using multiple platforms to produce a family of products, given low
setup costs, are more economic than using a single platform. Only a very small instance of the
problem could be solved exactly using OPL 3.5. Therefore, a genetic algorithm based heuristic
was developed that solved the problem very efficiently. The performance of the approach was
investigated and the approach was illustrated by applying the heuristic on the case of cordless
drills.

The third model is also an extension of the first model and considers the uncertain

demand environment. The problem is formulated as a two-stage stochastic integer program with
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recourse. As only a very small instance of the problem could be solved exactly, two different
heuristics — one that combine the genetic algorithm and the integer programming and the other
purely probability based multiple population genetic search approach were developed tailored to
different instances of the problem.

The heuristics proposed in the thesis provided near optimal solutions and were proved to
be very efficient after comparing them with that exact approach by solving the example problem
of the drills presented in Section 3.3. Also, the model establishes the importance of the using
stochastic programming to efficiently capture the uncertainty in demand especially when the
variance in demand is expected to be significant.

Future work in this area includes;

e Proposing multiple platforms for the production of product family in uncertain
demand environment.

e Consideration of multi-period demand settings for the products with inventory
management policies for platforms and products.

e (Consideration of the correlation in demands of the products that can be used to
capture cannibalization effects or to make the problem more tractable for

optimization by reducing the number of independent demand scenarios.
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Appendix A - Generating all demand scenarios and their probability
of occurrences when the normal demand probability distribution

parameters for the products are given

The following steps show how from the given normal demand probability distribution of
each of the product the demand scenario information (scenarios + probability of occurrence of
each of the scenario) of the family of the products is generated.

Step # 1: Select the discrete demand points on a given normal demand probably
distribution of a product in a product family

The demand of each of product follows normal distribution with mean g and standard

deviationo . All the discrete demand points ( &,) considered are from the 6 & width of the

normal distribution curve (see figure below). An odd number (2m + 1) points are considered that

are equally spaced by 7 and symmetrically distributed about the mean.

A

A

The value of 7 and 6, s are determined by using the following the relations.

60
’Z':
2m+1
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0 =u—(m-1)xr
0.,=0+7, k=1..2m
Step # 2: Calculating the probability value of a discrete demand point on the normal
probability curve
The probability value p, of a demand point &, is calculated by using the following

relationships.
6+7 07 0
p = If(x)dx L P = If(x)dx . Poama = J.f(x)dx
o A O =%

Where, f(x) is the normal probability density function.

In the figure below, the dotted lines show the demand points. The probability value of a
demand point is shown by the area enclosed by two solid lines on both sides of the dotted lines
except for the end points. For an end point, the probability value is determined by the area which

is limited by one solid line at one side and from the other side it extends to infinity.

A

#f‘"'—"'-q

Pom+1

P, Py

Step # 3: Determining the demand scenarios and the probability of occurrence of each
of the scenario

Let € be a vector of demand points on the demand probability distribution of a product.

Then the & Vector for a product k = [6’1k 92k 05 0,, .. 1 (determined in Step # 1). The

m
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corresponding probability vector for a product k = [Pf PY ... Pt Poitt] (determined in Step
#2).

Then a demand scenario is generated by taking a demand point from demand vector 8 of
each of the product. All demand scenarios for the products are determined by considering all
such combinations. And the probability value of a scenario would be the product of
corresponding probability values for the selected demand points in that very scenario vector.

For example, for a case of 3 products and if 5 demand points are considered on the

probability distribution of each product, a demand scenario could be S = [(931 922 (953] and the

probability of occurrence of this scenario would be p= (P3’ )x(P;* )x(Ps’)

The total number of scenarios, if the number of demand points considered on each

product’s probability distribution is same = (number of demand points )™ P4
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