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Abstract 

In present competitive market, there is growing concern for ascertaining and fulfilling the 

individual customer’s wants and needs. Therefore, the focus of manufacturing has been shifting 

from mass production to mass customization, which requires the manufacturers to introduce an 

increasing number of products with shorter life span and at a lower cost. Also, another challenge 

is to manage the variety of products in an environment where demands are stochastic and the 

lead times to fulfill those demands are short.  

The focus of this thesis is to develop and investigate platform based production strategies, 

as opposed to producing each product independently, which would ensure the economic 

production of the broader specialized products with small final assembly time and under demand 

uncertainty.   

The thesis proposes three different platform based production models. The first model 

considers the economic production of products based on a single platform and with forecasted 

demands of the products.  The model is formulated as a general optimization problem that 

considers the minimization of total production costs. 

The second model is the extension of the first model and considers the production of 

products based on multiple platforms and considers the minimization of total production costs 

and the setup costs of having multiple platforms. 

The third model is also an extension of the first model and considers the demands of the 

products to be stochastic in nature. The model considers the minimization of total production 

costs and shortage costs of lost demands and holding cost of surplus platforms under demand 

uncertainties. The problem is modeled as a two stage stochastic programming with recourse. 

As only the small instances of the models could be solved exactly in a reasonable time, 

various heuristics are developed by combining the genetic evolutionary search approaches and 

some operations research techniques to solve the realistic size problems. The various production 

models are validated and the performances of the various heuristics tailored for the applications 

are investigated by applying these solution approaches on a case of cordless drills.  
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CHAPTER 1 - Introduction 

This chapter provides the foundations for the principle objective of this dissertation, 

which is to develop platform-based approaches to facilitate the economic production of a given 

set of products (product family). The subject matter of this thesis falls in the intersection of 

several areas of current research interest. These include: (1) using platform strategies to produce 

products to realize mass customization, (2) formulating production planning problems as a 

general optimization problems and solving them using optimization techniques, and in particular, 

developing genetic evolutionary heuristics to efficiently solve the problems that are not solvable 

exactly in a reasonable amount of time, and (3) capturing uncertainty in the model. 

Section 1.1 contains the motivation for the research. Section 1.2 provides the foundation 

and framework for investigating the proposed research, and the objective of this section is to 

establish context for the reader. In Section 1.3, the objectives and contribution for the work are 

described. Sections 1.1 -1.3 set the foundation for the chapters that follow, leading to the 

development of three production models: (1) economic production of a product family using 

single platform, (2) economic production of a product family using multiple platforms, and (3) 

economic production for a product family under demand uncertainty using single platform. 

Finally, Section 1.4 contains an overview of the dissertation. 

 

1.1 Motivation 

In today’s highly volatile market there is growing concern for ascertaining and fulfilling 

the individual customer wants and needs.  “The customers now have plenty of choice … they 

have become more aware…they select the product that most closely fulfills their opinion of 

being the best value for the money…” (Hollins and Pugh, 1990). Therefore, “customers can no 

longer be lumped together in a huge homogeneous market…” (Pine, 1993) rather this 

competitive world of manufacturing requires the manufacturer to introduce an increasing number 

of products with shorter life span and at a lower cost.  This requires the producer to continuously 

seek ways to reduce the production costs, while still offering attractive products. In the past, a 

company could capture the market and enjoy high profits by producing large volume of the same 
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model, as the case of the Ford Model T automobile.  Now, the focus in manufacturing has been 

shifting from mass production to mass customization; a trend no longer limited to high value 

products.  This phenomenon is demonstrated by the fact that from 1973 to 1989, there has been a 

70% increase in the number of car models produced in the US with commensurate drop in the 

volume of production per model (McDuffie et al., 1996).  

In this marketing environment, in a company, the marketing management demands for 

the production of broader specialized product lines that would lead to higher market share. 

Whereas, the operations management predicts that the cost and complexity would increase when 

there is more product variety.  In addition to that, one another challenge is to manage the variety 

of products in an environment where demands are stochastic and the lead times to fulfill those 

demands are short.  

Consequently, companies are looking for strategies that would ensure the economic 

production of broader specialized products with small final assembly time and under demand 

uncertainty.  Hence, the focus of this thesis is to develop and investigate such strategies.  

Toward this end, the various strategies that have received significant attention in 

literature and practice includes, but not limited to the use of concepts from delayed 

differentiation (Lee 1996, Lee and Tang 1998, Swaminathan and Tayur 1998), exploiting 

commonality at the product design state (Ulrich and Pearson 1993, Hayes et al. 1998), use of 

lean manufacturing concepts (Womack et al. 1991), and product platform strategy (Meyer and 

Lehnerd 1997).  The platform-based production strategy is very widely implemented strategy to 

create product families that provide sufficient variety for the market while maintaining 

economies of scale (Simpson 2003).  

The platform approach offers the advantage of developing several variants from a unified 

platform with a considerable cost savings. Contrary to developing the product singly, when the 

products are developed as a part of a family, i.e. developing several variants from a platform, can 

result in considerable cost saving.  Products based on platform architecture can be varied more 

easily by the introduction of new variant products without requiring the redesign of the whole 

product. Variant products make use of the product platform as the starting point and add or 

remove components to increase the number of features, performance, or variety of the base 

product. Also, in an environment where demands are stochastic, this approach facilitates storing 

of inventory in the form of semi-finished products on the basis of which the final products would 
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be produced with small final assembly time. Hence, this approach can provide cheap inventory 

management and better response to customers while minimizing shortage and holding costs. 

Because of its advantages, this approach has gained acceptance by many corporations as 

the means to increase their product count without a cost-per-part increase.  Black and Decker’s 

applied this idea to its power tool products (Meyer and Lehnerd, 1997).  Volkswagen used 

platform architecture strategy and reduced development and production costs (Wilhelm, 1997).  

Sony applied this approach for its product development process (Sanderson and Uzumeri, 1995).  

AeroAstro Inc., used platform architecture with their multipurpose radio platform, and solved 

many of the communication problems faced by spacecraft system designers (Caffrey et al., 

2002).  HP’s Ink jet printer platform architecture is rejuvenated constantly and hence the 

derivative products are constantly upgraded (Meyer, 1997).  

In this thesis, we propose platform-based approaches for economic production of a 

product family for various problem models. The foundations for developing those approaches are 

presented in next section.  

 

1.2 Research Focus – Research Issues and Hypotheses 

This section provides the foundation and framework for investigating the proposed 

research, and the objective of this section is to establish context for the reader.    

The objective of this dissertation is to provide production approaches based on using 

product platforms to ensure economic production of products. The research focus in this 

dissertation can be captured by presenting the issues that need to be addressed in the form of 

questions and providing answers in the form of hypotheses. 

Research issue: How mass customization can be realized using platform strategy? 

Hypothesis:  The platforms can be mass produced and the products in a family can be produced 

by adding and/or removing some components from the platforms. 

Research issue: How customer responsiveness can be increased using platform strategy? 

Hypothesis:  The products, when their demands are realized, can be produced by adding and/ or 

removing components to the platforms and hence the final assembly time is less. 

Research issue:  How uncertainty in demand of the products is addressed? 

Hypothesis:  The uncertainty in the model can be captured using stochastic programming. 
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Research issue:  How the overall platform-based production approach is realized? 

Hypothesis:  The platform-based production approach can be modeled mathematically as a 

general optimization problem and can be solved using exact and/or heuristic approaches. 

These research issues and the hypotheses are explored in detail in the upcoming chapters 

of this thesis. The resulting research contribution is presented in the next section. 

 

1.3 Research Contributions 

As mentioned earlier the subject matter of this thesis falls in the intersection of several 

areas of current interest. The contributions from the dissertation in the mentioned research areas 

are as follows. 

The thesis proposes platform-based production approach for the economic production of 

a given product family. Three different platform-based production models are developed, which 

are as follows. 

A single platform-based approach for the production of product family when the demands 

of the products are forecasted demand values. The model considers the minimization of total 

production cost that includes the costs of components, costs of mass assembly, and costs of 

adding/removing components from the individual products, while considering the individual 

demand and structure of each product type.   

A multiple platform-based approach for the production of product family when the 

demands of the products are forecasted demand values. The model considers the production of 

products based on multiple platforms as opposed to single platform proposed in the first model 

and considers the minimization of total production costs considered in first model plus the setup 

costs of having platforms. 

The third model is the single platform-based production approach for the production of 

product family when the demands of the products are stochastic demand values. The model 

consider the minimization of total production costs and shortage costs of lost demands and 

holding cost of leftover platforms under demand uncertainties. The problem is modeled as a two 

stage stochastic programming with recourse. The demand uncertainty is presented by two ways 

(1) considering various demand scenarios with associated probabilities and (2) considering 
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probability distribution of demand of each product.  By the use of small hypothetical cases 

various investigations on the properties of stochastic program are done. 

All the three types of production planning models are mathematically formulated and 

formulations are improved by making non-linear constraints linear and by adding some valid 

constraints to make it solvable exactly in less time.  However, the realistic size models could not 

be solved exactly in a reasonable amount of time.  Therefore, various heuristics are developed by 

combining the genetic search approach and some operations research techniques to solve the real 

and large size instances of the problems. The heuristics tailored for the applications are validated 

by comparing the results obtained by the exact method and that of the heuristic approaches, and 

by applying these solution approaches on a case of cordless drills.  The performances of various 

heuristic approaches are investigated; some sensitivity analyses on various parameters of the 

models and heuristics are done, and insights into the various proposed models are presented.  

 

1.4 Overview of the Thesis 

The objective of the introduction section was to provide the motivations, foundations and 

context which provides the basis for the specific contributions that are made in this research. The 

rest of the thesis is organized as follows.  

Chapter 2 provides the background and related literature review on research areas such as 

platform based production, and evolutionary genetic search to solve large scale optimization 

problems. Various areas related to platform based production and design are reviewed, such as 

platform and product family based production approach, various streams of research in platform 

approaches, various platform strategies and platform techniques, and various optimization 

techniques used in solving platform-based production and design problems for various 

objectives.  

Chapter 3 provides the overall problem description and assumptions, and the notations 

and nomenclatures used throughout the thesis. 

Chapter 4 considers the problem of determining a platform for the production of a 

product family while minimizing the overall production cost. The problem is formulated as a 

general optimization problem of minimizing the production cost using platform architecture 

while satisfying the part assembly constraints.  Both an optimal formulation and an evolutionary 
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strategy based on Genetic Algorithm are presented.  The approaches are illustrated with an 

example of a family of cordless drills presented in Section 3.3. 

Chapter 5 considers the problem of proposing multiple platforms for the production of a 

given product family while minimizing the overall production cost.  The methodology considers 

the demand for each product variant, with the decision variables as the optimal number of 

platforms, optimal configuration of each platform, and assignment of the products to the 

platforms.  The problem is formulated as an integer program, and both the optimal formulation 

and an evolutionary strategy based on Genetic Algorithm are presented.  The approach is 

illustrated with the example from a family of Cordless Drills. 

Chapter 6 presents the third model where the demands are stochastic and the product 

family is produced based on single platform. The problem is formulated as a two stage stochastic 

programming model with recourse. The objective is to minimize the total production cost that 

includes the cost of production of platforms, cost of production of products using the platforms, 

holding cost for unused platforms and stock-out cost for lost demands. This problem is solved 

using three approaches, exact method, a genetic algorithm based heuristic that combines integer 

programming to solve the problem, and a pure probability based genetic search approach. The 

three approaches are investigated and their importance for various problem instances is 

presented. The approaches are illustrated and validated by using the same example of a family of 

cordless drills. 

Chapter 7 is the final chapter and contains a summary of the thesis and recommendations 

for future work.  
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CHAPTER 2 - Background 

2.1 Concept of Product Platform and Related Research 

As concluded in the last chapter, a platform based production approach is used to 

increase variety, increase customer responsiveness by shortening the final assembly time, reduce 

overall production cost and hence, mass customization is realized.  The following reviews the 

concepts of product platforms, related research, and various relevant issues. 

 

2.1.1 Product Family and Product Platform 

A product family is a set of products considered together for production as they share 

some common basic sets of attributes.  A product family can be viewed as a set of variables such 

as components, functions or features, etc. that remain constant from product to product, and 

others that vary across the product line.  The modification of features across the product line in a 

given family can be done by scaling, or by addition and/ or removal of modules and/ or 

components (Messac 2002a).   

The product family considered here has stable core functionality, but has variability in 

secondary functions, which are successful in their market niches.  Usually the product family has 

a long life cycle, which must adapt to a rapidly changing environment. The product family is 

produced using the concepts of platforms, utilizing the commonality between the products.  

Ulrich and Eppinger (2003) define a platform as a collection of assets, including 

component designs, shared by multiple products. It can also be defined as a set of shared 

functionality, components, subsystems and manufacturing processes across the product family 

(Robertson and Ulrich 1998).  More specifically, in this thesis, a platform is also considered to 

be a set of shared components among multiple products.  A product from a product family is 

produced using a particular platform by adding or removing some of the components that are 

assembled using the particular platform. 
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The platform is mass produced and the product family is derived using the platforms. 

Figure 2.1 gives an example of product family and a platform. 

 

Figure 2.1 A product platform and a product family 

In this example, the product family constitutes drills, saws and a light. The product 

family shares some common components. The product platform, as shown in figure, could be a 

set of components such as, a chuck, a spindle, a battery, power switch, etc.  

 

2.1.2 Various streams of research    

Various streams of research in the area of product platforms is greatly influenced by 

contributions from Pine (1993) in the area of mass customization, Meyer and Lehnerd (1997) in 

the area of platform concepts, Sanderson and Uzmeri (1996) in the area of managing product 

families (Allada et al., 2006).  Krishnan and Ulrich (2001), Simpson (2004), Jose and Tollenaere 

(2005), and more recently Allada et al. (2006) have provided a review of various aspects of 

product platform development methodologies.  Simpson et al. (2006) provides an overview of 

the platform concept, application areas, and ongoing research and expanding views on platforms 

in academia and in industry. 

There have been two streams of research in the area of product platform formation: 

• Qualitative and/or conceptual model based approaches towards  

             Platform development (management domain), and  

• Quantitative model based approaches (engineering domain) 
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Qualitative approaches model the issues related to market share of the products derived 

based on platforms, desired financial performances, product introduction, etc. This type of 

approaches deals with the platform and product family planning problems at a high level of 

abstraction and with management perspective.  For example, Maier and Fadel (2001) suggest a 

selection platform based on the appropriate product family design, which is based on product 

variability, and various market attributes such as market size, market type and number of target 

market niches. Dahmus et al. (2001) suggests an appropriate platform based on strategies such as 

price movements, cannibalization effects, optimal sales demand, etc. Shil and Allada (2005) 

provides a methodology for evaluation of risk neutral product portfolio. They evaluate product 

development projects by considering cannibalization effects and select the project with highest 

utility value.  Wilson and Norton (1989) provide a framework to determine the optimal entry 

timing for a product line extension to protect against product cannibalization. Martin and Ishii 

(1996), Martin and Ishii (1997), and Martin and Ishii (2002) develop product platform 

architecture to gain competitive advantage by reducing the redesign efforts and time-to-market. 

Kota et al. (2000) present an objective measure to capture the level of component commonality 

in a product family. The underlying idea they propose is to minimize non-value added variations 

across models within a product family without limiting customer choices.  Park and Simpson 

(2005) propose a cost estimation framework to support product family design.  

Quantitative approaches focus on the engineering design and production aspect of 

products based on platforms. The research in this area can be further divided in two three 

categories: 

• Scalable based platform formation problems 

• Module based or configuration based platform formation problems 

• Combination of both module based and scalable platform formation problems 

 

Scale based product family design is a method by which some of the variables in a 

product family are kept fixed while other variables, scaling variables, are “stretched” or “shrink” 

to generate the variants within the product family.  There are many examples in industry that 

have used platform scaling to develop the product family to satisfy various market niches. Black 

& Decker ( Lehnerd 1987), Rolls Royce (Rothwell and Gardiner 1990), Boeing (sabbagh 1996), 

Honda (Naughton et al. 1997) have successfully applied this strategy to produce product family 
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on the basis of platforms to satisfy target market niches. This area has been explored by various 

researchers. For example, Simpson et al. (2001) develop of a family of Universal electric motors 

by finding the values of common variable (platform variables) and the values of scaling 

variables, while minimizing the performance loss with respect to the individually optimized 

family of products. Messac et al. (2002b) determine the common variables and the scalable 

variables and their values and then decide the product variants around the platform. Hernandez et 

al. (2003) develop a scalable product platform with the objective to minimize the material cost, 

welding and forging cost, given the target specifications of the customizable product variants.  

Module based product family design is a method by which the product family member 

are derived by adding and/ or removing modules from the platform. This approach is more 

prominent approach as this approach allows the platform leveraging for products from different 

market segments too. This approach used the concept of modularity in product design (Baldwin 

and Clark 2000, Ulrich and Eppinger 2000, Ericsson and Erixon 1999). There are many 

examples in industry that have used module or configuration based platform approaches to 

develop the product family to satisfy various market niches.  Sony ( Sanderson and Uzumeri 

1997), Volkswagen (Wilhelm 1997), Nippondenso Co. Ltd. (Whitney 1995), Hewlett Packard 

(Feitzinger and Lee 1997) have successfully applied this strategy to produce a product family on 

the basis of platforms to satisfy target market niches. There has been plethora of research in this 

area. For instance, Fujita et al. (1999) develop a modular platform for a family of products while 

minimizing production cost, facility cost and material cost. Moor et al. (1999) proposes conjoint 

analysis to design modular product platform. Siddique and Rosen (2000) design platforms by 

exploiting assembly commonality of assembly processes of an existing set of products. 

Gonzales-Zugasti and Otto (2000) present an optimization approach for designing product 

families built on modular platforms. The method allows for the design of the modules that are 

shared across multiple members of the family, or becomes the part of the platform, as well as the 

variational modules. Many optimization approaches in platform based product development 

considers module or configuration based structure of product family and platforms. The research 

in this thesis falls in this category.  

 

Some consider the combination of both module-based and scale-based platform 

formation strategy together. Fujita and Yoshida, 2001 proposes a simultaneous optimization 
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method for both module combination and module attributes (design variables) of multiple 

products to form a platform. Three types of modules are identified; the modules whose design 

variables are common and have the same value are identified as common modules the modules 

whose design variables are similar in nature are identified as scalable modules, the third type of 

modules that are identified are the modules that lead to variety in the product family members.  

This methodology combines both module and scalable platform formation approaches.  

Figure 2.2 presents the various streams of research in the area of platform formation 

approaches. 

Various steams of research in product 

platforms 

Quantitative models 
(Exemplified by engineering design 
and production oriented research and 

case studies) 

Scalable based platform 
formation problems 
(Some variable across the 
product family are fixed 
and some are scaled to 

generate product variants) 

Module based or 
configuration based 
platform formation 
problems (Modules are 
added or deleted to 

generate product variants) 

Figure 2.2 Various streams of research related to product platform formation problems 

Qualitative and/ or conceptual models 
(Exemplified by business-oriented 

research and case studies) 

Combination of both 
module based and scalable 
platform formation 

problems 

 

2.1.3 Platform Strategies 

There are various strategies to implement platforms for the development or production of 

the products in the family. The various platform strategies that are used are Horizontal 

Leveraging, Vertical Leveraging, and Beachhead approach (Meyer and Lehnerd 1997). In 
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vertical leveraging a platform is shared among the low-end, mid-range and high-end variants of a 

family. In horizontal leveraging a product family consists of the variants of a product in the same 

market segment. And, in case of the beachhead approach, the platform is shared between both 

the types of variants of the product. Figure 2.3 presents the various platform leveraging 

strategies.  

 

 

Figure 2.3 Platform leveraging strategies 

 

Most horizontal leveraging approaches take advantage of modular platform, and most 

vertical leveraging take advantage of scalable platform (Simpson et al. 2001, Simpson 2003). 

The Beachhead approach can deliver the highest benefits but this approach is most difficult to 

implement (Simpson 2003). 

Regardless of various platform formation strategies there are many techniques of 

implementing these strategies reported in the literature.  

Various techniques of implementing platform strategies presented in literature include, 

but not limited to:  

• Developing commonality matrices (Martin and Ishii 1997,  Kota et al. 2000) 

• Model based approach (Simpson et al. 1999, Farrell and Simpson 2001,  

            Nayak et al. 2002) 

• Analytical and mathematical approach (Lee and Tang 1997, 
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            Swaminathan and Tayur, 1998) 

• Optimization based approaches (Nelson et al. 2001, Gonzalez-Zugasti et al. 2000) 

 

The research in this thesis falls in the category of the optimization based approaches for 

platform formation. Therefore, the next section provides a review on optimization based 

approaches for product formation problems. 

2.1.4 Optimization based approaches for platform formation with various objectives 

The platform design and selection concept have been used for various objectives.  Such 

as, reducing cost and simplifying the design effort (Simpson 2004), improving life-cycle design 

(Ortega et al. 1999), optimizing production cost or profit, or reducing time to market (Krishnan 

and Ulrich  2001). Martin and Ishii (1997) proposed methodologies that can help companies to 

quantify the costs of providing variety and qualitatively guiding designers in developing products 

that incur minimum variety costs. Simpson et al. (1999) proposed a model that uses the overall 

design requirements, generating the product platform and resulting product family that best 

satisfies the overall design requirements.   Farrell and Simpson (2001) try to improve response to 

customer request, reduce design cost and improve time to market for highly customized products 

by designing product platforms. Sudjitanto and Otto (2001) uses a matrix to group modules for 

platform determination in order to support multiple brands for platform cost saving as well as 

revenue enhancing.  Nayak et al. (2002) proposed a variation-based method for product family 

design, which aims to satisfy the range of performance requirements for the whole product 

family.   

Besides, the platform optimization problem appears in a variety of forms in the literature 

such as the product portfolio planning (Jiao and Zhang 2005) that finds an optimal set of 

products and attributes to satisfy customer choices and maximize expected utility per cost, or 

profit (Yano and Dobson 1998). 

Most of the optimization approaches specify the platform a priori to the optimization to 

make the problem more tractable (Simpson 2003). Simpson and D’Souza (2002) encourage the 

use of optimization to explore varying levels of platform commonality for better platform 

development. The research in this thesis tries to optimize the platform configuration and platform 

based production simultaneously.  
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Various solution methods for the platform optimization problem were implemented 

including (but not limited to) Branch and Bound algorithm (Fujita and Yoshida 2001), Dynamic 

Programming (Allada and Jiang 2002), agent based techniques (Rai and Allada 2003), Simulated 

Annealing (Fujita et al. 1999), Genetic Algorithms (Fujita and Yoshida 2001; Li and Azaram, 

2002, Simpson and D’Souza 2002, Simpson and D’Souza 2004, Jiao and Zhang 2005).   

 

2.2 Genetic search approaches for large scale optimization 

While small-dimensioned problems can be solved to optimality, large-scale problems 

require heuristic approaches such as Genetic Algorithms.  During the last few decades, there has 

been a growing interest in evolutionary algorithms partially due to the emergence of faster 

computers.  Genetic Algorithms have been studied in Goldberg (1989), Mitchell (1998), and a 

review of GA applications is provided in Aytug et al. (2003).   

The solution methodologies presented in this thesis exploit the principles of evolution and 

mutation, and the concept of fitness.  In general, the genetic search procedure starts with a 

random generation of population of strings (chromosomes), where each string represents a 

configuration (component set) of platform. The number of strings forming a population is termed 

population size, which remains constant throughout this genetic search process.  The cost 

function, which should be minimized, is converted to a fitness value.  A fitness function 

evaluates each solution to decide whether it will contribute to the next generation of solutions.  

The population then evolves through successive generations by the application of genetic 

operators. 

The various genetic operators are reproduction, cross-over and mutation.  The 

reproduction operator is an artificial version of natural selection, a Darwinian survival of the 

fittest among string creatures (Goldberg 1989).  In the process of reproduction, strings having 

better fitness values have a higher probability of contributing one or more off-springs to the next 

generation. Reproduction directs the algorithm towards convergence. 

In the crossover operator, genes (fractions of the strings) are swapped between two parent 

chromosomes in anticipation that the off-springs produced would be better than either of the 

parents.  The operator contributes to the exploration of the solution space.  The mutation, which 

creates a random variation in a string, reduces the chance of the algorithm converging to a local 
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optimum.  This approach uses the notation of ( ) ES−+λµ  (Beyer and Schwefel 2002), implying a 

constant population of size µ, with λ decedents created every iteration (for a total of µ+λ 

solutions) out of which the best µ are selected for the next generation.  The algorithm continues 

until a pre-specified condition is met.  
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CHAPTER 3 - Problem Environment 

  3.1 Background 

This section provides the underlying assumptions and some hypotheses on the basis of 

which three platform based production models (presented in Chapters 3, 4 and 5) are proposed 

and developed.  

In this research, a platform is considered to be a set of shared components among 

multiple products.  The platform is mass-produced, and a product from a product family is 

produced using a platform by adding or removing some of the components that are assembled 

using the platform.  For instance, Figure 3.1 illustrates a hypothetical product family with four 

products (P1, P2,  P3,  and P4), each consisting of a different collection of components from the 

set {A, B, C,…, H}.  Suppose a platform for this set of products is as shown in Figure 3.2.  In this 

case P1 would be created by using the platform and removing G and adding C, and P3 would be 

created by removing D and G and adding C and F.     

 

A 

B C 

D E 

A 

B F 

D E 

A 

B C 

G H 

A 

B C 

F E 

P1 P2 P3 P4  

Figure 3.1 Example of a product family 
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 A 

B 

GE D  

Figure 3.2 An example platform for the product family presented in Figure 3.1 

 

A platform is only justified if the assembly of the components to the platform can be 

done efficiently using mass production methods. Thus, adding and removing components from a 

platform to fit a particular product typically costs more than if the item is included in the 

platform.   

In this research, we model and analyze the production of a family of products using 

platforms that enable cost effective production with short final assembly time.  The bill of 

material of each product is considered to be binary.  A binary bill of material for the product 

family presented in Figure 3.1 is shown in Table 3.1.  

Table 3.1 A binary bill of material for product family presented in Figure 3.1 

Component index � 
Products 

A B C D E F G H 

P1 1 1 1 1 1 0 0 0 

P2 1 1 0 1 1 1 0 0 

P3 1 0 1 0 1 1 0 0 

P4 1 1 1 0 0 0 1 1 

 

One complicating factor is that while determining the configuration of the platform (a set 

of components forming a platform), the part assembly relationship is maintained.  The part 

assembly relationship for a product is presented by a matrix, and in order to manage the part 

assembly relationship constraints, a Part Assembly Relationship matrix for a product is 

determined.  An element of Part Assembly Relationship matrix of product k,  fljk =1, represents 

that component j precedes component l in product k or component j is needed to be present in the 

platform for the l to be included in the platform, as component l requires j to be assembled to 

form a platform. An example, a PAR matrix for product P1 is shown in Table 3.2. 
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Table 3.2 The PAR matrix for Product P1 

 A B C D E F G H 

A  1 1      

B    1 1    

C         

D         

E         

F         

G         

H         

 

As we will see, the PAR matrix is used to determine the feasibility of a platform 

configuration.  

Also, for some platform based production models presented in this research the part 

assembly relationship matrix for the whole product family is used to determine the feasibility of 

a platform configuration. The part assembly relationship matrix for the whole product family, 

named as Overall PAR, is determined by taking all the PARs for all the products in the product 

family and superimposing them to get a superset type of matrix. For example, Overall PAR for 

the product family presented in Figure 3.1 would be as shown in Table 3.3.  

Table 3.3 The Overall PAR matrix for Product family presented in Figure 3.1 

 A B C D E F G H 

A  1 1   1   

B    1 1  1 1 

C     1 1   

D         

E         

F         

G         

H         

 

The PAR matrix for a product and the Overall PAR matrix for a product family are used 

to check and the feasibility of a given platform configuration in different platform based 

production model presented in this thesis. 
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  3.2 Example Problem 

This section provides a description of an example problem that will be used to illustrate 

and numerically validate the proposed models and solution approaches proposed in this thesis. 

We use an example of a family of cordless drills.  These drills have varied construction 

and household applications.  There are various types of drills available; however, for our purpose 

we consider five types (products): Heavy Duty, High Performance, High Value, Standard, and 

Multipurpose Power drills as shown in Figure 3.3 (Sudjiato and Otto, 2001).  The objective in 

this example is to demonstrate the use of the heuristics to determine the optimal platform for the 

product family.  The binary bill of material for family of drills is provided in Table 3.4. The 

information about the products and the components is provided in Table 3.5.  The Table 3.6 

provides the PAR matrix for “Heavy Duty” drill, for the sake of brevity the PAR matrix for all 

the drills are not presented. Table 3.7 provides the Overall PAR for the whole drill family.  

 

     
High Value  Heavy Duty  High 

Performance 
Standard  Multipurpose 

 

 Figure 3.3 The product family of the cordless drills 

Table 3.4 The binary bill of material for the products 

Component 
# �          

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Component 
index � 
Products 

A B C D E F G H I J K L M N O P Q R S T  U V W 

Heavy duty 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 

High 
performance 

1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 

High value 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 

Standard 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 

Multi-
purpose 

1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 
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Table 3.5 The various possible components for the product family with there cost 

values 

Comp 
# 

Comp. 
Index 

Comp. Name Comp. Cost ($) 

1 A  Encasing 2 

2 B Rough palm to permit positioning 1 

3 C Padded palm to permit positioning 1.5 

4 D  Diamond palm to permit positioning 2 

5 E  Bevel 2 point to lock/unlock battery 3 

6 F  Straight 2 point to lock/unlock r battery 2 

7 G  Square, 9.6 V, 2 pt. Electricity 
transmission 

4 

8 H Open, 9.6 V, 2 pt. Electricity 
transmission 

4 

9  I   Chuck to secure/ unsecure bit 2 

10  J   Chuck teeth to register/ unregister bit 1 

11 K  Bit to act on object 2 

12  L   Thin button to input speed 1 

13 M  Wide button to input speed 1 

14 N  16 slip clutch to transmit power 5 

15 O   22 slip clutch to transmit power 6 

16 P  6 slip clutch to transmit power 5 

17 Q   Solid shaft to transmit power 3 

18 R  Fine ring gear to switch speed 5 

19 S Ring gear to switch speed 4 

20 T Black oval button to unlock switch 1 

21 U Black button to unlock switch 1 

22 V Variable speed to switch power 6 

23 W 2 speed to switch power 4 
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Table 3.6 The PAR matrix for the “Heavy Duty” drill 

 A B C D E F G H I J K L M 8 O P Q R S T

  

U V W 

A  1   1    1               

B                        

C                        

D                        

E       1           1      

F                        

G        1                

H                        

 I           1              

 J            1 1            

K              1          

 L                         

M                        

8                        

O                         

P                        

Q                     1  1  

R                        

S                        

T                        

U                        

V                        

W                        
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Table 3.7 The Overall PAR matrix for the family of cordless drills 

 A B C D E F G H I J K L M 8 O P Q R S T

  

U V W 

A  1 1 1  1  1                

B    1 1 1    1              

C      1   1  1          1   

D         1 1      1        

E      1 1  1 1 1             

F        1   1             

G        1                

H         1 1              

 I           1 1             

 J            1             

K            1         1   

 L              1           

M              1          

8               1         

O                 1        

P                 1       

Q                   1    1  

R                   1     

S                    1    

T                     1   

U                      1 1 

V                       1 

W                        

 

3.3 8otations and 8omenclatures 

This section provides the notations and nomenclatures used throughout the thesis. 

• i = 1, 2, …, I  index the platforms, where I is a set of platform types 

• j, l = 1, 2, …, M index the components, where M = total number of all distinct 

components in a given product family, and J represents the set of components 

• k = 1, 2… 4 index the products, where 4 is total of products in the given product family, 

K represents the set of products. 
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• s = 1, 2, …, S index the demand scenarios considered in a stochastic demand model 

• Dk = demand of the kth product.  This demand is usually forecasted, since precise demand 

may not be known with certainty at that decision point.  

• Cj= cost of the component j (purchasing price)  

• CPj= cost of assembling a component j to form the platform (mass assembly)  

• CAj= cost of manually adding a component to the platform to form a product (CAj > CPj)  

• CRj= cost of removing a component from the platform to form a product (CRj > CPj) 

• Ai = the setup cost to construct platform i 

• h = per unit holding cost for the platforms 

• qk= per unit stock-out cost for product k 

• sξ = Vector of demands ( )4sss ξξξ ,...,, 11  in scenario s 

• ps = probability of occurrence of scenario s  

• V is the given binary bill of material matrix of the family of products with element 



= jk

v jk

component  requires product  if 1
otherwise   0

 

• fjlk are elements in the Part Assembly Relationship matrix of product k with 

{ kl j

jlk
f

product in   precedes component  if  1

otherwise  0=    

• 










= familyproduct  given   theofmatrix  iprelationsh         

assembly part  Overall      toaccording    component    precedes  component  if        1

otherwise       0

lj

f jl  

• X  = a binary matrix representing which platform contains which components with 

elements,


= ji

x ij
component  contains  platform if 1

otherwise   0
 

• 


= platform  theofpart    thebecomes component  if        1

otherwise       0
j

x j  

• w = quantity of the platforms to be made 

• Y is a binary matrix that states that product k is made on platform i, with elements  

  


= ik

y ki
 platform using made is product  if 1

otherwise   0
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• yks = amount of product k  to be produced using platforms in scenario s 

• 




= kij
a

th

ijk

product  form  to platform    tomanually     added iscomponent    theif 1
otherwise   0

 

• 


= kj

a jk
product    make   toplatform  theo  manually t  added is  component  if      1

otherwise     0
 

• 




= k ij
r

th

ijk

product  form  to platform frommanually  removed iscomponent    theif 1
otherwise   0

 

• 


= kj

rjk
product    make   toplatform  thefrommanually   removed is component  if      1

otherwise     0
 

• −
ksu = Lost demand of product k in scenario s 

• +
sv = Leftover platforms in scenario s 

• PAR = Part Assembly Relationship Matrix for a Product  

• Overall PAR = Overall Part Assembly Relationship Matrix for all the products in the 

given product family 

• ps = Crossover Probability 

• pm= Mutation Probability 
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CHAPTER 4 - Economic Production of a Product Family using 

Single Platform 

 4.1 Introduction  

In this chapter, we model and analyze the production of a family of products based on 

single platform which enables cost effective production with short final assembly time.  We 

consider a problem of selecting a platform for a product family while minimizing the overall 

production cost which includes cost of components, cost of mass assembly, and cost of adding/ 

removing components to the platform.  The problem is formulated as a general optimization 

problem. 

Both an optimal and an evolutionary strategy based on Genetic Algorithm are proposed 

for the problem.  The approaches are illustrated with an example of the family of cordless drills.  

The example is used to provide insights to the effect of demand variance and various cost 

components on the optimal configuration of the platform.  Finally, we discuss the effectiveness 

of the heuristic tailored for the application. 

4.2 Model Formulation 

The problem is to determine the optimal configuration of the platform for a given product 

family to minimize the total production costs. Every product, k, (1…, k…, 4) may either be 

assembled directly from its components, or from any platform whose component set overlap with 

those required by product k.   

The bill of material of the product family in terms of components is binary.  While 

determining the optimal configuration of the platform, the part family relationship is maintained. 

Now, the optimal platform configuration determination problem can be formulated as 

follows: 

Minimize                    

( ) ( ) ( )
kjk

4

k

M

j

jjkjk

4

k

M

j

jjj

M

j

jj

4

k

k DrCCRDaCACxCPCD ⋅⋅−+⋅⋅++⋅+× ∑∑∑∑∑∑
= == === 1 11 111

                 (4.1) 

S.t. 
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( ) j,kvxa jkjjk ∀⋅−=           1                                                                                         (4.2) 

   ( ) j,k xvr jjkjk ∀⋅−≤          1                                                                                          (4.3) 

  { } kjarx jkjkj ,          1,0  , , ∀∈                                                                                        (4.4) 

                                

The objective (equation 4.1) is to minimize the total production cost, which includes the 

cost of mass assembly (cost of producing platforms), cost of components, cost of adding 

components on the platform to produce the products, and the cost of removing components from 

the platforms.  Constraint 4.2 ensures that a component is added to the platform only if it is 

required in the product and is not in the platform. Constraint 4.3 ensures that a component may 

be removed from the platform only if it is in the platform and not required in the product.  

Example: 

We illustrate the problem through an example.  We use OPL 3.5 studio to find the 

optimal solution to the above problem with various demand and cost data.  The optimal 

platforms for the various cases are shown in Table 4.1.  

The various components costs are Cjs= $10, $11, $12,…., $17;  CRj=$ 9 (for all j); CPj = 

$6 (for all j); and CAj= $10 (for all j). 

Table 4.1 The optimal solution for the various cases  

Demands 

 

D1 D2 D3 D4 

Optimal 

Platform 

Total 

Cost ($) 

Time 

(Seconds) 

250 250 250 250 AB 104550 
58 

350 150 250 250 AB 104550 
72 

250 450 150 150 AB 104550 
61 

800 50 50 100 ABCE 99700 
56 

 

From Table 4.1, we can see that when the demands of the products are similar and that 

the optimal platform comprises the components are the most common across the product family. 

Also, when the demand of a product is very high when compared to other products in the product 
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family, the optimal platform configuration is more inclined towards the product with high 

demand.  

4.2 The Evolutionary Solution Methodology 

We propose a very efficient evolutionary search based solution methodology for the 

platform determination problem. The algorithm presented uses a variation mechanism that is 

derived by inducing mutations to the entire (100%) population.  This evolutionary strategy 

provides sufficient exploration of the solution space, needed for a successful solution. 

The algorithm starts with a small number of randomly generated solutions.  These 

solutions are tested for feasibility, and all infeasible solutions are modified to become feasible, as 

shown in Section 4.3.1. 

The algorithm tries to improve the feasible solutions using the evolutionary methodology. 

The algorithm is terminated after a predefined number of iteration is reached, and the best 

solution is anticipated to be the near optimal/optimal solution.  The detailed explanation of the 

algorithm is provided next, with a flow chart of the algorithm provided in Figure 4.1.   

In the platform determination problem, we are given the binary bill of materials for all the 

products in terms of components.   Also, the part assembly relationship of the products is known 

from the Part Assembly Relationship Matrix.  A solution consists of the values of the binary 

decision variable xj  and the variables rjk, indicating the parts removed from the platform.  The 

solution is represented by a string of length equal maximum number of distinct components in 

the product family under question, M, and a matrix representing rjk.  An entry of ‘1’ at any 

position j in the string xj  represents component j that is in the platform.  Each solution (or 

chromosome) in the population is a feasible solution, which follows the part assembly 

relationship for the product family under consideration.  The lower the cost of a particular 

solution, the higher the fitness value it possesses.  The details of the algorithm are provided next. 

 

4.3.1 Encoding and Initial Feasible Solution Generation 

Solution Encoding 

In the platform determination problem, we are given the binary bill of materials (vjl) for 

all the products.   Also, the part assembly relationship of the products is provided in PAR Matrix.  

For both the heuristic approaches, the chromosome is represented by a string of length equal to 
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the maximum number of distinct components in the product family considered, M. A value of 

‘1’at any position j in the string represents component j that is in the platform. An example 

chromosome string for the product family shown is Figure 3.1 is presented below. 

 

A B C D E F G H 

1 1 1 0 0 0 0 0 

This example chromosome string represents that components A, B, and C are in the 

platform.   

Each chromosome (or configuration of a platform which is the component set of a 

platform) in the population is feasible if it follows the part assembly relationship for the product 

family under consideration (such as in Table 3.2).  Initially a population of chromosome is 

randomly generated; therefore some of the solutions may not be feasible.  Also, applying the 

variation operator (mutation) create new temporary solution that may not be feasible. 

If the solution is found infeasible it has to be corrected. Every time the chromosome is 

altered in the course of iterations, it has to be checked for feasibility and corrected if not feasible. 

Therefore, for this purpose a feasibility and correction algorithm is presented as follows. 

Feasibility and correction algorithm 

The idea behind the algorithm is that the feasibility of the solution is checked using the 

Overall Part Assembly Relationship Matrix and if a platform is infeasible, the smallest numbers 

of components are added to the platform to ensure a feasible solution.   

Let P (a binary string) represents a random solution string.  This solution may be feasible 

or infeasible.  Let Tj (a binary string) represents the j
th column in the Overall PAR Matrix. For 

example from Table 3.2,  T5 (or TE) = [0 1 1 0 0 0 0 0 ]. 

The Algorithm: 

Step # 1: Determine all strings Qj =  P A*D Tj for all j=1 in P 

Step # 2: Compare Qj with Tj bitwise 

Step # 3: If any Qj not equals Tj the solution is infeasible, go to step 4;  

               otherwise feasible go to step 5.  

Step # 4: Create a new feasible P’ = [bitwise OR (Tj)] OR P for all j=1 in P,  

                go to step 2.     (where P’ is the corresponding feasible solution for  

                any infeasible solution P).   
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Step 5: Stop 

Example: 

Let P be a randomly generated platform for the product family in Figure 3.1. 

P= [1, 0, 0, 0, 1, 1, 0, 0] 

Now from Table 3.2,  T1= [0, 0, 0, 0, 0, 0, 0, 0] 

Q1 = (P A4D T1)=  [0, 0, 0, 0, 0, 0, 0, 0] 

Also:  

T5=   [0, 1, 1, 0, 0, 0, 0, 0] 

Thus, Q5 =  [0, 0, 0, 0, 0, 0, 0, 0] 

T6 = [1, 0, 1, 0, 0, 0, 0, 0]  

And Q6 =  [1, 0, 0, 0, 0, 0, 0, 0] 

As the platform generated is infeasible and the solution is made feasible  

by taking P’ = [bitwise OR (Tj’s)] OR P  

For this example, [bitwise OR (T1, T5, T6)] = [1, 1, 1, 0, 0, 0, 0, 0].  

And the feasible platform is: 

P’ = [1, 1, 1, 0, 1, 1, 0, 0], which coincidentally represents Product, P3 presented in 

Figure 3.1.  
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Generate L random solutions 

i = 0 

Mutate solutions  

Make a copy of each solution  

(population size = 2L) 

i= i+1 

New population = best L from (2L + L) solutions 

Evaluate the L solutions and store in archive 

i< max_iteration 

New population is the final population 

The solution is reached  

No 

Yes 

Check for feasibility (make the infeasible 
solutions feasible) 

Update the archive 

Check and correct for feasibility 

 

Figure 4.1 The flow chart of the evolutionary strategy 
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4.3.2 Mutation 

Given a solution S, a new solution S’ = mutation (S) can be built using a mutation operator.  In 

our case, we use a random mutation in the following way: 

Generate two ransom numbers j and l such that 0 < j < l < M.  Invert the bits in positions j and l 

only.  

The process can be represented as follows (Figure 4.2).  

 

                     S= 

  

                                                                         

                     S’ =   

Figure 4.2 Mutation Operation 

Next check the feasibility of S’.  If it is not feasible, modify the string to become feasible as 

shown in Section 4.3.1.  

4.3.3 Building Each Generation 

The algorithm starts with the random generation of L=10 solutions. The feasibility of 

each solution is checked and if not feasible a corresponding feasible solution is generated as 

explained above.  These solutions are evaluated and kept in an archive. Then these solutions and 

a copy of each of them are taken for mutation.  After the mutation step we have 2L new 

solutions.  These solutions are checked and corrected for feasibility.  These mutated feasible 

solutions are evaluated and the best L of the L+2L solutions updates the archive (new initial 

feasible population).  

The population size is doubled during the phase mutation to make the search more 

exploratory.  Several other mutation techniques are investigated but the above mentioned 

mutation technique works well for the problem under consideration. 

4.3.4 Solution Evaluation 

Each suggested platform has a cost function that shows the cost of converting the platform to 

each of the products, given each product demand (production quantity). The cost calculations 

follow this algorithm: 

1 1 1 0 0 0 0 0 

1 1 0 0 1 0 0 0 
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For each component j in the platform Do 

Cost = (Cp+Cj)*ΣDk      

 For each product k Do: 

 If j is 4OT in product k Then   

  If CRj > Cj Then 

   rjk = 0     

  Cost = Cost     

  Else 

   Cost = Cost + CRj*Dk     

 End k 

 End j 

For each component j 4ot in platform Do 

 For each product k Do: 

  If j is in the product Then 

  ajk = 1 

  Cost = Cost + Dk*(CAj + Cj)   

 EndIf 

 End k 

End j  

 

The algorithm is applied to the example problem presented in Section 3.2 and the results with the 

computational insights are presented in the following Section. 

 

 4.4 Results and Discussions  

A convergence plot for the case of demand vectors of [50, 250, 250, 250, 200] (for drills), 

and costs, CPj, CAj,  and CRj equals $1, $4 and $3 respectively for all j and k, is shown in Figure 

4.3.  It is obvious that the algorithm converges efficiently with relatively less iterations.  Also, 

the rjk matrix for that case is provided in Table 4.2.   
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Figure 4.3 The convergence plot of the algorithm 

 

Table 4.2 The rjk Matrix 

For further investigation we determine the optimal platform for various cases of demand 

and CPj, CAj and CRj values.  The results are summarized in Table 4.3.  

 

 

 

 

Component 
# � 
Product          

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Heavy duty        1        1        

High 
performance 

               1        

High value                        

Standard                      1  

Multi-
purpose 

               1      1  
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Table 4.3 The platform and overall cost for various cases of demand and cost values 

Demands Costs (CPj, CAj and CRj) Platform Cost value ($) 

200, 200, 200, 200, 200 1 6 9 10 11  62500 

50, 250, 250, 250, 200 1 4 6 8 9 10 11 15 20  64425 

250, 50, 250, 200, 250 1 4 6 9 10 11  61075 

200, 250, 250, 50, 250 1 6 9 10 11 63275 

250, 250, 200, 250, 50 

2, 4, 3 

1 6 9 10 11 64675 

 

200, 200, 200, 200, 200 - 57500 

50, 250, 250, 250, 200 - 55425 

250, 50, 250, 200, 250 - 56675 

250, 200, 50, 250, 250 

3.25, 3, 2 

-  58300 

 

200, 200, 200, 200, 200 1 4 6 8 9 10 11  56100 

50, 250, 250, 250, 200 1 4 6 8 9 10 11 16 22 51675 

250, 50, 250, 200, 250 1 4 6 8 9 10 11 16 22  56675 

200, 250, 250, 50, 250 1 4 6 8 9 10 11 17 21  59675 

250, 250, 200, 250, 50 1 6 8 9 10 11 17 21 64175 

900, 25, 25, 25, 25 

1, 4, 3 

1 2 5 7 9 10 11 12 14    
18 20 22 

50438 

8ote: The demand vector represents the following order of products: Heavy Duty, High 

Performance, High Value, Standard and Multi Purpose (P1, P2, P3, P4, and P5) 

The following results are obtained;  

1. From Table 3.4 and Table 4.3, it is obvious that when the demand of each product is 

similar enough, platform elements are the elements that are the most common throughout 

the product line, regardless of the components cost.   

2. When the cost of mass assembly of each component in the platform exceeds or equals the 

cost of manually adding the component to the platform, the production of platform should 

not be justified.  The results found in Table 4.3 support this conclusion.  

3. When the demand of a particular product is very high with respect to others in the 

product line, the platform components are those which are in that product, even if these 

components are not shared by other products.  For example, if the demand of Heavy Duty 

drill is 900 and demand for the rest is equal 25 each, from Table 4.3 (and Table 3.4) we 
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can see that the platform, in this case, is the whole Heavy Duty type drill itself.  These 

observations clearly show that the results obtained from the approach are consistent.  

Comparison with the Optimal Algorithm:  

Now we describe experimental results that compare the evolutionary algorithm to the 

optimal solution obtained by solving the integer programming model.  In this experiment, 6 

different variants of the example problem with 23 components were solved.  The OPL 3.5 takes 

about 160 minutes to solve the example problem one time, whereas the heuristic takes less than a 

minute to solve the problem one time. Each problem was solved 20 different times using the 

heuristic approach by taking different initial solution (platform configuration) each time and the 

best solution out of 20 runs is recorded, the average of the solutions obtained from 20 runs is 

determined as well. Table 4.4 presents the results of the analysis in the following way.  The first 

column presents the parameters of the problem solved, followed by the optimal cost.  The next 

four columns represent the results of the evolutionary approach, starting with the best solution 

achieved (from the 20 solved), followed by the percent difference between the optimal and the 

best solution.  Then, the average solution is presented with its percent deviation from the best 

solution.  From the table it is seen that the evolutionary approach found the optimal solution in 

two problems (under the specific conditions of those problems were no platform was 

recommended).  The rest of the four problems show that the heuristic approach (evolutionary) 

reached a very good solution – within about 1 percent in most cases.   

 



 36 

Table 4.4 Computational Analysis of Evolutionary Approach 

4.5 Conclusion 

This chapter presents the concept of a common platform as a solution to the production of 

a family of products in a cost effective manner.  The chapter presents a description of the 

problem followed by a mixed integer formulation presented as an optimization problem. Then an 

evolutionary strategy based on Genetic Algorithm is proposed for the problem. The approach is 

explained and illustrated using an example of a family of cordless drills. The heuristic approach 

is found to very fast when compared to the exact approach, provided solution within 1% error for 

most of problem instances. Also, the chapter provides insight into the effects of demand variance 

and various cost components on the optimal configuration of the platform. 

 

 

 

 

 

Problem Evolutionary Approach 

# 
Demand [P1, P2, P3, P4, P5], 
Cost ( CPj, CAj and CRj ) in 
dollars 

Optimal 
solution 

Best 
 
 

%Difference 
(Best vs. 
optimal) 

Average 
 
 

%Difference 
(Best vs. 
Average) 
 

1 [200, 200, 200, 200, 200] 
(2, 4, 3) 

59900 62500 4.34 63025 0.8 

2 [50, 250, 250, 250, 200] 
(2, 4, 3) 

58275 58425 0.257 59500 1.8 

3 [200, 200, 200, 200, 200] 
(3.25, 3, 2) 

57500 57500 0 57500 0 

4 [50, 250, 250, 250, 200] 
(3.25, 3, 2) 

55425 55245 0 55425 0 

5 [200, 200, 200, 200, 200] 
(1, 4, 3) 

55400 56100 1.26 57200 3.24 

6 [50, 250, 250, 250, 200] 
(1, 4, 3) 

51225 51425 0.39 51500 0.1 
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CHAPTER 5 - Economic Production of a Product Family using 

Multiple Platforms 

5.1 Introduction 

In this chapter, we present a methodology for selecting multiple platforms for the 

production of a product family.  The advantage for using multiple platforms over a single 

platform is the ability to optimally match products to a particular platform.  Most of the product 

platform formation formulations consider only a single platform analysis.  

The chapter presents two solution approaches to the problem – an exact solution and a 

heuristic approach.  The problem is solved exactly as an MIP problem where the constraints are 

made linear and some valid cutting planes are suggested.  Even with adding the cutting planes, 

the MIP can require substantial computation time.  Therefore, a genetic algorithm is presented 

that can quickly provide good solutions even to large instances.  Both of these approaches are 

illustrated with a small numerical example and a larger example of a product family of Cordless 

drills. These examples are used to provide insights to the effect of demand variance and various 

cost components on the optimal configuration of the platforms.  Also, the heuristic’s solution 

quality is discussed by comparing the two approaches.  

The contribution of this chapter is in introducing the problem of multiple platforms, and 

providing an efficient mixed integer program.  Moreover, the genetic algorithm is also unique 

since it is searching for an unknown number of solutions corresponding to the platforms adopted 

for the production.  

5.2 Model Formulation 

In this section we model and analyze the production of a family of products using 

multiple platforms that enables cost effective production with short final assembly time.  This 

model enables the systematic determination of the optimal number of product platforms, the 

configuration of each platform (its component set) and the assignment of each platform to the 

various products in the family, while minimizing the overall product family production costs. 

The optimal multiple-platform configuration determination problem can be formulated 

as: 
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( )        ;;    1 KkJjI i   yvxa kijkijijk
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( ) KkI jI i      yxvr kiijjkijk
∈∈∈∀⋅⋅−≤ ;; 1      (5.3) 
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i

ki ∈∀=∑
=

                              ,1
1

                   (5.4) 

KkJljIi            x yfx ilkijlkij ∈∈∈∀⋅⋅≥ ;,;                                    (5.5) 

{ },..., K, I 21∈              (5.6) 

 

{ } { } { } { } ,   r,   a,   y,  x ijkijkkiij 10;10;10;10 ∈∈∈∈       (5.7)   

 

Decision Variables: xij, yki, aijk, rijk  The objective minimizes the cost, which includes the 

setup costs for each platform, the optimal set of components to include in each platform, and the 

optimal assignment of products to platforms.  The first term in the objective function (Equation 

5.1) represents the cost of production of platforms, second term represents the cost of adding 

components manually to the various platforms to form different products, the third term 

represents the cost of manually removing (and allowing for reuse) excessive components from 

the platforms to form each product, and the final term represents the setup cost of constructing 

the platforms.   

Constraints (5.2) restrict component j to be added to platform i to make product k only if 

the component is not already in that platform.  Thus, component j is required for product k, and 

product k is assigned to platform i.  Constraints (5.3) state that a component j may be removed 

from platform i if that component is not required in product k, the component is assigned to 

platform i and product k is assigned to that platform. Constraints (5.4) ensure that each product is 

made by only one platform.  Constraints (5.5) check the assembly feasibility of each product that 
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uses a platform so that if component l precedes component j in a product k assigned to the 

platform, and component l is assigned to the platform, then component j must be on the platform.  

Constraints (5.6) represent that the optimal number of platforms is an integer and the maximum 

number of platforms is limited by the total number of the products in the family, and Constraints 

(5.7) ensure binary decision variables.  

 

5.2.1 Improving the Formulation 

In the formulation constraints (5.2), (5.3) and (5.5) are non-linear, which makes selecting a 

solution procedure difficult at best.  The following changes are made to constraints (5.2), (5.3) 

and (5.5), which make the formulation linear.   

(5.13)                              ;,;1

(5.12)                                ;;2

(5.11)                                ;;

(5.10)                                ;;

(5.9)                                   ;;

(5.8)                                    ;;1
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K  kJjIi                            vx r          

K   kJjIi                                         r x          

K    kJjIi                                     a  v          

K  kJjIi                             vx  a          

K  kJjIi                               x  a          

          

ilikjlkij

jkijijk

ijkij

ijkjk

jkijijk

ijijk

∈∈∈∀+≥+

∈∈∈∀≤++

∈∈∈∀≥

∈∈∈∀≥

∈∈∈∀≥+

∈∈∈∀≤+

 

Equations (5.8)-(5.10) replace the non-linear constraints (5.2), equations (5.11)-(5.12) 

replace non-linear constraints (5.3) and equation (5.13) replaces the non-linear constraints (5.5).  

The solution space is extremely large. For instance, the total possible platform configuration 

being ||||2 IJ  , which is just one decision variable of the model.  

To help reduce the search space we introduce some cutting planes.  The first cut was added to 

avoid the symmetrical nature of the problem.  In this case the same solution can be represented in 

|I| different ways by merely permuting the platforms.  To eliminate symmetry the following 

additional constraints are used: 

                                                                                  ,   Isixx
j

sj

j

ij ∈∀≥∑∑     (5.14)  

                                                                                  ,   Isiyy
k

ki

k

ki ∈∀≥∑∑        (5.15) 

Another constraint that prevents the same component from being added and removed from 

the same platform: 
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 ;;1 K  kJjIi                            r a ijkijk ∈∈∈∀≤+                 (5.16) 

These cuts are included in the formulation and the model is solved.  Adding cut (5.14) 

reduces the computational time by more than 50%, while cuts (5.15) and (5.16) had a smaller 

contribution.   

5.2.2 An Illustrative Example 

In this subsection a small example to illustrate the solution of the integer program is 

presented.  This example uses a family of four products having eight distinct components, as 

shown in Figure 3.1.  The cost of the components is given as  

Component � A B C D E F G H 

Cost ($)� 10 11 12 13 14 15 16 17 

 

This example is solved optimally, and the results for the various cases of demand and costs 

are shown in Table 5.1.  The results presented in Table 5.1 show that utilizing multiple platforms 

is economically justified.  And this fact is even more pronounced when the setup cost of new 

platforms is relatively small. 

The following conclusions can be drawn from the results: 

1.  For some values of setup cost, proposing more than one platform is cost effective.  

2. With a decrease in setup cost of the platforms, the optimal number of platforms increases.   

3. From Figure 3.1 and Table 5.1, it is evident that when the demand of each product is 

similar enough, platform elements are the elements that are the most common throughout 

the product line, independent of the components cost.   

4. When the cost of mass assembly of each component in the platform exceeds the cost of 

manually adding the components to the platform, using platforms is not justified.    
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Table 5.1 The platform and overall cost for various cases of demand, and cost  

Setup cost 
($) (A) 

Costs 
 (CPj CAj CRj)  

Demand  Single 
platform 

Cost in $ 
(Single) 

Multiple platforms Cost in $ 
(Multiple) 

Solution 
Time 
(sec.) 

[250 250 250 250] [AB]* 79750 [AB] (2, 4)** 
[ABCE] (1,3) 

78750 128 

[700 100 100 100] [ABCE] 77500 [AB]  (2,3,4) 
[ABCDE] (1) 

74900 130 

[100 700 100 100] [AB] 79900 [ABD] (2) 
[ABC] (1, 3, 4) 

78900 115 

[100 100 700 100] [A BCE] 78700 [AB] (1, 2, 4) 
[ABCEF] (3) 

76100 132 

(2 4 3) 

[25 25 25  925] [ABCGH] 80150 [AB] (1, 2, 3) 
[ABCGH] (4) 

78125 126 

[ 250 250 250 250] [-] *** 72500 [-]   72500 12 

1000 

(2 1.75 3) 

[700 100 100 100] [-]  72500 [-]  72500 12 

  

[250 250 250 250] [AB] 78850 [-] (2) 
[ABCGH] (4) 
[ABCE] (1,3) 

76550 612 

[700 100 100 100] [ABCE] 76600 [-] (-) 
[AB] (2, 3, 4) 
[ABCDE] (1) 

74000 608 

100 (2 4 3) 

[25 25 25  925] [ABCGH] 79250 [-] (2) 
[ABCGH] (4) 
[ABCE] (1,3) 

76325 598 

* ‘[ ]’ Represents the components set of the single platform and all the products in the product family is assigned to 
it. 
** ‘[ ] ( )’ Represents the components set of a platform and ‘( )’ represents the products set out of the product family 
made from that platform 
*** ‘[-]’ Represents the platform doesn’t have any component in it 

5. When the demand of a particular product is very high with respect to others in the 

product line, the platform components are those that are in that product, even if other 

products do not share these components.  For example, if the demand of P4 (Figure 3.1) 

is very high with respect to others in the family, the platform in this case is the product 

P4 itself.   

 

 

  

5.3 Genetic Algorithm Solution Methodology 

Observe that even the very small problem solved in Section 5.2 required around 10 

minutes to solve.  The solution time increases exponentially as the larger problems were 
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attempted, and the solution was not reached even in a week.  Therefore, we present a genetic 

algorithm (GA) based heuristic approach for the multiple-platform problem selection problem. 

The algorithm starts by applying the genetic algorithm to a single platform model.  Once 

the near optimal solution for the model is obtained, the genetic algorithm is applied by 

considering the number of optimal platform equals two for the model, and a near optimal 

solution is obtained.  This continues until |K| platforms have been analyzed.  The smallest cost 

solution for k number of platforms is then reported as the solution to the multiple-platform 

problem selection problem and |K| is the optimal number of platforms. 

The genetic algorithm follows the steps presented in Section 5.3.1.  The lower the cost- 

value of a particular chromosome, the higher the fitness value it possesses.  The algorithm 

terminates after a pre-specified number of iterations and the best solution (with minimum cost 

value) is reported. 

5.3.1 The Genetic Algorithm 

   Input: µ = the population size 

           pc =  the crossover probability  

           pm= the mutation probability 

           T = the maximum number of generations (number of iterations) 

Pt = the population on the t
th iteration 

 Step # 1:  Initialization  

Generate a random initial population P0 of size µ and a random initial offspring 

population P’0 of size µ, and apply feasibility and correction algorithm (described in 

Section 4.3.1) to create P0 and P’0 and set t=0. 

Step # 2:  Fitness  

P’t+1 � Pt U P’t ; and  

Calculate the fitness of each individual in P’t+1. The fitness, pf , of an individual p is 

given by 
t value

f p cos
1= . Where value cost is the value of objective function for that 

individual (solution). 

Step # 3:  Evolution  
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Sort P’t+1  based on fitness value (in decreasing order) and truncate the size of P’t+1 to the 

best  µ solutions.  Pt+1 � P’t+1. 

Step # 4:  Selection  

Individuals from Pt+1 are selected for mating. The individuals, of the same number as the 

population size, will be copied into a mating pool according to their fitness values. The 

higher the fitness values the greater the probability of individuals to join the mating pool 

(individuals may be selected for the mating pool more than one time.).  The selection 

procedure is done as follows. 

  Begin  

  p�0; 

  While (p≤  µ) do 

Calculate the selection probability and cumulative probability for an individual p as 

 , ...,4,   p ,
f

f

p p

p
p 21Pr =∀= ∑  and , ..., 4,  p, Cr

p

k

kp 21Pr
1

=∀=∑
=

 respectively; and 

generate a random number r, [ ]1,0∈r ; 

If 1Crr ≤ , then select the first individual; else, select the p
th individual 

, ..., 4,  p,  CrrCr pp 321 =∀≤<− ; 

End if 

p�p+1; 

End  

Step # 5: Variation 

Apply crossover with probability pc and mutation with probability pm  to Pt+1 to generate 

P’t+1.  With crossover probability pc we mean that on an average (pc * µ) individuals 

would undergo crossover to generate (pc * µ) children.  Then the mutation operator is 

applied with a low mutation probability pm on Pt+1.  After applying the crossover and 

mutation operators, we get on an average (pc + pm) * µ number of children, denoted as 

P’t+1.  

Step # 6:  Feasibility and correction 

Apply feasibility and correction algorithm to P’t+1 to create Pt+1 and t�t+1. 
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Step # 7:  Termination  

If t = T, terminate and print the solutions in Pt, otherwise go to Step #2. 

5.3.2 Solution Representation 

The solution is represented using a matrix with I  rows and J  columns, where J  is the 

maximum number of distinct components in the product family under consideration, as 

illustrated in Figure 5.1.  An entry of ‘1’ at the i, j position represents that the ith  platform 

contains the jth component.   

 

 

 

 

 

 

  

5.3.3 Generation of a Feasible Chromosome Population 

Initially a population of solutions is randomly generated; therefore some of the solutions 

may not be feasible.  Also, applying the crossover, and mutation operators create new solutions 

that may not be feasible. 

The feasibility and correction algorithm is slightly different for multiple-platform model 

as apposed to the single platform model as products that would be assigned to each of the 

platforms in the platform-set is not known before hand. Therefore for the case of multiple-

platform model each of the platforms in a platform-set is checked for feasibility using the PARs 

of the products in the product family as apposed to using the Overall PAR for the whole product 

family. A feasible solution is a solution in which the configuration of each platform follows the 

part assembly relationship of at least one of the products in the product family.   

The feasibility and correction algorithm for the multiple-platform model follows the 

following steps. 

Let Pi (a binary string) represents a configuration of platform ‘i’ generated randomly. In the 

solution representation matrix this string Pi is represented by the i
th row, columns 1..., J . 

 

1 0  1 1 1 0 0 0 

1 0 …. 0 0 0 1 0 0 

1 1 …. 1 1 0 0 1 1 

 

j 

i I  

Figure 5.1 Solution representation for I  number of platforms  
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Let k

jT  (a binary string) represents the jth column in the PAR matrix for product ‘k’. (For an 

example of PAR matrix, see Table 1). 

Step # 1: Set i=0, k=1 

Step # 2 update i=i+1; if i= I  go to step 4, else go to Step # 3. 

Step # 3: determine strings i

jQ  =  Pi A4D k

jT  ; for all j=1in Pi  

Step # 4: compare i

jQ  with k

jT bitwise for all j 

Step # 5: if for any j, i

jQ  not equals k

jT , go to Step # 6; otherwise platform ‘i’ is feasible, go to 

Step # 2. 

Step # 6: Update k=k+1; if k= K  go to Step 7, else go to Step # 3. 

Step # 7: Create a new feasible Pi’ = [bitwise OR ( k

jT s)] OR Pi for all j=1 in Pi, go to Step # 2. 

(where Pi’ is the corresponding feasible platform configuration for any infeasible Pi).   

Step # 8: Stop 

5.3.4 Solution Evaluation 

The fitness value (fp) of each solution in the population is calculated to assess the quality of 

the solution relative to the rest of the solutions in the population. The selections of individuals 

that are transferred into the next generation are based on their fitness values.   

The cost calculations: 

Step # 1: For each product k produced using platform i in the solution calculate the cost of 

making the platform as: 

( ) ( ) ( )
ik

Jj

ijkjjijk

Jj

jjij

Jj

jjik
ADrCCRaCCAxCCPC +








⋅−+⋅++⋅+= ∑∑∑

∈∈∈

  

Where, xij= 1, if component j is in platform i; aijk =1, if component j is required in product k and 

is not in platform i; rijk= 1, if component j is not required in product k and CRj<Cj (it pays to 

remove the component and use it later).  

Step # 2 Construct a square matrix, 
kk

M × , of elements Ckis, Where M is the matrix made by 

concatenating matrices [ ]
IkkiCM ×=1  and [ ] ( )IkkkmIm CM −×∈= }{min2  side-by-side.  Figure 5.2 

gives an example matrix, M of 4 products and 2 platforms.  Elements in all rows and the first two 
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columns (M1) represent the total cost of making product k using platform i.  Two more dummy 

columns (M2) are added in which every element in the row is the minimum of elements in the 

same row of M1. 

Step # 3 Solve the assignment problem represented by matrix 
kk

M ×  for optimal assignments of 

products to platforms, given the components set of each platform (see Figure 5.2b).  Hence for 

the example in Figure 5.2a, products numbered 1 and 4 would be assigned to platform #1, 

products numbered 2 and 3 would be assigned to platform #2.  

Step # 4 The sum of all sCki

* gives the cost value of a chromosome.  

 Plat 1 Plat2 d1 d2    Plat 1  Plat 2 d1 d2 

Prod 1 2 3 2 2  Prod 1 C11* C12 C11 C11 

Prod 2 4 3 3 3  � Prod 2 C21 C22 C22* C22 

Prod 3 1 2 1 1  Prod 3 C31 C32* C31 C31 

Prod 4 3 4 3 3  Prod 4 C41 C42 C41 C41* 

                           (a)                                                                            (b) 

Figure 5.2 (a) Matrix M used for product-platform assignment (b) The final assignment 

 

5.4 Results and Discussions 

We use the example presented in Section 3.2 to illustrate and numerically validate the 

model and the approach presented in this chapter.  Several instances of the problem are solved by 

the exact method (using OPL 3.5) and by the genetic algorithm.  Initially, the GA based 

algorithm was run several times to make the appropriate choice of population size, number of 

generations, and mutation rate.  Based on these runs, a population size of 20, a maximum 

generation limit of 400, a crossover probability of 0.8, and the mutation probability of 0.1 were 

used for the remainder of the runs. 

Comparative study: The results obtained, from the OPL 3.5 and the Genetic Algorithm 

approach for the various instances of the problem, are shown in Table 5.2. 

The results obtained for the family of drills is consistent with the results obtained for the 

hypothetical smaller case presented in Section 3.2.  The time required to solve the problem using 

the GA based approach is not presented as for any instance since it was less than 120 seconds.  

From the results it is obvious that the exact method can require substantial computational time.  
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As expected, the time required by the exact method increases exponentially with increase in the 

number of platforms.  A comparison of the solution quality using both approaches is presented in 

Table 5.3 (for the same results presented in Table 5.2).  As demonstrated by that table, the 

heuristic approach reaches a very good solution – within less than 2.6 percent from the optimal 

results in a reasonable amount of time. 
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5.4.1 Analysis Using the Genetic Algorithm Results 

Figure 5.3 presents the surface plot of the total production cost as a function of setup 

costs and number of platforms.  In this plot the demand of each product (drill) is considered to be 

100 units, and CPj=$1, CAj=$4, and CRj=$3 (for all j).  The plot shows that the when the setup 

cost of the platform increase, it is more economical to reduce the number of platforms.  When 

setup cost is reduced, having more platforms result in lower production cost.  We can see from 

the figure that allowing multiple platforms with lower setup costs leads to lower total production 

costs. 
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Figure 5.3 Surface plot of Setup cost, number of platforms and total production cost 

A convergence plot for the genetic algorithm is shown in Figure 5.4 for different numbers 

of platforms. The graph shows the solution quality as a function of the number of generations.  It 

is evident that the algorithm converges efficiently.  
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Figure 5.4 Convergence plot for setup cost =$1000  

 

5.5 Conclusions 

This chapter introduces the concept of multiple platforms as a solution to the production 

of a family of products in a cost effective manner.  The model establishes that using multiple 

platforms to produce a family of products, given low setup costs, is cheaper than using a single 

platform.  The chapter presents a description of the problem followed by a mixed integer 

formulation presented as an optimization problem. Then an evolutionary strategy based on 

Genetic Algorithm is proposed for the problem. The approach is explained and illustrated with 

an example of a family of cordless drills. The chapter provides insight into the effects of demand 

variance and various cost components on the optimal configuration of the platform, and 

discusses the effectiveness of the heuristic tailored for that application.   
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CHAPTER 6 - Economic Production of a Product Family under 

Demand Uncertainty  

 

6.1 Introduction 

In this chapter, we propose a platform based approach for the production of a product 

family under demand uncertainty. Using this approach, every product variant in the family may 

either be assembled directly from its components, or from any platform whose component set 

resembles those required by the product.  The methodology seeks to minimize the overall 

production costs of the products, which include the costs of production, and holding cost of 

unused platform inventory and shortage cost of lost demands of products, while considering the 

stochastic demand of each product type. 

The advantage for using this platform based approach is that this approach enables the 

economic production of customized products with much shorter final assembly lead times and 

with decreased risk of losing demand or holding surplus inventory. 

The problem is formulated as a two stage stochastic programming model with recourse. 

First stage decision variables determine the configuration (components set of a platform), and the 

quantity of the platforms (inventory level) to be produced.  Second stage decision variables 

determine the additional components that would be added to the platform to make a particular 

product type, the components that would be removed from the platform to make a particular 

product type, and the quantity of each product type to be produced.  

The platform formation problem for the economic production of a product family with 

stochastic demand of each of the product is modeled as a general optimization problem. The 

chapter presents three solution approaches to the problem – an exact solution and two heuristic 

approaches.  The results obtained from the exact method are used to validate the model 

formulation and measure the significance of using stochastic program for modeling the problem. 

However, only a very small instance of the problem could be solved by exact approach using 

OPL 3.5.  Therefore, two heuristic methods that can provide good solutions to large instances of 

the problem more quickly are developed.  The first heuristic method combines a genetic search 
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process and integer programming to provide a near optimal solution. The heuristic can solve 

large instance of the problem in a reasonable time. However, with this approach the solution time 

increases exponentially with increase in number of possible demand scenarios.  To deal with 

large number of demand scenarios a pure probability based genetic search process is proposed, 

which is very fast even when a large number of demand scenarios is considered with slightly 

inferior solution quality than that of the first heuristic method.  Both of these methods are 

illustrated with an example of a product family of cordless drills. The example is used to provide 

insights to the effect of demand parameters and various cost components on the platform based 

production approach.  Also, the heuristics’ solution qualities are discussed by comparing the two 

approaches.  

6.2 The Model 

In this section, we model and analyze the production of a family of products using 

platforms that enables cost effective production with short final assembly time in an uncertain 

demand environment.  This model enables the determination of the optimal configuration of 

product platform (its component set), the optimal inventory level of platform, and the optimal 

number of each of the product that should be produced in each scenario, while minimizing the 

overall production costs. 

 

6.2.1 The Problem Statement 

A production facility produces 4 types of products using the platforms (semi-finished 

form of the products). The facility mass-produces the single type of platforms and keeps the 

inventory of them.  

The manufacturer experiences stochastic demand for each of the products. When the 

order of a product comes in, some components may be manually added to the platform or some 

components may be removed from it or both to make the product, and the product is shipped to 

the customer within the due date.  If the actual total demand of all the product types is more than 

inventory level of the mass produced platforms, there would be some demand losses and 

shortage cost would be incurred on the other hand, if the actual total demand of the product is 

less than the inventory level of the platforms, all the demands would be satisfied, but the facility 

would have to pay holding cost of unused platforms.  
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The problem can be formulated as a two stage stochastic programming model with 

recourse. The demand of each product is modeled as set of demand scenarios each with some 

probability of occurrence.  

First stage decision variables would be to:  

• Decide the configuration (components set of a platform) 

• Decide the quantity of the platforms (inventory level) to be produced 

Second stage decision variables would be to:  

• Decide the additional components that would be added to the platform to make a 

particular product type 

• Decide the components that would be removed from the platform to make a particular 

product type 

• Decide the quantity of each product type to be produced for each scenario 

The objective is to minimize the total production cost that includes the cost of production 

of platforms, cost of production of products using the platforms, holding cost of unused 

platforms and stock-out cost of lost demands.  

6.2.2 The Model Formulation 

A production facility produces 4 types of products using the platforms (semi-finished 

The following model (Model 1) of the problem is proposed.   

Model 1 
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The objective function (equation 6.1) represents the total production cost that includes 

cost of making of the platforms, cost of assembling the products using the platforms, total stock-

out costs, and total holding cost under all possible scenarios. Constraints 6.2 – 6.4 state that 

component j must be added to the platform to make product k if j is not in the platform and is 

required in product k. Constraints 6.5 -6.6 state that component j may be removed from the 

platform to make product k if that component is in the platform and is not required in product k. 

Constraints 6.7 express that for any scenario s, the total number of products produced cannot 

exceed platform inventory level. Constraints 6.8 limit the total quantity of product k produced to 

the random demand value of product k for any scenario s. Constraints 6.9 check the assembly 

feasibility of the platform while deciding the configuration of platform. These constraints states 

that if component l is in the platform and according to part assembly relationship matrix if j 

precedes l ( jlf =1) then j must also be present in the platform. Constraints 6.10 ensure the binary 

and non-negativity nature of the decision variables. 

6.2.3 An Illustrative Example 

A production facility produces 4 types of products using the platforms. In this section, a 

small hypothetical example is used to illustrate the solution of the integer program and to 

validate the stochastic model by calculating the stochastic solutions, expected value solutions, 

and solutions in case of perfect information. The model is validated by showing that the value of 

stochastic solutions, VSS, (expected value solution - stochastic solution) and expected value of 
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perfect information, EVPI, (stochastic solution - solution in case of perfect information) are 

positive for various instances of the example.  

Stochastic solutions are determined by solving the stochastic integer program presented 

in Model 1. Expected value solutions are determined by taking the value of w (number of 

platforms to be mass produced) equal the sum of the expected demand of all the products and 

solving the stochastic integer program with this fixed value of w. The solution in case of perfect 

information is determined by solving the model by taking one scenario at a time with a given 

demand value of that scenario and the cost value is obtained for that scenario; then weighted sum 

of the costs for the all the scenarios, where the weight of a scenario equals the probability of the 

occurrence of that scenario, gives the cost in case of the perfect information.  

The example uses a family of three products (P1, P2, and P3). The binary bills of 

materials of the products and PAR are shown in Table 6.1 and Table 6.2 respectively.  

 

Table 6.1 Binary bill of materials (vjk) for the 

products 

   A  B  C  D  

P1 1 1 0 1 

P2 1 1  1 0 

P3  1 1 0 0 

 

Data common for all the cases are presented below. The cost of the components is as 

follows.  

Component � A B C D 

Cost ($)� 10 11 12 13 

Cost of assembling the platform = $2 per component for all the components. 

Cost of adding components to the platform = $4 per component for all the components. 

Cost of removing components form the platform = $2 per component. 

This small example is solved exactly using OPL 3.5.  The reason for taking such a small 

size problem was that the OPL 3.5 took over 40 hours to solve the problem of this size. This 

observation motivated us to propose heuristic based approaches to for large real size problems.  

Table 6.2 The Overall PAR (fjl) for Product 

family 

 A B C D 

A  1 1  

B    1 

C     

D     
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Table 6.3 provides the solutions for the various cases of demand scenarios, various 

shortage costs and holding cost, and various probabilities of occurrence of scenarios. From Table 

6.3, following observations are made: 

• The positive values of VSS and EVPI (see last two columns of Table 6.3) supports the 

correctness of the model and it is obvious that there is an advantage of using stochastic 

model over expected solution approaches. 

• When the probability of occurrence of a particular scenario is high the solutions tends to 

shift towards that scenario (Cases 1, 2, 3, and 5) except for the case of expected value 

solutions. For a very symmetric case (Case # 4) all the three types of solutions are same, 

which means for near symmetric cases using expected value solution approach would 

work well. 

Table 6.4 provides a sensitivity analysis on the holding cost and shortage cost using  

various cases. 

From Table 6.4, following observations can be made: 

• When the total demands of products are similar in various scenarios then the number of 

products that should be made in each scenario depends solely on the shortage costs of the 

products (Case # 1).  Also, the shortage cost should be sufficiently high to justify the 

production of products, as we have not considered the profit of production in our model 

(See Case # 2). 

• When there is high variability in total demand in different scenarios the increase in 

holding costs encourage lower production for given shortage costs (See Case # 3 and 4). 
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Table 6.4 Sensitivity analysis on holding costs and shortage costs 

q1 q2 q3 Case # 1 

 
h= $50/ $80/ $100 

$ 100 $ 100 $ 100 

Stochastic sol. 

Obj. val. = $8790 
w=250 

Scenarios Pr. D1 D2 D3 Y2 Y2 Y2 
S1 0.8 100 50 100 100 50 100 
S2 0.2 50 100 50 50 100 50 

q1 q2 q3 Case # 2 

 
h= $50/ $80/ $100 $ 20 $ 20 $ 20 

Obj. val. = 5000 
W=0 

Scenarios Pr. D1 D2 D3 Y2 Y2 Y2 
S1 0.5 100 50 100 0 0 0 
S2 0.5 50 100 50 0 0 0 

q1 q2 q3 Case # 3 

 
h= $ 50 $ 102 $ 101 $ 100 

Obj. val. = 18825 
w=320 

Scenarios Pr. D1 D2 D3 Y2 Y2 Y2 
S1 0.5 200 100 100 200 100 20 
S2 0.5 100 50 50 100 50 50 

q1 q2 q3 Case # 4 

 
h=$100 $ 102 $ 101 $ 100 

Obj. val. = 27830 
w=200 

Scenarios Pr. D1 D2 D3 Y2 Y2 Y2 
S1 0.5 200 100 100 200 0 0 
S2 0.5 100 50 50 100 50 50 

 

6.3 Solution Approaches 

We propose genetic evolutionary based solution methodologies for the problem as a 

genetic algorithm based heuristics are vastly used tool for optimization problems that have large 

search spaces and with non-linear objective functions. The problem presented in this chapter falls 

in that category. Usually such heuristic approaches are required to solve stochastic models 

(Spall, 2003).  

For this model, we proposed two types of heuristic approaches. The first heuristic 

method, Genetic Algorithm with Integer Programming (GAIP), combines the genetic search 

process and integer programming to provide a near optimal solution. The heuristic can solve a 

large instance of the problem in a reasonable time; however the solution time increases 

exponentially with increase in number of possible demand scenarios.  The second heuristic 

method, multiple-population Genetic Algorithm, is a pure probability based heuristic search 
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process (called PHA in rest of the thesis) that starts with multiple populations, and can solve the 

instances of the problem with large number of demand scenarios.  

The detailed explanations of the heuristic approaches are provided in sections 6.4 and 6.5. 

However, the chromosome encoding and feasibility check process is the same for both 

approaches.  Also, the Solution Encoding approach and the Initial Feasible Population 

Generation (feasibility and correction of platform configuration) algorithm used for the heuristic 

approaches are identical to what used in solution methodology in Chapter 4, Section 4.3.1.  Both 

the heuristic solution approaches are presented in the following sections. 

 

6.4 Genetic Algorithm with Integer Programming (GAIP) 

In this method a genetic search algorithm, presented in Figure 6.3, is used to explore the 

search space and an integer program (Model 2), presented in Section 6.4.1, is solved for each 

chromosome to calculate its fitness value.  

The solution methodology follows the strategy shown in the flowchart in Figure 6.1.  A 

chromosome string, jx , is generated probabilistically (randomly or using genetic operators) and 

value of jx  is fed to the Model 1 and the model reduces to a linear integer program (Model 2). 

Solving this integer program provides the total cost of production (objective function value of 

Model 2) and values of other decision variables such as the number of platforms to be mass-

produced, the components that should be added or removed to produce a particular product, the 

number of each product produced using the mass-produced platforms.  Now the genetic 

operators are applied to alter the chromosome information ( jx ) and then the new value of jx  is 

fed back to Model 1 to reduce it to Model 2 and Model 2 is solved to get new objective function 

value and the solutions.  This process is repeated until maximum number of iterations is reached.  

Clearly, this approach combines the genetic search process and solving an integer 

program. The genetic search process and solution process of integer program is explained in 

detail in the following section. 
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 Start with a random feasible value of jx ; i=1 

i � i +1 

Determine the value of jka s and jkr s from the value of 

jx  

Feed in the values of jka s and jkr s, and jx to Model 1 

and the model reduces to an integer program (Model 2) 

in variables -

kssks u, vw, y  and +  

Solve the integer program to calculate the total 
production cost (objective function value) for given 

demand scenarios 

i= maximum 

iteration?  

Perturb jx  by using 

genetic operators and 
total production cost 

corresponding to jx  

No 

Yes 

Return the solution, the value of jx , jka , jkr , 

-

kssks u, vw, y  and + , and the total production cost 

(objective function value) 

          Figure 6.1 The flow chart showing the solution strategy 

Initialization: 

Main: 
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6.4.1Genetic Search Process 

The search process starts with the encoding and the initial feasible solution generation, which is 

explained in Section 4.1.1 and Section 4.1.2.  The overall process is presented by a flow chart 

shown in Figure 6.3. The details of the various steps presented in the flow chart are as follows. 

Perturbing the values of xj s (Crossover and Mutation) 

The crossover used for the exploration of search space. If the population size is 2L, L 

random pairs of chromosomes are selected for crossover. The crossover operator is applied on 

each of these pairs with crossover probability (here 0.8-0.9). The pairs that undergo crossover 

generate that many pairs of children. The crossover operator used here is single point crossover. 

In a single point crossover a crossover point (See Figure 6.2) is randomly selected on the pair of 

chromosomes undergoing crossover and the bits on the chromosomes are exchanged about that 

crossover point. Figure 6.2 explains the single point crossover operation. 

 

The mutation process used here is identical to what presented in Section 4.3.2. The mutation is 

applied on a string (chromosome) with a very low probability.  

Next the children population and the mutant population obtained after the application of 

crossover and mutation operators are checked for the feasibility. If any chromosome (string) is 

not feasible, we modify the string to become feasible using Feasibility Check and Correction 

Algorithm (the algorithm is presented in Section 4.3.1). 

Building each Generation 

The algorithm starts with the random generation of L solutions. The feasibility of each 

solution is checked and if not feasible they are made feasible. These solutions are evaluated and 

kept in an archive. Then these solutions and a copy of each of them are taken for crossover and 

Parent Children 

Crossover 

Figure 6.2 Crossover 

Crossove
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mutation.  After this step we get altered solutions (children and mutants).  These solutions are 

checked and corrected for feasibility.  These mutated feasible solutions are evaluated and the 

best L of the (Archive solutions + children and mutants solutions) updates the archive. The 

process is repeated until the pre-specified maximum number of iterations is reached.  

The population size is doubled during the crossover and mutation phase to make the 

search more exploratory.   

Evaluation and Calculation of Fitness  

Each suggested platform has a cost function that shows the cost of converting the 

platform to each of the products, given relevant data (various associated costs, demand in each 

scenario, the probability values for each scenarios, etc.). 
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Generate L random platforms’ configurations (pop) 

i = 0 

Crossover and Mutation is applied on pop’ to 

generate an altered population set pop’’ 

Double the population (2L) by making a copy of 
each string (pop’ = 2 pop) 

 

i= i+1 

New population (pop) = best L from (pop’’ +Arc) chromosomes 

Evaluate the L solutions and store in archive (Arc) 

i< max_iteration 

New population is the final population 

The solution is reached 

No 

Yes 

Check for feasibility (make the infeasible 
platform configurations feasible) 

Update the archive (Arc = pop) 

Check and correct for feasibility 

Figure 6.3 The flow chart of the genetic search algorithm 
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The cost calculations follow the following steps: 

Step #1 From a suggested value of jx , determine the values of jka  and jkr . How this is 

done is shown in the following pseudo-code below. 

For each component j in the platform Do 

 For each product i Do 

 If j is 4OT in product i Then   

  If CRj > Cj Then 

   jkr  = 0     

  Else 

   jkr =1                           

 End i 

 End j 

For each component j 4ot in platform Do 

 For each product i Do 

  If j is in the product Then 

  jka  = 1                                        

           Else 

  jka  = 0                                        

 EndIf 

 End i  

End j 

 

Step #2 Reduce Model 1 to an integer programming model (Model 2) by putting in the 

values of jx , jka  and jkr . The reduced model 2 is shown below. 
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Model 2 (Underlined variables are known) 
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This integer program is solved to provide the solution and the value of the objective 

function, which is the total production cost ( *Z ). How this integer program is solved is 

explained in Section 6.4.2. 

Step # 3 The fitness of the chromosome is given as *Z
fitness 1= . 

 

6.4.2 Solving the Integer Program (Model 2) 

Model 2 is an integer program. In general, solving an integer program is difficult and 

solutions are obtained in substantial amount of time.  However, it can be proved that the 

constraints matrix of Model 2 is a Totally Unimodular Matrix (TUM) and the right hand side of 

the all the constraints (b) are integers. Therefore, Model 2 can be solved as a linear program and 

always integral solutions will be obtained.  

Proof for Total Unimodularity of the coefficient matrix of linear constraints of the Model 2: 

The constraints of Model 2 can be rewritten as (in bAX = form), 
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{ }

{ } { },...,4,,k,...,S, s          ξvuyw       
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2121  0         0

 21              0     -  0    - 

1

∈∈∀=×+++×

∈∀=×+

+−

+−

=
∑

 

 The A matrix will have total number of rows, m = S + S*4 and number of columns, n = 1+S*4 

+ S*4 + S (n= total number of variables the model).  

The matrix A can be presented as 

( ) ( ) ( ) ( ) ( ) ( )( )S4SS4S4SS4S4SS4SSnm LHGFA ×⋅+⋅×⋅+⋅×⋅+×⋅+× = ,,,1   

An example A matrix for number of scenarios (S) = 3 and number of products (4) = 5 is 

presented below.  

 

 

1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 
1 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

F G H L 

Q1 

Q2 

Q2 
Q1 

F is a matrix with elements, { 1 and ,...,2,1for    1
1 and ,...,1for    0

==
=⋅++== jSi
j4SSSiijf    

(For all 1 ;,...,1 =⋅+= j4SSi ) 

G is a matrix with elements,  









 ⋅++⋅−+==−
⋅++⋅−+≠=

−+=⋅++=
−+≠⋅++=

=





























4i4ijSi

4i4ijSi

Sij4SSSi
Sij4SSSi

ijg

1,...,111 and ,..,1for   1

1,...,111 and ,...,1for    0

1 and ,...,1for     1
1  and ,...,1for    0

 

(For all 4Sj4SSi ⋅++=⋅+= 1,...,11 ;,...,1 ) 
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H is a matrix with elements,







++++==

−++=++=
−++≠++=

=
4S4S4SjSi

Si4Sj4SSSi

Si4Sj4SSSi

ijh
..1,...1.1 and ,...,1for  0

.1 and .,...,1for  1

.1 and .,...,1for  0

 

L is a matrix with elements,  







+++==−
+++=≠

++++++=++=

=
i4S4SjSi

i4S4SjSi

S4S4S4S4Sj4SSSi

ijl
..1 and ,...,1for  1

..1 and ,...,1for  0

..1,...1..1 and .,...,1for  0

 

From the definition of ijh and ijl , H and L are portions of the identity matrices (I).  A common 

result states that B is a TUM if and only if A = (B, I) is also a TUM. Thus it is suffice to show 

that B= (F, G) is a TUM.  We will use a common theorem that states that nmT ×  is a TUM if for 

every { }mQ ,..,1⊆ , there exist a partition 1Q , 2Q of Q  such that 1
1 2

≤−∑ ∑
∈ ∈Qi Qi

ijij ee  for ,...,nj 1=  to 

prove that B is a TUM. 

For the matrix B, we choose set 

( ){ }
{ } { } ( ) ( ){ }
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(Refer the example matrix A presented above to see the partition of rows in two sets Q1 and Q2) 

Let ije  is an element of B, then 
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Or, 1
1 2

≤−∑ ∑
∈ ∈Qi Qi

ijij ee  

Which means B is a TUM and hence A is a TUM. �    

The Model 2 is solved as a linear program using Simplex method which is very fast.  

 

6.5 Pure Probability based Heuristic Approach (PHA) 

The time taken by the GAIP approach, to solve the problem, increases exponentially with 

the number of demand scenarios. To alleviate this problem we propose one more heuristic which 

is a pure probability based genetic search process.  

This is a multiple population genetic search heuristic. The heuristic starts with proposing 

a population of chromosomes corresponding to each demand scenario. The underlying premises 

behind developing this heuristic are as follows.  
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• Good chromosomes from each population are selected based on their performance (= the 

total production cost value by using that platform to produce products for the demands in 

that scenario) with respect to that corresponding demand scenario. The number of good 

chromosomes selected from a scenario solution is proportional to the value of the 

probability of occurrence of that scenario to improve the chances of getting more “traits” 

of those chromosomes, which corresponds to a scenario with high probably of 

occurrence, in the children population.  

• These selected “good” chromosomes are mixed together and they undergo crossover and 

mutation in anticipation that children chromosomes would demonstrate overall good 

performance for all the scenarios together. (During the course of the search process the 

chromosomes are evaluated for their performance in each scenario and overall 

performance in the entire scenarios). 

• The selection process directs the search process. The heuristic uses three levels of 

selection process. First, the chromosomes are selected on the basis of their performance 

with respect to a particular scenario and second, among these selected chromosomes and 

their children chromosomes some chromosomes are selected further on the basis of their 

overall performance in the entire demand scenarios. Finally, only those chromosomes are 

selected for next iteration that has good overall performance in entire scenarios and good 

performance in a particular scenario.  

The algorithm for the approach is presented next, before some definitions are provided 

that are used to explain the algorithm. 

Definitions:  

1. The objective value with respect to scenario ‘s’ (Objs): The total cost of production 

calculated considering that only scenario ‘s’ would be realized. For a given configuration 

of platform (xj), the calculation of Objs follows the following steps: 

Step # 1: Using xj, determine the values of jka  and jkr as presented in Section 6.4.1.  

Step # 2: Put in these values in the following equation to get the value of Objs. 

 

 

 

Dk is the demand of product k in scenario s.  

( ) ( ) ( )( ) k

4

k

M

j

jkjrjkja

4

k

kj

M

j

jps DrCCaCCDxCCObj ⋅⋅−+⋅++⋅⋅+= ∑∑∑∑
= == = 1 11 1



 71 

2. The expected object value (ObjE): The total cost of platform based production 

calculated considering the expected demand of the each of the product.  This cost 

calculation follows the same steps presented for the calculation of Objs except that in 

place of Dk , expected value of Dk , E(Dk),  is used. ( ) ( )∑
=

×=
S

s

ksk DpDE

1

.  

The pure probability based genetic search approach follows the following steps: 

Step # 1: Corresponding to each scenario a random population (population size = psize) 

of chromosomes is generated. Let pops be the population of chromosomes corresponding 

to scenario s. And, Objs is calculated for all chromosomes in Ps.  

Step # 2: Then take best ( [ ]ss popp × +1), [x] is the greatest integer value of x, 

chromosomes from each pops and mix them to make a bigger population called pop’.  

Step # 3: Double the size of pop’ by making a copy of it.  Perform crossover with high 

crossover probability and mutation with low probability on doubled pop’ to generate 

children and mutants. The crossover and mutation process is same as explained in 

Section 6.4.1. This step is performed to explore search-space to look for potential 

solutions. The children, mutants and the pop’ is combined to get a bigger population, 

pop’’.  

Step # 4: For each chromosome in pop’’ all Objs are determined and ObjE is determined.  

Step # 5:  Sort the pop’’ by increasing value of ObjE and take the top L (L= size of pop’) 

chromosomes and rest of the chromosomes are discarded. The top L chromosomes are 

called pop’’’.  

Step # 6:  Take the best chromosome(s) (chromosome with minimum value of ObjE) 

from pop’’’. Use the xj value of this chromosome to calculate jka  and jkr , and feed these 

values in Model 1 to get Model 2. Solve Model 2 to get the object value (total production 

cost) and the solutions corresponding to this chromosome. This is the solution for first 

iteration. 

Step # 7:  Sort pop’’’ in increasing order of Objs and take the top psize chromosomes to 

get pops for the next iteration. Do this for all s.  

Step # 8: Increment the number of iteration. If number iteration is greater than maximum 

number of iteration go to Step # 9, otherwise go to Step # 2.  
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Step # 9: Terminate the algorithm, report the objective value and solutions of the last 

iteration.  

The crossover and mutation processes used in this approach are same as that of the GAIP. These 

two approaches are used to solve the various instances of the case study presented in next 

section.  Also, some comparative studies are performed to expose the solution qualities of these 

approaches and their suitability for the different instances of the problem. 

 

6.6 Results and Discussions 

Initially, the genetic search heuristics proposed in last section were run several times to 

make the appropriate choice of population size, number of generations, and mutation rate.  The 

appropriate values of population sizes and maximum number of generations depend upon the 

various instances of the problem taken. For all the instances and for both the approaches the 

crossover probability is kept high (0.8-0.9) and the mutation probability is kept low (0.05-0.1).   

 

6.6.1 Results and Analysis using GAIP 

The search process starts with the encoding and the initial feasible solution generation, 

Table 6.5 provides the comparison of solutions obtained from GAIP with the exact 

solutions for the small example presented in Section 6.2.3.  
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Table 6.5 The comparison of solutions obtained from GAIP with the exact solutions 

q1 q2 q3 Case # 1 

 
h= $ 5 $ 200 $ 100 $ 100 

Stochastic (optimal) 

Obj. val. = $8790 
w=250 

Stochastic (GAIP) 

Obj. val. = $8790 
w=250 

Scenarios Pr. D1 D2 D3 Y1 Y2 Y3 Y1 Y2 Y3 
S1 0.8 100 50 100 100 50 100 100 50 100 
S2 0.2 50 100 50 50 100 50 50 100 50 

q1 q2 q3 Case # 2 

 
h= $ 5 $ 200 $ 100 $ 1 

Obj. val. = 6330 
w=150 

Obj. val. = 6330 
w=150 

Scenarios Pr. D1 D2 D3 Y1 Y2 Y3 Y1 Y2 Y3 
S1 0.8 100 50 100 100 50 0 100 50 0 
S2 0.2 50 100 50 50 100 0 50 100 0 

q1 q2 q3 Case # 3 

 
h= $ 50 $ 100 $ 100 $ 100 

Obj. val. = 10365 
w=200 

Obj. val. = 10365 
w=200 

Scenarios Pr. D1 D2 D3 Y1 Y2 Y3 Y1 Y2 Y3 
S1 0.1 200 200 100 0 100 100 0 100 100 
S2 0.9 50 100 50 50 100 50 50 100 50 

q1 q2 q3 Case # 4 

 
h=$ 50/80/100 $ 100 $ 100 $ 100 

Obj. val. = 8725 
w=250 

Obj. val. = 8725 
w=250 

Scenarios Pr. D1 D2 D3 Y1 Y2 Y3 Y1 Y2 Y3 
S1 0.5 100 50 100 100 50 100 100 50 100 
S2 0.5 50 100 100 50 100 100 50 100 100 

q1 q2 q3 Case # 5 

 

h= $ 5 $ 100 $ 100 $ 100 

Obj. val. = 18835 
w=500 

Obj. val. = 18835 
w=500 

Scenarios Pr. D1 D2 D3 Y1 Y2 Y3 Y1 Y2 Y3 
S1 0.9 200 200 100 200 200 100 200 200 100 
S2 0.1 50 100 50 50 100 50 50 100 50 

 

From Table 6.5, it is obvious that the GAIP provides the optimal solutions for the small 

example.  The rest of the results and analysis provided in this section are on the bigger example. 

Table 6.6 provides the data for an instance of the bigger example. For this example, CPj=$2, 

CAj=$4, and CRj=$2 (for all j). Table 6.7 presents the solution obtained using the GAIP for the 

example.    
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Table 6.6 Data for an example problem 

Demand Scenarios Pr. 

P1 P2 P3 P4 P5 

S1 0.2 100 100 100 100 100 

S2 0.8 200 200 200 200 200 

Shortage cost Holding cost 

(Platforms) P1 P2 P3 P4 P5 

$10 100 100 100 100 100 

 

Table 6.7 Solution obtained for the example using GAIP 

Objective value = $ 54710 

Number of platforms made = 600 

Number of products made Shortages of products  Scenarios 

 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

Leftover 
platforms 

S1 100 100 100 100 100 0 0 0 0 0 100 

S2 200 200 0 0 200 0 0 200 200 0 0 

 

Figure 6.4 shows the convergence plot of GAIP for the above case. 

 

. Figure 6.4 Convergence plot of GAIP 

The graph shows the solution quality as a function of the number of generations. It is 

evident that the algorithm converges efficiently.  
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The heuristic is run 20 times, and the mean and ‘mean + standard deviation’ of best 

solutions for all the runs at each iteration is plotted vs. number of iterations. The plot is shown in 

Figure 6.5. From Figure 6.5 it is clear that the standard deviation kept decreasing with the 

number of iterations and finally it becomes negligible which means that in almost all the runs the 

heuristic hit the same solution at the end which in turn supports the global convergence and 

repeatability of the heuristic. 
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Figure 6.5 The plot of mean and ‘mean + standard deviation’ of the iteration best of all the 

runs at each iteration vs. Iterations (using GAIP approach) 

 

6.6.2 The solution quality of PHA and comparison with GAIP approach  

Figure 6.6 shows a convergence plot of PHA for any instance of the example. This 

approach requires more number of iterations than the GAIP, but it converges efficiently too.  
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Figure 6.6 A convergence plot for the PHA 

The graph shown in Figure 6.5 for the GAIP approach is also plotted for PHA approach 

and is presented in Figure 6.7.  Figure 6.7 supports the global convergence and repeatability of 

the PHA approach.  
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Figure 6.7 The plot of mean and ‘mean + standard deviation’ of the iteration best of 

all the runs at each iteration vs. Iterations (using PHA approach) 

Table 6.8 shows the comparison of results obtained from both the heuristics.  The results 

obtained from both the approaches prove that GAIP performs slightly better than PHA.  Some 

more comparisons between these two approaches are provided in following section.  
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Table 6.8 Comparison of results obtained from both the heuristics 

 

6.6.3 Results when demand of each product is given in terms probability distribution 

So far we considered the cases of scenario based demand realization. In this section we 

would consider that instead of demand scenarios and their probability of occurrence, the demand 

distribution of each of product is specified. For the cases here we assume that the demand of 

each of the product follows a normal distribution with some mean and standard deviation.  

q1 q2 q3 q4 q5 
GAIP PHA 

Case # 1 

 

h= $ 5 

$ 200 $ 100 $ 200 $ 100 $ 100 W=500; Cost value=26895 W=500; Cost value=27985 

Scenarios 

 

Pr.  D1 D2 D3 D3 D5 Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5 

S1 0.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
S2 0.2 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

q1 q2 q3 q4 q5 
Case # 2 

h= $ 5 

$ 200 $ 100 $ 200 $ 100 $ 100 

W=250; Cost value = 19720 W=250; Cost value = 20220 

Scenarios Pr.  D1 D2 D3 D3 D5 Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5 
S1 0.8 50 50 50 50 50 100 100 100 100 100 100 100 100 100 100 
S2 0.2 100 100 100 100 100 100 0 100 50 0 100 0 100 50 0 

q1 q2 q3 q4 q5 
Case # 3 

h= $ 50 

$ 100 $ 100 $ 100 $ 100 $ 100 

W=250; Cost value= 21183 W=250; Cost value= 21758 

Scenarios Pr.  D1 D2 D3 D3 D5 Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5 
S1 0.1 200 200 200 200 200 0 0 0 50 200 0 0 0 50 200 
S2 0.9 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

q1 q2 q3 q4 q5 
Case # 4 

h=$ 50/80/100 

$ 100 $ 100 $ 100 $ 100 $ 100 

W=250; Cost value=50525 W=250; Cost value=52025 

Scenarios Pr.  D1 D2 D3 D3 D5 Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5 
S1 0.5 200 200 200 200 200 0 200 50 0 0 0 0 0 50 200 
S2 0.5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

q1 q2 q3 q4 q5 
Case # 5 

h= $ 10 

$ 100 $ 100 $ 100 $ 100 $ 100 

W=1000; Cost value=57518 W=1000; Cost value=57368 

Scenarios Pr.  D1 D2 D3 D3 D5 Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5 
S1 0.9 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 
S2 0.1 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 
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As the mathematical formulation of the model considers the scenario based demand 

realization, we would convert the probability distribution based demand information into 

scenario based demand realization. Since the normal distribution is a continuous distribution we 

consider few discrete demand points on the demand distribution and calculate the probability 

values of those demand points.  The process of converting probability distribution based demand 

information into scenario based demand realization is presented in Appendix A.  

If number of discrete demand points taken on demand distribution of a product is m, after 

converting this information into scenario based demand realization the total number of scenarios 

would be equal to  

S = m(number of products). Therefore, to keep the problem tractable we consider an example of 

smaller product family, number of products in the family = 3 (first three products in the case 

study) for further analysis on the results obtained by both the approaches.  

For each product the demand follows a normal probability distribution and the mean and 

standard deviation is known. Table 6.9 presents the results obtained by both the heuristic 

approaches for the cases where mean of the demand of each of the product is fixed but with 

increasing standard deviation.  The data used for the results in Table 6.9 is as follows: shortage 

cost = [$200, $100, $200] and holding cost=$10, number of demand points on the probability 

distribution of each product =5 

 

Table 6.9 Results obtained by both the approaches for different cases of demand 

parameters 

Case # Normal demand vector 

{(mean, std. dev.), (mean, std. dev.), 

(mean, std. dev.)} 

GAIP 

Cost value 

($) 

PHA 

Cost value 

($) 

1 {(100, 5), (100, 5), (100, 5)} 19726 21428 

2 {(100, 10), (100, 10), (100, 10)} 20708 24820 

3 {(100, 20), (100, 20), (100, 20)} 23324 28318 

4 {(100, 30), (100, 30), (100, 30)} 26895 30425 

 

From Table 6.9, it is obvious that with increase in standard deviation of normal 

probability distribution of demand, with all other things fixed, the cost value increases, i.e. with 
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increase in variability in demand the stochastic model gives higher cost values. Also, from the 

table it is clear that GAIP provides slightly better solution than PHA. However, we can see from 

Table 6.10 that the time taken by GAIP to solve increases exponentially with increase in number 

of demand points considered on the probability distribution, i.e. with increase in number of 

scenarios. PHA is a very fast approach and more suitable where number of scenarios considered 

is large.  

Table 6.10* Comparison of computational time for both the approaches 

Case # # of demand points on the probability 
distribution 

GAIP 
Time in min. 
(approx.) 

PHA 
Time in min. 
(approx.) 

1 3 61 12 

2 5 438 31 

3 7 1181 65 

 *Demand vector for all the three cases = {(100, 10), (100, 10), (100, 10)} 

Figure 6.8 shows the effect of variance in the demand and the number of scenarios 

considered in the stochastic model on the stochastic solution. Figure 6.8 is a plot of total 

production cost vs. number of demand points considered on the demand distribution of each of 

the product vs. the standard deviation in normal demand. The mean of the each of the product is 

kept fixed to 100 units. We can see from the figure that with increase in number of demand 

points considered on the probability distribution (more number of scenarios) the stochastic cost 

value decreases; and with increase in the normal standard deviation the cost value increases. 

These instances of the example are solved using GAIP approach. 
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Figure 6.8 The effect of variance in demand and the number scenarios considered in 

the stochastic model on the stochastic solution 

 

The Figure 6.9 shows that the importance of stochastic model over other models. Figure 

6.9 is a plot of objective (cost) value vs. standard deviation obtained from using the stochastic 

model, expected solution model and for the case of perfect information for the example. All the 

products have same mean values for their demand distribution and standard deviation is 

increased for all the products. The models are solved using the GAIP approach. 

 

Figure 6.9 Various cost values with increasing standard deviation of the demand 

distribution 
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From Figure 6.9 we can conclude that we can use expected value model when the 

variance in demand is not very high. However, if the variance in demand is significant the 

stochastic model must be used. 

 

6. 7 Conclusion  

The chapter proposes the platform based optimization approach for the economic 

production of a product family with demand uncertainty. The problem is formulated as a two-

stage stochastic integer program with recourse.  

Only a very small instance of the problem could be solved by exact approach using OPL 

3.5.  Therefore, two heuristic methods, that can provide good solutions to large instances of the 

problem more quickly, are developed.  The first heuristic method that combines a genetic search 

process and integer programming provide a near optimal solution and solves large instance of the 

problem in a reasonable time, yet this approach takes long time to solve problems with large 

number of demand scenarios. The second method - pure probability based genetic search 

heuristic solves the problems with large number of demand scenarios very quickly but with 

slightly inferior solution quality than the first heuristic approach.  

The chapter establishes the use and importance of stochastic model for the platform based 

production approach especially when the variance in demand is significant. The platform based 

production approach is explained and illustrated with an example of a family of cordless drills. 

The research in this chapter provides insight into the effects of demand variance, and various 

cost components on the optimal platform strategy, and discusses the effectiveness of the 

heuristics tailored for that application.   
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CHAPTER 7 - Summary and Future Research  

This thesis proposes and establishes the use of platform-based production approach to 

economically realize mass customization, shorten final assembly time of products leading to 

increase in customer responsiveness, and economically manage product variety even in uncertain 

demand environment.   

The thesis establishes the motivation, foundation and framework for investigating the 

proposed research. It provides the background and related literature review on research areas 

such as platform based production, evolutionary genetic search to solve large scale optimization 

problems, the touch base on the overall problem environment and assumptions, to establish the 

context for the readers and foundation leading to the development of three platform based 

optimization models for the economic production of a given product family and proposing 

various heuristic solution approaches to solve the problem model efficiently. 

The first model considers single platform for the production of a given product family. 

The model is formulated as a general optimization problem. The problem was solved exactly 

using OPL 3.5. Also, an evolutionary strategy based heuristic was proposed for the problem. The 

approach was explained and illustrated with an example of a family of cordless drills presented 

in Section 3.2. The heuristic provided near optimal solution within 1% of error for most of the 

problem instances, and in less time when compared to the time taken by the exact approach to 

get the optimal solution. 

The second model is the extension of the first model and considers the production of 

products based on multiple platforms as opposed to a single platform proposed in first model. 

The model establishes that using multiple platforms to produce a family of products, given low 

setup costs, are more economic than using a single platform.  Only a very small instance of the 

problem could be solved exactly using OPL 3.5. Therefore, a genetic algorithm based heuristic 

was developed that solved the problem very efficiently. The performance of the approach was 

investigated and the approach was illustrated by applying the heuristic on the case of cordless 

drills.  

   The third model is also an extension of the first model and considers the uncertain 

demand environment. The problem is formulated as a two-stage stochastic integer program with 
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recourse.  As only a very small instance of the problem could be solved exactly, two different 

heuristics – one that combine the genetic algorithm and the integer programming and the other 

purely probability based multiple population genetic search approach were developed tailored to 

different instances of the problem.  

The heuristics proposed in the thesis provided near optimal solutions and were proved to 

be very efficient after comparing them with that exact approach by solving the example problem 

of the drills presented in Section 3.3. Also, the model establishes the importance of the using 

stochastic programming to efficiently capture the uncertainty in demand especially when the 

variance in demand is expected to be significant. 

Future work in this area includes;  

• Proposing multiple platforms for the production of product family in uncertain 

demand environment. 

• Consideration of multi-period demand settings for the products with inventory 

management policies for platforms and products.  

• Consideration of the correlation in demands of the products that can be used to 

capture cannibalization effects or to make the problem more tractable for 

optimization by reducing the number of independent demand scenarios.  
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Appendix A - Generating all demand scenarios and their probability 

of occurrences when the normal demand probability distribution 

parameters for the products are given 

The following steps show how from the given normal demand probability distribution of 

each of the product the demand scenario information (scenarios + probability of occurrence of 

each of the scenario) of the family of the products is generated.  

Step # 1: Select the discrete demand points on a given normal demand probably 

distribution of a product in a product family  

The demand of each of product follows normal distribution with mean µ  and standard 

deviationσ .  All the discrete demand points ( iθ ) considered are from the 6σ  width of the 

normal distribution curve (see figure below).  An odd number (2m + 1) points are considered that 

are equally spaced by τ  and symmetrically distributed about the mean.  
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The value of τ  and iθ s are determined by using the following the relations. 
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Step # 2:  Calculating the probability value of a discrete demand point on the normal 

probability curve 

The probability value ip of a demand point iθ   is calculated by using the following 

relationships.  
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Where, f(x) is the normal probability density function. 

In the figure below, the dotted lines show the demand points. The probability value of a 

demand point is shown by the area enclosed by two solid lines on both sides of the dotted lines 

except for the end points. For an end point, the probability value is determined by the area which 

is limited by one solid line at one side and from the other side it extends to infinity. 
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1θ  2θ  mθ  4θ  12 +mθ  

P2m+1 

 

Step # 3:  Determining the demand scenarios and the probability of occurrence of each 

of the scenario 

Let θ  be a vector of demand points on the demand probability distribution of a product. 

Then the θ  Vector for a product k = [
k

1θ
k

2θ …
k

mθ …
k

m 12 +θ ] (determined in Step # 1). The 
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corresponding probability vector for a product k = [P1
k 
 P2

k
 … Pm

k
… P2m+1

k] (determined in Step 

# 2). 

Then a demand scenario is generated by taking a demand point from demand vector θ  of 

each of the product. All demand scenarios for the products are determined by considering all 

such combinations. And the probability value of a scenario would be the product of 

corresponding probability values for the selected demand points in that very scenario vector. 

For example, for a case of 3 products and if 5 demand points are considered on the 

probability distribution of each product, a demand scenario could be S = [
3

5

2

2

1

3   θθθ ] and the 

probability of occurrence of this scenario would be ps= (P3
1 
)x(P2

2 
)x(P5

3 
) 

The total number of scenarios, if the number of demand points considered on each 

product’s probability distribution is same = ( ) products ofnumber 
 points demand ofnumber  


