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I. INTRODUCTION

The Raman Effect in its most general aspect is the inelastic scattering
of photons by any material medium, the energy lost or gained by the photons
being absorbed or emitted by an elementary excitation of the medium. Since
its discovery in 1925-1928 by C;V. Raman (1) in Tiquids and G. Landsberg
and L. V. Mandelstam (2) in solid quartz, the Raman Effect has been studied
in great detail in gases, liquids and solids. Though detailed investigations
should lead to a better understanding of the interaction of electromagnetic
radiation with matter, Raman studies have been restricted until recently to
the study of the vibrational modes of molecules and solids in a manner in
many respects complementary to infrared, neutron and x-ray studies. There
have been numerous analyses of Raman vibrational spectra of molecules for
the elucidation of their structures (3).

The availability of the laser as a source of highly monochromatic light
of high intensity and well-defined polarization has given a new impetus to
Raman studies. This source has opened the possibility of investigating not
only clear, non-absorbing sampies but also samples such as imperfect,
absorbing crystals and opaque materials. The study of vibrational
properties of defects with Raman and infrared techniques could lTead to the
elucidation of both the geometrical structure and the effective force
constants associated with the defects.

The first section (Chapters I-III) of this thesis is a review of the
theory of the Raman Effect. The Raman Effect is not presented with clarity
or cetail in any o7 the standard physics textbooks, graduate or undergraduate.
Furthermore, no modern monographs on the subject are avai]able. The authof

hes synthesized much of the current literature in an effort to produce an



introduction to Raman scattering for the beginning graduate student.
Classical theory of scattering of electromagnetic radiation is presented
first, followed by the semiclassical gquantum theory and the formalism of
second guantization theory. A brief review of the dynamics of a perfect
crystal lattice and of a lattice witn defects, with particular attention
given to the analysis of Raman spectra is oresented next (Chapter III).

The second section (Chapter V) of the thesis contains a study of the
electronic and Raman spectra of the pure and ultra-violet irradiated alkali
metal azides (KNB’ NaNg and RbN3). The measurement of the electronic
spectra of the damaged crystals is described and discussed. The unit cell
analysis of the undamaged azides is followed by proposed models for the
defects formed by u.v. irradiation. A point group vibrational analysis of
these defect models is presented. An estimation is given of the corresponding
normz1 mode fregquencies associated with the defect using the Torce constants
for the azide defect as determined from the infrared data of Bryant (4).
Finally, the Raman spectra of the pure alkali azide crystals are described
and discussed. A prediction of the Raman spectra of u.v. irradiated alkali
crystals is indicated. An experimental Raman study of these defects is

being initiated by the author as this thesis is being written.



A. Classical Theory of the Scattering of Electromagnetic HWaves:

When electromagnetic radiation is incident on a medium it causes a
change in motion of the charges in the medaium. This may result in emission
of electromagnetic radiation whose frequency and direction, in general, differ
Tfrom that of the incident wave. This phenomenon is called scattering. A
complete theory of scattering must invoke a gquantum electrodynamical
treatment but a fairly correct description on a macroscopic scale is given
by classical electrodynamics. A brief description of the various types of
scattering is usresented and Rayleigh scattering is considered in detail.
Most considerations in Rayleigh scattering carry over to the classical
theory of Raman scattering.

Scattering is most conveniently characterized by the ratio of the
amount of energy emitted by the scattering system in a given direction per
unit time, to the energy flux density of incident radiation. This ratio
is known as the scattering cross section. It may be easily shown that for
an incident wave of unpolarized light, the cross section for the scattering
by a free charge is (5)

2
a2

do = & {mcz (1+ Cos28) d o

where © is the angle between the directions of the incident and scattered
Tignt. This equation is derived on the assumption that the velocity v
acquired by the free charge under the action of the electric field is much
smaller than the velocity of Tight so that the magnetic force (a %J can be
neglected and the electric dipole approxima;ion holds. It also follows
from the derivation that the frequency of the wave radiated by the charge,
i.e. scattered by the ﬁharge, is the same as the freaquency of the incident

wave.



Scattering by a system of charges differs from that by a single
charge. The Treguency of the scattered radiation can be different from
the frequency of the incident wave since there may be internal relative
motions of the charges, for example, internal vibrations of the molecule.
For convenience of treatment, it is usual to consider the following cases.

{A) Scattering of high-frequency waves: When the frequency of the
incident wave, considered monochromatic for simplicity, is large compared
with the fundamental internal frequencies of the system, the moction of the
charges of the system can be considered uniform during a time interval of
the order of the period of the wave. This implies the charges can be
considered as essentially Tree and the scattering may be considered as
free charge scattering to a first degree of approximation. This type of
scattering is dominant in x-ray scattering and is called Thomson Scattering
for historical reasons. Being primarily of the same freguency, the
scattering is coherent with the incident wave.

(B) Scattering of low-frequency waves: When the scattering wave has
a Trequency w small compared with the internal frequencies of the system,
the scattered wave contains both the incident frequency w; and other
frequencies of the form w, = w; + w(2) n(2). Where w(t) are the various
characteristic frequencies of the scattering system and n(2) are integers.
The scattered wave with unchanged frequency is called the Rayleigh-
scattered or coherently scattered radiation, while the scattered wave with
shifted frequencies is called the Raman scattered or 'inccherently'
scattered radiation. The concepts of ccherent and incoherent scattering
will be discussed in the framework of the gquantum theory where the

distinction is most easily mace.



This type of scattering will be discussed in detail after a brief
review of the radiation from an oscillating electric dipole and the concept
of polarizability. f
I. A. 1. Classicai Theory of Rayleigh Scattering

Consider an oscillating electric dipole moment

B(t) = B- e Wb 4 g oFlut (1.1)

- x &
where p = (p+) is an arbitrary complex amplitude. At large distances R

from the dipole the electric and magnetic fields are given by the formulae

{in Gaussian units) [5,6]

B (t+R/c) = 4—{ (R x & ,;(t W= 42 IR xR x P (t) 1.2
t+R/c R3C2{ xR xp )}RetR3C2 { xRxp )}REt (I.2a)

- : 1 = -+ 2 -
A(t+R/C) = - — (R = & R t I.2b
(/) = - = x s 0] -2 f@xi )] o)

The magnitude of Poynting vector HE %—-f x B can then be written as

4 : & :
S=—03 %‘K % x p(t) |2 (1.3)
4R C '

The vector product in this expression represents the projection of E(t) on
a plane perpendicular to R. Thus if &! and &2 are two mutually perpendicular

vectors in that plane, we have

_ m‘-} —, —_— i ¥
. 411'R2C3 2—4 L ea es Pa(t) Pﬁ(t) (I.4a)

i=1,2 a,8=1

This derivation due to Born (6) has the advantage that if one is interested
in one linearly polarized component of the scattered radiation, for

instance the componznt parallel to &1, one has simply to omit the first



summation sign and put 1 = 1. Sudstituting (1) in (4) and averaging over
a period of Wy
'+ 0 . ¥
§ =X E E e! . ToopT, . 4b
e | . e, P, PB (I. 4b)
i=1,2  «,8=]

The general relation between an applied electric field E and the
resulting electric polarisation P in a medium may be written in a dipole

approximation in dyadic notation as
ﬁ = o f + o E E + o: E f E Fomas

or in compenent form as

P; = (mij Ej + %5k Ej Ek + higher order terms) + c.c. (I. 5)

j's are the coefficients of lTinear polarizability and form a second-

rank tensor, while 55k %{5k1® vt correspond to non-linear terms of the

The o

2nd, 3rd... order forming tensors of increasingly higher order. Since the
fields for which these non-linear effects become observable are much higher
than the fields encountered in the Tignht sources used in ordinary Raman
experiments - except in the case of stimulated Raman effect experiments - one
usually works in the linear approximation.

The most general expression in this linear case is

— * 6
Py =gy B * By By (I. 6)

The coefficients o and g are tensors whose components are in general
functions of the incident Trequency and parameters of the medium. It is this

induced polarization that Torms the source for scattered radiation. In



general, Pj can have a freguency w' # w, the frequency of the applied field
component. However, the above equation implies that all terms on the
right-nand side o7 the equation must have the same frequency w' as Pi on the
Teft-hand side. Since Ej has the Trequency of the applied Tield, w, then

Ez has the freguency =-w . The frecuency of the quantities Bik must be
(w + w') and can be interpreted as a term which gives rise to radiation of
frequency «' due to the presence of the frequency w. In other words, it

is a term characterizing a process of stimulated emission. Though its
introduction and an empirical approach to Bsp can be used to incorporate
stimulated emission processes artificially in a classical picture, stimulated
effects are usually very small and we may neglect this term. Hence

P. =

i~ %4 E

. It can be shown that when w differs greatly from the

absorption frequencies aij is a Hermitean matrix (APPENDIX I).

Similar results hold between the magnetization M and the magnetic field
H. Magnetic properties and the scattering processes have not been studied
extensively and are neglected here. They would have to be considered for
instance 1in the case of Tight scattering from a system of magnetic moments
or a spin system.

Now consider the phenomenon of scattering in a dielectric medium. When
Tight falls on a perfectly homogeneous dielectric medium, all the radiation
from different volume elements of the medium will interfere destructively,
except in the directions of the reflected and refracted Tight (8). However,
consider what happens when a small spherical volume AV having a dielectric
constant (& + 4Ae) is embedded in an otherwise homogeneous, isotropic medium

of dielectric constant €. In the linear approximation, D = ¢E, so that

outside the spherical volume, the electric induction is given by



Whiie inside,

|_j_1 = (E'!‘AE)E = E:('H‘%E—)-E

Thus the presence of the small inhomogeneity has the same effect as the
creation of a secondary electric intensity %Ef per unit volume at its
center. This inhomogeneity behaves Tike an oscillating dipole with the
frequency w of the applied field E and can then emit "secondary"” radiation
in all directions. This causes a scattering of the incident 1ight. Thus
an inhomogeneity in a medium or a "fluctuation" in a “perfect"; homogeneous
medium can give rise to scattering.

The electromagnetic fieid quantities E} H, ﬁ, §, which appear in the
usual classical electrodynamics are obtained by an averaging process
which may be looked upon as two operations. The first is the averaging
over an element of volume physically infinitesimal but large enough to
contain many molecules. This is followed by a time averaging with respect
to the motion of all the particles in the medium. In the theory of
scattering, one has to sfop at the first averaging because the second step
would annul the phenomenon of scattering. It is also clear then why
there is always a certain amount, however small, of light scattered from
any medium because of the statistical fluctuations of the dipole moment

induced in any given volume element. The fluctuation in 2§Ek where Ek

th

is the induced dipole moment at the k™ molecule in the volume element AV

under consideration is caused, in general, partly by the fluctuations,
An = n-n, in the number of molecules in AV and partly by fluctuations,

- - . ; pr i %
AEk = pk - p‘, in the dipole moments of the individual molecules due to



their internal motion. In calcuiating the scattered intensities, it is
the square of these Tluctuations that are involved. It can be shown that
if @ denotes the unit vector in a given direction, the square of the
fluctuations of the component of the dipole moment in that direction is

given by (Appendix II)

D25 A BRI NI TN (1. 7)
|
k -

vhere N = average number of particles in the volume and E = induced dipole
moment per molecule.

If the molecule considered is isotropic the only fluctuation is that
due to density variation. Also, the polarizability is a scalar constant
so that we have p = aE, where E is the "effective field strength" in the

medium rather than that of the incident 1ight. For gases at ordinary

pressures these are almost equal and hence,

faz'ﬁk . 3!2 =T a2 If.@'z =T a2 E2 cos? y (1. 8)
Kk

Where y is the angle between the electric vector E of the incident beam and
the direction of polarization we wish to examine in the scattered beam.
Substituting in Eq. (I.4), the intensity of the scattered 1ight of

pclarization 2 observed is given by

N
I =2 NV a2 E2 cos? y (I.9a)
chr2
2(,2.1)2
rZat
3 _ 2%cC _ ; _ ou2-1
Since w = == and it can be shown (9, p. 87) that a = i » Where

is the refractive index of the gas.
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For an isotropic molecule, with unpolarized Tight incident, say along
the y-axis and observing along z, Eq. (4) shows the light scattered in a
direction strictly transverse to the direction of propagation of the in-
cident beam exhibits complete polarization even when the incident light is
unpolarized. Equations (I.9%a) and (I.9b) show

(1) the intensity of scattering is proportional to the square of the

polarizability of the molecule.

(2) the intensity is inversely proportional to the fourth power of

the wavelength if a possible dependence of the polarizability on the

wavelength is neglected.
Examples of the isotropic case are single atoms, tetrahedral molecules
{e.q. CH4) or octahédral molecules (e.g. SFG)"

In a general anisotropic molecule the polarizability is a tensor and

?5.e=Z Z P EG &g -
o B

In a gas since the orientation of the molecule is arbitrary and random we

must average a_, over all possible orientations. When this is done, one

B
gets (Appendix IILI)

‘—> ”~ 1

5. e!2 = RyEZ cos? § + R EZ (I+y cos? y ), (I.10)

wriere

_ 1 2 - (p2-1)2
Ry = g logyroy ey, )02 = 5mnr (1.17)

XX
= J - 2 - 2 - 2
R=3 {(“yy e v L C “y_v)

£ Uayd2 + log, 12 #lag |2 ] (1.12)



11

-}

R -+ (a

o 5

!
ol

; +
yyzz T %zz%x 0‘xxmy,‘.f)

In these equations (x,y.z) denote a framework fixed with respect to the
molecule. Note that R vanishes if the mo?ecﬁ]e is isotropic. Thus the
first term in (10) is due to fluctuations in density and the second is
due to fluctuations in induced dipole moments resulting from the

anisotropy. Since a are all positive, then

xx® Gyy® %zz

3
<
R=% R, {1.13)
The intensity of the scattered 1ight is given by
4 g
L= 1 16m NV 1 R, cos? y + R(]+l- cos? ¢{k (I.14a)
r2yt 3
. ,
sp 167wy { RaLR) cos2 g+ R [, (1.14b)
O p2;4 | o8

vihere IO is the intensity of the incident light. From (13b) note that the
scattered 1ight has a "polarized" part, i.e., a part that vanishes in a
direction perpendicular to the incident polarization (¥ =w/2) and an un-
polarized part. The density f]uctuation term contributes only to the

polarized part whereas the anisotropy term contributes to both.
The nature of polarization of the scattered light is thus indicative

of the anisotropy of the scattering center or molecule. We define the

depolarization ratio or factors as

—

I S § G744

I,ard I, are the intensities of the components of scatterad 1ight with

e,
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eleciric vectors perpendicular and parallel to that of the incident Tignt.

It can be snown that, for plane polarized incident light,

3, = —— (1.16)
R0+ §-R

and for unpolarized incident Tight,

3, =ﬂr . (1.17)
R+ 2 R

From (I.13), we find

1A

1A

Lo
N

The quantity RO can be obtained from the refractive index.- Observations
of 3, or Sn determines R and hence the optical anisotropy of a molecule.

A detailed discussion of these aspects is given by Mizushima (8).

I. A. 2. C]aséical Theory of Raman Scattering

Raman scattering (or combinationai scattering) occurs when a system
has characteristic frequencies associated with it, as for instance, the
vicrational frequencies of a free molecule or the lattice vibration
frequencies of a crystal. The scattered 1ight then consists of frequencies
shifted from that of the incident Tight, in addition to the unshifted
Rayleigh scattered 1ight. This can be looked upon classically as due to a
moduiation of the polarizability by the characteristic vibrations.

Any complex motion of a system can be resolved into "normal mode

vibrations", if we meke the assumption that the displacements of the



particles from their equilibrium positions are sufficiently small so that
a Taylior expansion of the potential energy in terms of this displacement

may oe terminated after the cuadratic term (8). This approximation is

-

cailed the Harmonic Approximation because the force between particles is
lincar in displacements as in the case of a harmonic oscillator. Each
norinal mode is a collective motion of the particles of the system with a
characteristic frequency and with all the particles passing through their
equilibrium positions in phase and at the saée instant. Any actual motion
of the system may then be written as a superposition of the normal modes.

The normal mode analysis applies to the motion of the nuclei in the
molecule. The incident 1ight, however, is scattered by the electrons rather
than by the nuclei. As will be more evident from the quantum theoretical
treatment, it is the electronic part of the polarizability rather than the
ionic part that contributes predominantly to the scattering. If the first
excited electronic state is sufficiently high above the ground state, we can
assume that at ordinary temperatures the electronic motions at any instant
are practically what they would be if the nuclei were at rest. If the
frequency of the incident 1ight is very large compared to the vibrational
and rotational frequencies of the molecule - which are typically in the
infrared region - and if it lies far away from any electronic absorption
frequency, thenrwe can ascribe an instantaneous polarizability to the mole-
cule. When the molecule rotates or vibrates this polarizability will vary
in time.

The polarizability being a function of the displacement of the particles,
cen be expressed as a function of the normal modes. Suppose Q = (QO ei“1t+c.c]

represents one such normal mode. If, for simplicity it is assumed that
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the system is vibrating in that

mode alone, bhdn

5 =2

s _ 0, %%y °%i3 * 1 3%ij 1% %3 *

i; %43 * 3Q ) Ql T3 *) QT. Ty an Q]QI VINED Qlai
1 o} 1 o 1 o} 0

+ higher order terms

- .0 1w, t * —juw.t 1_ 11 12m
B~ 1J)0 Qe ! 13}0 Qe 1"+ 2 1.])0Q Qpe
z a %3 )y Qe 241t + higher
order terms, (I.18)

BCs = o, .
) 1 E o ¥ N 3

where Gij)o o8 )(3, aij)o’ BQT' ) » ... etc. are

0

polarizability derivatives evaluated at the equilibrium positions. Now,

if the field of the incident radiation is

3 iwt e juwt <
E = fo " or E. = Ej; e Yt (§=1,2,3),
the components of the polarization induced are given by
P, =a.. E,
5T %5
= 0 Twt 1 i(wtwg )t % T{w-wqy)t
%13 on € * 0‘ij)o(QoEoJe 1 +Q0on € 177

+

1(w+2w 1t " i(w-2wq )t 3
7 431y (Q, Eys @ 177+, Ege 1'%} + higher

order terms (I.79b)

0 _lwt

alp * »
= 5128 + yl e1(w+u])t eT(w-m])t

3 ik 1(w+2m])

+ u e

+ g ei(u'2“1)t + higher order terms (I.19c)

using the notation,

0 - 0O A *_' *® * .
u- = ez, , U0l = %J)O Qs ul = a%j)o Q, » ete.

and recalling that %43 is Hermitean.



15

Tae induced polarization then gives rise to radiation at these various

-h

reguencies. The first term in Eq. (19¢) gives rise to radiation at the
same ireaguency w as the incident radiation and represents the Payleigh
scattered light. The two succeeding terms are responsible for radiation
at frequencies u + wy and lead to the first-order Raman scattering by

the normal mode Q]. This yields frequencies symmetrically placed on either
side of the incident frequency. The w - Wy Tine is called the Stokes line
and the w + wy s the anti-Stokes line. The next pair of terms involve
double the normal mode frequency in the above example of a single normal
mode or the sum of two normal modes in the general case. These represent
the Stokes and anti-Stokes lines of the ®second-order Raman scattering."
Higher order scattering is conceivable but the probability for these
processes becomes increasingly smaill.

In the general case of n normal modes with frequencies fw],... mn} ,

Eq. (I.18) becomes

§ zn Bzaij ) 32 o 5 W
+ : = Q,Q_ *+1{ ==5=r= Q*q* + higher
! 3Q£0Q . Lm ?QiaQ; 5 Rlﬂj

21 | 100y
order terms
- 0 Z k k* _* z ): am an* k k
= ooyt L@ el e o {agyQyly + egy Q)

+ higher order terms (I.20)

where ai§ form the components of a mixed tensor of the third rank,

’ e . .. . . %
covariant in incices i,j and contravariant in k and the “ﬁ? etc. form

tensors ov higher rank.
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Since the polarizability derivatives are usually much smaller than ﬂ?j;

is rmuch less jntense than the Rayleigh scattered light. Further the phases
o7 the normal modes wiil, in general, vary from molecule to molecule in a
gas so that the different molecules will radiate with random phases and the
Raman-scattered Tight will thus be incoherent. Its observation will not be
dependent on density fluctuations and its intensity will be proportional to
the number of scattering molecules. The only difference between the cal-
culation of the intensity of Rayleigh and Raman scattering is that in the
case of the Raman scattering, one must use the corresponding induced dipole

moment [for instance, the term proportional to ol (wmuy)t

in considering the
first-orcer Stokes line of frequency shift mk] itself rather than the
fluctuation ap. For a given s then, analogous to Eq. (4) the intensity is
given by
loa)” 4 £l >
1= IO _CL'__ e NV i (RD+§ R) cos<y + R} (1.21)
where ¢ is thne angle between the electric vector E of the incident field and

the direction of polarization selected for observation, for instance by the

setting of an analyser in the scattered beam. The equations

_ 1 .k k k
Ro =39 (axx * Yyy T %22 ) (1.22a)
and 1,k k k k k k
=3 {(axx R G R CP R

K 12 4]08 |2 )} (1.22b)



nc invsive trne polarizability derivatives in place of the polarizability
corzonents in tne case of the corresponding Eq. (I.14) for Rayleigh scattered
intensity. YWnile the elements %55 o7 the polarizability tensor are always
positive, the terms “Ej could be positive or negative depending upon whether
the normal mode G is responsible for an increase or decrease in the

poiarizability component g5

The depolarization factors for Raman-scattered 1ight are obtained as in
Rayleigh scattering and are formally the same,

R g = 2R

(I.23a,b)

v E >
p 5 n 7
Rot3R Ret3®

lhereas RO was always positive and greater than or equal to 5/3§, RO can be

positive, negative or zero so that we have,

g =

o 7. 8 5‘—?— (1.24a,b)

n

£

1 | . .
3 3, - 7 for Rayleigh scattering.

<

A

rather than the Sp
I. B. 1. Semiclassical Theory of Rayleigh and Raman Scattering.

In any perfectly rigorous theory of interaction of radiation with
matter, the quantitized radiation field should be coupled to the scattering
system of nuclei and electrons and the whole treated as one quantum
mechanical system. Such a theory of Raman scattering is complicated and has
been developed only recently. A semiclassical theory in which the incident
and scattered l1ight fields are treated as classical electromagnetic fields
while the scattering systemare described quantum mechanically yields a

Tairly complete and accurate description of the scattered intensities and



o

a4

cseiection rules.

his theory is now described. (7)

Tre dipcle aporoximation is ovten used in radiation problems. It is
wortnwhile to examine the assumptions involved and the validity of its
appiication to the Raman scattering case.

The non-relativistic Hamiltonian for a charged particle in an electro-
magnetic field, in terms of the canonical variables ¥ and [} describing the

particle and the electromagnetic potentials A(¥,t) and ¢(r,t), is

-

= (%7 -£ 12
H= o (p < )2 + e
_ D% y g2 %
2m ch (K 'K) * 2mc 2 RS + e

_p2 _ihe ;42,2 e2 2 .
= + Ly (K.V +V.K) +?m—(-:7 Ac + e (I1.25)

The Coulomb gauge, though not relativistically inveriant, is used in most

simple radiation problems because of its simplicity. [Ref. 11, p. 53].

The Coulomb gauge condition is V.A = 0. Consider (AV +V.A)¥

where ¥ is an arbitrary wave function

S

R.¥y + (V.K)g + Ry

£
<
-+
<y
¥
<
I

2Ry (:V.E=0).

In a situation in which there is no free charge density @ » one can choose

$= 0 in the Coulomb (or Lorentz) gauge. Thus the Hamiltonian simplifies to

_ p% _ ihe e? 2
H=omt e AV + 2mc? A (1.26)

It can be shown in the quantum theory of radiation [ref. 11, p. 143]

whet the scuare of the vector potential has non-vanishing matrix elements



criy Tor trensiticns in which the number of photons - quanta of the
reciaticn Tield - changes by two or remains unchanged. Thus it is non-
vanishing in the Reman effect but does not contribute to simple absorption
or ¢mission. In these cases, there is no approximation involved in
neglecting the AZ term.
The vector potential A can be expanded in terms of plane waves when
J = 0, since it is then a solution of the homogeneous wave equation. When
the wavelength of the radiation component (specified by the wave vector K)
is large compared to the dimensions of the molecular system interacting
with the field and A% is neglected it can be shown that the electric dipole
aporoximation is valid. In essence this means that the e}ectric dipole
moment of the system coupling with the electric field is the only
important term in the interaction. [Ref. 12, p. 404]. Neglecting A? and
the long wavelength approximation are two independent assumptions. It is
conceivable that the A2 term, though of higher order than the £.7 term,
is not negligible a priori in the consideration of Rayleigh and Raman
scattering. This point will be discussed at the end of this section. The
dipole approximation is used in this section. Thus one need consider only
the interaction of the electric dipole moment of the system with the
electric field of the radiation.

Consider a molecular system subjected to a static uniform electric field

E. If the Hamiltonian of the system in the absence of the field is denoted

by H(0), the Hemiltonian in the field has the form

H(E) = H (0) - M.E (1.27)



The operator representing the electric dipole moment of the system is
deroted by M rather than P which was used previously. This 1is done to
avaid confusion with the standard use of P for polarizability tensors. Thus,
M= ¥ ez?z , the sun extending over all the particles. The term H! is taken
as the perturbation. Implicit in this is the assumption that the applied field
is small in comparison with internal electric fields in the molecule of the
crystal (m}Os volts/cm). This assumption is reasonable except in extremely
high field intensities as in a pulsed laser beam, a case excluded in this
treatment.

Using results of perturbation theory (12) up to the second order, the

energy e(2) of the state & in the presence of the perturbation (Hl) is

given by

& < —E,E >< —ﬁ.t >
ey(B) = 4 (0) + <¢|- M.E[2> + ok jL‘Iem(o;r- Z&(O)JE

<£]Ma]r><rIMB]2>

= ¢ (0) - § <a|M |25E EE. (I.28
(00 - L <alM fe a+r;£ L R0 oEge (1.28)

Noting that M.E = MaEa and that the external electric field compaonents Ea

can be taken outside the scalar product as long as Eu is independent

of space coordinates, then 52(0), EP(O) and the matrix elements on the right-
hand side refer to the unperturbed system.

It can be shown (Appendix IV) for a stationary stated,
e, (B) = - sy (B) My (E) dr, (1.29)
N ‘

where ¢£(§) is the wave function corresponding to the energy eigenvalue

EQ(E)' The integral on the right-hand side is the value of the electric

h

moment of the system in state 2. The at component of the electric dipole
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moment can thus be obtained by differentiating Eq. (I.28) with respect to

d3eg (E) - <2'Walz> s 1 ) <£|i"r’|u|r‘><r‘|MB]£,> + <2|Mﬁ[r><r§MQ[2>

& B r#e “ry
== sy (B) My (E) dr, (1.30)

where

- 1
wp, = 7 Le,(0)-¢,(0)]

is a transition frequency of the unperturbed system. -

The Tirst term in Eq. (I.30) is independent of the Tield and represents
the permanent dipole moment of the system. The second term represents the
momant induced by the applied field. The coefficient of E8 in the second |
term form the «8 componenis of a second-rank tensor. This tensor is called
the static polarizability.

For later calculations, the notation below is introduced.

- |
P20 & 1 3 <2|Malr><rjMBl£> + <£|MB]r><r]Mm[£> .40
IGB 'ﬁ .
r#2 w

ri

In this expression £ indicates the state to which the polarizability refers.
The argument 0 indicates this is the polarizability in a static electric
field i.e., a field of frequency 0. Using this notation, one can rewrite
(29) and (30) as

e (B) = ¢,(0) - LaamjwE - % EE PEL0) E 8, (1.32)
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I *(E) Vo (E)dr = <L[M_f2> + é Pas(o) Ey (1.33)
Consider the system in a periodic electric field of elliptic polarization
given by

Bre) = B o180t L g lut (1.34)

This 1is equivalent to taking the real part of a complex quantity where

E = (E+)* is an arbitrary complex constant vector expression for the field.

If one neglects the magnetic field which is necessarily associated with a
variable electric field, the Hamiltonian of the system is given by Eq. (I.25)
with the time-dependent field (I1.34) in place of the static field E.

Consider the time-dependent Schrddinger equation

i.e., [Ho) - BE P et ett]y = (1.35)

-isg(ﬁ)tﬁﬁ

with wi(o) = wsio) e as the unperturbed wave function.

It can be shown [Ref. 12, p. 282] that the perturbed wave functions are

then given by

?i(f) =v (o) + gﬁz (a; elot 4 a e~ Tuly ws(o)] e“iez(o)t/ﬁ} (I1.35)
5

where

(I.37)
ag, = 7 leg(0) = ¢,(0))



The above wave functions which are Tirst-order approximations are adecuate
in considering the electric moment induced by the field as long as the
frequency of the applied field is not too close to any of the transition
frecuencies by of the system. The electric dipole moment 7(t) of the
system is obtained by forming the expectation values:

o2 = I, ! —_—
m(t) = f{l ﬁ Vzdt

= <M o> + et T [es|Fles (@) +eaffi]s> ol ]

o S S S

ey [aalfijssa] + <sfije> ()] (1.38)
S

where higher order terms are neglected.

Substituting for as from Eq. (37) and rewriting in component form

s
yields - 1 _
| iut | ] <s|MBlz>EB 1 <R.|?'§3]s>E
m (t) = <ij¥ |2> + e ] feafM sy § —B——Bivesii loojg § —2—E]
[+ o} S o . 8 UJSR’ w o 8 wsz w
+ +
- %M, |s>E <s|M,_|&>E
1wl r» ~ .l = B! B —l_ 3 B
+ € L L<s(M |e> I,h )é —_————“sg'“ }+ ‘:Jz,[]'~’10‘|3>{,ﬁ é —n——m5£+m § ]

This equation can be written compactly as

oo . R N ¥ - =iut 28 + +iwt
mu(b) = <2[Ma12> * g i PaB(_w)EB e Y%+ PaB(m) EB e } J(I-39)

where bty - 1 ’ f<2|Mals><s|MEii> . <t|¥ [s><s|M 2>
Y M g i msg-l-m Wg "W

(1.40)

The term s = & vanishes identically since we = 0 for s = 2.
Pig(m) is a second-rank tensor and is called the polarizability. Note
here that the superscripts only denote the state and are not tensor indices.

It has the following properties:
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[P;ét-w)]* which guarantees that M (t) is real.

(1) P s(m)

.
(2)  Prite)

n

[Pié(m)J* which 1s consistent with the polarizability
tensor being Hermitean. (See Appendix I.)

For w = o the equafion reduces to the equation for the static
polarizability Pig(o) of eq. (I.31). Note also that the elements Pig(u)
are independent of the arbitrary phases of the wave functiocns used in
forming the matrix elements in the sum.

The Tirst order wave function (I1.36) and hence also the polarizability
(1.39) become less accurate as w approaches a transition frequency W -
In particular it can be shown (7) that the work done by a field E(t) in a
time period corresponding to the frequency w is zero due to the Hermitean
character of Pié(“)- Pig(w) does not account for energy absorption.
However, a molecular system can absorb energy in the neighborhood of its
transition frequencies. To take this into acccunt we must introduce an
anti-Hermitean part to the polarizability tensor usually denoted by Rig(”)‘
Removing the restriction that w not be near any frequency W o shows the
poiarizability to be a general tensor, since any tensor can always be
decomposed into a Hermitean and an anti-Hermitean part. Since the theory
_of scattering being developed here is valid only in regions where u is not
close to W, the Hermitean part of the polarizability is a sufficiently
close approximation to the actual polarizability. One can describe a
polarization P, or the dipole moment per unit volume of the material medium
with the help of the polarizability defined above. Maxwell's equations give
a complete account of the refractive properties of the medium including
dispersion, once the relation between the electric displacement vector D and

the macroscopic electric field E in the medium is known. Implicit in the



definition of these vectors is the presence of a continuous medium. When
one is considering a medium of distinctly separated molecules such as in a
gas, one has only to divide the molecular moment as given by the polar-
izability by the average volume occupied by a molecule in order to obtain
the dielectric polarization. The field acting on the system differs in
general, however, from the macroscopic field [Ref. 13, Chap 12]. The difference
can be ignored only if the density is very small. Otherwise, a relation
must be obtained first between the macroscopic field and the field E that
acts on a molecule. In the case of a crystalline solid, the whole crystal
should be treated as one system. One can, however, use the polarizability
theory in the above form even in this case once a relation between the
electric moment of a small part of the system in a small volume element -
small compared with the wavelength of the optical wave - and the macroscopic
electric field is established.

Now the expression in equation (I.31), describes the electric field
over a molecular system exposed to a field of elliptically polarized
radiation, provided the dimension of the molecular system is small compared
with the wavelength of the light wave. The radiation emitted by the induced
moment represents the 1light scattered by the system. Thus we arrive at a
description of Rayleigh scattered 1ight by substituting for m:(t) and m;(t)
in eq. (4b), (

- S alai -
S = o 121’2 a§B=1 e, €gmm, c e (1.40b)

Since E and H given by (2a) and (2b) and R form a right-handed sysiem

of orthogonal vectors., the energy flow S in Eq. (I.3) is radially outward.

The total radiation is obtained by integrating RZS da over the whole solid
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angle R =4m This gives (Appendix V)
fR2Sd g = bu? 5 mom . (I.41)
! 3c3 Lo e '

From equations (1) and (38), it is seen that the following substitution

holds:
+ _ 22 + - L -
W, = E PuB(m) EB s M E PaB( w) EB . (1.42)
B B
Since, as observed before Pig(“) is unambiguously defined in phase, the

scattered light bears a definite phase relation with the incident 1ight.
That is, the Rayleigh scattered light is coherent with the incident light.
Also since the scattering is described by the elements of the pclarizability
in the state 2 of the molecular system, it is seen that the molecular

system persists in a fixed quantum state and the scattering is due to the
periodic deformation of the state by the electric field of the incident
1ight.

Raman scattering, on the other hand, is associated with a quantum
transition in the system. It is most easily understdod in terms of quantum
electrodynamics wherein the electromagnetic field is quantized. The field
Eq. (I1.32) may be interpreted as representing the effect of incident photons
with energy fiw. If, as a result of scattering a photon, the molecular
system goes from an initial state & to a final state &', energy conservation

requires that the scattered photon have energy wtiw so that

52(0) + hw = ER.'(O) + A (wrdw) (I1.43)

With the help of this relation one can then discuss Raman scattering by

treating the electromagnetic field classically.
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In the semiclassical theory of Raman scattering, one considers an in-

cuced electric transition moment between two states m and & of the system,

given by
s i B
Lo 1w+ Mg dde
From Eqs. (I.36) and (I.37) the wave functions can be written explicitly as

4 s, |L>
v, = e ie lo)t/A {wR(O)-+§% 1] [ =55

SL
<rlM3|£> ¢ o)E eTwL]}

T‘Z

w (O)E- 'th

?; = eleplo)t/a {¢;(o) +,%-2 ¥ [ 5%9H§£§1 w:(O)E; grtuit
, B S sm
. (Zl:§LS> w:(O)E; e-iwt]}
Neglecting second-order terms, rearranging terms, and noting @om = “Ynp?
+ <2|M£!m>eimﬂmt +

5 i
+y My ] dr = <m{M_|&>e Vi
L a'm o

f{w*Mw
m o &

71 1

[ { <m|MB|5><s[M8|2> . <mlMaIS><S]MS|2>}E+ ei(m-mzm)t
8

s msm“u msg-w

<ElMa|S><S|MBIm>}E' o lumap )t

<2|M |S><SIM [m>
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+uw
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wsn-w

<m|M |S><S|M_[2>) _  _sy.
e ", | B jEB C ”Lm)t] (1.44)



The first two terms on the right-hand side of eg. (I.44} are independent
of the electric field. They represent the dipole moment for the transition
Trom the higher to the lTower of the two states 2 and m. The other terms
describe transitions g-m or m»%. From Eg. (I.43) it may be seen that the
Tight scattered associated with the transition &»m must have the frequency

whw_ _ and hence must appear with the time factor expii(u—m2 )t. Similarly

am m

the terms with time dependence expti(m—mgm)t describes scattering associated
with the transition m»2. Note that the two groups are transformed into one
another on interchange of the indices gand m. Hence we can write the electric
moment describing Raman scattering with a transitionﬁ-wqas

m (2) = § [P()I'E, e Hlutu )t oy P w) € Filutu )t (g 4
L ‘

where

w.Tw w. tuw

Pﬂ'm(w) =%_ z{<£|M&[S><S|MR[m> & <2|M'Q_|S><S!Mn[m> } . (1_46)
a8 s sm SL

This 1s the most general form of the polarizability tensor and is called the
transition polarizability from state ¢ to statem. If m= 2, this reduces
to the polarizability expression Pi;(m) of (I1.40). For w=0 this reduces to
the staticpolarizability of Eq. (I1.31).

Eq. (46) for the polarizability has been derived neglecting the A2
term in the Hamiltonian. It is interesting to note that if A2 has been

included in the theory; one would have been led to the result [Ref.'12, p. 190]

<2|M [S><S|IM_Im> <2|M_|S><S|M |m>
pAT () = l_[z [ 2| M fm 4 2|M | ) M, Im §+ agm} (1.47)

+ ;
ol -fi : Weptw wg p Tw

This implies that in Raman scattering, since &#m, there is no difference



in the final expression (46) for scattering cross section if A2 is included
in the calculation. In Rayleigh scattering, however, g=m and this leads to
a dependence of the cross-section on the angle @ between the direction of
polarization of the incident and scattered 1ight.

Substituting from (45) into Eq. (4a) for the energy scattered per unit

time into a solid angle da@ 1is given by

e . L o 5 _
R2Sdq = l:_“fs.m)_ % ] 8 &P TP w) EE, da (1.48)
Tc i=1,2 aByA

and the total Raman scattering from %-»m per unit time is

IRZSdQ—_lHTE’Lm.L Z mm
4_(w_+gmL_ I [Pgyls )T P P(w) ECE) (1.49)

ayi

If the interest is in tﬁe intensity only in one linearly polarized component
scattered into a solid ang]é dQ per unit time it is given by eq. (I.48) using
the required polarization, eﬁ, and omitting the sum over i. This is the
quantity usually measured in a Raman experiment where the geometry of the
set-up is fixed and a specific polarization of the Raman scattered radiation
is chosen using polarization analyzer in the path of the scattered beam.

From Egs.(I1.46) and (I.49), some conclusions may be drawn about the
Raman-scattered intensity. Since the frequency of the incident 1ight entersnot
only in the factor (m+m£m)4 but also in the denominators of all terms in
the polarizability expression, the dependence of the intensity of the
scattered light upon w will in general be very complicated. However, in
most cases the frequency dependence will be determined largely by the fourth -

power factor, especially if w is very small compared to Wy On the other



nand, Placzek [Ref. 14, p. 227] has shown that if w is very great compared to
the freguencies W s the intensity of the Rayleigh scattered light will be
incependent of w. The elements of polarizability Pi:(m) become very small

and the Raman scattered intensity approaches zero. Practically however, this
would mean we are in the spectral region of hard x-rays and y-rays rather than
the region of visible radiation which is the region useful for Raman spec-
troscopy.

Another feature that is evident from these expressicns is the selection
rules for the Raman process. The expression for polarizability involves terms
of the type <£|Ma|s> and <S}MBlm> . These are matrix elements of the electric
dipole moment involving final or initial states |23|m> and intermediate states
ls>. An intermediate state will contribute to theintensity only if both
<£;Muis> and<siMB]m> are different from zero. The matrix elements of dipole-
moments between two states are those involved in absorption or emission of
radiation. Thus, only those states which “combine" in absorption or emission
with both the initial state 2 and the final state m can serve as “intermediate”
states in a Raman process. The actual position - in an energy level diagram -
of the intermediate state is immaterial. It can lie above both & and m, between
them or even below both & and m if both are excited states. The term
<2§Ma}m> which determines the porbability for infrared emission or absorption
between the states |2> and |m> does not enter the Raman intensity expressions.
Thus, it is clear that the selection rules for Raman transitions are
different from those for radiative transitions. A detailed consideration of
selection rules will follow later.

General selection rules, and intensity and polarization relations may

be derived from Eqs. (I.46) and (I.49) if the eigenstates |i>, [s>, |m> are
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all known. Generally these are not known and approximation methods, as in

all problems in physics, must be used. A simplification of the problem due

to Placzek makes it possible to derive the most important results with a

good degree of accuracy in most cases. According to the adiabatic approximation

(Appendix VI), the wave function of a system may be factored as follows:

v, (FR) = v (R) o (F.R), | (1.50)

where o(¥,R) is the wave function for the electrons moving in the field of
the nuclei, which are held fixed in an arbitrary configuration R, and n
being the corresponding state label or quantum number. The eigenvalue

corresponding to ¢ is e (R) which is a function of R. wnv(ﬁ) represents

en
a wave function for the nuclei moving in the effective potential due to the
electrons.

Consider a system in its lowest electronic level, with the nuclei held
fixed in a configuration R sothat only the electrons move. The permanent

electric moment M(R) and polarizability Pas(w,ﬁ) are functions of K. Then,

MR) = 7 on (F,R) R(ER) o, (F.R)en, (1.51)

and
Pug(R) =5 HEO{@T}J,JT on (raR) M_(r,R)e, (r,R)AT o (rRIM (R )0 (FiR)dT"
* T;ig;y f¢:(r,R)MB(r.R)¢n(r,R)d:f¢:(r:R)Ma(r:R)¢°(r:R)dr'} , (1.52)

1 : ; L
where Uno™ ff[een(Rolﬁ*r seo(ﬁo)] is the electronic transition frequency

between the level n and the ground state.



At ordinary temperatures it is a good approximation to consider the
molecular system as practically always in a state belonging to the Towest
electronic level. Then one need calculate the polarizability only for
states belonging to the Towest electronic level and the transition polarizability
from similar initial states. So far the "total state" of the scattering
system - that is, as defined by electronic and vibrational quantum numbers -
has been considered. If, as is mostly the case one confines attention to
scattering due to a change in nuclear motion alone, one need consider only
P:;km) where v,v' signify vibrational states corresponding to the lowest

electronic level.

According to eqn. (46),

n_.n n_u

) {<0v1Ma|n v"><n"v ]MBIOv'
n" vI.l

W

s
P:; (w) =
+w
nHv"’ovl

+

<ov|M,[n"v"><n"v" M |ov* ‘l (1.53)

w w

nHvH’Ov-

=%— z{<0\J[Ma|0v“><0u"[MBIO\»‘ . <0leB|0u"><0v"lMa|0v' }
v"

& 1] I+m

v m\i““-w
. ) §u<0v§Mu\n“v“><n“u“iMelov‘> . v“<°“iMs\“u““><““““\Majov‘>1
%— n [T +m (NI =W J
n“#o n"o n"o

In the second equation the summation has been split into two parts
corresponding to n = 0 and n # 0, and for the second term the approximation
@i u . 1+ = w.w. has been made. This is thus valid as long as the frequency
nv ,0v n-o

is not close to anyone of frequencies [mnuo} 4
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In calculating the matrix elements the whole product wave function
(I.50) must be considered. But using (I.51), the first sum in (I.53) can be

written as

<uIM (B)]v"><v"|M R v'> <y |M B)v"><v" M (H v'
%% E{' M, (R)] Mg (K) | . M, (R) M, (R)] 1 (L. 501

v Nvuvl'i'm m\)"\)-m

Where the matrix elements are now to be formed between the nuclear states
)éu(R). Thus, this term describes the behavior of the system as a purely
nuclear vibrational system and is known as the ionic part of the polarizability.

The second term is easily shown to be equal to

N <v]PaB(m,R)lv'> . (I.55)
i.e., the matrix eiement of Paé”’R) of Eq. (50) between vibrational wave
functions wOV(R) and ¢0v'(R)' This part is known as the electronic polar-
izability.

The contribution to the static polarizability (v'sv,w=0) by the ionic
and electronic parts are roughly of equal magnitude in ionic crystals. From
(50) and (54) it may be seen this means when w>u 1 8s is the case of light
used for Raman scattering for instance, the ionic part may be omitted when

considering the transition polarizability.

Thus it is a good approximation to write
P:;(m) = <v|P_ {w,R)[v'> v, (1.56)

Using this in Egqs. (47) and (48), the angular and total Raman scattering is
given by
m+muv.)q Z T OY i, qp * "
[(u)dg = ————— e,8gV |PaY(w,R)|v><v]PBA(m,R)lv >E1Eldﬂ

2nc3 i af yA
(I1.57)



I ﬂ(m+wvvl)” . * - _+ %
(w) --————gg;——- ugx <y tPuY(w,R)|v><v|PaA(w,R)|v >EYEA . (1.58)

To obtain the experimentally observed intensities this expression must be
averaged over the thermal distribution for the initial state v.

Adding eqs. (I.51) and (I.52), and putting v' = v, the polarizability
is given by

PaB(“) = <V1Pa3(m,§)lv>
L1 Z'{<V|M“(R)lv ><y IMS(R)|V>
h V"

mV"V+w

+

<VIMB(R)IV"><V"iMa(R)IV> ]
(1.59)

w =W
vy

Both electronic and ionic parts are comparable for consideration of
refractive properties in the infrared region and cannot be ignored. However,
in the 1nfra-red,co<({ahdk where the{“’nﬂx are the electronic transition
frequencies. Hence one can put w~0 1in the electronic part of the polar-
izability. Furthermore, the displacement of R from the equilibrium value
does not affect the electronic polarizability considerably, so that the
first term can be written as Rﬂp(o,Ro). Note here again that ﬂgg(uﬂ is
Hermitean and to bring in effects of absorption one has to add an anti-

Hermitean term.

(N tw I)q
0 Vv k k B
I "———— § I I epe,i ECE (1.60)
W 2mc? k=1,2 af yr OB OYsBA Y A,
where
*
; . . . .
10."{,3A <cv IPQYIV><V I P.Bllv >> average (I .61 )
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Eq. (I.61) is the product of the matrix elements averaged over the thermal
distribution of the initial quantum number v. The vectors 2! and 22 are
mutually perpendicular unit vectors both perpendicular to the direction of
scattering.

When the Raman effect of order higher than the first is considered, the
frequency spectrum of the scattered radiation is continuous and the final
states v' for which i“ P has a non-vanishing value cover a continuous
energy spectrum. Then, it is more convenient to define 1“1ﬁp3 as a function

of the frequency

w<w 0+w | <wtAw

*
Iuv,sk(m) = - gS%v IPaT[v><v|PBA|v Q) . _ (I1.62)
If Wy so that mo+wvv-wo, then
_ Yot kK k . -t
I(m)dw W i=§,2 ?’;Y EA EGEB 1“’{,37\([”) EYE)‘ dw (1.63)

gives the intensity of scattered radiation in the range (w, wtdw).

The expression for i (w) contains the terms leading to Raman effects

ay,BA
of first and higher orders. The next step is the expansion of the polar-
jzability as was done in Eqs. (18,19). The first and second-order effects
may be described separately. Since the interest here is only on the Raman
scattering by phonons, a brief review of lattice dynamics and phonons follows
before the implications of Eq. (63) are discussed for crystals. The
classical lattice dynamics developed mainly by Born (7), in conjunction with
the description of these lattice vibrations in the presence of a classical-

non-quantized-electromagnetic field as developed by Huang (15) is the

starting point for all the modern literature in Raman Effect as applied to



36

experiments.

The second quantization formalism in which the field is quantized is
still largely of interest mainly in theoretical treatments and in experiments
invoiving the stimulated Raman Effect which is not described at all by this
classical picture. The semi-classical theory as presented above has the
disadvantage that it does not describe the Raman scattering when the exciting
frequency is close to an electronic frequency of the scatterer, that is, when
electronic absorption processes become appreciable. The Raman Effect in
this case is known as the Resonance Raman Effect. Semi-classical theories
of the Resonance Raman Effect has been developed by Shorygin and co-workers
[16 a,b] by including a "damping" term in the resonance denominators. The
theory of Loudon using the second quantization formalism predicts some
interesting properties of Resonance Raman Effect in crystals which do not

arise in the semi-classical theory of Shorygin.

I. B. 2. Second Quantization Formalism
A complete description of the Raman Effect is best provided by the
occupation number formalism alternatively called the method of second
quantization. This formalism is based on an alternative mathematical
representation of state functions which is more useful than the conventionaT
y- or wave function representation when dealing with many-body problems. A
very readable and interesting account of the formalism is given by Mattuck (17).
The basic state function in the second quantization formalism is the
state function ln], Nys «en Ry, ... » describing the number of particles

1

ny in each single particle state ¢1(?) of the many-body system. Such a

state function is sufficient to describe the many-body system. Such a state



function is sufficient to describe the many-body system since the essential
information is simply how many particles there are in each single particle
state - or, the occupation number of the state - since the particles are
indistinguishable. The main advantage of the formalism is that it enables
" one to deal with systems containing a variable number N of particles. This
is especially useful in ca]cu]atibns invoiving intermediate states as in
the Raman Effect.

The second valuable feature of the occupation number formalism is the
creation and annihilation operators c: and C4 which create and destroy a
particle in the state i. The commutation rules of these operators have
built into them the symmetry properties ( e.g. the Pauli exclusion principle
in the case of Fermions) of Fermi and Bose systems. Using the commutation
rules, the symmetrization which must be separately handled in the conventional
theory, is automatically achieved. These rules are discussed in Chapter 7

of Ref. (17) and are as follows:

S sy TE .1"1‘:
Fermions: [Cz’ Ck]+ Cp S TS €, = 8y
[epr cdi = 0 ECZ’ CE]+ =0
. T = L =
Bosons: [e,» ¢ 1. = ¢¢ - ¢ ¢, =8,
[c, ¢l = o
Tt -
[cl, ck]_ = 0

References {17) and (18} serve as good introduction to the techniques of
second quantization. This technique will be used in discussing Raman

scattering in crystals, both perfect and imperfect.
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IT. LATTICE DYNAMICS

A. Lattice Dynamics of a Perfect Crystal

The atoms in a crystalline solid execute small oscillations about their
equitibrium positions at every temperature. At absolute zero, this is a
result of the zero-point motion, énd at finite temperatures a result of
thermal fluctuations. In the absence of a detailed knowledge of inter-
atomic forces in the solids, the problem of these oscillations is approached
by expanding the potential energy of the crystal in powers of the amplitudes
of these small oscillations. The hypothesis that such a potential energy
for the ions exists stems from a separation of electronic and nuclear motion
according to the Born-Oppenheimer adiabatic approximation (Appendix VI). In
the expansibn of the potential energy all terms past those quadratic in the
amplitudes are neglected. This - the harmonic approximation - is the basis
of almost all work in lattice dynamics. In the problems considered in
the present work, the harmonic approximation is always implied.

The influence of these lattice vibrations on the thermodynamic properties
of solids - especially the heat capacity - and the relation between the
macroscopic elastic properties of the crystal and the atomicforce constants,
and similar problems ha§e been extensively studies experimentally and
theoretically. Experimental studies concentrated on the bulk properties
because these were easier to measure. Earlier theoretical work on lattice
dynamics very often tended to calculate thermodynamic functions, which are
averaged properties, rather than the detailed frequency spectrum of the
lattice. The reason for this is that singularities in the frequency spectrum
are averaged out in these calculations and perturbation procedures are

thus effective.



A better understanding of these singularities and the refinement of
Raman instrumentation has, in recent years, made Raman spectroscopy an
important method of studying the frequency spectrum and opened up a new
possibility - that of studying defects in crystals. These are the aspects

that will be described in detail here.

IT. A. 1. The Harmonic Approximation

The theory of the ideal lattice in the harmonic approximation and the
basic features of lattice dynamics will now be outlined. Ziman (19)
describes both the necessary mathematical background and the theary in
Chapters 1 and 2. One important theorem of Solid State Physics that 1is
worth recalling at this stage is Bloch's Theorem [Ref. 19, p. 15] which
states: "For any state function that satisfies the dynamical equation in a
lattice, there exists a vector k of the reciprocal space such that the
translation by a lattice vector T is equivalent to multiplying by the phase
k-3

factor e Alternatively, one can state this as follows: Translational

symmetry of the crystal requires that any state function ¥ of the crystal must
have the form ?E(?) = eiﬁ'? U?(?)’ where Uk(?fﬁ) = Uk(F), i.e., Uk(?) is
periodic with the periodicity of the lattice. The 'state function' here
refers to the description of the state of electrons, or lattice vibrations
or any other collective motion in the crystal.

A11 that the Bloch's theorem guarantees is that for any state function
¥ there exists a vector k. The actual values that Kk can assume will be
determined by the boundary conditions imposed on the problem. Most calculations
do not depend critically on the choice of the boundary conditions. The most

accepted boundary conditions are the Born-von Karman (or cyclic) boundary
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conditions. In this scheme a crystal is considered to be infinite in
extent so that surfaces, which would be imperfections, are avoided. The
infinite crystal is subdivided into "macrocrystals" of L]xszL3 = N unit
cells. A "macrocrystal" or "Super-cell" is thus a parallelpiped with

- -+ > - - - . .
edges L]a], L2a2, and L3a3, where ays 3y, dg are the basic lattice vectors.

The cyclic boundary condition then postulates that the displacement of the
th

k™" atom in the first unit cell of the macrocrystal is equal to that of
the kth atom in the L1th unit cell along 3], thh along 32 and L3th along
'33. This boundary condition is purely a mathematical fiction. It does not

affect the results of any bulk properties of the crystal, while it simpiifies
the derivation of all the results in the theory of lattice dynamics that do
not explicitly depend on the crystal surface. It provides a convenient way
of normalizing the potential energy and kinetic energy of a crystal to a
finite volume. These boundary conditions are of special relevance here
because they were, for a long time, a subject of serious controversy
especially in interpreting second-order Raman spectra (20), (21).

Consider a crystal composed on an infinite number of unit cells, each
of which is a parallelepiped bounded by 3 non-coplanar vectors - or primitive

h

translations, 31, 32 and 33. Each unit cell has S atoms. The £ unit cell

is then located with reference to an arbitrary origin chosen at a lattice
point by

- _ - - > "

r(z) = 187 * L3, * L485 where Ly kos A3 aTE integers.
The locations of the S atoms in the unit cell are given by the vectors (p)
whefe distinguishes the different atoms in the unit cell so that v= 0, 1,

S-1. For convenience, choose the origin such that X(u=0) = 0. The
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th th

unit cell is then

F(5) = Fa) + F)

position of the = atom in the 2

If the displacement of each atom from equilibrium position as a result

of thermal fluctuation is ﬁ(ﬁ), the total kinetic energy of the lattice is

=] 2 (2 -
T Z’Zuj’a M, U2 (u) a=1,2,3. (11.1)

|

where o indicates the coordinate directions (xyz) and Mu is the mass of the
pth atom.

The adiabatic approximation ensures that a potential energy ¢ that is a
function of the instantaneous position of all atoms can be defined. Then ¢
can be expanded in a Taylor series in powers of atomic displacements ﬁ(ﬁ)

from the equilibrium positions [Ref. 10, Chap. 10],
N 2 2y . 1 £4' L L :
¢ =ogt 1 ¢, () U, () + 5 _lgu ()0, () U () + higher order

2,150 _¢as e taty
(I1.2)

L'u'a terms ,

g = static or equilibrium potential energy

¢u(i) ;ﬁ;?gi_] is the first derivation of the potential energy

0 evaluated in the equilibrium configuration.

o

2% = é2¢
T ]

uu' 2 Y
auq(u) BUB(u')
0
The static potential energy, 9g> is a constant erm any may be put equal to

zero by shifting the arbitrary zero of potential. The first derivative

th th th

¢u(i) represents the o™ compénent of the force on the y~ atom in the 2

¢



unit cell and must be zero in the equilibrium configuration.

This leads to a classical Hamiltonian

) j2 (% .1. g % 2 2!
zgaM“ U2(5) + zga v G U () U - (In3)

L'u'p

H=T+¢=

|

The equations of motion of the lattice are then

2y _ -3® _ 24! g,'.
" ) = a0, ;) o z'g's %agly w) Yglir)- (11.4)

The coefficients qu(:,i.) form the components of a Cartesian tensor and so

one can write the above equation in vector form as

=
[
~—~
b3
S—
n

Loty = .8t
W zzs ol yul B G (11.5)

This equation may be interpreted as follows: each term in the sum on

th th

atom in the ¢° unit cell due to

z.th

the right is the force acting as the u

the displacement ﬁ(ﬁ.) of the ﬂth

atom in the unit cell. Thus the ¢'s
are the force constants or coupling parameters.

Before discussing the solutions, consider some of the properties of the
force constants. From the definition, the following properties are easily
derived: (22) '

a) The force constants are symmetric in their arguments

°as(ﬁ ﬁ:) - Qaa(ﬁ: ﬁ) ' (158)

b) The invariance of the force on an atom under a rigid body translation

of the crystal leads to the condition

I oo in=o0- | (11.7)
llu.
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c) The periodicity of the lattice requires

0t i) = o BT D)= e (070 (11.82)
and
By = 0
e, C) = o (- (11.8b)

d) Consider an operation [S|t] of the space group of the crystal (23).
S represents a proper or improper rotation about some axis and T represents
a translation of the point. [S|t] represents such a rotation followed by
a translation so as to leave the crystal invariant. The effect of such an

operation on an atomic position vector ?(ﬁ)

[SIE1F(;) = SF(; ) + %

k),

where the second equation expresses explicitly that under the operation the
1

lattice site gﬁ) must be taken into equivalent site Eﬁ.). Invariance of

the potential energy under such an operation leads to the law of transformation '

of the atomic force constants under a space group operation (24), viz.,
21 &4
1 2] [1 2 ]
o [ S ) 172
OqQn | U1 Mo | = S 5 ¢ 3 (I11.8¢)
T2L71 720 818y Taq8y TogBy "ByBp L

where Su are the elements of the 3x3 matrix representation of the orthogonal

B
transformation describing the operation S.
Thus, apart from a possible interchange of sublattices, the force
constantt{@as(ﬁ i:) } transform as the componeﬁts of a second-rank tensor.
A11 the above relations except ( ¢ ) débend only on the existence of

a potential energy and holds for perfect and imperfect lattices. Eq. (II.8c)
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assumes perfect periodicity or translational symmetry of the crystal. This
must thus break down in the presence of a defect in the crystal.

Since the force tensor @us(ﬁ'ﬁ:) depends only on the difference, one
can with h = 2'-2 write the equation of motion as

MIG) == T el U

in a manifestly translationally invariant form.

The equations of motion (II1.9) form an infinite set of simultaneous
linear differential equations. Bloch's theorem (18) ensures the existence

of a solution with a wave vector @ of the form

Uu(]’j) ’ 1? uu(g) exp(-iut + 2miG.7(2) ), (11.10)

u

where G is the wave vector of the wave propagating through the lattice. The
symbol q rather thaﬁ'l'f is used for the wave vector here in accordance with
the convention in solid state physics to distinguish the lattice vibration
vector from that of an electron or photon. Substituting Eq. (II1.10) in (II.9)

and writing

1 L R s - [+]
. ] QaB(u u.) exp(-27iq.r(2) ) Due(u u') (I1.11)
wu' R
the dynamical equation reduces to
I Dggly ) Uglu') = w2(@ Uty (11.12)

that is, uE

9 Y w2 'y =
e 008 U ) P s s L ') = 0. (I1.13)



The set of equations contained in the above are eigenvalue equations

whose solutions can be found by finding the roots of the eguation

+

Det Daﬂ(u " U (p ) -—w? aBGuu' =0. (11.14)

Thus the problem is reduced to finding the 3s modes of vibration of
the n atoms in a unit cell. This reduction has been possible because of the
structural identity of the unit cells. The equation (II.14) is of degree
3n in w? and 3n solutions are obtained for each q. These solutions are
denoted by u?(ﬁ), where j =1, 2, ... 3s. It can be shown (18) that the
3n X 3n matrix of the force tensor is Hermit{an and hence the ”ﬁ(a) have
real values. This implies that w%(a) is real or pure imaginary. Since pure
imaginary solutions imply exponential decay or growth in time, stability of
the lattice requires that one choose w%(a) > 0, that is, the principal
minors of Dus(uau') must be positive. This in turn implies additional
restrictions on the force constants.

The matrix D ( .) is called the dynam1ca1 matrix of the crystal. For

each w; (q), there ex1sts an eigenvector €(u | q) of D whose components are

solutions of the dynamical equation which then becomes

] q q
HZB DGB(u u-)e ' 13 -mz(q)e ]9 (1I1.15)

The eigenvectors are orthonormalized, so that

# a q -
Ea ea (H 1 j) eu(F I j) ijl (II°]6)

* -> - )
v 1 9 Q=
§ eq (u* | j) e (v | j) SogSunt * (11.17)
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The properties of the dynamical matrix and its eigenvectors and eigen-
values that are worth noting are:

a. The eigenvalues m%(a) are positive and symmetric in g.
2 = u2(-
wi(q) = wi(-q)

b. The elements Da are real only in the special case in which each

B

atom is a center of symmetry. In most cases, Du is complex.

B
It is always Hermitean.

c. The eigénﬁectors e, (3 u ]:§5 are usually complex. Physically,
this only means that the most general type of wave described by
the eé are elliptically polarized. Real e, would correspond to

the case of plane polarized elastic waves (24).

d. The Das (q) are continuous functions of g.

Instead of involving the Bloch Theoreﬁ at the outset one could have
proceeded according to the 'normal mode' technique commonly used in molecular
spectroscopy [10], [3]. That is, recognizing that the'kiﬁetic and potential
energies T and V of the problem is quadratic one can find a transformation
which simultaneously diagonalizes the kinetic and potential energy matrices.
The coordinates in which this diagonalization is achieved are called the

-
normal coordinates. These coordinates Q(g) are given by

4y _ 1 g gy =211g.7(%)

Q(j) = ——-mz e, | j) U, gl) e (11.18)
o [ . T ooy =2mig.r(s) .
-mmie(u Ij) Ug)e (11.19)
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In terms of the normal coordinates, Lhe lHamiltonian for the lattice becomes

1 -k

H= = q 'El.b + * a a .
z L UG +ud@d” (o) (o)
d,J
and the equations of motion of the coordinate, obtained by substituting for

Uagf) in terms of the normal coordinates in the dynamical equation, is

; Q(?) +w§(6) Q(?) = 0. (11.21)

Each normal coordinate therefore is a simple periodic function in-
volving onlyroneof'the frequencies mj(a), that is, each normal mode describes
an independent mode of vibration of the crystal with only one freguency.

Every atom in eaéh mode vibrates with the same frequency and with the same
phase, and there are as many normal modes (3sN) as there are number of degrees
of freedom of the crystal. The general motion of the crystal as a whole is

a superposition of the normal mode motions each weighted by the coefficients
ea(u | ?) exp (2nig.7(2) ), i.e., by the appropriate polarisation and phase
factors.

The relation expressed by the equations

oy = mj(a) L PR (11.22)

is called the DISPERSION RELATION for the lattice. A closed expression for
the function wj(a) can be obtained only for special simple models of the
crystal. For a given E, the 3s functions w; are called "the branches j of
the dispersion curve".

Of the 3s solutions, for each 4, it can be shown that [22] three and
only three go to zero as E goes to zero. The corresponding modes are called

acoustic modes. On close examination (12,18) it may be shown that for



48

these modes the characteristic condition is

tw1d 2o
= =i D=0 Y.

M,

L u
That is, all s particles in each unit cell move parallel and with equal
amplitudes, as is characteristic of the displacements in an elastic continuum
upon which a sound wave is impressed. This analogy is responsible for the
name of these modes. -

The remaining (3s-3) modes whose frequencies do not vanish at q = 0
are called optical modes. This nomenclature arises from the following fact:
In an ionic lattice of the NaCl type the two ions in each unit cell are out
of phase with each other by 180° in these modes at 3 = 0. Their center-of-
mass remains fixed. Since the two ions are of opposite sign, a net
fluctuating dipole moment for the crystal is introduced by these modes of
vibration. This dipole moment can interact with an external electromagnetic
field and give rise to optical phenomena. The name is misleading because,
both acoustic and optical modes aré capable of interacting with electro-
magnetic radiation, though, as will be seen, the first-order interactions of
a crystal with radiation of optical wavelengths are predominantly by means
of the optical modes. Also, an optical mode need not always possess a dipole
moment, e.g., in homopolar crystals.

The three acoustic modes and 3s-3 optical modes differ from each other
in the nature of their polarization. In general, a constant frequency
surface of a crystal, drawn in g-space [19] can be quite complicated. It
is customary to classify the modes formally into longitudinal and transverse

acoustic and optical modes, though the actual polarization vector in an
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anisotropic crystal can be very complicated and bears no simple parallel
or perpendicular type of relationship to the 3 vector.

Before discussing the nature of the dispersion relations, consider
the guantum-mechanical treatment of the problem. It is more convenient to
express the complex normal coordinates'{q(g)} in terms of real coordinates

g's (distinguished from the wave vector q) as defined by
2 o ]
e(y) /:{S’]("H 1?2(“)] (I1.23)

where the g(g) are real.

The Hamiltonian can then be written as

7

%.q o3 TEG @ p2d) (11.24)

A=l1,

With the equivalence

> -+
o4 = n(9 L 4 d
() = p(j)=> -1n 3 (I1.25)
3g(;
the Schrodinger equatién for the vibrating crystal 1is
1 -2 _ 32 q
L™ =+ 2@ (] )] (11.26)
7?i,:;{ 2% (3) d

The total wave function ¥ describing the vibrational states of the crystal

can be written as a simple product of "single particle" wave functions, i.e.,

Lon i [e LY »

where nj(ﬁ) describes the state of the "oscillator" (?)- Each n.()
J

satisfies an equation of the harmonic oscillator type, viz.,
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el N N § w2(3) 2@)] Yo = E ¥ (I1.27)
[2 p2() 2 FUPTN )@ T gy i

whose solutions are

o 1/2 1
‘Pn(f) = {"/‘:-z-ﬁ';-l-] exp(—z- aZS; 2) 'Hn(aﬁ), (11.28)

- i\4
where u%(q) = Jh and Hn(x) is the n

associated energy levels are

th

Hermite polynomial. The

= a ..]_ P =
E"j(a) = (nj(q) * 7) wj(q) . nj(q) 0, 1, 2, ..(I1.29)

The total energy of the crystal is then

(IT.30)

Instead of regarding a lattice vibration of wavenumber |4| as one
fictitious harmonic oscillator having quantized energy Enj(a) » the Tattice
vibration may be regarded as a set of quanta each having energy mj(a)
together with a ground state of energy %—«3(3). These quanta are called
phonons, in analogy to photons. They behave very much like particles in a
quantum mechanical sense. [16]. Phonons, as a long-range collective
property of the ions of the crystal interacting through an electron gas,
have been discussed extensively by Pines. [26].

The problem of the monatomic and diatomic linear Tattice is discussed
in detail by Kittel [11] and Ziman [16]. The important results are discussed

below.
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For a monatomic linear lattice, with only nearest neighbour interaction

by central forces of strength ¢QB(L,£+]) = g, the dispersion relation is

w(a) = ZHI%jsin(ﬂ%) s (11.31)

where M is the mass of the atoms and a is the nearest-neighbour distance.

For a diatomic linear chain, the corresponding dispersion relations

i 2
in2
a-o ke | B ) ) oo

the plus sign indicating the optical and the minus sign the acoustic branch.

w;\
w

are

[
7 2

Fig. 1. Dispersion curve for

diatomic lattice

The dispersion curve for the diatomic lattice is shown in the figure 1. This
figure illustrates the following features.
a. One sees that wis always a periodic function of q with a period

2r

5 » Where a is the lattice spacing. Thus all one needs to consider is a

region - %-g_q 5_%-of the q-space. This region is called the Brillouin zone.
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Any value of q outside the Brillouin zone simply repeats precisely the same
motion. This is just a restatement of Bloch's Theorem.

The significance of E may be observed easily. The cyclic boundary
conditions for a 3-dimensional macrocrystal of dimensions L]X], ngé, L333

in the 3 lattice directions are:

w(r) = u(r + L13]) = (r + Lzﬁé) = u(r + L335) (11.33)

for any state function ¢, of the crystal. For a Bloch state of wave vector
g this implies

. L -+

9.3y (I11.34)

which in turn means that E is of the form

q = qiBy + a5b, + agb3,

(11.35)
_ 2'ﬂ'm1 21‘[]1'12

+ —=5. +
L] 1 L2 2 L3 3

Thus, q is a vector in the reciprocal Tattice and there are Ly x L2 XLly=N
. allowed values of 3 in one reciprocal cell i.&., in one Brillouin zone.

This result can be stated as: There are as many allowed wave vectors
in a Brillouin zone as there are unit cells in the block of crystal. As one

24 in 1 cm3

Brillouin zone is typically of dimensions IA-T. while N~ 10
of a crystal, the values of q for lattice vibrafions are very closely spaced
and form a quasi-continuum. |

b. For small (agq), i.e., wavelengths large compared to the lattice
constant, o is proportional to q for the acoustic vibrations. The chain of

atoms behaves like a heavy elastic string. This also implies that in this

kM

region the wave velocity 3

is a constant and there is no dispersion of the
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wave in the lattice while at higher q,—%% is a function of q. From the nature
of the optical branch one sees that very often in a first crude approximation,
the optical branch can be represented by a horizontal straight line, ignoring
dispersion effects.

c. Energy gap: All dispersion curves show a cut-off frequency [for
instance, wg in Fig. (1)]. There are no normal modes of the lattice
corresponding to frequencies above this value. Physically, this is to be
expected as, the massive ions of the lattice cannot vibrate above a certain
frequency determined by the force constants and the masses of the ions.

There can also be a frequency "gap" between the upper limit (w]) of the
acoustic branch and lower Tlimit (mz) of the optical branch in which there

are no normal mode frequencies. Conversely, if one tries to propagate waves
of frequency in the region of the gap or above cut-off, these waves are
rapidly damped in space on moving through the crystal. The detailed analytic
picture of this phenomenon is discussed beautifully by Brillouin [27]. In a
real crystal inequivalent directions have different dispersion curves. Here
it may not possess a general frequency gap as the gaps for different directions

may be different. A maximum cut-off value can always be found.

II. A. 2 The Frequency Distribution Function

Another function of the lattice vibrations that play an important role
in interpreting Raman spectra is the frequency distribution function g{w)dw
[also called the "lattice spectrumﬁ] defined as the number of allowed
frequencies in the range (w, wtdw). This function has a direct effect on the
cross-section of phonon processes. The complexity and anisotropy of the
dispersion curves makes 1t'difficu1t to obtain analytic expressions for g(w)

even in the simplest cases (18) and one has to use simplified models or resort
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to piecing together experimentally obtained information to construct the

function. The Debye spectrum [16, p 43], defined by

u

2
g(w) dw = 3sN = dw 0<uwc< wp (11.35)
=0 w > wpy (II1.36)

formed the basis of most calculations until very recently. It is a crude
approximation to the frequency distribution in the acoustic modes of
primitive lattices.

The figure 2(a) shows a Debye spectrum and 2(b) a true lattice spectrum.

2(a) 2{b)

Aluminum

]

Though, formally, a solution of Eq. (II.22) should yield g(w), it is
usually obtained by solving the equation numerically for a closely spaced
net of values of q and finding how many values of ug fall into each range
of 4. This analysis, is aided by a theorem due to Van Hove [28][22] and its
extension due to Phillips [29]. Van Hove's work develops a general property
of frequency distribution functions from group-theoretical and topological
considerations. The theorem enables all the slope discontinuities which

occur in the density-of-states function to be located and to be decided.



This approach of mapping the density of states is called critical point
analysis and is of importance in interpreting second-order Raman spectra.

The main result of Van Hove's work was to show that the distribution
function for a three-dimensional crystal always has a minimum number of
critical points. A critical point is a point at which there is an analytic
singularity in the frequency distribution g(w) of a crystal. Van Hove's
theorem was derived from the observation that the saddle points of the
dispersion relation w(q) (i.e., points where 9pad ¥~ 0) produce singularities
in g(w) [27], together with Morse's theorem [31] according to which the
periodicity of the crystal implies the existence of a minimum number of saddle
points for w.

If all critical points could be located, an interpolation scheme might
give a good approximation to g(w). Phillips has shown that by analyzing the
matrix elements of qu2 by group theory one can find all the critical points
that must occur because of symmetry including possible degeneracies. A very
good approximation to the frequency spectrum can be obtained using this
approach. It 15 found then that most of the singularities in the phonon
spectra occur at points of high symmetry in the Brillouin Zone. The

remaining critical points can occur at lines or planes of high symmetry.

II. A. 3. Simplified Interpretations of Lattice Vibrations

a. Raman's theory of lattice vibrations:

Raman [21] formulated a theory of lattice dynamics different from the
one discussed here objecting to the Born-von Karman boundary condition.
In this theory, the condition that in all normal modes of oscillation of a

crystal, the ratio of the corresponding displacements of every pair of
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equivalent atoms situated along any one principal axis of the Bravais lattice
should be the same, together with the requirement that all displacements in

a physically realisable normal mode should be real, leads to the result that
there can be at the most only (24s-3) normal modes when pure translations are
excluded. These are merely the normal modes of the group consisting of the
8s atoms located in a cell, the edges of which are found by choosing twice
the primitive translation along each axis. Symmetry can cause degeneracy

of the modes.

Raman's analysis, has no physical basis and was rejected. Lately
however, it has been shown [32] that a critical point analysis of second-
order Raman spectra is equivalent to the "supercell analysis" of Raman.

This, however, is only a fortuitous coincidence and though Raman's analysis
can be used to pick out modes most prominent in second-order Raman
scattering, it has no standing as a theory with a physical basis.

b. Internal and External modes of Oscillation.

The 3s-3 optical modes are very often classified as internal and
external modes. This distinction is not a clear-cut one. It depends on
the possibility of a division of the s nonequivalent atoms in the unit cell
into p groups such that the forces between one group and the other are
comparatively weak, whereas the forces that exist between the members of any
one group are quite strong. As a simple example consider a unit cell of a
crystal such as NH4N03. The NH4+ ion and NO% ion each forms a strongly bound
group while the ionic binding between the two ions is weak in comparison.
Thus the oscillations involving a movement bf‘the p éroups - two in the present
example - relative to each other will exhiﬁit_]ow frequencies inrgenera] and

are termed "external vibrations". The others, involving the relative movements
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of the individual members in each of the groups, will generally exhibit

higher frequencies and are called internal vibrations. The internal vibrations
of the NOE jon for instance may have nearly the same frequency for different
nitrates since it is only slightly affected by the presence of the other

ions in the crystal. The frequencies of the internal oscillations of groups
of the same type but occupying inequivalent positions in the crystal lattice
also may be slightly different. The external modes are classified as
rotational and translational depending on whether the relative movements of
the groups are of a translatory or rotatory type. In complicated crystals,
where a full and detailed analysis is difficult, this c]assif{cation is

of great help.

B. Optical Modes and Electromagnetic Radiation

The optical vibrations of long wavelength are, as will be seen, of
special importance in considering the Raman Effect in crystals. In general,
an electromagnetic wave interacts only with lattice vibrations of comparable
wavevector and will be strongly affected only if its frequency is near that
of the Tattice vibrations. Lattice vibration frequencies range from 0 to

10]3 sec'1. Light waves of similar frequency have a wavelength greater than

Cx1073~ 0.003cm >>10° cm,
the order of the lattice constant in a typical case. Thus the lattice vibrations
which can interact with Tight in a first-order process are very long waves
with practically vanishing wave vector, |ﬁ1 ~ 10'5 times the size of the
Brillouin zone. The strength of the interaction of course depends on the

electric moments associated with the particular lattice vibration.
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The optical modes are most often represented by Einstein models or
suppressed in macroscopic analyses which are mainly aimed at establishing a
theory of elasticity based on lattice vibrations. The acoustic modes are
of primary importance in these analyses. There are three important features
of optical vibrations of relevance here. Since only one of the standard
textbooks contain any discussion of these details [30], it is dealt with at
some length here. The features of importance are:

(1) The 3(5-1) optical modes in a crystal ﬁith s nonequivalent atoms

per primitive cell can be classified approximately into one longitudinal

and two transverse brancheﬁ.

(2) The limiting frequency w, of the longitudinal branch as k - 0 is

%
appreciably higher than the limiting frequency wy of the transverse
branches. The approximate theoretical relation between these frequencies

is the famous Lyddane - Sachs - Teller relation

wl

£q :
= " E—wz s (I1.37)

L

where £y is the static dielectric constant and € 1is the square of the
optical refractive index.

(3) The coupling between electromagnetic radiation (or photons) and
lattice vibrations (or phonons) is particularly marked for long wave-
length transverse optical phonons, and there results a forbidden

frequency gap between w, and w in which a thick crystal does not

L
transmit energy. This is equivalent to the statement that the crystal
has a strong optical reflection band in the region of the frequency

~gap between Wy and Wy These points can be shown using classical

electromagnetic theory and the theory of lattice vibrations. The
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consequent description is a beautiful illustration of the effects of
interaction of two systems. It also serves as reminder, especially to
a student, of the fact that all theory - usually based on isolated
physical systems - consists at best, only of refined approximations.
The following discussion is based on an extremely lucid article by

K. Huang [15].

Before proceeding to the mathematical details it is advisable to discuss
the physics involved in the treatment. Lattice vibrations and their inter-
action with electromagnetic radiation may be treated using the standard
methods of electrostatics rather than the complete set of Maxwell's equations.
Such a procedure is equivalent to assuming an unretarded interaction between
the charges in the lattice. This treatment yields reasonable results because
retardation becomes important only in the case of lattice vibrations of

wavelength of the order of 2nC/u, = 1073

cm where wg is the approximate
l1imiting optical frequency of the optical branch at K = 0. A shorter wave
will have a phase velocity so small compared with ¢, the velocity of light,
that retardation can be ignored. As these long waves form only a minute
fraction of the vibrational modes of the lattice - as is evident from the
density of states - the major part of the lattice vibrational spectrum can
be calculated without considering the retardation. For vibrations of long
wavelength, retardation is important. The theory of Huang is an attempt to
obtain macroscopic equations which completely describe this type of lattice
behavior in the presence of electromagnetic radiation by treating only the
long wavelength (small k) region of lattice vibrations using the complete set

of Maxwell's equations. Note also that for these long wavelengths, the

crystal esseniia11y behaves as a continuum, that is, dispersive effects are
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small and the frequencies of these vibrations are essentially those of the
optical mode at k = 0. This is also evident from a typical dispersion curve
of the optical branch. As an example a diatomic, cubic crystal is
considered to avoid phenomena due to optical anisotropy e.g., birefringence.
The electrostatic approximation:

To describe the long optical vibrations of an ionic crystal, one needs
a parameter specifying relative displacement between positive and negative
ions. For an elastic - acoustic - vibration, the effective inertial mass
for a unit volume is the density; for the optical type of motion, the
corresponding mass is the reduced mass of the positive and negative ions,
M= ;fﬁﬁ » divided by the volume of a unit cell. It has been found that
the most-convenient parameter to use is the displacement of the positive
jons relative to the negdtive ions multiplied by the square root of this
effective mass per unit volume, denoted by W. This parameter is easily
chosen in the case of fonic crystals. For molecular crystals, however, the
optical modes will invlude also the internal modes of the molecule and the
treatment of the problem will be considerably different. Huang defines two
phenomenotogical equations whose interpretation becomes apparent as the
theory is developed. These equations ére

W=b

W+b,, E (1I.38)

11 12 =

P=by W+b,, E, (11.39)
where P and E are the dielectric polarization and electric field, respectively.
The conditions under which the pquations are valid are:

(a
(b

) ¥, P and E vary negligibly over a unit cell
) W, P and E vary negligibly within time intervals of the order of the
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periods of electronic motion (that is, the inverse of electronic transition
frequencies.)
(¢) Anharmonic forces and non-linear effects are ignored.
Condition (a) is equivalent to the long wavelength approximation and
eliminates the necessity of consideration of space derivatives of v, P and
E. Condition (b) ensures the validity of the adiabatic approximation. Thus
no electronic coordinates appear in the equations (I1.38,39) though electronic
polarization is necessarily included in P. Condition (c) is equivalent to.
the harmonic approximation; i.e., the assumption of a Hooke-type of law lead-
ing to the linearity of the equations. Since optical isotropy is assumed,
the coefficients are all scalar quantities.
This leads to two important results which are derived clearly in Ref. [7],
p. 82-87.
(1) b]2 = b21. Using this result, the b-coefficients can be expressed in
terms of experimentally measurable quantities viz., byq = w%; byp = b2] =
(eo - )1/2m2; boy = (e -])mﬁ, where o, is the lattice infra-red
"dispersion" frequency,
(ii) The lattice equations f39,40] considered in conjunction with the
Maxwell's equations for an electrostatic situation in the absence of

free charges,

V. (E+ 4sP)
and VxE

n

0 (11.40)

0 (I1.41)

yields solutions of two distinct types.
The first type is solenoidal, i.e.,

-iw,t '
W= W.(Fle U With V- W, =0and o



62

For this type of solution, the electric field E vanishes identically,
i.e., Et

The second type is irrotational, i.e.,

= 0

™o > A . > _ 2= _ .
W= W(re with V x Wz =0 andu? b”+1—m-22— (11.43)

In this case, the macroscopic field E accompanying the displacement 32

is related to the dielectric polarization by
1/2
-b -(en = € )
B 21 = _ 0 [ 0 w
E, " THb,, W, = e Wa . (I1.44)

o

Transverse and longitudinal plane waves can then be considered as
special cases of the solenoidal and irrotational functions Wt(?) and Wg(?)
respectively. Any arbitrary lattice vibration of the optical type can be
represented as linear superpositions of such plane waves of different wave
numbers and directions of propagation. All the transverse waves of long
wavelength then vibrate with the frequency Wi and longitudinal with W - It
can be shown rigorously [33]

w | € LA
m_2=[_0] L (11.45)

t %

Thus since € * € the longitudinal vibrations have greater frequency.

This is a consequence of the fact that for a transverse vibration E vanishes
everywhere and the vibrational frequency is solely determined by the local
elastic restoring force. In the Tongitudinal case, there is an electric
field term which contributes to the restoring force in addition to the
elastic term. In a non-ionic crystal such as diamond the motion is solely

determined by elastic forces and the transverse and longitudinal vibrations
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thus become degenerate («9=<) at k = 0.

In numerous problems, for instance, if one attempts to build a macro-
scopic theory of Raman.scattering by plasmons, it becomes necessary to
consider the case wheré the change density - at least locally - is non-zero.
Then with f7*13==e and following the same procedure as before, one finds
the transverse vibrations unaffected by the presence of free charges. Also
the local electric field is only dependenf on the amplitudes of longitudinal

vibrations and is given by
: 17z
- 1 1
E-= -w, [4'"(— - —ﬂ wz o Evac N (II.4 )

where EQac is the coulomb field

>

p(rit)
Eqc(Fot) = = T /o di*

[r=r"|

that would be produced in vacuum by the charge density p(?f,t).
Eq. (I1.46) gives the local field in a crystal. This is the expression

to be used instead of the applied field EQa in considering phenomena in-

&
volving electric fields in a crystal.

Retardation Effect and Modification of Lattice Vibrations in the Presence
of an Electromagnetic Field.

Consider Tirst a physical system composed of the crystal and the
radiation field. The dynamical equation of this system and its solutions
no longer concern lattice vibrations alone. The complete system of equations
required are the dynamical equations of the lattice (II.38,39) together with
Maxwell's equations. In the absence of the lattice Maxwell's equations alone

would lead to light waves in vacuum, which we may consider as vibrational
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modes of the radiation field - all modes being transverse, with two modes to
each wave number. These two modes correspond to the two possible polarizations
Tor each wave number,

Again if there were no interactions between the lattice and the
radiation field, the vibrational modes (for a given wave number) of the
combined system would simply be the two pure radiation modes and the three
lattice modes (remembefing that only optical vibrations of a diatomic lattice
are being considered) calculated in the unretarded case. When the two fields
interact it 1s to be expected that these modes would be mixed to a certain
extent so that the terms "light wave" and "lattice wave" (or photon and phqnon)
" are no longer unambiguously applicable. However, the total number of modes,
which are essentially the number of degrees of freedom of the system, should
be the same.

The set of equations to be consideréd now are, (assuming no free charges

or currents)

Ve(E+4P)=0, (11.47)
v-H =0, (11.48)
3x§=-% L (11.49)
¥ x B =g (E+4ab), (11.50)
together with W= by W+ b]zt, (11.38)

B = byy W+ byok. (11.39)



When the trial solutions

W=t

Feh (k- -ut)
> i(ker-wt

eop, [ xe

Bty |

are substituted the following are obtained:

= oy B by,
P= by, W+ bzzi,
.E'(.E‘i' 411'?) =0 )

K-H

0,
Exf=%ﬁ, and

]ZXH=-%(-E+4'HP‘)-

It may be noticed immediately that no solution exists in which E=0

since this would lead to the trivial case

E=F=P=W=0
b, E

.40 =>il=—2_ | and
-bI]-m

T’=-—-——b12b21+b E.

{11.

(11

(LT,

(II.

(11.

(11

(I1.
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51)

.52)

53)

54)

55)

.56)

57)

(11.58)

(11.59)



Eq. (II.8) can now be written using (I1I.13) as

Note that this frequency is equal to the wp in the unretarded case. These

66

4wb, b
.'.E-E{thzzaf——]—zﬂ] = 0. (11.60)
“bq,=w?
11
This implies two possibilities:
4rb,,b
(1) 1+ dnby, + —22L =g, (11.61)
-bq,-w?
11
E+4mP =0, _ (11.62)
(ii) k¥ -E=0, (I11.63)
Case (i1). Owing to Egs. (II.16), (II.11) reduces to
txf=0, #=0o #|E% (11.65)
But Eq. (II. 9) implies A =0 or ALK. These two conditions can be
satisfied only if A = 0. Eq. (II.10) becomes
KxE=0, ' i.e., E is parallel to k.
(I1.66)
So this case yields
WIIP|E]| K. (11.67)
The frequency is given in this case by
| ~4zbo b
12721
2= - L]
w byy * T?E&ﬁg; (I1.68)
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solutions are thus longitudinal vibrations, the same as in the unretarded
case with one mode corresponding to each wave number. Since H = 0, the
radiation field takes no part in these vibrations. That is to say, these
represent the pure longitudinal optic vibrations of the crystal in absence

of the radiation field.

Case (ii) ELEK (I1.64)

Then Eq. (II.9 ) shows that K, E and R form a right-handed orthogonal

system of vectors. With

|KE| = & |A] (I1.69)
(I1.11) reduces to
= ¢ (E + 4aP). (11.70)
which with the help of (I1I1.13) and (II.23) becomes
4xb
(Ck 2 ={} + 4“b22 .__lg_gl}E_ (11.71)
“by-w?
1
E#0 implies
: 4nb. b
EK) = 1+ gnb,, + —12EL (11.72)
-b-l-"m
EO+€
=e_ (11.73 )
) tné'rmz

Once E is chosen, W, P and H are completely determined by (II.58,59) and (56).

The solutions are all transverse since

K, (WI[|P||E)LH

are mutually perpendicular. The transverse condition K L E implies that
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Eq

implies that for every‘E'there are two independent choices of 0 Moreover
from (II.73) one sees that there are two frequencies for a given-E: Thus
four independent transverse vibrational modes, corresponding to two
frequencies (each doubly degenerate) exist for each K.

The five vibrational modes have thus been obtained in the long wave-
length approximation. Fig. 3 below shows the dispersion curves of pure
lattice vibrations and electromagnetic waves as well as the dispersion curves

of the interacting system.

\ Ly p
' a. light in vacuum
b. optical transverse
waves with dispersion
L) = - == ===
1 // / by. light wave without
/ - : dispersion
W gy pe = "‘I"‘ ‘;‘/—’ ———a—d c. pure longitudinal lattice
; // uf,j?—f”J vibrations
¢ . d. pure transverse lattice
/1 / vibrations
ye - e. transverse optical waves
(4 f. "lattice vibration part"
Fig. 3: Long wavelength lattice of the optical waves.

vibrations in the presence
of electromagnetic radiation

The term "optical waves" is used for the-"mixedf waves. The general principle
that when two vibrating systems are Coup]ed,-their mutual perturbation is
strongest and hence their modes mix most when the frequencies are equal,
while in tﬁe case of very different frequencies, the coupled modes are
essentially like the original oscillation of one system with a very small
admixture of the other, is clearly 1llustrated here. The original lattice

dispersion curves are C (longitudinal) and d(transverse, doubly degenerate),



while b1 represents the "dispersion" curve for Tight in the crystal i the
crystal were to behave as a purely refractive, dispersioniess medium. Cre
sees that the interaction is strongest where these dispersion curves are
closest. Of course, there is no interaction with the Tongitudinal curve C.
The intersection point O_corresponds to resonance between the two fields.
As one moves away from 0, the actual solutions (solid lines) approach the
solutions (dotted lines) for the non-interacting case. Physically, the
reason is clear. On the high frequency side of the rescnance point, the
frequency of the Tight becomes so high that the ions cannot take part 1in
the vibrations appreciably and hence solutions corresponding to fixed ions
(i.e., W=0, orP= Egil-?, so that medium is purely refractive) provide
a good approximation. Here, the lower branch represents essentially pure
lattice vibrations with phase velocities very small compared to %}- so that
retardation effects are negligible and the electrostatic approximation 1is
good.

A consideration of energy density as done in detail by Huang [33] gives

the relative proportion of mechanical to radiative energy in the optical

waves. The result is shown in Fig. 4.

100 e, lower branch

rig. 4. Percentage Mechanical
Energy in the Transverse Modes.

(o))
[

Percentage
o
O

)
o

b, upper branch
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Towards the right of the resonance point, the lower branch approaches
pure lattice oscillations which the upper branch tends to pure raaiation
energy. This picture thus leads to the usual, and to a beginner, terrifying
statements [for instance Ref.(22¢)] that "the lower branch is "photon-1ike"
at Tow k and “"phonon-like" at high K with frequency w,, while the upper
branch is phonon-like at low K with freguency wy and photon-like at nhigh K.*
The actual dispersion curves for the optical waves are repeated in Fig. (5)

for the sake of clarity. The frequency region between wy and w, is a

"forbidden" band of high reflectivity.

Fig. 5. Actual dispersion curves at low q in the presence of
electromagnetic radiation.

This description of long-wavelength optic vibrations is meant as an

introduction to the relevant sections 2.1-2.3 of (22c ) which describes the

dispersion curves for uniaxial and biaxial crystals in detail. Hence, these

details are not repeated here.
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It is necessary to distinguish between those Tattice vibrations which
give rise to an electric dipole moment in the Tattice and those which do
not. Since an electric dipole moment can interact with radiation in
absorption, the first type of vibrations are said to be "infra-red active",
ana show up as absorption peaks in an infra red spectrum of the crystal.
For an infra red inactiQe phonon, the restoring forces are mainly the
mechanical forces which are short-range, and hence do not have dispersive
eftects on long wavelength phonons. Infra-red active phonons, on the othef
hand, produce long-range electric fields in the lattice. This distinction

becomes important in considering the Raman effect due to phonons.
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III. RAMAN EFFECT IN CRYSTALS

Though the Raman Effect was discovered in the crystals [2] quartz and
calcite almost simultaneously with the discovery in liquids, the detailed
theory as discussed in Chapters II and III was developed mainly for molecular
scattering in gases and liquids. The Raman analysis became primarily a tool
for the determination of molecular structures. Embedding the molecule of
interest in a crystal only increased the complexity of the'problem due to
the coupling between molecules in the solid state. Also, in crystals, the
intensity of the Raman Effect is small. In many jonic crystals and in fact
in all crystals in which every atom is at a centre of inversion as in the
case of NaCl, KC1, etc., the first order Raman Effect is forbidden by crystal
symmetry. The second-order effect is feeble and needed very long exposures
with the earlier photographic techniques of detection.

Born [20] was the first to present a semi-classical theory for scattering
from crystals based on the general theory of Chapter I, Sec. B. The
mathematical details of present-day theories which require a knowledge of
many-body techniques for their understanding, are clearly illustrated in
the works of Loudon [34],[35] and Birman [36]. These theoretical treatments
are not reproduced here. Only the results which have direct bearing on
experimental analysis are discussed.

First-order Raman scattering is described by the first-order term in
the Taylok expansion of the induced electric moment if the crystal in terms
of normal cdordinates, i.e., in terms of phonon modes - both optic and
acoustic. Only the scattering due to optic phonons will be considered here.

The phonon wave vector can taken on any value in the Brillouin zone, the



ma X imum being-g, where d i1s the "lattice constant" for the direction considered.

1

Tnis maximum is typically of the order of 3 x 108 cm . Incident lignt of

wavenumber about 2 x 104 cm"1 (or wavelength 5,000 A) has a wave vector k in
;.l,., + > +_nm_ vV o ] — = s 4
the crystal given by |k| T ZﬂnE = 27 X n X E 2% x refractive index X

wavenumber. Usually, in a Raman scattering experiment the 1light scattered
through 90° is observed so that the Rayleigh - scattered background is a
minimum., If Ei and Ks denote the wave-vectors of the incident and scattered

photons and H that of the phonon, wave vector conservation implies

Ei =k, +q - (111.1)

1

since |3 is typically of the order of 100-1500 cm™ ' while |K] 2 2 x 10% cn”]

The transverse geometry gives ?i.i Es' This leads
8

we can put iEiI C |Es]
5

1 cm_]). Thus

toq® /2 x 2 x 10° em™ ', which is small compared to %@HB x 10
phonons of importance in the first order Raman Effect have large wavelengths,
or, equivalently, wave-vectors |q| small in magnitude compared to the size
of the Briilouin zone. This smallness of.lal leads to great simplification
in the theory. All theories assume iEI = o for the first-order Raman effect
and this is often misleadingly called the "E = o (or % = o) selection rule".
In crystals which have centre of inversion symmetry, any one phcnon
cannot be simultaneously Raman and infra-red active. But in crystals which
do not have a centre of inversion symmetry, phonons can be both Raman- and
infra-red active. As discussed before, an infra-red inactive phonon is not
strongly dispersed, i.e., the optical branch is "flat" near and at q = o.
Hence all such phonons of small wave-vector have the same frequency as the
g = 0 phonons. In this case, the Raman frequency shift measures the phonon

frequencies at q = o and no variation in the Raman shift is produced by



variation of scattering angle or of the orientation of the Tight beams with
respect to the crystal axis. However, for infra-red-active phonors, the
accempanying long-range electric fields gives rise to strong dispersion.
This leads to Raman frequencies different from the 3 = o vaiues, and to a
variation of the frequency with the direction of 5 in non-cubic crystals.
These variations are described in detail by Loudon [35a,c].

A description of important features and results of the various theoretical

approaches 1s now presented.

1. Born's Semiclassical Theory

Born's polarizability theory of Raman scattering [20] by crystals is
just an extension of the general semiclassical theory of Chapter III. The
intensity of Raman scattering per unit solid angle due to a transition from

a vibrational state v to another state v' is given by Eq. (I.57 ).

@ 3
=2, kj,z é YE Kk i a (111.2)
where 1av,ﬁk denotes the product of the matrix elements of the electronic
polarizability:
. i * ! T
fem = | Paylwesl Py ivot werege (111.3)

If the frequency spectrum of the scattered radiation is continuous as in the

case of second or higher order scattering, the state v' for which 1ﬁY & nas

>

a non-vanishing value cover a continuous energy spectrum. It is then

convenient to introduce iuY g 35 @ function of frequency

2

w<m0+ww wtiw

-Icw,&(w) = Au‘ﬂ'o E {<U|IP:T1“><V[ P@Ll\)'>} . (111.4)

Av.
v
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The prcblem thus is reduced to the calculation of the quantity iuY éf) .

Here, to contvorm to the convention that has become rather permanent in

literature, for the case of crystals, one writes de = g so that

*

ipc,uu - {[GQG]VV' [uuv]vv']m: (II1.5)

for all vibrational transitions v »v'. If now, ey be the energy in the

state v then multiplying by the Boltzmann factor, the thermal average is
) : -ey/KT
o8 Doyl @ (111.6)
) e'ev/kT
v

<i "y
pasuV

The summation being taken over the initial state v.
The polarizability is now expanded in a Taylor series in the atomic

: L
displacements UBQJ) as

() R 1 ) B (111.7)
pa po poc po )

where o (0) = constant
pa

a(]) = dapa U Ly = aB . U 2) (I11.8)
3 % EE (Sﬂjff) 0 e é u§ ch) sl
@y ) g
pa EY [ LEpllBUB(ul)BUY(:'I))O 3(1‘ L EY %-: 1
u

By 2 &' By (Y ;
a DG(IJ U.)UB(U)UY(UI) (III'J)

A1l these quantities are symmetric in p,a but not in the other indices.
=y
This expansion can be written in terms of the normal coordinates Q(g).
Both the expansion in terms of normal coordinates and the displacements are

derived here since even in present day literature one finds authors resorting
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to either expression depending on the context. In terms of normal

coordinates
1
SR
B

=2% qzj é 11% agcﬁl) exp(Zrif(2).d) Q(g) eB(uig) (II1.10b)

B 2 .
X Cﬁpa(u) UB(U) (ILI.}G&)

expressing Uggf) in terms of the normal coordinates. Note that asggf) has
been written as aschi), independent of the cell index &. (See Born [20]).

Recalling that, because of the translational invariance of the lattice,

i g
¥ eZriqor(s) . s(d) then

TR TL L b el ). (11r.)
It is worth noting at this point that the q = o selection rule has come
in as a result of translational invariance, where as in usual theories, one
has to bring it in as an approximation. The first-order Raman effect in a
crystal is thus due to the q = o optical mode, where each of the s simple
lattices corresponding to the s points of the base moves like a rigid system.
The first-order Raman-spectrum is thus a line spectrum of not more than 3s-3
1ines, ie. it is analogous to the Raman Effect of a molecule of s particles
with a fixed orientation in space (translations allowed, rotations excluded.)
The equation for the thermal average of the products of the two first-
order transition matrix elements is derived by Born [7, p. 210] in the form

reproduced below:
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{<v|A(q)lvl><V' IB(q)|v>}
Av Cyy!
ci e j
J W
A.B.
it J
C.
J -W.
J
= h/2m' =
where Cj J 5 Bj hwj/kT
]_e-kwj/kT

From the results and equation (III.6) it is easy to see that the Stokes line

(-uﬁ) and anti-Stokes line (“ﬁ) should bear an intensity ratio Lantistokes _

I
e'?j according to this theory.

stokes
Note here that J;U the polarizability tensor for the first-order scattering
is a third-rank tensor. As remarked before it is covariant in indices p,0 and
contravariant in ﬁ. Since it is of rank 3, the transformation equations for
é;c when a new set of axes are related to the old by the unitary transformation
is |

u _ =1 v
&, = (@lg, (@), (@l ap (111.7)

If & is now restricted to be a symmetry operation A of the crystal, all
crystal properties, in particular the polarizability should be invariant

under A , so that

v

by (II1.8)

pa

U =1y
o = mspm.{d (,A‘ )uv o
Choose Al to be the inversion transformation defined by (fﬁ)sp = - 639

Then, under the inversion,

d“w: (-,Bp)(-sw)(-a“) a;Y (I11.9)
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= _a}J
pao

3
since an inversion operation is its own inverse. Thus a:ﬁ is zero in any
crystal in which every atom or ion possesses a centre of inversion symmetry.
Thus 1in alkali halides, and other crystals possessing this property, there
is no first-order Raman effect.

For the second-order Raman effect, one has analogous to the first-order

case,

(2) .1
apc-(\ %: .

By/h . 2aiF(2)og g .3
JZ, DI, L ol e e b1} e ('(§)- (111.10)

jjt & up' gy POWH

Following detailed considerations of the matrix elements involved Born (19)
has shown that the observable second-order spectrum should consist of 932
superimposed continuous bands, each having a different maximum point, so
that a general continuum with a number of peaks is observed. In the light

of van Hove's theorem the different maximé in the second-order spectrum must

be indicative of the singularities in the frequency distribution function.

B. Second Quantization Theory
1. First Order Raman Effect

The more modern theoretical approaches use the compact notation and
concise language of second quantization. The Raman scattering process
consists of three real transitions: (1) the absorption of the incident
photoncoi, (2) the emission or absorption of phonons, and (3) the emission
of the scattered photon eo. The first-order Raman process may be represented
in an interaction diagram or a fFeyman diagramf, see Ref. [17], the initial

state with only the photon @, present occurs at the left of each diagram,

and the final state with the photon @ and a phonon @ occurs on the right.
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Various alternative processes can be envisaged to connect the final and
initial stages, depending on the relative strengths of the interactions.

Three of the possible intermediate processes as shown by Loudon (3) are:

@, , Hg \‘ Wy
_/WW\’\HEK ;VW
Se__. R ~—-——— electron
———~~hole
phonon

AnAn photon

° interaction
vertex

The three interacting systems here are the radiation field,(R), the
electron system (E) of the crystal and the phonon system or the lattice

vibrations (L). H H H L denote the interactions between these systems

ER> "EL* 'R

taken two at a time. Since Raman écatterﬁng by phonons changes only the
vibrational state of the crystal while the electronic state is unchanged,

it might seem at first that a radiation lattice interaction without the
intermediary of electrons, is responsible for the scattering. However, a
look at the diagrams shows that (b) and (c) involve interaction vertices
where two or more phonon lines meet. This implies that phonon-phonon inter-
action, i.e., anharmonic effects described by a Hamiltonian HA must be
important for these processes to be strong. These processes have a small
probability of occurrence sincé at ordinary temperatures in most crystals,

anharmonicity is only a small perturbation. Also, these diagrams require

the existence of a dipole moment associated with lattice vibrations that can



interact with the radiation. This implies that these processes cannot
take place in a homopolar crystal such as diamond and at least for these
crystals the process shown in (a), that is, scattering via intermediate
excitation of electrons is the main possibility.

The three real transitions are thus connected by virtual electronic
transitions,cﬂi andcos being assumed to be too small to cause real inter-
band electronic transitions. In such cases, time-ordering of the processes
is not possible [17, p. 140], ie., the three real transitions can occur in
any time order, giving six. possible sequences of the process.

Thus the complete Hamiltonian for the problem is

H=Hy, +H +H- +H

Rt HL * Hp + Hpp + Hp = Hj + Hy,

where H0 = HR + HL + HE is the sum of the radiation, phonon and electric
Hamiltonian in the absence of interaction and Hy = Hep + He is the sum of
electron-radiation and electron-lattice Hamiltonian. The radiation-lattice
term being small is neglected. A1l theoretical work on the Raman effect also
assumes that the crystal is in the electronic ground state before and after

the scattering process. The theories differ in the description of the
intermediate "virtual" transitions. In the theory of Loudon [35a], for
instance, the electronic virtual interaction state is assumed to be a free
electron-hole pair, while Birman [36] assumes exciton states, that is,
electron-hole pairs bound by Coulomb interaction, to be the intermediate states.

The general form of the Hamiltonian may be written in second quantization

notation as

+ % #
af a, + [ haplb + ] hucre (111.11)
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where a's are photon creation and destruction operators, the b's similar
phonon operators and the c's are Fermion operators which create or destroy
elactrons. The coupling constants 4 and P depend respectively on the
strength of interactions HER and HEL . Their forms depend on the interaction
mechanisms used in.the theory.

The general procedure followed in many body theory would be to perform a
suitable canonical transformation [17, Chap. 8] so that the interaction term
is eliminated in the lowest order. The remaining Hamiltonian can be
transformed using creation-destruction operators. Raman scattering can then
be calculated using first order time-dependent perturbation theory, taking
the appropriate higher order terms in the transformed, perturbing Hamiltonian
(35). Such a procedure allows calculations in cases where Hey is larger than
HER' However, this method would be so Taborious that it is better to risk
the loss of generality by examining physically the relative order of magnitude
of these terms, to determine which Hamiltonian would be a first order
perturbation. The excitation of a phonon produces a displacement of the atoms
in the lattice and this perturbs the periodic potential acting on the electrons.
This is the main source of electron-lattice interaction energy HEL in almost
all cases. Birman [35] has shown that the corresponding Hamiltonian is
typically 100 times smaller than Hep. Thus HER should be treated in a first-

order perturbation and HEL in a higher order. All theoretical work so far,
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including the work of Birman, however, treats them both in the same order.
The term described above is the only source of interaction in most homopolear
crystals. However, it is conceivable that in ionic crystals, for instance
CaF,, a Fréhlich type of electron-lattice interaction may b? gelevant

d
[17, Chap. 15]. Birman has shown for CdS, and GaAs that [ "EL |.. 1, where

i
(d) H

HEL EL

calculated from deformed potential and Héf) is the FrbBhlich type of term.

is the first type of electron lattice interaction

As experimental results which could conclusively establish one picture
as a more accurate description than another are very meagre, the choice of
a mode]l remains a matter of personal opinion. Measurements of Raman
scattered intensity made with great precisions are necessary for a final
judgement. The detailed theory as formulated by Loudon is described in
Ref. [35a]. A sketchy description of this theory is given here with the sole
idea of facilitating the introduction of the Raman Tensor.

Suppose the crystal is in its electronic ground state at time t = 0
when the photons are incident. The probability that at time t, one photon
“ has been destroyed, and a photon @y and phonon e have been created is,

from time-dependent perturbation theory, [12, Chap. XVII].

-iHt/h
W(t) = +ZE ]<ni—1, ns+1; n0+1; Ole /

q’s

| ni,ns;n0;0>|?(III.13)

H is the total Hamiltonian; Nis n. and N0 are the numbers of incident

S
photons, scattered photons and optic phonons, respectively. The final zero
in the bra and ket indicates the electronic ground state. The wave vectors
Es and g denote the scattered photon and phonon, respectively. In the summation
over ks’ the direction of the scattered photon is restricted to 1ie within

a small solid angle determined by the geometry of the detector.
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s ore considers only spontaneous Raman scattering (ns=o), then

<n_i-'| 5l ;noﬂ ;0|HI |a,><a|HI |b><b|HI In'i ’o;no;0>2

W) ~ § I
6Lk ab (wg-w;) (wy-u;)
X 6(ws-w ~w_) (I11.14)

io's
where a and b run over complete sets of intermediate states. In the first
two of the HI matrix elements the HER part contributes; in the third matrix
element, Hp and Hep both contribute. The superscript 0 on the W indicates
the fact that only scattering by optic phonons are considered. The main
source of electron-lattice interaction is the deformed-potential interaction.
It is the only source in most cases as has already Been mentioned (al, p. 214-
217). Loudon [35a] has used the method of Whitfield [37] in which electron-
lattice interaction is arrived at by expanding the perturbed periodic
potential in a Taylor series in the components of the atomic displacement.
Loudon uses the matrix elements of HEL between two states as derived by
Whitfield, i.e.,

= =4 3., (111.15)
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where E1i8 is the matrix element of the deformation potential and Sij is a
3,

strain component Eﬁ% . The detailed properties of these operators are not

important here.

The Hamiltonian HER 1s described in detail by Heitler [11] and is given
by 1/2 -
_e 2wh ikars F
Hep=v 1 E(-————nwk\ {ak e 0 +a e

where a, and az are the destruction and creation operators for a photon of

-ik F:71 > -
j
9 }Ek. p; > (II1.16)

wave vector K and energy h”k;.ﬁs and ?} are the momentum and position vectors

of electron j, n is the dielectric constant (e_), V the crystal volume and
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€y the unit polarization vector of photon k.
When these interaction Hamiltonians are substituted into (III.14), the

scattering probability W(t) as a function of time becomes
g . 2
nl("o+1) i i

QHZTEq
w(t) R ('w sWan s )
Q:kz
2n) 3 +
x A2 SR -GK,) slog-ugwy),  (I11.17)

where E:sq is a unit vector depending on the direction of q. See Peierls

[38] for details.

The term R}Z(—aﬁ,a@,aﬁ) is of interest here. It is given by

2 pl =1 1 2 =1
Ri (_m sl ) = l_ Z POBPBG B + POBPB& “al
12 "1°72°% v {w +mo m1)(wa+mo) (mB+mO+w2)(ma+wo)

2 1 i 2
Pos Eoe Pao " Pos Eaa Pao
(ﬂ +w m])(m -w]) (m8+mo+m2)(wa+m2)
=1 n2 pl =1 pi p2
OBPBG Puo OBPBu Puo " (III ]8)
(m +w2-w])(w m]) (mB+m2-w1)(ma+m2) *

1.2 i &
PB; represents the matrix element <a|P * |g>, the superscripts indicating

that the components are to be taken in the directions of polarization of
the photonst] andﬁJz. The six terms arise from the six types of scattering
processes. R}z is called the Raman tensor, its subscripts indicate the
photon polarization directions, and superscript the phonon polarization. The
signs attached to the frequencies as the arguments of R are such that a
negative (positive) frequency corresponds to destruction (creation) of the
appropriate photon or phonon.

The symmetry of the Raman tensor is worth considering in detail. It
is analogous to the J;U in the semiclassical theory. However, while &;c

is symmetric in p and o, R;z need not be symmetric in 1 and 2. Instead,
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the Raman tensor has the following properties
i = @l _
(a) Rip (-0,63,4,) = Ryq (@55¢,0),
showing there is no significance in the order in which the photon
variables are written.
i . L -
(b) Ris (-aul ,uz,wo) = R]E(“’I’ @, c%) forcu] W, +&, and (a) and (b)
together lead to
i -l qo o
() Ryp(-ep sy} = Rop (- ¥, -t s 4).
This shows that the Raman scattering is in general not symmetric with respect
to interchange of polarization of incident and scattered photons. However
when W is small compared to w =] and w =ty for all «, as is the case
except in Resonance Raman Effect, the dominant term in the Raman tensor is
symmetric in the photon polarizations.
The above symmetry properties hold independently of the crystal structure.

Crystal symmetry introduces further simplifications which will be discussed

in the section on selection rules.

C.Stimulated Raman Effect
Instead of the expression for the first-order process, the probability

for a s-phonon process can be written as
n1(n2+1)

P.

1 s 1 5-1
| <s |Hep |5><S |—— H |s-T><s=1| 7——H |5-2% & .
s ER HO E0 EL H0 E0 EL

SI

1 T
X s X <s slﬁ;:F;' Heplo>]2 (II1.19)

where the matrix elements of ap in HER between the initial and final photon-

states i and f, the first containing N and the second Ny photons have already



been cealcuiated. The states |s-r> are products of electronic and
vibrational states, the (s-r) label indicating the number of phonons creatsd
with respect to the ground state. In this s-phonon process, oniy the finel
anc initial vertices involve photon processes.

The Tactor nyn,, depending on the number n, of the photons in the final
state of freguency “, shows that, in addition to the spontaneous Raman effect,
which depends on the initial number ny of photons, there will also be a
stimulated Raman Effect if the geometry of the experiment is such that Ny
is non-zero. This dependence on the product of occupation numbers also
shows that this is a non-linear process. This stimulated effect-also called
the Raman Laser Effect - was experimentally observed by Woodbury [39] and is

discussad in [40]. It will not be discussed here.

. Resonance Raman Effect-Spontaneous and Stimulated:

The Raman tensor and hence the scattering efficiency contains terms
which either diverge or become relatively large when the frequency of the
exciting radiation is equal to an allowed optical transition frequency of
the scattering material. This predicted increase in intensity known as the
resonance Raman effect is familiar in Raman scattering from liquids.

The exciting frequency being close to a transition frequency of the
scattering substance may lead to a significant absorption of the radiation.
The scattered radiation being close to this may also be attenuated. These
factors offset the increased scattering efficiency to some extent.

Two types of resonance scattering have been treated theoretically by
Loudon [41]. These are scattering by lattice vibrations or phonons and

the electronic Raman effect, i.e., Raman scattering by electronic states of



impurity atoms in crystals. Electronic Raman scattering has been observed
in only a few experiments, originally by Hougen and Singh [42a] and more
| recently by Koenigstein [42b]. Resonance Raman scattering by phonons has
been observed only in Raman experiments in crystals with defects, in particular
the color centre work of Worlock and Porto [43]. A reflection geometry
experiment was used by Russell [44] on the first-order Raman line of silicon
in which the exciting frequency was in the region of absorption due to
indirect electronic transitions.

The area of resonance Raman scattering from crystals is thus new and
unexplored. The conclusions from Loudon's theory are interesting and
await experimental verification. According to this theory for scattering by
electronic levels, the Raman intensity achieves its maximum value when the
exciting frequency is Sufficiently close to resonance for virtually all the
exciting Tight to be observed or scattered in the crystal. Further increase
in absorption coefficient does not produce any change in the scattered
intensity. For scattering by lattice vibrations the exciting frequency is
usually chosen to be smaller than the energy gap so that absorption of thel
exciting beam is negligible. The Raman efficiency increases steeply as the
exciting frequency approaches the absorption edge. When the exciting frequency
is increased until it is above the absorption edge, the Raman efficiency falls
sharply to a small frequency independent value. The largest scattering
therefore occurs when the exciting frequency lies just below the absorption
edge. These conclusions apply to spontaneous and stimulated Raman scattering
and as noted before, they await experimental verification. The experimental
results are also likely to be complicated as one might have fluorescence

transitions due to electronic excitation in addition to Raman scattering.



E. Brillouin Scattering:

So far, only Raman scattering from optic vibrations of crystal has been
discussed. Acoustic Tlattice vibrations can also give rise to first-order
Raman scattering. Brillouin [45] predicted this phenomenon on the basis
that thermal elastic waves in solids can be looked upon as inhomogeneities in
a medium and give rise to scattering. The scattered light intensity would
be a function of the scattering angle due to crystal anisotropy. This type
of scattering is called Brillouin scattering. Brillouin shifts are very
small, of the order of 2 or 3 cm'] for many crystals. Due to the smallness
of the phonon fraquency, the stokes and antistokes lines have almost the
same intensity for a given branch. Measurements of Brillouin spectra have
generally been used to check measurements of already known elastic constants.
Very little work has been done in this field owing to the difficulty in

detecting the shifted lines, which are extremely close to the exciting line.

Selection Rules and Symmetry of Raman Scattered Light.

For a given value of the wave-vector 3, the different branches of the
dispersion curve correspond to different normal modes of the crystal, ie.,
different symmetries of vibration of the atoms in the unit cell. Each mode
is characterized by an irreducible representation of the space group of the
crystal lattice. Hence, the selection rules for Raman-active phonons can be
determined by standard group-theoretical methods.

For first-order Raman scattering by a perfect crystal under non-resonance
conditions, the ﬁ = 0 rule holds, provided the phonons are not infra-red active

as well. For these phonons, the a = 0 rule must be supplemented by the
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point-group operations of the space group will be Raman active. Alternatively,
one can state this as "a phonon can be first-order Raman active if and only
if its irreducible representation is the same as one of the irreducible
representations which occur in the reduction of the polarizability tensor”,
which is the usual statement found in text-books on molecular spectroscopy.
For example, see Wilson, Decius & Cross [46] and Heine [47]. The irreducible
representations by which the components of the polarizability tensor transform
Tisted by Wilson et. al, and for the set of 32 crystal point groups.

At this point, it is advisable to examine critically the nature of the
Raman tensor, Rﬂq. or, equivalently the polarizability derivative tensor,
‘?ﬁs ekﬁ:‘ﬂ Thus cXFL is truly a third-rank tensor and in fact, it is this
property that leads to the conclusion that no first-order Raman scattering
can occur in alkali halide crystals, or any crystal in which every atom or
ion possesses a center of inversion symmetry. However, in the g = 0 limit
and within the harmonic approximation, the normal modes {Q4§ are linearly
independent of each other and each Q,r transforms according to an irreducible
representation of the point group. Thus the third rank tensar o%ﬁlcan be
written or decomposed into the tensors é%ﬁmi, one for each Qﬁ' These tensors
transform as second-rank tensors. This légds to the erroneous statement
often found in literature that the Raman tensor is a second-rank symmetric
tensor. It would be more appropriate to say that in the harmonic approximation
and infinite wavelength Timit, and when the exciting frequency is far
removed from all absorption frequencies of the crystal, the Raman tensor can
be broken up into symmetric sécond—rank tensors, each transforming according

to an irreducible representation of the point group operations of the space-

group of the crystal. The point group analysis can then be used. Mathieu [48]
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has 1isted the Raman-active vibrational symmetries for the different crystal
classes. Many examples are worked out in detail by Bhagavantam and
Yenkatarayndu [49].

Loudon [35c] has collected the results of various authors into a
complete table of Raman tensors for the crystal symmetry classes. The table
gives both the symmetry of the Raman active vibrations and the dependence
of the Raman-scattered radiation on the polarizations of the incident and
scattered 1ight. Thus by observing the polarization dependence of a Raman
line, one can infer the symmetry of the lattice vibration responsible far
the scattering. In crystals which do not have a center of inversion among
the elements of the point group, only even-parity vibrations (usually
subscripted by g) can be Raman active and only odd-parity (u) vibrations can
be infra-red active. This fact leads to the complementary nature of Raman
data and infra-red absorption measurements.

The axes (x,y,z) which form the basis for Loudon's representation of the
Raman tensor are the crystal principal axes (x1, X5 x3) defined for all
crystals by Nye [50]. Very often, however, crystals have natural growth
faces which are not any of the principal planes in the Nye system, such as

NaNO3, CaC0, or the tetragonal phosphates. For purposes of experiment, it

3
would be advantageous to use the perfect growth faces as reference planes.
In these instances, then it is useful to obtain a transformation matrix
between the Nye system of axes and a convenient system of Taboratory axes
based on the experimental set-up and the positioning of the natural faces
of the crystal.

The interpretation of first-order Raman spectra due to phonons which are

also infra-red active requires the realization that for this type of vibration,

the accompanying long-range electric fields leads to a 1ifting of some of



the degeneracy of the optical phonon branches. Experimentally, this type

of scattering was regarded as "anomalous" until its features were explained
by Poulet [51]. The main differences are an increase in the number of first
order Raman peaks from that expected by the group-theoretical analysis due
to the 1ifting of the degeneracy, and an angular dependence of the Raman-
scattered intensity in some uniaxial crystals. The details are given by

Loudon [35], p. 445.



F. SECOND-ORDER RAMAN EFFECT
The second-order Raman Effect is a two-phonon process, i.e., @& process
in which two phonons participate. They may both be created (giving a Stokes)
component in the scattered light), both destroyed (anti-Stokes component)
or one created and one destroyed (one Stokes and one anti-Stokes component).
A second-order scattering can give rise to a line or a continuous
s pectrum, depending on the nature of the process involved. The line
spectrum occurs when a second order process is the result of two successive

first-order Raman scattering processes as shown in figure below.
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The two phonons involved should then individually satisfy first-order Raman
selection rules and this type of spectrum gives no information in addition
to that provided by the first-order spectrum. Hence, one usually analyzes
only the continuous second-order spectrum.

The continuous spectrum is due to a scattering process in which the

1ight interacts with a pair of phonons in a single event, as in the figure

below.




There is now no restriction on the phonon wave vectors to 1ie in any
particular part of the Brillouin zone since all that conservation of momentum
now demands is that the sum of the wave vectors of the two phorons should
balance the change in wave vector of the scattered photon. Since the photon
wave vectors are small compared to the Brillouin zone this effectively leads
to the fact that the wave vectors of the two phonons involved should be equal
and opposite. The continuous frequency distribution of the scattered photons
is thus proportional to a weighted density of lattice vibration states in
which two phonons of equal and opposite wave vector are present. The
weighting arises from the dependence of the interactions involved on freguency
and wave vector. The second-order continuous spectrum, being a single event,
possesses a scattering efficiency which is independent of the Erysta1 size.
The line spectrum, however, be{ng due to two successive first-ofder scatterings,
depends on crystal volume, it being assumed in both cases, that the crystal is
transparent to all the photon frequencies involved. This distinction leads
to the possibility of resolving the second-order 1ine and continucus spectra

in cases where the continuum has sharp features or where the Tinesare broad.

. Theory and Selection Rules
The formal theory of second-order Raman scattering using the polarizability
expansion was developed by Born and Bradburn [20] who applied their results
to NaCl. A treatment using second-quantisation formalism has been developed
by Birman [36]. However, these treatments are outside the scope of this
thesis. Moreover, experimental analysis of second-order Raman spectra 1is

based on cf}tica1-point analysis schemes rather than on any theory.
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In the section on lattice dynamics, the critical point approach has been
briefly discussed. Since the structure of the second-order spectrum involves
both the frequency dependence of the interaction mechanisms and that of the
phonon density of states, it is natural to expect sharp discontinuities in
the spectrum corresponding to critical points provided the corresponding
Raman process is not forbidden by selection rules. Moreover, since the
interactions involved are very unlikely to have a frequency dependence with
sharp discontinuities (again, assuming one is not near any resonance
frequency), it is to be expected that all discontinuities in the second-order
spectrum correspond to critical points of the density of states.

It is thus important to have selection rules at particular a-vectors
for the pairs of phonon branches which can contribute to second-order Raman
effect. The relevant group-theoretical description is fognd in Bhagavarntam
[49]. If the two phonons involved belong to the same branch, the two-phonon
state is called an 'overtone' while if they belong to different branches, it
is called a "combination". For combination states, the Raman transition is
allowed if the kronecker product of the irreducible representations of the
two phonons contains irreducible representations in common with the polar-
izability tensor. For overtone states, the symmetrized kronecker square of
the irreducible representation must be formed to determine the selection rule.
The various general rules that follow are discussed in detail by Loudon [35c]
and Bhagavantam [49, p. 89].

Some general selection rules for first and second-order Raman Effect
may be stated as follows:

a. A1l modes classified under the totally symmetric classes are always

Raman-active.
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b. If a center of inversion is one of the elements in the group, all ncrmal
modes symmetric with respect to it are Raman active and all modes anti-
symnetric with respect to it are infrared active.

c. The first overtone of every normal mode is Raman active irrespective

of whether the fundamental itself is active or not.

d. All Raman active normal modes combine with each one of the modes

coming under the fota11y symmetric class to give Raman active combination
tones. The combination of an inactive mode with a totally symmetric one

is also inactive.
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IV. LATTICE DYNAMICS OF CRYSTALS WITH DEFECTS

A. Introduction

So far, a perfect lattice possessing perfect translational symmetry and
infinite in extent has been assumed in deriving the properties of Tlattice
vibrations. The interest in this work, however, is mainly on Raman
scattering as modified by the presence of a defect in the lattice. A brief
review of the defect problem in lattice dynamics is now given. Typical
defects or imperfections in a sq]id are vacancies, interstitial and sub-
stitutional impurities, disorder, dislocations, and stacking faults. 1In
addition surfaces must always be present in a finite crystal and constitute
a fault. Even a low concentration of these impurities may have striking
effects on the macroscopic properties as is well-known from semiconductor
physics. Only substitutional point impurities are treated here, with a
brief reference to a "molecular group" defect or a defect with internal
degrees of freedom. The treatment is based directly on the extensive work
of Maradudin and co-workers [51,52,53].

The earliest theoretical work on point defects was done in Russia by
I.M. Lifshitz [54] in a series of papers still relatively unavailable in
English, so that most of it was repeated by Montroll and co-workers [55,56].
Experimental work was non-existent then, and the theoretical work aimed
mainly at determination of the modification in the frequencies, the
associated displacements in the normal modes of a crystal, and the effect of
these modifications on the thermodynamic functions of the crystal. Because
of computational difficulties the first calculations were carried out for

artificial crystal modeTs; and dealt with time-independent properties.
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The possibility of being able to observe the defect properties directly
rather than by their effects on thermodynamic properties, using the Mdssbauer
Effect was pointed out by Visscher [57]. For the first time the dynamics of
the defect in a lattice was brought to the attention of experimentalists.
Though the direct M8ssbauer measurement has not yet been performed due to
difficulties in measurement, an increasing amount of work has been done in
infra-red spectroscopy and neutron spectroscopy [58,59,60]. Raman spectroscopy
has been applied to the problem only recently [43], but seems to have a
very promising future in the understanding of defect lattice dynamics.

The main reason for the lack of interest of experimentalists in the
problem seems to be, as Krumhans [61] has pointed out that in early
theoretical works the subject became something of a theater in which to
display mathematical virtuosity, at the expense of the underlying physical
simplicity of things." The review articles [51,52,53], however, treat the
mathematics very clearly.

When defects are introduced into crystal lattices their effects on the
normal mode frequencies of the lattice are of two kinds: the individual
frequency levels inside the bands of allowed frequencies are shifted by
small amounts, and a small number of frequencies which normally lie near the
band edges emerge out of the allowed bands into the gaps of forbidden
frequencies. The normal modes associated with these frequencies dre the
features of interest here.

The recent theoretical and experimental work on lattice vibrations
has had two primary aims. One is the study of the new effects such as
localized and resonance modes which are directly the results of the presence

of defects [58,59]. The second type of study is the use of impurity atoms
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as probes, generally through the relaxation of selection rules, for studying
dynamical properties of the essentially perfect host crystal.

Before using Green's function methods to obtain the actual solution, consider
the physical picture. In a crude picturé, the defect mass M' can be looked
at as being coupled by a force constant «' to the rigid lattice so that it

would tend to vibrate at a frequency‘a%, where

= 4112%', . (IV.1)

2
Yo

The cut-off frequency for the monatomic lattice is w = 2mp. If wj > w

0 m?

the vibrational frequency characteristic of the defect is higher than that
which can propagate via phonons through the crystal. It must therefore
possess nonpropagating modes that are (exponentially) damped in space. This
is analogous to the exponential attenuation suffered by microwaves in wave
guides at frequencies below cut-off. The corresponding mode is called a
localized mode and though the picture above is crude, it may be observed
that localized modes will occur under the appropriate conditions for a light
jmpurity (M'< M) or one coupled to its surroundings more strongly than a
host atom (a' > a).

In reality there are additional complications due to the vibrations of
the surrounding lattice. In non-Bravais lattices which possess both optical
and acoustic branches, the localized modes may occur at frequencies in the
frequency gap of the host cryﬁta] or above the maximum of the optical branch.
Also, the impurity may have internal structure, that is, it may be a molecule
or ion with its own characteristic frequencies that would tend to fall out-
side the phonon band frequencies. These internal vibrations would become

localized, nonpropagating modes once the ion is in the crystal.
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Suppose, on the other hand, that W is within the band of allcwed
freguencies. The excited impurity atom oscillating at w, can then lcose
energy by exciting phonons of the same frequency. This will cause damping -
in time - of the oscillation. If somehow the impurity is coupled only
weakly to the system or if the density of phonon states at frequencies near
Wy is small, the damping will be weak and the impurity will oscillate for a
long time independent of the surroundings. It will thus have a frequency
spectrum centered at some W shifted from W because of thé dynamical
response of the lattice. It will possess a width I which is a measure of
the density of phonon states. Such a mode is called a resonance mode or a
virtual localized mode. As far as the impurity is concerned, the state is
quite similar to a localized mode. If rr <<wps both behave as a simple
Einstein oscillator.

The simplest kind of resonance occurs for a heavy impurity M'> M or oﬁe
weakly coupled to its surroundings. At low frequencies there are only
acoustical phonons and these have a density of states proportional to w?2.
This dependence is sufficient to guarantee that, 1f the resonance occurs at

low encugh frequency, it will be narrow.

1. One-Dimensional Crystal with Defect

To examine the behavior of the localized modes, consider a monatomic
linear chain ( 39 ). For the perfect chain with force constants & and
atoms of mass M, the equations of motion assuming nearest neighbor interactions
are

PAREMEARY ARCT IO RUES R M (1.2)



Substituting % = Une1“t, the time independent equations are
2 o =
Mw Un + a [Un+'| 2Un + Un_-l] 0 (IV.3)
which could alternatively be written in matrix notation as

OCU =0, (Iv.4)

where

U2
Uy
and o, is a N x N determinant defined by
- 2 - -
Wy = M2 8y = @ 600 =2 6 + 6 pn ] (IV.5)

The condition for non-trivial solution is then
det {d{ =0 (1V.6)

which leads, with the cyclic boundary condition Un = Un+N to the solution

U (s) = p2nisn/N e
and the dispérsion relation
2
2 _ 2[5, 208
W =W | sn N]’ (Iv.8)

- o« . N
wheredoL Ew\f;; and s > +1 ., ... > numbers the normal modes.

When the crystal is perturbed by defects, some force constants and masses
are different from the others. Then the coefficients of certain u's are

different and the equation which shows the effect of these local changes is

ol gn Uy = 1 (&hdpy U (1v.9)
n k
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vhere (&{) is the matrix characterizing the defects. Its rank equals the
number of degrees of freedom affected by the introduction of the defects. If
the defects are few and localized this is a small number.

The most convenient way to solve the above equation is through the use
of Green's functions [62, 63]. The Green's function G, is defined by the
equation

La6=1, (IV.10a)

or

$dnk Gkn = Smne (IV.10b)
k

i.e., G is the matrix inverse to L.

Eq. (IV.9 can be solved in terms of G as

U, = QE Gn(GL)Ek Uy (IV.11)

The unknown displacements { Un‘ appear on both sides of this equation.
and hence, Eq. (IV.11)can hardly be called a solution. However, it does
express the displacement of any atom in the chain in terms of the few atoms
directly affected by the intorduction of the defects since (GL)mn is zero
except for these atoms.

Eq. (IV.11) may be written as

Ek U ey, -G (sL)y ) =0 (1v.12)

or in matrix form,

(I-GgsL}) U=0. (Iv.13)

The condition for non-trivial solution of these equations is
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det {1-GeLY =0. (1v.14)

This yields the frequencies of the perturbed normal modes.
For an application of the above, one needs to find the Green's function

first. For this, recall that the Kronecker delta can be expanded as

N/2 (n-n)

= 2ris(m-n)/N

S =W e . (1v.15)
S=?+.|

Now G . can also be expanded in a Fourier series as

N/2 ( |
-l 2ris{m-n})/N
Gn =N ) ; fo e . (Iv.16)
s=-5 + 1

Substituting from (IV.12 and (Iv.13 into (Iv-76) and using (1y-2),

the Green's function is obtained as

: N/2 ~ 2mis(m-n)/y
e .
Gmn W SZ-%-'H Mm2-2u+ZaC052ﬁ-§- (v.17)
Replacing s by -s it can be easily shown that
G =G | (Iv.18)

and depends only on the difference |m-n|. Thus the Green's function can be
written as a function of a single index &, =6_,.

Maradudin [64] has shown that G2 can be expressed as

G, = 1 [Cot'gi- cos 2¢ + sinle|e], (IV.19)
2 sin¢
a

where

RE " C M2
¢ =2 sin 1 gz- = CO0S 1 { 1- B%E‘z . (1V.20)
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Now consider the application of these results to a substitutional
isotope defect at n = 0. For simplicity, assume that the force constant

)

is unchanged. Only those modes of the chain that are symmetric (i.e., Un=U_n
are affected by the presence of the defect because for antisymmetric modes
®n=—U_n) the origin is a node and hence not affected by a mass change at

the origin.

The elements of L are given by

(_5L)mn = g Mw? L (Iv.21)

where ¢ is the mass defect parameter defined previously and Eq. (IVv.1) becomes

= 2 .
Un e Mw GnU0 (1v.22)

The vibration of the defecf can be determined by setting n = o in (IV.20),
yielding
1=c¢ szao. (Iv.23)

Substituting for G0 from (IV.19) and (20), the values of ¢ which when
substituted into (20 ) give the perturbed normal mode frequencies are the
roots of

£ tan (9 /2)= tan N—Z‘P (1v.24)

€ro

I
|
/’/ |
/ ! Fig. 6. The graphical solution
I €-0 of Eq. (IV.24) for the case N=12.
i

°]
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The right-hand side of eq.( 24) is plotted against the left in the
above figure for N = 12. In the absence of any defect the allowed values
of @ are given by the intersection of tan N¢/2 with the horizontal axis since

Ep) é‘gﬁi . When e<o, corresponding to a heavy impurity,

Tor a perfect lattice ¢
the allowed values of @ are lowered relative to the unperturbed values. On
the other hand, for e>o0, i.e., in the case of a light impurity, the allowed
values of ¢'s are above the unperturbed values.

(o)

Solving (2b} by successive approximations starting from o, =0, ', toa

first approximation,

o, * &S+ L tan™l (e tan I ) (1V.25)
and hence
: S
we ¥ | sin lr% | + —Iﬁ [(cos %)tan ])(e tan —;)‘l (IV.26)

The fig.£also shows that when e>0, there is one less solution than when
$=0. This "missing" mode corresponds to a complex value ¢ and has a frequency
>w , the cut-off frequency of the monatomic lattice. Setting ¢ = + iZ in

L:
eq.(22) one obtains, as N becomes large,

Z = an %—f—i (1V.27)

This solution corresponds to a frequency

.wf

/. >

wy . >wp - (IvV.28)

=
The time-independent amplitude of vibration Un of the nth atom

corresponding to this mode, recalling that Ur(s) & e'Mgs 15
U o (1" dzgynl (1v.29)
n I+e ' A



The displacements are wavelike in the cases described by (25), i.e., when w
is in the allowed frequency region. These wave-like solutions are called
“in-band modes". The last mode Eq. (29) however decays in space exponentially
as n increases, i.e., as one moves away from the impurity atom. This is a
localized mode as described to previously

An examination of the exact expression for the amplitudes of the two
types of modes (for detailed derivation, [51, p. 433-434])brings out another
difference between them in addition to their spatial dependence. The

expressions are

2 /2 1 b5
U = Ao - + —_— .
n(s) = (g rrm— 2%)]/2 x [cos ngg + e tan — sin |n| ¢.], o<ogen
(1V.30)
U,(s) = (1" B2 (=02 8 I oea | (1v.31)

= >
w = w e

'1/2), where N is

The amplitude of the wave-like, in-band mode is of O(N
the number of atoms, (in three dimensions, the number of unit cells in the
crystal), while the amplitude of a localized mode is of 0(1). The frequency
shift, too, is of O(N']} for resonance modes while it is independent of the
dimensions of the lattice for a true localized mode. Thus, in calculations
involving amplitudes or functions of frequencies, the change brought about
by the presence of a defect in the allowed band of the perfect crystal is

much less dramatic than that due to a localized mode.

2. Three Dimensional Crystal with Defects
Though the theory of the one-dimensional crystal illustrates the occurrence
of local modes, the realistic three-dimensional problem is worth considering

to illustrate the-technique actually employed in defect problems. While it is
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true one never has a crystal containing only a single impurity, in many
physical situations where the impurity concentration is small one can obtain

a good approximation for the effects of the impurity by multiplying the effect
produced by a single impurity by the number of impurities. This approach

nas been used successfully in infra-red absorption studies of defects with
concentrations not exceeding ]018 cm'3; It is reasonable to neglect the
interactions between true impurity centers. Once the concentration exceeds that
for which interactions can be neglected, the defect is no longer an "impurity"
but an integral part of the host crystal itseif. In such cases the system

is referred to as a mixed crystal, such (Si+Ge) systems.

The equations of motion of the host crystal (II.9) may be written as

A =0 (1v.32a)

where d:is now a 3sN x 3sN matrix whose rows and columns are labelled by the

triple index (ma) and whose (o3 2'n'B) element is given by

2 _ glo) ! }
{MKDJ 6££| Glﬂi. SGB ¢QB u|) 3 (IV-32b)

where the éi} are the elements of the force constant tensor for the unperturbed |
crystal. The matrix (g is a column vector whose 3sN elements are the

y 2
amplitudes {Uagl)} .

For later developments, it is useful to note here that the equation of

motion may also be written as

Mo -&8) =0 (Iv.32¢c)

whereM}O is a diagonal matrix whose elements are the masses at the individual
lattice points. Dividing the element of each row and column of this matrix

by the square root of the mass appearing in the corresponding diagonal element,
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the corresponding secular equation may be written as

M, || Tw?-D =0 (Iv.32d)

-
where[D0 is the dynamical matrix of the pure lattice.

When a substitutional impurity is introduced, the time-independent

equations of motion can be written as

2 ) 11 )
MB{M W2 8y 8y Sup - % () g})} 0, (1v.33a)

where M_  is the mass of the atom at the site gf) while @
u af

the force constants of the perturbed crystal. The secular equation

now represents

corresponding to (IV.32c) may be written analogous to eq (IV.32d) as

|M||Tw? B[ =0 (1v.34)

Eq. (1) can be written more compactly as

(L-s L) U =0, (Iv.35)
where
ol Y = _ 2 _
GLGB(&I 3Ry w (.Mm M}J)GR.E,I 5 1 GO.B
28"
¥ { aB u' ag) u )} (1v.36)
= - w2 MM 6 L &+ AQGB(Eu;R'u')

w %2t St Sag

Thus L has non-vanishing elements only if the site (}) or (21) or both
are the impurity site itself and the sites of atoms with which the impurity
interacts directly. It is therefore, a matrix which has non-vanishing
elements only in a 3n x 3n block where n is the number of lattice sites

including the impurity site, directly affected by the introduction of the
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impurity atom. If the impurity is a highly localized imperfection, n is a
small number.

Decause the potential energy of interaction is not generally known, the
elements of A¢ are unknown and they must be determined by comparing the
predictions of the theory with the results of experiments based on some
physical property affected by the presence of defects in the crystal. The
form of A¢-used must be consistent with those general invariance and symmetry
conditions (II.6,7,8) which apply to the imperfect crystal.

The conditions (II.6;7,8a,b) based only on the quadratic nature of the
potential energy expansion continue to hold. However, the presence of an
impurity atom distinguishes one lattice site from all the others. The crystal
is no longer taken into itself by a displacement through one of the translation
vectors of the crystal. In other words, the crystal has lost translational
symmetry. This means A@ag(zz;zﬁi‘ ) depends on both 2 and &' and not
merely on the difference. These abservations lead to three general conditions

on the force constants, viz.,

(1) ae g (ausetut) = ae (a'u'sm), (Iv.37a)

(ii) ¥ musoau;m Y=Q (1v.37b)
2],1 . - i 1

(ii1) } A%B(m;z‘u')rYgf‘.) = 3 A%Y(m;z'u')rscf.). (IV.37c¢)
21}‘1 zlul

Because of the 1o§s of translational symmetry, only some set of symmetry
operations which must be of the form [S|0] still take the crystal into itself.
These operations are necessarily point group operations about the impurity site.
The order of this group may be equal to or smaller than the order of the point

group of operations which when applied at the impurity site take the perfect
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crystal into itself. The law of transformation of the elements {ﬂ@as(ﬁi;i'u' }
can therefore be written as

(L.IM] sLoMs) =}

B(E-‘uiﬂ,u }s (IV.37d)
8182

S $
a8y “232 31

where (LM) is the lattice site into which (QW) is taken by a proper or
improper rotation described by S, applied at the impurity site, which takes
the crystal into itself. The equations (IV.37) are general, and must not
be violated in any calculation of an impurity induced property.

To solve the equations of motion, the usual technique is to introduce

the Green's function matrix defined by

-1

ol V. 2
uB(ﬁJsﬂu sw)

G, (ﬁi Lutiw?) =L

Using the eigenfunction expansion technique as described for instance by
Jackson [65] p. 89, one can expand the Green's function for the impurity
problem in terms of the normal coordinates of the host crystal, which are
the eigenfunctions of the homogeneous equations corresponding to eq. (IV.35).
This then gives |

1 (o [3) W (" 83)

I S )
NQHM, e sz w? - w?(q)

G gl tsu?) =

x explig. #(%) - FEO 1, (1v.38)

where wj(ﬁ) is the frequency of the normal mode of the perfect crystal described
by the wave-vector q and phonon branch index j. wﬁllaj) is related to the

polarization vector'%@ilaj) of by a phase factor,

W |gd) = ew]di) e -14.76) (1v.39)
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The sum over g in (5) is taken over the first Brillouin zone for the crystal.
Using the transformation properties of mj(ﬁ) and w(ﬁlaj), the Green's
function (5) may be shown to satisfy the same boundary conditions as the
displacements Uagf) (i.e., cyclic boundary conditions). Also, G has the
same transformation as ¢{°).

Using Green's function, Eq. (IV.35) can be written as

= G(sl)yg . (IV.40)
By suitably labelling rows and columns, since &L has only a few non-vanish-

ing elements, it may be partitioned as:

|
8o !
L = ( 0 : 0 ) (IvV.41a)

LG |
G = <‘..9-_:..‘.?. , a = fp) - (1V.41b)
Gy} Gop 2

So that & and g are 3nx3n matrices, G]2 = Géq is a 3n x (BSN-Bn) matrix, and
Goo is of order (BSN-3n1x(3SN-3n). The column g; has as elements the 3n
displacement components of the impurity atom and the atoms with which it
directly interacts.

Substituing (8a) and (8b) into (7) the following equations are obtained:

@, 315,?@] , (1v.42)
&, = 6,84, . (1v.43)

Thus the displacements’ of the atoms in the space of §if are obtained from the

solution of a set of 3n homogeneous equations in the 3n unknown displacement



components of these atoms.

The condition that (9) have a non-trivial solution is

Alwh = | T-gduf=o0- (1v.44)

The roots of this equation are the frequencies of those normal modes of the
crystal which are perturbed by the introduction of the impurity. This
equation shows that not all modes are perturbed by the presence of the
impurity. Since the determinant of a product of two matrices is the product

of their individual determinants,

[L-si)= (LHE- Gshl: (1V.45)
Therefore,
z LSk
Alw?) = |I- Gs L] ™ (IV.46)

_ |M* (w*D- D) M*|

T (o 1= D M (.47)
0% we
= l-%:\ '(Ts -Grca:; ) (1v.48)

where (48] follows from (47) due to the fact that the square of the frequencies
of the lattice are eigenvalues of the dynamical matrix. The normal mode
frequencies of the unperturbed c¢rystal have been denoted by W e
Eq. (48) shows that only those modes of the crystal which are perturbed
by the introduction of the defect contribute zeros to the determinant
|a(w?)] . The factors in the product on the right-hand side of (48) which
correspond to the unperturbed normal modes cancel. This shows that not all

of the modes are perturbed.

To proceed with the eguations of motion, the elements of the dynamical
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matrix for the perturbed crystal are given by

28!
')
(:-1) _(u_ " (IV.49)
GB H ]/2
(M M0 o)

u
Because the modes of the perturbed crystal can no longer be labelled by a
wave vector E and branch index j (translational invariance and Bloch's
theorem being no longer applicable), the modes are usually labelled simply

by an index r running from 1 to 3sN. The eigenvalue equations for the

perturbed crystal are then

- e (r) 2
e Dby S I(h) = w2 B (Y (1v.50)

The matrix D is still real and symmetric so that {B»(r)g:)} may be chosen

to be real, and orthonormal. Then

B&")(:“) Bi‘“)(j) 6 (1V.51)

rrl )

B&”(j) B(’")(u ) = (1V.52)

I
we
¥ LI
r

The reduced amplitudes §za(r)gf)g defined by

B(r) l)
—éLM ) 77 (Iv.53)

(rl(u) _(

are the displacement amplitudes of the perturbed crystal vibrating in the
rth normal mode.
For those modes of the crystal which do not feel the presence of the

impurity atom, the conditions

"
o

(sl s (IV.54a)

n
(=]

Ly (IV.54b)
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must be simultaneously satisfied for the amplitudes of the atoms vibrating in
each mode of this type. The atomic displacements in these modes are thus
approximate superpositions of the amplitudes of the unperturbed crystal

which satisfy the additional condition (54a). Therefore, the displacement
amplitudes given by the solutions of equations (42) and (43) are only for
the modes perturbed by the introduction of the impurity into the crystal,
whose frequencies are given by eq. (44). The normalization condition for
both kinds of modes however is given by Eq. (16) which in terms of Uy
becomes

m{ Mmugs‘l(‘f‘} UOES')(If) = G (1V.55)

However, for those modes which are affected by the introduction of the
impurity atom, the normalization condition for the vector tﬂ(s) can be
rewritten as a normalization condition for U](s) in the space of sL.

The spatial dependence of the solutions U{S) of (42) and (43) is
determined essentially by the dependence of GuB(hJ;z'u‘;mz) on the separation
between unit cells & and &'. This dependence is different if the perturbed
frequenqycos lies in one of the bands of frequencies allowed to the normal
modes of the perfect crystal than when it does not.

Because the elements of the determinant A(w?) whose zeros are the
frequencies of the perturbed normal modes are linear combinations of the
elements of the Green's function matrix (eq., see eq. (45) and because the
Green's function (35) has poles at the unperturbed normal mode frequencies
(i.e., G »= as w » mos)’ there is in general at least one solution of the
equation a{w2) = 0 between any two unperturbed frequencies.

It can be shown, as in the linear case,that the displacement amplitudes

decay faster than exponentially with increasing distance from the impurity
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atom, i.e., the modes are localized. It is also found, in general, that in
a three-dimensional crystal localized modes do not occur for arbitrarily
smaTT difference between the mass and force constants associated with the
impurity atom and the one it replaces. An isotopic impurity, i.e., an
impurity which differs from the atom it replaces only in its mass, does not
give rise to a high frequency localized mode unless its mass is lighter than
that of the atom it replaces by a critical amount which depends on the
frequency spectrum of the host crystal [64]. Critical impurity masses also
exist for the occurrence of localized modes in a gap in the frequency
spectrum of a crystal, and there are critical values of the perturbed force
constants which must be exceeded in order that localized modes occur. The
mathematical derivation of these conditions are very involved.

It must be noted that though the partitioning gives rise to the
matrix 3351.1. which is smaller in dimension than QSU.,even gSLcan be
quite formidable in order. In the case of an isotopic impurity in a cubic
Bravais crystal with-nearest neighbor interaction, 3151.15 a 3x3 matrix,
proportional to the unit matrix, and the determination of the eigenvectors
and eigenvalues is easy. However, if the defect has mass and interactions
with nearest neighbors different from the host lattice, the order of gygi
increases considerably. If z is the number of neighbors with which the
impurity interacts then Q$S“. is or order 3(z+1) x 3(z+1) so that in the
case of a simple cubic, body-centered cubic or face-centered cubic crystal,
q;gﬂ. becomes a 21 x 21, 27 x 27 and 39 x 39 matrix, respectively. In such
cases the eigenvalue problem becomes difficult to solve and a systematic

approach using group theory becomes essential.



3. Defects with Internal degrees of Freedom:
So far, it has been implicitly assumed that the introduction of the
defect did not change the number of degrees of freedom associated with the

pure lattice. One could conceivably introduce defects, for instant, as in

2
degrees of freedom are added to the crystal. The generalization of the

the experiment where NO, was substituted for C1~ in KC1 [66], where new
theory for this case was first worked out by Wagner [67] and is applicable
to the case of molecular impurity centers and of interstitial atoms. The
main result of the mathematical derivation is that if any of the natural
frequencies {wk'g of the molecular system lie in the band of allowed
frequencies for the lattice, the corresponding lattice modes are strongly
perturbed - as is to be expected physically from the resonance type of
situation.

The use of symmetry and group theory in lattice dynamical defect
problems:

For certain derivations, it is convenient to generalize Eq. (IV.42) as

a general eigenvalue equation so that

(3) (s)
ﬂ\dg“g’ =2 ¥ : (IV.56)

The eigenvalue As is now a function of «w* and comparing (IV.56) and (IV.42)
one sees that the determination of the perturbed normal mode frequencies is

equivalent to solving the set of equations

A) =1 | (s=1,2,...3n). (1v.57)

Now although g and df are separately symmetric in the indices Uy
and (‘()‘,{‘fg), the product Qdﬂ in general need not be symmetric. This leads to
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~
the result that “P(S) and EF(S) are not orthogonal vectors. One then has to

introduce a set of left-hand eigenvectors {Sa(s)(m)l such that

(§@)gdt = % (), (1.58)

where S‘(s} and ‘\}«(5) have the same eigenvalue A;.
It can be shown [52] that S(s) and .q‘(s) can be chosen to satisfy the

following orthonormality and closure conditions:

) Sa(s)(m) "*’wa(sl)(m) = g (1v.59)
fua

(s) W'y = . IV.60
ga ° (&) “"'B(S)(ﬂ-u ) = 52£. 61111'6&8 ( )

This implies that the (1x3n) column matrix {"P(S)S and the (3nx1) row
matrix {%J (5)3 are inversesof each other.

The inverse matrix ('EI-S)W)'.I is required for application to the theory
of impurity induced infra-red absorption and Raman scattering. Using the
above conditions it can be shown that the left and right hand inverse of this
matrix (I -3)6.@) is given by

0.5 § N
s (1- As\

(1-qsdy g = 2 (1V.61)

[t is therefore useful to be able to determine the eigenvalues and
eigenvectors of & .

Despite the fact that the perturbed crystal no longer has translational
symmetry the reduced Green's function matrix @ in the space of sJ transforms
in the same way as the complete Green's function matrix G, provided the
operations are applied at the lattice site occupied by the impurity atom.

That is, % has the symmetry defined by [S|0], where [S[%] is the space group
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of the original crystal. The matrix $4 transforms according to some set of
symmetry operations (R) depending on the symmetry of the defect. The defect
can have a higher symmetry than the host crystal as when the site of the
defect still possess the symmetry of the full rotation group (S) of the
space group of the host crystal, while the surrounding atoms no longer possess
sych symmetry. Alternatively, the defect may have lower symmetry, as in the
example of a defect introduced substitutionally into a simple cubic crystal
with different force constant along x- than along y- and z- directions. The
symmetry group y’of the perturbed crystal at the defect site is the inter-
section of the groups (S) and (R). This group determines the structure of
the matrix A= %XQ Often, this matrix is further simplified by special
simplifications in the form of Sﬁ. For example, it may be assumed that only
central force interactions exist between the atoms of the lattice.

Because only the coordinates of the defect atom and the atoms with

which it directly interacts appear in the matrix A, it is convenient to

picture the defect atom and the atoms with which it interacts as comprising

an n-atomic molecule, separated from the rest of the crystal. The conventional
techniques of normal mode analysis molecular spectroscopy [3] (also described

in detail by Maradudin [52] ) then can be followed.

Briefly, the procedure is as follows: One first finds the representation,
{F(S)} of the group 7 in the basis given by the vector {?Q.(lu)} , where
fTa(zu)]is the displacement of the impurity when all the other atoms are not

displaced. This representation is called the total representation. It is

then reduced into the irreducible sets {r(d)(sﬂ. With the matrices {r(c)(S)j,
One can determine the forms of the eigenvectoré which transform according

to the different irreducible representations contained in the total re-

presentation.
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B. Impurity-Induced Raman Scattering by Crystals:

Though the first experiment proposed for the study of impurities involvea
the Mdssbauer effect and the first exberimental evidence of locai modes in-
voived infra-red absorption and neutron scattering, there has been tremendous
interest in recent years in the Raman effect as an experimental technique
for the investigation of the vibrational properties of crystals containing de-
fects or impurities. This interest has been mainly due to the availability
of lasers as excitation sources. At the same time, it is now possible with
the aid of high speed computers to determine numerically, on the basis of
realistic models, the eigenvalues and eigen functions of impure crystal thus
facilitating detailed analysis of their Raman spectra. The first Raman spectra
of crystals containing substitutional impurities was obtained by Stekhanov
and Eliashberg [69], for KC1 crystals doped with Li*, Br™ and I”.

In this section, the modifications in the Raman spectrum of a crystal
caused by the introduction of impurities are outlined. The development is
drawn mainly from the articles by Maradudin et al., [53], [68].A

A crystal loses its translational invariance when an impurity is intro-
duced. Recalling the development of the theory of Raman effect in crystals,
it is evident that this implies the q = 0 selection rule no longer holids for
the imperfect crystal. In other words, the phonons involved in Raman
scattering may 1ie anywhere in the Brillouin zone for this case. Thus there
are two types of effects caused by the introduction of the impurity.

(a) Impurities make it possible to induce first-order Raman scattering

processes with a continuous spectrum in crystals in which, in the absence

of impurities, none are possible.

(b) The 1line spectrum in those crystals in which a first-order Raman



effect exists in the absence of defects, may be replaced by a continuous
spectrum, which reflects the singularities in the frequency spectrum of
the perfect host crystal, as well as resonance or Tocalized modes if

impurities are present and possess the appropriate symmetry.

The theory is based on the method of Born developed in Sec 1B. According

to eq. (I.63) the intensity of Raman scattering per unit solid angle is given

by
"

w
I(w) = —2 ] ee,i W g g (1v.62)
2.3 BT a B ay BA Y P

where q denotes the phonon frequency involved in the scattering. In the case

of discrete states, as has already been mentioned

* 1
(Q) _ I [exp(-8E)/Z]1 <m|Py [n><n[P_ m> x 6(a(E E)) (Iv.63)

i
ay, BA mn

or, equivalently, in integral form,

i

(.1 [ g, (6)*
ay,8 2 [dt e T <Py TPy (o) (1v.64)

In considering first-order scattering one is interested only in the term

E g & Ry 5 g i i B ¢
e PaB(u)UG(u).1n the expansion of the polarizability EB in terms of atomic

displacements U_ . Then the intensity of light scattered by the one-phonon

(first-order Raman) process is governed by the function
; (Q) _ gy ap & _—
laY:vBA B LEO' PU--\((.LI) P.ﬂ.l(p') Io_p(f-].l,l u ,N) ) (IV.GS)

where b

oo
%F Jr dte~Tut <UG(Eu}t) Ud(z'u';o)

-0

Idp(lu,l‘u‘;m)

with < > denoting the displacement correlation function [See Maradudin [53b].
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Tne components of the jonic displacements can be expressed [(53b)
p. 287] in terms of phonon creation and annihilation operations bz and bs
for the perturbed crystal, as

1/2 p(s) (4

U, = (2 ] 247, (bgbD), (1V.66)
2M, s (ws)
where B(S)( ) are the normal coordinates of the perturbed crystal given by
eq. (IV.50) .

The Heisenberg representations of bg and bS are given by

b (t) = e INt/N b e 1HEA b, &5, (1V.67)
: SiHEA _ t fwst
b:(t) - e]Htfﬁ b: e : bS e 5

where H is the Hamiltonian for the perturbed crystal. For a canonical

distribution the time thermal averages of their products are given by

+ _ . o
<bg bei> = 81 NG <bg b, assl{nsﬂ'g (IV.68)

<bs bsl> = 7<b: bZ|> = 0,

where ns is the Bose distribution function

n.=nlw.) = {exp( ) -ll} “]. {1V.69)

S S

If the ionic displacement is replaced by the expansion and use is made
of the properties of the creation and annihilation operators, one gets, after

a considerable amount of work

o (221" 50) = ({%”i— 4172 )(sinh m)z Bés)(i) Bgs)'(i:) 8(u2-u2)

S
ﬁ)— )]/2 sin h w Im UGD(R.u,R.'u' swZ=10).
A ‘ (1V.70)
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llere, the notation f(w2-10) stands for.éQQy flwZ-ie), while qu is the Green's
function matrix for the perturbed crystal, i.e., the elements of (d= (L -éﬂ)-T.

[t is given by

1 o G
U (2p,2'u's02) = 1/2 B i . {IvV.7
Up( H B ) (Mgumg'u') / g 22 ( ]}
s
Now, 1 can be written as
_ay,BA

i =£ﬁ—(")‘n.,,w )(Sin h w) ) P ng(ﬁ:) LU (2st'n' su?-io).

ay,Ba Lo oy 'y
L uo (1v.72)

This result is general and relevant for any crystal containing defects. Its
actual evaluation, however, requires explicit knowledge of the electronic
wave functions (for the evaluation of sz) as well as the vibrational eigen-
frequencies and eigenfunctions of the perturbed crystal. Therefore, some
approximation based on a model is necessary before one can proceed further.
Maradudin et. al [68] have applied this theory to the case of a rocksalt
structure, assuming the impurity interacts only with its six nearest neighbors.
The impurity is still at a center of inversion but the neighbors no Tonger
passess this symmetry and for these, the coefficients sz(i) no longer vanish,
unlike the case of the pure cubic crystal. Application of group theory helps
in the reduction of this third order tensor. If an impurity induced first-
order spectrum with its polariza;ion dependence can be observed experimentaily,
the values of the elements of the tensor can be inferred.
One advantage possessed by first-order Raman scattering experiments in
comparison with infrared lattice vibration absorption experimentsis that
they can give information about the symmetry properties of the vibration

modes responsible for the scattering. For instance in the case of scattering



by H impurities in KC1( ), it was found that only modes of A]g symmetry

contribute to i + 2

5 1xx,yy’ only Eg modes contribute to i -

K XK 1xx,yy

and only F29 modes contribute to i Therefore, modes of definite

Xy ,Xy'
symmetry in a perturbed crystal can be studied with suitable experimental
arrangements - viz., particular crystal orientations and polarization of
incident and scattered 1light.

In the case of crystals which display a first-order Raman spectrum in
the absence of impurities, the principal effect of introducing impurities
into the crystal is to replace the line spectrum by a continuous spectrum,

since in general ImUaB(zu;R'u';mz-io) is a continuous function of w. The

details are worked out by Maradudin [68] and will not be repeated here.
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V. COLOR CENTERS IN AZIDES AS AN EXAMPLE

A. INTRODUCTION

Solid inorganic azides have formed the subject of extensive study both
by chemists and physicists. The stability of azides vary over wide 1imits
and many of them can be decomposed readily on exposure to heat, 1ight or
ionizing radiations. Most studies by chemists have been aimed at under-
standing the mechanism of decomposition [70, 71, 72]. The alkali metal azides
which form the subject of the present work are relatively stable, while the
azides of silver and copper readily decompose.

The azide radical N3 has been found to play an important role in the
damaging of azide crystals - both in the caseé of photochemical decomposition
and irradiation coloring. In fact, color center formation has been proposed
as an intermediate step in decomposition process [73]. The infra-red spectra
of irradiated alkali metal azides have been studied [74,75] with a view to
understanding the N3 radical structure. These studies and the electron
spin-resonance studies [76,77] have led to the proposal of different models.
In the latest of the infra-red studies, Bryant [4] suggests a triangular
structure for the azide ion in the irradiated crystal. The structure of the
defect N3 is still a subject of controversy. The earlier experimental and
theoretical situation is summarized in the review articles by Gray [78] and
Yoffe [79].

The study of Raman spectra of pure and irradiated single crystals of
azides was undertaken for several reasons. The color center in the azide
system is apparently a simple defect and can be used as an example to study
the nature of Raman scattering by defects. This is facilitated by the fact

that the Raman spectrum of the pure azide is simple and consists only of a



few lines so that lines arising from the color center modes should be easily
discerned. Furthermore, the Raman spectra of irradiated single crystal
azides have not been studied and a detailed study of the polarization
dependence and frequency of the N3 vibration may help to establish the nature

of the defect conclusively.

1. Color Centers in Azides

Transparent crystals like alkali halides are found to develop color on
prolonged exposure to ultra-violet, X or ¥-irradiation or when heated in the
vapor of a metal or hydrogen. It is to be expected that any defect induced
in the crystal by these treatments will alter the charge distribution and
change the electronic levels in the vicinity of such defects. This would
then bring about changes in the electronic absorption spectra and give rise
to new absorption bands. The defects producing a fco]oring" of the crystal
due to these absorption bands are called fcolor centers". "“A color center is
a lattice defect which absorbs visible 1ight", as defined by Kittel [13, p. 572].
Almost all the work on color centers have been done on the alkali halides as
these are the simplest diatomic ionic crystals, and are transparent to
visible radiatién. Hence the classification of centers into F-, M-, R-, V-
and U- types of centers is based on the different characteristic types of
alkali halide color centers. The F-center which is the simplest prototype,
has been studied most extensively. It is well-established that the F-center
consists of a negative-ion vacancy in which an electron has been trapped. A
V-center, which is the other type of color center with relevance to the azide
problem, is poorly understood inspite‘of extensive study. The usual model

for the V-center is that of a “self-trapped" hole. Extensive descriptions



of color centers and their properties are given in a recent book edited by
Fowler [80].

Inspite of the structural dissimilarities between alkali azides and
alkali halides, both NaN3 and KN3 show remarkable similarities with the
corresponding halides in the formation of color centers. It has thus become
common practice to consider azides as being analogous to the alkali halides with
the halogen ion replaced by the azide ion and to assign models for the color
centers based on the types of centers obtained in the halides.

Considerable variation has been found in the position, half-width and
temperature behavior of color center bands in the alkali azides depending on
the nature of the irradiation producing these centers. Various detailed
investigations have been carried out, mainly of infrared and optical
absorption spectra of polycrystalline azides using x-ray [72], ultra-violet [74]
and  [81] radiation. Only color centers produced by ultra-violet radiation
are considered in the present study.

A variety of techniques have been used to study the nature of the ground
states of color centers. Since most color centers involve an unpaired
electron or hole in a bound state, electron spin resonance and electron-
nuclear double resonance (ENDOR) form a useful technique for their study
[80, Chap.8]. The centers in ultra-violet irradiated NaN3 have been studied
by King et. al. [82] and those in KN3 by Horst and co-workers [76] using ESR
techniques. The most widely used technique fs, of course, the study of optical
absorption spectra [83].

However the typical color center absorption lines are broad and structureless.
The breadth arises because of the interactions with the phonons or lattice

vibrations. These have the effect of producing a random distribution of
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Tocal strains in the lattice so that no two centers have quite identical
surroundings. This random distribution then gives rise to the typical
roughly Gaussian shape of color-center optical spectra. Thus the effect of
the lattice vibrations on the color centers are not easily derived from an
analysis of the optical spectra.

It is in this context that Raman spectroscopy is likely to become
perhaps the most powerful technique of studying color centers. Kleinman [84]
proposed that a study of the Raman effect of the F-center in an alkali halide
like KC1 would yield information about the coupling of the color center to
the lattice. He also suggested the possibility of operating advantageously
in a resonance Raman region by using an exciting wavelength in the F-band.
However, since the F-band is extremely broad and the resonance condition will
also imply strong absorption of incident and scattered waves in the sample,
there is no likelihood of a great enhancement of the scattered intensity over
the non-resonant case. The only measurements of Raman scattering by color
centers are that of Warlock and Porto [43] who observed first-order Raman
scattering by F-centers in NaCl and KC1 and the work of Mitra [85] who observed
Raman scattering in additively colored Mg0. The spectrum observed by Porto
must be due to the vibrations associated with a color center since in a perfect
alkali-halide crystal, there is no first-order Raman scattering. However
their data is not sufficiently detailed to determine the extent to which the
vibrations causing the Raman scattering broaden the F-band. Recently,

Henry [86] has shown that Raman scattering gives a direct measurement of the
frequency spectrum of the lattice since a given vibrational mode contributes
to the total Raman scattering cross-séction in direct proportion to its

contribution to <E2> s i.e., the second moment or mean-square energy

lattice
of a phonon-broadened absorption band. Thus the spectrum of frequencies
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measured by Warlock and Porto is just the spectrum of frequencies that
broaden the F-band, Though in a complete analysis of the optical absorption
spectra, these characteristics of the Raman spectrum would prove useful,

the object of the present work is to use Raman spectroscopy to determine the
configuration and-symmetry of the color centers in the alkali azides. In
addition to the features described above, Raman scattering permits one to
observe an event in which only one lattice frequency is excited whereas

optical absorption generally excites all the lattice frequencies simultaneously.

2. Crystal Growth

Flawless single crystals of alkali azides are not easy to grow: Of tﬁe
usual methods of crystal growing - from melt, from solution or by black
magic - the first method is inapplicable since azides detonate and decompose
at their metling point. A combination of the last two methods seem to be
the best. The solubility of the azides in water as a function of temperature
were studied in order to determine the suitable temperature of growth. The
solubility was found to be 50 gms of KN3 per 100 cc and 42 gms of NaN3 per
100 cc at a temperature of 20°C. The solubility increased very slowly for
KN

and RbN, near 20°C, but quite radically after approximately 25-30°C at

3 3
the rate of about 5 gms/100 cc/5°C. In the case of NaN3, it was found that

the solubility varied with about the same temperature coefficient from about
20°C to 40°C, but had a plateau around 45°C. Thus it seems better to grow

KN, and RbN3 crystals around 20°C and NaN, crystals around 45°C by a

3
constant temperature evaporation method than by cooling as is usually done in

sealed-jar methods.

KN, and RbN3 grow in the form of flat crystals, the fastest rate o growth

3
being parallel to the (001) plane of the tetragonal unit cell if the evaporation



is exceedingly slow and takes place from a large flat surface at a constant
temperature. In fast evaporations, however, competing growth of the (101)
family of planes tend to give pyramidal crystals. This tendency was a
feature in crystals grown by seeding solutions also. As two plane faces

at right angles to each other are needed for the Raman experiments, the
pyramidal structure was a major disadvantage. This is because none of the
growth faces are of the (100) family in this case and two faces will have to
be polished then. The c¢rystals are brittle, small, and very difficult to
polish. Fast evaporation and seeding a water solution also tended to make
the crystals translucent due to inclusion of water. Such trapped water
could be observed bubbling out when these crystals were annealed. The
technique of diffusion of acetone or ethanol used by Marinkas [87] for
growing anhydrous Ba(N3)2 single crystals was tried since it was a constant
temperature method but failed to yield clear crystals except for RbN3. For
this method, a temperature of approximately 15°C was found suitable for RbNa.
The gel method of Henisch [88] was found to be inapplicable because all the
acids usually used for acidifying the gel e.g., tartaric acid, acetic acid,
reacted with KN3 displacing the N3 radical and giving clear crystals of
potassium tartrate acetate etc. The method that finally yielded perfect
transparent single crystals of KN3 was the evaporation of a solution just
below saturation (50 gms in 110 cc of distilled water at 20°C) in a
dessicator ﬁt 20°C. The solution was placed in a glass dish approximately
4" in diameter and the evaporation rate controlled by holes in the 1id.

The evaporation took place over six months. This yielded numerous good
crystals. |

NaN, crystals grow in film-1ike layers on the top of the solution and



are fragile and brittle. In this case a small surface area of evaporation
was preferred to promote the growth of a single crystal film, since larger
surfaces tend to form fragments rather than one single crystal. The best
crystals were obtained by evaporating the solution contained in a pyrex
test-tube of about 1 cm in diameter placed in a small aluminum furnace whose
temperature was maintained constant at 45° by a thermistor temperature
controller. Flakes approximately 1 cm in diameter grow over a period of
ten days, mostly on the surface of the sclution. Sometime, very clear
crystals grow in the solution and these should be removed as soon as they
reach a sufficient area. Leaving them for a longer period in the solution
gives rise to stacks of laminae that were difficult to separate. Inspite

of these precautions; the NaN, crystals appear twinned.

3. Crystal Structure of Azides: [90,91,92]

Potassium, rubidium and cesium azides all possess the tetragonal structure
while sodium azides is rhombohedral. Thus the azides with the larger ions
(K.Rb,Cs) have eight-fold coordination, while for the smailer cation (Na) the
coordination number changes to 6. The azide group N3 is Tinear in all the
azides. In the ionic azides, it appears as the N3 ion. In the perfect
crystal it possesses a linear symmetry.

Sodium azide is rhombohedral with the unit cell as illustrated in Fig. 7a
and belongs to the space group ng(R m). [90],[92]. There is a sodium ion
at the corners of the unit cell and the azide ion is arranged along the body
diagonal (direction [111]) of the cell. Each NS ion has six nearest -
neighbor sodium ions at a distance 3.28 A from its center. The layer-

~growth structure is one in which the sodium ions and the azide ions separate



Fig. 7b. Model of the
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into parallel planes perpendicular to the (111) direction. Thus the Nye
z-axis [50] is perpendicular to the flake. Being a rhombohedral crystal,
the Nye x and y axes can be chosen as two arbitrarily perpendicular vectors
in the plane of the film.

The structure of Potassium and Rubidium azide is illustrated in Fig. 7.
These crystals possess the tetragonal structure with a(%}ratio close to 1,
and belong to the sapce group DLE (I 4/mem) [90], [92]. Fig. (7,b) gives
the projection on to the (001) plane. The azide groups lie in planes
parallel to (001) and inclined at an angle of 45° to the (100) plane. The
crystallographic data drawn from Ref.4[90,91,92] are summarized in Table I
for easy reference.

The growth habit of KN3 crystals clearly indicates the four-fold (or C-)
axis of the tetragonal structure. This then would be the Nye Z-axis. In the
(001) growth face of the crystal however, the Nye axis could be chosen in
two ways (x,y) or (x',y') as shown in Fig. (8). It is important to determine
which of these are coincident with the x-ray crystallographic conventional

axes (x,y) so that the Raman tensors given by Loudon [35c] could be used

without ambiguity, especially in trying to classify the

4 4 ¥
/',;('
‘\\ ,
}<‘\
N\ Fig. 8 . Crystal Axes
N
\,x
\x/
N3 internal vibrations. The determination of the orientation of the x-ray

crystallographic axes with respect to the growth face was accomplished by

means of a Laue back-reflection photograph. The(%)ratio for KN3 is 1.14 and



o™
o)

: oAbt __
. 0
e gLl 8:8 b N Balk ) B
. . . 960"/ = % Leuobeua}al
962 9L"L 8:8 b ¥60°9 ="e pa.1ajuad-phog €\
e wees 0 gmE e o,
C ra w3 LL®2 :
{y)aJuelstip {*4)3ouR)Sip  UDLIRULPUO-0) 11un  Jaad 53UR3SU0) sse|) punodwogy
TTIN-H N-N S9[N29| O} L199 1e3sA4)

I 9L9el



123

is thus close enough to 1 to enable the orientation to be determined using
the cubic stereographic projection once a few Laue spots were indexed. It
was thus found that the crystallographic a-b axes coincided with the set (x;y)
shown in the figure and not with (x'y'). Nature occasionally smiles down
on the investigator.
Note, however, that the crystallographic axes of KN3 and RbN, are at
45° to the azide ion. This is an important point that arises in studying
the polarization properties of Raman spectra.
The Raman tensors for the crystal symmetry classes D3d and D4h are

reproduced below from Loudon [35] for convenience of reference.
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B. Electronic Spectra of Ultra-violet Irradiated KN3 and NaN:

The optical absorption spectra of colored KN3 and NaN3 were studied
in the region 3000-7400 A to observe the growth of the absorption bands in
this region corresponding to different centers as a function of the
irradiation time. The behavior of these bands was observed also on warming
up the crystal.

The crystal was sandwiched between two copper plates with circular
apertures about 2 mm in diameter, and placed in a crystal-holder of a
Helium Dewar. This dewar was used at liquid nitrogen temperatures and above.
The irradiation was done using a Pen-Ray mercury lamp placed close to the
circular quartz window of the Dewar so that rédiation from approximately
%-in length of the lamp fell on the crystal. This placed the lamp 1-1/2"
from the crystal. The set-up was identical for different irradiations.

A Quartz-iodine standard lamp was used as a continuous source of
constant intensity to record the absorption spectra. The light from the
lamp was focussed onto the crystal by means of a glass lens. This glass lens
also served to filter out any ultra-violet radiation in the standard lamp
spectrum which might have continued to damage the crystal while the spectrum
was being recorded. Repeated measurements of the spectrum showed that there
was no damaging effects due to the standard lamp. The spectrum was scanned
using a Bausch & Lomb 1/2-meter monochrometer with an IP-28 photomultiplier,
whose output was fed to a Keithley pico-ammeter. A slit width corresponding
to a band-pass of ~ 4A was used in all experiments. The spectrum was
recorded both on a chart recorder and on a digital printer.

The crystal was essentially in a vacuum, the enclosure containing only

the exchange gas Helium at a pressure 20-4011 in all the experiments. The
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crystal was cooled to approximately 85° K and the spectrum IO(A) of the standard
lamp as transmitted through the undamaged crystal was first recorded. The
crystal was then irradiated for a specific time interval and the spectrum

I(A) transmitted by the damaged crystal was recorded. The optical density

10844 E%— was then plotted as a function of wavelength for different
irradiation times. After a total irradiation time of 2-3 hours, the crystal

was allowed to warm up in steps of approximately 25° K. The temperatures

are maintained steady and the spectra recorded again at each temperature

step. The spectra of the crystals taken at these elevated temperatures

yields information on the thermal bleaching of the color centers.

The abosrption spectrum of the pure crystal taken photographically
showed no absorption for wavelengths greater than 2600 A and complete
absorptions below. The absorption spectra at different stages of coloring
and thermal bleaching were repeated with different crystals of KN and
Nal. At least part of the damage is permanent. Each crystal could be used
only once. The irradiation was carried out both with unfiltered radiation
from the Hg pen-ray lamp and with a wavelength of 2537 A, singled out using
an interference filter. There was no difference in the absorption spectra
in the two cases. The characteristics of the spectra for a given type of

crystal could be reproduced very consistently.

Potassium azide:

A typical spectrum of KN3 for different times or irradiation is shown
in Plate I. Two bands - one centered at 3600 A and with a half-width of
approximately 500 A and the second centered at 5600 A and with a half-width

750 A were found to develop on irradiation. These bands were also found
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EXPLANATION OF PLATE I
The optical density curves for KN3 as a function of wavelength and

irradiation time.
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EXPLANATION OF PLATE II
The optical density of the 5600 A and 3600 A bands in KN3 as a

function of irradiation time.
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EXPLANATION OF PLATE 111

The thermal bleaching of the color bands in KN3.
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by Papazian [74] and other workers [72], [93].

The 3600 A band has been called a V-band because of its general benaviaor.
The V-bands in alkali halides have been established to be due to the V-center
which consists of a (ha]ogen)é ion on the site of two halogen ions in the
lattice and is thus effectively a "“self-trapped hole". The V-spectrum of
KCT1 consists of an- intense band near 3650 A and a weak band near 7500 A.
These disappear at higher temperatures.

The 3600 A band in KN3 has a remarkably similar behavior as is seen from
Plates I, II. It appears on a short irradiation and saturates quickly with
continued irradiation. A small rise in optical density was observed at the
tail end- above 7000 A - of the region of measurement but one cannot draw any
conclusions regarding this region in the present set-up owing to the limit
set by the spectrometer. The bleaching curves show that the V-band also
bleaches out quickly at a temperature of 225°¢. This behavior has led to
the model of this center aé being a N3—N5 ion in analogy to the halides.
Horst et.al., [83], however, proposed a model for the V-centers as Né ion.
Their conclusions are drawn from ESR studies that this center consists of
NE ions. A mechanism for the formation of NE as conceived by Yoffe [89] in

photochemical reactions in azides would be

Ng+hv+Né+-N+e

This mechanism would seem, however, to lead to a permanent damage as the
nitrogen could easily diffuse through the lattice and be trapped at vacancies
or lost to the crystal. The readiness with which this center bleaches and
the crystal reverts to the optical density before irradiation as observed

in the present experiments seem to prefer the N3-N5 assignment. Such a

hole can easily disappear as a result of electron-hole combination, the

1
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crystal then recoveriné the original state. Also Horst's experiment coulc

have involved a different type of center as y-rays were used for the irradiation.
The strong band at 6300 A grows without saturating for a very long time

of irradiation and is decreased very little in intensity on warming up. This

band has been attributed to an F-type of center by Papazian. According to

Papazian, however, the band bleaches at room temperature. This was not the

case in the present experiment. The band persisted even at 315°K, and

the crystal had acquired a yellowish tinge indicating some type of permanent

damage. This behavior resembles that of the analogous centers observed by

Horst, who has identified them as a “N4 center consisting most 1ikely of an

unpaired spin associated with a planar configuration of four nitrogen atoms."

Shuskus et. al. [95] suggest that this N; ion is formed as a linear tetratomic

group along the [110] plane. Bryant in his latest work on the infrared spectrum

of damaged KN3 claims that a cyclic N3 with a D3h symmetry is the only meodel

entirely consistent with the infrared spectrum. A careful study of polarization

behavior of the Raman spectra of the colored crystal as discussed in the last

section is needed before any final decision can be made.
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Sodium Azide:

Though there are similarities between the absorption spectra of NaHS
and KNS, there are some distinctive differences as seen on comparing Plates I
and IV. There is no definite evidence of a V-band and it is difficult
to pick out any structure due to the large scatter in the 3000-4000 A
region.

The predominant band is centered around 6000 A and there seems to be
an indication of a band around 7000-7500 A. Papazian finds bands at 6120
and 7400 A 1in NaN3. The 6000 A band in the present experiments consist of
two fairly well-resolved bands whose peaks shift with increased irradiation
Very detailed studies would be required before a conclusive explanation of
this behavior could be found. It might be relevant to note-that considerable
change has been observed in the lattice parameter of ¥ -irradiated NaN3 [94].
The main effect is a contraction of the structure parallel to the azide ions.
There is also evidence of decomposition of x-irradiated NaN3 [93]. Mechanical
strain is also easily induced in these crystals and could arise both as a
result of the positioning required in the experiment as well as a result of
radiation damage. Al1 these factors have to be considered in detail for a
complete description of the color center in NaN3.

One distinct and intriguing feature of the NaN3 band at 6000 A is that
it disappears completely on warming up to room temperature and the crystal
appears undamaged and transparent.

Experiments involving very long times of irradiation and an examination

of absorption spectra over a broader spectral region should aid in deter-

mining the structure of these defects.
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EXPLANATION OF PLATE IV
The opticé] density curves of NaN3 as a function of wavelength

and irradiation time.
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EXPLANATION OF PLATE V
The optical density of the color center in NaN3 as a function of

thermal bleachinc.
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C. Vibrational Raman Spectra of Pure KN3 and NaNa.

The Raman spectra were recorded using the He-Ne laser as the exciting
source. The Raman spectrometer is described in detail by Johnston [96].

As good single crystals were not available at the time the measurements
were made, specific crystal orientations could not be chosen. Instead, an
optimum crystal setting which gave the best signal-to noise ratio for the
Raman spectrum had to be used.

There was a large amount of laser light scattered into the monochromator
with these crystals of poor quality. This gave rise to grating ghosts
and other instrumental anomalies which could be mistaken for Raman lines.
These anomalies were recorded first by scattering a small fraction of the
laser 1ight into the monochromator. This problem did not arise with NaN,
for which clear crystals were available.

The Raman-active vibrations of NaN3 and KN3 ﬂave been predicted by
Bryant [75a] using the "unit-cell" method of Bhagavantam. In the present
work, of the three lines predicted for KN3 and NaN3, only the low frequency
lattice vibration and the high frequency symmetric stretch of the N3 ion

‘were observed. These are shown in Fig. (9-10). These data are summarized

in Table 2.
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Table 2
Raman shift_, Mode Frequency according
Crystal observed cm ~ responsible Symmetry to Bryant
NaN3 130 Rotatory lattice E 122 e
mode g
1367 Symmetric stretch Ay 1358 cm”!
of N3
KN, 115 cm”! Translational E 81 cm !
lattice mode .
158 cm | Rotatory lattice E 120 cm”!
mode -9
1346 Symmetric stretch A, 1343 cm”|

of N3
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o. Proposed Models for Azide Color Center Structure:

A point group analysis of the color center models propcsed by varicus
workers has been carried out. Linear configurations of Né and Né belorgirg
o symmetry Qoh and square and tetrahedral arrangements o7 N& suggested as
1ikely by Yoffe [89] were considered. Lastly, the triangular N3 configuration
is described in some detail.

The typical method of analysis is indicated by the D3h point group &nalysis.

It follows the conventional methods used in molecular spectroscopy as describec

by Herzberg [3]. The results for these various cases are summarized in Table 3.
Point-group analysis of D3h:
Koskr et al., [97] 1ists the elements of Dap in Table 65, p. 67. T7hus
D3h: E, 2C3, 253, ch, 3C2, 30V 1

The operations are

E(identity) x (E) = 9 2 3
204 (132): (123) X (C3) =0
3¢, (1) (23)
(2) (31) X (C,) = (1-2) = -1
(3) (12)
ot (1) (2) (3) x (o) = 3(-142) = 3
25,0 (132): (123) X (S3) =0
30,0 (1) (23) X (0,) = 1(-142) = 1
(2) (31)

(3) (12}
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"~ Using the character table for D3h and the equation

n® =1 L)
.9

give the symmetry of genuine vibrations as

Ai + E' .

Both these vibrations are Raman-active while E' is infra-red active.

To obtain the frequency of these vibrations the secular equation must
be set up and solved. The relevant analysis is in progress at the present.

Table 3 shows that if the defect is planar as in the case of a square
or a triangle, and could be assumed to lie in the (001) plane, there should
be a strong Raman line corresponding to the Al type of vibration. This line
will then have large values of the diagonal elements of the corresponding
Raman tensor and zero (or at least small values) off-diagonal elements.
Careful polarization studies of the Raman 1ines and the effect of polarizing
the damaging 1ight on the electronic spectra together with complete ESR data
are needed for a final determination of the geometry of the defect and its

positioning in the lattice.



Table 3
Point group [ No. of Symmetry Corresponding
Ion Configuration |symmetry Raman-active of Raman- polarizability
vibration active components
. : vibrations
- : +
N Tinear D one )
2 h (symmetric -9
stretch)
N, linear D three
. B (symmetric ) ¥
stretch =9
bending) u
- : 2,2 2
N4 square D4h 3 A]g x2+y2,z
®1g ol
B2g ~
N; tetrahedral Td 3 A] x2+y2+22
£ x2_y2
T2 RY X2,V
- ; 2,2 .2
N3 triangular D3h 2 A] X +y~,z
E XZ,YyZ
N Jinear D one 7t
3 h “9
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E. Summary and Conclusions

The attempt in this thesis has been to provide an introduction to the
literature on the Raman Effect in Crystals and to present the results of
the preliminary studies on the alkali azide system.

The alkali azides form an ideal cr}sta] system in which to undertake
Raman scattering studies of defects. The Raman spectrum of the perfect
crystals consists at most of three lines and it should be easy to observe
any new vibration frequencies the defects may give rise to.

High quality crystals of NaN3, KN3 and RbN3 have been grown. The
production of color centers by ultra-violet irradiation of NaN3 and KN3
and their thermal bleaching properties have been studied. Models for the
possible structures of these color centers have been analyzed by point group
theoretical methods to determine Raman activities.

A single frequency obtained from infra-red studies on colored KN3 is
available from the work of Bryant. If as is claimed in that work, the defect
is triangular N3 ion of DBh symmetry, the present analysis shows that the
vibration observed by Bryant should be an E' vibration. This should then be
also Raman-active. From Bryants data then using a central force model with a
single force constant one could make an estimate of the frequency of the A;
vibration which would be Raman active. This analysis is being done.

The Raman spectrum of the defect in an azide has not been recorded yet.
This has been a problem because of the lack of propef experimental equipment.
However the experimental situation is being remedied presently and the studies
will be undertaken.

These studies will serve as a starting point on the understanding of

both the Raman scattering from defects and the structure of the defect in

1
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the azides. Certainly further analysis will be needed once such data is
obtained. The present analysis is based on imbedding the defect in an
"isotropic" medium. The crystal host, of course, will lower the site symmetry
of the defect and deviations from the predicted Raman activities are to be
expected. Furthermore, there is a possibility of different orientations of
the defects with respect to the crystal axes. Not only will careful Raman
polarization data be needed but the manner in.which the color center is
produced should be refined. The critical wavelength at which the damage
begins to occur should be determined. Polarizing the ultraviolet radiation
used in irradiating may prove useful in orienting the defects to a certain

degree.
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Appendix I

The Hermitean Nature of the Polarizability

The work done per second by the radiation field on the molecule is

o =3 B+P) g (E+E (1-1)
1 z ): ( * % * .o
= a..E. + a..E)(E, + E;) 1i,j=1,2,3.
oy oy U T A
=l Z z % * * * _*x_*
7 : (aijEjEi + aij Ej Ei+ aijEjEi + aijEjEi )
(1-2)
If the field is harmonic, of frequency «,
. . % .
:Ei = iw Ei s Ej = —1qu, etc. and
;l)lifl 4 1% d oo
R I O A O (E{E;) + 7 355 g (E4Ey)
E*  E * % }

Since 1,j are dummy indices they can be interchanged in the last term.

d_
gt

1

8 .ta

J

{

(aijEiE

LI

* k%
g o

Hence

iw *
— =
1) )

)I+ : 1.)E’,'I.'EJ.} o (1-8)

o

3 13

The second double sum cannot be written as the time derivative of a function

of the components of the field.
the frictional or damping forces.
then aij =
case.

It therefore represents the work done by

If one assumes that there is no damping,

*
34 » i.e., the polarizability tensor must be Hermitean for this
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Appendix II

Expression for the Average of the Square of the Fluctuation in the Dipole

Moment.

The fluctuations in } Ek are caused in part by fluctuations &n = n-n
k . p T
in the number of molecules within V and partly by fluctuation Aﬁk = Ek-Ek

in the dipole moments of the individual molecules. If second order terms

are neglected, _
A n

AE =3¢ an o+ 3 Ap, therefore
k=1

e = n
=BX . ez ()2 +]37 Boelz ., (I-1)
=

since the factors containing an = 0 vanish.

From statistical mechanics it can be shown for ideal gases that
(zn)2 = n = NV where N is the average number of molecules per unit volume.
For ideal gases, the fluctuations of the electric moments of the

individual molecules will be independent of one another.
The second term reduces to fi|ap.e|2, where ap is the fluctuation of
the induced moment of an arbitrary molecule, since all the quadratic terms

on the average will be equal. Thus

la] FX.e|2 =TI[| B.el2 + |apeel2 1. (11-2)
k



The first term arises from the fluctuation in n and the second term
due to fluctuation in Py

Using the relation

|aB.e|2

| (3-8) ]2

= 3 5 S e 4
~(p-ple(p -p). e
| P-e[2 - |P.e]2 - |p.e|2 + |P.e

Ii))-'el2 = |-I5-e]2 ]

2

it follows that

B BeelT = A B

o
—
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Appendix 111
Average of the Polarizability Over A1l Possible Directions

The scalar product of the induced moment 3 with an arbitrary unit vector

e is given by

ay
p.e= ) ) a,Ee (II1-1)
X § X VX
=37 ¥ ayy Evey, (111-2)
LoL % By

where the second expression is referred to a coordinate sysmte fixed
with respect to the molecule. The tensor axy must be averaged over all
possible orientations since the orientation of the molecule is arbitrary.
An equivalent procedure for performing such an average involves using the
second expression and averaging over all possible directions of E and €.
This procedure is more convenient.

Let 61 denote a unit vector in the direction of the electric field of the
incident 1ight, and 62 another unit vector, coplanar with E and € and

perpendicular to‘ﬁ]. Then,

?-—-é‘l £, "e="é] cosy +%, sin v, and

- N 1 2 I ] %
lp.ej]2=E2) ] fl I (Cos ¥x +Sinyx, ) (Costx +Siny x, )Y, ¥y a2y (111-3)
x y x'y
A ~ i 5
where X1¥17 and Xo¥92o are components of e and €5s respectively. That is,
they are the directional cosines of'ﬁ] and ﬁé in the coordinate system rotating
with the mo]ecu]e.l
To evaluate the right hand side, average values of a number of products

of directional cosines of two orthogonal vectors are needed. They may be
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divided in groups and the required results are as follows:

() Xy=¥4 s =13=7

(b) X3Y2 = X272 .... = Y%z%:%

© K=z = By = (111-2)
() Bty = senrs - LYz, = -k

() X\¥3X, = X\YiZyXy = ..... = 0

Expanding the sum (III-3), substituting the averages from Egs. (III-4),

and assuming that axy is Hermitean, yields, after considerable reduction,
B.e |2= RE2 Cos ¥ + REZ(1+y Cos?), (111-5)

where
s 1 2
Ry =3 (axx * vy ¥ azz)

)2+ (a,, - a )2 (11I-6)

1 {' i
R=35 1 (ayy - 2, vy

+6 (ay,12 + la,l2 + lagln) |
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Appendix IV

Proof:

a—g?z(t) = -fwz*(ﬁ) M “’z(t_) dr ... (1.29)

The result above is an extension of the following theorem: Given a

Hamiltonian H(g) which depends-on a parameter ¢, then

%E e, (€) = fw;(s) lf!—é—? v (g) dr (1v-1)

where £, is an eigenvalue of the system considered and 2, the corresponding
wave function, both being functions of &. The integration is over all

coordinates of the system, which are independent of ¢.
*
ORI CRACE (1v-2)

Therefore,
*

., i ] [ 28 g v ¢ B e L) «

3z Sul8) % g0

x(¥, (€] ﬁ:—iﬂ 8g + _---)dr ‘ﬁ‘g (£) H(a)‘i’z(a)dr}

(Iv-3)
Neglecting terms of second and higher orders in the first integral,
Tim
8 = al * aH(E)
o 5~ e 5 { J: jwz () == v, (e)de
I (e (e)t —'15)-65 ). Hg) (v (&) + s se)d =

—fv:(e) H(g)v, (&) dr J} L e (1V-4)



The expression given in the square bracket is the change in the expectation

value of the Hamiltonian H due to a small variation 65(3%%) in the wave function.
According to the variational principle (9), this variation must vanish to the
first order.

Hence,

L@ = fr, 50 My (6) o . (1v-1)

3E

which completes the proof of the theorem.
In a static electric field E, the Hamiltonian, eigenfunctions and
eigenvalues of a molecular system contain E as a parameter. According to

Eq. (25),

H(E) = H(0) - M.E = H(0) - ] ME_,

o

[0
The application of (IV-1) then gives

a® == [y @ e«

which is Eq. (27) of the text.
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Appendix V

Total Rate of Radiation

From the expression (I.4b) for 3} the total rate of radiation is

— § .. _
R2S dg = -2 [_Z: Y e e; moom } daq
2nc3 1 aB u a8

Using polar coordinates the unit vectors eland e2 can be chosen as

follows:
e% = Cos 6 Cos ¢ eé = Cos 6 Sin ¢ eé = -Sin &
2:_' 2: 2:
e Sin ¢ e5 Cos ¢ e3 0.

Substituting these in Eq.(I.4b) recalling da = Sine de d¢and integrating,

one arrives at the result

- 4 -
R2Sda= 2 7 ot o

3¢ a @ *
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Appendix VI

Adiabatic Approximation

The general form of the Hamiltonian for a system of nuclei and electrons

can be written as \

H= TN + TE + VNN + VEE + VNE +V, (VI-1)
where
2 2 . . :
TN + 3 M VA is the kinetic energy of the nuclei,
A A
42 2 . —
TE + = 1. is the kinetic energy of the electrons,
7 =ly 1
' o ZnZ,e2
You * e Z Z B A is the coulomb energy of the nuclei; a
NN 2 B A RAB
function of an nuclear coordinates only,
]
=111 :
Voo = — is the coulomb energy of the electrons; a
EE 2 ij rij
function of electronic coordinates only,
v =_ZZZA92
NE " e is the mutual coulomb energy of electrons

and nuclei; a function of both nuclear and

electronic coordinates, and

V =Y¥(r, R, }, ﬁ) is, in general, an external potential.



Consider the problem of a free molecular wystem o that V = 0. The cor-

responding time-independent Schrodinger equation is
-
Hy (ﬁi,ri) = By (ﬁi’ri) (2)

in general, then, ¥ is a nonseparable function of both electronic and
nuclear coordinates. However, the problem is insoluble at this stage, unless
one resorts to approximation methods.

The most widely used approximation in molecular and solid-state problems
is the Born-Oppenheimer or adiabatic approximation which is based on
physical considerations. Since the atomic nuclei are much heavier than the
electrons, they move much more slowly, and it is therefore reasonable to
start with the approximation in which they are taken to be at rest, though
not necessarily in their equilibrium positions. Then if {R} = §1, ...ﬁﬁ
denote the nuclei positions, one can attempt to solve the Schrodinger
equation for the motion of n electrons, with coordinate vectors {r} =
F], 0 ?n’ in the field of the nuclei in the configuration R. The resulting
wave function will be a function of the 3n variables {r} and contain R as
a parameter. The energy eigenvalue €an will also contain R as a parameter.
The Towest electronic eigen function ¢0(?,ﬁ) and eigenvalue eeo(?,ﬁ) are
then defined. If the real problem now is considered in which the nuclei are
not fixed, the assumption might be made that at any time the state of the
electrons is described by the same wave function, inserting for R, the positions
of the nuclei at that time. Then the state of motion of the nuclei is
represented merely by a function x(ﬁ)zand therefore the wave function of the

whole system appears in the form

(ER) = x(R) 4y(FR). (3)
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This is known as the adiabatic approximation, since the function ¢0(?,ﬁ)
represents the variation of the electronic state upon adiabatic changes
of the parameters.

Substitution of Eq. (3) into theSchrodinger Eq. (2), the electronic

and nuclear Schrddinger equations can be separately written as

(T *+ Veg * Vpg) 9y (F.R) R) ¢, (F.R)

Een(

(R)

(Ty *+ Nyy) xn(ﬁ) €av Xnv

provided a cross term

-h2
-EWIK (X gﬁ ¢ + 2$A ¢ irA}()

can be neglected. Thus the next step in the Born-Oppenheimer approximation
is writing Va9 2 0. This 1is physica]ly equivalent to saying that the
frequency of electronic transition is much larger than the frequency with
which a change in the electronic potential is brought about by the nuclear
motion and may be written as

%<§%§ or y—%< <AE,
where U is the velocity of the nuclei, & is the distance by which the nuclei
must move to produce an appreciable change in ¢0(?,ﬁ) and E is the difference
of the first excited electronic level, at fixed R, from the ground state.

In a molecular solid which is usually built from chemically saturated
units this is generally true. The energy of excitationaE is several
electron volts, whi1e4%h~is much less. Another typical case is that of an
ionic solid 1ike NaCl 1in which each of the ions again has a closed-shell

configuration. In a homopolar lattice, e.g. diamond, one can regard the
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electronic state as saturated, but because of their high delocalization
cannot look upon the lattice as made up of small saturated sub-units.

One example in which the adiabatic approximation cannot be justified
1s in the case of a metal. There are many almost degenerate levels in a
partially occupied conduction band and AE is thus almost zero and the in-
equality cannot hold. Even in a non-metallic crystal, the adiabatic
approximation will be valid only for the electronic state of Towest energy.
This is because, if one visualizes an excited state simply as the excitation
of one atom, there will be N such states of very similar energy, since any

one of the N atoms may be excited and the inequality is again bound to fail.
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A review of the theory of the Paman effect in crystals including
an extensive synthesis of the current literature is presented. A brief
review of the dynamics of a perfect lattice and a lattice with defects
with particular attention given to the analysis of the Raman spectra
is included. A study of the electronic and Raman spectra of pure and
ultraviolet irradiated potassium azide and sodium azide is reported. The
measurement of the electronic spectra of the damaged crystals are
described and discussed. The Raman spectra of the pure alkali azide
crystals are cd=scribed and discussed. The unit analysis of the undamaced
azides is fcll.wed by prOposed models for the defects formed by

u.v. irradiation.



