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Abstract—Asymptotic solution to scattering problem of elec-
tromagnetic (EM) waves by many small impedance particles,
embedded in a homogeneous medium, is applied for creating
media with prescribed permeability. Physical properties of the
particles are described by their boundary impedances. The
limiting equation is obtained for the effective EM field in the
resulting medium. The proposed theory allows one to create a
medium with a desirable spatially inhomogeneous permeability.
The main new physical result is the explicit analytic formula for
the permeability µ(x) of the limiting medium. The computational
results confirm a possibility to create the media with various
distributions of µ(x).

Index Terms—EM Wave Scattering, Desired Permeability,
Modeling Results.

I. INTRODUCTION

The theory of electromagnetic (EM) wave scattering by
many small impedance particles embedded in a homogeneous
medium with a constant permittivity ε0 > 0, permeability
µ0 > 0 is applied for creating a media with a prescribed
permeability. The computational procedures for numerical
solution of the scattering problem were developed in [1], [2].

The small particles are embedded in a finite domain D.
The medium, created by the embedding of the small particles,
has new physical properties. In particular, it has a spatially
inhomogeneous magnetic permeability µ(x), which can be
controlled by the choice of the boundary impedances of the
embedded small particles and their distribution density. An
analytic formula for the permeability of the new medium is
obtained.

We assume that in any sub-domain ∆ of D, the number
N(∆) of the embedded particles is given by the formula:

N (∆) =
1

a2−κ

∫
∆

N(x)dx[1+o(1)], a → 0, (1)

where N(x) ≥ 0 is a continuous function, vanishing outside
of the finite domain D in which small particles are distributed,
κ ∈ (0, 1) is a number that one can choose as one wishes, and
the boundary impedances of the small particles are defined by
the formula:

ζm =
h(xm)

aκ
, xm ∈ Dm, Reh(x) ≥ 0, (2)

where xm is a point inside m-th particle, and h(x) is a
continuous function vanishing outside D, which satisfies only
the physical restriction Reh(x) ≥ 0. The functions N(x) and
h(x) can be chosen by the experimentalist. The function h,
used in our numerical examples satisfies this restriction. The
impedance boundary condition on the surface Sm of the m-
th particle Dm is Et = ζm[N,Ht], where Et(Ht) is the
tangential component of E(H) on Sm, and N is the unit
normal to Sm, pointing out of Dm.

Since one can choose the functions N(x) and h(x), one can
create a desired magnetic permeability in D. This is a novel
idea proposed originally in [6], [7]. It has led to a recipe for
creating materials with a desired refraction coefficient in [9],
[11].

Materials with negative permittivity and permeability are of
interest in applications, see [4].

An equation for the effective EM field in the limiting
medium is derived. This medium is created when the size
a of small particles tends to zero while the total number
M = M(a) of the particles tends to infinity at a suitable
rate.

The proposed theory may be viewed as a ”homogenization
theory”, but it differs from the usual homogenization theory
(see, e.g., [3], and references therein) in several respects: we
do not assume any periodic structure in the distribution of
small bodies, our problem does not have a discrete spectrum,
our operators are non-selfadjoint, to mention some of the
differences. The ideas, methods, and techniques are also quite
different from the usual methods. These ideas are similar to
the ideas developed in papers [7], [8], [10], [11], [12].

However, the scattering of EM waves brought new techni-
cal difficulties which come from the vectorial nature of the
boundary conditions. Our approach is valid for small particles
of arbitrary shape, but for simplicity we assume that the small
bodies are balls of radius a.



II. EM WAVE SCATTERING BY MANY SMALL PARTICLES

A. Statement of Problem

It is assumed that many small bodies Dm, 1 ≤ m ≤ M ,
are embedded in a homogeneous medium with constant pa-
rameters ε0, µ0 . Let k2 = ω2ε0µ0, where ω is the frequency.
Denote by [E,H] = E ×H the cross product of two vectors,
and by (E,H) = E ·H the dot product of two vectors.

EM wave scattering problem consists of finding vectors E
and H satisfying the Maxwell equations:

∇× E = iωµ0H, ∇×H = −iωε0E (3)

in D := R3\
M∪

m=1
Dm , the impedance boundary conditions:

[N, [E,N ]] = ζm[N,H] (4)

on Sm, 1 ≤ m ≤ M , and the radiation conditions:

E = E0 + vE , H = H0 + vH , (5)

where ζm is the impedance, N is the unit normal to Sm

pointing out of Dm, E0,H0 are the incident fields satisfying
equations (3) in all of R3, S := ∪M

m=1Sm.
One often assumes that the incident wave is a plane wave

[5], i.e., E0 = Eeikα·x, E is a constant vector, α ∈ S2 is a
unit vector, S2 is the unit sphere in R3, α · E = 0, vE and vH
satisfy the radiation condition:

r(
∂v

∂r
− ikv) = o(1). (6)

Impedance ζm is assumed to be a constant, Reζm ≥ 0, so
that

Re(ζmEt, Et) ≥ 0 ∀Et ∈ Tm, (7)

where Tm is the set of all tangential to Sm continuous vector
fields, and Et is the tangential to S component of E. Smallness
of Dm means that ka ≪ 1, where

a = 0.5 max
1≤m≤M

diamDm.

Our definition of Et is:

Et = E −N(E,N) = [N, [E,N ]]. (8)

This definition differs from the one used often in the literature.
Since

H =
∇× E

iωµ0
, (9)

one gets

∇×∇× E = k2E in D, (10)

and the impedance boundary condition is

[N, [E,N ]] =
ζm
iωµ0

[N,∇× E] (11)

on Sm, 1 ≤ m ≤ M .
Thus, we have reduced problem (3)-(5) to finding one vector

E(x) satisfying the impedance boundary condition (11). If
E(x) is found, then H = ∇E

iωµ0
.

B. Finding the Solution

Let us look for E of the form

E = E0 +
M∑

m=1
∇×

∫
Sm

g(x, t)Jm(t)dt,

g(x, y) = eik|x−y|

4π|x−y| ,

(12)

where t ∈ Sm and dt is an element of the area of Sm, Jm(t) ∈
Tm. This E for any continuous Jm(t) solves equation (10) in
D because E0 solves (10).

Define the effective field Ee(x) = Em
e (x) = E

(m)
e (x, a),

acting on the m-th body Dm, by the formula:

Ee(x) = E(x)−∇×
∫
Sm

g(x, t)Jm(t)dt := E(m)
e (x), (13)

where it is assumed that x is in a neighborhood of Sm,
but Ee(x) is defined for all x ∈ R3. Let xm ∈ Dm be a
point inside Dm, and d = d(a) be the distance between two
neighboring small bodies. Let us assume that

lim
a→0

a

d(a)
= 0, lim

a→0
d(a) = 0. (14)

It is proved in [7] that Ee(x, a) tends to a limit Ee(x) as a →
0, and Ee(x) is a twice continuously differentiable function.

Let us assume that in any sub-domain ∆, the number N (∆)
of the embedded bodies Dm is given by formula (1), and
boundary impedances ζm of small particles are defined by
formula (2).

Let us write (12) as

E(x) = E0(x) +
M∑

m=1
[∇xg(x, xm), Qm]+

M∑
m=1

∇×
∫
Sm

(
g(x, t)− g(x, xm)

)
Jm(t)dt,

(15)

where

Qm :=

∫
Sm

Jm(t)dt. (16)

One has Jm = O(a−κ) and Qm = O(a2−κ). We prove that
the second sum in (15) is negligible compared with the first
one. This proof is based on several estimates. These estimates
show that one may neglect the second sum in (15), and write

Ee(x) ∼ E0(x) +
M∑

m=1

[∇xg(x, xm), Qm], a → 0, (17)

with an error that tends to zero as a → 0. When |x− xj | ∼ a
then the term with m = j in the sum (17) should be dropped
according to the definition of the effective field.



As a → 0, the sum in (17) converges to the integral

E(x) = E0(x) +∇×
∫
D

g(x, y)N(y)Q(y)dy, (18)

where Q(y) is the function uniquely defined by the formula

Qm = Q(xm)a2−κ, (19)

and Q(y) is a continuous function in D. The function Q(y)
is defined uniquely, because, as a → 0 the set of points
{xm}Mm=1 becomes dense in D. The physical meaning of
vector E(x) in equation (18) is clear: this vector is the limit of
the effective field Ee(x) as a → 0, and N(x) is the function
from equation (1).

The function Q(y) can be expressed in terms of E :

Q(y) =
8πi

3ωµ0
h(y)(∇× E)(y). (20)

The factor 8π
3 appears if Dm are balls. Otherwise a tensorial

factor cm, depending on the shape of Sm, should be used in
place of 8π

3 .
From equations (18) and (20) one obtains

E(x) = E0(x) +
8πi

3ωµ0
∇×

∫
D

g(x, y)h(y)N(y)∇× E(y)dy.

(21)

C. Explicit Formula for Permeability of Resulting Medium

Let us derive the explicit formula for permeability of new
medium using equation (21). Applying the operator ∇×∇×
to (21), using the formula ∇× grad = 0 and the equation

−∇2g(x, y) = k2g(x, y) + δ(x− y), (22)

and took into account that h(x) is a scalar function by the
assumption, we obtain

∇×∇× E = K2(x)E +
8πi

3ωµ0

1− 8πi
3ωµ0

h(x)N(x)
·

[∇(h(x)N(x)),∇× E(x)],
(23)

where

K2(x) =
k2

1− 8πi
3ωµ0

h(x)N(x)
, k2 = ω2ε0µ0. (24)

If one uses equations with variable µ(x):

∇× E = iωµ(x)H, ∇×H = −iωε(x)E,

then

∇×∇× E = ω2ε(x)µ(x)E + [
∇µ(x)

µ(x)
,∇× E]. (25)

Comparing this equation with (23), one can identify the
last term in (23) as coming from a variable permeability µ(x).
This µ(x) appears in the limiting medium due to the boundary
currents on the surfaces Sm, 1 ≤ m ≤ M . These currents
appear because of the impedance boundary conditions (11).

Let us identify the permeability µ(x). Denote

Ψ(x) := 1− 8πi

3ωµ0
h(x)N(x). (26)

Let ε(x) = ε0, ε0 = const, and define

µ(x) :=
µ0

Ψ(x)
. (27)

Then K2 = ω2ε0µ(x), and

∇µ(x)

µ(x)
=

∇Ψ(x)

Ψ(x)
.

Consequently, formula (23) has a clear physical meaning:
the electromagnetic properties of the limiting medium are
described by the variable permeability:

µ(x) =
µ0

Ψ(x)
=

µ0

1− 8πi
3ωµ0

h(x)N(x)
, (28)

and the limiting medium is described by the new refraction
coefficient K2 = ω2ε0µ(x).

III. NUMERICAL RESULTS

The proposed approach allows one to create a media with a
piecewise-constant magnetic permeability µ. Such permeabil-
ity can be realized either by embedding various numbers Mm

of particles into sub-domains ∆m or by the variation of the
function h(xm) in these sub-domains.

Both approaches have their advantages depending on the
parameters M , a, and d of D. In engineering it is often useful
to have constant distribution of µ along certain direction (for
example, along z− and y-axes), and piecewise-constant µ in
the direction of x−axis.

In Fig. 1, such µ is formed by embedding various numbers
of particles Mm in sub-domains ∆m, (m = 1, 2, 3): M1 =
11× 11× 4, M2 = 9× 9× 3, M3 = 11× 11× 4, respectively.
At these values of Mm, the values of permeability are equal
to 0.9229 in sub-domains ∆1 and ∆3, and the permeability
is equal to 0.9410 in sub-domain ∆2. Such distribution of
particles in the medium allows one to reach a difference in
the µ values in the range of 2.2% , the minimal deviation of µ
from the µ0 is 5.9%. In order to increase the difference µm for
various Dm it is necessary to increase the difference between
Mm. The normalized values of µ are shown here and in Fig.
2 and Fig. 3 below.

Combining the ratio of values Mm, one can create the
distribution of µ corresponding to various requirements. For
example, distribution of µ which is shown in Fig. 2, is
obtained at the following values of particles in sub-domains
∆m, m = 1, 2, 3: M1 = 11 × 11 × 4, M2 = 9 × 9 × 3,
M3 = 7 × 7 × 4. At such values of Mm, the values of
the permeability are equal to 0.8745, 0.9026, 0.9451 in sub-
domains ∆1, ∆2 and ∆3, respectively. The amplitudes Ex and
Ey of EM field for this case have more complicated structure
because of the larger change of µ.

In Fig. 3, the piecewise-constant distribution of µ, created
by prescribing the various values of function h(xm) in four
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Fig. 1. The piecewise-constant distribution of µ corresponding to two various
Mm
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Fig. 2. The piecewise-constant distribution of µ corresponding to three
various Mm

sub-domains ∆m, (m = 1, 2, 3, 4) of D, is shown. The number
of particles in all sub-domains is equal to: M = 11×5×5, the
values of h(xm) are the following h1 = 7i, h2 = 9i, h3 = 11i,
h4 = 13i (that is, h(xm) is piecewise-constant). The minimal
deviation of the obtained µ from the values µ0 is observed in
sub-domain ∆1 and it is equal to 4%, this deviation reaches
7% in sub-domain ∆4. In order to increase the deviation of µ
in certain sub-domain ∆m it is necessary to increase the value
of hm in this sub-domain and keep the values of hm in the
rest of sub-domains the same.

IV. CONCLUSIONS

The numerical procedures for solving the EM wave scatter-
ing problem by many small impedance particles of an arbitrary
shape are given. On this basis a method for creating the media
with non-uniform distribution of magnetic permeability µ(x)
is developed and tested numerically.

The computational results confirm the theoretical conclusion
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Fig. 3. The piecewise-constant distribution of µ corresponding to four various
values of h(xm)

about the possibility to create media with piecewise-constant
permeability µ. Creating such a µ is achieved either by
embedding various numbers Mm of small particles in the sub-
domains ∆m of total domain D, or by changing the function
h(xm) which determines the value of boundary impedances
of the particles. Both approaches provide the possibility to
change the initial values of µ in the range of 5%− 40%.
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