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Abstract

Coalition formation is a key cooperative behavior of a system of multiple autonomous

agents. When the capabilities of individual agents are not sufficient for the improvement of

well-being of the individual agents or of the entire system, the agents can benefit by joining

forces together in coalitions. Coalition formation is a technique for finding coalitions that

are best fitted to achieve individual or group goals. This is a computationally expensive

task because often all combinations of agents have to be considered in order to find the best

assignments of agents to coalitions. Previous research has therefore focused mainly on small-

scale or otherwise restricted systems. In this thesis we study coalition formation in large-scale

multi-agent systems. We propose an approach for coalition formation based on multi-agent

simulation. This approach allows us to find coalitions in systems with thousands of agents.

It also lets us modify behaviors of individual agents in order to better match a specific

coalition formation application. Finally, our approach can consider both social welfare of

the multi-agent system and well-being of individual self-interested agents.

Power distribution systems are used to deliver electric energy from the transmission

system to households. Because of the increased availability of distributed generation using

renewable resources, push towards higher use of renewable energy, and increasing use of

electric vehicles, the power distribution systems are undergoing significant changes towards

active consumers who participate in both supply and demand sides of the electricity market

and the underlying power grid. In this thesis we address the ongoing change in power

distribution systems by studying how the use of renewable energy can be increased with the

help of coalition formation. We propose an approach that lets renewable generators, which

face uncertainty in generation prediction, to form coalitions with energy stores, which on the

other hand are always able to deliver the committed power. These coalitions help decrease

the uncertainty of the power generation of renewable generators, consequently allowing the



generators to increase their use of renewable energy while at the same time increasing their

profits. Energy stores also benefit from participating in coalitions with renewable generators,

because they receive payments from the generators for the availability of their power at

specific time slots. We first study this problem assuming no physical constraints of the

underlying power grid. Then we analyze how coalition formation of renewable generators

and energy stores in a power grid with physical constraints impacts the state of the grid,

and we propose agent behavior that leads to increase in use of renewable energy as well as

maintains stability of the grid.
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Chapter 1

Introduction

1.1 Motivation

Power distribution networks were originally designed to deliver electricity from a single utility

to large number of customers. Therefore, both the current economical and physical subsys-

tems of power distribution systems (PDS) implement this one-way electricity flow. However,

technological advances as well as economical and political pressure push the requirements

on PDS to move away from the original model towards more distributed, multi-directional,

smarter, and more robust solutions. Some of the main drives for innovations in PDS are:

• distributed generation; with technological advances in electricity generation using re-

newable resources, photo-voltaic and wind generators are becoming available for household-

size customers in the distribution network.

• prosumers ; this term characterizes active consumers in the distribution grid. These

consumers are able to generate power and send it back to the grid, consequently be-

coming an active part of economical and physical subsystems of PDS.

• large, shiftable load ; increasing production of electric vehicles will pose a significant

requirement on the grid by increasing the household load during peak times in the

afternoon and evening, and throughout the night. However, all electric vehicles do not
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have to be charged at the same time, therefore this shiftable load can be utilized in

PDS control.

• demand-response is a technique that enables utilities to offer their costumers profit

in exchange for temporary reduction in their load. This technique has been used to

ensure grid reliability.

• political demand for higher integration of renewable resources has been present in recent

years in the form of renewable portfolio standards (RPS). For example, the RPS target

of the state of California for the year 2020 is that 33% of all generation will come from

renewable sources (Ipakchi and Albuyeh, 2009).

These new requirements will significantly alter the power distribution grid. Because of

the increasing amount of distributed generation, the current uni-directional power flow will

be replaced by a more complex bidirectional flow, thus creating new complex flow patterns.

Customer loads will increase due to increased use of electrical vehicles. Distributed gen-

eration will increase on the supply side. The unpredictability of the power produced by

renewable generation will have to be balanced by traditional generation or other energy

stores. Unless these issues are addressed, they will have undesirable effects on the power

distribution network.

Renewable resources are being used for cheap, sustainable, environmentally friendly, and

inexhaustible electricity generation. These positive aspects of renewable energy, together

with the goal of reducing carbon emissions, drive the electrical grid development towards

larger integration of generators that use renewable energy. However, despite the advantages

of renewable resources, their use is lower than that of nonrenewable resources such as coal and

natural gas. One of main reasons for the low use of renewable resources such as wind and solar

power is the unpredictable amount of generation related to dependence on weather (Holttinen

et al., 2009). Currently, electricity is traded in two stages (Kirschen and Strbac, 2004; Pinson

et al., 2007), in a day-ahead energy market that matches supply and demand, and in a

real-time market in order to adjust for real-time variations in supply and demand. In the

day-ahead market, generators bid amounts of energy that they will be able to generate at
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given time slots. Since in the electricity market the supply must always match the demand,

a failure to deliver the committed amount of energy can have major negative consequences,

and it is therefore penalized (Pinson et al., 2007). Consequently, the renewable generators,

due to weather unpredictability, are forced to bid amounts that are lower than the predicted

generation, thus decreasing the use of renewable resources (Holttinen et al., 2009).

Technological advances in computational and sensory devices have allowed the emer-

gence of cyber-physical systems (CPS). These physical systems are monitored, coordinated,

controlled, and integrated by a system of computing devices (Khaitan and McCalley, 2013;

Rajkumar et al., 2010). Some examples of CPS are medical systems, transportation systems,

defense systems, and power distribution systems (Rajkumar et al., 2010). A CPS approach

is well suited for addressing challenges in power distribution systems (PDS). The physi-

cal part of the system includes the physical grid consisting of substations, feeders, laterals,

transformers and households. Another physical aspect of such system is the physical state

of the grid, which consists of voltage, frequency, and power constraints. The cyber part of

the system consists of smart meters and communication links. Also, researchers in the field

of multi-agent systems (MAS) have proposed to include MAS in the cyber part of CPS.

Agents in MAS can be assigned to various physical parts of PDS, and they can participate

in the CPS via grid control and online auctions, forming an intelligent power distribution

system (Case, 2015).

In this thesis we investigate how MAS can be deployed to become a part of the PDS.

Specifically, we study how agents can form coalitions in order to increase either welfare of

the entire system, or their own profit. We focus on two specific parts of PDS: renewable

generators and energy stores. We let these two groups form coalitions in a MAS simulation,

and then observe significant changes in the system caused by this process.

In order to apply coalition formation in the PDS domain, an approach must be used that

can find high-quality coalitions in systems with large numbers of agents. Even though coali-

tion formation has previously been studied, the proposed approaches usually focus on finding

solutions with maximum social welfare in small-scale systems. Previous research has focused

on small-scale systems mainly because for n agents there are O(nn) possible solutions (Rah-

3



wan and Jennings, 2008), and determining the optimal solution has been proven to be an

NP-complete problem (Sandholm et al., 1999). Searching for optimal solutions in large-scale

systems is therefore infeasible. For coalition formation in the PDS domain we need an ap-

proach that will perform optimally or almost-optimally in small-scale systems, while being

able to find high-quality solutions in large-scale systems. To this end we investigate the use

of MAS simulation as a tool for performing large-scale coalition formation.

MAS simulation is an iterative process in which agents interact with each other and with

their environment. It can be used to show a step-by-step evolution of a system without a

need for potentially expensive real-world experiments. MAS simulation is typically modeled

on a microscopic level by designing behaviors of individual agents in MAS, and an emergence

of macroscopic system-level behavior caused by the microscopic-level changes is observed.

Similarly, by modeling strategies of individual agents we will observe the resulting coalition

formation process of all agents in MAS.

1.2 Thesis Statement

Multi-agent simulation provides a computationally tractable approach for coali-

tion formation of large numbers of agents that finds high quality solutions with

respect to social welfare of the multi-agent system and individual welfare of

individual agents. Large-scale coalition formation can be used in a power dis-

tribution system to increase the use of renewable resources and at the same

time increase profits of renewable generators and energy stores.

In this thesis we present an approach that uses multi-agent simulation to perform coalition

formation in an iterative manner in order to maximize social welfare. Multiagent simulation

allows us to observe the process of forming coalitions in an iterative manner. While coalition

formation is typically approached as a single-step task, it is beneficial to model coalition

formation as a dynamic process where coalitions change over time. In such a process the

agents can utilize information about previous and current values of coalitions to support
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their decision to leave the current coalition and join a new coalition. We propose a general

framework that models coalition formation as a dynamic, iterative process. Our framework

can be used to simulate real world applications of coalition formation.

We also present an approach that considers individual welfare of individual self-interested

agents by improving the stability of coalitions. Stability of the coalitions measures the

coalition’s ability to de-incentivize any sub-coalition of agents from leaving the coalition.

Self-interested agents seek to maximize their own profit rather than the social welfare, which

makes social-welfare maximizing solutions unrealistic. Therefore, coalition stability must be

addressed as a concept that along with the social welfare influences the coalition formation

algorithms and solutions.

Furthermore, we show an approach that uses multi-agent simulation to perform coalition

formation in PDS. This approach increases the use of renewable resources by allowing renew-

able generators to hedge against their own unpredictability by forming coalitions with energy

stores such as batteries, capacitors, or any generators that are able to provide exact amounts

of power at given times. Inside these coalitions renewable generators purchase availability

of energy stores to generate power when needed. Renewable generators use this availability

to avoid fees for failure to provide committed generation whenever the current generation is

lower than the committed value.

We demonstrate the effectiveness of multi-agent simulation for coalition formation of

large numbers of agents by showing that:

1. social welfare of our solutions in small-scale systems is comparable to the social welfare

of solutions found by state-of-the-art algorithms that find optimal solutions for small

numbers of agents.

2. per-agent social welfare of our solutions does not decrease when increasing the scale

of the system. Consequently, the quality of our solutions in large-scale systems is

comparable with quality of solutions in small-scale systems.

3. performance of our approach dominates performance of other state-of-the-art approaches

for coalition formation in large-scale systems.
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4. coalitions found by our approach are stable because agents within the coalitions do not

have an incentive to deviate and form separate sub-coalitions.

We demonstrate the usability of our coalition formation approach in the PDS domain by

showing that:

1. both renewable generators and energy stores are economically incentivized to partici-

pate in coalition formation.

2. application of our approach increases the use of renewable resources in the PDS.

3. our approach respects physical constraints of the PDS.

1.3 Contributions

Contributions of this thesis are:

1. A theoretical framework for large-scale coalition formation, which is presented in Chap-

ter 4.

(a) A framework for evaluating coalition formation strategies that uses multi-agent

simulation (Janovsky and DeLoach, 2016a). The framework can be used to simu-

late real-world scenarios of coalition formation. We show examples of such scenar-

ios along with their representation in the framework. We also discuss the practical

meaning of our framework.

(b) The capability to evaluate large-scale coalition selection strategies on scenarios

consisting of thousands of agents (Janovsky and DeLoach, 2016a). Since the

solutions reflect the decision making of single agents in the dynamic coalition

formation process, optimality is not guaranteed. Thus, we show how to evaluate

proposed strategies by comparing them against optimal solutions for small num-

bers of agents (up to 20) and then demonstrating that those strategies are stable

in large-scale scenarios with up to 10,000 agents. We also show that in majority
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of the tested instances our proposed strategies perform similarly or better than a

state-of-the-art coalition formation algorithm.

(c) An algorithm for large-scale coalition formation of thousands of agents that uses

deviations of the agents in order to increase coalition stability (Janovsky and

DeLoach, 2016c,d). Our approach uses multi-agent simulation, in which agents

make decisions about joining, leaving, and deviating from coalitions. We show

the approach and we discuss a deviation strategy.

(d) An approach for selecting sub-optimal solutions based on their social welfare and

coalition stability (Janovsky and DeLoach, 2016c,d). We discuss the ways to select

a solution out of a pool of solutions for which stability is unknown and expensive

to compute.

(e) Experimental evaluation of our approach using real-world datasets (Lichman, 2013;

World Trade Organization, n.d.) and comparison with state-of-the-art approaches

in small (Cruz-Menćıa et al., 2013) and large (Farinelli et al., 2013)-scale sys-

tems (Janovsky and DeLoach, 2016a,c,d).

2. An application of the theoretical framework in the PDS domain, which is presented in

Chapter 5.

(a) An approach to increase use of renewable energy sources in a PDS using coalition

formation of renewable generators and energy store owners (Janovsky and De-

Loach, 2016b). We show our model of renewable sources and energy stores, and

we describe how to use multi-agent simulation for coalition formation of renewable

generators and energy store owners.

(b) Experimental evaluation of the coalition formation process between renewable gen-

erators and energy store owners (Janovsky and DeLoach, 2016b). We show that

our approach increases use of renewable resources by increasing profit of renewable

generators.

(c) An approach to increase use of renewable energy sources in a PDS with physical
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constraints. We show an approach for coalition formation of renewable generators

and energy stores that respects physical constraints of the underlying power grid.

(d) Experimental evaluation of coalition formation in PDS with physical constraints.

Using randomly generated scenarios based on a benchmark power grid (Khatod

et al., 2006), we show that coalition formation increases use of renewable energy,

and it also improves the physical state of the underlying power grid.

1.4 Overview

This thesis is organized as follows. We introduce the background for coalition formation and

PDS in Chapter 2. In that chapter we also formally define concepts relevant to coalition for-

mation and PDS. We overview the related work in coalition formation and PDS in Chapter 3.

We present the theoretical framework for large-scale coalition formation in Chapter 4, with

Section 4.1 describing social welfare-based optimization, and Section 4.2 presenting coalition

stability-based optimization with respect to behavior of self-interested agents. Chapter 4

includes experimental analysis of the presented approach. In Chapter 5 we show the ap-

plication of the theoretical framework in the PDS domain, with Section 5.1 showing how

coalition formation of renewable generators and energy stores can be used to increase use

of renewable resources while assuming no physical constraints of the PDS. Section 5.2 then

discusses including physical constraints of PDS in the model used in Section 5.1 and shows

positive effects that coalition formation has on the physical state of the PDS.
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Chapter 2

Background

In this chapter we explain coalition formation and PDS concepts. We give an overview

of some typical problems that are being solved in these areas, and we specify how research

presented in this thesis fits into this overview. We also define terms that are used throughout

this thesis.

2.1 Coalition Formation

A MAS is a system of autonomous agents, which are able to operate either by themselves

or as a collective. One of key aspects of agents that work as a group is their ability to

coordinate and cooperate with each other. Such agents can take joint, coordinated actions to

improve their performance, or to achieve goals that are beyond the capabilities of individual

agents (Rahwan et al., 2015). This cooperation can be beneficial both for the social welfare of

the whole system as well as well-being of single, possibly selfish, agents. One of the research

areas that study multi-agent cooperation is the study of coalition formation. Following are

the definitions of a coalition and coalition formation.

Definition 2.1.1 (Coalition). Coalition is a cooperating group of autonomous agents. Be-

sides a general coalition, there are two specific coalition configurations:

• Singleton coalition is a coalition that contains a single agent.
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• Grand coalition is a coalition that contains all agents.

Definition 2.1.2 (Coalition formation). Coalition formation is a process in which multiple

autonomous agents create coalitions in order to achieve individual or group goals.

Some reasons for agents to form groups are to achieve tasks that require their cooperation,

to optimize their expenses, to increase their collective power over other agents, or to share

resources.

Coalition formation is typically split in three sub-problems, that can be approached

independently (Sandholm and Lesser, 1997). These sub-problems are

1. Coalition structure generation,

2. Solving an optimization problem in each coalition,

3. Division of the coalition’s profit among its agents.

Coalition structure generation refers to formation of a coalition structure.

Definition 2.1.3 (Coalition structure). Coalition structure is a set of coalitions such that

each agent belongs to a coalition in the coalition structure.

In a coalition structure, coalitions can be either distinct or overlapping. An example of

distinct group formation is when families arrange shared family plans with phone companies

in order to save expenses. On the other hand, Facebook users can join multiple groups, thus

creating overlapping user coalitions. In this thesis we consider distinct coalitions.

In the coalition structure generation problem, we consider a set of agentsA = {a1, a2, . . . , an},
where n is the total number of agents. The task is to find a coalition structure CS =

{C1, C2, . . . , Cl}, which is a set of l coalitions Cj. Each coalition Cj can be assigned a value

v(Cj).

Definition 2.1.4 (Coalition value). Coalition value v(Cj) is a real number assigned to a

coalition Cj as a function of the set of agents that participate in Cj. Coalition value is

independent of the state of other coalitions in the coalition structure.
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CS is then assigned a value which corresponds to the aggregate value of all coalitions in

CS,

v(CS) =
∑
Cj∈CS

v(Cj). (2.1)

Typically, the task of coalition structure generation is to find the optimal coalition structure.

Definition 2.1.5 (Optimal coalition structure). Optimal coalition structure CS∗ is a coali-

tion structure with the highest value v(CS),

CS∗ = arg max
CS∈ΠA

v(CS), (2.2)

where the argmax function returns CS with the highest value of v(CS) and ΠA denotes the

set of all possible coalition structures containing all agents in the set A.

Since there are O(nn) coalition structures in ΠA (Rahwan and Jennings, 2008), finding

the optimal coalition structure is feasible only for small numbers of agents n. Major part

of this thesis studies the coalition structure generation problem in large-scale systems with

hundreds and thousands of agents.

Solving an optimization problem in each coalition is concerned with the cooperation

of agents inside a coalition. Typically, the task is to maximize performance of the coali-

tion (Rahwan et al., 2015). For example, a group of researchers has to decide how to

combine their knowledge in order to write a good scientific publication. Research presented

in this thesis does not include this coalition formation sub-problem.

Division of the coalition’s profit among its agents seeks to find ways to divide coalition’s

profit among self-interested coalition members. Typical metrics that are applied to solu-

tions of this sub-problem are fairness and stability (Rahwan et al., 2015). Fairness addresses

whether agents’ rewards correspond to their contributions, and stability verifies that agents

in a coalition are not incentivized to selfishly create sub-coalitions in order to increase their

profit. The following example illustrates how searching for a social welfare-maximizing coali-

tion structure yields unstable coalitions. In this example we assume that social welfare is

equal to sum of coalition values, which are in turn calculated by summing up agents’ prof-
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its. Three agents x, y, and z, can form coalitions with the following distribution of profit:

{x = 2, y = 2, z = 3}, {x = 3, y = 3}, {x = 1, z = 1}, {y = 1, z = 1}, {x = 0}, {y = 0},
and {z = 0}. The first coalition yields the highest total social welfare of 7. However, agents

x and y could jointly deviate from this coalition and form the second coalition in order to

maximize their own profit.

Definition 2.1.6 (Coalition stability). Coalition stability reflects the willingness of self-

interested agents to stay in coalitions that were assigned to them.

Coalition stability is addressed in literature mainly through the concept of a core.

Definition 2.1.7 (Coalition core). Core is a set of allocations to the agents in a coalition,

such that these allocations cannot be improved upon by allocations to a subset of these agents.

In another words, allocations are in a core if there exists no sub-coalition in which some

agents would get higher profit and no agents would get lower profit than in the original

coalition.

While the core is a strong concept, its computation requires an evaluation of all 2|Cj |

possible sub-coalitions of each coalition Cj containing |Cj| agents. In this setting checking

whether a solution is in the core is co-NP-complete (Greco et al., 2011), and determining

whether the core is non-empty is ∆P
2 -complete (Greco et al., 2011). This complexity makes

the use of the core in large-scale systems with thousands of agents infeasible. This thesis

addresses the concept of coalition stability in large-scale systems, however, we will propose

to achieve this metric by changing the coalition structure generation process instead of via

profit division. We will show that letting the agents know the profit division scheme while

forming the coalitions results in more stable coalition structures, and it removes the need

for computation of profit division.

2.2 Power Distribution System

Power distribution systems (PDS) are physical systems that carry electricity from a trans-

mission system to individual customers. We show an example of a PDS in Figure 2.1. PDS
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connect with the transmission system through a substation, which lowers the voltage. Elec-

tricity is then carried by feeders, which further split into laterals. Finally, the laterals are

connected to transformers, which further lower the voltage for use in households. PDS form

a tree structure in which the substation represents the root node of the tree and households

and other consumers are the leaf nodes.

Utility

Substation
Feeder

Lateral

Transformer

Transmission 
system

Figure 2.1: Example of a power distribution system

PDS are currently undergoing multiple changes that occur mostly on the consumer level.

Lowering prices of PV generators along with government subsidies incentivize many home-

owners to install small rooftop PV generators. These generators are used to cover household

load as well as to sell power to the grid. Furthermore, an increasing number of home

appliances, including electric vehicles, are able to shift their load in order to optimize home-

owners’ expenses. These changes result in the customers becoming more actively involved

in both the physical and the economical sub-systems of PDS. Transactive Energy is a new

term that describes this phenomenon. It was defined in a 2014 report by GridWise Al-

liance (GridWise Alliance, 2014) as “the ability for consumers and end devices to buy and

sell energy and related services in a dynamic and interactive manner”. The customers will

be able to actively participate in the transactive energy market by dynamically buying and

selling energy (GridWise Alliance, 2014; The GridWise Architecture Council, 2015).

Many difficult challenges arise due to these changes in PDS. Because of their increased
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capabilities the active consumers will be able to affect the PDS in unpredictable ways. High

penetration of active consumers will require new control mechanisms to ensure stability of

the grid and prevent congestion. Distributed generation using mainly renewable sources can

negatively affect the grid stability due to unpredictability of renewable generation. Currently,

the utilities only allow a limited amount of distributed renewable generation because of its

unforeseen effects on the grid. However, decreasing costs of small renewable generators and

an increasing push towards use of renewable resources will force a significant increase in

penetration of distributed generation in PDS. New approaches will be needed for distributed

generation control. Furthermore, customers will not be able to make fast and frequent

decisions about the actions of their households in energy markets. Therefore, intelligent

agents will have to be designed to represent households and autonomously make decisions

about load and generation of the household. Security will also be a major concern as the

amount of information shared about customers will have to be carefully considered and

protected.

Figure 2.2: Smart grid: multi-directional power flow (Comsar Energy, 2013).

Many of these problems are being addressed through the concept of a smart grid. The

smart grid is an evolution of electricity networks toward greater reliance on communications,

computation, and control (Camacho et al., 2011). Smart grid includes many autonomously

operating stakeholders, including smart homes, energy storages, and power generators, con-

nected to the existing power grid and cooperating via internet. Figure 2.2 shows these active
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stakeholders participating in a multi-directional power flow in the power grid. Smart grid

is defined more formally by Title XIII of Energy Independence and Security Act of 2007

(EISA), which was approved by the US Congress, as a system that achieves each of the

following requirements (US Congress, 2007):

1. Increased use of digital information and controls technology to improve re-

liability, security, and efficiency of the electric grid.

2. Dynamic optimization of grid operations and resources, with full cyberse-

curity.

3. Deployment and integration of distributed resources and generation, includ-

ing renewable resources.

4. Development and incorporation of demand response, demand-side resources,

and energy-efficiency resources.

5. Deployment of ‘smart’ technologies (real-time, automated, interactive tech-

nologies that optimize the physical operation of appliances and consumer

devices) for metering, communications concerning grid operations and sta-

tus, and distribution automation.

6. Integration of ‘smart’ appliances and consumer devices.

7. Deployment and integration of advanced electricity storage and peak-shaving

technologies, including plug-in electric and hybrid electric vehicles, and ther-

malstorage air conditioning.

8. Provision to consumers of timely information and control options.

9. Development of standards for communication and interoperability of appli-

ances and equipment connected to the electric grid, including the infras-

tructure serving the grid.

10. Identification and lowering of unreasonable or unnecessary barriers to adop-

tion of smart grid technologies, practices, and services.
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In this thesis we address specifically items 3 and 7 of the EISA smart grid require-

ments list. We focus on increasing use of distributed generation through renewable resources

(item 3) in Chapter 5. We will show that the use of renewable resources can be increased

by letting renewable generators form coalitions with energy stores (item 7). The remaining

items of the EISA list of requirements for smart grid are out of scope of this work.

2.3 Summary

Coalition formation is a process in which multiple autonomous agents create cooperating

groups called coalitions in order to achieve individual or group goals. The goal of coalition

formation is usually to increase social welfare or profit of individual agents. Coalition for-

mation includes coalition structure generation, solving coalition’s optimization problem, and

division of coalition’s profit (Sandholm and Lesser, 1997). In this thesis we address coalition

structure generation in large-scale MAS. We also study coalition stability, which is related

to division of coalition’s profit.

PDS carry electricity from a transmission system to individual consumers. Multiple

changes on consumer level of PDS are creating a need for new approaches for PDS control.

For example, with the rise of small PV generators consumers are able to cover their own

load as well as sell power to the grid. This distributed generation using renewable resources

creates difficult challenges associated with unpredictability of consumer behavior as well

as unpredictable availability of renewable sources. These challenges are being addressed

by the concept of a smart grid. Many requirements for a smart grid are listed in Energy

Independence and Security Act (US Congress, 2007). In this thesis we focus on integration

of distributed generation through renewable resources (item 3 in Title XIII of (US Congress,

2007)). We show that coalition formation with the help of energy stores (item 7 in Title

XIII of (US Congress, 2007)) can be used to increase renewable generation.
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Chapter 3

Related Work

This chapter provides an overview of related work in the field of coalition formation and

use of renewable resources in power distribution systems. We also describe the distinctions

between related work and research performed in this thesis in order to show novelty of our

work.

3.1 Coalition Formation

This section discusses related work in coalition formation, including multi-agent simulation

used for coalition formation, and approaches that consider stability of coalitions. Coalition

formation is usually solved by one of the following approaches that will be discussed in the

following sections: dynamic programming, graph-based algorithms, heuristic algorithms, or

hierarchical clustering. The first two approaches are exact and guaranteed to find optimal

solutions. Although the last two approaches do not provide guarantees on solution quality,

they are able to solve large problem instances. Our approach of using multi-agent simulation

can be classified as a heuristic algorithm because the simulation performs a greedy search in

the state-space of CSs.
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3.1.1 Dynamic Programming

Dynamic programming (DP) was initially used to solve the coalition formation problem with

the first algorithm proposed by Yeh (Yun Yeh, 1986). Yeh’s algorithm directly depends on

the following theorem that defines a value of an optimal coalition structure:

Theorem 3.1.1. Given a coalition C, let f(C) be the value of an optimal coalition structure

formed by agents in C. Then

f(C) =


v(C) if |C| = 1

max{v(C),max{C1,C2}∈ΠC (f(C1) + f(C2))} otherwise.

(3.1)

In another words, the value of the optimal coalition structure over agents in C can be calcu-

lated by considering all possible splittings of coalition C into subcoalitions C1 and C2.

ΠC in Theorem 3.1.1 denotes all coalition structures containing agents in coalition C.

Theorem 3.1.1 is implying that any coalition C should be split into some coalitions C1 and

C2 if the sum of values of optimal coalition structures consisting of agents in coalitions C1

and C2 is greater than value of coalition C. Proof of Theorem 3.1.1 is presented in (Rahwan

et al., 2015). The DP algorithm works based on Theorem 3.1.1 as follows: it iterates over all

possible coalitions in an increasing order of coalition size, and for each coalition C a decision

is made whether the highest coalition value can be achieved by the coalition C itself or by

splitting the coalition in two sub-coalitions C1 and C2. Since coalitions C1 and C2 are smaller

than coalition C, their optimal values are calculated before coalition C is considered. The

algorithm has to consider all coalitions C1 and C2 such that C1 ∪ C2 = C and C1 ∩ C2 = ∅.
The algorithm proceeds this way until the grand coalition (see Definition 2.1.1) is reached.

Yeh’s DP algorithm for coalition formation was further improved. Rahwan and Jennings

(Rahwan and Jennings, 2008) proposed an algorithm called Improved Dynamic Programming

(IDP), an improvement of standard dynamic programming that performs fewer operations

(38.7% of operations in problems with 25 agents) and uses less memory (33%-66% of the

memory used by the DP algorithm). Even with these improvements, authors of IDP only
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perform experiments with up to 25 agents. Recently, Cruz-Menćıa et al. (Cruz-Menćıa et al.,

2013) proposed an optimized implementation of DP and IDP algorithms. This optimized

implementation is 10 times faster then the IDP algorithm. Furthermore, (Cruz-Menćıa

et al., 2013) achieves additional 5-6 times speedup by implementing the IDP algorithm in a

distributed way. With these improvements the algorithm still spends several hours finding

optimal solutions for systems with 27 agents.

3.1.2 Graph-based Approaches

Graph-based algorithms utilize synergy graphs, which are graphs that encode agents’ abilities

to cooperate peer to peer. For example, communication, trust, or social constraints between

pairs of agents can influence how the coalitions are formed. The DyCE algorithm (Voice

et al., 2012) improves upon IDP by recognizing and ignoring infeasible coalitions using the

synergy graph. Bistaffa et al. (Bistaffa et al., 2014) proposed a branch and bound algorithm

CFSS that searches the state-space by contracting edges of the synergy graph. An edge

contraction corresponds to merging coalitions associated to its incident vertices. An example

edge contraction is shown in Figure 3.1. This state-of-the-art algorithm is able to find optimal

solutions in specific instances of the problem containing up to 50 agents in 100 seconds.

Moreover, the algorithm can be used to find sub-optimal solutions in large-scale systems.

However, the algorithm is limited to valuation functions that can be expressed as a sum of

a monotonic and an anti-monotonic function. Finally, Sless et al. (Sless et al., 2014) have

recently proposed a centralized graph-based algorithm in which a central organizer suggests

new cooperation between agents by adding edges to the synergy graph. These adjustments

of the synergy graph are associated with a given cost. (Sless et al., 2014) then studies this

scenario from the aspects of maximizing social welfare as well as finding stable coalitions,

and performs experiments on a graph with 20 vertices.
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Figure 3.1: CFSS: Example of an edge contraction in a triangle graph. The dashed edge is
contracted to form the graph on the right, creating coalition {A,C} (Bistaffa et al., 2014).

3.1.3 Approaches for Large-scale Systems

An increasing number of agents causes the search for optimal CS to become infeasible.

Suboptimal solutions can then be found using heuristic algorithms. Shehory and Kraus

(Shehory and Kraus, 1998) first proposed a greedy algorithm that restricts the allowed size

of coalitions to solve task allocation in a multi-agent system.

Other approaches were later used to tackle coalition formation in larger scale setting. A

genetic algorithm is used in (Sen and Dutta, 2000), in which a set of coalition structures is

considered by iterative evaluation, selection, and recombination of the coalition structures.

Simulated annealing-based approach is proposed in (Keinänen, 2009), in which a new coali-

tion structure is iteratively randomly sampled from a neighborhood of the current coalition

structure. Then the new coalition structure is set as the current coalition structure if either

the former is better than latter, or with some probability related to the current simulated

annealing temperature. Finally, a greedy adaptive search was proposed in (Di Mauro et al.,

2010). This search iterates in two phases: constructive and local search. In the constructive

phase the algorithm considers adding an agent to one of the current coalitions. Then, the

local search phase explores different neighborhoods of the current coalition structure. De-

spite promising results, particularly for the greedy adaptive search, these algorithms focus

on instances of the coalition formation problem that contain less than 100 agents.

Farinelli et al. recently proposed C-Link (Farinelli et al., 2013), which is a hierarchi-

cal clustering algorithm that addresses large-scale coalition formation. C-Link starts with

singleton coalitions, and iteratively merges the most suitable pairs of coalitions based on
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criteria inspired by standard clustering approaches. Single-link, complete-link, and average-

link clustering approaches can be used with C-Link. These methods consider gain that two

coalitions would achieve if they were merged. Furthermore, (Farinelli et al., 2013) also pro-

posed a new clustering criterion called gain-link, which significantly improves the quality of

solutions. C-Link finds a suboptimal solution for 2,732 agents in 4 minutes. Although C-Link

addresses a similar problem to the problem we address, we focus on the simulation aspect by

studying how strategies of single agents affect overall behavior of the system. Unlike C-Link,

our framework models systems that change and adapt and it computes the evolution of the

coalition structure over time.

3.1.4 Multi-agent Simulation

Multi-agent simulation is a tool for studying complex systems by eliminating the need for in-

feasible real-world experiments. Such simulation can be used to test hypotheses about emer-

gence of a macroscopic behavior based on behaviors and interactions of individuals (Drogoul

and Ferber, 1994). Multi-agent simulation is a suitable approach for coalition formation

because of its iterative nature, which is very similar to a dynamic nature of the coalition

formation process. Multi-agent simulation can be used to search for a solution without a

specific optimizing algorithm. It is often used to show how a real system would evolve over

time, thereby decreasing the need for potentially expensive real-world experiments. How-

ever, theoretically proving a bound on the solution quality is often difficult in multi-agent

simulation. Therefore, a theoretical proof is often substituted by experimental analysis.

Multi-agent simulation studies coalition formation from several viewpoints. In (Merida-

Campos and Willmott, 2004), agents randomly choose coalitions in a coalition game in

order to perform tasks. After each round, depending on their simple strategies, the agents

can decide to leave the coalition or to stay. (Merida-Campos and Willmott, 2004) show

that agents can benefit from exploiting knowledge about past successful coalitions. We

take this simulation approach further by proposing more complex heuristic strategies and

applications. An iterative approach for finding core-stable coalitions was proposed in (Arnold
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and Schwalbe, 2002). There agents use best-response strategy to choose new coalitions.

While the approach in (Arnold and Schwalbe, 2002) is similar to ours, it can only be used

in small scale scenarios due to its high complexity, as was shown in (Bistaffa and Farinelli,

2013), where the algorithm from (Arnold and Schwalbe, 2002) was improved and empirically

tested. A physics-motivated algorithm is proposed in (Lerman and Shehory, 2000) to solve

the coalition formation problem for large-scale electronic markets. Coalition formation is

solved in (Lerman and Shehory, 2000) using a probability-based macroscopic model, which

is defined by a series of differential equations. A coalition may form whenever two individuals

or coalitions randomly encounter each other. The decisions about leaving coalitions are also

made randomly based on some probability. Our framework does not use the macroscopic

point of view and can therefore model behavior of single agents. Our agents also utilize more

complex strategies. Finally, a recent approach has been proposed in (Pan et al., 2016) to

dynamically assemble teams of workers to perform crowdsourcing tasks.

3.1.5 Game Theoretical Approaches

Coalition formation can also be solved using game theory. (Yamamoto and Sycara, 2001)

presented an auction-based system for buyer coalition formation in large-scale e-markets.

There buyers form coalitions in order to exploit volume discounts. (Yamamoto and Sycara,

2001) also proposes a profit division scheme, which is used to divide coalitions’ profit among

its members. (Pillai and Rao, 2013) uses game theory to address a more applied problem

of grouping servers in order to address requests demanding capabilities exceeding a single

server. (Pillai and Rao, 2013) models coalition formation as multiple instances of a zero-sum

game. In (Bonnevay et al., 2005), game theoretical perspective of coalition formation is taken

in which agents are defined by attraction for gain, stability, and strength of character. Even

though the authors of (Bonnevay et al., 2005) provide strong game theoretical background,

they only experiment with four agents.
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3.1.6 Approaches for Systems with Self-interested Agents

Coalition formation algorithms for systems with self-interested agents need to consider single-

agent profit as well as stability of coalitions. Differences between social welfare-maximizing

agents and individually rational or self-interested agents and studied in (Jennings and Cam-

pos, 1997). There the authors define goals and benefits of the individual members as well as

of the society, and they define a socially responsible agent, which is a compromise between

agents optimizing social welfare and individual profit.

Theoretical properties of stability in coalition formation have been studied extensively.

(Sandholm and Lesser, 1997) provides an overview of social welfare and stability in the coali-

tion formation setting. (Pycia, 2012) studies the existence of core stable coalition structures

with respect to profit sharing rules and agents’ preferences over coalitions. (Cechlárová

and Romero-Medina, 2001) assumes agents’ preferences over individual agents, and studies

existence of core-stable coalition structures for extensions of these preferences towards pref-

erences over sets of agents. Theoretical properties of profit sharing are studied in (Hoefer and

Wagner, 2013). There, bounds are given on the price of stability, which is a ratio between a

value of the best Nash equilibrium and the maximum social welfare.

Algorithms have been proposed to find stable coalitions in coalition formation games.

(Augustine et al., 2011) proposes algorithms to find Nash equilibria for three profit sharing

scheme games: fair value games, in which agent’s profit is based on its contribution to the

coalition, labor union games, which takes into account the order in which agents joined

their coalitions, and Shapley games, which calculate agents’ profits based on the Shapely

value. Unlike (Augustine et al., 2011), which assumes deviations (situations in which agents

leave coalitions) of single agents only, we look for coalitions that are stable with respect

to deviations of groups of agents. (Conitzer and Sandholm, 2006) studies how core stable

coalitions can be found in various games. (Conitzer and Sandholm, 2006) also proposes

algorithms that find a core for superadditive games. Since superadditivity leads to a grand

coalition being the somewhat trivial optimal solution, we do not pose this restriction on our

scenarios. (Anshelevich and Sekar, 2015) computes profit sharing between agents that grants
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stability of the solutions for subadditive games only. There, a polynomial-time approximation

algorithm is proposed that achieves coalition stability without sacrificing too much social

welfare. Again, we do not require such restrictions on the valuation functions. Coalition

stability in a request for proposal domain is studied in (Kraus et al., 2003), in which a

negotiation protocol for coalition formation is introduced. There stability is demonstrated

by showing that allowing agents to deviate from pure strategy profiles is not beneficial. It

is unclear whether the algorithm proposed in (Kraus et al., 2003) can be modified for use in

general scenarios.

3.2 Power Distribution Systems

Evolution of PDS and the concept of a smart grid has been widely studied. Overview of the

changes that take place in PDS is given in (Ipakchi and Albuyeh, 2009). There the authors

stress the need for changes in the capabilities of PDS. In (Khaitan and McCalley, 2013) PDS

are described as cyber-physical systems (CPS), highlighting the importance of security and

reliability of PDS. A broader perspective is taken in (Rajkumar et al., 2010), which presents

motivation for CPS along with many real-world examples including PDS.

Impacts of distributed renewable energy and distributed storage on PDS have also been

studied. Overview of distributed renewable generation and energy storage systems is pre-

sented in (Toledo et al., 2010). Challenges with integrating distributed storage are studied

in (Mohd et al., 2008), which concludes that future focus of grid development should be

on large number of small storage devices placed close to distributed generation. Impact

of distributed renewable generation on PDS is studied in (Begović et al., 2001), where the

authors claim that distributed generation can have positive effects on the grid because it can

help keep voltage on feeders in bounds. This claim is supported by extensive simulations.

Effects of battery energy storage systems on PDS are studied in (Tang and Zhang, 2015),

which shows that battery energy storage can significantly reduce fluctuation of power flowing

through the grid. An approach for minimizing energy cost of an energy buyer equipped with

a battery energy storage is proposed in (Khalid et al., 2016). The proposed approach uses
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dynamic programming, and is evaluated by simulations.

Coalition formation has been proposed in literature to increase the integration of renew-

able resources. (Zhang et al., 2015a) proposes an approach for increasing bids of renewable

generators in day-ahead markets. (Zhang et al., 2015a) use law of large numbers to show that

coalitions of renewable generators can benefit from their spacial distribution, since the ad-

verse effects of prediction uncertainty are mitigated. However, large coalitions of renewable

generators can gain market power and lead to uninteded outcomes. (Zhang et al., 2015a)

therefore studies the trade-off between uncertainty and market power, showing that there is

an ideal state where coalitions are large enough to reduce uncertainty, but small enough not

to gain significant market power. A fundamental difference between our approach and ap-

proach in (Zhang et al., 2015a) is the fact that we consider coalitions of renewable generators

with energy stores, while (Zhang et al., 2015a) studies homogeneous coalitions of renewable

generators.

Use of coalitions of renewable generators for decreasing uncertainty in electricity produc-

tion is also studied in (Nayyar et al., 2013). There a profit sharing mechanism is proposed

that is used to fairly distribute profit after coalitions of renewable generators are formed. This

profit sharing mechanism incentivizes formation of coalitions. Under specified conditions the

generators are incentivized to bid higher generation amounts in the day-ahead market. Even

though the goals of (Nayyar et al., 2013) are similar to our goals, their approach is different

since they study homogeneous coalitions of renewable generators.

A more general perspective is taken in (Zhang et al., 2015b), where a market is studied in

which producers face production uncertainty. The authors show that producers can benefit

by forming coalitions, which takes advantage of their diversity. The problem is specified in

terms of Cournot games, and a trade-off between mitigating uncertainty and market power

is studied. Analysis in (Zhang et al., 2015b) shows that for n firms the optimal coalition size

in terms of mitigating both uncertainty and market power is of the order of O(
√
n).
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3.3 Summary

Many algorithms have been proposed that search for a coalition structure with optimal or

sub-optimal social welfare. Among them we highlight dynamic programming approaches

(Cruz-Menćıa et al., 2013; Rahwan and Jennings, 2008; Yun Yeh, 1986), hierarchical cluster-

ing for large numbers of agents (Farinelli et al., 2013), and aproaches that use multi-agent

simulation (Lerman and Shehory, 2000; Merida-Campos and Willmott, 2004). Other ap-

proaches were designed for systems with self-interested agents, among these we highlight

publications that provide theoretical analysis (Hoefer and Wagner, 2013; Pycia, 2012; Sand-

holm and Lesser, 1997) and approaches that find stable coalitions (Anshelevich and Sekar,

2015; Augustine et al., 2011; Conitzer and Sandholm, 2006). For a broader overview of coali-

tion formation literature we refer the reader to a recent comprehensive survey on coalition

structure generation in (Rahwan et al., 2015).

Overview of current changes in PDS is provided in (Ipakchi and Albuyeh, 2009; Khaitan

and McCalley, 2013; Rajkumar et al., 2010). More specifically, effects of distributed renew-

able generation and distributed storage in PDS are summarized in (Begović et al., 2001;

Khalid et al., 2016; Mohd et al., 2008; Tang and Zhang, 2015; Toledo et al., 2010). These

publications stress the need for new control mechanisms that would allow higher penetration

of distributed renewable generation. Research in coalition formation in PDS has mainly

focused on forming coalitions between renewable generators in order to mitigate generation

uncertainty (Nayyar et al., 2013; Zhang et al., 2015a,b).
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Chapter 4

Coalition Formation

In this chapter we present a theoretical framework for large-scale coalition formation. The

goal of coalition formation is typically either maximizing social welfare or improving wel-

fare of individual agents. We propose an approach that seeks to maximize social welfare

in Section 4.1. Then, we show an approach that finds coalitions with respect to welfare of

single self-interested agents in Section 4.2. We analyze both of these approaches experimen-

tally using real-world datasets, and then compare our results with results of state-of-the-art

algorithms.

4.1 Multi-Agent Simulation

In this section we show how multi-agent simulation can be used to perform large-scale coali-

tion formation in order to find coalition structures with high social welfare. We formally

define this problem in Section 4.1.1. We assume that the number of agents is in range of

thousands. For such a problem, state-of-the-art algorithms cannot find the optimal solution

in a feasible time, so we propose to find suboptimal solutions using multi-agent simulation.

Multi-agent simulation allows us to observe the process of forming coalitions in an iterative

manner. While coalition formation is typically approached as a single-step task that finds a

coalition structure, it is beneficial to model coalition formation as a dynamic process where
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coalitions change over time. In such a process the agents can utilize information about pre-

vious and current values of coalitions to support their decision to leave the current coalition

and join a new coalition. We propose a general framework that models coalition formation as

a dynamic, iterative process. Our framework can be used to simulate real world applications

of coalition formation.

4.1.1 Problem Statement

We studied the problem in which large numbers of agents create coalitions. Specifically

we considered the number of agents ranging from 2 to 10,000. We refer to the problem as

large-scale coalition formation, and we define it as follows.

Definition 4.1.1 (Large-scale coalition formation). Let us consider a set of agents A =

{a1, a2, . . . , an}, where n is the number of agents, which can be a large number. The task of

large-scale coalition formation is to find a coalition structure CS = {C1, C2, . . . , Cl}, which

was defined in Definition 2.1.3 as a set of l coalitions Cj, where each agent is contained in

a single coalition. This condition is formally defined as

∀i ∈ 〈1, n〉 ∃! j ∈ 〈1, l〉 : ai ∈ Cj. (4.1)

In order to measure quality of a coalition structure CS, we further define the value of

CS.

Definition 4.1.2 (Value of a coalition structure). The value of a coalition structure corre-

sponds to the social welfare of MAS. The value of a coalition structure is defined as a sum

of values of all coalitions in the coalition structure,

v(CS) =
∑
C∈CS

v(C), (4.2)

where v(C) was defined in Definition 2.1.4 as a value assigned to the coalition C by a valu-

ation function, which is defined in Section 4.1.4.
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In order to compare solutions of problem instances, we define the gain of CS.

Definition 4.1.3 (Gain). The gain of a coalition structure shows how much, on average,

each agent in a coalition structure benefits from participating in a coalition. This metric

shows the quality of a solution from the perspective of a single agent. Specifically, the gain

g(CS) of a coalition structure CS is defined as

g(CS) =
v(CS)− v(CS0)

n
. (4.3)

CS0 denotes a coalition structure containing only singleton coalitions (see Definition 2.1.1),

which is the initial state before coalition formation takes place.

In order to show how close a solution is to the optimal coalition structure as defined in

Definition 2.1.5, we use gain ratio, which was originally defined in (Farinelli et al., 2013).

Definition 4.1.4 (Gain ratio). Gain ratio gr(CS) ∈ 〈0, 1〉 expresses the degree of sub-

optimality of a coalition structure CS,

gr(CS) =
g(CS)

gopt
, (4.4)

where gopt denotes the gain of an optimal solution obtained by a dynamic programming algo-

rithm (Cruz-Menćıa et al., 2013). A coalition structure CS is optimal if gr(CS) = 1.0.

Note that gopt and gr(CS) can only be found in the small-scale scenarios due to limitations

of optimal algorithms. We use the gain and gain ratio metrics to compare the quality of our

solutions.

4.1.2 Framework

We propose a general framework that can model and solve specific applications of the coali-

tion formation problem. We modeled coalition formation as an iterative process in which

the agents leave and join coalitions in an iterative fashion. The algorithm for this process is

depicted in Algorithm 1 and works as follows.
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First the simulator is initialized. Initialization consists of following steps. Agents are

created, and each agent initially forms a singleton coalition (line 1). Interest vectors of

size k are then assigned to agents (line 2). Interest vectors are essential to the simulation

because elements of an interest vector express specific interests of the agent. In various

problem applications these interest vectors may represent the amount of resources owned

or requested by the agent, or an electricity load of the agent’s household. Next, a strategy

is assigned to each agent (line 3). This strategy is later used to determine whether or

not the agent should leave a current coalition and which coalition it should join. A new

coalition structure is then created (lines 4 and 5). This structure holds all agents grouped

in current coalitions. Finally, the evaluation agent and a valuation function are initialized.

The evaluation agent is responsible for evaluating all coalitions and announcing coalition

rankings in each iteration based on the specified valuation function. The time complexity of

this initialization step (lines 1 to 6) is O(n · k).

Algorithm 1 Multi-agent simulation of coalition formation

Input: number of agents n, number of iterations N , size of interest vectors k.
Output: Coalition structure with highest gain.

1: create n agents
2: assign interest vectors of size k to agents
3: assign strategies to agents
4: initialize new coalition structure CS
5: create a coalition for each agent and add it to CS
6: initialize evaluation agent and valuation function
7: for iteration in 1:N do
8: for all agents in random order do
9: if agent.strategy.leaveCoalition() then
10: leave current coalition, update its value
11: newcoalition ← agent.strategy.pickCoalition()
12: update value of newcoalition
13: end if
14: end for
15: evaluate all coalitions
16: announce the ranking of coalitions
17: store current coalition structure
18: end for
19: return best coalition structure

After the initialization step, the simulation begins with a first iteration. In every iteration
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the agents use their strategies to decide whether to leave their current coalition and, if so,

which coalition to join (lines 9 to 11). Then all remaining coalitions are evaluated by the

evaluation agent, and the ranking of coalitions is announced (lines 15 and 16). Finally, the

current coalition structure is stored (line 17). Each agent in each iteration accesses during its

decision making at most n other agents’ interest vectors, regardless of the agents’ grouping

in coalitions. Therefore the worst-case time complexity of Algorithm 1 is O(N · n2 · k). At

the end of the simulation, the best coalition structure is selected out of all stored coalition

structures, and returned as the solution (line 19).

4.1.3 Applications

In this section we discuss two general applications of large-scale coalition formation. We

also discuss the approach we took to model these applications in our framework. Other

applications of coalition formation can be modeled in the framework following our approach.

• Resource sharing - Agents operate with several resources, and they can have either

a surplus or a shortage of each resource. Agents with a surplus try to form coalitions

with agents with a shortage so that the surplus amount can be transferred to (bought

by) agents with shortages. We use interest vectors to store surplus or shortage of each

resource. The value of a coalition then depends on the amount of resources shared.

For example, consider a scenario with three agents and two resources. The amounts of

resources that each agent operates with are shown in Table 4.1. Agent 1 is considering

joining a coalition with either of the two remaining agents. While agent 1 could share

resource 2 with agent 2, agent 1 would benefit more by forming a coalition with agent

3, because agent 1 and agent 3 can share both resource 1 and resource 2.

• Collective energy purchasing - Electricity can be bought either at a spot or for-

ward market. A spot market provides electricity according to the current amount

requested. However, agents can exploit reduced tariffs at forward markets that sell

constant amounts of electricity for long periods of time. In order to exploit the forward

market, the aggregate energy profile of the buyers (i.e. the hourly energy requirements
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Table 4.1: Example of a resource sharing scenario. Positive and negative values denote
surpluses and shortages respectively.

Agent
Resource

Resource 1 Resource 2

Agent 1 100 -50
Agent 2 50 50
Agent 3 -50 50

for a day) must be flat. Agents can form coalitions in order to flatten their aggregate

daily energy profile. We model energy purchasing by storing the agents’ energy pro-

files in their interest vectors. A value of a coalition then depends on the flatness of

its aggregate interest vector. The collective energy purchasing application is relevant

to the PDS domain, because it builds on the concept of active consumers who try to

optimize their expenses. We will examine another application of coalition formation

in the PDS domain in Chapter 5.

4.1.4 Valuation Functions

A valuation function f : C → IR assigns a value v to each coalition C. We propose market-

based valuation function to represent resource sharing. We also discuss collective energy

purchasing (Vinyals et al., 2012) and normally distributed coalition structures (Rahwan

et al., 2009) valuation functions.

• Market-based valuation function is used in the resource sharing application. The

value of a coalition is determined by the amount of resources shared (bought and sold)

within the coalition. More specifically,

v(C) =
k∑
l=1

min(b+
C [l], b−C [l]) + κ(C) (4.5)

where b+
C [l] is the positive balance for resource l, which is the sum of surpluses of

resource l over all agents in coalition C, and b−C [l] is an absolute value of the negative

balance computed with the shortages, respectively. κ(C) = −|C|γ was proposed in
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(Farinelli et al., 2013) to represent the penalty for the coalition size. The penalty

prevents the grand coalition (defined in Definition 2.1.1 as a coalition containing all n

agents) from forming, and it represents the difficulty associated with a cooperation of

a large number of agents.

• Collective energy-purchasing valuation function was proposed in (Vinyals et al.,

2012). The value of an expected payment (coalition value) for coalition C is given by

v(C) =
T∑
t=1

qtS(C) · pS + T · qF (C) · pF + κ(C) (4.6)

where pS and pF represent unit prices at the spot and forward markets, respectively,

qtS(C) represents the amount of energy to be bought at the spot market at time t, and

T · qF (C) represents the total amount of energy to be bought at the forward market

for time interval T (in our experiments, T = 24 represents a length of a daily energy

profile). κ(C) = −|C|γ (Farinelli et al., 2013) captures the penalty for the coalition size.

Unlike the market-based valuation function, the collective energy-purchasing valuation

function creates strong interdependence between the elements of interest vectors.

An algorithm given in (Vinyals et al., 2012) computes optimal energy amounts for a

coalition given the coalition’s aggregate energy profile, which we store in the coalition’s

aggregate interest vector. This algorithm first sorts the aggregate energy profile in a

descending order. The amount of energy to be bought at the forward market qF (C)

is then set to the value at position pF/pS · T in the profile, which is the amount of

energy covered by at least pF
pS

of the time interval. Finally, for each time slot the spot

quantity qtS(C) is calculated as the amount of demanded electricity that exceeds the

forward quantity. Using this algorithm, we obtain energy amounts qtS(C) and qF (C)

that we use to compute the coalition value v(C).

• Normally Distributed Coalition Structures (NDCS) is a challenging valuation

function benchmark proposed by (Rahwan et al., 2009). The value of a coalition is

drawn from a normal distribution N (µ, σ) with µ = |C| and σ =
√
|C|. We include
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NDCS here for the sake of comparison of our approach with the C-Link algorithm,

which is a hierarchical clustering approach for coalition formation proposed in (Farinelli

et al., 2013).

4.1.5 Coalition Selection Strategies

Agents use coalition selection strategies to make two decisions: whether to leave a coalition

and which (if any) of the existing coalitions to join. We propose mixed and local search

coalition selection strategies. We also discuss coalition value-based strategy and random

strategy. We assume that the agents have complete information about the system including

other agents’ interest vectors.

• Coalition value-based strategy advises the agent to join a coalition that maximally

benefits from the addition of the agent. For agent ai, the new coalition Cnew is

Cnew ← argmax
C∈CS

(v(C ∪ {ai})− v(C)). (4.7)

An agent leaves a coalition if the coalition is not the agent’s current choice. This

strategy maximizes marginal contribution of an agent to a coalition. In game theory

literature this strategy is often referred to as the best response strategy (Fudenberg

and Tirole, 1991).

• Random strategy, proposed in (Merida-Campos and Willmott, 2004), makes deci-

sions to leave and join coalitions randomly. Despite its trivial reasoning, this strategy

can be used for a fast search of the state-space.

• Mixed strategy utilizes decision making of at least two strategies. Whenever a

decision on leaving or joining a coalition is needed, this strategy selects a deciding

strategy from a list of available strategies, and forwards the decision request to this

strategy. The deciding strategy is chosen using a roulette wheel algorithm, which picks

a strategy randomly based on given probabilities of the strategies.
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• Local search strategy performs local optimization with random jumps when a local

optimum is reached. This strategy combines the coalition value-based and random

strategies as follows. The coalition value-based strategy is used by all agents as long

as the resulting coalition structure continues to change. If an iteration yields the same

coalition structure as the previous iteration, the random strategy is used once by all

agents in order to escape the local optimum.

4.1.6 Experimental Analysis

We evaluated our coalition selection strategies and valuation functions experimentally using

the gain and gain ratio metrics (Definitions 4.1.3 and 4.1.4). However, the gain ratio metric

can only be applied to instances with small numbers of agents (here up to 20) because an

optimal solution is used as a baseline. For the baseline, we used an optimized implementation

of a dynamic programming algorithm from (Cruz-Menćıa et al., 2013). Note that for the

dynamic programming algorithm, evaluations of all possible coalitions were generated using

the given valuation functions.

We used the following parameter settings for the experiments. In order to achieve reason-

able run-times in instances with various numbers of agents n, we used the following numbers

of iterations for N . We set the number of iterations to N = 500 for small-scale instances with

n ≤ 20, N = 10 for instances with n ∈ (20, 5000〉 and N = 3 for instances with n > 5000.

These limits were designed to achieve reasonable run-times. We will show that the change

in gain of our solutions when adding iterations is very small for N approaching 10. Because

our algorithms are any-time, a solution can be returned at any point during the simulation.

For the energy purchasing scenario the interest vectors of length k = 24 stored real-world

daily energy profiles of households in Portugal (Lichman, 2013) (one value for each hour, T

was therefore set to 24). The hourly values were averaged for each agent over all days in

January 2014 into a single average January day.

For the resource sharing scenario, we used an international trade dataset provided by

the World Trade Organization (World Trade Organization, n.d.). The dataset stores import
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and export amounts in US dollars between 167 countries in 17 commodity types, therefore

we set k = 17. The amount of each resource of each agent was computed as the difference

between export and import amounts of the given country in the year 2014. Positive and

negative values of the resulting resource amounts denote surplus and shortage respectively.

The parameter γ representing coalition size penalty was set to 1.1 following (Farinelli

et al., 2013) for the energy purchasing scenario and to 2 for the resource sharing scenario.

The higher value of γ was used in the resource sharing scenario to prevent the grand coali-

tion, which is the trivial solution, from being the optimal solution. As suggested in (Vinyals

et al., 2012) and (Farinelli et al., 2013), we fixed the prices for the energy purchasing sce-

nario at pS = −80 and pF = −70. Negative values are used because the coalition value is

maximized. The baseline dynamic programming algorithm is implemented in C using inte-

ger and long types, which creates a risk of integer overflow for large coalition values. Due

to these numeric limitations of the baseline dynamic programming implementation we used

randomly generated data for the small scale experiments. Specifically, elements of interest

vectors were drawn from a uniform distribution U{0, 10} for the collective energy purchasing

scenario and U{−10, 10} for the resource sharing scenario.

We ran our Java implementation of the proposed algorithms on 2.7 GHz Intel Xeon E5

CPU with 2 GB of memory. The 2 GB limit provides sufficient memory for our algorithms

used in experiments with up to 10,000 agents. All results were generated by averaging 10

random runs of our algorithms.

4.1.7 Experiment Results in Small-scale Problem Instances

For problem instances containing up to 20 agents, we compared the performance of our

coalition selection strategies with optimal solutions. Table 4.2 shows an average gain ra-

tio achieved by the strategies. The table also shows results achieved by a state-of-the-art

hierarchical agglomerative clustering algorithm C-Link (Farinelli et al., 2013).

The best average gain ratio was achieved by strategies that combine local search and

random approaches, as shown in the first and third highest ranking strategies in Table 4.2.
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Table 4.2: Average gain ratio in the small-scale problem instances, with number of iterations
N = 500. Combination of local and random searches yields results closest to the optimum.
Results are averaged over all small-scale experiments with resource sharing, collective energy
purchasing, and NDCS scenarios.

Coalition selection strategy Average gain ratio

Mixed: coalition value-based, random 0.9399
C-link: Gain Linkage 0.9289
Local search 0.9203
Coalition value-based 0.8700
Random 0.8097

Our two highest ranking strategies used both agents’ best response through the coalition

value-based strategy and random search through the random strategy. While both coalition

value-based and random strategy achieved lower gain ratio, their combination found solutions

close to the optimum, because this combination can both utilize the information about the

coalition values as well as escape local optima. The highest ranking mixed strategy utilized

random search more often than the local search strategy, it was therefore able to search larger

portion of the search space and consequently find better solutions.

The locally optimizing coalition value-based strategy achieved a worse gain ratio because

it cannot escape local optima and therefore it wastes the remaining iterations after a local

optimum is found. The random strategy, which performs an uninformed search of the state-

space, ranked last.

Figure 4.1 shows gain ratio of our strategies and C-Link in the challenging NDCS scenario

for various numbers of agents. Recall from Definition 4.1.4 that if gain ratio gr(CS) = 1.0

then the solution is optimal. In this scenario the local search strategy ranks first, outperform-

ing both the mixed strategy and C-Link, thus showing the effectiveness of the local search

strategy in challenging small-scale problem instances.

The results in small-scale problem instances showed that the multi-agent simulation ap-

proach for coalition formation yields solutions with gain on average up to 94% of the gain

of optimal solutions (see Table 4.2) in problem instances where optimal solutions can be ob-

tained using a state-of-the-art optimal algorithm. The results also showed that local search
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Figure 4.1: Gain ratio in NDCS scenario. The mixed strategy is encoded as
“MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars show stan-
dard deviation of aggregated variables.

and mixed strategies find solutions of similar or higher quality than the state-of-the-art al-

gorithm C-Link.

4.1.8 Experiment Results in Large-scale Problem Instances

Given the promising results of the small-scale experiments, we experimented with higher

numbers of agents (up to 10,000) in order to measure the performance of our algorithms

in a large-scale setting in which optimal algorithms cannot be applied. Figures 4.2 and

4.3 compare our strategies and C-Link based on the achieved gain. Note that the gain

loss between iterations with number of agents n = 5000 and n = 5500 is caused by the

decreased number of iterations N for n > 5000. This loss is largest for the random strategy,

because lowering the iteration limit lowers the number of random samples of the state-space.

Strategies that are not based on the random strategy are affected as well because the number
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of agents’ best responses is also decreased. We decreased the number of iterations N in order

to achieve reasonable run-time of our algorithm. Further experiments showed that increasing

the number of iterations yields results with both gain and run-time comparable to C-Link.
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Figure 4.2: Gain achieved by our algorithm and C-Link in resource sharing scenario for
given coalition selection strategies and valuation functions, for number of iterations N = 10
for n ≤ 5000 and N = 3 for n > 5000. Gain reflects how much on average each agent
benefits from coalition formation. We cannot compare gain values across scenarios because
each valuation function yields a different magnitude of the gain. The mixed strategy is
encoded as “MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars
show standard deviation of aggregated variables.

We highlight the following three observations. First, in collective energy purchasing

scenario the gain achieved by local search and coalition value-based strategies is the same

as the gain achieved by C-Link, and in instances of resource sharing scenario with N = 10
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Figure 4.3: Gain achieved by our algorithm and C-Link in collective energy purchasing sce-
nario for given coalition selection strategies and valuation functions, for number of iterations
N = 10 for n ≤ 5000 and N = 3 for n > 5000. Gain reflects how much on average each
agent benefits from coalition formation. We cannot compare gain values across scenarios be-
cause each valuation function yields a different magnitude of the gain. The mixed strategy is
encoded as “MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars
show standard deviation of aggregated variables.

the gain of these two strategies is greater than the gain of C-Link. Decreasing number of

iterations to N = 3, which decreases the number of best responses to 3 per agent, causes

the gain of our strategies in resource sharing scenario to become slightly lower than the gain

of C-Link. However, in these instances the run-time of our strategies is over one order of

magnitude lower than the run-time of C-Link, as shown in Figure 4.7.

Second, the gain achieved by local search and coalition value-based strategies for n ≥ 20
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is greater than the gain at n = 20, demonstrating that our algorithms provide stable average

gain for the agents with increasing scale of the problem. Therefore agents in large-scale

scenarios benefit from coalition formation more than agents in small-scale scenarios in which

the solutions are very close to the optimum. The reason for this phenomenon is a more

open state-space of the large-scale multi-agent system. Adding agents to the tested problem

instances creates better opportunities for the agents and consequently increases the overall

gain. This is a promising result given the absence of comparison with optimal solutions.

Third, the local search and the coalition value-based strategies outperformed other strate-

gies in all scenarios because each agent in each iteration locally optimizes the overall gain.

Although in small-scale problem instances (see Table 4.2) this approach is outperformed by

quicker strategies that randomly search larger part of the state-space within the given num-

ber of iterations, this advantage is no longer as important in large-scale problem instances

because the state-space grows exponentially and therefore these quicker strategies can only

search a small part of it. Therefore slow, locally optimizing strategies yield solutions with

higher gain.

Since the input to Algorithm 1 is the number of iterations N , it is important to study the

effect of choosing N . Figure 4.4 shows the gain achieved by our strategies after N = 〈1; 10〉
iterations in the resource sharing scenario. The gain of the highest ranking local search and

coalition value based strategies dominated the gain achieved by C-Link after two iterations,

and this gain became stable around fifth iteration. This result shows that the number of

iterations used in the resource sharing scenario can be very low. Furthermore, this shows

that after only a few iterations solutions of our strategies dominate solutions of a state-of-

the-art algorithm. Similar results are shown in Figure 4.5 for the collective energy purchasing

scenario. There our strategies achieved gain comparable with C-Link after the first iteration.

Another factor in choosing the number of iterations is the convergence of our algorithm.

Convergence analysis is important because it can limit the number of necessary iterations

and therefore decrease the run-time of our algorithms. Since the local search, random, and

mixed strategies are random-based and therefore do not converge, we only study the con-

vergence of the coalition value-based strategy. Figure 4.6 shows the number of iterations
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Figure 4.4: Effect of the number of iterations N on gain in the resource sharing scenario
with 1000 agents. Local search and coalition value based strategies dominated C-Link after
two iterations. The mixed strategy is encoded as “MixedStrategy.StrategyA.probability-of-
AStrategyB.probability-of-B.” Error bars show standard deviation of aggregated variables.

until convergence in resource sharing and collective energy purchasing scenarios. The results

vary between the two scenarios, indicating that the resource sharing scenario is harder to

solve. Interestingly, the number of iterations until convergence does not increase significantly

with increasing number of agents in the collective energy purchasing scenario. Overall, the

number of iterations needed to reach convergence is relatively small. Figure 4.6 shows the

maximum number of iterations that should be considered for the number of iterations N .

Finally, in practice the run-time of the algorithm can be a constraint, it is therefore also

a deciding factor in choosing the number of iterations N . Figures 4.7 and 4.8 show run-time

42



number of iterations

ga
in

1 5 10 15 20 25 30

50
0

10
00

15
00

20
00

25
00

30
00

●

●
● ● ● ● ●

LocalSearchStrategy

MixedStrategy.CoalitionValueBasedStrategy.0.5RandomStrategy.0.5

RandomStrategy

CoalitionValueBasedStrategy

C−Link GainLinkage

Figure 4.5: Effect of the number of iterations N on gain in the collective en-
ergy purchasing scenario with 1000 agents. The mixed strategy is encoded as
“MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars show stan-
dard deviation of aggregated variables.

of our algorithm. Note again that the sudden decrease in run-time between n = 5000 and

n = 6000 is caused by decrease in the number of iterations from N = 10 to N = 3. C-Link

cannot benefit from this decrease because it is not an iterative algorithm. Consequently, it

is impossible to affect the run-time of C-Link by changing the input parameters. Coalition

value-based and local search strategies are slower than the other strategies because they

more often perform expensive search for a coalition maximizing the marginal contribution.

However, in instances with n > 5000, in which N = 3, these strategies are faster than C-Link.

Particularly in the resource sharing scenario with high numbers of agents our algorithm is
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Figure 4.6: Number of iterations it takes the coalition value-based strategy to converge to a
local optimum in both scenarios. Error bars show standard deviation of aggregated variables.

faster by one order of magnitude. Together, Figures 4.4, 4.7, and 4.8 show the trade-off

between run-time and solution quality. Unlike C-Link, our approach allows for tuning of

this trade-off using the number of iterations N .

4.1.9 Discussion

We designed a framework that simulates coalition formation. While the simulator part

of the framework is fixed, the valuation functions and agents’ strategies are configurable,

which gives a user extensive flexibility in modeling various coalition formation scenarios.

We showed the usability of the framework by designing and implementing various types of

agent behavior along with specific applications of coalition formation. Our design approach

can be followed to model other applications by designing and implementing new valuation

functions. New agents’ behavior can also be modeled with the use of new coalition selection
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Figure 4.7: Run-time of our algorithm and C-Link in resource sharing scenario. Our
algorithm is faster than C-Link in large instances. The mixed strategy is encoded as
“MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars show stan-
dard deviation of aggregated variables.

strategies following our approach.

The framework can be used to simulate scenarios with thousands of agents. In these large-

scale scenarios we do not guarantee finding an optimal solution. However, the framework

can be used to generate a step-by-step evolution of the multi-agent system based on specific

behavior of the agents, which better reflects the real world where global optimum is seldom

an achievable goal. We show performance of the framework in simulations of the coalition

formation applications. Using a combination of local and random searches, the framework

is able to find solutions very close to the optimum in small-scale instances of the problem.
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Figure 4.8: Run-time of our algorithm and C-Link in collective energy purchasing scenario.
Our algorithm is faster than C-Link in large instances. The mixed strategy is encoded as
“MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars show stan-
dard deviation of aggregated variables.

With the scale of the problem increasing to 10,000 agents, the single agents achieve higher

gain than in small-scale instances. For new user-defined coalition formation applications and

agents’ strategies it might not be obvious which strategy will yield the best solutions. Our

framework can be used to test different strategies of the agents in given applications and

determine the performance of the strategies, similarly as we did in Section 4.1.6.

As mentioned in Section 4.1.2, the worst-case time complexity of our algorithm is O(N ·
n2 · k), which is lower than the O(n3) complexity of the C-Link algorithm (Farinelli et al.,

2013). An element that could affect the time complexity as well as the behavior of our
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algorithm is a cost of communication between agents. The communication cost would have

to be included if the approach was distributed among multiple computational units. However,

since Algorithm 1 is centralized, we do not include the communication cost in our calculations

for the cause of simplicity and to be able to compare our results with results of C-Link, which

also does not take communication cost into account.

In order to reuse our framework, several steps have to be taken and several design deci-

sions must be made.

1. Implement Algorithm 1.

2. Decide about strategies that the agents will use. For example, a self-interested agent

might utilize a different strategy than a selfless agent.

3. Design a valuation function to represent the specific problem application that is being

examined.

4. Decide which coalition structure should be selected as the solution, since one coali-

tion structure is created in every iteration. In our experiments we selected coalition

structure with the highest gain, but other options include selecting the last coalition

structure or the coalition structure containing a coalition with the highest value.

4.2 Coalition Stability

In this section we propose an approach for finding stable coalitions in large-scale MAS. Recall

that we consider a coalition stable if no sub-group of its members is incentivized to leave the

coalition. Coalition stability is in literature approached mainly using the concept of a core.

However, the complexity of determining the core renders it unusable in large-scale systems.

Therefore instead of the core, we approach coalition stability using multi-agent simulation.

Instead of looking for stable allocations of the coalition value to the agents as is done in the

core, we specify an allocation scheme beforehand and let the agents utilize this information

to choose more stable coalitions during the iterative process of multi-agent simulation.
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4.2.1 Problem Statement

We study the coalition formation problem, in which agents a1, a2, . . . , an ∈ A form coalitions

Cj such that each agent belongs to exactly one coalition. This problem was defined in

Definition 4.1.1. A coalition structure CS is a set of all coalitions Cj that the agents formed

(see Definition 2.1.3). The task is to find a coalition structure that maximizes its social

welfare (as in Section 4.1) as well as its stability.

In order to measure the social welfare of the formed coalition structure, we reuse the

value of a coalition (Definition 2.1.4), the value of a coalition structure (Definition 4.1.2),

and the gain of a coalition structure (Definition 4.1.3). In order to use gain in multi-criterial

optimization (see Section 4.2.4), we define normalized gain as follows.

Definition 4.2.1 (Normalized gain). Normalized gain gnorm(CS) of a coalition structure

CS is computed using gain g(CS) and a set of coalition structures P as follows:

gnorm(CS) =
g(CS)− gmin
gmax − gmin

, (4.8)

where

gmin = min
CS∈P

g(CS) (4.9)

and

gmax = max
CS∈P

g(CS). (4.10)

It holds that

∀CS ∈ P : gnorm(CS) ∈ 〈0, 1〉 ∧ min
CS∈P

gnorm(CS) = 0 ∧ max
CS∈P

gnorm(CS) = 1. (4.11)

Coalition stability has to be considered in systems with self-interested agents. These self-

interested agents prefer their own profit over the social welfare of the MAS. Self-interested

agents maximize their own profit, which we define for agent ai participating in coalition Cj

as
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pCj
(ai) = v(Cj ∪ {ai})− v(Cj), (4.12)

where the coalition values v(Cj ∪ {ai}) is computed right after and v(Cj) is computed right

before the agent entered the coalition. The profit reflects marginal contributions of agents to

the coalitions, (Augustine et al., 2011) describes games that use this profit sharing scheme

as Labor Union games. This definition of profit guarantees that the allocation to the agents

granted at the point of entry to the coalition will not change later regardless of further

changes in the coalition.

In order to measure the stability of coalition structure CS we need to determine stability

of all coalitions Cj ∈ CS. Determining the coalition stability is computationally expensive,

because it requires evaluation of all 2|C| sub-coalitions. We therefore introduce α−stability

to approximate the coalition stability.

Definition 4.2.2 (α−stable coalition). We say that a coalition C is α−stable if no sub-

coalition D with 〈1, α〉 members can be formed in which some agents would benefit more and

no agent would benefit less than in C, formally:

C is α-stable iff @D ⊂ C, |D| ∈ 〈1, α〉 :

∃ai ∈ D : pD(ai) > pC(ai)

∧∀ai ∈ D : pD(ai) ≥ pC(ai).

(4.13)

Definition 4.2.3 (Stability of a coalition structure). We denote Sα as the set of α−stable

coalitions in CS, for which it holds that ∀α : Sα+1 ⊆ Sα. We define stability of a coalition

structure in terms of α as

stabilityα(CS) =
|Sα|
|CS| (4.14)
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where |CS| denotes the number of coalitions in CS. It holds that

lim
α→maxCj∈CS(|Cj |)

stabilityα(CS) = stability(CS) (4.15)

where stability(CS) is the true stability of CS, which we define as the ratio of stable coalitions

in CS.

Since stabilityα is non-increasing with respect to α, it can serve as an upper estimate

of the coalition structure stability. Figure 4.9 shows how stabilityα approaches the true

stability with increasing α. The figure also shows the trade-off between the quality of the

stability estimate and the run-time required to compute the estimate.
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Figure 4.9: Stabilityα approaches the true stability with increasing α. Stabilityα was mea-
sured for coalition structure with 1000 agents after 15 iterations. For α > 10 all coalitions
were either smaller than α or determined unstable. Run-time denotes the time required for
calculation of stabilityα.

Finally we use the price of stability

PoS(CSsw, CSsa) =
g(CSsw)

g(CSsa)
(4.16)

to show the ratio between the gain of social welfare maximizing solutions CSsw and the gain

of solutions reached by behavior of self-interested agents CSsa.
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4.2.2 Algorithm

We find solutions to coalition formation using multi-agent simulation. We extend a multi-

agent simulation framework for large-scale coalition formation proposed in Section 4.1, in

which the agents maximize the social welfare. In that framework the agents use strategies to

decide about leaving their coalitions and joining new coalitions. The coalitions are evaluated

by a polynomial-time valuation function f : C → R. This process repeats in an iterative

fashion, resulting in an agent-driven search of the state-space of coalition structures. While

the approach proposed in Section 4.1 shows almost-optimal performance in small-scale sce-

narios and stable gain in large-scale scenarios, it does not consider stability of the solutions.

In order to increase stability of coalition structures we extend Algorithm 1 from Sec-

tion 4.1 by first allowing the agents to create more stable sub-coalitions within their coalition

by the process of deviation (Section 4.2.3), and second by selecting the best solution out of

the pool of solutions generated by the simulation with respect to both social welfare and

stability (Section 4.2.4). Algorithm 2 shows our approach with lines 10 to 14 showing the

use of deviation, and line 17 representing the solution selection. The concepts of deviation

and solution selection are described in the following sections.

4.2.3 Deviation

Deviation allows agents to leave their current coalition along with other agents from the same

coalition. We allow the agents to deviate from their coalitions in order to guide the search

towards more stable coalition structures. There are two conditions that a sub-coalition must

satisfy in order to be able to deviate from a coalition.

Definition 4.2.4 (Deviating sub-coalition). A sub-coalition of agents D ⊂ C can deviate

from a coalition C if the following two conditions are met:

∀ai ∈ D : pD(ai) ≥ pC(ai), (4.17)
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Algorithm 2 Multi-agent simulation of coalition formation that maximizes gain and stabil-
ity

Input: number of agents n, number of iterations N .
Output: coalition structure with highest gain and stabilityα.

1: initiate the simulator
2: for iteration in 1 : N do
3: for all agents in random order do
4: if agent.strategy.leave then
5: agent.coalition.recompute profit of agents after agent
6: agent.coalition ← agent.strategy.pickCoalition
7: compute agent’s new profit
8: end if
9: end for
10: for all agents in random order do
11: do
12: boolean deviated ← agent.strategy.deviate
13: while deviated
14: end for
15: store current solution
16: end for
17: choose best solution

and

∃ai ∈ D : pD(ai) > pC(ai). (4.18)

These conditions are satisfied by sub-coalitions in which no agent loses profit by deviation

and at least one agent gains profit. If these conditions are satisfied, we call coalition D a

deviating sub-coalition.

Agents’ profit in Equations 4.17 and 4.18 is calculated in Algorithm 2, lines 5 and 7.

If an agent finds a deviating sub-coalition, this sub-coalition will deviate from its current

coalition C and form a new coalition, thus increasing the stability of the original coali-

tion. Considering all 2|C|−1 possible sub-coalitions that an agent can be part of is infeasible,

therefore agents use a heuristic to guide their search. Some possible heuristics are adding

agents to the sub-coalition in order of increasing and decreasing profit, and in random order.

Our experiments showed that most stable coalitions were found using the increasing profit

heuristic. We therefore let the agents to form the sub-coalitions by adding other agents in

order of increasing profit. An agent keeps adding other agents to the new sub-coalition as
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long as the above-mentioned conditions are met. Algorithm 3 shows the deviation process

of a single agent. In Algorithm 3, lines 2 to 5 show how an agent considers other members

of its coalition for deviation by calculating their profit in a sub-coalition D (line 3). This

sub-coalition is extended in each iteration (line 4). Finally, if the resulting sub-coalition D

contains other agents, this sub-coalition will deviate from the original coalition Cj (line 7),

since all members of D are either indifferent or benefiting by this deviation.

Algorithm 3 Deviation of an agent ai in coalition Cj: boolean deviate(ai, Cj)

Input: agents ai and coalition Cj, such that ai ∈ Cj.
Output: true iff agent ai deviated.

1: D ← singleton coalition with ai
2: for all agents ak in Cj \ ai ordered by heuristic do
3: if pD∪ak(ak) < pCj

(ak) then break end if
4: D ← D ∪ ak
5: end for
6: if |D| = 1 then return false end if
7: Cj ← Cj \D
8: return true

Deviation is performed in our model after the agents decide on leaving and joining coali-

tions. Each iteration of the simulation therefore consists of two steps: social welfare max-

imization by leaving and joining coalitions (Algorithm 2, lines 3 to 9), and stability maxi-

mization by deviation (Algorithm 2, lines 10 to 14). The agents deviate recursively, which

means they try to deviate from the new coalition created by their deviation.

4.2.4 Solution Selection

An inherent advantage of using multi-agent simulation for coalition formation is the fact that

it creates a pool of solutions by storing all coalition structures encountered during the search.

At the end of the simulation, Algorithm 1 selects from this pool a solution that maximizes

the gain. We propose to select a solution based on both gain and stability metrics. However,

computing stability of a coalition structure is computationally expensive, therefore we use

stabilityα to estimate the true stability of the solutions.

The computation of stabilityα is shown in Algorithms 4 and 5. Algorithm 4 computes
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Algorithm 4 Computation of stabilityα
Input: αmax, list of coalition structures listCS.
Output: stabilityα computed for all coalition structures in listCS for α = αmax.

1: for α ∈ 〈1, αmax〉 do
2: for all CS in listCS do
3: if CS.computationComplete then
4: continue
5: end if
6: α−stable(α, CS, CS.closeList)
7: end for
8: if ∀CS : CS.computationComplete then
9: return
10: end if
11: end for

stabilityα of coalition structures generated by multi-agent simulation in an iterative fash-

ion for increasing α ∈ 〈1, αmax〉 by calling Algorithm 5 (Algorithm 4, line 6). Algorithm 5

computes stabilityα for given α and coalition structure CS by checking whether all permu-

tations of all combinations of agents in each coalition Cj ∈ CS are dominated by Cj using

Equation 4.13 (Algorithm 5, lines 8-15). All permutations must be considered because the

order in which agents join the coalitions determines their profit (see Equation 4.12). We

only have to determine whether a coalition is α-stable if it is (α − 1)-stable. Algorithm 5

therefore avoids evaluation of coalitions that have already been marked as not stable for

lower α (Algorithm 5, lines 4-6). For the same reason Algorithm 4 skips stability computa-

tion for any coalition structure for which stabilityα of all its coalitions is already determined

(Algorithm 4, lines 3-5). Finally, Algorithm 5 counts the number of α-stable coalitions (Al-

gorithm 5, line 18), and it computes stabilityα for the given coalition structure (Algorithm 5,

line 20).

After stabilityα of all coalition structures is computed, a multi-criteria optimization is

used to select a best coalition structure based on its gain and stabilityα. Common approaches

of multi-criteria optimization are finding Pareto optimal solutions and designing a fitness

function. Pareto optimal solutions do not prefer any of the considered criteria, therefore in

our experiments we used a simple fitness function that allows us to give preference to any of
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Algorithm 5 Computation of α−stable(α, CS, CS.closeList)

Input: α, coalition structure CS, list of closed coalitions in CS CS.closeList.
Output: stabilityα of CS for given α.

1: CS.computationComplete← true
2: stableCount← 0
3: for all Ci ∈ CS do
4: if CS.closeList contains Ci then
5: continue
6: end if
7: if |Ci| ≥ α then
8: for all comb← combinations of agents in Ci of size α do
9: for all perm← permutations of comb do
10: if perm dominates Ci then
11: add Ci to CS.closeList
12: continue (go to line 3)
13: end if
14: end for
15: end for
16: CS.computationComplete← false
17: end if
18: stableCount ++
19: end for
20: stabilityα(CS) ← stableCount/|CS|

the criteria:

f(CS, α) = wg · gnorm(CS) + ws · stabilityα(CS), (4.19)

where gnorm(CS) ∈ 〈0, 1〉 is a normalized gain of CS as defined in Definition 4.2.1, α ∈ 〈1, n〉
is an input parameter that represents the trade-off between quality of solution stability

estimate and computation time, and wg and ws are weights assigned to the two criteria.

Note that given the values of gnorm(CS) and stabilityα(CS) for each CS, Pareto optimal

solutions can also easily be found. Finally, the best coalition structure is returned, such that

CSbest = argmax
CS

f(CS, α), (4.20)

where the argmax function returns CS with the highest value of f(CS, α).

The effect of solution selection on the resulting solution depends on the specific coali-

tion formation application, however, Theorem 4.2.1 gives guarantees on the quality of the
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resulting solution.

Theorem 4.2.1 (Effect of solution selection). When used with the multi-agent simulation ap-

proach for coalition formation (Algorithm 1), solution selection will never decrease stabilityα

of the resulting solution.

Proof. We will use the proof by contradiction. Let Algorithm 1 return solution CS1 with gain

g(CS1) and stability stabilityα,1, and let Algorithm 2 used without deviation return solution

CS2 with gain g(CS2) and stability stabilityα,2. Let us assume that stabilityα decreased

because of solution selection, i.e.

stabilityα,1 > stabilityα,2. (4.21)

Since solution selection picks the resulting solution using Equation 4.20, we can imply that

regardless of values of wg and ws, solution CS2 could have been chosen only because

g(CS1) < g(CS2). (4.22)

However, Equation 4.22 is in contradiction with the description of Algorithm 1 which states

that the coalition structure with the highest gain is returned (see Algorithm 1). This con-

tradiction completes the proof of Theorem 4.2.1.

Stabilityα is used in our approach both by the solution selection algorithm and as a

metric that represents the quality of the solution. We therefore use two values of α, and we

specifically denote αss the value of α used by the solution selection algorithm. Algorithm 4

is also used to evaluate the stabilityα of the selected best solution. In that case the list

of coalition structures listCS contains only the single best solution, and a value of α which

is greater than αss is used to provide a better stability estimate for the single coalition

structure.

Figure 4.10 shows the effect all possible combinations of deviation and solution selection.

• With no deviation and no solution selection, a coalition structure is selected randomly
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Figure 4.10: Gain and stabilityα of coalition structures generated by two simulations (with
and without deviation) with 100 agents, 15 iterations, and α = 4.

from the set A, since only the gain is maximized and agents are not allowed to deviate.

This setting therefore always returns a solution with highest gain regardless of the

coalition stability.

• Solution selection without deviation returns solution B, because that solution achieved

the maximum value of f(CS, α) (see Equations 4.19 and 4.20) among solutions in which

agents are not allowed to deviate.

• Deviation without solution selection returns solution C, because coalition stability is

not considered when selecting the solution, but agents are allowed to deviate.

• Deviation used along with solution selection returns solution D, because both criteria

are considered, and the agents are allowed to deviate.

A combination of both of these approaches yields solutions with higher stability while only
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sacrificing a small fraction of the gain.

4.2.5 Experimental Analysis

We tested our algorithm in two coalition formation scenarios: collective energy purchasing

and resource sharing. These scenarios were described in Section 4.1.3. Because the use

of κ = −|C|γ (see Section 4.1.4) as a coalition size penalty causes agents to form small

coalitions, we define κ using an offset µ as

κ = min(−|C|+ µ, 0)γ, (4.23)

which effectively allowed us to increase the average coalition size and thus make the problem

harder to compute due to its exponential complexity. In our experiments we set µ = 10

to encourage agents to form coalitions of at least that size. Following Section 4.1.6 we set

γ = 1.1 in the collective energy purchasing scenario and γ = 2.0 in the resource sharing

scenario. The effect of Equation 4.23 is depicted in Figure 4.11.
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Coalition size penalty, µ = 10, and γ =1.1

Figure 4.11: Coalition size penalty κ that gives preference to larger coalitions

Several agent strategies were studied in Section 4.1. In our experiments we use the local

search strategy, in which the agents perform a best response move to new coalitions (i.e. the

agents select coalitions which grant them maximal marginal profit). If the search reaches a

local optimum for all agents, a random jump is applied by all agents in order to escape this
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optimum.

We used two values of α for evaluation of stabilityα. For the solution selection algorithm,

we set αss = 3 to allow the algorithm to quickly compute stabilityα of multiple solutions,

and for the final stability verification we set α = 4 to obtain a better final stability estimate.

In order to give equal preference to both gain and stability we set the weights wg = ws = 1.

In order to achieve reasonable run-times of our algorithm, we used the following number

of iterations N in our experiments. For instances with number of agents n < 100 we set

N = 100 and for instances with n > 100 we set N = 10. We ran our Java implementation of

the proposed algorithms on 2.7 GHz Intel Xeon E5 CPU with 2 GB of memory. We averaged

our results over 10 random runs. Random runs are necessary because agents make decisions

in random order.

4.2.6 Experiment Results

We compared results of our algorithms with the baseline multi-agent simulation algorithm

for coalition formation from Section 4.1 using the stabilityα (Definition 4.2.3) and price of

stability (Equation 4.16) metrics. Average values of stabilityα and price of stability are

shown in Table 4.3. The first row of Table 4.3 shows results of the baseline algorithm.

The following rows show how the average stabilityα increases when we plug in the proposed

stability-increasing methods. As expected, the average price of stability is increasing with

the increase in stabilityα, but the increase in price of stability is very low compared to the

significant improvement in stabilityα. Table 4.3 therefore shows that our algorithms find

solutions with much higher stability while only sacrificing a fraction of the social welfare.
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Table 4.3: Trade-off between average stability and average price of stability achieved by our
algorithms with α = 4 and n ∈ 〈20, 5000〉.

Algorithm Results

Deviation Solution
selection

Average
stabilityα

Average
PoS

No No 0.3914 -
Yes No 0.6299 1.0308
No Yes 0.6665 1.0210
Yes Yes 0.8185 1.0629

number of agents

st
ab

ili
ty

α

20 30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

no deviation, no solution selection

deviation, no solution selection

no deviation, solution selection

deviation, solution selection

Figure 4.12: Stability achieved by our algorithms and the baseline algorithm in the collective

energy purchasing scenario: combination of deviation and solution selection algorithms yields

highest stability.
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Figure 4.13: Stability achieved by our algorithms and the baseline algorithm in the collective
energy purchasing scenario: combination of deviation and solution selection algorithms yields
highest stability.

Stability of our solutions is depicted in Figures 4.12 and 4.13 in collective energy pur-

chasing scenario and in Figures 4.14 and 4.15 in resource sharing scenario. As stated in

Theorem 4.2.1, the use of solution selection algorithm never decreases the stability of the

solutions, therefore the solutions generated by the solution selection algorithm always dom-

inate the baseline algorithm with respect to stability. Unfortunately, this dominance is

not guaranteed by the deviation algorithm. However, in most instances the deviation algo-

rithm achieves higher stabilityα than the baseline algorithm. Finally, the highest increase

in stabilityα is achieved in majority of instances when both the deviation and the solution

selection algorithms are used together. As shown in Table 4.3, the average stabilityα in-
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Figure 4.14: Stability achieved by our algorithms and the baseline algorithm in the resource
sharing scenario: combination of deviation and solution selection algorithms yields highest
stability.

creases from 39% achieved by the baseline algorithm to 82% achieved by the combination of

deviation and solution selection algorithms.

The solution selection algorithm evaluates stabilityα of all coalition structures for given

αss. Figure 4.16 shows stabilityα and gain for varying values of αss, where α = 5. As

expected, the stabilityα of the selected solution is increasing with increasing αss, since higher

αss provides a better stability estimate. However, due to the inherent trade-off between

coalition stability and social welfare, the gain decreases with increasing αss. Figure 4.16

only shows algorithms that include solution selection and are therefore affected by changing

αss.
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Figure 4.15: Stability achieved by our algorithms and the baseline algorithm in the resource
sharing scenario: combination of deviation and solution selection algorithms yields highest
stability.

The number of iterations N affects the quality of the resulting coalition structure. We

show stabilityα and gain of our algorithm for varying numbers of iterations N in Figure 4.17.

With the increasing number of iterations the agents have more opportunity to cooperate by

creating coalitions, which leads to an increase in gain. However, higher social welfare might

result in lower stability of the coalitions. This effect is most obvious in the results of the

baseline algorithm, in which due to the increase in gain the stabilityα drops significantly.

However, when we plug in the stability-increasing approaches proposed in Sections 4.2.3

and 4.2.4, the decrease in stabilityα is much slower.

In practice the run-time of an algorithm is an important factor. Figure 4.18 shows the
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Figure 4.16: Effect of αss on stabilityα and gain in collective energy purchasing scenario
with 1000 agents and α = 5: higher αss yields better stability estimate and therefore increases
stability of the selected solution.

run-time of our algorithm for increasing numbers of agents. Interestingly, the run-time

does not change significantly when we plug in the proposed stability-increasing algorithms.

Deviation of the agents has a higher impact on run-time than solution selection, because it

is executed by all agents in each iteration. Run-time of our algorithm can be decreased by

decreasing the number of iterations N , however such an approach might yield solutions of

lower quality, as shown in Figure 4.17.

We also experimented with the state-of-the-art algorithm for coalition formation C-Link

(Farinelli et al., 2013) in order to determine its ability to create stable coalitions. C-Link,

like our approach, can also be used with arbitrary valuation functions, and, as we showed in
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Figure 4.17: Effect of number of iterations N on stabilityα and gain: higher N yields higher
gain because the agents have more opportunity to form coalitions, which naturally leads to a
decrease in stability. Decrease in stabilityα achieved by our algorithms is significantly lower
than the decrease achieved by the baseline algorithm.

Section 4.1, social welfare of its solutions is comparable with results of the baseline algorithm.

Even though C-Link was not designed for use with self-interested agents, the algorithm

might still inherently create stable coalitions. However, our experiments showed that the

only stable coalitions in solutions generated by C-Link in the collective energy purchasing

and resource sharing scenarios are singleton coalitions, which by definition in Equation 4.13

are always stable. This result shows that multi-agent simulation, especially along with

the stability-increasing methods proposed in Sections 4.2.3 and 4.2.4, is better suitable for

coalition formation of self-interested agents than other state-of-the-art coalition formation
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Figure 4.18: Run-time of our algorithms and the baseline algorithm in collective energy
purchasing scenario with number of iterations N = 10.

algorithms.

4.2.7 Discussion

In this section we discuss some design choices that have to be made when designing a multi-

agent system for coalition formation of self-interested agents. We discuss various profit

sharing schemes, definitions of stability, and behaviors of self-interested agents. Then we

analyze time complexity and convergence of our algorithms. Finally, we discuss practical

usefulness of our approach.

Several profit sharing schemes have been proposed in the literature. Equal sharing (Pycia,

2012) divides the coalition value equally among all its agents, fair value sharing (Augustine

et al., 2011) defines agents’ payoff as marginal contribution to the coalition, labor union

sharing (Augustine et al., 2011), which we use in our experiments, defines agents’ payoff as
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agents’ marginal contribution to the coalition at the time of entry, and Shapley sharing (Au-

gustine et al., 2011) assigns payoffs based on agents’ Shapley values. Among these sharing

schemes, labor union is the only one in which consequent additions to the coalition do not

affect agent’s payoff assigned at the time of coalition entry. In all other sharing schemes

agent’s profit changes after it joins the coalition, since profit in equal sharing depends on

the size of the coalition, fair value sharing uses agents’ marginal contribution in the current

coalition, and Shapely value considers all orderings of agents in a coalition including agents

that joined the coalition after the agent. Therefore labor union sharing does not require ad-

ditional computation after agent’s profit is calculated when the agent joins a coalition. Labor

union sharing is the only sharing scheme that models marginal contribution and at the same

time is reasonably computationally efficient, which is why we used it in our experiments.

Several concepts have been used to describe coalition stability. Nash equilibrium describes

a state in which no agent has an incentive to unilaterally deviate. A stronger concept is a core,

which is a set of profit assignments to agents, such that no subset of agents in a coalition has

an incentive to jointly deviate from the coalition. Our definition of stability in Equation 4.13

follows the concept of the core. One might also consider a stricter version of the definition,

in which all deviating agents must benefit by the deviation, i.e. ∀ai ∈ D : pD(ai) > pC(ai).

However, this strict definition of stability yields high stability values for arbitrary coalitions,

and therefore renders the problem less interesting.

Our algorithm searches the state-space of coalition structures using three actions of the

agents: leave a coalition, join a coalition, and deviate from a coalition. We designed these

actions in order to search for coalition structures with high values of both social welfare

and coalition stability. However, the space of possible agents’ actions is not limited to these

actions. For example, agents from multiple coalitions could jointly deviate, agents could

decide whether to allow other agents to enter their coalition, agents could force other agents

in their coalition to leave, etc. Adding new actions to the agents’ action space will lead

to new behavior of the multi-agent system. New actions do not extend the state-space of

coalition structures, however, actions such as unilateral deviation from multiple coalitions

can be computationally expensive, and their addition might therefore significantly increase
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the run-time of the algorithm. When designing agents’ actions we must take into account

the specific problem that is being solved, the effect of the actions on agents’ behavior, and

the computational complexity of the designed actions.

A major advantage that our approach has over other coalition formation approaches

(see Chapter 3 for overview of related work) is its ability to model wide range of agent

behaviors. Coalition formation approaches usually seek to optimize social welfare or find

stable coalitions. These approaches often assume individual rationality, which means that

each agent makes rational decisions in order to maximize its profit or profit of the entire MAS.

However, researchers pointed out that the concept of individual rationality is unrealistic when

used to model human behavior (Gigerenzer and Selten, 2002). It is therefore important

to allow for models of more realistic human behavior. Our approach can easily meet this

requirement, because it directly models decision making of individual agents through agents’

strategies, and agents’ actions through the multi-agent simulation.

Searching the exponential state-space of coalition structures can lead to exponential

worst-case time complexity of the search algorithms. However, we show a polynomial time

complexity of both deviation and solution selection algorithms with respect to number of

agents n and a constant αss bound. Deviation of a single agent requires sorting the agents in

the coalition by marginal profit. The agents can deviate recursively, therefore the complexity

of deviation of a single agent is O(
∑n

i=1(i · log(i))), for which an upper bound is O(n2log(n)).

Solution selection searches through all permutations of all combinations of size 〈1, αss〉 of

agents in a coalition. Evaluating a single coalition therefore requires O(
∑αss

i=1(i! ·
(
n
i

)
)) steps.

For αss << n it holds that

αss∑
i=1

(
i! ·
(
n

i

))
≤ αss · αss! ·

(
n

αss

)
≤ αss · nαss , (4.24)

therefore the worst time complexity of finding stabilityα for a single coalition with α = αss

is O(nαss). The worst-case time complexity of the solution selection algorithm is therefore

O(N ·nαss+1), given the input of N coalition structures, each containing at most n coalitions.

Worst-case time complexity of the baseline coalition formation algorithm is O(N · n2), as
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was shown in Section 4.1.

Table 4.4: Worst-case time complexity of our algorithms as a function of number of itera-
tions N , number of agents n, and a small constant αss. In our experiments we set αss = 3.

Algorithm
Worst-case time complexity

Deviation
Solution
selection

No No O(N · n2)
Yes No O(N · n3 · log(n))
No Yes O(N · nmax(αss+1,2))
Yes Yes O(N · nmax(αss+1,3) · log(n))

Building on the complexity analysis above, Table 4.4 shows worst-case time complexity

of our algorithms. Since we treat αss as a small constant, we get a polynomial complexity

for all proposed algorithms. The analysis in Table 4.4 is very conservative, since we assume

that each coalition structure contains n coalitions, each coalition is composed of n agents,

and each sub-coalition deviating from coalition C is of size |C| − 1. The analysis does not

include complexity of the valuation functions, as these are given as an input to the simula-

tion. However, both collective energy purchasing and resource sharing valuation functions

require constant time with respect to the number of agents n, and therefore do not affect the

complexity analysis. Our algorithm is centralized, therefore we do not assume any additional

cost of communication between agents, as would be the case with algorithms that distribute

the computation among the agents.

An important aspect of an algorithm is its convergence behavior. The baseline algo-

rithm converges if the random jump is not used (see Figure 4.6). Similarly, if the agents

were only allowed to deviate, the simulation would converge from any initial state because

each deviation splits coalitions and decreases the average coalition size. Therefore separate

maximization of social welfare, as well as separate maximization of coalition stability, is

guaranteed to converge. However, combining these steps in order to maximize both metrics

does not guarantee convergence, because maximization of social welfare and maximization

of coalition stability drive the search towards two different local optima.
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Our algorithm can be used in real-world scenarios where coalition stability has to be

considered. Unlike the social welfare-maximizing solutions, solutions with high coalition

stability respect preferences of individual self-interested agents by considering their profit in

coalitions. Solutions with high stability are therefore often more realistic than social welfare-

maximizing solutions. Decision making of individual agents might lower the social welfare

of the solution, but as we showed in Table 4.3, the price of stability of our solutions only

slightly increases with major increase in stability. Furthermore, the weights wg and ws in

Equation 4.19 can be adjusted to give preference to either the social welfare or stability.

4.3 Summary

In Section 4.1 we proposed a general framework for finding suboptimal solutions for a large-

scale coalition formation problem containing thousands of agents using a multi-agent simu-

lation. We modeled coalition formation as an iterative process in which agents leave and join

coalitions based on the information from the current and previous iterations. We presented

example applications of coalition formation: resource sharing and collective energy purchas-

ing, along with valuation functions that model them by assigning values to the coalitions.

We discussed coalition selection strategies that the agents can use in their decision making to

leave and join coalitions. Finally, we analyzed our algorithms experimentally by comparing

performances of the strategies in various problem settings using synthetic and real-world

data.

We showed that our algorithms perform almost optimally in small-scale problem instances

in which our best strategies performed similarly or better than the state-of-the-art algorithm

for coalition formation C-Link. We also showed that the performance of our algorithms is

stable in large-scale instances in which comparison with an optimal solution is infeasible.

In these large-scale instances the quality of solutions found by our algorithm is greater or

equal to the quality of solutions found by C-Link in majority of instances, and in remain-

ing instances our algorithm yields run-time lower than run-time of C-Link by one order of

magnitude, while still keeping solution quality similar to the quality of solutions found by
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C-Link.

We found that the best performance is achieved by strategies that combine local search

with random jumps. Our strategies found solutions with values, on the average, up to 94%

of the optimum in small-scale problem instances and maintained a steady gain per agent in

large-scale problem instances.

Algorithms that find stable coalition structures are often proposed for settings that re-

strict the properties of the valuation functions. Practical aspects of the high complexity

of finding stable coalitions for large-scale multi-agent systems are often not considered. In

Section 4.2 we proposed an approach for increasing coalition stability in large-scale coalition

formation with self-interested agents and arbitrary valuation functions. We modeled agent

behavior using multi-agent simulation, in which we let agents to choose profitable coalitions

and deviate from unstable coalitions. At the end of the simulation, we selected a solution

out of a pool of generated coalition structures based on its social welfare and stability. We

experimentally showed that our approach is able to increase the stability of the solutions

in two real-world scenarios. We also showed that the necessary price for this increase in

stability that our algorithm incurs to the social welfare is very low.
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Chapter 5

Power Distribution Systems

In this chapter we propose an approach which uses large-scale coalition formation algorithms

from Chapter 4 to increase use of renewable sources in PDS by letting renewable genera-

tors and energy stores to form coalitions in order to mitigate uncertainty in prediction of

renewable generation amounts. Section 5.1 shows our approach in a setting with no physical

constraints of the underlying power grid. Section 5.2 then studies the effects of this approach

in a PDS with physical constraints represented by an underlying power grid. Finally, Sec-

tion 5.2 also shows how coalition formation of renewable generators and energy stores can

improve the physical state of PDS.

5.1 Increasing Use of Renewable Resources

Solar and wind power provide a source of renewable energy, which can be used for elec-

tricity generation at costs comparable with traditional generators that utilize coal, natural

gas, or nuclear energy. However, renewable sources are not used to their full potential for

electricity generation. One of main reasons for the low use of these renewable resources is

the unpredictable amount of generation related to dependence on weather (Holttinen et al.,

2009).

In this section we focus on the weather-related unpredictability of the generation by

72



renewable resources. Electricity is traded ahead of time in a day-ahead energy market. In this

market generators bid amounts of energy that they will be able to generate at given time slots.

Since in the electricity market the supply must always match the demand, a failure to deliver

the committed amount of energy can have major negative consequences, and it is therefore

penalized. Consequently, the renewable generators, due to weather unpredictability, are

forced to bid amounts that are lower than the predicted generation, thus decreasing the use

of renewable resources (Holttinen et al., 2009).

We propose an approach that can be used to increase the use of renewable resources by

forming coalitions between renewable generators and a high number of energy stores. We

assume energy stores to be of any kind. For example, energy stores are often implemented as

batteries, capacitors, solar batteries, or mechanical flywheels, and they usually store energy

in a range of kilowatt hours to megawatt hours. Furthermore, traditional generators can also

be considered as energy stores since their generation is predictable. We are not concerned

with the type of energy stores, however we require them to be able to provide energy at a

time that they commit to. This capability can be viewed as a commodity for which there is

demand among the renewable generators. A renewable generator can buy coverage of some

portion of the generation that it commits to. If the renewable generator is able to produce the

entire amount of committed energy, it only pays the store owners for the coverage it ordered.

On the other hand, if the renewable generator is not able to generate the committed energy,

it can use part of the ordered coverage in order to avoid fees for failure to provide energy. A

store owner is paid for the uncertainty coverage as well as for the amount of energy provided

to the grid.

5.1.1 Model

We model the renewable generators and energy store owners as agents in a multi-agent

system. We describe all variables used in our model in Table 5.1. Renewable generators are

modeled using a triplet (gc(t), gr(t), ur) for time t corresponding to the time slots. This triplet

represents the generation committed and actually generated by the renewable generator, and
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a coverage uncertainty that the generator is willing to pay for. The energy store owners are

modeled as a triplet (sb, se,m) which represents the beginning and end of a time interval

within which the store can provide power, and the maximum total amount of provided power.

Table 5.1: Description of model variables
pr(t) profit of a renewable generator r that participates

in coalition formation
pr0(t) profit of a renewable generator r that does not participate

in coalition formation
gc(t) generation committed by a renewable generator
ge(t) estimated generation of a renewable generator
gr(t) real generation achievable by a renewable generator, not observable
gsc(t) generation committed by an energy store
gsr(t) real generation provided by an energy store
ur[%] percentage of gc to be requested as coverage for uncertainty
u(t)[%] percentage of gc(t) granted by energy stores as coverage for

uncertainty
m maximum total amount of power to be distributed by an energy store
sb, se energy store availability begin, end
pg price for generation
pc price for uncertainty coverage
pf price for failure to provide committed generation
cc(t) cost of uncertainty coverage
cf (t) cost of failure to provide committed generation
c0[%] commitment of a renewable generator that does not participate

in coalition formation
t time

5.1.2 Renewable Generators

In order to increase the use of renewable resources, an incentive has to be given to renewable

generators to bid higher energy amounts in the day-ahead market. In this section we derive

this incentive in a form of a profit function. This profit function should reflect the fact that

the renewable generator is paid for its generation, which is assumed to be the minimum of

committed and real generation. However, the generator has to pay for uncertainty coverage,

which is provided to the generator by energy stores. The generator also has to pay for

failure to provide committed generation in case it fails to deliver all the committed energy.
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Formally, the profit function is expressed as

pr =
∑
t

pr(t) =
∑
t

(pg ·min(gc(t), gr(t))− cc(t)− cf (t)), (5.1)

This profit function assumes that ∀t : gc(t) = ge(t), i.e. that the renewable generator will

always commit to generate the estimated amount of energy.

The cost of uncertainty coverage cc(t) is a product of price for uncertainty, percentage of

committed generation, and committed generation, as follows:

cc(t) = pc · u(t) · gc(t). (5.2)

Note that the uncertainty cost is independent of the real generation gr(t), since the un-

certainty coverage is paid for before the value of gr(t) is known. The cost of uncertainty

coverage cc(t) is calculated using the percentage of the coverage actually provided u(t), for

which it holds that ∀t : u(t) ≤ ur, since the store owners can commit less than the value

requested by a renewable generator.

The cost of failure to provide committed generation cf (t) is determined using a difference

between amounts of generation committed and actually provided. The amount of generation

that is provided by a renewable generator can be expressed as gr(t) + u(t) · gc(t). The

generator has to pay the cost of failure to provide committed generation only if the amount

of committed generation is greater than the amount of generation provided by the generator.

Therefore, the cost of failure to provide committed generation is expressed as

cf (t) = pf ·max (gc(t)− (gr(t) + u(t) · gc(t)), 0) . (5.3)

This cost is eliminated at time t if and only if

gc(t)− (gr(t) + u(t) · gc(t)) ≤ 0, (5.4)
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which is equivalent to

u(t) ≥ 1− gr(t)

gc(t)
. (5.5)

For example, if the real generation gr(t) reached 80% of the committed amount gc(t), the cost

of failure to provide generation would be zero if ur was set to at least 20% of the estimated

generation and the generator was able to purchase uncertainty coverage u(t) = ur at time

slot t.

Combining Equations 5.1, 5.2, and 5.3, we can express the profit of a renewable generator

in the coalition formation setting as

pr =
∑
t

pr(t) =
∑
t

(
pg ·min(gc(t), gr(t))− pc · u(t) · gc(t)

− pf ·max (gc(t)− (gr(t) + u(t) · gc(t)), 0)
)
. (5.6)

Without coalition formation the renewable generator is forced to bid a lower amount in order

to prevent paying the cost for failure to provide committed energy, consequently generating

less power and receiving lower profit for generation. On the other hand, the uncertainty

coverage cost does not apply to this renewable generator, thus removing a negative portion of

the profit function in Equation 5.1 related to the cost of uncertainty coverage. This renewable

generator will be able to generate either gr(t) or c0 ·ge(t), whichever is smaller. The generator

will have to pay cost for failure to provide committed generation, which is proportional to

the difference between committed and real generation. The profit of a renewable generator

that does not participate in coalition formation with energy store owners is therefore

pr0 =
∑
t

pr0(t) =
∑
t

(
pg ·min(c0 · ge(t), gr(t))− pf ·max(c0 · ge(t)− gr(t), 0)

)
. (5.7)

As long as pr > pr0, the renewable generator is given an incentive to participate in the

coalition formation with energy store owners and bid higher amounts of generation in the

day-ahead market. In Section 5.1.5 we experimentally compare the profit of renewable

generators that participate in coalition formation with energy store owners, and the profit
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of renewable generators that do not participate in coalition formation, and we show that the

former achieve higher profits and higher generation.

5.1.3 Energy Stores

In order to simplify the problem we assume that energy stores are always able to sell their

stored energy, either to renewable generators inside the coalitions, or to some other party.

We also assume that stores are always able to provide the committed amounts of energy.

This assumption eliminates factors such as different types of stores, or whether stores buy

the power from other subjects. Consequently, our approach works with any kind of energy

stores, as long as they are able to provide committed amounts of power at the specified time

slots.

The profit function of an energy store owner consists of the payment for provided gener-

ation pg · gsr(t) and payment for committed generation pc · gsc(t),

p =
se∑
t=sb

(pg · gsr(t) + pc · gsc(t)). (5.8)

This profit function must satisfy the following constraints:

0 ≤
se∑
t=sb

gsc(t) ≤ m ∧ ∀t : gsr(t) ≤ gsc(t), (5.9)

which limits the total amounts of energy committed and provided by the store. An en-

ergy store is incentivized to participate in coalition formation with renewable generators if∑se
t=sb

pc · gsc(t) is positive, which happens when a renewable generator purchases the uncer-

tainty coverage from this store.

When an energy store joins a coalition with a renewable generator, it distributes its power

to available time slots using Algorithm 6, which works as follows. First, available amounts of

energy are computed for each time slot based on requirements of the renewable generator and

amounts of energy already committed by other energy stores (lines 1-8). Then the power is
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distributed to available time slots (lines 10-13). These steps are repeated as long as there is

some power distributed to any time slot. Finally, the newly committed amount of energy is

used to increase profit of the energy store (line 17) and uncertainty coverage of the renewable

generator (line 18).

Algorithm 6 Distribution of generation commitment from an energy store to a coalition
with a renewable generator

Input: energy store: sb, se,m;
renewable generator: ur, ge, amount of power already committed by stores:
∀t :

∑
ĝsc(t)

Output: energy store: profit; renewable generator: updated uncertainty coverage
1: ∀t : available(t)← ur · ge(t)−

∑
ĝsc(t); gsc(t) = 0

2: toDistribute ← m
3: while changed do
4: changed ← false
5: available spots ← find spots where available(t) > 0
6: split ← toDistribute/|available spots|
7: for time slot = sb to se do
8: add ← min(available(time slot), split)
9: if add > 0 then
10: available(time slot) -= add
11: toDistribute -= add
12: gsc(time slot) += add
13: changed ← true
14: end if
15: end for
16: end while
17: ∀t : increase energy store profit by pc · gsc(t)
18: ∀t : increase uncertainty coverage by gsc(t)

Since the distribution of power in Algorithm 6 is performed frequently in our approach, it

is important to analyze its time complexity. Algorithm 6 is performed in an iterative fashion.

In each iteration except the last one at least one time slot is completely filled. In the last

iteration the entire available amount is used. Therefore the number of iterations is limited

to se − sb (lines 3-16). In each iteration se − sb time slots are traversed, and for each time

slot operations of constant time complexity are performed. Therefore, Algorithm 6 performs

O((se − sb)2) operations. Given that in a day-ahead market with hourly time slots it holds

that se − sb ≤ 24, Algorithm 6 has a constant time complexity.
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5.1.4 Coalition Formation using Multi-agent Simulation

To simulate coalition formation of renewable generators and store owners we use the multi-

agent simulation approach proposed in Section 4.1. There a simulator is proposed in which

agents leave and join coalitions in an iterative manner. This coalition formation process is

used to search the state space of coalition structures, which are sets of coalitions, in order to

find coalition structures with high social welfare. During the simulation agents use strategies

to decide whether to leave their coalitions and which coalition to join. The strategy that

achieves the best results combines agent’s best response, in which an agent searches for a

coalition to which it can bring most benefit, with random jumps whenever a local optimum

is reached. In this work we base the agents’ strategy on that strategy. The coalitions

are assigned values by a specified valuation function. Quality of a solution is represented

in Section 4.1 by a social welfare, which is a sum of values of all coalitions in a coalition

structure. The simulation generates a pool of coalition structures, from which a coalition

structure with the highest social welfare is selected as the solution.

There are several differences between the approach in Section 4.1 and coalition formation

of renewable generators with energy store owners. First, unlike in Section 4.1, coalition

formation between renewable generators and energy store owners is not concerned with social

welfare. Both renewable generators and energy store owners are self-interested agents, which

seek only to maximize their own profit. This difference can be implemented by changing

agents’ strategies to find best fitting coalitions based on agents’ profit instead of coalition

value, which corresponds to using a valuation function which penalizes difference between

amounts of power requested by the renewable generator, and the amounts of power provided

by the energy stores. We call this valuation function renewable energy valuation function,

and we define it as follows:

Definition 5.1.1 (Renewable energy valuation function). Renewable energy valuation func-

tion is a valuation function that assigns value v to a coalition C as follows:

v(C) = −
T∑

tk=1

max((ur − u(tk)) · ge(tk), 0). (5.10)
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Second, each coalition in this setting must always contain exactly one renewable genera-

tor. In terms of coalition formation we call these agents coalition leaders. Coalition leaders

do not leave or join coalitions. On the other hand coalition leaders affect the profit of agents

joining the coalitions, which consequently affects the behavior of the other agents. In our

scenario, coalition leaders define the requested uncertainty coverage for each time slot. Reg-

ular agents then join coalitions in which they can sell their power according to the requested

uncertainty coverage.

Finally, since the iterative coalition formation process yields a pool of coalition structures,

a single coalition structure must be selected as the solution. Unlike in Section 4.1, where the

solution is selected based on social welfare, in our setting we select a solution with the highest

profit of renewable generators gained from participation in coalition formation. Formally,

we return the coalition structure for which it holds that

CS∗ = argmax
CS∈S

(∑
r∈R

∑
t

pr(t)

)
, (5.11)

where S is a set of all coalition structures generated by the coalition formation simulator, R

is a set of all renewable generators, and pr(t) is a profit of renewable generator r in coalition

C ∈ CS.

The simulator for coalition formation of renewable generators and energy store owners

is shown in Algorithm 7, and it works as follows. First, renewable generators are created

and assigned estimated generation values for each time slot. Then energy stores are created

and assigned the beginning and end of availability sb and se, and maximum total amount

of power m (line 1). Then we create coalitions, each containing one renewable generator

(line 2). After this initialization step the simulation begins. In the simulation energy stores

are deciding whether they should leave their coalitions and which coalitions they should join.

When an energy store joins a coalition, its profit is increased, and the coalition is updated

(lines 5-8), according to Algorithm 6. If an energy store leaves a coalition, profit of all stores

that joined the coalition after this store is recalculated, since the distribution of their power

might have changed after the removal (line 6). Finally, we select the best coalition structure
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according to Equation 5.11 (line 13).

Algorithm 7 Simulation of coalition formation between renewable generators and energy
stores

Input: number of energy stores, number of renewable generators, number of iterations
N , number of time slots.
Output: coalition structure according to Equation 5.11.

1: initiate energy stores and renewable generators
2: create a coalition for each renewable generator
3: for iteration in 1 : N do
4: for all energy stores in random order do
5: if energy store.strategy.leave then
6: energy store.coalition.recompute profit of energy stores after energy store
7: energy store.coalition ← energy store.strategy.pick coalition
8: energy store.profit ← Algorithm 6
9: end if
10: end for
11: save current coalition structure
12: end for
13: choose best coalition structure according to Equation 5.11

The time complexity of the original algorithm for n agents and N iterations is O(N ·n2 ·k),

where k is a size of a so called interest vector associated with each agent (see Section 4.1.2).

In our setting an interest vector of a renewable generator contains values ur · gc(t), where

t ∈ 〈0, 24〉 in the day-ahead market with hourly slots, and interest vectors of energy stores

contain values of sb, se, and m. Size of interest vectors k is therefore in our setting a small

constant. Consequently, the time complexity of Algorithm 7 is O(N · n2).

5.1.5 Experimental Analysis

We experimentally evaluate the coalition formation algorithm in the renewable domain in

order to show that our approach creates profit incentives for renewable generators to par-

ticipate in coalition formation. We will also show that our coalition formation approach

increases use of renewable resources.

The experiments were performed using the following setup. We tested our approach in

scenarios with 50 renewable generators, which means that the coalition structure contained

50 coalitions. The number of coalitions affects the quality of solutions indirectly through its
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ratio compared to the number of energy stores. This ratio shows how many energy stores on

average are members of a single coalition with a renewable generator. We therefore vary the

number of energy stores in order to observe the effect of this ratio on the resulting coalition

structure. Generation amounts for 24 time slots corresponding to 24 hourly slots in one day

were generated for each renewable generator at random from a uniform distribution U(0, 100)

representing percentage, and the generators were given estimates of these amounts drawn

from a normal distribution with standard deviation σ = 20 because according to (Zhang

et al., 2015a) a day-ahead prediction error of wind and solar generators is around 20%

to 25%. Parameters of the stores sb, se, and m were generated randomly from uniform

distributions U(0, 23) (corresponding to 24 hourly time slots) and U(0, 100) (corresponding

to percentage) respectively. Note that this setting assumes that renewable generators as well

as energy stores are of the same type with respect to generation amounts. Unless stated

otherwise, we set price for generation pg = 50, price for uncertainty coverage pc = 10, and

price for failure to provide committed generation pf = 100. These prices were set so that

price for uncertainty coverage is lower than price for generation, which in turn is lower than

price for failure to provide committed generation. Figure 5.3 further shows results of a case

where price for failure to provide committed generation is lower than price for generation.

As a baseline we use a scenario in which renewable generators do not participate in coalition

formation, in which case renewable generators only bid commitment percentage c0 = 80% of

predicted generation ge(t) to hedge against uncertainty. This value of c0 is based on the 20%

to 25% estimated day-ahead prediction error (Zhang et al., 2015a). We let the simulation

run for 10 iterations and then selected a coalition structure with highest sum of profit of

renewable generators. All results were averaged over 10 random runs.

Figures 5.1, 5.2, 5.3, and 5.4 compare profit of renewable generators that participate in

coalition formation pr with their profit in case they did not participate pr0. Recall that

profit of renewable generators participating in coalition formation consists of generation

profit, cost of uncertainty coverage cc(t) and cost of failure to provide committed generation

cf (t). Figure 5.1 shows summarized profit of 50 renewable generators in scenarios with

100 to 1000 energy stores. Generation profit is constant, since it reflects the generation
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of the renewable generator and is therefore independent of the number of energy stores.

On the other hand, cost of uncertainty coverage and cost of failure to provide committed

generation depend significantly on the number of energy stores. With increasing number of

energy stores the cost of failure to provide committed generation decreases and the cost of

uncertainty coverage increases because the generators can cover more uncertainty. Since the

decrease in the cost of failure to provide committed generation is larger than the increase in

the cost of uncertainty coverage, the resulting profit is increasing. In scenarios with over 300

energy stores the profit of 50 renewable generators is greater if they participate in coalition

formation.
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Figure 5.1: Summarized profit of 50 renewable generators with 100 to 1000 energy stores.

The renewable generators have to decide what percentage of their generation will be cov-
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Figure 5.2: Summarized profit of 50 renewable generators with 1000 energy stores and
varying uncertainty coverage ur.

ered by uncertainty coverage. Figure 5.2 shows summarized profit of 50 renewable generators

with 1000 energy stores for various uncertainty coverage percentages ur. For ur ≥ 20% the

profit of renewable generators is greater when participating in coalition formation. Given

our experimental setting, the highest profit was achieved when approximately 40% of the

renewable generation was covered by uncertainty coverage.

Price for generation pg, price for uncertainty coverage pc, and price for failure to provide

committed generation pf affect the resulting profit of renewable generators. Figure 5.3

compares profit of renewable generators with and without coalition formation when the price

for failure to provide committed generation is set lower than price for generation, specifically

pf = 30. This change brings higher profit to renewable generators not participating in
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Figure 5.3: Summarized profit of 50 renewable generators with 100 to 1000 energy stores
and low cost for failure to provide committed energy, pf = 30.

coalition formation. Even though the increase in profit of generators participating in coalition

formation is lower than in Figure 5.1, it will still incentivize the renewable generators to

participate in coalition formation.

The commitment percentage of renewable generators not participating in coalition for-

mation c0 affects the profit of these renewable generators. In Figure 5.4 we compare profit of

renewable generators with and without coalition formation with varying commitment per-

centage c0. While higher commitment yields higher generation profit, the cost of failure to

provide committed generation also increases, which results in a decrease in the overall profit.

Therefore the profit achieved by renewable generators not participating in coalition forma-

tion is lower than profit of renewable generators that utilize coalition formation, regardless
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Figure 5.4: Summarized profit of 50 renewable generators with 1000 energy stores and
varying commitment of generators that do not participate in coalition formation c0.

of the commitment percentage.

Over all, the amount of renewable generation is increased because the generators are

able to bid higher values. In Figures 5.1, 5.2, and 5.3 the generators not participating in

coalition formation only bid 80% of the predicted generation ge(t) (we vary this percentage

in Figure 5.4), while generators utilizing coalition formation bid 100% of ge(t). We simulate

bidding 80% of predicted generation because according to (Zhang et al., 2015a) a day-ahead

prediction error of a wind farm can be up to 25%, and somewhat less for solar generation.

Table 5.2 shows amounts of renewable generation with and without coalition formation as

well as energy store use and total generation. Our approach yields a 13.5% increase in total
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renewable generation from 45,827 units to 52,012 units. Energy stores are used to produce

7,780 units, which amounts to 13% of the total generation. Total generation of renewable

generators and energy stores is increased by 30.4% due to coalition formation.

Table 5.2: Increase in renewable generation caused by coalition formation (CF) of 50 re-
newable generators and 1000 energy stores

Generation type Generation amount Increase in
generation

Renewable generation without CF 45,837 –
Renewable generation with CF 52,012 13.5%
Energy store generation with CF 7,780 –
Total generation with CF 59,792 30.4%

5.1.6 Discussion

Our approach can be used to simulate a possible real-world energy market scenario. In a

real world scenario energy stores would also choose coalitions with renewable generators in

an iterative fashion. However, the solution of the real-world scenario, in which one iteration

of coalition formation would take place every day, would be the last coalition structure

created (because unlike in the multi-agent simulation, we are not able to backtrack in time

in the real world). In our experiments we select the coalition structure with best profit for

renewable generators according to Equation 5.11. This coalition structure represents the best

solution from the point of view of renewable generators. In order to verify that our algorithm

simulates behavior of potential real-world energy stores, we performed experiments in which

we selected the coalition structure created in the last iteration. Surprisingly, the results are

almost equivalent to results in Figure 5.1. Our algorithm therefore yields comparable results

in both renewable generator-oriented and energy store-oriented setting.

Another application of our approach is to show that coalition formation between renew-

able generators and energy stores increases use of renewable resources, and it yields higher

profits for both participating parties. It can further be used to determine the specific con-

ditions under which coalition formation increases profits, such as number of energy stores,

87



amount of energy available per store, quality of renewable generation estimates etc.

The coalition formation algorithm can be extended to include more real-world character-

istics, such as influence of physical distance between energy stores and renewable generators,

energy grid limits, real-time uncertainty coverage purchasing during the day based on hour-

ahead forecast, or wider action space of energy stores, which could include actions like

purchasing energy or charging the store.

We made a design choice to use multi-agent simulation for coalition formation. However,

coalition structures can be found by various techniques including clustering, dynamic pro-

gramming, graph-based approaches, auction-based approaches, and multi-agent simulation.

We used multi-agent simulation because it can model behavior of self-interested agents. Sim-

ulation also provides a per-agent interface for setting specific real-world parameters of the

renewable generators and energy stores. Finally, multi-agent simulation shows a dynamic

coalition formation process, which is beneficial when studying how parameters of single

agents influence the behavior of the entire multi-agent system.

In this work we made several assumptions about the energy market domain. First, we

assumed that energy stores are always able to provide committed energy, and that they are

always able to sell their energy elsewhere in case it is not needed by a renewable generator.

Removing the first assumption would extend the problem by introducing penalties for energy

stores. Strategies would then have to be developed in order for the energy stores to decide

which actions to take to avoid the penalties for failure to provide committed generation.

The second assumption is justifiable since the energy stores can use the real-time market

and sell the energy based on real-time prices. However, the real-time market is undesirable

for the energy stores because its prices are very volatile. Second, we assumed that all

renewable generators are of a same type, since their generation amounts are drawn from

the same distribution. In a real-world scenario various photo-voltaic systems and wind

turbines will have a wide generation range. This difference however does not change the

main experimental results, since higher generation only changes the number of energy stores

required to cover uncertainty. Third, we assumed a profit function of a renewable generator

consisting of generation profit, cost of uncertainty coverage, and cost of failure to provide
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committed generation (see Equation 5.1). However, the profit function of a real renewable

generator can consist of multiple other elements. The profit function in Equation 5.1 can

be extended to model profit of a specific renewable generator. Finally, we assumed constant

prices for generation, uncertainty coverage and failure to provide committed generation. In

a real-world market these prices would dynamically change. However, since we do not allow

renewable generators to form coalitions with each other, they cannot gain significant market

power, which would allow them to affect the market prices. Therefore we can model prices

as variables that are independent of behavior of renewable generators.

5.2 Increasing Use of Renewable Energy in PDS with

Physical Constraints

Section 5.1 analyzed effect of coalition formation between renewable generators and energy

stores, and showed that forming coalitions can increase the use of renewable energy as well as

the profit of participating renewable generators and energy stores. However, the approach in

Section 5.1 does not take into account the underlying power grid and its physical constraints.

It is possible that actions of energy stores can result in undesirable voltage levels at various

nodes of the power grid. In this section we therefore examine how actions of energy stores

and renewable generators affect the physical state of the power grid.

More specifically, the first part of the analysis provided in this section describes use of the

coalition formation approach proposed in Section 5.1 in a standard IEEE 69-bus test system

from (Khatod et al., 2006), and shows how actions of agents affect voltages on the grid

nodes. To do this, we will use a load-flow algorithm, which is widely used in power systems

for voltage calculations. Given a grid with v nodes and a power vector P ∈ IRv×1, the load-

flow algorithm calculates a vector of voltages V ∈ IRv×1. The vector P corresponds to the

amount of generation and load at each grid node, and it can be constructed for every time

slot t considered in the approach in Section 5.1 using real power from renewable generation

gr(t) and real generation provided by energy stores gsr(t) (see Table 5.1 for description of
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model variables). We then design metrics to measure how desirable the effects of coalition

formation between renewable generators and energy stores are for the power grid.

The second part of the analysis of the effects that coalition formation poses on the power

grid is to design approaches that improve the physical state of the power grid. These ap-

proaches include new strategies for the agents, which increase the desirable effect of coalition

formation on the power grid. Since current strategies do not include any information about

the underlying power grid, these strategies will be used as a baseline approach. We assume

that by allowing the agents to use information such as the structure of the grid or esti-

mated effect of their actions on the grid, we will achieve a more stable power grid, while still

increasing use of renewable energy as well as increasing profits of individual agents.

Consequently, the approach for increasing the use of renewable energy in PDS with

physical constraints ties together approaches for coalition formation proposed in Sections 4.1

and 4.2 with the approach for coalition formation of renewable generators and energy stores

proposed in Section 5.1. This section shows that coalition formation can solve a problem

with real-world constraints in the PDS domain.

5.2.1 Model of the Power Distribution Grid

Section 5.1.1 described the model of renewable generators and energy stores, and their inter-

action in the coalition formation process. This section builds on Section 5.1.1 by specifying

the model of the power grid as a physical environment in which renewable generators and

energy stores operate. We first describe the IEEE 69-bus system along with the types of

nodes that we consider in our analysis. We then show how the voltage can be calculated

for each node and discuss how this voltage can be used to measure the physical state of the

power grid.

The IEEE 69-bus system is a power distribution system that was previously used in (Kha-

tod et al., 2006). The system is shown in Figure 5.5. The grid is connected to the substation

through node 1, and the power is distributed to eight branches. The impedance at each line

is specified.
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Figure 5.5: IEEE 69-bus system (Khatod et al., 2006)

We will consider three types of nodes:

1. Loads represent regular households or any grid elements that draw power from the

grid. We assume that load nodes never send power to the grid. Load nodes can

therefore lower the voltage of nodes in their proximity, but they can never increase

voltage of the neighboring nodes.

2. Renewable generators use renewable energy to generate power. Renewable gener-

ators face generation uncertainty caused by weather prediction inaccuracy. A model

of the renewable generator was described in Section 5.1.2. We assume that renew-

able generator nodes never draw power from the grid. Renewable generator nodes can

therefore increase the voltage of the neighboring nodes, but are not able to decrease
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this voltage.

3. Energy stores can generate predictable amounts of power. Energy stores are incen-

tivized to sell the capability to predict generation to the renewable generators, as was

described in Section 5.1. A model of the energy store was shown in Section 5.1.3.

Similarly to the renewable generator nodes, we assume that energy store nodes never

draw power from the grid. Therefore energy store nodes can also only increase voltage

of the nodes in their proximity.

An output of coalition formation in the PDS domain is a power vector P ∈ Rv×1, which

holds the power generated or used by each node in a single time slot. If we consider hourly

slots, coalition formation yields 24 power vectors. These power vectors represent the physical

impact of coalition formation on the power grid. However, the physical state of the power

grid is better described by changes in voltage. We therefore use a load-flow algorithm to

calculate voltage vectors based on power vectors. The load-flow algorithm is widely used in

power systems for voltage calculation. The algorithm finds voltages by solving a system of

power-flow equations.

The physical state of the power grid can be well represented by the voltage levels on the

grid nodes. Another significant physical characteristic of the grid is line capacity. However,

PDS are designed in a very robust way, so line capacity violations occur very rarely. We

therefore focus our analysis mainly on voltage characteristics. The power grid operates with

base voltage of 12.66 kV and base power of 10 MW. Voltage on each grid node differs from

the base voltage, however, there are limits to the difference of the node voltage and the base

voltage. Voltage on each node should lie between 95% and 105% of the base voltage. If the

voltage exceeds these limits, a violation occurs. A violation is negative if the voltage is less

than 95% of the base voltage, and positive if the voltage exceeds 105% of the base voltage.

These violations represent an undesirable state of the power grid. We can therefore use the

number of violations as a metric to determine the effect of coalition formation on the power

grid. An ideal outcome of coalition formation would be a grid with no voltage violations,

however, such state might not be achievable. We will show the effect of coalition formation
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on the number of voltage violations in Section 5.2.3.

The voltage vector can also be used to guide agents’ decision making throughout the

coalition formation process. The coalition formation process takes place ahead of time, so

that renewable generators can use the results in the day-ahead market. The real-time voltage

vector is therefore unknown during coalition formation. However, we assume that the agents

can use a voltage vector that would occur if coalition formation did not occur. We call this

voltage the initial voltage and define it as follows:

Definition 5.2.1 (Initial voltage). The initial voltage is a set of voltage vectors V ∈ Rv×1.

Each voltage vector corresponds to a single time slot, and is obtained using the load-flow

algorithm. The input of the load-flow algorithm is a power grid with the same configuration

of nodes as is used in the coalition formation process, with two exceptions:

1. Renewable generators do not participate in coalition formation, therefore they commit

to c0 percent of the estimate generation ge(t).

2. Energy stores do not participate in coalition formation, therefore they do not generate

any power.

The initial voltage can be used as a prediction of the voltages at each node in each

time slot during coalition formation. Section 5.2.4 will describe the way in which renewable

generators and energy stores use this voltage prediction in order to improve the physical

state of the power grid.

Note that a real PDS includes network elements that are designed to prevent voltage

violations. We are not considering these elements in our analysis due to their high complex-

ity. Results of this analysis are still significant, because lowering number of violations in a

distribution grid without network elements that prevent violations implies a decreased need

for these devices in a real grid, which lowers their use and necessary cost associated with

their wear and tear.
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5.2.2 Experimental Analysis

The following sections analyze effects of coalition formation on the power grid described in

Section 5.2.1. This analysis is supported by experiment results, which have been obtained

using the following experimental setting. Parameters not mentioned in this section were

assigned the same values as in Section 5.1.5. In our experiments we use the IEEE 69-bus

grid, which contains 69 grid nodes. We performed experiments with varying numbers of

renewable generators, energy stores, and loads. Unless stated otherwise, in the rest of this

chapter we fixed number of energy stores to 20 for varying numbers of renewable generators,

and we fixed number of renewable generators to 5 for varying numbers of energy stores.

In each simulation we assigned agents representing renewable generators and energy stores

to the grid nodes randomly. The unassigned nodes represent loads. Figure 5.6 shows our

implementation of the power grid, or more specifically, a snapshot of a single time slot in a

random configuration of 5 renewable generators, 20 energy stores, and 44 load nodes.

The generation amounts of renewable generators were created randomly from a uniform

distribution U(0, 20 kW ). The estimated amounts were then generated by adding a noise

value drawn from a normal distribution N (µ = 0, σ = 0.2 · 20 kW ) to the real generation

amounts. The constant 0.2 corresponds to 20% day-ahead prediction error for wind and solar

generators published in (Zhang et al., 2015a). For energy stores, the total amount of power

m was drawn from a uniform distribution U(0, 1
4
· T · 20 kW ), where T = 24 represents the

number of hourly time slots. This way, if the energy store can distribute its power among

all 24 time slots, there will be at most 5 kW available for each time slot. In a more average

case of distributing power among 12 time slots in the day, there will be at most 10 kW

available for each time slot. The load values of the load nodes were drawn for each time

slot from a uniform distribution U(−20 kW, 0). The load values are negative to reflect the

opposite flow of power compared to the generation nodes. The upper limit of 20 kW is a

reasonable assumption for a PDS consisting of households and small generators. Each line in

the power grid has an associated impedance, which is a measure of the line’s resistance. We

show specific impedance values for each line in Appendix A, Table A.1. We let the coalition
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formation process run for 1000 iterations, and we averaged all results over 10 random runs.

In a real power system, we have to take into account active power P and reactive power Q.

However, coalition formation of renewable generators and energy stores specified in Sec-

tion 5.1 considers the active power only. The relation between active and reactive power is

defined by a power factor as follows:

power factor =
P√

P 2 +Q2
. (5.12)

In our experiments we fixed the power factor for load nodes to 0.85, which allowed us to

calculate the reactive power Q on these nodes. Reactive power on the energy store nodes

depends on the type of energy store, which our approach does not restrict. Therefore we set

the power factor to 1, which corresponds to using batteries as energy stores. The reactive

power on energy store nodes is then Q = 0. Finally, similar reasoning let us to set Q = 0 for

the renewable generator nodes, which corresponds to using solar power PV generators, and

wind generators in their basic state (state in which the wind generators are not adjusting

the power factor to control voltage). Many generators adjust their power factor in response

to the state of the power grid. We do not include this behavior in our model because of its

high complexity.

It is sometimes helpful to display the results of our experiments using a percentage

compared to an initial value. In the following sections we show the percentage of number

of violations achieved by a given technique, compared to a number of violations achieved

without coalition formation. Specifically, we define the percentage of number of violations as

percentage of number of violations =
nvt
nv0

, (5.13)

where nvt denotes the number of violations achieved by a given technique, and nv0 denotes

the number of violations achieved in the same scenario, but without coalition formation. Val-

ues 0% and 100% of the percentage of number of violations therefore denote an improvement

achieving state without violations and no improvement respectively.
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Figure 5.6: IEEE 69-bus system implementation, snapshot of a single time slot. Circular
nodes denote loads (L), rectangular nodes denote renewable generators (RG), and hexago-
nal nodes denote energy stores (ES). Text description includes node type (L/RG/ES), node
number (1-69), current fraction of base voltage (V), and current real power (P). Nodes with
green color are not experiencing a violation, nodes with blue color are experiencing a negative
violation. The outline color denotes membership in a coalition. Nodes 14 and 15, and nodes
46 and 47 are connected.
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5.2.3 Effect of Coalition Formation on the Physical State of the

Power Distribution Grid

Coalition formation of renewable generators and energy stores has a significant effect on the

voltage state of the power grid. The main result of Section 5.1 was an increase in use of

renewable energy due to coalition formation. The extra renewable generation was supported

by added energy store generation. Consequently, the coalition formation process described in

Section 5.1 adds more generation to the system. This effect is beneficial if the grid consists

of higher number of loads than generation nodes. However, if the majority of nodes are

generation nodes, added generation can hurt the system.
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Figure 5.7: Comparison of the number of negative violations for various numbers of renew-
able generators between scenarios with and without coalition formation (CF)

We show results of experiments focusing on the effect of coalition formation between

renewable generators and energy stores for varying numbers of renewable generators and 20
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Figure 5.8: Comparison of the number of positive violations for various numbers of renew-
able generators between scenarios with and without coalition formation (CF)

energy stores in Figures 5.7, 5.8, and 5.9. Figure 5.7 shows the number of negative viola-

tions as a function of the number of renewable generators. With an increasing number of

renewable generators, the number of negative violations decreases, because the total amount

of generation in the grid is increased. Coalition formation incentivizes renewable generators

to generate more power, which further decreases the number of negative violations. There-

fore, the overall effect of coalition formation on the number of negative violations is positive.

However, as shown in Figure 5.8, the added generation can increase the number of positive

violations. Figure 5.8 shows that increasing the number of renewable generators increases

the number of positive violations. Coalition formation further amplifies this effect, resulting

in a significantly higher increase in the number of positive violations. Figure 5.9 shows the

total number of violations, which is a sum of negative and positive violations. The figure

shows that as long as the number of renewable generators is less than 25, a system with 20
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energy stores will benefit from coalition formation. This conclusion is reasonable because

with 25 renewable generators and 20 energy stores, the number of generating nodes is greater

than the number of loads in the grid, which is generally an undesirable state because the

supply of power exceeds its demand. Given the result in Figure 5.9, we focus the rest of

our analysis on power grids with lower numbers of renewable generators. For these power

grids coalition formation can decrease the number of voltage violations, thus improving the

physical state of the power grid.

0 10 20 30 40

0
50

10
0

15
0

20
0

Number of renewable generators

N
um

be
r 

of
 v

io
la

tio
ns

●
●

●
● ● ●

●
●

●

●

●

● Number of violations with CF
Number of violations without CF

Figure 5.9: Comparison of the total number of violations for various numbers of renewable
generators between scenarios with and without coalition formation (CF)

Varying the number of energy stores also affects the number of violations. Figure 5.10

shows the effect of coalition formation on the number of violations as a function of the

number of energy stores in a grid with 5 renewable generators. The number of violations in

Figure 5.10 is strictly decreasing because in our experimental setting the energy stores do

not create any positive violations. Figure 5.10 shows that the impact of varying the number
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of energy stores in scenarios with 5 renewable generators is positive, but very small.
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Figure 5.10: Comparison of the total number of violations for various numbers of energy
stores between scenarios with and without coalition formation (CF)

Finally, Figure 5.11 shows the profit of 5 renewable generators while varying the number

of energy stores. The figure compares the total profit of renewable generators that do not

participate in coalition formation (see Equation 5.7) with the total profit of renewable gener-

ators that do participate in coalition formation (see Equation 5.1). The figure shows that at

least 10 energy stores are needed to incentivize the 5 renewable generators to participate in

coalition formation, since in scenarios with at least 10 energy stores the profit of renewable

generators that participate in coalition formation exceeds the profit they would receive if

they did not participate in coalition formation. This result is significant because it validates

results from Section 5.1 in a setting with a power grid with physical constraints.

Over all, coalition formation positively affects the number of negative violations, but can

increase the number of positive violations. Our experimental results show a positive effect
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Figure 5.11: Profit of renewable generators in a setting with a power grid with physical
constraints.

of coalition formation in power grids with the number of generating nodes not exceeding

the number of loads. Given these positive results, the following section investigates how the

number of violations can be further decreased.

5.2.4 Improving the Physical State of the Power Distribution Grid

Section 5.2.3 showed the effect of coalition formation on the power grid. This effect is

positive in the most important part of the problem space, where the number of generating

nodes is lower than the number of loads. In this section we investigate which actions of

the agents representing renewable generators and energy stores further decrease the number

of violations. We first examine actions of the energy stores. Then we show how actions of

renewable generators can decrease the number of violations. Finally, we investigate how the

coalition formation process itself can be modified in order to positively affect the physical
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state of the grid.

An important aspect of improving the physical state of the PDS is that most decisions of

the agents are made ahead of time, based on estimates of voltage values. The ahead-of-time

calculation is necessary because commitments have to be made in the day-ahead market. The

need for ahead-of-time calculation makes improving the physical state of PDS a challenging

task.

5.2.4.1 Actions of Energy Stores

As stated in Section 5.1.3, an energy store is defined by total amount of power m and time

slots sb and se between which the power can be distributed. An energy store can form a

coalition with a renewable generator by committing specific amounts of power in each time

slot between sb and se. The total amount of power distributed by an energy store can be

expressed as

mc =
se∑
t=sb

gsc(t). (5.14)

This amount cannot exceed the amount m, however, it is possible for the energy store to

commit amount of power that is lower than m. The remaining power can then be used to

decrease the number of negative violations. Energy stores can be incentivized to distribute

the remaining power by payments from the utility, which is responsible for maintaining

stability of the grid. As long as these payments are lower than payments offered by renewable

generators, energy stores will be incentivized to participate in coalition formation. The

process of distributing the remaining power is described in Algorithm 8, which works in the

following way. The input to Algorithm 8 is the energy store node, the uncommitted power

m−mc, and the initial voltage, which is a voltage state of the power grid without coalition

formation (see Definition 5.2.1). First, we find out which time slots between sb and se could

experience a negative violation (line 1). This is done by examining the initial voltage and

collecting all time slots in which the voltage of the energy store drops below 95% of the base

voltage. This approach is inaccurate, because we are not using the current state of the grid.

However, such information is not available ahead of time. Second, the uncommitted power is
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distributed evenly between time slots that could experience a negative violation (lines 3-5).

This way, an extra amount of power

md =
m−mc

|Snv|
(5.15)

is generated in each of the |Snv| time slots that could experience a negative violation.

Algorithm 8 Distribution of remaining power by an energy store

Input: grid-node, remaining-power, initial-voltage.
Output: remaining-power is distributed to the grid

1: Snv ← find time slots in which grid-node could experience negative violations using
initial-voltage

2: ∆← remaining−power
|Snv |

3: for all time slots tk in Snv do
4: assign power ∆ to time slot tk
5: end for

Furthermore, we can reach a theoretical bound on the number of negative violations that

can be removed by actions of energy stores, if we assume that the energy stores are able

to perfectly predict the amount of power that will be required of them in the future by the

renewable generators. This assumption is not realistic, but it helps us to show how close our

approach can get to the theoretical minimum in number of negative violations with respect

to actions of energy stores. Given this assumption, the energy stores are able to calculate

the exact amount of power that will be required by the renewable generator as

mr =
se∑
t=sb

gsr(t). (5.16)

Algorithm 8 can then be used with the input of m −mr remaining power. In this case, an

extra amount of power

mdb =
m−mr

|Snv|
(5.17)

will be distributed in each of the time slots that could experience negative violation. Since

mdb is a theoretical bound on the amount of extra power that can be distributed by an energy
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store, it holds that

|Snv| ·md ≤ |Snv| ·mdb ≤ m. (5.18)

Figure 5.12 compares improvement in the number of violations in a scenario with coali-

tion formation with a scenario in which we allow energy stores to distribute the remaining

power |Snv| ·md, and a scenario in which we allow energy stores to perfectly predict future

requirements of the renewable generators, so they could distribute power |Snv| · mdb. Fig-

ure 5.12 shows a significant improvement for the scenario in which energy stores are allowed

to distribute the uncommitted power. Further improvement is achieved in the case of the

theoretical bound. However, the theoretical bound provides a relatively small improvement

when compared to the improvement achieved by distributing uncommitted power. Prac-

tically, this means that using the power from energy stores that was not committed to

renewable generators can significantly increase the ability of coalition formation to improve

the physical state of the grid. Recall that the energy stores are assigned to random grid

nodes. When a real power grid is designed, positions of the energy stores can be determined

using an analysis similar to the one we used in Figure 5.12 in order to achieve the best effect

on the physical state of the power grid.

5.2.4.2 Actions of Renewable Generators

Given the promising results of the analysis of energy stores’ actions, we show that further

improvement can also be achieved using actions of renewable generators. A renewable gen-

erator that participates in coalition formation commits to generate an estimated amount of

power, formally

∀t : gc(t) = ge(t). (5.19)

However, the real amount of power that can be generated in a given time slot, gr(t), can

differ from the estimated amount. If the committed amount gc(t) is lower than the actual

amount available gr(t), the renewable generator will only generate the committed amount.

Using the information about the initial voltage on the generator node, the generator can

predict if there will be a negative violation in a given time slot. If the initial voltage of the
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Figure 5.12: Improvement in the number of violations caused by the use of extra energy
store power. Figure shows percentage of number of violations compared to number of viola-
tions without coalition formation (see Equation 5.13 for definition of percentage of number
of violations and Figure 5.10 for numbers of violations in the scenario without coalition for-
mation). Comparison is between a scenario with no extra actions of energy stores, a scenario
with energy stores distributing uncommitted power (energy store power distribution), and a
scenario with energy stores distributing uncommitted and unused power (energy store power
prediction and distribution).

renewable generator node drops below 95%, the generator can release all available power,

which might remove the negative violation. This increased generation can be incentivized by

the utility, which is responsible for maintaining stability of the power grid. Figure 5.13 shows

the effect of allowing 15 renewable generators to use the extra power in time slots that might

experience negative violations. This effect is positive, but fairly low. The reason for the small

percentage improvement is because the difference between the estimated generation and the

real generation is drawn from a normal distribution N (µ = 0, sigma = 0.2 · 20 kW ) (see

Section 5.2.2). Recall that the constant 0.2 corresponds to 20% day-ahead prediction error
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for wind and solar generators published in (Zhang et al., 2015a). The renewable generator

can therefore only generate at most 20% extra power, which is often not sufficient to remove

the negative violation.
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Figure 5.13: Improvement in the number of violations caused by the use of extra renewable
generator power. Figure shows percentage of number of violations for various numbers of
energy stores and 15 renewable generators compared to number of violations without coali-
tion formation (see Equation 5.13 for definition of percentage of number of violations and
Figure 5.10 for numbers of violations in the scenario without coalition formation). Com-
parison is between a scenario with no extra actions of renewable generators and a scenario
with renewable generators using available extra power. 15 renewable generators were used to
increase the effect on the number of violations.

5.2.4.3 Changes in the Coalition Formation Process

During the coalition formation process energy stores form coalitions with renewable genera-

tors. Membership in a coalition determines the amounts of power gsr(t) that an energy store

will generate between time slots sb and se. The generation of energy stores in turn affects
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the voltage on the grid nodes. It is therefore possible that changes in the coalition formation

process will change the number of violations in the power grid.

The number of violations could be decreased if the energy stores generated more power in

time slots in which the nodes in the close proximity of the energy store experience negative

violations. On the other hand, extra energy store generation can increase the number of

violations if the grid is experiencing positive violations. Let us define a neighborhood of a

grid node as follows:

Definition 5.2.2 (Neighborhood of a grid node h of size k). Let us define ancestors of a

grid node h as a set of grid nodes that can be accessed by traveling the grid upwards (towards

root of the grid tree shown in Figure 5.5). Let us also define descendants of the grid node h

as a set of grid nodes that can be accessed by traveling the grid downwards (towards leafs of

the grid tree shown in Figure 5.5). The neighborhood of the grid node h of size k contains all

ancestors of the grid node that are accessible by traveling upward at most k edges in the grid

tree starting from h, and all descendants of the grid node h that are accessible by traveling

downward at most k edges in the grid tree. Note that while all ancestors of h belong to the

same branch of the grid tree, descendants of h can belong to multiple branches.

It is beneficial to let the energy stores examine the initial voltage and determine the state

of their neighborhoods in a following way. First, each energy store finds its neighborhood

nodes using Definition 5.2.2. Each node in the neighborhood is then considered for increase

in up-votes or down-votes. Up-votes are given to the energy store by all nodes in the

neighborhood that experience negative violations, while down-votes are given by all nodes

in the neighborhood that experience positive violations. This process is described formally

in Algorithm 9. First, a neighborhood of the node is found (line 1). Then we count number

of up-votes and down-votes for each neighboring node and each time slot (lines 3-12).

As described in Sections 4.1 and 5.1.4, coalitions are assigned values by valuation func-

tions. An agent then joins a coalition for which the increase in value caused by addition

of this agent is the highest. Coalition formation in the PDS domain uses renewable energy

valuation function (see Definition 5.1.1), which penalizes a coalition for time slots in which
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Algorithm 9 Calculation of neighborhood violations

Input: grid-node, initial-voltage.
Output: up-votes, down-votes

1: neighborhood(grid-node)← find-neighborhood
2: up-votes ← 0, down-votes ← 0
3: for all grid nodes ni in neighborhood(grid-node) do
4: for all time slots tj do
5: if initial-voltage on grid node ni at time tj < 95% of base voltage then
6: up-votes ← up-votes + 1
7: end if
8: if initial-voltage on grid node ni at time tj > 105% of base voltage then
9: down-votes ← down-votes + 1
10: end if
11: end for
12: end for

the energy stores do not cover all power that was requested for coverage by the renewable

generator. The number of violations could be decreased if the energy stores form coalitions

in a way that allows them to generate power in time slots with high number of up-votes

and low number of down-votes. In order to incentivize this behavior of the energy stores,

we design a valuation function that takes into account knowledge about the physical state

of the power grid. We call this valuation function the prioritized valuation function, and we

define it as follows:

Definition 5.2.3 (Prioritized valuation function). The prioritized valuation function is a

valuation function that assigns a value v to a coalition C as follows:

v(C) = wp ·
T∑

tk=1

gsc(tk) · (up-votes− down-votes) + vr(C), (5.20)

where wp denotes weight of the correlation between generation of the energy store
∑T

tk=1 gsc(tk)

summed over T time slots and up-votes and down-votes, which are aggregated over all energy

stores in coalition C. (up-votes − down-votes) represents prioritizing grid nodes with high

up-votes and low down-votes, and vr(C) denotes output of the renewable energy valuation

function.

The prioritized valuation function is designed to optimize both the number of violations

108



and the use of renewable energy. The parameter wp can be used to set higher preference to

either of the two criteria. The coalition formation generates a pool of coalition structures,

from which we choose one as a solution based on some criteria. In Section 5.1 we selected

the coalition structure with the highest profit of renewable generators (see Equation 5.11).

In order to benefit fully from the effect of the prioritized valuation function, here we select

the coalition structure with the highest value (see Definition 4.1.2).

The prioritized valuation function computes a priority of energy stores based on an esti-

mate of how much their generation benefits the grid. However, this estimate, which is based

on the initial voltage, is different in each time slot. Therefore this valuation function might

be beneficial only in power grids in which the power does not change significantly between

time slots. To investigate this theory we performed experiments with varying numbers of

time slots. Lower numbers of time slots result in lower total number of changes between time

slots. Moreover, lowering the number of time slots makes the original problem of increasing

use of renewable energy, which was described in Section 5.1, easier to solve. Since prioritized

valuation function tries to optimize the original problem as well as decrease the number of

violations, simplifying one of these criteria should improve the performance of this valuation

function. Figure 5.14 shows the results of this experiment. Indeed, the prioritized valuation

function performs better in scenarios with lower number of time slots. Unfortunately, the

figure shows that for 24 hourly time slots the prioritized valuation function does not always

improve the number of violations.

Given the results in Figure 5.14, we further focus only on scenarios with 1 time slot.

These scenarios represent situations where power does not change over time. Practically,

this means that coalition formation would be performed every time we expect a change in

power. This is a realistic assumption, as in our scenario with a day-ahead market and 24

hourly time slots coalition formation could happen not once, as proposed in this chapter, but

24 times, once for each single hourly time slot. In such a setting, results shown in Figure 5.14

for a single time slot can be achieved.

We show the percentage improvement caused by the prioritized valuation function in a

scenario with one time slot in Figure 5.15. In this simplified version of the problem we can
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Figure 5.14: Improvement in the total number of violations (blue is good) caused by
prioritizing energy stores for varying number of time slots, number of energy stores, and
wp = 0.0075.

achieve approximately 1% improvement by giving higher priority in the coalition formation

process to energy stores whose neighboring nodes are expected to experience most negative

violations. The effect of changing the coalition formation process on the physical state can

be positive, but is very small. Actions of agents studied in Sections 5.2.4.1 and 5.2.4.2 impact

the physical state of the power grid more significantly without the need for simplification of

the problem.

We conclude the analysis of the impact of coalition formation on the power grid by

showing that even after we change the coalition formation process by using the prioritized

valuation function, the renewable generators still obtain higher profit when they participate

in coalition formation. This result is important because this increased profit will incentivize
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Figure 5.15: Improvement in the total number of violations caused by prioritizing energy
stores for wp = 0.0075. See Equation 5.13 for definition of percentage of number of violations.

all agents to participate in coalition formation, which will increase the amount of renewable

energy used, as shown in Section 5.1, as well as improve the physical state of the underlying

power grid, as shown in Section 5.2.4. Figure 5.16 shows profit or renewable generators with

and without participation in coalition formation. Observe that for the given experimental

setting the profit of renewable generators is always greater when they participate in coalition

formation, even for the lowest number of 5 energy stores. Figure 5.17 shows this profit when

we use the prioritized valuation function. The profit in this case is almost the same as in the

case of using the renewable energy valuation function in Figure 5.16. Therefore changing the

coalition formation process by designing the new valuation function improved the number

of voltage violations, and it did not significantly change the profit of renewable generators.
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Figure 5.16: Profit of renewable generators participating in coalition formation with renew-
able energy valuation function.

5.2.5 Discussion

Two important conclusions can be made from the analysis in Section 5.2. First, coalition

formation can solve a real-world problem with physical characteristics and constraints. Even

though our results are based on simulations, considering the voltage characteristics of the grid

allows for possible future application in a real PDS. This conclusion is significant, because it

shows a possible real-world application of coalition formation approaches that we proposed

in Section 4. Second, the use of renewable energy in a PDS can be increased without harming

the physical state of the PDS. This conclusion validates our approach proposed in Section 5.1,

where coalition formation was used without considering the underlying power grid.

The approach proposed in Section 5.2 can be used to measure the impact of coalition

formation on the PDS. More specifically, the analysis proposed in Section 5.2 can be followed

to study effects of forming coalitions on profit of the renewable generators, overall use of
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Figure 5.17: Profit of renewable generators participating in coalition formation with prior-
itized valuation function.

renewable energy, and physical state of the power grid. Furthermore, our approach can be

used to organize the PDS in a way that will benefit the power grid the most, while still

increasing the use of renewable energy. Our experiments showed that number of renewable

generators, number of energy stores, and cooperation of renewable generators and energy

stores have significant impact on the physical state of the power grid. Our approach can

therefore be used to find the best configuration of nodes that will improve the physical state

of the power grid.

Section 5.2 makes several assumptions. First, we assume that the energy stores are

charged at the beginning of the day. This assumption is justifiable because we do not

restrict the type of energy stores. For example, a battery store would have to be charged,

while a diesel generator would not. Including energy store charging in our model would

significantly restrict the domain of energy stores that we consider. Second, we assume that
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the substation connected to node 1 does not act in any way to maintain stability of the grid.

A real substation would actively change the voltage on node 1 in order to stabilize the grid.

However, including this behavior in our model would make it harder to observe the impact

of coalition formation itself on the power grid. Third, we allow agents to use the information

about the initial voltage, which is voltage that would occur without coalition formation (see

Definition 5.2.1). This voltage serves as an estimate of the voltage state on each node in

each future time slot. Any other estimate, for example historical data, could be used instead

of the initial voltage to help agents predict the physical state of the power grid. Finally, we

used a fixed power factor when calculating reactive power Q (see Equation 5.12). While this

is a reasonable assumption for the load nodes, real generators often dynamically change their

power factor in order to maintain the grid voltage. As stated in Section 5.2.2, we do not

include this behavior in our model because of its high complexity. Including such behavior

would also require us to choose specific generator types, which would significantly restrict

the domain of both renewable generators and energy stores that our approach considers.

5.3 Summary

In this chapter we proposed an approach to increase use of renewable sources by allowing

renewable generators to hedge against uncertainty by forming coalitions with energy stores.

In these coalitions energy stores offer to cover generation that renewable generators com-

mitted to, but are unable to deliver due to prediction uncertainty. We model renewable

generators and energy stores as self-interested agents, and we use multi-agent simulation to

create coalition structures by allowing energy stores to leave and join coalitions based on

their preference.

We experimentally show that our approach increases use of renewable resources. With

the support of coalition formation with energy stores, renewable generators can afford to bid

higher amounts of generation in the day-ahead market. In our experiments we show that

renewable generators can bid 100% of the predicted generation and still profit, even when

facing high fees for failure to provide committed generation. In our experimental setting,
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our approach increased the use of renewable resources by 13.5%. We also show that forming

coalitions with energy stores increases profit of renewable generators, which incentivizes them

to increase renewable generation.

This chapter also studies the impact of coalition formation between renewable generators

and energy stores on an IEEE 69-bus power grid with physical constraints (Khatod et al.,

2006). We experimentally show that this impact is positive in power grids that contain more

load nodes than generation nodes. This is a positive result because it covers the majority

of current PDSs. Furthermore, we analyze how actions of renewable generators and energy

stores, and changes in the coalition formation process, can improve the physical state of the

grid. We show how specific actions of the agents as well as changes in the coalition formation

process decrease the number of voltage violations in the power grid.

Consequently, this chapter shows that coalition formation approaches proposed in Chap-

ter 4 can be used to solve a real-world problem with physical and economical characteristics.
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Chapter 6

Conclusion

This chapter concludes the thesis by summarizing the current state of the coalition formation

research and ongoing PDS changes in Section 6.1. Contributions of the thesis are then

summarized in Section 6.2. Furthermore, Section 6.3 discusses limitations of our work, and

finally Section 6.4 summarizes the future work in the field of large-scale coalition formation

and its application in PDSs.

6.1 Current State

Coalition formation is a process in which multiple agents in a MAS form groups called

coalitions in order to achieve individual or group goals. It has been previously studied, but

the focus was usually on finding solutions that maximize the social welfare in small-scale

MASs with at most a few dozen agents. The previous research has focused mainly on small-

scale systems because there are O(nn) solutions of the coalition formation problem (Rahwan

and Jennings, 2008), and finding the optimal solution has been proven to be an NP-complete

problem (Sandholm et al., 1999). Approaches that find the optimal coalition structure are

mainly dynamic programming-based and graph-based algorithms. Other approaches, such

as heuristic algorithms or clustering algorithms, can be used in larger-scale systems to find

sub-optimal solutions. While searching for an optimal solution is useful, some applications
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require finding ”good-enough” solutions on a much larger scale. For example, in the PDS

domain the number of households and generators can be in the range of thousands. Many

of the current algorithms are not designed for such a scale.

Furthermore, coalition formation is usually addressed in previous research as a single-step

task, i.e. the input for the problem is the MAS and once coalitions are formed, they are

returned as the output. However, in applications that model human behavior it is beneficial

to view coalition formation as a dynamic continuous process in which coalitions repeatedly

form, change, and dissolve. A limited amount of research has been done on use of multi-agent

simulation to address the dynamic coalition formation problem. Multi-agent simulation can

be modified to model many coalition formation applications, such as applications in various

domains, applications with self-interested and selfless agents, or applications with multiple

types of agents. However, these types of applications have not been extensively studied.

Finally, a few proposed coalition formation approaches study systems with self-interested

agents, which seek to increase their own benefit instead of the overall social welfare. These

self-interested agents might desire to leave a coalition proposed by a coalition formation

algorithm in order to increase their benefit. Therefore, stability of a coalition, which is the

coalition’s ability to deincentivize its members from leaving the coalition, must be taken

into account. Approaches have been proposed for finding stable coalitions, however, many

of them either restrict the coalition formation problem to specific sub-problems, or do not

address the high complexity of finding stable coalitions in large-scale systems.

PDSs are currently undergoing many changes that significantly alter the power distribu-

tion grid. Many households become active consumers by installing small renewable genera-

tors and participating in the energy market. This distributed generation changes the elec-

tricity flow from the original uni-directional flow to a much more complex multi-directional

flow. A political demand for a higher integration of renewable resources further amplifies

this effect.

The use of renewable energy is challenging because of its weather-related unpredictabil-

ity. Electricity is currently traded in a day-ahead market. Generators commit to specific

generation amounts for hourly time slots in the next day. Since supply and demand of elec-
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tricity must always match, generators are incentivized to generate the committed amounts of

power by receiving fees for failure to provide the committed generation. These fees introduce

significant challenges for renewable generators because their generation is only predictable

with a 20%-25% error (Zhang et al., 2015a). Renewable generators avoid these fees by com-

mitting lower amounts of power. Consequently, renewable energy is not utilized to its full

potential. The unpredictability of renewable generation has been addressed in previous re-

search mainly by proposing coalitions of renewable generators, and benefiting from a lower

prediction uncertainty caused by their spacial distribution.

6.2 Summary of Contributions

Given the current state of research in coalition formation and PDS described in Section 6.1,

we summarize contributions that this thesis makes to the state-of-the-art research in both

fields.

To address the lack of approaches for coalition formation that find solutions in large-scale

systems in which agents dynamically join and leave coalitions, we proposed a multi-agent

simulation framework for large-scale coalition formation in Section 4.1 (Janovsky and De-

Loach, 2016a). This framework can be used to model various large-scale applications of

coalition formation by designing valuation functions that assign values to coalitions, and

agents’ strategies, that decide on behalf of the agents about joining and leaving coalitions.

Section 4.1 shows how agents’ strategies can be evaluated in scenarios with various valuation

functions by a comparison with optimal solutions, which can be found in small-scale sce-

narios using existing approaches, and by observing the quality of the solutions in large-scale

scenarios in which optimal solutions cannot be found. We compared our strategies with a

state-of-the-art algorithm and showed the superior performance of our coalition formation

framework.

Furthermore, to enable our framework to model scenarios with self-interested agents,

we proposed a multi-agent simulation approach that finds stable coalitions in large-scale

systems containing thousands of self-interested agents in Section 4.2 (Janovsky and DeLoach,
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2016c,d). We showed that coalition stability can be increased by 1) extending the space of

agents’ actions by a deviation action, and 2) selecting a coalition structure with a high

stability estimate. Agents can use the deviation action to deviate from their coalitions with

other members of the coalition as long as all members of this new sub-coalition benefit at least

as much as in the original coalition. Including this action in the multi-agent simulation helps

break unstable coalitions and form more stable coalitions. Calculating coalition stability is

a computationally expensive task, because all permutations of all combinations of coalition

members must be considered for creation of a sub-coalition. Therefore, we proposed an

approach for calculation of an estimate of coalition stability, which can be used to quickly

decide which coalitions are likely stable. We combined the agent deviation and coalition

structure selection techniques and showed that this combination significantly increases the

stability of the resulting coalitions. We also showed that the decrease in the social welfare,

which is necessary because we are considering benefits of individual agents, is very small

compared to the improvement in the coalition stability.

This thesis addresses the challenges of using renewable energy caused by the weather-

related unpredictability in Section 5.1 (Janovsky and DeLoach, 2016b) by proposing a coali-

tion formation process between renewable generators, which face generation unpredictability,

and energy stores, which can generate predictable amounts of power. In a coalition, energy

stores can sell their ability to generate predictable amounts of power to the renewable gen-

erators. Renewable generators use this ability as a coverage against uncertainty. Energy

stores profit from participating in coalitions because they are getting paid by the renewable

generators for the ability to generate predictable amounts of power as well as for the actual

generation. Renewable generators benefit from participating in coalition formation because

it allows them to avoid fees for failure to provide committed generation. Consequently, the

renewable generators can commit to higher generation amounts thus increasing the use of re-

newable energy. We showed that participating in coalition formation increases the profits of

all agents. We also showed that coalition formation results in an increased use of renewable

energy.

Finally, to show that coalition formation can be applied in a real-world problem, in
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Section 5.2 we demonstrated how it can be used in a real PDS by analyzing effects of the

approach proposed in Section 5.1 on an IEEE 69-bus test system (Khatod et al., 2006). In this

test system we randomly assigned nodes to renewable generators, energy stores, and loads.

We then let renewable generators form coalitions with energy stores and observed the effect

of the resulting generation on the physical state of the power grid. We showed that coalition

formation increases generation of renewable generators and energy stores, which results in

increased voltage on grid nodes. Consequently, coalition formation improves physical state

of power grids that contain more load nodes then generation nodes, because in these grids

increased generation decreases the number of negative voltage violations. Furthermore, we

showed that the actions of agents and changes in the coalition formation process result in

further improvement of the physical state of the power grid.

Over all, this thesis proposes coalition formation approaches for large-scale MASs that

consider both the social welfare of the MAS and the individual profit of agents. It also

validates the applicability of these approaches by proposing their application in the PDS

domain, and shows that they can increase the use of renewable energy and improve the

physical state of the PDS.

6.3 Limitations

There are several limitations to the approaches that are proposed in this thesis. First,

the coalition formation framework proposed in Chapter 4 uses multi-agent simulation in

a centralized way. The agents make decisions about leaving and joining coalitions one by

one, with the knowledge of the impact of previous agents’ actions. For many applications

including those described in this thesis a centralized approach is sufficient. However, some

applications, such as coalition formation of a team of robots, require distributed decision

making. Furthermore, a distributed algorithm could benefit from using multiple processing

units, thus decreasing the computation time. Since distributed applications were not focus of

this work, we leave a distributed multi-agent simulation-based coalition formation algorithm

for future work.
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Second, the approaches proposed in Chapter 4 allow each agent to be a member of exactly

one coalition at a time. While this is generally assumed in most coalition formation research,

there are many applications that require the ability to assign agents to multiple groups. For

example, a social media account can participate in multiple friend groups. Participation

in multiple coalitions adds an extra layer of complexity to the coalition formation problem

because the configuration space of possible coalition structures is much larger. Since none of

the applications for which the approaches in Chapter 4 were proposed require participation

in multiple coalitions, we did not investigate this area of coalition formation.

Third, approaches proposed in Chapter 5 made several assumptions that limit their

applicability in a real PDS. We assumed that energy stores are charged in the beginning of

the day. Further study of the dynamics of specific real world energy stores, including charging

constraints and strategies, would be required before deploying our approach in a real PDS.

We also assumed no actions of the utility and renewable generators towards stabilizing the

power grid. Further study of these actions of the utility and renewable generators in a real

PDS would be required before our approach can be deployed. Finally, prices in a real energy

market react to the ratio of supply and demand. In our model we assumed fixed prices in

order to show the effect of coalition formation without a variable outside input. An energy

market would have to be designed to show use of coalition formation in a more realistic

setting.

6.4 Future Work

Approaches proposed in this thesis can be extended in multiple ways. First, limitations

summarized in Section 6.3 can be addressed. Specifically, a distributed coalition formation

algorithm can be designed. In this algorithm the agents would make decisions iteratively

based on the coalition structure found in a previous iteration. This way the order of agents

does not affect the resulting coalition structure, because agents’ decision making is based on

the knowledge of the previous coalition structure, while their actions affect a new coalition

structure. Consequently, we can achieve determinism in the distributed environment. Since
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the agents’ knowledge of the system will differ between the centralized and the distributed

approaches, the outcome of coalition formation will likely also be different. Agents can also

be allowed to join multiple coalitions. To do this, the solution quality and agents’ decision

making will have to be defined differently. In the PDS domain, specific real-world energy

stores and renewable generators can be studied to design more realistic models of the agents.

Second, a behavior of different types of agents can be studied. For example, agents that

do not behave rationally can significantly affect the result of the coalition formation process.

Furthermore, restricting the agents’ knowledge about the environment to a knowledge about

agents’ local neighborhoods could lead to more localized coalitions. Both of these examples

would extend the ability of our approaches to model human behavior as well as other real-

world applications.

Third, all decision making in our approach is performed by the agents. However, it might

be beneficial to include some decision making at the coalition level. A coalition could decide

collectively whether to accept a new member or which members should leave the coalition.

Different models of collective decision making can be considered, thus increasing the domain

of our approaches.

Finally, grid elements could be added to the PDS to improve the applicability of our

approach proposed in Chapter 5. These elements can include devices that maintain the

stability of the grid, or realistic transformers. Including these and other devices would

reduce the gap between simulation and real-world experiments.

6.5 Summary

This chapter summarizes the current state of research in coalition formation and PDS and

points out several areas that have not received sufficient focus from the research community.

It then shows how this thesis addresses these areas by proposing new approaches for coalition

formation and their application in PDS. Finally, we summarize limitations of our approaches,

and propose some areas of possible future work.
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Appendix A

Impedance values for IEEE 69-bus

test system

Chapter 5.2 introduced coalition formation of renewable resources and energy stores in an

IEEE 69-bus test system (Khatod et al., 2006). This system is used for evaluation of coalition

formation in a real power grid. Setting of the power grid was described in Section 5.2.2. Each

line in the power grid has a specific impedance. We show the impedance that we used in

our experiments in Table A.1 below. These values are also widely used in the power systems

field.
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Table A.1: Active (Zreal) and reactive (Zimag) impedance values for IEEE 69-bus test system
for power lines between nodes N1 and N2. Values are shown per unit, a base impedance
unit Zb in a power grid with the base voltage Ub = 12.66 kV and the base power Pb = 10 MW

is Zb =
U2
b

Pb
= 16.03 Ω.

N1 N2 Zreal Zimag N1 N2 Zreal Zimag

1 2 0.000311963 0.00074871 4 36 0.002121346 0.005240972
2 3 0.000311963 0.00074871 36 37 0.053096042 0.129963638
3 4 0.000935888 0.002246131 37 38 0.180813549 0.442425422
4 5 0.015660525 0.01834340 38 39 0.051286659 0.125471376
5 6 0.228356656 0.116299674 8 40 0.057900267 0.029511666
6 7 0.237777928 0.121103899 40 41 0.207080803 0.069505277
7 8 0.057525912 0.029324489 9 42 0.108563 0.055279781
8 9 0.030759517 0.015660525 42 43 0.126656834 0.064513875
9 10 0.510994811 0.168896576 43 44 0.177319567 0.090281989
10 11 0.116798814 0.038620975 44 45 0.175510184 0.089408494
11 12 0.44386045 0.146684835 45 46 0.992041209 0.332988927
12 13 0.642643047 0.212134598 46 47 0.488970249 0.164092351
13 14 0.651378001 0.215254225 47 48 0.189798073 0.062766884
14 15 0.660112955 0.218124281 48 49 0.240897554 0.073124044
15 16 0.122663712 0.040555144 49 50 0.316642084 0.161284687
16 17 0.233597628 0.077241951 50 51 0.060770323 0.030946694
17 18 0.002932449 0.00099828 51 52 0.090469167 0.046045686
18 19 0.204397925 0.067571109 52 53 0.443298918 0.225798562
19 20 0.131398666 0.0434252 53 54 0.649506226 0.330805188
20 21 0.213132879 0.070441165 11 55 0.125533768 0.038121835
21 22 0.008734954 0.002870056 55 56 0.002932449 0.000873495
22 23 0.099266513 0.03281847 12 57 0.461330358 0.152487341
23 24 0.216065327 0.071439446 57 58 0.002932449, 0.00099828
24 25 0.467195256 0.154421509 3 59 0.002745271 0.006738393
25 26 0.192730522 0.063702772 59 60 0.039931218 0.097644308
26 27 0.10806386 0.035688527 60 61 0.065699333 0.076742811
3 28 0.002745271 0.006738393 61 62 0.018967329 0.022149348
28 29 0.039931218 0.097644308 62 63 0.001123066 0.001310243
29 30 0.24819748 0.082046175 63 64 0.454404788 0.530898028
30 31 0.043799555 0.014475067 64 65 0.193416839 0.226048132
31 32 0.218997776 0.072375333 65 66 0.025580937 0.029823629
32 33 0.523473317 0.175697361 66 67 0.005740113 0.007237533
33 34 1.065664393 0.352268218 67 68 0.067945464 0.085664942
34 35 0.919665876 0.304038793 68 69 0.000561533 0.00074871
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