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Abstract 

Modern power systems are integrated, complex, dynamic systems.  Due to the 

complexity, power system operation and control need to be analyzed using numerical 

simulation.  The load model is one of the least known models among the many components in 

the power system operation.  The two different load models are the static and dynamic models.   

The ZIP load model has been extensively studied.  This has widely applied to composite 

load models that could maintain constant impedance, constant current, and/or constant power.  In 

this work, various Neural Networks algorithms and fuzzy logic have been used to obtain these 

ZIP load model coefficients for determining the percentage of constant impedance, current, or 

power for the various load buses.  The inputs are a combination of voltage, voltage change, and 

power change, or voltage and power, and the outputs consist of the ZIP load model coefficients 

for determining the type and the percentage of load at the bus.  The trained model is used to 

predict the type and percentage of constant load at other buses using simulated transient data 

from the 16-generator system.  A small study was also done using a dynamic induction machine 

model in addition to the ZIP load model.  As expected, the results show that the dynamic model 

is more difficult to determine than the static model. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction and Motivation 

On August 14, 2003, a blackout took place in the North American Eastern 

Interconnection that included most of New York State, parts of Pennsylvania, Ohio, Michigan, 

and Ontario, Canada.  About 63 GW of load was interrupted.  This magnitude equals 

approximately 11% of the total load distributed in the Eastern Interconnection of the North 

American system.  Another important discovery was that there were significant reactive power 

supply problems in the states of Indiana and Ohio prior to noon.  The first important event was 

the outage that took place in First Energy’s Eastlake unit 5 generator as the area was generating 

high levels of reactive power.  As a result, the Eastlake unit 5 voltage regulator tripped because 

of over-excitation. 

Due to the cascading loss of major tie lines in Ohio and Michigan, a huge 3700 MW 

reverse power flow was serving load in the Ohio and Michigan system and caused heavy loading 

on the transmission around the region.  In the end, this whole series of events resulted in a 

cascading outage of several hundred lines and generators tripped in the entire region. 

The primary causes were summarized as inadequate understanding of the system, 

inadequate level of situation awareness, inadequate level of vegetation management (tree 

trimming), and an inadequate level of support from the reliability coordinator.  The figure for the 

August 14, 2003 cascading outage is shown below. 
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Figure 1.1 Display of the blackout on August 2003 [1] 

Similarly, on September 23, 2003, voltage collapse took place in Southern Sweden and 

eastern Denmark, and led to the separation of a region of the Southern Swedish and Eastern 

Denmark system.  This collapse was caused by both voltage and frequency.  

Subsequently, an Italian blackout took place on September 28, 2003.  The phase angle 

became too large due to heavy power import into Italy, and a 380 kV line was tripped on the 

same border.  These outages left the Italian system with a shortage of 6400 MW of power, and 

the system collapse caused a nationwide blackout.  It was the worst blackout in the history of its 

nation.   

The Power System Stability and Power System Dynamic Performance Committee 

gathered experts from around the globe to have different kinds of sessions to discuss these issues.  

The root causes and necessary steps to reduce the risk of blackouts were the main focus of the 

panel session [2].  Recommendations for these blackouts by some of the presenters [2] announce 

that there were also data management issues.  It seems there are definitely needs to improve the 

calibration of recording instruments, data collection, and establishment of an infrastructure to 

support a centralized blackout investigation.  Moreover, there is a need to facilitate better 

insights into the cause of blackouts.  As an example, WAMS or wide area measurement systems 

need to be established.  Related studies were recommended and include observing Eigen-
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analysis, HVDC, and FACTS equipments to examine the system response to test inputs.  

Furthermore, tracking the implementation of recommended actions to improve reliability was 

also suggested.  The application of automatic controls such as automatic voltage regulators and 

applicable power system stabilizers should be mandatory for generators.   It is also important to 

build rapid system restoration to minimize the impact of a blackout. 

  Transient stability and load model are closely related to the power systems collapse.  In 

reference [3], the author stated that as the load demand gets higher, the varying load becomes 

unstable as we try to control the power.  The reduction in load impedance also will decrease the 

power.  The load characteristics play a vital role in determining whether the voltage will 

progressively decrease or the system will stay stable.  For constant impedance static load 

characteristics, the desired power and voltage will be higher than the actual power and voltage 

levels.  Furthermore, the load-power factor affects the power-voltage characteristics of the 

system.  As the voltage declines in the transmission line, the value will be a function of active 

and reactive transfer.  We will describe voltage stability relies on the relationships between P, Q, 

and v [3].  Specifically, the P-V and Q-V curves are used extensively in voltage stability study.  

As power system stable operation relies on the capability to match the electrical load on the 

system to the electrical output, the parameters data and values for load model obtained can be 

very useful in determining the stability of the power systems [3].   

1.2 Objective of the Research 

Load modeling is not an easy task in a complex power system.  A load bus representation 

in stability research consists of a combination of devices including fluorescent and incandescent 

lamps, refrigerators, heaters, compressors, motors, furnaces, and so on.  The exact components of 

a load are very hard to describe mathematically or physically.  The composition of the load will 

also change during the day and season, as well as with the weather conditions and the state of the 

economy.  There are virtually millions of components in the total load supplied by the power 

systems.  Hence, it becomes quite impractical to display all load components in a load model.  

To effectively study the load representation in a power system, we therefore really need to have a 

simplified model [3].  This thesis will describe simple load modeling concepts, load composition 

and characteristics as well as the obtaining of load model parameters.  Load models from 
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measurements of simulated system data will be provided using different intelligent computing 

techniques.  Obtaining the load model parameters from measurement data will be the main goal.  

Having intelligent systems to quickly and accurately determine load parameters to be fed to 

voltage stability algorithms and others can help operators to have a more realistic picture of 

current system conditions and vulnerabilities.  By doing so, these load parameters can be useful 

to provide analysis to prevent voltage collapse, to enable solutions to the power system collapse, 

and to allow future study of the system in smart grid.  It is important to find accurate numerical 

methods and accurate data from the load buses, and to solve problems quickly and to obtain the 

solutions to aim in solving and preventing power systems from collapsing.  The important step is 

to choose a suitable load model to represent one or two main power system areas for study. 

1.3 Overview of Research 

This research used various intelligent techniques to do a load modeling.  The two 

preliminary work categories included using pseudo inverse and manual calculations to find load 

parameters.  The later sections used various techniques including Levenberg-Marqauardt 

algorithm, Widow-Hoff backpropagation, Default Scaled Conjugate gradient Algorithm, 

Adaptive-Neural Fuzzy Inference Systems (ANFIS), and traditional neural networks method to 

find the parameters of the load model both in static and dynamic models.  The objectives and 

approaches to achieve the goals are outlined as below. 

Simple Modeling: 

 Manual calculation of the parameters from a simple load constructed by the Microsoft 

Excel spreadsheet 

 Inverse matrix or the simple pseudo inverse to calculate the over-determined 

parameters from the known values 

 Linear programming approach  

Intelligent Modeling: 

 Utilize data from simulated, multi-machine systems to develop load models.  The 

load voltages, real and reactive power, and the parameters that are associated with 

constant impedance, current and power are used as the input and output for the 

training. 
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 The above variables and parameters are used with the power changes and voltage 

changes at the different time steps for training and testing. 

 The range of load parameters determining levels of constant impedance, current, and 

power and later percentage of dynamic load values are interchanged, and the different 

snap shots are taken for different simulation time steps to construct 15,552 or more 

load cases.  

 Training, validating, and testing with the intelligent techniques were done to use the 

trained information to predict the information on the other load buses for both static 

and dynamic loads. 

 Various strategies are used to training and testing the load buses, including combining 

some load buses from each case and test against all the load buses to determine the 

best data for training. 

 The different intelligent methods and different strategies of testing and training and 

their MSE efficiency were recorded and compared to determine the best training 

strategy and method that can be used. 

1.4 Organization of Thesis 

The structure of the thesis is outlined as follows.   

This chapter describes the power system load and the power system failure or collapse in 

recent years.  Also, it gives the motivation and the need for the work and research. 

Chapter 2 discusses the background of load modeling.  The recent study and research 

done by others on load modeling are reviewed.  The reviews of voltage stability aspects are 

described.  

Chapter 3 talks about the problems and the preparation for this research.  It explains the 

models and methods used at the early stage of the research and the shortcomings for these early 

experiments.  Test cases are shown to prepare for this early research.  It introduces different 

methods to solve load models.  ZIP model parameters and various other forms of representation 

are introduced.  Methods including pseudo-inverse, manual equation methods and inverse matrix 

methods are described.  The advantages and disadvantages of these methods will be discussed. 
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Chapter 4 deals with a larger load model problem with the focus on the load voltage, load 

real and reactive power, and the frequency at the load.  The transient data from the 16-generator 

and 52-bus system is extensively studied, and is used for neural networks training.  The 

coefficients p1, p2, p3, q1, q2, and q3 from the ZIP load model are obtained through the well 

trained neural networks.  The focus is on the static power system loads.  A combination of load 

bus training and testing was done here with several intelligent methods including Levenberg-

Marquardt, Widow-Hoff backpropagation, Default Scaled Conjugate gradient algorithm, and 

ANFIS. 

Chapter 5 used the similar approach as in Chapter 4 but the work is focused on testing the 

approach for dynamic power system loads. 

Chapter 6 concludes the present thesis work with some suggestions and for improvement 

of the study as well as some proposed future research work based on the current knowledge and 

work. 
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CHAPTER 2 - BACKGROUND 

2.1 Introduction 

This chapter gives us a background of load model structure and the recent research and 

knowledge of load model.  The primary objective of the current research work is to have a good 

knowledge of the power system load and to be able to learn and predict the relations between the 

load variables such as real and reactive power and voltages and the different parameters that 

determine the amount of constant current, power, and current of the load.  Finding the type of 

load is important to give us a deeper understanding of the power system model for computer 

simulations.  

2.2 Voltage and Load Stability 

The constant change in the electricity industry creates a new feature of our power 

systems.  It is represented by complex interconnections, and the applying of a large variety of 

controllers for improving the system operation and the utilizing of available sources. 

Furthermore, the deregulation also causes the interconnected power network to be more 

complex.  Therefore, the need for power networks to understand channels for the transfer of 

electricity from points of production to points of consumption is crucial.  This process depends 

on a competitive system and time varying factors. The complexity of the system, the nature of 

the dynamics that cause it and the external factors interfering simultaneously require extra care, 

in order to maintain a suitably operated power system.  The system must supply high reliability 

at minimum cost and ensure the smallest impact on the natural environment. To avoid 

inconvenience to customers and technical problems which lead to higher costs, the system needs 

to handle the frequent variations in active and reactive load.  High levels of system security, 

availability of “spinning” reserve of active and reactive power, high quality in the design of the 

system components and availability of different paths for the delivery of the energy to the 

customers are very important [4].  The load representation in these stability studies is discussed 

later on in this chapter.   

As described in [3], “voltage stability is the ability of a power system to maintain steady 

acceptable voltage at all buses in the system at normal operating conditions, and after being 
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subjected to a disturbance.”  The important message includes not only maintain the steady 

acceptable voltage, but to sustain the voltage after a disturbance and to restore it to a state similar 

to the pre-disturbance situation. When the voltage in the system is not controllable and decreases 

linearly, variations in load or inappropriate voltage control devices may be applied as the system 

becomes voltage unstable.  It is a requirement of the power system to stay in equilibrium under 

normal scenarios.  Referring to [2], “voltage instability is the absence of voltage stability, and 

results in progressive voltage collapse (or increase)”. The primary cause of this unstable situation 

in the power system is the lack of ability to satisfy the reactive load demand under heavily 

stressed conditions.  Voltage collapse causes the system to have below normal voltage in a large 

part of the power system, and therefore will result in collapse of the power system.  The load 

characteristic and its dynamics dictate the dependency between the load and the voltage, and 

therefore affect the voltage stability phenomenon.  A voltage decrease at the beginning will 

cause decay in load, and after few seconds, a load restoration process needs to be started.  To 

make it more complicated, the restoration can lead to heavily stressed loaded conditions. The 

restoration will cause voltage instability and even voltage collapse if the conditions remain for 

too long or suitable control decisions are not taken or the system is not able to resolve the 

reactive load demand.   

Furthermore, power system stability can be categorized into angle stability and voltage 

stability as described in [3].  Voltage stability can be divided into short and long-term voltage 

stability. The ‘short-term’ is a time frame of about a few seconds, and describes the dynamics of 

components such as induction motors, static VAR compensators and excitation of synchronous 

generators. When the dynamics of the system react in slower time frames, around several 

minutes, this is termed ‘long-term stability”, two kinds of stability problems can take place as 

well as problems in frequency and voltage.  Frequency stability problems are the result of power 

not balanced between generators and loads after a large disturbance, and can result in systems 

isolated from the main system [3].  Studies of each of these stability problems require some sort 

of load model. 
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2.3 History of Load Modeling 

As the current trend shows, load modeling has gained interest as the power system load 

becomes the new area of research within power system stability.  A couple of studies, [5 and 6] 

have demonstrated the key effect of load representation in voltage stability studies.  Because of 

that, there is a need to find more accurate load models than those already used traditional ones 

(e.g. all constant impedance or all constant power).   

As voltage collapses only took several minutes in the past “real world” cases, the older 

load modeling work was focused on induction machines, critical in the range of some seconds 

after a disturbance.  The load response was taken as a function of voltage [7].  The use of 

dynamic load models has become increasingly popular compared to the static load models.  

Although knowledge has been acquired from power system load in the recently years, it is one of 

the most difficult and unknown areas of study in the midst of the power system models.  This is 

because of the diverse and complex load components, the high distribution and variation during 

the time of day and year, weather, and the lack of information for the load.  The new techniques 

for the load modeling will result in better understanding of the load and better representation of 

the load in simulations of the system.  This will help to have a positive impact for the control, 

operation, and reliability of the power system.  The accurate load model and a real-time 

monitoring application will help to introduce more competiveness for the electric industry and 

contribute to the development of smart grid information structure [8].    

A model that uses a fundamental engineering knowledge and describes the physical 

phenomena of a system is called a physical model.  The model uses the elementary laws that will 

give accurate results when simulating.  However, for a more complex system, using the physical 

laws to solely find the specific parameters could be difficult.  Instead, developing the model 

based on empirical laws may be easier and more practical.  When developing the load model 

with empirical laws, only input and output signals are needed to form a relation because usually 

sufficient knowledge is not provided to form a physical model.  However, the input and output 

can still be used to form a mathematical relation to model the system.  This approach is also 

called a “black box model” as there is limited amount of available data to find the relation 

between the input and output of the system.  The physical model for power system loads will be 

utilized in the work of this thesis.   
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As referenced by [9], the author showed that the load model consists of two different 

characteristics: the static and dynamic, where static part is commonly modeled by the ZIP load 

model and the dynamic characteristics can be more complex, often involving induction machine 

models.  The voltage variation of the system is affected by the load variations.  Two major 

categories for the study include the physical models and the non-physical models.  The physical 

model includes the widely applied composite load model that needs the system to maintain the 

constant impedance, the constant current, or the constant power (e.g. ZIP load model is one kind 

of physical one).  The non-physical load models include the exponential load model, the 

difference equations model, and the neuron-net model etc.   In [9], the non-linear least square 

method worked well for the simple load model with measured active load.    

The two different composite load characteristics used for load modeling are the 

measurement-based approach and the component-based approach.  The measurement-based 

approach requires people to measure the data at substations and feeders directly.  The voltage, 

frequency, sensitivity of the active P and reactive Q load were recorded through this approach 

[9].  The data was received from measurements on site and included the voltage and frequency 

variations as well as the changes in active and reactive load.  In order to create this model by 

putting the measured data to an approximate model, the parameters would be generated.  This is 

also called gray-box modeling as a structure model was constructed from measured data.  For 

static models, this technique is much easier compared to a dynamic model.  The advantage is that 

this technique is fairly accurate and can be applied as economical investments to observe the 

most important loads.   

From [6], on the other hand, the component-based approach focuses on constructing a 

composite load model from data on the constituent parts.  For instance, information can be 

obtained from a combination or composition of substations, classes, or load components.  The 

load composition data is important in this approach and it defines the percentage of each load 

component.  The load characteristic data is associated to the physical characteristics for those 

load components.  According to [10], similarly, component-based approach works well with the 

static load model, but does a poor job of describing the dynamic load characteristics.  Load 

parameter representation for dynamic performance can be very complicated as the load varies 

along with time.  It is a big challenge to change the parameters to follow the variation.  The load 
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model parameters need to be adjusted as the load composition changes.  Hence, additional 

changes need to be done for the dynamic load model.  The main advantage of using this 

technique is that no field measurements are required.  Also, this model can adapt to different 

systems and conditions easier as well as applying it to use.  However, because of the dependence 

on weather and time, the model needs to be constantly updated to be more accurate.  For the 

research purpose and the need to simplify the study, off-line data is usually studied as it 

corresponds to a period of time.    

2.4 The Structure of Load and Load Model  

The mathematical representation of the relationship between a bus voltage (magnitude 

and frequency) and the power (active and reactive) or current flowing into the bus load is called 

a load model [9].  It is important for the design, planning, and operation of a power system.  

Since the load parameters are usually non-linear, it is a challenging problem to describe the 

dynamic characteristics of the load.   

As discussed previously, load models can be constructed based on two different 

approaches.  One approach is measuring the voltage and frequency sensitivity of the active and 

reactive powers at the substation or load bus.  The second approach constructs a composite load 

model for a given substation or load bus, according to the mix of load classes at the substation 

[11].    

The voltages referred to in this work are the per unit values where the v is the voltage magnitude. 

0v

v
v           (2.1)     

In the general structure of the ZIP load model used in this work, the active and reactive power 

have three components: constant impedance (Z), a constant current (I) and a constant power (P) 

injections.  The general model, which represents the voltage dependency of loads, is of the form 

given below.  In this thesis, the parameters given equations (2.2) and (2.3) will be used.                                         

][ 32
2

10 pvpvpPPZIP        (2.2) 

][ 32
2

10 qvqvqQQZIP        (2.3)                  
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The parameters of the model are p1 to p3 and q1 to q3, which define the proportion of each 

component respectively.  The frequency dependency of load characteristics is represented in the 

polynomial ZIP model by a factor including ∆f as indicated below.   

)1]([ 32
2

10 fkpvpvpPP pfZIP      (2.4)                         

)1]([ 32
2

10 fkqvqvqQQ qfZIP      (2.5) 

 

∆f is the frequency deviation (f-f0).  Kpf ranges from 0 to 3, and Kqf ranges from -2 to 0 [5].  The 

frequency in the study is found from time step data using the form below:   




2

1

)()1(

)()1(

itit

ii
f





       (2.6)        

Aside from the ZIP model or polynomial model, there is also an exponential load model in which 

the voltage depends on the load power exponentially.  For the exponential model, the real power 

and reactive power can be expressed in equations (2.7) and (2.8) below: 

a
ZIP vPP ][0         (2.7) 

b
ZIP vQQ ][0         (2.8)                                                                

Similarly, the frequency dependent components can be added to the exponential model as shown 

in equations (2.9) and (2.10) below [3]. 

)1(][0 fkvPP pf
c

ZIP        (2.9)                                                     

)1(][0 fkvQQ qf
d

ZIP        (2.10)   

The exponential components a, b, c, d have common values for various load components such as 

air conditioners, resistance space heater, small industrial motors, or fluorescent lightening [6]. 

  In [3], the author pointed out that the dynamic load models are more complex because 

the response of the loads to voltage and frequency variations is a lot faster.   The static models 

used before will be ineffective models in this fast response case.  However, the detecting of 

parameters in this case can still rely on measurement based and component-based approaches.  

More accurate measurements need to be taken as the system’s response changes rapidly.  Due to 

the complexity, long term stability, inter-area oscillations, voltage stability become important 

criterion to be modeled.  The study of systems with large motor loads may require them to be 
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represented in load dynamics as 60 to 70% of the total energy was consumed.  Therefore motors 

are usually the most important part of dynamic system modeling.  Other load components that 

will affect the stability study are as below: 

 Discharging the lamps and restart the lamp.  The lamps that have mercury vapor, sodium 

vapor, and fluorescent lamps will affect the voltage recovery or delay the recovery. 

 Protective relays especially thermal or over-current relays 

 Thermostatic control of loads (i.e. heaters/coolers, water heaters, and refrigerators.).  The 

voltage will drop once these devices connect to the system. 

 ULTCs on distribution transformers, voltage regulators, and voltage-controlled capacitor 

banks.  Although these are not modeled in a lot studies.  They make a difference in the 

load.  Also these devices help to mitigate a disturbance and aim to make the system 

return to the pre-disturbance levels.   

Static and dynamic load models are shown in Figure 2.1 below.  It represents a wide range of 

characteristics shown by many load components.  This is an aggregated or complex load model 

including small induction motors, large induction motors, static load characteristics, etc. 
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Figure 2.1 Static and dynamic load model [3] 

The induction load model is an important component in dynamic load modeling.  In Figure 2.2, a 

simple induction motor model is displayed.   

 

   

Figure 2.2 Induction motor model [12] 

The variables for the induction motor model are given below. 

Rs : stator resistance 

Xs: stator leakage reactance 

Xm: magnetizing reactance 

Xr: rotor leakage reactance 

Rr: rotor resistance 

S = (ws-w)/ws :  rotor slip 

 

According to [12], dynamic load can be displayed as a combination of ZIP load model 

and induction motor model.  Aggregate load models are frequently used, and are the 

combinations of a static load model and dynamic load model.  The four aggregate load model 

structures are as below. 

 ZIP augmented with induction motor 

 ZIP augmented with another type of equation (second order) 
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 Exponential augmented with induction motor (three-state) 

 Exponential augmented with another type of equation (second order) 

There are many dynamic load models.  For a specific type of measurement data, one 

model structure will be more preferred than the other one.  Whichever model that gives the best 

results will also be the best model structure for the specific type of measurements.  In this thesis, 

the ZIP static model augmented with an induction motor model is used for the load model 

structure.  The frequency part is ignored in here, and the aggregate dynamic load model is shown 

below [12]. 

 

MOTZIPs PPP ** 11          (2.11) 

MOTZIPs QQQ ** 22          (2.12)                      

          

The Ps, PZIP, PMOT  are the real power loads that are aggregated.  Now, γ and δ are the 

percentages of static and dynamic load. The more extensive representation of the induction 

motor model can be shown in equations (2.13) through (2.18) below [12]. 
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)( 2
0

E
L DCBATT        (2.18)             

In these equations X’ is equivalent to Xs+((Xm)(Xr))/(Xm+Xr), and it is the transient 

reactance or the blocked-rotor (short-circuit) reactance.  X or Xs+Xm is the open circuit reactance 

or the motor no-load reactance.  The rest of the variables are listed below. 
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H: rotor inertia constant   

TL: load torque equation 

T0: steady state mechanical torque 

ω: rotor rotation speed 

E’d: d-axis transient EMF  of motor 

E’q: q-axis transient EMF of motor 

Ud: d-axis bus voltage 

Uq: q-axis bus voltage 

Id: d-axis stator current 

Iq: q-axis stator current 

The A,B,C,D,E coefficients in load torque equation need to satisfy  

EDBAC 00
2
01    

To better understand the system, we also need to find the percentages of each individual load in 

the total load.  The ZIP load model equations (2.2) and (2.3) have the parameters p1, p2, p3, q1, 

q2, q3.  From the load composition equations (2.11) and (2.12), the parameters are α1, α2, β1, β2.  

Lastly, the parameters from the induction motor model are Rs, Xs, Rr, Xr, Xm, H, A, B, C, D, and 

E.  Finding the load parameters will give us the best fit between the measurement data and the 

actual load model outputs.  This work will be the main focus of this thesis.  The intelligent 

techniques were applied to find these parameters that will give the smallest mean square errors 

between the measured data and the actual data. 

2.6 The State of Art of Load Modeling  

2.6.1 Traditional and Black Box Approaches 

The traditional approach used manual calculation to find the best equations or physical 

structure to represent the relations between the output and input data.  This approach can 

sometimes be quite efficient for small sized power systems and can provide high accuracy.  

However, for more complex systems and dynamic load systems, this approach is unreliable.  In 

order to solve more complicated power systems, the black-box approach has been often used 

[10].  Due to the complexity of the system, several intelligence techniques were used to predict 
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the output based from the input without representing the model in equation format.  This method 

can be used to merely predict more complicated systems, but it does not allow the readers to 

really understand the power system loads nor does it provide the parameters for use in other 

applications.  In [14], the writers specified that for general non-linear curve fitting at a precision 

problem, back propagation artificial neural network (BP ANN) was a good choice.  However, 

one of the disadvantages of the BP ANN load model was that it lacked sufficient feedback.  A 

more advanced method was needed.  Hence, for dynamic load system, more complicated ANNs 

such as Elman Artificial Neural Network or Hopfield network were used to solve the time 

dependant dynamic system. Using field tests to determine the load model parameters indicated 

that the ULTC's and feeder voltage regulators are the main source of load recovery dynamics 

[14].  In [16], the least square method was sufficient to find the closest curve fit for the power 

system load.  In paper [16], other practical tests have shown that for an overly conservative load 

model, inaccurate data will be an issue for the system.   

As stated in paper [17], a general ANN model included voltages at the input, bias and 

weights at each neuron, with the output as power.  One or more feedback signals went back to 

the input as well to form a closed loop system.  This model can accurately provide the 

characteristics of the load dynamics.  The ANN approximation will allow them to find the error 

bounds and justify the choice of functions with smaller errors.  In [18], we can see that for the 

Matlab neural network test, it was concluded that the training algorithm was the most important 

factor in the accuracy and performance of the network.  The performance for each training 

algorithm also depended on the size of the power system network.   

In [19], neural network fuzzy dynamic programming approach was another method 

used.  The procedures can be described as below. 

 The input signal is first fed to the artificial neural network.   

 Second step is to go through the ANN to construct the fuzzy dynamic programming rules. 

It also is helpful to include current status of capacitors and tap positions as ANN inputs.   

 Then solve using the rules for the output.  The combined approach was efficient as it only 

took a little time for ANN to reach the targeted solution.   
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As stated in the article [19], in order to improve the performance when dynamic power 

systems are designed and maintained with less stability margin, power system engineers need to 

consider the accuracy of loads and data and proper load models for the distribution 

equipment.  In paper [20], fuzzy inference was suggested by the researchers to solve dynamic 

load at the transient case.  Adaptive-network-based fuzzy inference system or ANFIS was 

developed to construct the basis of fuzzy if-then rules for combining learning the rules of 

adaptive network to model the no-linear system performance.  The results show that the dynamic 

load modeling ANFIS structure emulated the P and Q load response with input voltage and 

frequency fairly well.   

Another approach as shown in article [21] said that the node-load model by the 

application of an indistinct fuzzy logic approach allowed the modeling of a disturbance during 

transient conditions and also accounted for the structure of node-loads that were not completely 

clear.    

2.6.2 Parameter Identification Approach 

Parameter identification approach is an essential technology in measurement-based load 

modeling.  According to [3, 22, 23, 24, and 25], precise load modeling can avoid any 

miscalculation or wrong operations.  A contrary conclusion can be caused by inappropriate types 

of load models [26, and 27].  However, in article [24], the author declared that if a “standard” 

load model was used then the load model would not recreate the unstable behavior for a fault 

despite of reconstruction.  Today, as reported by Southern California Edison and Florida Power 

& Light Company in article [28], load modeling has improved because of an increase in air 

conditioner load in some areas.  Air conditioner load sometimes would cause short-term voltage 

instability, quick voltage collapse, and also would slow down voltage recovery.  Although there 

is a lot of literature related to finding the load model parameters as stated in paper [29], to get the 

accurate load model from these parameters can be difficult.  Several problems could be shown 

below: 

 Time variance and stochastic variables are associated with loads 

 Some issues with aggregate loads 

o Massive diverse load components 
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o New load components getting into the system 

o Not enough composition information for certain loads 

o Insufficient details to show various load components 

 Not enough actual measurements to verify the load models 

We can see there are numerous problems with the load models, and an improved load model has 

become a challenge for power system analysis and control.  The state-of-the-art techniques for 

load modeling should be taken advantage of to develop a systematic approach to represent the 

aggregate load for power system stability study purposes.   

 As discussed before, the load modeling methods are categorized by the component-based 

approach and the measurement-based approach.  The latter one will be more real-time and more 

associated with the dynamic characteristics [30].  Measurement-based approaches are based on 

system identification and are more applicable to linear models.  For nonlinear models, it could 

become more challenging [31].  Analytical-based approaches have been used to derive 

parameters in 1977 according to test results.  Field tests were recorded and parameters of a 

simplified induction motor load model were solved [32].  A step/staged/controlled test could use 

this method although measurement error will be detected fairly easily.   

 On the other hand, an optimization-based approach can be used to find the best 

parameters that minimize an error function between the measured data and the simulated ones.  

Many of these approaches have been done to find the best parameter estimation.  For instance, as 

shown in paper [12], the search algorithms are:  

 Search algorithms with statistical techniques 

o Least square-based parameter estimation that involved induction motor 

models [33]. 

o Weighted least square-based estimation with Unequal Square [34]. 

o Instrumental variable-based estimation that minimizes the sum of absolute 

residues [35]. 

o Maximum likelihood-based using a probability density function [36]. 

o Gradient-based parameter estimation [37]. 

 Search algorithms with heuristic techniques 
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o Simulated annealing-based parameter estimation used adaptive simulated 

annealing [38]. 

o Neural network-based parameter estimation used measurements to train and 

update the load model continuously [17]. 

o Genetic algorithm-based parameter estimation [39]. 

Other methods include: 

o Multistage algorithm for load parameter identifications [40].   

o Nonlinear parameters calculated directly from the linear identification results 

[41]. 

Lastly, the stochastic based approach also was used and this approach makes use of the error 

function and therefore is more confined [12]. 

2.7 Software and Power System Model 

As described in previous chapters, static models are commonly used in today’s research.  

The models can be used in industries to predict dynamic behaviors of active/reactive loads.  In 

this research, load bus 3 in a 16-generator power system from a Matlab coded power systems 

toolbox (by Cherry Tree software [42]) was used.  The load bus voltage, active and reactive 

powers were used as the key information in this research.  The 16-generator and 52-bus system is 

shown in the figure below. 
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Figure 2.3 16-generator and 52-bus system used in the research 

For this research, Matlab was used extensively.  It helped to alleviate the amount of 

matrix calculations needed for the research.  Calculations involved data analyzing, accumulating, 

and storing.  As the Power System Toolbox was coded in Matlab, therefore Matlab software is a 

good choice for this research.  The Microsoft Excel program was also utilized in the research as 

well.  This software application helped in calculating large amounts of data as well as displaying 

the data in an organized manner.  Plots and graphs can be generated fairly readily by this 

software as well.  In this chapter, the first part focuses on a small simple power system.  We used 

simple spreadsheet calculations and manipulation to show that the constant power, constant 

current, and constant impedance parameters can be obtained and verified using Microsoft Excel.  

In the second part, curve fitting and parameter finding by matrix manipulation was used.  As 
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some of the matrices are seen as over-determined systems, methods such as pseudo-inverse were 

used. 

2.8 Problem Statement 

The interest in this thesis is to develop methods to readily find the necessary parameters 

to represent the load model using “measurement” data from a power system load.  The work 

utilized the static ZIP load model, as shown in equations (2.2) and (2.3) before and rewritten 

below for convenience. 

][ 32
2

10 pvpvpPPZIP       

][ 32
2

10 qvqvqQQZIP                 

We notice that P0 and Q0 are the pre-disturbed active and reactive powers.  The representations 

for p1 to p3 and q1 to q3 can be summarized in the Table 2.1 below. 

 

Table 2.1The parameter representation for ZIP Load Model 

Variable  Representation 

p1  Percentage of constant real Impedance or Admittance 

p2  Percentage of constant real current 

p3  Percentage of constant active power 

q1  Percentage of constant reactive Impedance or Admittance 

q2  Percentage of constant reactive current 

q3  Percentage of constant reactive power 

 

The goal of this work is to find these p1, p2, p3, q1, q2, and q3 variables for the load model.  

As mentioned before, a simple power system and the 16-genetaor power system from the Matlab 

power system tool box were used, and these parameters were identified.  Their voltage, real 

powers and reactive powers were used as measurements during transient simulation to assist in 

finding the parameters.  In a more complex power system where 339 time steps were run, an 

over determined matrix would be formed.  To demonstrate this matrix, we re-arrange the 

equations (2.2) and (2.3), and get: 

32
2

1
0

pvpvp
P

P
P ZIP

norm        (2.19)  
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32
2

1
0

qvqvq
Q

Q
Q ZIP

norm       (2.20)  

As we finished running the transient simulation, data for load voltage, active, and reactive 

powers were obtained at different time steps.  Let us represent these values as v1, v2, v3, v4, normP

1, normP 2, normP 3, normQ 1, normQ 2, normQ 3 and etc., for their respective value at different time steps.  

As we re-arrange the equations, the matrices would be: 
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     (2.22)     

These two matrices above are over-determined systems and the parameters would not be 100 

percent accurately solved.  Moreover, the sum of both active and reactive power parameters is 1.  

This is because the total amount of active or reactive power should be 1 or 100% as below: 

1321  ppp        (2.23)     

1321  qqq        (2.24)     

 

  



24 

 

 

CHAPTER 3 - PARAMETER IDENTIFICATION APPROACH 

USING MANUAL CALCULATIONS AND MATRIX 

MANIPULATION METHODS 

3.1 Mathematical Manipulation and Microsoft Excel Approaches 

In this problem, we focused on building a small power system load with real and reactive 

loads in parallel.  Any impedance or even combinations of impedance and admittance could be 

converted to the format below.  The small power system load is displayed below in Figure 3.1. 

 

Figure 3.1 Simple Power System Load Used for Study 

The parameters were calculated based on this simple schematic diagram to establish and 

verify the simple relations between the power system loads values.  These simple concepts and 

insights would be carried over and be used to construct models of loads in more complicated 

power systems later on. 

As seen in Figure 3.1, the admittance or the conductance, G, and susceptance, B, were 

used in parallel instead of impedance of resistance and reactance in series.  This modification 

was needed to better understand the load voltage and the corresponding load powers. In fact, in 

order to convert the Impedance (Z) to an admittance (Y) form, we would do the following:   

  jBGjXRZY   /11       (3.1)    

To better understand the conductance (G) and the susceptance (B), we convert the resistance and 

reactance as shown below. 
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222 /)/( ZRXRRG                     (3.2)    

222 /)/( ZXXRXB         (3.3)    

jBG
XR

X
j

XR

R

XR

jXR
jXRY 











222222

)/(1   (3.4) 

 

Notice that to simplify the whole mathematical manipulation, we assume V to be the reference 

voltage with a zero angle.   

3.1.1 Constant Impedance or Admittance 

Following the Figure 3.1, for the constant impedance case, we could find the relation between 

powers and square of voltages as shown below. 
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        (3.5)    

Therefore, we conclude that: 

P GV
2

         (3.6)    

Q BV
2

         (3.7) 
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Looking back at Equations (2.2) and (2.3), we see that if the load has constant impedance, 

p2=p3=0 and p1=1.  As we substitute these values in, the simplified equations are as below.  Note 

they have similar forms as equations (3.6) and (3.7) above. 

2
0vPPZIP           (3.8)                           

2
0vQQZIP           (3.9)            

3.1.2 Constant Current 

Similarly, for the constant current problem, we look for the relationship between powers and real 

and reactive currents.  First, we define conductance current and susceptance current in Equations 

(3.10) and (3.11) respectively as below. 

VGI G           (3.10)    

jVBI B           (3.11) 

After defining these equations, we solve the complex power as below. 

 
 

 BG

BG

BG

IIVjQP

IIVS

jVBVGVS

jVBVGVIIVVIS





 *** )()(

     (3.12) 

P and Q can be written separately as in equations (3.13) and (3.24). 

P
GVI           (3.13)    

Q
B

B jVI
j

VI



        (3.14)    

Looking back at equations (2.2) and (2.3), we see that if the load has constant current, p1=p3=0 

and p2=1.  As we substitute these values into the ZIP load equation, the equations are simplified 

as below with a similar structure as the equations above.  However, we note that only the 

magnitude for the reactive power Q is used. 

vPPZIP 0           (3.15)                           

vQQZIP 0          (3.16)             
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3.1.3 Constant Power 

For constant power case, P and Q can be perceived fairly readily.  Because P and Q need to be 

constant, they will be equivalent to the pre-disturbed values of 0P  and 0Q .   These values for P 

and Q are not changed throughout the entire operation as shown in (3.17) and (3.18). 

 

0PP            (3.17)    

0QQ           (3.18)   

      

From Equations (2.2) and (2.3), if we have constant power, then p1=p2=0 and p3=1.  As we 

submit these values in, the equations are simplified as below in (3.19) and (3.20) which are 

equivalent to the equations above.   

0PPZIP           (3.19)    

0QQZIP           (3.20)    

3.1.4 Microsoft Excel Approach 

Microsoft Excel was used as an extended approach to verify the credibility of ZIP load 

equations.  The main goal is to prove that ZIP load Equations (2.2) and (2.3) would still hold 

when a stream of voltage data was fed into the simple power system in Figure 3.1. 

Several key points need to be taken into consideration as outlined below. 

 The constant impedance, constant current, and constant power equations are used for 

calculating important values on the load such as the equations in (3.6), (3.7), (3.13), 

(3.14), (3.17), and (3.18).  

 A set of changing voltages are fed into the simple power system in Figure 3.1, and 

their respective active, reactive powers were generated from these equations. 

 In order to prove the credibility of ZIP load model, the P0 and Q0 values should be 

constant during the calculations as this is also the assumption in ZIP load equations. 

Now, to first construct the model, we define the admittance Y from the simple power 

system to be Y=2.68+j28 per unit.  This can also be expressed as: 

B=2.68 per unit 
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G=28 per unit 

The sections below calculate the P0 and Q0 and use the changing voltage from 0.95 to 1.08 per 

unit as the independent variable in the system.   

3.1.4.1 Constant Impedance 

Let us work with the constant impedance case first.  The table for constant impedance or 

admittance below shows the injected voltages to be from 0.95 to 1.08 per unit.  The B and G 

values would stay constant.  The calculations for obtaining P, Q, P0, and Q0 are also shown in the 

first row of the Table 3.1 below. 

Table 3.1 Constant impedance load calculations 

Q=V2*B  P=V2*G     P0=P/(V
2) Q0=Q/(V

2)         

Q  P  V  P0 Q0 V
2

Q/Q0  P/P0

25.27  2.4187  0.95  2.68 28 0.9025 0.9025  0.9025

25.8048  2.46989  0.96  2.68 28 0.9216 0.9216  0.9216

26.3452  2.52161  0.97  2.68 28 0.9409 0.9409  0.9409

26.8912  2.57387  0.98  2.68 28 0.9604 0.9604  0.9604

27.4428  2.62667  0.99  2.68 28 0.9801 0.9801  0.9801

28  2.68  1  2.68 28 1 1  1

28.5628  2.73387  1.01  2.68 28 1.0201 1.0201  1.0201

29.1312  2.78827  1.02  2.68 28 1.0404 1.0404  1.0404

29.7052  2.84321  1.03  2.68 28 1.0609 1.0609  1.0609

30.2848  2.89869  1.04  2.68 28 1.0816 1.0816  1.0816

30.87  2.9547  1.05  2.68 28 1.1025 1.1025  1.1025

31.4608  3.01125  1.06  2.68 28 1.1236 1.1236  1.1236

32.0572  3.06833  1.07  2.68 28 1.1449 1.1449  1.1449

32.6592  3.12595  1.08  2.68 28 1.1664 1.1664  1.1664

 

We notice that P0, and Q0 are constant throughout the calculation.  Therefore, these 

calculations portray consistent characteristics with the ZIP load equations (P0 and Q0 

unchanged).  Also, the parameters p2=p3=0, and p1=1, so the ZIP load equation will generate the 

same results.  Notice that, as described from previous section, the power factor will also affect 

the stability of the system.  To simplify the work, we avoid the power factor difference between 

the active and reactive powers.  Therefore, we assume that the parameters for q1 = p1, q2 = p2, 
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and q3 = p3 when we talk about constant impedance, constant current, constant power, or mixed 

load.  This entire thesis generally follows this rule. 

 

3.1.4.2 Constant Current 

Similarly, for constant current, we calculate the constant currents as: 

 

IG = V*G = 1*2.68 = 2.68 per unit  

IB = -V*B = -1*28 = -28 per unit (where only the magnitude of the current were used) 

 

By following the calculation on the first row of the Table 3.2 below, we would have the values 

shown. 

Table 3.2 Constant current load calculations 

Q = | V*IB |  P = V*IG     P0=P/V Q0=Q/V        

Q  P  V  P0 Q0 V
2

Q/Q0  P/P0 

26.6  2.546  0.95  2.68 28 0.9025 0.95  0.95 

26.88  2.5728  0.96  2.68 28 0.9216 0.96  0.96 

27.16  2.5996  0.97  2.68 28 0.9409 0.97  0.97 

27.44  2.6264  0.98  2.68 28 0.9604 0.98  0.98 

27.72  2.6532  0.99  2.68 28 0.9801 0.99  0.99 

28  2.68  1  2.68 28 1 1  1 

28.28  2.7068  1.01  2.68 28 1.0201 1.01  1.01 

28.56  2.7336  1.02  2.68 28 1.0404 1.02  1.02 

28.84  2.7604  1.03  2.68 28 1.0609 1.03  1.03 

29.12  2.7872  1.04  2.68 28 1.0816 1.04  1.04 

29.4  2.814  1.05  2.68 28 1.1025 1.05  1.05 

29.68  2.8408  1.06  2.68 28 1.1236 1.06  1.06 

29.96  2.8676  1.07  2.68 28 1.1449 1.07  1.07 

30.24  2.8944  1.08  2.68 28 1.1664 1.08  1.08 

 

As we can see, the P0, and Q0 are constant throughout the calculation.  These calculations 

are consistent with the ZIP load equations as the values P0 and Q0 do not change.  Since p1=p3=0, 

and p2=1, the ZIP load equation will yield the same conclusion. 
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3.1.4.3 Constant Power 

 

For the constant power case, the P and Q need to be constant.  Since P0 and Q0 ideally 

should be the same number.  These two values were consistent in the last two cases before, we 

will start using the same number P0 = 2.68 per unit and Q0 = 28 per unit initially to be consistent 

with the last two sections.   From the Equations (3.17) and (3.18), we would get initial P and Q to 

be: 

0PP  =2.68 per unit           

0QQ  =28 per unit          

Therefore the first P and Q equal to 2.68 per unit and 28 per unit respectively initially.    

Also, by reversing the Equations (3.21) and (3.22) above, we get: 

 

PP 0          (3.21)    

QQ 0          (3.22)   

  

As the P and Q stay the same, therefore from Equations (3.21) and (3.22) above, all the rest of P0 

and Q0 will also be equal to 2.68 per unit and 28 per unit respectively.  Therefore P0 and Q0 will 

still be consistent throughout the constant power calculations.  Table 3.3 summarizes the results 

below. 
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Table 3.3 Constant power load calculations 

Q (constant)  P (constant)     P0=P  Q0=Q          

Q  P  V  P0  Q0  V
2
  Q/Q0  P/P0 

28  2.68  0.95  2.68  28  0.9025  1  1 

28  2.68  0.96  2.68  28  0.9216  1  1 

28  2.68  0.97  2.68  28  0.9409  1  1 

28  2.68  0.98  2.68  28  0.9604  1  1 

28  2.68  0.99  2.68  28  0.9801  1  1 

28  2.68  1  2.68  28  1  1  1 

28  2.68  1.01  2.68  28  1.0201  1  1 

28  2.68  1.02  2.68  28  1.0404  1  1 

28  2.68  1.03  2.68  28  1.0609  1  1 

28  2.68  1.04  2.68  28  1.0816  1  1 

28  2.68  1.05  2.68  28  1.1025  1  1 

28  2.68  1.06  2.68  28  1.1236  1  1 

28  2.68  1.07  2.68  28  1.1449  1  1 

28  2.68  1.08  2.68  28  1.1664  1  1 

 

As the P0 and Q0 stay constant, they are consistent with the ZIP load equations as the 

values P0 and Q0 do not change.  Since p1=p2=0, and p3=1, the ZIP load equation will perform the 

same calculations as shown in the table above. 

3.1.4.4 Equally Distributed Load 

Moving forward, we look at a new load that has 1/3 constant impedance, 1/3 constant 

current, and 1/3 constant power components.  The voltage here still goes from 0.95 to 1.08 per 

unit.  The P and Q values from previous 3 sections were used in the calculations here.  The 

calculations for P and Q are shown below. 

 

PEDL=0.3333*(PCI+PCC+PCP)       (3.23)   

QEDL=0.3333*(QCI+QCC+QCP)      (3.24)   

  

The representations can be summarized below: 

 EDL refers to the value for equally distributed load 

 CI refers to constant impedance 
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 CC refers to constant current 

 Finally CP refers to constant power 

For instance, for voltage at 0.95 per unit, the PEDL and QEDL were obtained as below. 

PEDL=0.3333*(PCI+PCC+PCP) = 0.3333 * (2.4187+2.546+2.68) = 2.54798 

QEDL=0.3333*(QPCI+QCC+QCP) = 0.3333 * (25.27+26.6+28) = 26.6200671 

 

Since we do not have the manual calculations for a mixed load, we use the ZIP load equations to 

get the values for P0 and Q0.  As this is the case where the load components were evenly 

distributed, parameters p1=p2=p3=q1=q2=q3=0.3333.  Hence the zip load equations are as below. 

]3333.03333.03333.0[ 2
0  vvppZIP      

]3333.03333.03333.0[ 2
0  vvQQZIP                           

Solve for P0 and Q0, we get: 

)1(3333.03333.03333.03333.0 220 





vv

p

vv

p
p ZIPZIP      

)1(3333.03333.03333.03333.0 220 





vv

Q

vv

Q
Q ZIPZIP    

Again, we solve the first case when V=0.95 per unit. 

68.2
]195.0)95.0[(3333.0

54798.2
20 


p  per unit    

28
]195.0)95.0[(3333.0

620671.26
20 


Q  per unit 

These values are the values for constant power, constant impedance, and constant current loads.  

The other instances of PEDL and QEDL, P0 and Q0 can be obtained as shown in the Table 3.4 

below.  We observe that the P0 and Q0 stay the same at 2.68 and 28 per units respectively which 

are consistent like the other sections. 
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Table 3.4 Equally distributed load calculations 

Q  P  V  V
2
  P0  Q0  P/P0  Q/Q0 

26.620671  2.54798  0.95  0.9025  2.68  28  0.95073825  0.95073825

26.8922438  2.57397  0.96  0.9216  2.68  28  0.96043728  0.96043728

27.1656832  2.60014  0.97  0.9409  2.68  28  0.97020297  0.97020297

27.440989  2.62649  0.98  0.9604  2.68  28  0.98003532  0.98003532

27.7181612  2.65302  0.99  0.9801  2.68  28  0.98993433  0.98993433

27.9972  2.67973  1  1  2.68  28  0.9999  0.9999 

28.2781052  2.70662  1.01  1.0201  2.68  28  1.00993233  1.00993233

28.560877  2.73368  1.02  1.0404  2.68  28  1.02003132  1.02003132

28.8455152  2.76093  1.03  1.0609  2.68  28  1.03019697  1.03019697

29.1320198  2.78835  1.04  1.0816  2.68  28  1.04042928  1.04042928

29.420391  2.81595  1.05  1.1025  2.68  28  1.05072825  1.05072825

29.7106286  2.84373  1.06  1.1236  2.68  28  1.06109388  1.06109388

30.0027328  2.87169  1.07  1.1449  2.68  28  1.07152617  1.07152617

30.2967034  2.89983  1.08  1.1664  2.68  28  1.08202512  1.08202512

3.1.4.5 Mixed Load 

Similarly to the last section, we would have a mixed load that contains 20% constant 

impedance, 30% constant current, and 50% constant power.  The P and Q values can be obtained 

as below. 

PMIXL=0.2*PCI+0.3*PCC+0.5*PCP        

QMIXL=0.2*QCI+0.3*QCC+0.5*QCP       

In here, MIXL refers to mixed load. 

Similar to the last section, we will do a demonstration by calculating the first case where the 

voltage is at 0.95 per unit. 

PMIXL=0.2*2.4187+0.3*2.546+0.5*2.68 = 2.58754     

QMIXL=0.2*25.27+0.3*26.6+0.5*28 = 27.034 

Similar to the last example, the ZIP load equations (2.2) and (2.3) are used to get P0 and Q0.  In 

here, p1=q1=0.2, p2=q2=0.3, and p3=q3=0.5.  After this modification, the ZIP load equations 

become: 

]5.03.02.0[ 2
0  vvPPZIP      

]5.03.02.0[ 2
0  vvQQZIP   
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Solve for P0 and Q0, we get: 

]5.03.02.0[ 20 


vv

P
P ZIP      

]5.03.02.0[ 20 


vv

Q
Q ZIP    

Again, we solve the first case when V=0.95 per unit. 





]5.0)95.0(*3.0)95.0(*2.0[

58754.2
20P  2.68 per unit    





]5.0)95.0(*3.0)95.0(*2.0[

034.27
20Q 28 per unit 

Like the last section, P0 and Q0 stay the same at 2.68 and 28 per units respectively.  The rest of P0 

and Q0 are also constant in Table 3.5 below.  Therefore, we conclude that the ZIP load equations 

as we have seen, work fairly well with the small power system load in Figure 3.1. 

Table 3.5 Mixed load calculations 

Q  P  V  V
2
  P0  Q0  P/P0  Q/Q0 

27.034  2.58754  0.95  0.9025  2.68  28  0.9655  0.9655 

27.22496  2.60582  0.96  0.9216  2.68  28  0.97232  0.97232 

27.41704  2.6242  0.97  0.9409  2.68  28  0.97918  0.97918 

27.61024  2.64269  0.98  0.9604  2.68  28  0.98608  0.98608 

27.80456  2.66129  0.99  0.9801  2.68  28  0.99302  0.99302 

28  2.68  1  1  2.68  28  1  1 

28.19656  2.69881  1.01  1.0201  2.68  28  1.00702  1.00702 

28.39424  2.71773  1.02  1.0404  2.68  28  1.01408  1.01408 

28.59304  2.73676  1.03  1.0609  2.68  28  1.02118  1.02118 

28.79296  2.7559  1.04  1.0816  2.68  28  1.02832  1.02832 

28.994  2.77514  1.05  1.1025  2.68  28  1.0355  1.0355 

29.19616  2.79449  1.06  1.1236  2.68  28  1.04272  1.04272 

29.39944  2.81395  1.07  1.1449  2.68  28  1.04998  1.04998 

29.60384  2.83351  1.08  1.1664  2.68  28  1.05728  1.05728 
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3.2 Curve Fitting using Inverse Matrix and Pseudo Inverse Approaches 

After the study of the simple power system load as in Figure 3.1, we move on to a bigger 

power system.  As discussed in previous sections, a 16-generator and 52-bus power system in 

Figure 2.3 was used for the study.   

In a real power system, after a disturbance, the system tries to recover for itself.  If parts 

of the system fail to recover to its pre-disturbed conditions, then a part of the system will 

collapse and might even trigger the surrounding power system to collapse.  Hence, a blackout 

takes place eventually in cases like this.  The 16-genetator system was chosen so a more realistic 

system can be studied.  In this section, load Bus 3 was where the load under study was located.   

As the 16-generator system is coded in Matlab in power system toolbox, various changes 

could be adjusted in the program to place the disturbance (fault) at the desired load bus.  In this 

case, the system trips at the 3-phase fault between the lines connecting between Bus 3 and Bus 

18.  A 5-second interval was observed during the simulation after the fault.  Consequently, the 

fault occurs at 0.1 second and the clearing times are 0.35 second and 0.4 second for near end 

fault and far end fault, respectively.  The load bus voltage magnitude varies during this 

disturbance and fights back to the pre-disturbance value.  Figure 3.2 below displays the voltage 

magnitude during the fault.  
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Figure 3.2 Voltage magnitude of Bus 3 during the fault 

The real and reactive powers at load Bus 3 were calculated from the power flows that surround 

this bus.  For instance, while we zoom in on the 16-generator diagram in Figure 2.3, Bus 3 can 

be show as below in Figure 3.3.   

 

Figure 3.3 Load Bus 3 

The load power and reactive power were calculated from the power flows surround it. 

For instance, according to the diagram, the load active and reactive powers at Bus 3 are:   

Pload3= - (P3-2 + P3-4 + P3-18)         (3.25) 

Qload3= - (Q3-2  + Q3-4 + Q3-18)       (3.26) 
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As we run the simulation, the total running time is 5 seconds and there are 339 time steps during 

this interval.  Hence, we have 339 different voltages, active, and reactive powers.  From matrix 

Equations (2.18) and (2.19), we can construct over-determined matrix equations.  Recall these 

equations below. 
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The matrix in here can also be represented by the variable, A, that contains columns of square of 

voltage, voltage, and 1.  x and y represent the three p parameters and three q parameters that 

need to be determined.  Lastly, Pnorm and Qnorm are the two vectors on the right hand side of 

equations. 

Ax=Pnorm 

Ay=Qnorm 

To construct an inverse matrix of A, we need to have a square matrix A.  Therefore limited 

information needs to be taken from the 339 time steps.  If we have the matrix A as a square 

matrix, we can rearrange the equations and get x and y as: 

x=A-1 Pnorm 

y=A-1 Qnorm 

 

As mentioned above n=339 in this case, and we have several options to solve this problem.  

Because it becomes an over-determined system that has more equations than unknown variables, 

we can select three different time steps with different voltages and their respective Pnorm and 

Qnorm to solve the problem.  From the 339 sets of values generated by the simulation, three time 
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steps at time 0.5, 1, and 1.5 or at steps 89, 139, and 164 were selected.  Solve the x and y using 

inverse matrix in Matlab, we get p1 = -121.3506, p2 = 120.0284, p3 = 4.2373, q1 = 68.8928, q2 = -

56.1995, and q3 = -4.0010.   

Although the above methods will solve the equations, only three time steps were chosen.  

Therefore, we can still solve the x and y by a proposed pseudo inverse method where all 339 

cases will be used.  The over-determined system will be solved to yield x and y that would match 

the matrix equations as closely as possible.  After solving the problem using pseudo inverse, the 

parameter values are p1 = -110.2734, p2 = 111.2523, p3= 0.0273, q1= 42.0395, q2 = -42.7255, and 

q3 = 0.0013.  Using these parameters with the 339 voltages input, the active and reactive powers 

look like the ones in Figure 3.4 and Figure 3.5 respectively.  Notice that the red lines are the 

original power generated by the system, and the blue lines are the simulated lines using these 

newly determined parameters. 

 
Time Step 

Figure 3.4 Actual and simulated active power of load bus 3RR 
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Time Step 

Figure 3.5 Actual and simulated reactive power of load bus 3 

Although the curves for the most part were matched fairly well, the parameters do not 

seem to provide feasible or meaningful solutions.  The problem lies with these p and q parameter 

values as they are large numbers instead of decimal fractions that are supposed to represent the 

percentage of constant load.  Sometimes, these parameters are even negative.  Hence, a better 

strategy needs to be used to predict these parameters.  Other similar techniques such as linear 

programming were used and similar values were obtained for these parameters.  The aggregated 

load buses and power systems do not seem to work as well as the simple power system.  

In order to see how well the simulated load Bus 3 works with the ZIP load equations, we 

can try to solve for P0 and Q0 with constant impedance, constant current, and constant power.  

From Figure 3.6 below, we can see that as power systems get large and more complicated, the 

0 50 100 150 200 250 300 350
-35

-30

-25

-20

-15

-10

-5

0

5

Reactive 

Power 



40 

 

 

values for P0 and Q0 in each case no longer stay constant as we follow the power system closely.    

 

Figure 3.6 Values for P0 and Q0 for load bus 3 

As demonstrated in this section, the parameters of p’s and q’s obtained using matrix 

manipulation for the ZIP load model is not feasible for realistic load models.  Due to the 

complexity of the power systems, other parameter identification methods will be discussed in the 

next section.  
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CHAPTER 4 - PARAMETER ESTIMATION USING 

INTELLIGENT TECHNIQUES FOR STATIC LOAD MODELS 

4.1 Introduction 

As briefly touched on in the last section, the conventional matrix calculations do not 

work too well for power system load parameter identification.  Other techniques need to be 

sought to solve the problems.  The main idea here is to find the parameters p1, p2, p3, q1, q2, q3 

that will form the components of the load model.  The general search and use of load parameters 

are shown below.   

 

 

 

Figure 4.1 Parameter estimation procedures 

As shown above, the parameters can be estimated based on difference between the 

measured active/reactive power and the simulated active/reactive power.  Another approach is to 

train the system with inputs as the voltage, active/reactive power, and the outputs as the 

parameters p1, p2, p3, q1, q2, and q3.   We use the already given system’s information including the 

parameters, and train a model that will learn the system to be used with other unknown systems 

for finding the load parameters.  Figure 4.2 below demonstrates a simple model that will train the 

system to find the parameters for power systems with unknown parameters.   
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Figure 4.2 Simple parameter identification training 

In order for the training model to work well, we need to have a set of rules for the 

training and testing.  The trained model should be able to predict the parameters for itself if the 

inputs are given.  Training and validation need to be done on the same system making the 

training model legitimate and useful.  For instance, a set of data is used to train the model, and 

the rest of the set of data is used to validate and to observe the mean square error between real 

and simulated outputs.  Consequently, the trained model should be applicable to the other load 

buses in other parts of the power systems.  The trained model is useful if it can be used to predict 

the unknown parameters for the other load buses based on their values of v, P, and Q.  Since 

compared to the other inputs, the frequency had less effect on the system; we neglect this 

component for simplifying our study in this thesis.  

 

4.2 Initial Approaches 

4.2.1 Simple Power System 

First, we would choose the simple power system that was used in the excel spreadsheet 

before to be tested.  This simple system would be fairly feasible as it works well with the ZIP 

load model.  There are only 5 cases of combinations of p1, p2, p3, q1, q2, and  q3, and as the p’s and 

q’s are assumed to be the same, we will ignore the q’s for now.  The five cases of variations in 
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the parameters for percentage of constant real impedance p1, percentage of constant real current 

p2, and percentage of constant real active power p3 are displayed in the table below.  

 

Table 4.1 Parameters for simple power system 

Status  p1   p2  p3 

Constant Impedance  1  0  0 

Constant Current  0  1  0 

Constant Power  0  0  1 

Evenly Distributed Load  0.333  0.333  0.333 

Mixed Load  0.2  0.3  0.5 

 

After few trials and errors, we observed that instead of training all the inputs and outputs 

at once, the model will be more accurate if we split the training into three different sets for each 

p1, p2, and p3.  We can go to Appendix A.1 to verify the effectiveness of individual training 

compared to the original combined training.  An illustration of the split training for each p 

parameter is shown in Figure 4.3 below. 
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Figure 4.3 Split training method 

 

Training this simple model yields the mean square error to be below 4%.  Appendix A.2 

shows the difference between the actual and simulated (tested) six parameters in more detail.  

Notice also that although p1, p3, q1, and q3 were trained well, p2 and q2 were a bit off.  p2 and q2 

do not seem to work as well as the other outputs in training.  Another method uses v, ∆v, ∆P or 

∆Q as the inputs, and the outputs are one of the six p or q coefficient parameters like the previous 

part.  The result for this method gives similar results to those of the last example; the simulated 

p1, p3, q1, and q3 worked well, but p2 and q2 were a bit off.   

4.2.2 16-generator power system 

Now, we move on to test a more complicated 16-generator power system.  The written 

code of a backpropagation neural network and an adaptive neuro-fuzzy inference system 
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(ANFIS) were used to initially train and validate the inputs and outputs.  Due to the nature of 

ANFIS and while declaring sufficient member functions, the training will be fairly slow.  

Therefore, the backpropogation neural network was initially used to train and test the system to 

see which method worked the best.  The training methodology will be discussed in the next 

section.  The 3-phase fault locations and their relative load buses are shown in Table 4.2 below.  

The faults between 41-42 and 43-44 that are highlighted are more sensitive.  Therefore, we focus 

on the load buses surrounding these two fault locations.  To determine the best data sets for 

training, we find out whether the selected load bus or buses are close to the fault location.  A 

combination of load data from various bus or buses at the same or different fault or non fault 

location was considered. 

 

Table 4.2 The fault locations and their load buses 

3‐phase fault 
locations (bus‐bus) 

Fault 
between 
buses 41-42 

Location from 
the fault 

Fault 
between 
buses43-44 

Location from 
the fault 

 bus  41 at the fault 43 at the fault 

   42 at the fault 44 at the fault 

  37 
far from the 
fault 36 

far from the 
fault 

  52 
Close to the 
fault 51 

Close to the 
fault 

 

As a result, we can have various training strategies with their respective chosen bus positions 

shown in table below.  This way, we can identify the best selections and combinations of buses 

to choose from for training. 
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Table 4.3 The training strategies with their respective training locations 

Training strategy   

(Trained on:) Training locations 

A1 (37) from fault 41-42 

A2 (41) at the fault 41-42 

A3 (42) at the fault 41-42 

A4 (52) close to fault 41-42 

A5 (36) far from fault 43-44 

A6 (44) at the fault 43-44 

A7 (43) at the fault 43-44 

A8 (51) close to fault 43-44 

B1 (41, 42) both at the fault 41-42 

B2 (44, 43) both close to fault 41-42 

B3 (37, 41) one far from, one at the fault 41-42 

B4 (36, 44) one far from, one at the fault 43-44 

B5 (37, 42) one far from, one at the fault 41-42 

B6 (36, 43) one far from, one at the fault 43-44 

B7 (41, 52) one close to, one at the fault 41-42 

B8 (44, 51) one close to, one at the fault 43-44 

B9 (37, 52) one close to, one far from fault 41-42 

B10 (36, 51) one close to, one far from fault 43-44 

 

Several attempts and approaches were used to train for the parameter identifications.  One 

approach (row) in Table 4.3 was used for each test.  A list of load characteristic training cases is 

listed below to be used for outputs.  These values represent the percentage of type of load used in 

training. 
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Table 4.4  Load characteristics cases for training 

p1 (or q1)  p2 (or q2)  p3 (or q3) 

0  0  1 

0  1  0 

1  0  0 

0.8  0  0.2 

0.6  0.2  0.2 

0.4  0.4  0.2 

0.2  0.6  0.2 

0  0.8  0.2 

0.6  0  0.4 

0.4  0.2  0.4 

0.2  0.4  0.4 

0  0.6  0.4 

0.4  0  0.6 

0.2  0.2  0.6 

0  0.4  0.7 

0.2  0  0.8 

0  0.2  0.8 

0.8  0.2  0 

0.6  0.4  0 

0.4  0.6  0 

0.2  0.8  0 

0.5  0.3  0.2 

0.33  0.33  0.33 

 Once these cases are trained against a reference load at Bus 41, we tested or verified 

them through the load cases in Table 4.5.  The trained model needs to be used to test against all 

other load buses.   

Table 4.5 Load characteristic cases for testing 

p1 (or q1)  p2 (or q2)  p3 (or q3) 

0.5  0.2  0.3 

0.3  0.2  0.5 

0.2  0.3  0.5 

0.8  0.1  0.1 

0.3  0.4  0.3 

0.2  0.1  0.7 

 For more details, please refer to Appendix A.3.  From the appendix, we see that although 

the training works well, the testing against all 29 cases works only well with the p1 and p3 output 
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parameters.  p2 could not be verified very well.  This might be explained considering that the 

constant current component is not very sensitive compared to the other components.   

 The weakness with the previous approach is that 339 time steps were trained together 

versus one load component case, and then another 339 time steps were trained with the next load 

component case and so on.   Another weakness is that all the buses’ load components changed 

the same way.  For instance, when we run the simulations for fault 41-42, load components for 

load buses 41, 42, 37, 52 would all change exactly the same way as described on Table 4.3.  

Moreover, there is also a lack of finding the relations between these each time steps.  Another 

method was proposed to train the network only 29 times (29 cases), but with each input taking 

voltages and powers at a few time steps each instance.  The figure below demonstrates this 

training case.  To simplify the demonstration, only training with the output parameter p1 is 

shown. 

 

 

Figure 4.4 Parallel training with bus 41 

The training accuracy is similar to the training method in Figure 4.3, however.  

Parameters p2 and q2 still did not get verified well after training.   
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In studying the previous approaches of finding the parameters, it was noted that an 

important component in the training that was missing was the sensitivity of the active and 

reactive power values to changes in voltage.  The question is how the change of voltages and 

reactive or active powers through a fixed time would relate to the load components.  To use the 

mathematical expressions to find the relations between QPv  ,, , we do the following 

derivation for ∆v and ∆P as ∆v and ∆Q will have the similar derivation.   

Recall from the simplified ZIP load model, we replace the parameters p1, p2, and p3 with 

k1, k2, and k3, and i represents the initial time for the value.  The derivation is as follows. 
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   (4.1) 

Hence, iP  is a function of iv and  2iv .  Depending on the value of vi, and if vi is a 

known or a constant value, we would also have a similar ZIP load equation in terms of iv . 

The training method related to QPv  ,, can be shown in Figure 4.5 below.  For 

simplicity, only training with output p1 is shown.  The time steps taken from the simulations are 

also shown in Table 4.6 below. 
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Table 4.6 Time steps for the training system 

   ∆ v1 or ∆ p1  ∆ v2 or ∆ p2  ∆ v3 or ∆ p3  ∆ v4 or ∆ p4  ∆ v5 or ∆ p5 

initial time (seconds)  2.5  3  3.5  4  4.5 

time steps during this ∆ range  214‐215  239‐240  264‐265  289‐290  314‐315 

 

 

Figure 4.5 Training method with inputs QPv  ,,  

The results did not improve, however this system makes a little more sense for the power 

system training.  After a series of trial and errors, two problems stand out most. 

 After training, parameters for p2 and q2 still do not get validated well with the 

generated load model. 

 Insufficient load characteristics cases for the training.  A more diverse and random set 

of load components would better represent a real power system. 

We need to develop a much larger set of inputs and outputs with more varied and irregular 

load components to resemble the real power system data.  Also, steps need to be taken for the 
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load model to do a better job predicting the p2 and q2 parameters.  The final approach in the next 

section talks about the procedures to train, validate, and test the 16-generator power system. 

Normalization is also important for the process of passing data from the power system to the 

intelligent system.  The intelligent systems can better understand and find the pattern for the 

system if it is expressed in ratio instead of the actual values.  As the output parameters are in the 

range of 0 to 1, they do not need to be normalized.  The input parameters of v, P, Q, or the delta 

values certainly need to be normalized.  Assuming that we already know the maximum value, 

max, minimum value, min, and the actual value; the normalized value can be expressed as: 

  valuenormalized =
min-max

min- valueactual
     (4.2) 

Note that for some system, the maximum and minimum values are noise that is either too large 

or too small.  In case like this, we need to filter out these extreme values.   

In order to solve the problem of generating better models for testing p2 or q2, we may go 

back to the definition of these parameters.  As we know from Equations (2.20) and (2.21), we 

have: 

1321  ppp             

1321  qqq           

Therefore, if we get good training results for p1, p3, or q1, q3, we could use the information to 

predict the p2 or q2 values.  During the training, after normal models were developed for outputs 

p1 (or q1) and p3 (or q3), the value for p1 (or q1), p3 (or q3), and as well as 1-p1-p3 (or 1-q1-q3) 

could be feed in as inputs to develop the load model for output p2 (or q2).  Figure 4.6 displays the 

basic strategy for developing a better artificial neural network load model for p2 (or q2).     
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Figure 4.6 Strategy to develop a better load model for output p2 (or q2) 

Once we established this special training method for ANN2, we could predict the values 

for p2 (or q2) fairly well.  To look at this case in further detail, please refer to Appendix A.7.  

After these trials and errors, we are ready to set a standard to train and test the load buses.  This 

standard is presented in the next section. 

 

4.3 Training Methods 

4.3.1 Adaptive Neural Fuzzy Logic Method 

Fuzzy logic has two theories.  One theory states that the fuzzy logic is an extension of 

logic with multi-values.  The other theory can be used to describe the non-sharp boundaries 

where the memberships are matters of degrees.  Fuzzy logic is used commonly in solving various 

engineering problems as it is flexible and not too difficult to learn.  The input-output data set can 

be matched with the created fuzzy system.  This process can be trained by an ANFIS (adaptive-

neural network-based fuzzy inference system).  The Sugeno fuzzy model is used for a three-input 

and single output system similar to the model presented in [6].  The fuzzy inference system is the 

method of mapping from given inputs to an output using fuzzy logic.  Several components of the 

system include “membership functions”, “logic operations”, and “if then rules.” 

The Neuro-Adaptive learning methods are very similar to neural networks.  The learning 

technique provides a method for the fuzzy modeling procedure to learn information about a data 
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set.  ANFIS is a sample of this learning technique where the membership function parameters are 

adjusted by a backpropagation algorithm and in combination with the least squares method [43].   

In this thesis, the Sugeno method was used; the algorithm was coded with the Matlab 

code “genfis1” to construct the membership functions, and the ANFIS was used to train the 

model to recognize the load patterns.  The trained fuzzy system has its own membership 

functions and rules and generates the model output after feeding in the new inputs.  Unlike the 

other intelligent techniques (which include randomness in the initial conditions), ANFIS models 

do not have to run multiple times in order to choose the best result as all the runs will yield the 

same MSE value.  However, in this research, ANFIS method is strongly discouraged to use.  The 

ability for ANFIS to predict parameters of unknown buses has been shown to be fairly poor 

relative to the other methods.  More membership functions need to be used to yield better results.  

However, the simulation process to finish the training already takes a lot of time.  By adding 

more membership functions, the training will require even more time to finish. 

4.3.2 Levenberg- Marquardt algorithm Method 

In general, this method does a great job of fitting any simple practical function.  

Levenberg-Marquardt algorithm is used in this work [44].  In [45], the author demonstrated for 

Levenberg-Marquardt method, we first need to look at the Gauss-Newton method to find the 

equation needed.  However, if the desired solving system J(x) is rank-deficient, the Gauss-

Newton method would not be able to converge or converge to a stationary point.  Therefore, 

true-region technique was considered.  The least squares problem were included to solve by 

rearranging the equations for J(x) [45, 46]. 

One disadvantage of using the neural networks Levenberg Marquardt algotirhm method 

is that sometimes the process does not converge very well.  A few runs need to be executed to 

get a good result.  In this thesis, ten runs were done with different starting points, and the model 

that contains the smallest MSE or Mean Square Error was used.  In another comparison between 

the methods, the learning rates, parameters, number of hidden neurons, and number of epochs for 

these methods were all set to be identical.  Each method will have distinctive 10 trials for 

training, and MSE for the testing these simulated data against the real data were recorded in each 

trial. All these results were used to compare between these methods. 
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In our research, Levenberg-Marquardt algorithm approximates the data more accurately 

compared to the ANFIS method.  However, the training will not always converge to the small 

MSE value desired for the Levenberg-Marquardt algorithm.  Using the Levenberg-Marquardt 

algorithm to train with a large set of data also requires large amount of computation time.  Even 

though, it has an advantage over the Adaptive Neural Fuzzy Logic method, this method, after a 

load model is formed from training, did not do a very good job of validating simulated or 

predicted data against actual data in other unknown buses.   

4.3.3 Widow-Hoff Backpropagation Method 

In reference [44], the author used Widow-Hoff delta learning rule with multiple-layer 

networks and non-linear transfer functions are used in this Matlab backpropagation method.  A 

gradient descent algorithm where the network weights are moved along the negative of the 

gradient of the function is the standard backpropagation.  Inputs are applied to the network, the 

outputs are calculated, and the resulting error is used to adjust the weights in a back to front type 

order.  The general structure is shown below in Figure 4.12.  The backpropagation usually uses 

MSE to evaluate the real outputs and the generated outputs.  The difference is recorded and will 

be used to refine the backward calculation until the real and generated results match closely.  

Generally the rule of thumb is the more hidden neurons and the more layers, the better the 

results.  However, in a very big training set, more layers and hidden neurons will also greatly 

delay the computational training time.  Figure 4.12 below shows a diagram of a Widow-Hoff 

backpropagation method.  
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Figure 4.7 Widow-Hoff Backpropagatioin method with the inputs and outputs [44] 

The training methodology is as below: 

 Input and output data are gathered from the transient fault simulation. 

 Normalization is applied to the input and output data. 

 The initial weights are randomized at the beginning for each run. 

 Now do ten runs and in each run do 500 epochs of training the networks with the updated 

weights using the backpropagation algorithm.  The error will be recorded each time, and 

the weights will be used in the test data to produce the test error at the same time. 

 For each epoch, all data from the input data and output data are trained, the weight is 

updated through the backpropagation function with the input and output data. 

 In backpropagation, the forward method was used to obtain the net output from the 

second layer of the neural networks.  The backpropagation is used to get the deltas in the 

first and second layers. These values are used to update the weights for both the first and 

second layers. 

 The final weights were used to calculate the mean square error by comparing the actual 

output versus the calculated outputs using the forward method.   

 Finally, the plots for both the training and test errors are produced from the above 

information. 

 During the process, there were times we needed to take off the bias, and add back the bias 

and the momentum.  The learning rate and momentum factors were adjusted and 

optimized by hand after few trial and errors to achieve the smallest error for both the 

training and test data. 

 Also, to get the confusion matrices, a set of if statements were used and number of 

correct or mistaken counts were recorded in order to obtain the percentages of correction 

or mistakes in each output case. 

Note that each p1, p2, p3, q1, q2, q3, or β were trained separately with the same input 

information except p2 and q2, where more care needed to be taken.  Figure 4.8 below 

summarizes the training procedure. 
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Figure 4.8 Procedure for backprogation algorithm training 

Also, ten runs for the whole program were needed, and the best one was used for constructing 

the load model.  In another section in the thesis, all the trials were recorded and the results were 

compared with the other methods.  Similar to the previous method, although this Widow-Hoff 

method trains the data well for the training set, the weights obtained will not do an excellent job 

in predicting the parameters for the unknown buses.   

4.3.4 Default Scaled Conjugate Gradient Algorithm Method 

As shown in the Matlab manual [44] and discussed in [47], a basic backpropagation 

algorithm adjusts the weights according to the direction of the steepest descent or negative of the 

gradient.  The basic backpropagation algorithm does not produce the fastest convergence.  The 

conjugate gradient algorithm on the other hand allows a search to be performed along conjugate 

directions, and converges faster than the steepest descent directions.  Even though the results for 

conjugate gradient algorithms varies from one problem to another, this algorithms only needs a 

little more storage compared to the basic algorithms.  Hence, it works well with networks with a 

large amount of weights.  Furthermore, Scaled Conjugatge Gradient (SCG) method avoids the 

line search per learning iteration.  SCG does not include user dependent parameters as the values 

will be important for the success of the algorithm.  Compared to the line search based algorithms 
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which include these kinds of parameters, avoiding these depending parameters in SCG seems to 

be a significant advantage [48].    

To do a good job in training with this algorithm, more neurons and more hidden layers 

could be used with a cost in computation time.  In our work, SCG method worked very well for 

training, testing, and validating unknown buses based on load model that was developed through 

training.  This technique is highly recommended for parameter identification in power system 

load model. 

 

4.4 Analyze Strategies and Methods with Best Training Approach 

In this section, we trained the data from selected buses (assumed to be the known buses) 

with different training methods and strategies.  The different training methods are described in a 

later part of this section.  The training strategies described here involve constructing the model 

by selecting data from various combinations of buses from Table 4.7 on the next page for 

training.  With the specified strategy and method, the weights and models obtained from the 

training will be used to test and predict the data (load parameters p1, p2, p3, q1, q2, and q3) from the 

unselected buses (assumed to be the unknown buses) as well as the known buses.  The mean 

square errors between the simulated data and the actual data were recorded from ten trials in each 

method and strategy.  In this Section 4.4, only the results from the best trials were recorded and 

used for comparison between the effectiveness of each strategy and method.  Parameters from 

these methods, especially ANFIS method were optimized by hand.  In ANFIS method, the 

member function and epoch numbers were also adjusted in order to train the data more 

accurately and with an allowable reasonable time.  Section 4.5 later on will do a slightly different 

comparison.   

4.4.1 Test Cases and Procedures 

Recall from the previous sections that in order to train and validate the bus systems well, 

we need to have: 

 Large size of training sets with irregular and randomized combinations of load 

components. 
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 Sensitivities or amount of increase or decrease of voltages, active/reactive powers 

need to be used in training 

 Normalization needs to be used on the same type of input.  Filtering out the excess of 

noise should be used but with caution. 

 Special training methods need to be used for training outputs p2 or q2. 

From the previous lessons, we would train the system with a large training set and 

include considerations for all the bullets listed above.  After the training, we also realized that the 

early time steps that are close to the fault (and thus with larger variations in the variables) need to 

be used as these will better represent and can better reflect the load and its characteristics.  In this 

approach, six different time steps are used for the training. 

Table 4.7 Time steps for the final approach 

∆ t=0.2 seconds  Interval 1  Interval 2  Interval 3  Interval 4  Interval 5  Interval 6 

initial time (seconds)  1.02  1.22  1.42  1.62  1.82  2.02 

Final time after this ∆ range  1.22  1.42  1.62  1.82  2.02  2.04 

 

However, the six different time steps will be used to create six input cases, therefore, if there are, 

for instance, 20 test cases then we would have 20 *6=120 sets of inputs.  The structure of the 

training is shown below in Figure 4.7.  Note that in order to simplify the demonstration, only 

output p1 is shown here. 

 

Figure 4.9 Training Model for 3 inputs and one output 
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The load faults 41-42, 43-44 and their respective load buses used in this approach are shown 

below. 

Table 4.8 The faults 41-42, 43-44, and their respective load buses 

3‐phase Fault Locations 
Fault  at  buses 
41‐42 

Fault at buses 
43‐44 

 buses  41  43 

   42  44 

   37  36 

   52  51 

 

 In this section, we have a large set of data.  The transient fault simulation is constructed 

so that four load buses are used to represent various the load characteristic components of the 

power system.   Only p3 and p2 need to be expressed, as p1 can be calculated by 1-p3-p2.  One 

sample set of load components is shown below in Table 4.9. 

Table 4.9 One instance of load component for simulation at fault 41-42 

Fault at 41‐42  p3 or q3  p2 or q2 

37  0.1  0.2 

41  0.3  0.7 

42  0.1  0.3 

52  0.6  0.3 

 

In the Matlab software, a matrix named “load_con” is used to define the ZIP model for 

certain loads.  Now, we need to construct a large “load_con” matrix so that almost any constant 

load component set can be considered and used for training for the intelligent system. For 

instance, the Table 4.8 above only has shown one instance of distribution of constant load 

components.  To get a large amount of instances, the p3 or q3 can be generated by letting load bus 

increment from 0 to 1 by a step size of 0.2.  Then all these increments will only associated with 

the load Bus 41 at 0, and load Bus 41 will also increment from 0 to 1, and each increment will 

experience Bus 37 increment from 0 to 1.  Consequently, all these changes will happen when 

Bus 42 is at 0, and then there will be other values for Bus 42 at which all these described changes 

take place.  Figure 4.8 shows the illustration of different types of load components for faults at 

Buses 41 to 42.  As each load bus can have six values from 0 to 1, therefore, there can be 64 or 

1296 cases of instances for p3 alone.   
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The value for p2 can be generated by a random number generator that gives a value less 

than the value of 1-p3.  The p1 value is obtained from 1-p2-p3.   

 

 

Figure 4.10 Various load components for load buses at fault 41-42 

However, we can still generate more load cases.  We would create a new set of data from 

the pre-existing data that swaps the p3 and p2 values.  Also, remember that for each case, there 

are six time steps.  Hence, the number of instances of load components can be as large as: 

1296 x 2 x 6 = 15552 load case instances 

Since each simulation for a transient fault at buses 41-42 can record six different sets of inputs 

and outputs at six time steps, the simulation for a transient fault at 41-42 needs to be executed 

15552 divide by 6 times or 2592 times. 

For a standard XP computer in the computer lab, about 9 seconds is need for each run. 

Time generating inputs and outputs = 2592 x 9= 23328 seconds = 388.8 min =6.48 hour 

A similar method for generating the inputs and outputs information at faults 43-44 was 

performed.   

4.4.3 Performance Evaluation of Various Methods and Strategies 

As mentioned before, in order to evaluate the best case and strategy used, training was only done 

with output p1.  To test against itself, at fault 41-42, this load bus was trained and tested.  The 
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first 10,000 load cases were used to train while the 5,552 load cases were used to test or validate 

the load model.  Starting at fault 41-42, load bus was trained and tested with the 15,552 cases 

with different training methods, and the results are summarized in Table 4.10.  Discussions of the 

different training methods are presented in Section 4.4.  After comparisons against the previous 

methods, we see that the ANFIS algorithm does the best training job compared to the other 

methods. 

Table 4.10 Different methods of training and testing against itself 

Fault 41‐42 , load bus: 41             

MSE for the different methods on load bus 41  (Full training and testing: all 15552 cases) 

  Neuro Fuzzy 
method: ANFIS 

Levenberg‐ 
Marquardt 
Algorithm 

Widow‐Hoff 
Backpropagation 
Algorithm 

Default Scaled Conjugate Gradient 
Algorithm 

Fully  trained 
MSE values  0.0068  0.0069  0.0069  0.0077 

 

To validate and test against itself, at fault 41-42, the first 10,000 load cases were used to train 

while the 5,552 load cases were used to test or validate the load model.  The results are shown 

below in Table 4.11.  Notice that for a smaller sample size of data, the ANFIS algorithm does the 

best job on validating the load model against itself and validating against other load cases. 

Table 4.11 Training with 1000 load cases and testing against itself with 5552 load cases  

Fault 41‐42 , load bus: 41             

Partial training and testing ( Train on the first 10000 cases, test on 5552 cases)    

   Neuro Fuzzy 
method: ANFIS 

Levenberg‐ 
Marquardt 
Algorithm 

Widow‐Hoff 
Backpropagation 
method 

Default Scaled Conjugate Gradient 
Algorithm 

Trained  MSE 
values  0.0056  0.0058  0.0057  0.0063 

Validated  or 
tested  MSE 
values  0.0095  0.0098  0.0103  0.0106 

 

As the previous test was only done with a small sample size of data, we will test our system with 

a much larger set of data.  As in Table 4.8 before, we will focus on fault at buses 41-42, and fault 

at buses 44-43.  We will do a single load bus training and testing, with combinations of 2, 3, or 

even 4 load buses shown above for validating and testing.  The standard rule is that we train a set 

of single or combination of various buses, but we will test the load model on all 8 load buses 

shown in Table 4.8 above and record the mean square errors.  For instance, for training A1 
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strategy (training on load Bus 37 only), we have the MSE values for the different kinds of 

methods shown below.  The testing will be done on all the eight load buses and the average error 

of these eight cases will be shown at the end.  We can see at the end of the A1 section 

demonstrated that the Default Scaled Conjugate Gradient Algorithm method gives the most 

accurate training results whereas the ANFIS method does a comparably poor job.  The training 

MSE values for training by using A1 strategy is shown below.  

Table 4.12 Training strategy trained on load bus 37 

Training 
Strategy 

Tested on 
buses 
(MSE) 

Levenberg‐ 
Marquardt 
Algorithm 

Widow‐Hoff 
Backpropagation 
Algorithm 

Default 
Scaled 
Conjugate 
Gradient 
Algorithm 

Neuro 
Fuzzy 
method: 
ANFIS 

MSE 
Column 
Average 

  

MSE 
Column 
Average 
(exclude 
anfis) 

  Trained 
on:                

A1 (37)  error37  0.0087041  0.0086853  0.0509954  0.0082321       

   error41  0.4742836  0.0674742  0.0474777  10.141724       

   error42  0.1751635  0.0756422  0.047743  44.152189       

   error52  0.741254  0.1381595  0.0502348  22.352412       

   error36  0.5841999  0.1367574  0.0509954  86.243       

   error44  0.2247336  0.1361067  0.0477431  118.05378       

   error43  1.6351558  0.21696  0.0476465  30.097273       

   error51  0.1283085  0.0921727  0.0502353  161.51818       

  
average 
error  0.4964754  0.1089948  0.0491339  59.070848  14.93136  0.218201 

 

Due to the large size of the spreadsheet and instead of showing all the eight tested parameter 

errors with the trained load model, we will only show the average mean square error for each 

training strategy that combines all the testing mean square error on each of the eight load buses.  

Table 4.13 summarizes all the average tested errors for the strategies and methods below. 
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Table 4.13 Training strategies and training methods for static load model 

Training Strategy  Tested on buses 
(MSE) 

Levenberg‐
Marquardt 
Algorithm 

Widow‐Hoff 
Backpropagation 
method 

Default 
Scaled 
Conjugate 
Gradient 

Neuro 
Fuzzy 
method: 
ANFIS 

MSE 
Column 
Average 

MSE 
Column 
Average 
(exclude 
anfis) Algorithm

Trained on:                

A1 (37)  average error  0.4964754  0.1089948  0.0491339  59.070848  14.931363  0.21820137 

A2 (41)  average error  0.8134029  0.2605863  0.0482783  3478.4961  869.904592  0.37408917 

A3 (42)  average error  0.3510092  0.4398576  0.0491547  409.95358  102.6984  0.28000717 

A4 (52)  average error  0.1971639  0.0981685  0.0491175  319.20747  79.88798  0.11481663 

A5 (36)  average error  8.7042359  0.5151541  0.0491551  943.42346  238.173001  3.08951503 

A6 (44)  average error  6.6085212  0.8437232  0.1515104  174.54681  45.5376412  2.53458493 

A7 (43)  average error  0.0990519  0.0551485  0.0328347  182.73939  45.7316063  0.06234503 

A8 (51)  average error  2.3565249  0.9344518  0.1089633  76.365919  19.9414648  1.13331333 

B1 (41, 42)  average error  0.4834025  0.2509  0.0686306  21.891033  5.67349153  0.26764437 

B2 (44, 43)  average error  0.7291294  0.3800662  0.0559012  292.34947  73.3786417  0.3883656 

B3 (37,41)  average error  0.1495188  0.0725869  0.0486374  64.995663  16.3166015  0.0902477 

B4 (36, 44)  average error  0.3257481  0.3300078  0.0813284  425.79405  106.632784  0.24569477 

B5 (37, 42)  average error  0.2192818  0.1482025  0.0562259  76.784213  19.3019808  0.14123673 

B6 (36, 43)  average error  0.8097711  0.2396523  0.0469443  2097.6085  524.676217  0.3654559 

B7 (41, 52)  average error  0.5096352  0.1888463  0.0500835  86.772676  21.8803103  0.24952167 

B8 (44, 51)  average error  0.2505352  0.6354287  0.0652582  564.86153  141.453188  0.31707403 

B9 (37, 52)  average error  0.1333552  0.1274686  0.0491529  30.166944  7.61923018  0.10332557 

B10 (36, 51)  average error  1.6286079  0.5343869  0.048831  351.86842  88.5200615  0.73727527 

C1 (37, 41, 42)  average error  0.1430585  0.1154196  0.0491513  56.642425  14.2375136  0.10254313 

C2 (36, 44, 43)  average error  0.1908778  0.3944991  0.0589443  989.85096  247.62382  0.21477373 

C3 (41, 42, 52)  average error  0.184652  0.2037786  0.0536802  147.30009  36.9355502  0.14737027 

C4 (44, 43, 51)  average error  0.361787  0.127378  0.0480125  131.5802  33.0293444  0.17905917 

D1 (36, 41, 42, 52)  average error  0.1339861  0.0786759  0.0494302  46.438301  11.6750983  0.08736407 

D2 (36, 44, 43, 51)  average error  0.1824207  0.1274614  0.0491551  1762.1668  440.631459  0.11967907 

E1 (41, 42, 44, 43)  average error  0.0618988  0.057713  0.0386157  9.6149073  2.4432837  0.0527425 

E2 (37, 52, 36, 51)  average error  0.0819655  0.057171  0.039818  277.67509  69.4635111  0.0596515 

E3 (37, 41, 36, 43)  average error  0.1173513  0.0780337  0.0436818  100.74114  25.2450517  0.07968893 

E4 (42, 52, 44, 51)  average error  0.1239898  0.0625158  0.0365435  710.24098  177.616007  0.0743497 

  
MSE Row Average  
(averages of the 
average_error in 
each) 

0.9445485  0.2666528  0.0562919  496.04096  124.327113  0.42249773 
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In order to better analyze the training strategies, we plot the different strategies with their 

respective mean square error values in Figure 4.11 below. 

 

Figure 4.11 Various training strategies   

Also, from Table 4.12, we realize that ANFIS method is fairly inefficient in validating the model 

against other load buses.  Hence, we exclude ANFIS method, and replot the training strategies 

versus their respective MSE values as shown below in Figure 4.12. 
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Figure 4.12 Various training strategies without using ANFIS 

We can see from the Figure 4.12 that the strategies E1, E2, A7, E4, and E3 do a fairly 

good job in training and testing against various load buses.  Now let us look at the various 

training methods.  Since it is fairly obvious that ANFIS does not do well in testing, we ignore 

this method and plot the other methods in Figure 4.13 below. 
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Figure 4.13 Various Training Methods excluding ANFIS method 

 From the diagram above, we see that the Default Scaled Conjugate Gradient algorithm 

method works the best here.  Therefore, to train a good load model in the future, from the 

experience we acquired, we use Default Scaled Conjugate Gradient algorithm and E1, E2, A7, 

E4, and E3 strategies.  For instance, the p1, p2 and p3 load models can be trained using E2 

strategy and pattern recognition method below.  The MSE between the simulated parameters p1, 

p2 and p3 and the actual parameters in each bus are shown below in Table 4.14.  In this case, by 

looking at the average MSE values, these simulated parameters seem to closely match the actual 

parameters as shown below. 
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Table 4.14 Load model training for p1, p2, and p3 

E2  MSE  E2  MSE  E2  MSE 

error37_p1  0.0147255  error37_p2  0.035449 error37_p3  0.01957 

error41_p1  0.07612826  error41_p2  0.073415 error41_p3  0.0758 

error42_p1  0.09427535  error42_p2  0.075667 error42_p3  0.107402

error52_p1  0.01057614  error52_p2  0.030533 error52_p3  0.012899

error36_p1  0.01453636  error36_p2  0.038002 error36_p3  0.028068

error44_p1  0.09376044  error44_p2  0.078855 error44_p3  0.112588

error43_p1  0.11227931  error43_p2  0.079245 error43_p3  0.105747

error51_p1  0.00955511  error51_p2  0.028468 error51_p3  0.0091 

average_error_p1  0.00119439  average_error_p2  0.054954 average_error_p3  0.058897

 

Although this section seems to draw a reasonable comparison between the strategies and 

methods, several shortcomings for comparing training methods include: 

 Parameters and learning rate are not equivalent among these methods 

 The number of training epochs are determined by effective convergence and are not 

equivalent 

 Best training error in each method was used to do comparison 

Therefore, in the next section, we will equate the parameters, number of training epochs, and 

record the range for methods comparison. Average MSE values, median, and range data will be 

recorded for all 10 trials in every method in the next section to draw a fairer comparison between 

the training methods. 

4.5 Analyze Methods with Equivalent Training Criteria 

As discussed in the ending of last section, we would work on equate the training 

parameters, learning rate, number of training epochs, and number of hidden neurons in each 

training parameters.  To simplify the problem, an effective strategy E2 or load model obtained by 

training buses 37, 52, 36, and 51 was used for each training method.  By doing so, we would 

have a fairer comparison between these methods.  Except ANFIS, the other methods all have the 

following training criteria: 

 The number of epochs for training is set to be 500. 

 The learning rates are all set to be 0.3. 
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 20 hidden neurons were used 

The average MSE obtained by using trained models to predict or validating p1, p2 and p3 data for 

all eight load buses (buses 37, 41, 42, 52, 36, 44, 43, and 51) was recorded in each of the 10 trials 

in Table 4.15 below.  In order to better analyze the data, we calculate the average, median, 

maximum, minimum MSE, and range in each method and in each trial. 

Table 4.15 Average MSE for p1, p2, and p3 with equivalent training criteria 

MSE  average   Fuzzy ANFIS  Levenberg‐
Marquardt 
 

Widow‐Hoff  
Backpropagation 

Default Scaled  
Conjugate Gradient 

for its p1, p2, 
and p3    

error 1  414.2555557  0.063198515  0.063860668  0.037668188 

error 2  414.2555557  0.079539853  0.078574135  0.039167675 

error 3  414.2555557  0.053574795  0.059783156  0.039513893 

error 4  414.2555557  0.049195436  0.059881022  0.042653777 

error 5  414.2555557  0.066969889  0.083464599  0.047261529 

error 6  414.2555557  0.085755512  0.13119704  0.039839317 

error 7  414.2555557  0.195083291  0.097044005  0.043701718 

error 8  414.2555557  0.082345747  0.043798357  0.042379409 

error 9  414.2555557  0.161564714  0.112865941  0.047141321 

error 10  414.2555557  0.050235716  0.055168696  0.042298997 

average error  414.2555557  0.088746347  0.078563762  0.042162582 

median error  414.2555557  0.073254871  0.071217402  0.042339203 

maximum 
error  414.2555557  0.195083291  0.13119704  0.047261529 

minimum 
error  414.2555557  0.049195436  0.043798357  0.037668188 

range  0  0.145887855  0.087398683  0.009593341 

 

As the ANFIS method is fairly inaccurate, we will ignore this method for the purpose of 

avoiding confusion.  The descending order to validate the data from the best method to the worst 

method based on average and median error is as follows: 

 Default Scaled Conjugate Gradient  

 Widow-Hoff Backpropagation 

 Levenberg-Marquardet  

The descending order to validate the data from the smallest range to the largest range based on is 

as follows: 
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 Default Scaled Conjugate Gradient  

 Widow-Hoff Backpropagation 

 Levenberg-Marquardet  

Based on the given information in Table 4.14, we plot the graph for all the MSE points for these 

three training methods in all 10 trials below in Figure 4.14. 

 

Figure 4.14 MSE average for load parameters with equivalent training criteria 

From the analysis and graph above, we notice similar pattern as in Section 4.4 before.  The 

model obtained by training Default Scaled Conjugate Gradient method works the best in 

validating or predicting the load parameters for unknown buses as the range is small and its 

median and average MSE is the smallest compared to the other methods.  Therefore, we can also 

conclude that the descending order to validate the data from the best to the worst as: 

 Default Scaled Conjugate Gradient  
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 Widow-Hoff Backpropagation 

 Levenberg-Marquardet  

4.6 Conclusion 

In Chapter 4, different approaches to train and test the power system were used in order 

to solve the parameter identification problem.  These approaches include: 

 Training the load model for the simple power system with three inputs: v, P, and 

Q. 

 Parallel training and testing of the 16-generator power system with 29 load 

characteristic cases, and the input are v, P or Q at 5 different time steps for each 

load characteristic. 

 Sensitivity training and testing the more complex power system with inputs as 

QPv  ,, during five time periods as well as the initial time for v, and P or Q. 

 In the final approach, QPv  ,,  and initial time for 6 time steps were fed into 

the inputs for 6 times per load characteristic.  The model was constructed based 

on observing the smallest MSE in each method. 

 Lastly, equivalent training criteria including learning rate, number of epochs, , 

and number of hidden neurons in all training methods were established for the 

analysis.   

Normalizing the inputs and using more strategies to train p2 or q2 outputs are essential for 

training as shown in Figure 4.6.  This is also because normalizing the load values allows us to 

better train the load model.  Throughout these trials and errors, we realized the importance to 

have sensitivity in changing voltages versus changing powers in the training.  In our final 

approach, we decided to use a large set of load characteristics (15552 cases) to generate the 

inputs.  The final approach would be the best training approach as the large set of load 

characteristics makes the training model more adaptable to different cases.  For the approach to 

construct a load model based on best training mean square error, six changes in voltages with 

respect to the changes powers and their initial voltage and powers were fed into the training 

model giving the load model the ability to recognize the various time zones.  After the training 

and testing, the results for different techniques and strategies were recorded.  From Table 4.13, 
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highlighted yellow is the average error for testing each training model on each load bus 

(including Buses 37, 41, 42, 52, 36, 44, 43, and 51).  Furthermore, a fairer comparison between 

methods was conducted by equating various training criteria, and a similar pattern was observed.  

From studies in Sections 4.4 and 4.5, we realize that Default Scaled Conjugate Gradient method 

is very useful to construct load models in training and validating data for known and unknown 

buses.  The strategies that were successful in obtaining these load parameters include A7, E1, E2, 

E3, or E4.  From the studies, one thing to note is that the q parameters were shown to be less 

accurate than the p parameters in general.  Since the p parameters and q parameters are 

equivalent to each other in order to reduce the power factor unbalance issue, we consider only 

the parameters p1, p2, and p3 for load parameter identification.  In Table 4.13 from before, we see 

that the testing MSE for p2 and p3 are fairly small as well (0.54954, 0.058897).  Although the 

MSE for p1 is best (or smallest), the MSE for p2 and p3 are acceptable.  To better display the 

difference between parameter identifications between methods, we will show results from two 

training methods for parameter p1 below.  Figure 4.14 and Figure 4.15 below represent the 

training results from Levenberg-Marquardt and Widow-Hoff backpropagation methods 

respectively.  From these two enlarged figures, we can see that, Widow-Hoff backpropagation 

algorithm method obtains better training results compared to the other one.  For extended 

comparisons, we can refer to Appendix A.4. 
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Figure 4.14 Levenbeg-Marquardt method used for validating data on Bus 41 

 

Figure 4.15 Widow-Hoff backpropagation algorithm method used for validating data on 

Bus 41 
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CHAPTER 5 - Parameter Estimation using Intelligent Techniques 

for Dynamic Load Models 

Recall from Equations 2.11 and 2.12, the dynamic ZIP load model can be expressed as 

below:  

MOTZIPs PPp ** 11            

MOTZIPs QQQ ** 22            

In the dynamic model, we would have to consider the amount of active/reactive induction motor 

load power that will be considered to be located at various busses within the system.  Hence, as a 

starting point, training intelligent systems to yield the percentage of induction load to be modeled 

at a given bus will be studied in the thesis.  The determining of the other parameters describing 

the induction motor loads will be left to future work.   

In this case:  

 111            (5.1) 

122            (5.2) 

The equations above represent the total percentage of static ZIP power and dynamic induction 

motor power.  In our static load model, the active and reactive parameters are assumed to be 

equivalent to avoid the stability issues with power factor.  (i.e. p1=q1, p2=q2, p3=q3) 

To make this rule consistent here or to set constant power factor as before, we will also assume 

 1 =  2 and  1 =   2. 

From the previous static load model, we will still have 15,552 load component cases.  

Now, we will incorporate addition   values in training.  Note that the   can be calculated by 1-

 .  These   values are 0.05, 0.1, 0.15, 0.175, and 0.2.  These   values are fairly small.  One 

problem observed with a slightly larger   value is that it causes the simulation for faults on 44-

43 to have invalid voltage values at the load bus or other non-convergence problems.  Therefore, 

these 5   values were chosen.  With these additional   values, the number of load component 

cases is 15,552 x 5=77,760 cases. 
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About 32.4 hours is needed to generate the inputs and outputs for each faulted load bus.  After 

the values were obtained, an approach similar to Section 4 was used to train for the dynamic load 

model.  The diagram for training is shown in Figure 5.1 below. 

 

 

 

Figure 5.1 Training Model for dynamic load 

 

The best approach, the Default Scaled Conjugate Gradient method and the best strategies E1, E2, 

E3, and E4 used in the static model training were used in this load model training.  The MSE 

values obtained are displayed below in Table 5.1 
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Table 5.1 Training and validating MSE values for dynamic load model  

Training procedures  Tested on buses (MSE)  Default Scaled Conjugate Gradient 

Trained on:       

E1  error37  0.105346953 

bus(es):  error41  0.025872072 

41, 42, 44, 43  error42  0.049237347 

   error52  0.12347474 

   error36  0.145889447 

   error44  0.051996439 

   error43  0.051535485 

   error51  0.124772609 

   average error  0.084765636 

E2  error37  0.040199252 

bus(es):  error41  0.097029386 

37, 52, 36, 51  error42  0.084719725 

   error52  0.05831685 

   error36  0.059616769 

   error44  0.086380158 

   error43  0.093925466 

   error51  0.062820319 

   average error  0.072875991 

E3  error37  0.038623464 

bus(es):  error41  0.02954644 

37, 41, 36, 43  error42  0.139100605 

   error52  0.122561639 

   error36  0.059202945 

   error44  0.192161932 

   error43  0.052066952 

   error51  0.138394401 

   average error  0.096457297 

E4  error37  0.060768605 

bus(es):  error41  0.059869587 

42, 52, 44, 51  error42  0.06299373 

   error52  0.063834559 

   error36  0.070227263 

   error44  0.063485102 

   error43  0.076367186 

   error51  0.064627779 

   average error  0.065271726 

   MSE Row Average   0.079842663 

   (averages of the average error in each)    
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We observe that the MSE average for the dynamic load in the end is worse than the MSE 

average for the respective static load.  The intelligent techniques, however, seem to do a better 

job compared to the previous mathematical manipulation method such as pseudo inverse because 

at least feasible solutions are obtained from this approach. 
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CHAPTER 6 - CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, we discussed ways to solve parameter identification problems.  For 

instance, the simple power system was developed to work with mathematical calculations and 

ZIP load model verification.  Although pseudo inverse and linear programming will solve for the 

parameters, the parameters will have infeasible solutions that do not represent the percentage of 

constant power, constant current and constant impedance.  As a result, intelligent techniques 

were used to train intelligent systems that will be used to determine the models for loads that do 

not have information about their parameters.   

Several intelligent methods were used in this research, included: 

 Levenberg-Marquardt 

 Widow-Hoff Backpropagation 

 ANFIS (or Adaptive Network-Based Fuzzy Inference System) 

 Default Scaled Conjugate gradient 

A series of combined strategies were used to train and test the load buses as well.  These 

strategies are trained on two main fault conditions.  Namely load buses at fault 41-42 and fault 

44-43.  The buses that were trained are listed below with their symbol of representation. 

 Single bus training: A1(37), A2(41), A3(42), A4(52), A5(36), A6(44), A7(43), 

and A8(51). 

 Double bus training: B1(41, 42), B2(44, 43), B3(37,41), B4(36,44), B5(37,42), 

B6(36,43), B7(41,52), and B8(44, 51). 

 Triple bus training: C1(37, 41, 42), C2(36, 44, 43), C3(41, 42, 52), and C4(44, 43, 

51). 

 Quadruple bus training: D1(36, 41, 42, 52) and D2(36, 44, 43, 51). 

 Mixed bus training: E1(41,42,44,43), E2(37, 52, 36, 51), E3(37,41,36,43), and 

E4(42,52, 44, 51). 
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Through various training and testing, the Default Scaled Conjugate Gradient method and 

A7, E1, E2, E3, E4 training strategies are the most efficient training techniques.  The dynamic 

load model uses the same techniques and the percentage of induction motor load can be detected 

using similar training techniques.  Although in the end, the training and testing MSEs can be 

fairly small, but we have to realize that several key components need to be considered while 

training the set of inputs and outputs: 

 Normalization needs to be applied for the similar information inputs. 

 For training models that involve p2, extra inputs from p3 and p1 need to be fed into 

the training models for p2. 

 Large sets of load data need to be used to make the model efficient for use. 

 The sensitivities of voltages, active/reactive powers need to be used for the inputs 

of the training model. 

 ANFIS method does not seem to be a good method for validating the data 

although it trains well against itself.   Therefore, ANFIS method is not 

recommended for this research. 

Throughout the research, we tried many different ways to train and test the systems.  The 

final approach seems to be a fairly reasonable one.  The results in Table 4.13 and Table 4.15 

demonstrate that there are at least several methods and strategies which are fairly reliable in 

training and testing of load bus models.  The Figure 4.12, Figure 4.13, and Figure 4.14 further 

elaborate the best to worst training methods to obtain a power load model.  However, by 

choosing the right techniques, we still have to be careful in training and testing the data as some 

data are not sensitive to the intelligent techniques and therefore will not predict the unknown 

data from unknown buses readily.  Overall, this research helps to identify the approaches and 

ways to solve load parameters identification problems.  It can be used to construct load models, 

and it can also be used to predict the load characteristic for unknown buses.  It will become 

useful when we use the constructed load models through right training to predict data in 

unknown buses in a real power system, and to take actions to possibly prevent any power system 

related failures from taking place.      
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6.2 Recommendations and Future Work 

Sensitivities in voltages and active and reactive powers have been used extensively in this 

load model training.  However, we regretted that the more recent techniques such as genetic 

algorithms were not used in this research.  This is something that can be used in the future or 

maybe even a combination of artificial intelligence and genetic algorithm techniques can be used 

in training.  Moreover, the assumption of parameters p1=q1, p2=q2, and p3=q3, α1=α2, and β1=β2 

limit the changing load parameters in this thesis.  Although by doing so, we would not have to 

worry about the power factor related voltage stability issues, the model also becomes less 

effective in a real complex system.  This can also be said for including frequency variations 

parameters that we neglected in our research.  Therefore, in the future, we encourage future 

students who are interested in this field to choose a varying power factor power system load and 

adding frequency components for load model training.  In addition, real data is encouraged to be 

used in this load modeling research.  It will be a big accomplishment to use a developed or even 

a more enhanced load model to test and validate on a real power system in the future.   
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Appendix A - Graphs Generated by the Simulations 

A.1 Individual training v.s. Combined Training 

Load bus 41 training with each parameter, and the combined outputs training 

Output 1      output 2 

 

Output 3      combined outputs 

 

Figure A.1 The individual and combined training for bus 41 
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A.2 Simple Power System Training and validating 

 

Figure A.2 The simple power system training for output 1 

 

Figure A.3 The simple power system training for output 2 
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Figure A.4 Simple power system training for output 3 

A.3 Training and validating on Bus 41 

 

Figure A.5 Training for Bus 41 output 3 
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Figure A.6 validating for Bus 41 for output 1 to output 3 from left to right 
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Figure A.7 Validation on bus 1 using trained model for bus 41 

A.4 Intelligent methods on Bus 41   

 

ANFIS training on fault 41-42 with load bus information at Bus 41 
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Figure A.8 Enlarged training vs real data for Bus 41 

 

 

Figure A.9 Normal view for training vs real data for Bus 41 
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Figure A.10 The plot for real and trained data in 2-axis for bus 41 

With the trained info, we test the Bus 41results using the remaining 5552 points: 

 

Figure A.11 The tested real data v.s. test data for load bus 41 (enlarged version) 
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Figure A.12 The tested real data v.s. test data for load bus 41 
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Figure A.13 The MSE for tested data and the real data 

Levenberg-Marquardt Method 

 

Figure A.14 Levenberg-Marquardt method trained on 10000 points 
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Figure A.15 MSE for Levenberg-Marquardt training 

 

Figure A.16 Levenberg-Marquardt method validate on the 5552 points (enlarged) 

 

ANN backpropagation full training on 10000 points 
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Figure A.17 ANN backpropagation traininig  

 

 

 

 

 

Backpropagation tested on 5552 points:  

 

 

Figure A.18 ANN backpropagation testing 

 

2500 3000 3500 4000 4500

0

0.2

0.4

0.6

0.8

1

The real data v.s. the trained data

 

 

The real Data

Trained Data

0 1000 2000 3000 4000 5000 6000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The real data v.s. the trained data

 

 

The real Data

Trained Data



95 

 

 

Pattern recognition, full trained on 10000 points  

 

 

Figure A.19 Default Scaled Conjugate Gradient training 

 

 

 

 

 

 

Default Scaled Conjugate Gradient, validated on 5552 points 
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Figure A.20 Default Scaled Conjugate Gradient testing 
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Widow-Hoff backpropagation algorithm code, trained on the first 10000 points 

 

 

Figure A.21 Widow-Hoff backpropagation training 
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Widow-Hoff backpropagation validated on the later 5552 points 

 

Figure A.22 Widow-Hoff backpropagation testing 

 

 

Figure A.23 Widow-Hoff backpropagation testing (enlarged) 
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Appendix B - Software Code 

B.1 Code for Pseudo Inverse method and Inverse Matrix 

% Input and output data manipulating for the  
  
%This only caucluates the stuff on bus 3 for trip at line 3-18 
%Section 1 
% data_combine will include all the training sets with iter =  
% focus at bus 3, and the 3-phase fault at line 3-18 
%  0 constant impedance 
%  1 single constant current load 
%  2 single constant power load 
%  3 mixed single load 
%  4 multiple constant current load 
%  5 multiple constant power load 
%  6 mixed multiple loads 
%  7 yet another mixed loads 
  
%Section 2 
%data_combine, the columns are 
% 1 - voltage 
% 2 - voltage^2 
% 3 - frequency 
% 4 - real power 
% 5 - reactive power 
% 6 - time steps t 
% line information 
% record line information "S1_combine (from), S2_combine (away)"  for 1 to 86 
lines 
   
%iter=0 for the first case and so on see Section 1 above 
iter=0; 
   
data_combine(1+339*iter:339+339*iter, 1)=abs(bus_v(3, 1:339)); 
data_combine(1+339*iter:339+339*iter, 2)=abs(bus_v(3, 1:339)).*abs(bus_v(3, 
1:339)); 
  
frequency(1)=0; 
for index= 2 : 339 
    frequency(index)=(angle(bus_v(3, index))-angle(bus_v(3, index-
1)))/(t(index)-t(index-1))/2/pi; 
end 
  
data_combine(1+339*iter:339+339*iter, 3)=frequency; 
  
data_combine(1+339*iter:339+339*iter, 4)=-real(S1(6, :))-real(S1(7, :))-
real(S2(3, :)); 
  
data_combine(1+339*iter:339+339*iter, 5)=-imag(S1(6, :))-imag(S1(7, :))-
mag(S2(3, :)); 
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data_combine(1+339*iter:339+339*iter, 6)=t; 
%pseudo inverse method 
  
b=data_combine(:, 4) 
  
br=data_combine(:, 5) 
  
A(:,1)=data_combine(:, 2) 
A(:,2)=data_combine(:, 1) 
A(1:339,3)=1 
  
x=pinv(A)*b 
  
y=pinv(A)*br 
  
%inverse matrix method, 3 points at time steps 119, 158, 171 were chosen 
  
index=[119 158 171]; 
for i=1:3 
    b(i,1)=data_combine(index(i), 4); 
    br(i,1)=data_combine(index(i), 5); 
    A(i,1)=data_combine(index(i), 2) 
    A(i,2)=data_combine(index(i), 1) 
end 
  
A(1:3,3)=1; 
  
x=inv(A)*b 
  
y=inv(A)*br 
 

 

B.2 Generate 15552 cases of load_con matrix for fault condition 

% p3 values for load buses 
clear all; 
clc; 
  
index=[0 0.2 0.4 0.6 0.8 1]; 
  
%first column for p3 values 
for i=1:216 
    k=i-1; 
    p3values(1+k*6:6+k*6,1)=index(1:6); 
end 
  
%second column for p3 values 
for i=1:36 
    k=i-1; 
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    p3values(1+k*36:6+k*36,2)=index(1); 
    p3values(7+k*36:12+k*36,2)=index(2); 
    p3values(13+k*36:18+k*36,2)=index(3); 
    p3values(19+k*36:24+k*36,2)=index(4); 
    p3values(25+k*36:30+k*36,2)=index(5); 
    p3values(31+k*36:36+k*36,2)=index(6); 
end 
  
%third column for p3 values 
for i=1:6 
    k=i-1; 
    p3values(1+k*216:36+k*216,3)=index(1); 
    p3values(37+k*216:72+k*216,3)=index(2); 
    p3values(73+k*216:108+k*216,3)=index(3); 
    p3values(109+k*216:144+k*216,3)=index(4); 
    p3values(145+k*216:180+k*216,3)=index(5); 
    p3values(181+k*216:216+k*216,3)=index(6); 
end 
  
%fourth column for p3 values 
    p3values(1:216,4)=index(1); 
    p3values(217:432,4)=index(2); 
    p3values(433:648,4)=index(3); 
    p3values(649:864,4)=index(4); 
    p3values(865:1080,4)=index(5); 
    p3values(1081:1296,4)=index(6); 
 

for i=1:4 
  for j=1:1512 
    total_allowed=10-p3values(j,i)*10; 
    if total_allowed==0 
        p2values(j,i)=0; 
    else 
        p2_integer=randi(total_allowed); 
        p2values(j,i)=p2_integer/10; 
    end 
  end 
end 
  
%Assign p3 and p2 values to the load con 
load_con_test(1:1512,1:4)=p3values; 
load_con_test(1:1512,5:8)=p2values; 
  
%Now, swap p3 and p2 values for the next 1512 values 
load_con_test(1+1512:1512+1512,1:4)=p2values; 
load_con_test(1+1512:1512+1512,5:8)=p3values; 
  
save load_con_test_fault41_42_mediumversion.mat load_con_test 
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B.3 Generate the inputs and outputs for fault 41-42, 44-43 and etc 

First, we need to use an existing transient fault simulation.  Add the extra components to the 

transient fault simulations 

%added the load_con matrix 
load load_con_test_fault41_42_medianversion.mat 
 

%Now add the following components to change the load_con or the load 
characteristic  
count_iteration=0; 
  
%change the load bus 
%use the one below for fault at 41-42 
loadbus_index=[37 41 42 52 0]; 
 
%use the one below for fault at 44-43 
%loadbus_index=[33 34 36 37 0]; 
%stop changing the load bus 
  
for iteration=1:2592 
  
load_info=[]; 
load_con=[]; 
load_info=load_con_test(iteration, :); 
  
load_con(:,1)=[33 34 36 37]'; 
load_con(1, 2:3)=load_info(1, 1); 
load_con(1, 4:5)=load_info(1, 5); 
load_con(2, 2:3)=load_info(1, 2); 
load_con(2, 4:5)=load_info(1, 6); 
load_con(3, 2:3)=load_info(1, 3); 
load_con(3, 4:5)=load_info(1, 7); 
load_con(4, 2:3)=load_info(1, 4); 
load_con(4, 4:5)=load_info(1, 8); 
 

 

<<<<<<Now the part below is added at the bottom of the program>>> 

 

%To calculate the complex power flow from the transient simulation results  
  
V1= bus_v(From_idx,:); V2= bus_v(To_idx,:);  
[S1,S2] = line_pq(V1,V2,R,X,B,tap,phi);  
  
jjj=0; 
loadP=zeros(size(bus,1),size(S1,2)); 
loadQ=zeros(size(bus,1),size(S1,2)); 
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while jjj<size(line,1) 
    jjj=jjj+1; 
     
    iii=0; 
    while iii<size(bus,1) 
        iii=iii+1; 
        if busnum(iii)==FromBus(jjj); 
            loadP(iii,:)=loadP(iii,:) - real(S1(jjj,:)); 
            loadQ(iii,:)=loadQ(iii,:) - imag(S1(jjj,:));             
         end 
        if busnum(iii)==ToBus(jjj); 
            loadP(iii,:)=loadP(iii,:) - real(S2(jjj,:)); 
            loadQ(iii,:)=loadQ(iii,:) - imag(S2(jjj,:)); 
        end 
    end 
end 
  
  
  
keepsaving=0; 
  
faultbus= sw_con(2,2); 
  
casedata=[1:14]'; 
  
%added components to display this 
count_i=0; 
% loadbus_index=[37 41 42 52 0]; 
% loadbus_index=[41 0]; 
% loadbus_index=[33 0]; 
% loadbus_index=[44 0]; 
%stop displaying 
  
while keepsaving<1 
count_i=count_i+1;     
%   loadbus=input('Enter the bus for which you want to save data >>'); 
  
% altered results for loadbus 
loadbus=loadbus_index(count_i); 
%stop altering   
  
  
  if loadbus==0; 
    keepsaving=1; 
  end 
   
  if isempty(loadbus); 
    keepsaving=1; 
  end 
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  iii=0; 
  while iii<size(bus,1) 
    iii=iii+1; 
    if loadbus==busnum(iii); 
         
        kkk = 0; 
        while kkk<size(load_con,1) 
            kkk = kkk+1; 
    
            if load_con(kkk,1)==loadbus; 
                      
               ccc=0; 
               ttt=100; 
                
               while ccc<10 
                    
                 ccc=ccc+1; 
                  
                 ttt=ttt+10; 
                
                 newdata=[abs(bus_v(busnum(iii),ttt)) 
abs(bus_v(busnum(iii),ttt+10)-bus_v(busnum(iii),ttt)) ... 
                          (loadP(iii,ttt+10)-loadP(iii,ttt))/loadP(iii,1) 
(loadQ(iii,ttt+10)-loadQ(iii,ttt))/loadQ(iii,1) ... 
                           load_con(kkk,2) load_con(kkk,3) load_con(kkk,4) 
load_con(kkk,5) ... 
                            t(ttt) t(ttt+10)-t(ttt) loadP(iii,1) loadQ(iii,1) 
loadbus faultbus]'; 
             
                 casedata=[casedata newdata]; 
               end 
           end 
        end 
         
    end 
  end 
  
end 
  
% disp(' ') 
% disp('Data is in matrix called casedata.  ') 
% disp('    Each column is one data set.  ') 
% disp('    There are 10 data sets per bus entered and found in load_con') 
% disp(' ') 
% disp('In casedata matrix, ') 
% disp('  Row 1 is the pu bus voltage magnitude') 
% disp('  Row 2 is change in bus pu voltage magnitude') 
% disp('  Row 3 is change in load real power over initial real power') 
% disp('  Row 4 is change in load reactive power over initial reactive 
power') 
% disp('  Row 5 is fraction const active power load from load_con') 
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% disp('  Row 6 is fraction const reactive power load from load_con') 
% disp('  Row 7 is fraction const active current load from load_con') 
% disp('  Row 8 is fraction const reactive current load from load_con') 
% disp('  Row 9 is simultation time at beginning of interval') 
% disp('  Row 10 is change in time') 
% disp('  Row 11 is initial real power') 
% disp('  Row 12 is initial reactive power') 
% disp('  Row 13 is the load bus number') 
% disp('  Row 14 is bus number of the faulted bus in the simulation') 
  
  
  
  
  
%the input and output training data obtained from here 
%this is for load bus 37 
for bbb=1:6 
  
count_iteration=count_iteration+1; 
datamatrixl37(count_iteration, 1)=casedata(1, bbb+4); 
datamatrixl37(count_iteration, 2)=casedata(2, bbb+4); 
datamatrixl37(count_iteration, 3)=casedata(3, bbb+4); 
datamatrixl37(count_iteration, 4)=casedata(4, bbb+4); 
datamatrixl37(count_iteration, 5)=1-casedata(7, bbb+4)-casedata(5, bbb+4); 
datamatrixl37(count_iteration, 6)=casedata(7, bbb+4); 
datamatrixl37(count_iteration, 7)=casedata(5, bbb+4); 
  
%this is for load bus 41 
datamatrixl41(count_iteration, 1)=casedata(1, bbb+14); 
datamatrixl41(count_iteration, 2)=casedata(2, bbb+14); 
datamatrixl41(count_iteration, 3)=casedata(3, bbb+14); 
datamatrixl41(count_iteration, 4)=casedata(4, bbb+14); 
datamatrixl41(count_iteration, 5)=1-casedata(7, bbb+14)-casedata(5, bbb+14); 
datamatrixl41(count_iteration, 6)=casedata(7, bbb+14); 
datamatrixl41(count_iteration, 7)=casedata(5, bbb+14); 
  
%this is for load bus 42 
datamatrixl42(count_iteration, 1)=casedata(1, bbb+24); 
datamatrixl42(count_iteration, 2)=casedata(2, bbb+24); 
datamatrixl42(count_iteration, 3)=casedata(3, bbb+24); 
datamatrixl42(count_iteration, 4)=casedata(4, bbb+24); 
datamatrixl42(count_iteration, 5)=1-casedata(7, bbb+24)-casedata(5, bbb+24); 
datamatrixl42(count_iteration, 6)=casedata(7, bbb+24); 
datamatrixl42(count_iteration, 7)=casedata(5, bbb+24); 
  
%this is for load bus 52 
datamatrixl52(count_iteration, 1)=casedata(1, bbb+34); 
datamatrixl52(count_iteration, 2)=casedata(2, bbb+34); 
datamatrixl52(count_iteration, 3)=casedata(3, bbb+34); 
datamatrixl52(count_iteration, 4)=casedata(4, bbb+34); 
datamatrixl52(count_iteration, 5)=1-casedata(7, bbb+34)-casedata(5, bbb+34); 
datamatrixl52(count_iteration, 6)=casedata(7, bbb+34); 
datamatrixl52(count_iteration, 7)=casedata(5, bbb+34); 
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end 
count_iteration 
end 
 
%normalized matrix for load bus 37 
datamatrix_normalizedl37(:, 1)=mat2gray(datamatrixl37(:,1)); 
datamatrix_normalizedl37(:, 2)=mat2gray(datamatrixl37(:,2)); 
datamatrix_normalizedl37(:, 3)=mat2gray(datamatrixl37(:,3)); 
datamatrix_normalizedl37(:, 4)=mat2gray(datamatrixl37(:,4)); 
datamatrix_normalizedl37(:, 5)=datamatrixl37(:,5); 
datamatrix_normalizedl37(:, 6)=datamatrixl37(:,6); 
datamatrix_normalizedl37(:, 7)=datamatrixl37(:,7); 
  
%normalized matrix for load bus 41 
datamatrix_normalizedl41(:, 1)=mat2gray(datamatrixl41(:,1)); 
datamatrix_normalizedl41(:, 2)=mat2gray(datamatrixl41(:,2)); 
datamatrix_normalizedl41(:, 3)=mat2gray(datamatrixl41(:,3)); 
datamatrix_normalizedl41(:, 4)=mat2gray(datamatrixl41(:,4)); 
datamatrix_normalizedl41(:, 5)=datamatrixl41(:,5); 
datamatrix_normalizedl41(:, 6)=datamatrixl41(:,6); 
datamatrix_normalizedl41(:, 7)=datamatrixl41(:,7); 
  
%normalized matrix for load bus 42 
datamatrix_normalizedl42(:, 1)=mat2gray(datamatrixl42(:,1)); 
datamatrix_normalizedl42(:, 2)=mat2gray(datamatrixl42(:,2)); 
datamatrix_normalizedl42(:, 3)=mat2gray(datamatrixl42(:,3)); 
datamatrix_normalizedl42(:, 4)=mat2gray(datamatrixl42(:,4)); 
datamatrix_normalizedl42(:, 5)=datamatrixl42(:,5); 
datamatrix_normalizedl42(:, 6)=datamatrixl42(:,6); 
datamatrix_normalizedl42(:, 7)=datamatrixl42(:,7); 
  
%normalized matrix for load bus 52 
datamatrix_normalizedl52(:, 1)=mat2gray(datamatrixl52(:,1)); 
datamatrix_normalizedl52(:, 2)=mat2gray(datamatrixl52(:,2)); 
datamatrix_normalizedl52(:, 3)=mat2gray(datamatrixl52(:,3)); 
datamatrix_normalizedl52(:, 4)=mat2gray(datamatrixl52(:,4)); 
datamatrix_normalizedl52(:, 5)=datamatrixl52(:,5); 
datamatrix_normalizedl52(:, 6)=datamatrixl52(:,6); 
datamatrix_normalizedl52(:, 7)=datamatrixl52(:,7); 
  
save input_output_fault41_42_4loadbuses_mediumversion.mat datamatrixl37 
datamatrix_normalizedl37 datamatrixl41 datamatrix_normalizedl41 datamatrixl42 
datamatrix_normalizedl42 datamatrixl52 datamatrix_normalizedl52 
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B.4 Intelligent Methods 

B.4.1 Levenberg-Marquardt, Widow-Hoff backpropagation, and Default Scaled 

Conjugate Gradient methods to train strategy E’s 

clear all; 
clc; 
close all; 
load input_output_fault41_42_4loadbuses_mediumversion.mat; 
load input_output_fault44_43_4loadbuses_mediumversion.mat; 
  
count=0; 
number_of_points=15552*4; 
% number_of_points=15552; 
% number_of_points=10000; 
  
% dataPinput=(datamatrix_normalizedl41(1:number_of_points, 1:3))'; 
% dataPoutput=(datamatrix_normalizedl41(1:number_of_points, 5))'; 
% datamatrix_normalized1=datamatrix_normalizedl37; 
% datamatrix_normalized2=datamatrix_normalizedl41; 
  
  
% dataPinput=(datamatrix_normalized(1:number_of_points, 1:3))'; 
% dataPoutput=(datamatrix_normalized(1:number_of_points, 5))'; 
  
  
  
% dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
% dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
  
% dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))'; 
% dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))'; 
  
for Atrial=4 
    datamatrix_normalized1=[]; 
    datamatrix_normalized2=[]; 
    datamatrix_normalized3=[]; 
    datamatrix_normalized4=[]; 
    dataPinput=[]; 
    dataPoutput=[]; 
    if Atrial==1 
        datamatrix_normalized1=datamatrix_normalizedl41; 
        datamatrix_normalized2=datamatrix_normalizedl42; 
        datamatrix_normalized3=datamatrix_normalizedl44; 
        datamatrix_normalized4=datamatrix_normalizedl43; 
    elseif Atrial==2 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl52; 
        datamatrix_normalized3=datamatrix_normalizedl36; 
        datamatrix_normalized4=datamatrix_normalizedl51; 
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    elseif Atrial==3 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl41; 
        datamatrix_normalized3=datamatrix_normalizedl36; 
        datamatrix_normalized4=datamatrix_normalizedl43; 
    elseif Atrial==4 
        datamatrix_normalized1=datamatrix_normalizedl42; 
        datamatrix_normalized2=datamatrix_normalizedl52; 
        datamatrix_normalized3=datamatrix_normalizedl44; 
        datamatrix_normalized4=datamatrix_normalizedl51; 
    end 
  
dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
dataPinput(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))'; 
dataPinput(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))'; 
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))'; 
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))'; 
dataPoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))'; 
dataPoutput(1, 46657:62208)=(datamatrix_normalized4(1:15552, 5))'; 
  
average_error=100000; 
  
  
for trial=1:10 
     
count=count+1; 
count 
%NNtool Levenberg-Marquardt 
% net=newfit(dataPinput, dataPoutput, 20); 
% net=train(net, dataPinput, dataPoutput); 
% traiendoutput=sim(net, dataPinput); 
  
%NNtool Widow-Hoff backpropagation 
% net=newff(dataPinput, dataPoutput, 20); 
% net=init(net); 
% net=train(net, dataPinput, dataPoutput); 
  
%Default Scaled Conjugate Gradient 
net=newpr(dataPinput, dataPoutput, 20); 
net=train(net, dataPinput, dataPoutput); 
  
traiendoutput=sim(net, dataPinput); 
  
%error calculation 
for i=1:number_of_points 
    error(i)=0.5*((traiendoutput(i)-dataPoutput(i))^2); 
    difference(i)=traiendoutput(i)-dataPoutput(i); 
end 
error_sum_original=sum(error)/number_of_points; 
  
% x=(1:1:number_of_points)'; 
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% plot(x, dataPoutput, x, traiendoutput); 
% legend('The real Data', 'Trained Data'); 
% title('The real data v.s. the trained data'); 
% figure; 
% plot(dataPoutput, traiendoutput); 
% title('The real data v.s. the trained data'); 
%  
% figure; 
% subplot(2,1,1); 
% plot(error); 
% title('The mean square error of the real and model data'); 
% subplot(2,1,2); 
% plot(difference); 
% title('The difference of the real and model data'); 
  
% trained_net41_42=net; 
trained_net37=net; 
% save NNtoolFitting_bus37.mat trained_net37 
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42 
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000 
  
%Test on the other buses 
sumbus_error=0; 
number_of_points2=15552; 
for kkk=1:8 
    datamatrix_normalized=[]; 
    error=0; 
    error_sum=0; 
    if kkk==1 
        datamatrix_normalized=datamatrix_normalizedl37; 
    elseif kkk==2 
        datamatrix_normalized=datamatrix_normalizedl41; 
    elseif kkk==3 
        datamatrix_normalized=datamatrix_normalizedl42; 
    elseif kkk==4 
        datamatrix_normalized=datamatrix_normalizedl52; 
    elseif kkk==5 
        datamatrix_normalized=datamatrix_normalizedl36; 
    elseif kkk==6 
        datamatrix_normalized=datamatrix_normalizedl44; 
    elseif kkk==7 
        datamatrix_normalized=datamatrix_normalizedl43; 
    elseif kkk==8 
        datamatrix_normalized=datamatrix_normalizedl51; 
    end 
  
%initializing 
dataPinput2=[]; 
dataPoutput2=[]; 
trainedoutput2=[]; 
  
dataPinput2=(datamatrix_normalized(1:number_of_points2, 1:3))'; 
dataPoutput2=(datamatrix_normalized(1:number_of_points2, 5))'; 
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traiendoutput2=sim(trained_net37, dataPinput2); 
  
%error calculation 
for i=1:number_of_points2 
    error(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2); 
    difference(i)=traiendoutput2(i)-dataPoutput2(i); 
end 
error_sum=sum(error)/number_of_points2; 
  
    if kkk==1 
        error37_trial=error_sum; 
    elseif kkk==2 
        error41_trial=error_sum; 
    elseif kkk==3 
        error42_trial=error_sum; 
    elseif kkk==4 
        error52_trial=error_sum; 
    elseif kkk==5 
        error36_trial=error_sum; 
    elseif kkk==6 
        error44_trial=error_sum; 
    elseif kkk==7 
        error43_trial=error_sum; 
    elseif kkk==8 
        error51_trial=error_sum; 
    end 
    sumbus_error=sumbus_error+error_sum; 
end 
average_error_trial=sumbus_error/8; 
  
if average_error_trial<average_error 
    average_error=average_error_trial; 
    error37=error37_trial; 
    error41=error41_trial; 
    error42=error42_trial; 
    error52=error52_trial; 
    error36=error36_trial; 
    error44=error44_trial; 
    error43=error43_trial; 
    error51=error51_trial; 
end 
  
end 
    average_error 
    d = {'error37' error37; 'error41' error41; 'error42' error42; 'error52' 
error52; 'error36' error36; 'error44' error44; 'error43' error43; 'error51' 
error51; 'average_error' average_error} 
     
%     xlswrite('testedbuses', d, 'Testing buses', 'A1'); 
     
    if Atrial==1 
        xlswrite('testedbusespE', d, 'Testing buses E1', 'A1'); 
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    elseif Atrial==2 
        xlswrite('testedbusespE', d, 'Testing buses E2', 'A1'); 
    elseif Atrial==3 
        xlswrite('testedbusespE', d, 'Testing buses E3', 'A1'); 
    elseif Atrial==4 
        xlswrite('testedbusespE', d, 'Testing buses E4', 'A1');         
    end 
end 

B.4.2 Widow-Hoff Backpropagation Method on Strategy B’s 

clear all; 
clc; 
close all; 
load input_output_fault41_42_4loadbuses_mediumversion.mat; 
load input_output_fault44_43_4loadbuses_mediumversion.mat; 
  
count=0; 
number_of_points=15552*2; 
  
  
for Atrial=1:10 
    datamatrix_normalized1=[]; 
    datamatrix_normalized2=[]; 
    dataPinput=[]; 
    dataPoutput=[]; 
    if Atrial==1 
        datamatrix_normalized1=datamatrix_normalizedl41; 
        datamatrix_normalized2=datamatrix_normalizedl42; 
    elseif Atrial==2 
        datamatrix_normalized1=datamatrix_normalizedl44; 
        datamatrix_normalized2=datamatrix_normalizedl43; 
    elseif Atrial==3 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl41; 
    elseif Atrial==4 
        datamatrix_normalized1=datamatrix_normalizedl36; 
        datamatrix_normalized2=datamatrix_normalizedl44; 
    elseif Atrial==5 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl42; 
    elseif Atrial==6 
        datamatrix_normalized1=datamatrix_normalizedl36; 
        datamatrix_normalized2=datamatrix_normalizedl43; 
    elseif Atrial==7 
        datamatrix_normalized1=datamatrix_normalizedl41; 
        datamatrix_normalized2=datamatrix_normalizedl52; 
    elseif Atrial==8 
        datamatrix_normalized1=datamatrix_normalizedl44; 
        datamatrix_normalized2=datamatrix_normalizedl51; 
    elseif Atrial==9 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl52; 
    elseif Atrial==10 
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        datamatrix_normalized1=datamatrix_normalizedl36; 
        datamatrix_normalized2=datamatrix_normalizedl51; 
    end 
  
dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))'; 
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))'; 
%used for 10 trials 
numberInputTrain=3; 
NumberOfInputs=3; 
MAX_Epochs=500; 
N=number_of_points; 
%Number of neurons in the hidden layer 
  
HiddenNeurons=20; 
epsilon=0.3;  
momentum_factor=0.05; 
  
%used for 10 trials 
average_error=100000; 
  
%10 trials 
for trial=1:10 
     
count=count+1; 
count 
  
  
w1r1=[]; 
w2r1=[]; 
    w1r1=(rand(HiddenNeurons,NumberOfInputs+1)-0.5)*3; 
    w2r1=(rand(1,(HiddenNeurons+1))-0.5)*3; 
    deltaw1r1=0; 
    deltaw2r1=0; 
    
for epoch = 1: MAX_Epochs 
    for i = 1: N 
% FOr output 1------------------------------------------------------------         
%watch where to put the p or q for p, it's 1:3, for q, it is 1:2, 4 
        xr1=dataPinput(:,i); 
        tr1=dataPoutput(1,i); 
        [dw1r1, dw2r1, outr1]=backpropagation_single_output(xr1, w1r1, w2r1, 
tr1, HiddenNeurons, epsilon); 
        deltaw1r1=momentum_factor*deltaw1r1+dw1r1; 
        deltaw2r1=momentum_factor*deltaw2r1+dw2r1; 
        w1r1=w1r1+deltaw1r1; 
        w2r1=w2r1+deltaw2r1; 
        errr1(i)=0.5*(tr1-outr1)^2; 
        output_1(i)=outr1; 
   end 
    errorr1(epoch)=sum(errr1(1:N))/N; 
end 
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MSE_error=errorr1(epoch) 
  
  
  
  
  
%error calculation 
% for i=1:number_of_points 
%     error(i)=0.5*((dataPoutput(i)-output_1(i))^2); 
%     difference(i)=dataPoutput(i)-output_1(i); 
% end 
% error_sum_original=sum(error)/number_of_points; 
  
% x=(1:1:number_of_points)'; 
% plot(x, dataPoutput, x, traiendoutput); 
% legend('The real Data', 'Trained Data'); 
% title('The real data v.s. the trained data'); 
% figure; 
% plot(dataPoutput, traiendoutput); 
% title('The real data v.s. the trained data'); 
%  
% figure; 
% subplot(2,1,1); 
% plot(error); 
% title('The mean square error of the real and model data'); 
% subplot(2,1,2); 
% plot(difference); 
% title('The difference of the real and model data'); 
  
% trained_net41_42=net; 
  
  
  
  
  
% save NNtoolFitting_bus37.mat trained_net37 
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42 
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000 
  
%Test on the other buses 
sumbus_error=0; 
number_of_points_2=15552; 
for kkk=1:8 
    datamatrix_normalized=[]; 
    error=0; 
    error_sum=0; 
    if kkk==1 
        datamatrix_normalized=datamatrix_normalizedl37; 
    elseif kkk==2 
        datamatrix_normalized=datamatrix_normalizedl41; 
    elseif kkk==3 
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        datamatrix_normalized=datamatrix_normalizedl42; 
    elseif kkk==4 
        datamatrix_normalized=datamatrix_normalizedl52; 
    elseif kkk==5 
        datamatrix_normalized=datamatrix_normalizedl36; 
    elseif kkk==6 
        datamatrix_normalized=datamatrix_normalizedl44; 
    elseif kkk==7 
        datamatrix_normalized=datamatrix_normalizedl43; 
    elseif kkk==8 
        datamatrix_normalized=datamatrix_normalizedl51; 
    end 
  
%initializing 
dataPinput2=[]; 
dataPoutput2=[]; 
trainedoutput2=[]; 
  
dataPinput2=(datamatrix_normalized(1:number_of_points_2, 1:3))'; 
dataPoutput2=(datamatrix_normalized(1:number_of_points_2, 5))'; 
  
%ntool method 
% traiendoutput2=sim(trained_net37, dataPinput2); 
  
w1=[]; 
w2=[]; 
w1=w1r1; 
w2=w2r1; 
N2=number_of_points_2; 
for i = 1: N2 
  
        x=dataPinput2(:,i); 
        t=dataPoutput2(1,i); 
        [dw1, dw2, out]=backpropagation_single_output(x, w1, w2, t, 
HiddenNeurons, epsilon); 
        output_1(i)=out; 
        err(i)=0.5*(t-out)^2; 
end 
  
  
error(1)=sum(err)/N2; 
  
% traiendoutput=sim(net, dataPinput); 
  
traiendoutput2=output_1; 
  
%error calculation 
for i=1:number_of_points_2 
    error(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2); 
    difference(i)=traiendoutput2(i)-dataPoutput2(i); 
end 
error_sum=sum(error)/number_of_points_2; 
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    if kkk==1 
        error37_trial=error_sum; 
    elseif kkk==2 
        error41_trial=error_sum; 
    elseif kkk==3 
        error42_trial=error_sum; 
    elseif kkk==4 
        error52_trial=error_sum; 
    elseif kkk==5 
        error36_trial=error_sum; 
    elseif kkk==6 
        error44_trial=error_sum; 
    elseif kkk==7 
        error43_trial=error_sum; 
    elseif kkk==8 
        error51_trial=error_sum; 
    end 
    sumbus_error=sumbus_error+error_sum; 
end 
average_error_trial=sumbus_error/8; 
  
%find the smallest error among the 10 trials 
if average_error_trial<average_error 
    average_error=average_error_trial; 
    error37=error37_trial; 
    error41=error41_trial; 
    error42=error42_trial; 
    error52=error52_trial; 
    error36=error36_trial; 
    error44=error44_trial; 
    error43=error43_trial; 
    error51=error51_trial; 
end 
  
%not finding the smallest error coz only 1 trial for anfis 
%  
%     average_error=average_error_trial; 
%     error37=error37_trial; 
%     error41=error41_trial; 
%     error42=error42_trial; 
%     error52=error52_trial; 
%     error36=error36_trial; 
%     error44=error44_trial; 
%     error43=error43_trial; 
%     error51=error51_trial; 
  
% end for the 10 trial 
end 
    average_error 
    d = {'error37' error37; 'error41' error41; 'error42' error42; 'error52' 
error52; 'error36' error36; 'error44' error44; 'error43' error43; 'error51' 
error51; 'average_error' average_error} 
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%     xlswrite('testedbuses', d, 'Testing buses', 'A1'); 
     
    if Atrial==1 
        xlswrite('testedbuses_NB', d, 'Testing buses B1', 'A1'); 
    elseif Atrial==2 
        xlswrite('testedbuses_NB', d, 'Testing buses B2', 'A1'); 
    elseif Atrial==3 
        xlswrite('testedbuses_NB', d, 'Testing buses B3', 'A1'); 
    elseif Atrial==4 
        xlswrite('testedbuses_NB', d, 'Testing buses B4', 'A1'); 
    elseif Atrial==5 
        xlswrite('testedbuses_NB', d, 'Testing buses B5', 'A1'); 
    elseif Atrial==6 
        xlswrite('testedbuses_NB', d, 'Testing buses B6', 'A1'); 
    elseif Atrial==7 
        xlswrite('testedbuses_NB', d, 'Testing buses B7', 'A1'); 
    elseif Atrial==8 
        xlswrite('testedbuses_NB', d, 'Testing buses B8', 'A1'); 
    elseif Atrial==9 
        xlswrite('testedbuses_NB', d, 'Testing buses B9', 'A1'); 
    elseif Atrial==10 
        xlswrite('testedbuses_NB', d, 'Testing buses B10', 'A1'); 
    end 
end 

 

B.4.3 ANFIS Method on Strategy C’s 

clear all; 
clc; 
close all; 
load input_output_fault41_42_4loadbuses_mediumversion.mat; 
load input_output_fault44_43_4loadbuses_mediumversion.mat; 
  
count=0; 
number_of_points=15552*3; 
 
for Atrial=1:4 
    datamatrix_normalized1=[]; 
    datamatrix_normalized2=[]; 
    datamatrix_normalized3=[]; 
    dataPinput=[]; 
    dataPoutput=[]; 
    trnData=[]; 
    final_out_fis=[]; 
    out_fis=[]; 
     
    if Atrial==1 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl41; 
        datamatrix_normalized3=datamatrix_normalizedl42; 
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    elseif Atrial==2 
        datamatrix_normalized1=datamatrix_normalizedl36; 
        datamatrix_normalized2=datamatrix_normalizedl44; 
        datamatrix_normalized3=datamatrix_normalizedl43; 
    elseif Atrial==3 
        datamatrix_normalized1=datamatrix_normalizedl41; 
        datamatrix_normalized2=datamatrix_normalizedl42; 
        datamatrix_normalized3=datamatrix_normalizedl52; 
    elseif Atrial==4 
        datamatrix_normalized1=datamatrix_normalizedl44; 
        datamatrix_normalized2=datamatrix_normalizedl43; 
        datamatrix_normalized3=datamatrix_normalizedl51; 
    end 
  
dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
dataPinput(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))'; 
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))'; 
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))'; 
dataPoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))'; 
%used for 10 trials 
% average_error=100000; 
  
%10 trials 
% for trial=1:10 
     
count=count+1; 
count 
%NNtool fit a function 
% net=newfit(dataPinput, dataPoutput, 20); 
% net=train(net, dataPinput, dataPoutput); 
% traiendoutput=sim(net, dataPinput); 
  
%NNtool feedforward feedback backpropagation 
% net=newff(dataPinput, dataPoutput, 20); 
% net=init(net); 
% net=train(net, dataPinput, dataPoutput); 
%  
% traiendoutput=sim(net, dataPinput); 
  
  
%important trained_net37 
% trained_net37=net; 
  
%ANFIS method 
trnData(:, 1:3)=dataPinput(1:3, :)'; 
trnData(:, 4)=dataPoutput(1, :)'; 
% x=(1:1:number_of_points)'; 
%it was 15 
numMFs=5; 
mfType='gbellmf'; 
epoch_n=20; 
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in_fis=genfis1(trnData, numMFs, mfType); 
out_fis=anfis(trnData, in_fis, epoch_n); 
  
traiendoutput=evalfis(trnData(:,1:3), out_fis); 
  
  
final_out_fis=out_fis; 
  
  
%error calculation 
for i=1:number_of_points 
    error(i)=0.5*((traiendoutput(i)-dataPoutput(i))^2); 
    difference(i)=traiendoutput(i)-dataPoutput(i); 
end 
error_sum_original=sum(error)/number_of_points; 
  
% x=(1:1:number_of_points)'; 
% plot(x, dataPoutput, x, traiendoutput); 
% legend('The real Data', 'Trained Data'); 
% title('The real data v.s. the trained data'); 
% figure; 
% plot(dataPoutput, traiendoutput); 
% title('The real data v.s. the trained data'); 
%  
% figure; 
% subplot(2,1,1); 
% plot(error); 
% title('The mean square error of the real and model data'); 
% subplot(2,1,2); 
% plot(difference); 
% title('The difference of the real and model data'); 
  
% trained_net41_42=net; 
  
  
  
  
  
% save NNtoolFitting_bus37.mat trained_net37 
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42 
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000 
  
%Test on the other buses 
sumbus_error=0; 
number_of_points=15552; 
for kkk=1:8 
    datamatrix_normalized=[]; 
    error=0; 
    error_sum=0; 
    if kkk==1 
        datamatrix_normalized=datamatrix_normalizedl37; 
    elseif kkk==2 
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        datamatrix_normalized=datamatrix_normalizedl41; 
    elseif kkk==3 
        datamatrix_normalized=datamatrix_normalizedl42; 
    elseif kkk==4 
        datamatrix_normalized=datamatrix_normalizedl52; 
    elseif kkk==5 
        datamatrix_normalized=datamatrix_normalizedl36; 
    elseif kkk==6 
        datamatrix_normalized=datamatrix_normalizedl44; 
    elseif kkk==7 
        datamatrix_normalized=datamatrix_normalizedl43; 
    elseif kkk==8 
        datamatrix_normalized=datamatrix_normalizedl51; 
    end 
  
%initializing 
dataPinput2=[]; 
dataPoutput2=[]; 
trainedoutput2=[]; 
  
dataPinput2=(datamatrix_normalized(1:number_of_points, 1:3))'; 
dataPoutput2=(datamatrix_normalized(1:number_of_points, 5))'; 
  
%ntool method 
% traiendoutput2=sim(trained_net37, dataPinput2); 
  
traiendoutput2=evalfis(dataPinput2', final_out_fis); 
  
%error calculation 
for i=1:number_of_points 
    error(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2); 
    difference(i)=traiendoutput2(i)-dataPoutput2(i); 
end 
error_sum=sum(error)/number_of_points; 
  
    if kkk==1 
        error37_trial=error_sum; 
    elseif kkk==2 
        error41_trial=error_sum; 
    elseif kkk==3 
        error42_trial=error_sum; 
    elseif kkk==4 
        error52_trial=error_sum; 
    elseif kkk==5 
        error36_trial=error_sum; 
    elseif kkk==6 
        error44_trial=error_sum; 
    elseif kkk==7 
        error43_trial=error_sum; 
    elseif kkk==8 
        error51_trial=error_sum; 
    end 
    sumbus_error=sumbus_error+error_sum; 
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end 
average_error_trial=sumbus_error/8; 
  
%find the smallest error among the 10 trials 
% if average_error_trial<average_error 
%     average_error=average_error_trial; 
%     error37=error37_trial; 
%     error41=error41_trial; 
%     error42=error42_trial; 
%     error52=error52_trial; 
%     error36=error36_trial; 
%     error44=error44_trial; 
%     error43=error43_trial; 
%     error51=error51_trial; 
% end 
  
%not finding the smallest error coz only 1 trial for anfis 
  
    average_error=average_error_trial; 
    error37=error37_trial; 
    error41=error41_trial; 
    error42=error42_trial; 
    error52=error52_trial; 
    error36=error36_trial; 
    error44=error44_trial; 
    error43=error43_trial; 
    error51=error51_trial; 
  
% end for the 10 trial 
% end 
    average_error 
    d = {'error37' error37; 'error41' error41; 'error42' error42; 'error52' 
error52; 'error36' error36; 'error44' error44; 'error43' error43; 'error51' 
error51; 'average_error' average_error} 
     
%     xlswrite('testedbuses', d, 'Testing buses', 'A1'); 
     
    if Atrial==1 
        xlswrite('testedbusesC', d, 'Testing buses C1', 'A1'); 
    elseif Atrial==2 
        xlswrite('testedbusesC', d, 'Testing buses C2', 'A1'); 
    elseif Atrial==3 
        xlswrite('testedbusesC', d, 'Testing buses C3', 'A1'); 
    elseif Atrial==4 
        xlswrite('testedbusesC', d, 'Testing buses C4', 'A1'); 
    end 
end 
 

B.4.4 Levenberg-Marquardt, Widow-Hoff backpropagation, and Default Scaled 

Conjugate Gradient methods training with equivalent training criteria 



122 

 

 

clear all; 
clc; 
close all; 
load input_output_fault41_42_4loadbuses_mediumversion.mat; 
load input_output_fault44_43_4loadbuses_mediumversion.mat; 
  
count=0; 
average_error=[]; 
number_of_points=15552*4; 
  
for Atrial=2 
    datamatrix_normalized1=[]; 
    datamatrix_normalized2=[]; 
    datamatrix_normalized3=[]; 
    datamatrix_normalized4=[]; 
    dataPinput=[]; 
    dataPoutput=[]; 
    if Atrial==1 
        datamatrix_normalized1=datamatrix_normalizedl41; 
        datamatrix_normalized2=datamatrix_normalizedl42; 
        datamatrix_normalized3=datamatrix_normalizedl44; 
        datamatrix_normalized4=datamatrix_normalizedl43; 
    elseif Atrial==2 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl52; 
        datamatrix_normalized3=datamatrix_normalizedl36; 
        datamatrix_normalized4=datamatrix_normalizedl51; 
    elseif Atrial==3 
        datamatrix_normalized1=datamatrix_normalizedl37; 
        datamatrix_normalized2=datamatrix_normalizedl41; 
        datamatrix_normalized3=datamatrix_normalizedl36; 
        datamatrix_normalized4=datamatrix_normalizedl43; 
    elseif Atrial==4 
        datamatrix_normalized1=datamatrix_normalizedl42; 
        datamatrix_normalized2=datamatrix_normalizedl52; 
        datamatrix_normalized3=datamatrix_normalizedl44; 
        datamatrix_normalized4=datamatrix_normalizedl51; 
    end 
  
%get all the P parameters 
  
dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
dataPinput(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))'; 
dataPinput(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))'; 
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))'; 
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))'; 
dataPoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))'; 
dataPoutput(1, 46657:62208)=(datamatrix_normalized4(1:15552, 5))'; 
  
dataPoutput_P3(1, 1:15552)=(datamatrix_normalized1(1:15552, 7))'; 
dataPoutput_P3(1, 15553:31104)=(datamatrix_normalized2(1:15552, 7))'; 
dataPoutput_P3(1, 31105:46656)=(datamatrix_normalized3(1:15552, 7))'; 
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dataPoutput_P3(1, 46657:62208)=(datamatrix_normalized4(1:15552, 7))'; 
  
dataPoutput_P2(1, 1:15552)=(datamatrix_normalized1(1:15552, 6))'; 
dataPoutput_P2(1, 15553:31104)=(datamatrix_normalized2(1:15552, 6))'; 
dataPoutput_P2(1, 31105:46656)=(datamatrix_normalized3(1:15552, 6))'; 
dataPoutput_P2(1, 46657:62208)=(datamatrix_normalized4(1:15552, 6))'; 
  
%get all the q parameters 
  
% dataQinput(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))'; 
% dataQinput(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))'; 
% dataQinput(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))'; 
% dataQinput(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))'; 
%  
% dataQinput(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))'; 
% dataQinput(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))'; 
% dataQinput(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))'; 
% dataQinput(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))'; 
%  
% dataQoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))'; 
% dataQoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))'; 
% dataQoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))'; 
% dataQoutput(1, 46657:62208)=(datamatrix_normalized4(1:15552, 5))'; 
%  
% dataQoutput_q3(1, 1:15552)=(datamatrix_normalized1(1:15552, 7))'; 
% dataQoutput_q3(1, 15553:31104)=(datamatrix_normalized2(1:15552, 7))'; 
% dataQoutput_q3(1, 31105:46656)=(datamatrix_normalized3(1:15552, 7))'; 
% dataQoutput_q3(1, 46657:62208)=(datamatrix_normalized4(1:15552, 7))'; 
%  
% dataQoutput_q2(1, 1:15552)=(datamatrix_normalized1(1:15552, 6))'; 
% dataQoutput_q2(1, 15553:31104)=(datamatrix_normalized2(1:15552, 6))'; 
% dataQoutput_q2(1, 31105:46656)=(datamatrix_normalized3(1:15552, 6))'; 
% dataQoutput_q2(1, 46657:62208)=(datamatrix_normalized4(1:15552, 6))'; 
  
  
  
%start training 
  
average_error=100000; 
for trial=1:10 
     
count=count+1; 
count 
  
  
%Levenberg-Marquardt 
% %p1 
%  
%  
% net_p1=newfit(dataPinput, dataPoutput, 20); 
%  
% net_p1.trainParam.epochs=500;%(number of epochs) 
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% net_p1.trainParam.lr=0.3;%(learning rate) 
%  
% net_p1=train(net_p1, dataPinput, dataPoutput); 
%  
% traiendoutput_p1=sim(net_p1, dataPinput); 
%  
% %q1 
% % net_q1=newfit(dataQinput, dataQoutput, 20); 
% % net_q1=train(net_q1, dataQinput, dataQoutput); 
%  
% % traiendoutput_q1=sim(net_q1, dataQinput); 
%  
% %p3 
% net_p3=newfit(dataPinput, dataPoutput_P3, 20); 
%  
% net_p3.trainParam.epochs=500;%(number of epochs) 
% net_p3.trainParam.lr=0.3;%(learning rate) 
%  
% net_p3=train(net_p3, dataPinput, dataPoutput_P3); 
%  
% traiendoutput_p3=sim(net_p3, dataPinput); 
%  
% %q3 
% % net_q3=newfit(dataQinput, dataQoutput_q3, 20); 
% % net_q3=train(net_q3, dataQinput, dataQoutput_q3); 
% %  
% % traiendoutput_q3=sim(net_q3, dataQinput); 
%  
% %p2 
% % dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))'; 
%  
% dataPinput_p2(4, 1:62208)=traiendoutput_p1; 
% dataPinput_p2(5, 1:62208)=traiendoutput_p3; 
% dataPinput_p2(6, 1:62208)=1-traiendoutput_p1-traiendoutput_p3; 
%  
% net_p2=newfit(dataPinput_p2, dataPoutput_P2, 20); 
%  
% net_p2.trainParam.epochs=500;%(number of epochs) 
% net_p2.trainParam.lr=0.3;%(learning rate) 
%  
% net_p2=train(net_p2, dataPinput_p2, dataPoutput_P2); 
%  
% traiendoutput_p2=sim(net_p2, dataPinput_p2); 
%  
% %q2 
% % dataQinput_q2(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))'; 
% % dataQinput_q2(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))'; 
% % dataQinput_q2(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))'; 
% % dataQinput_q2(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))'; 
% %  
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% % dataQinput_q2(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))'; 
% % dataQinput_q2(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))'; 
% % dataQinput_q2(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))'; 
% % dataQinput_q2(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))'; 
% %  
% % dataQinput_q2(4, 1:62208)=traiendoutput_q1; 
% % dataQinput_q2(5, 1:62208)=traiendoutput_q3; 
% % dataQinput_q2(6, 1:62208)=1-traiendoutput_q1-traiendoutput_q3; 
% %  
% % net_q2=newfit(dataQinput_q2, dataQoutput_q2, 20); 
% % net_q2=train(net_q2, dataQinput_q2, dataQoutput_q2); 
% %  
% % traiendoutput_q2=sim(net_q2, dataQinput_q2); 
  
  
%Widow-Hoff Backpropagation 
% %p1 
%  
%  
% net_p1=newff(dataPinput, dataPoutput, 20); 
% net=init(net_p1); 
%  
% net_p1.trainParam.epochs=500;%(number of epochs) 
% net_p1.trainParam.lr=0.3;%(learning rate) 
% net_p1.trainParam.mc=0.05;%(momentum) 
%  
% net_p1=train(net_p1, dataPinput, dataPoutput); 
%  
% traiendoutput_p1=sim(net_p1, dataPinput); 
%  
% %q1 
% % net_q1=newff(dataQinput, dataQoutput, 20); 
% % net_q1=train(net_q1, dataQinput, dataQoutput); 
%  
% % traiendoutput_q1=sim(net_q1, dataQinput); 
%  
% %p3 
% net_p3=newff(dataPinput, dataPoutput_P3, 20); 
% net=init(net_p3); 
%  
% net_p3.trainParam.epochs=500;%(number of epochs) 
% net_p3.trainParam.lr=0.3;%(learning rate) 
% net_p3.trainParam.mc=0.05;%(momentum) 
%  
% net_p3=train(net_p3, dataPinput, dataPoutput_P3); 
%  
% traiendoutput_p3=sim(net_p3, dataPinput); 
%  
% %q3 
% % net_q3=newff(dataQinput, dataQoutput_q3, 20); 
% % net_q3=train(net_q3, dataQinput, dataQoutput_q3); 
% %  
% % traiendoutput_q3=sim(net_q3, dataQinput); 
%  
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% %p2 
% % dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))'; 
% dataPinput_p2(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))'; 
%  
% dataPinput_p2(4, 1:62208)=traiendoutput_p1; 
% dataPinput_p2(5, 1:62208)=traiendoutput_p3; 
% dataPinput_p2(6, 1:62208)=1-traiendoutput_p1-traiendoutput_p3; 
%  
% net_p2=newff(dataPinput_p2, dataPoutput_P2, 20); 
% net=init(net_p2); 
%  
% net_p2.trainParam.epochs=500;%(number of epochs) 
% net_p2.trainParam.lr=0.3;%(learning rate) 
% net_p2.trainParam.mc=0.05;%(momentum) 
%  
% net_p2=train(net_p2, dataPinput_p2, dataPoutput_P2); 
%  
% traiendoutput_p2=sim(net_p2, dataPinput_p2); 
%  
% %q2 
% % dataQinput_q2(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))'; 
% % dataQinput_q2(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))'; 
% % dataQinput_q2(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))'; 
% % dataQinput_q2(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))'; 
% %  
% % dataQinput_q2(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))'; 
% % dataQinput_q2(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))'; 
% % dataQinput_q2(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))'; 
% % dataQinput_q2(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))'; 
% %  
% % dataQinput_q2(4, 1:62208)=traiendoutput_q1; 
% % dataQinput_q2(5, 1:62208)=traiendoutput_q3; 
% % dataQinput_q2(6, 1:62208)=1-traiendoutput_q1-traiendoutput_q3; 
% %  
% % net_q2=newff(dataQinput_q2, dataQoutput_q2, 20); 
% % net_q2=train(net_q2, dataQinput_q2, dataQoutput_q2); 
% %  
% % traiendoutput_q2=sim(net_q2, dataQinput_q2); 
  
  
%Default Scaled Conjugate Gradient Descent 
  
%p1 
  
net_p1=newpr(dataPinput, dataPoutput, 20); 
  
net_p1.trainParam.epochs=500;%(number of epochs) 
net_p1.trainParam.lr=0.3;%(learning rate) 
  
net_p1=train(net_p1, dataPinput, dataPoutput); 
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traiendoutput_p1=sim(net_p1, dataPinput); 
  
%q1 
% net_q1=newpr(dataQinput, dataQoutput, 20); 
% net_q1=train(net_q1, dataQinput, dataQoutput); 
  
% traiendoutput_q1=sim(net_q1, dataQinput); 
  
%p3 
net_p3=newpr(dataPinput, dataPoutput_P3, 20); 
  
net_p3.trainParam.epochs=500;%(number of epochs) 
net_p3.trainParam.lr=0.3;%(learning rate) 
  
net_p3=train(net_p3, dataPinput, dataPoutput_P3); 
  
traiendoutput_p3=sim(net_p3, dataPinput); 
  
%q3 
% net_q3=newpr(dataQinput, dataQoutput_q3, 20); 
% net_q3=train(net_q3, dataQinput, dataQoutput_q3); 
%  
% traiendoutput_q3=sim(net_q3, dataQinput); 
  
%p2 
% dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))'; 
dataPinput_p2(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))'; 
dataPinput_p2(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))'; 
dataPinput_p2(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))'; 
  
dataPinput_p2(4, 1:62208)=traiendoutput_p1; 
dataPinput_p2(5, 1:62208)=traiendoutput_p3; 
dataPinput_p2(6, 1:62208)=1-traiendoutput_p1-traiendoutput_p3; 
  
net_p2=newpr(dataPinput_p2, dataPoutput_P2, 20); 
  
net_p2.trainParam.epochs=500;%(number of epochs) 
net_p2.trainParam.lr=0.3;%(learning rate) 
  
net_p2=train(net_p2, dataPinput_p2, dataPoutput_P2); 
  
traiendoutput_p2=sim(net_p2, dataPinput_p2); 
  
%q2 
% dataQinput_q2(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))'; 
% dataQinput_q2(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))'; 
% dataQinput_q2(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))'; 
% dataQinput_q2(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))'; 
%  
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% dataQinput_q2(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))'; 
% dataQinput_q2(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))'; 
% dataQinput_q2(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))'; 
% dataQinput_q2(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))'; 
%  
% dataQinput_q2(4, 1:62208)=traiendoutput_q1; 
% dataQinput_q2(5, 1:62208)=traiendoutput_q3; 
% dataQinput_q2(6, 1:62208)=1-traiendoutput_q1-traiendoutput_q3; 
%  
% net_q2=newpr(dataQinput_q2, dataQoutput_q2, 20); 
% net_q2=train(net_q2, dataQinput_q2, dataQoutput_q2); 
%  
% traiendoutput_q2=sim(net_q2, dataQinput_q2); 
  
  
  
  
  
%error calculation for the initial training 
for i=1:number_of_points 
    error1(i)=0.5*((traiendoutput_p1(i)-dataPoutput(i))^2); 
    error3(i)=0.5*((traiendoutput_p3(i)-dataPoutput_P3(i))^2); 
    error2(i)=0.5*((traiendoutput_p2(i)-dataPoutput_P2(i))^2); 
     
%     errorq1(i)=0.5*((traiendoutput_q1(i)-dataQoutput(i))^2); 
%     errorq3(i)=0.5*((traiendoutput_q3(i)-dataQoutput_q3(i))^2); 
%     errorq2(i)=0.5*((traiendoutput_q2(i)-dataQoutput_q2(i))^2); 
     
%     difference(i)=traiendoutput_p1(i)-dataPoutput(i); 
end 
error_sum_original_p1=sum(error1)/number_of_points 
error_sum_original_p3=sum(error3)/number_of_points 
error_sum_original_p2=sum(error2)/number_of_points 
  
% error_sum_original_q1=sum(errorq1)/number_of_points 
% error_sum_original_q3=sum(errorq3)/number_of_points 
% error_sum_original_q2=sum(errorq2)/number_of_points 
  
  
% x=(1:1:number_of_points)'; 
% plot(x, dataPoutput, x, traiendoutput); 
% legend('The real Data', 'Trained Data'); 
% title('The real data v.s. the trained data'); 
% figure; 
% plot(dataPoutput, traiendoutput); 
% title('The real data v.s. the trained data'); 
%  
% figure; 
% subplot(2,1,1); 
% plot(error); 
% title('The mean square error of the real and model data'); 
% subplot(2,1,2); 
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% plot(difference); 
% title('The difference of the real and model data'); 
  
% trained_net41_42=net; 
% trained_net37=net; 
% save NNtoolFitting_bus37.mat trained_net37 
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42 
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000 
  
%Test on the other buses 
%for p1 
sumbus_error=0; 
sumbus_error_p3=0; 
sumbus_error_p2=0; 
number_of_points2=15552; 
for kkk=1:8 
    datamatrix_normalized=[]; 
    error=0; 
    error_sum=0; 
    if kkk==1 
        datamatrix_normalized=datamatrix_normalizedl37; 
    elseif kkk==2 
        datamatrix_normalized=datamatrix_normalizedl41; 
    elseif kkk==3 
        datamatrix_normalized=datamatrix_normalizedl42; 
    elseif kkk==4 
        datamatrix_normalized=datamatrix_normalizedl52; 
    elseif kkk==5 
        datamatrix_normalized=datamatrix_normalizedl36; 
    elseif kkk==6 
        datamatrix_normalized=datamatrix_normalizedl44; 
    elseif kkk==7 
        datamatrix_normalized=datamatrix_normalizedl43; 
    elseif kkk==8 
        datamatrix_normalized=datamatrix_normalizedl51; 
    end 
  
%initializing 
dataPinput2=[]; 
dataPoutput2=[]; 
trainedoutput2=[]; 
  
dataPoutput2_P3=[]; 
trainedoutput2_P3=[]; 
  
dataPinput2_p2=[]; 
dataPoutput2_P2=[]; 
trainedoutput2_P2=[]; 
  
  
dataPinput2=(datamatrix_normalized(1:number_of_points2, 1:3))'; 
dataPoutput2=(datamatrix_normalized(1:number_of_points2, 5))'; 
traiendoutput2=sim(net_p1, dataPinput2); 
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dataPoutput2_P3(1, 
1:number_of_points2)=(datamatrix_normalized(1:number_of_points2, 7))'; 
traiendoutput2_P3=sim(net_p3, dataPinput2); 
  
dataPinput2_p2(1:3, 
1:number_of_points2)=(datamatrix_normalized(1:number_of_points2, 1:3))'; 
dataPinput2_p2(4, 1:number_of_points2)=traiendoutput2; 
dataPinput2_p2(5, 1:number_of_points2)=traiendoutput2_P3; 
dataPinput2_p2(6, 1:number_of_points2)=1-traiendoutput2-traiendoutput2_P3; 
  
dataPoutput2_P2(1, 
1:number_of_points2)=(datamatrix_normalized(1:number_of_points2, 6))'; 
traiendoutput2_P2=sim(net_p2, dataPinput2_p2); 
  
  
  
  
  
error_p1=[]; 
error_p2=[]; 
error_p3=[]; 
%error calculation 
for i=1:number_of_points2 
    error_p1(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2); 
    error_p3(i)=0.5*((traiendoutput2_P3(i)-dataPoutput2_P3(i))^2); 
    error_p2(i)=0.5*((traiendoutput2_P2(i)-dataPoutput2_P2(i))^2); 
    error_combined(i)=error_p1(i)+error_p3(i)+error_p2(i); 
     
%     difference(i)=traiendoutput2(i)-dataPoutput2(i); 
end 
error_sum_p1=sum(error_p1)/number_of_points2; 
error_sum_p3=sum(error_p3)/number_of_points2; 
error_sum_p2=sum(error_p2)/number_of_points2; 
error_sum=sum(error_combined)/number_of_points2/3; 
  
  
    if kkk==1 
        error37_trial=error_sum_p1; 
        error37_trial_p3=error_sum_p3; 
        error37_trial_p2=error_sum_p2; 
    elseif kkk==2 
        error41_trial=error_sum_p1; 
        error41_trial_p3=error_sum_p3; 
        error41_trial_p2=error_sum_p2; 
    elseif kkk==3 
        error42_trial=error_sum_p1; 
        error42_trial_p3=error_sum_p3; 
        error42_trial_p2=error_sum_p2; 
    elseif kkk==4 
        error52_trial=error_sum_p1; 
        error52_trial_p3=error_sum_p3; 
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        error52_trial_p2=error_sum_p2; 
    elseif kkk==5 
        error36_trial=error_sum_p1; 
        error36_trial_p3=error_sum_p3; 
        error36_trial_p2=error_sum_p2; 
    elseif kkk==6 
        error44_trial=error_sum_p1; 
        error44_trial_p3=error_sum_p3; 
        error44_trial_p2=error_sum_p2; 
    elseif kkk==7 
        error43_trial=error_sum_p1; 
        error43_trial_p3=error_sum_p3; 
        error43_trial_p2=error_sum_p2; 
    elseif kkk==8 
        error51_trial=error_sum_p1; 
        error51_trial_p3=error_sum_p3; 
        error51_trial_p2=error_sum_p2; 
    end 
    sumbus_error_p1=sumbus_error+error_sum_p1; 
    sumbus_error_p3=sumbus_error_p3+error_sum_p3; 
    sumbus_error_p2=sumbus_error_p2+error_sum_p2; 
end 
average_error_trial_p1=sumbus_error_p1/8; 
average_error_trial_p3=sumbus_error_p3/8; 
average_error_trial_p2=sumbus_error_p2/8; 
  
average_error_trial=(average_error_trial_p1+average_error_trial_p2+average_er
ror_trial_p3)/3; 
  
% if average_error_trial<average_error 
    average_error(trial)=average_error_trial; 
     
  
end 
  
end 
    average_error 
    d = {'error1' average_error(1); 'error2' average_error(2); 'error3' 
average_error(3); 'error4' average_error(4); 'error5' average_error(5); 
'error6' average_error(6); 'error7' average_error(7); 'error8' 
average_error(8); 'error9' average_error(9); 'error10' average_error(10)} 
     
    xlswrite(Default_Scaled_Conjugated_Gradient_caseE2', d, 'Testing buses 
E2', 'A1'); 
   
     
%     xlswrite('testedbuses', d, 'Testing buses', 'A1'); 
     
%     if Atrial==1 
%         xlswrite('testedbuses_E', d, 'Testing buses E1', 'A1'); 
%         xlswrite('testedbuses_E', d3, 'Testing buses E1', 'D1'); 
%         xlswrite('testedbuses_E', d2, 'Testing buses E1', 'G1'); 
%         save pattern_recognition_caseE1 net_p1 net_p2 net_p3 
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%     elseif Atrial==2 
%         xlswrite('testedbuses_E2', d, 'Testing buses E2', 'A1'); 
%         xlswrite('testedbuses_E2', d3, 'Testing buses E2', 'D1'); 
%         xlswrite('testedbuses_E2', d2, 'Testing buses E2', 'G1'); 
%         save pattern_recognition_caseE2 net_p1 net_p2 net_p3 
%     elseif Atrial==3 
%         xlswrite('testedbuses_E3', d, 'Testing buses E3', 'A1'); 
%         xlswrite('testedbuses_E3', d3, 'Testing buses E3', 'D1'); 
%         xlswrite('testedbuses_E3', d2, 'Testing buses E3', 'G1'); 
%         save pattern_recognition_caseE3 net_p1 net_p2 net_p3 
%     elseif Atrial==4 
%         xlswrite('testedbuses_E4', d, 'Testing buses E4', 'A1'); 
%         xlswrite('testedbuses_E4', d3, 'Testing buses E4', 'D1'); 
%         xlswrite('testedbuses_E4', d2, 'Testing buses E4', 'G1'); 
%         save Default_Scaled_Conjugated_Gradient_caseE2 net_p1 net_p2 net_p3 
%  
%     end 
% end 
  
 
 


