

MODELING POWER SYSTEM LOAD USING INTELLIGENT METHODS

by

SHENGYANG HE

B.S., University of Waterloo, 2006

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Electrical Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2011

Approved by:

Major Professor
Shelli K. Starrett

Abstract

Modern power systems are integrated, complex, dynamic systems. Due to the

complexity, power system operation and control need to be analyzed using numerical

simulation. The load model is one of the least known models among the many components in

the power system operation. The two different load models are the static and dynamic models.

The ZIP load model has been extensively studied. This has widely applied to composite

load models that could maintain constant impedance, constant current, and/or constant power. In

this work, various Neural Networks algorithms and fuzzy logic have been used to obtain these

ZIP load model coefficients for determining the percentage of constant impedance, current, or

power for the various load buses. The inputs are a combination of voltage, voltage change, and

power change, or voltage and power, and the outputs consist of the ZIP load model coefficients

for determining the type and the percentage of load at the bus. The trained model is used to

predict the type and percentage of constant load at other buses using simulated transient data

from the 16-generator system. A small study was also done using a dynamic induction machine

model in addition to the ZIP load model. As expected, the results show that the dynamic model

is more difficult to determine than the static model.

iii

Table of Contents

List of Figures .. vi

List of Tables ... viii

List of Equations .. ix

Acknowledgements .. xiii

Dedication .. xiv

CHAPTER 1 - INTRODUCTION .. 1

1.1 Introduction and Motivation ... 1

1.2 Objective of the Research ... 3

1.3 Overview of Research ... 4

1.4 Organization of Thesis .. 5

CHAPTER 2 - BACKGROUND .. 7

2.1 Introduction ... 7

2.2 Voltage and Load Stability ... 7

2.3 History of Load Modeling .. 9

2.4 The Structure of Load and Load Model .. 11

2.6 The State of Art of Load Modeling .. 16

2.6.1 Traditional and Black Box Approaches ... 16

2.6.2 Parameter Identification Approach .. 18

2.7 Software and Power System Model .. 20

2.8 Problem Statement .. 22

CHAPTER 3 - PARAMETER IDENTIFICATION APPROACH USING MANUAL

CALCULATIONS AND MATRIX MANIPULATION METHODS 24

3.1 Mathematical Manipulation and Microsoft Excel Approaches .. 24

3.1.1 Constant Impedance or Admittance ... 25

3.1.2 Constant Current .. 26

3.1.3 Constant Power .. 27

3.1.4 Microsoft Excel Approach ... 27

iv

3.1.4.1 Constant Impedance .. 28

3.1.4.2 Constant Current ... 29

3.1.4.3 Constant Power ... 30

3.1.4.4 Equally Distributed Load .. 31

3.1.4.5 Mixed Load ... 33

3.2 Curve Fitting using Inverse Matrix and Pseudo Inverse Approaches 35

CHAPTER 4 - PARAMETER ESTIMATION USING INTELLIGENT TECHNIQUES FOR

STATIC LOAD MODELS .. 41

4.1 Introduction ... 41

4.2 Initial Approaches ... 42

4.2.1 Simple Power System .. 42

4.2.2 16-generator power system .. 44

4.3 Training Methods .. 52

4.3.1 Adaptive Neural Fuzzy Logic Method... 52

4.3.2 Levenberg- Marquardt algorithm Method ... 53

4.3.3 Widow-Hoff Backpropagation Method ... 54

4.3.4 Default Scaled Conjugate Gradient Algorithm Method .. 56

4.4 Analyze Strategies and Methods with Best Training Approach ... 57

4.4.1 Test Cases and Procedures ... 57

4.4.3 Performance Evaluation of Various Methods and Strategies 60

4.5 Analyze Methods with Equivalent Training Criteria .. 67

4.6 Conclusion .. 70

CHAPTER 5 - Parameter Estimation using Intelligent Techniques for Dynamic Load Models . 73

CHAPTER 6 - CONCLUSIONS AND FUTURE WORK ... 77

6.1 Conclusions ... 77

6.2 Recommendations and Future Work .. 79

References ... 80

Appendix A - Graphs Generated by the Simulations .. 84

A.1 Individual training v.s. Combined Training ... 84

A.2 Simple Power System Training and validating .. 85

v

A.3 Training and validating on Bus 41 ... 86

A.4 Intelligent methods on Bus 41 ... 88

Figure A.13 The MSE for tested data and the real data .. 92

Levenberg-Marquardt Method .. 92

Appendix B - Software Code .. 100

B.1 Code for Pseudo Inverse method and Inverse Matrix .. 100

B.2 Generate 15552 cases of load_con matrix for fault condition ... 101

B.3 Generate the inputs and outputs for fault 41-42, 44-43 and etc 103

B.4 Intelligent Methods .. 108

B.4.1 Levenberg-Marquardt, Widow-Hoff backpropagation, and Default Scaled Conjugate

Gradient methods to train strategy E’s .. 108

B.4.2 Widow-Hoff Backpropagation Method on Strategy B’s ... 112

B.4.3 ANFIS Method on Strategy C’s .. 117

B.4.4 Levenberg-Marquardt, Widow-Hoff backpropagation, and Default Scaled Conjugate

Gradient methods training with equivalent training criteria ... 121

vi

List of Figures

Figure 1.1 Display of the blackout on August 2003 [1] ... 2

Figure 2.1 Static and dynamic load model [3] .. 14

Figure 2.2 Induction motor model [12]... 14

Figure 2.3 16-generator and 52-bus system used in the research ... 21

Figure 3.1 Simple Power System Load Used for Study ... 24

Figure 3.2 Voltage magnitude of Bus 3 during the fault .. 36

Figure 3.3 Load Bus 3 ... 36

Figure 3.4 Actual and simulated active power of load bus 3RR .. 38

Figure 3.5 Actual and simulated reactive power of load bus 3 ... 39

Figure 3.6 Values for P0 and Q0 for load bus 3 ... 40

Figure 4.1 Parameter estimation procedures ... 41

Figure 4.2 Simple parameter identification training ... 42

Figure 4.3 Split training method ... 44

Figure 4.4 Parallel training with bus 41 .. 48

Figure 4.5 Training method with inputs QPv  ,, .. 50

Figure 4.6 Strategy to develop a better load model for output p2 (or q2) 52

Figure 4.7 Widow-Hoff Backpropagatioin method with the inputs and outputs [44] 55

Figure 4.8 Procedure for backprogation algorithm training ... 56

Figure 4.9 Training Model for 3 inputs and one output .. 58

Figure 4.10 Various load components for load buses at fault 41-42 .. 60

Figure 4.11 Various training strategies ... 64

Figure 4.12 Various training strategies without using ANFIS ... 65

Figure 4.13 Various Training Methods excluding ANFIS method .. 66

Figure 4.14 Levenbeg-Marquardt method used for validating data on Bus 41 72

Figure 4.15 Widow-Hoff backpropagation algorithm method used for validating data on Bus 41

 ... 72

Figure 5.1 Training Model for dynamic load .. 74

Figure A.1 The individual and combined training for bus 41 ... 84

vii

Figure A.2 The simple power system training for output 1 .. 85

Figure A.3 The simple power system training for output 2 .. 85

Figure A.4 Simple power system training for output 3 .. 86

Figure A.5 Training for Bus 41 output 3 .. 86

Figure A.6 validating for Bus 41 for output 1 to output 3 from left to right 87

Figure A.7 Validation on bus 1 using trained model for bus 41 ... 88

Figure A.8 Enlarged training vs real data for Bus 41 ... 89

Figure A.9 Normal view for training vs real data for Bus 41 ... 89

Figure A.10 The plot for real and trained data in 2-axis for bus 41 ... 90

Figure A.11 The tested real data v.s. test data for load bus 41 (enlarged version) 90

Figure A.12 The tested real data v.s. test data for load bus 41 ... 91

Figure A.13 The MSE for tested data and the real data .. 92

Figure A.14 Levenberg-Marquardt method trained on 10000 points ... 92

Figure A.15 MSE for Levenberg-Marquardt training ... 93

Figure A.16 Levenberg-Marquardt method validate on the 5552 points (enlarged) 93

Figure A.17 ANN backpropagation traininig ... 94

Figure A.18 ANN backpropagation testing .. 94

Figure A.19 Default Scaled Conjugate Gradient training ... 95

Figure A.20 Default Scaled Conjugate Gradient testing .. 96

Figure A.21 Widow-Hoff backpropagation training .. 97

Figure A.22 Widow-Hoff backpropagation testing .. 98

Figure A.23 Widow-Hoff backpropagation testing (enlarged) ... 98

viii

List of Tables

Table 2.1The parameter representation for ZIP Load Model ... 22

Table 3.1 Constant impedance load calculations .. 28

Table 3.2 Constant current load calculations .. 29

Table 3.3 Constant power load calculations ... 31

Table 3.4 Equally distributed load calculations .. 33

Table 3.5 Mixed load calculations .. 34

Table 4.1 Parameters for simple power system .. 43

Table 4.2 The fault locations and their load buses .. 45

Table 4.3 The training strategies with their respective training locations 46

Table 4.4 Load characteristics cases for training ... 47

Table 4.5 Load characteristic cases for testing ... 47

Table 4.6 Time steps for the training system .. 50

Table 4.7 Time steps for the final approach ... 58

Table 4.8 The faults 41-42, 43-44, and their respective load buses .. 59

Table 4.9 One instance of load component for simulation at fault 41-42 59

Table 4.10 Different methods of training and testing against itself .. 61

Table 4.11 Training with 1000 load cases and testing against itself with 5552 load cases 61

Table 4.12 Training strategy trained on load bus 37 .. 62

Table 4.13 Training strategies and training methods for static load model 63

Table 4.14 Load model training for p1, p2, and p3 .. 67

Table 4.15 Average MSE for p1, p2, and p3 with equivalent training criteria 68

Table 5.1 Training and validating MSE values for dynamic load model 75

ix

List of Equations

0v

v
v  (2.1) ... 11

][32
2

10 pvpvpPPZIP  (2.2) ... 11

][32
2

10 qvqvqQQZIP  (2.3) .. 11

)1]([32
2

10 fkpvpvpPP pfZIP  (2.4) ... 12

)1]([32
2

10 fkqvqvqQQ qfZIP  (2.5) ... 12




2

1

)()1(

)()1(

itit

ii
f





 (2.6) ... 12

a
ZIP vPP][0 (2.7) .. 12

b
ZIP vQQ][0 (2.8) .. 12

)1(][0 fkvPP pf
c

ZIP  (2.9) ... 12

)1(][0 fkvQQ qf
d

ZIP  (2.10) .. 12

MOTZIPs PPP ** 11   (2.11) ... 15

MOTZIPs QQQ ** 22   (2.12) .. 15

  ''
'

'

)1()'(
1

qqd
d EIXXE

Tdt

dE
  (2.13) ... 15

  ''
'

'

)1()'(
1

ddq
q EIXXE

Tdt

dE
  (2.14) ... 15

 )()(
2

1 ''2
0 qqdd

E IEIEDCBAT
Hdt

d
 

 (2.15) .. 15

 )()(
1 '''

2'2 qqdds
s

d EUXEUR
XR

I 


 (2.16) .. 15

 )()(
1 '''

2'2 ddqqs
s

q EUXEUR
XR

I 


 (2.17) .. 15

)(2
0

E
L DCBATT   (2.18) .. 15

x

32
2

1
0

pvpvp
P

P
P ZIP

norm  (2.19) .. 22

32
2

1
0

qvqvq
Q

Q
Q ZIP

norm  (2.20) ... 23






























































nnn

p

p

p

vv

vv

vv

vv

 norm

3 norm

2 norm

1 norm

3

2

1

2

3
2
3

2
2
2

1
2
1

P

...

P

P

P

1

.........

1

1

1

 (2.21) ... 23






























































nnn

q

q

q

vv

vv

vv

vv

 norm

3 norm

2 norm

1 norm

3

2

1

2

3
2
3

2
2
2

1
2
1

Q

...

Q

Q

Q

1

.........

1

1

1

 (2.22) ... 23

1321  ppp (2.23) ... 23

1321  qqq (2.24) ... 23

  jBGjXRZY   /11 (3.1) .. 24

222 /)/(ZRXRRG  (3.2) ... 25

222 /)/(ZXXRXB  (3.3) .. 25

jBG
XR

X
j

XR

R

XR

jXR
jXRY 











222222

)/(1 (3.4) 25

xi

 
 
 

jQP

BVjGV

jBGV

jBGV

YV

Y

V

Z

V

Z

VV

Z

V
VVIS

































22

2

*2

*2

*

2

*

2

*

*

*
*

1

.

 (3.5) ... 25

P GV
2

 (3.6) ... 25

Q BV
2

 (3.7) ... 25

2
0vPPZIP  (3.8) ... 26

2
0vQQZIP  (3.9) ... 26

VGI G  (3.10) ... 26

jVBI B  (3.11) ... 26

 
 

 BG

BG

BG

IIVjQP

IIVS

jVBVGVS

jVBVGVIIVVIS





 ***)()(

 (3.12) ... 26

P
GVI (3.13) ... 26

Q
B

B jVI
j

VI



 (3.14) .. 26

vPPZIP 0 (3.15) ... 26

xii

vQQZIP 0 (3.16) ... 26

0PP  (3.17) .. 27

0QQ  (3.18) ... 27

0PPZIP  (3.19) ... 27

0QQZIP  (3.20) ... 27

PP 0 (3.21) ... 30

QQ 0 (3.22) ... 30

PEDL=0.3333*(PCI+PCC+PCP) (3.23) ... 31

QEDL=0.3333*(QCI+QCC+QCP) (3.24) .. 31

Pload3= - (P3-2 + P3-4 + P3-18) (3.25) .. 36

Qload3= - (Q3-2 + Q3-4 + Q3-18) (3.26) .. 36

   
   

321
2

1

32
2

1

32
222

1

312
22

11

312
22

11

)2(

)(]))((2[

)(]))((2[

kvkvkvk

kvkvvvk

kvvvkvvvvvk

kvvkvvk

kvvkvvkP

iii

iiii

iiiiiiii

iiii

iiiii















 (4.1) ... 49

 valuenormalized =
min-max

min- valueactual
 (4.2) ... 51

111   (5.1) ... 73

122   (5.2) ... 73

xiii

Acknowledgements

I would like to gratefully acknowledge and thank my advisor Shelli K. Starrett, for her

valuable contribution, advice, guidance, encouragement, and corrections during the entire study

and research of this work.

I would like to thank Dr. Stanton for his valuable guidance and advice for this research. I

would also like to thank Dr. Das and Dr. Miller for being on my committee and for their valuable

advice and support.

I gratefully acknowledge the financial support provided in part by the Kansas State

University Power Affiliates Project.

I would also give thanks to my parents, my sister, and friends for their encouragement

and support throughout my Master’s degree.

xiv

Dedication

I would like to dedicate this research to God and to my parents who have always been there to
support and encourage me.

1

CHAPTER 1 - INTRODUCTION

1.1 Introduction and Motivation

On August 14, 2003, a blackout took place in the North American Eastern

Interconnection that included most of New York State, parts of Pennsylvania, Ohio, Michigan,

and Ontario, Canada. About 63 GW of load was interrupted. This magnitude equals

approximately 11% of the total load distributed in the Eastern Interconnection of the North

American system. Another important discovery was that there were significant reactive power

supply problems in the states of Indiana and Ohio prior to noon. The first important event was

the outage that took place in First Energy’s Eastlake unit 5 generator as the area was generating

high levels of reactive power. As a result, the Eastlake unit 5 voltage regulator tripped because

of over-excitation.

Due to the cascading loss of major tie lines in Ohio and Michigan, a huge 3700 MW

reverse power flow was serving load in the Ohio and Michigan system and caused heavy loading

on the transmission around the region. In the end, this whole series of events resulted in a

cascading outage of several hundred lines and generators tripped in the entire region.

The primary causes were summarized as inadequate understanding of the system,

inadequate level of situation awareness, inadequate level of vegetation management (tree

trimming), and an inadequate level of support from the reliability coordinator. The figure for the

August 14, 2003 cascading outage is shown below.

2

Figure 1.1 Display of the blackout on August 2003 [1]

Similarly, on September 23, 2003, voltage collapse took place in Southern Sweden and

eastern Denmark, and led to the separation of a region of the Southern Swedish and Eastern

Denmark system. This collapse was caused by both voltage and frequency.

Subsequently, an Italian blackout took place on September 28, 2003. The phase angle

became too large due to heavy power import into Italy, and a 380 kV line was tripped on the

same border. These outages left the Italian system with a shortage of 6400 MW of power, and

the system collapse caused a nationwide blackout. It was the worst blackout in the history of its

nation.

The Power System Stability and Power System Dynamic Performance Committee

gathered experts from around the globe to have different kinds of sessions to discuss these issues.

The root causes and necessary steps to reduce the risk of blackouts were the main focus of the

panel session [2]. Recommendations for these blackouts by some of the presenters [2] announce

that there were also data management issues. It seems there are definitely needs to improve the

calibration of recording instruments, data collection, and establishment of an infrastructure to

support a centralized blackout investigation. Moreover, there is a need to facilitate better

insights into the cause of blackouts. As an example, WAMS or wide area measurement systems

need to be established. Related studies were recommended and include observing Eigen-

3

analysis, HVDC, and FACTS equipments to examine the system response to test inputs.

Furthermore, tracking the implementation of recommended actions to improve reliability was

also suggested. The application of automatic controls such as automatic voltage regulators and

applicable power system stabilizers should be mandatory for generators. It is also important to

build rapid system restoration to minimize the impact of a blackout.

 Transient stability and load model are closely related to the power systems collapse. In

reference [3], the author stated that as the load demand gets higher, the varying load becomes

unstable as we try to control the power. The reduction in load impedance also will decrease the

power. The load characteristics play a vital role in determining whether the voltage will

progressively decrease or the system will stay stable. For constant impedance static load

characteristics, the desired power and voltage will be higher than the actual power and voltage

levels. Furthermore, the load-power factor affects the power-voltage characteristics of the

system. As the voltage declines in the transmission line, the value will be a function of active

and reactive transfer. We will describe voltage stability relies on the relationships between P, Q,

and v [3]. Specifically, the P-V and Q-V curves are used extensively in voltage stability study.

As power system stable operation relies on the capability to match the electrical load on the

system to the electrical output, the parameters data and values for load model obtained can be

very useful in determining the stability of the power systems [3].

1.2 Objective of the Research

Load modeling is not an easy task in a complex power system. A load bus representation

in stability research consists of a combination of devices including fluorescent and incandescent

lamps, refrigerators, heaters, compressors, motors, furnaces, and so on. The exact components of

a load are very hard to describe mathematically or physically. The composition of the load will

also change during the day and season, as well as with the weather conditions and the state of the

economy. There are virtually millions of components in the total load supplied by the power

systems. Hence, it becomes quite impractical to display all load components in a load model.

To effectively study the load representation in a power system, we therefore really need to have a

simplified model [3]. This thesis will describe simple load modeling concepts, load composition

and characteristics as well as the obtaining of load model parameters. Load models from

4

measurements of simulated system data will be provided using different intelligent computing

techniques. Obtaining the load model parameters from measurement data will be the main goal.

Having intelligent systems to quickly and accurately determine load parameters to be fed to

voltage stability algorithms and others can help operators to have a more realistic picture of

current system conditions and vulnerabilities. By doing so, these load parameters can be useful

to provide analysis to prevent voltage collapse, to enable solutions to the power system collapse,

and to allow future study of the system in smart grid. It is important to find accurate numerical

methods and accurate data from the load buses, and to solve problems quickly and to obtain the

solutions to aim in solving and preventing power systems from collapsing. The important step is

to choose a suitable load model to represent one or two main power system areas for study.

1.3 Overview of Research

This research used various intelligent techniques to do a load modeling. The two

preliminary work categories included using pseudo inverse and manual calculations to find load

parameters. The later sections used various techniques including Levenberg-Marqauardt

algorithm, Widow-Hoff backpropagation, Default Scaled Conjugate gradient Algorithm,

Adaptive-Neural Fuzzy Inference Systems (ANFIS), and traditional neural networks method to

find the parameters of the load model both in static and dynamic models. The objectives and

approaches to achieve the goals are outlined as below.

Simple Modeling:

 Manual calculation of the parameters from a simple load constructed by the Microsoft

Excel spreadsheet

 Inverse matrix or the simple pseudo inverse to calculate the over-determined

parameters from the known values

 Linear programming approach

Intelligent Modeling:

 Utilize data from simulated, multi-machine systems to develop load models. The

load voltages, real and reactive power, and the parameters that are associated with

constant impedance, current and power are used as the input and output for the

training.

5

 The above variables and parameters are used with the power changes and voltage

changes at the different time steps for training and testing.

 The range of load parameters determining levels of constant impedance, current, and

power and later percentage of dynamic load values are interchanged, and the different

snap shots are taken for different simulation time steps to construct 15,552 or more

load cases.

 Training, validating, and testing with the intelligent techniques were done to use the

trained information to predict the information on the other load buses for both static

and dynamic loads.

 Various strategies are used to training and testing the load buses, including combining

some load buses from each case and test against all the load buses to determine the

best data for training.

 The different intelligent methods and different strategies of testing and training and

their MSE efficiency were recorded and compared to determine the best training

strategy and method that can be used.

1.4 Organization of Thesis

The structure of the thesis is outlined as follows.

This chapter describes the power system load and the power system failure or collapse in

recent years. Also, it gives the motivation and the need for the work and research.

Chapter 2 discusses the background of load modeling. The recent study and research

done by others on load modeling are reviewed. The reviews of voltage stability aspects are

described.

Chapter 3 talks about the problems and the preparation for this research. It explains the

models and methods used at the early stage of the research and the shortcomings for these early

experiments. Test cases are shown to prepare for this early research. It introduces different

methods to solve load models. ZIP model parameters and various other forms of representation

are introduced. Methods including pseudo-inverse, manual equation methods and inverse matrix

methods are described. The advantages and disadvantages of these methods will be discussed.

6

Chapter 4 deals with a larger load model problem with the focus on the load voltage, load

real and reactive power, and the frequency at the load. The transient data from the 16-generator

and 52-bus system is extensively studied, and is used for neural networks training. The

coefficients p1, p2, p3, q1, q2, and q3 from the ZIP load model are obtained through the well

trained neural networks. The focus is on the static power system loads. A combination of load

bus training and testing was done here with several intelligent methods including Levenberg-

Marquardt, Widow-Hoff backpropagation, Default Scaled Conjugate gradient algorithm, and

ANFIS.

Chapter 5 used the similar approach as in Chapter 4 but the work is focused on testing the

approach for dynamic power system loads.

Chapter 6 concludes the present thesis work with some suggestions and for improvement

of the study as well as some proposed future research work based on the current knowledge and

work.

7

CHAPTER 2 - BACKGROUND

2.1 Introduction

This chapter gives us a background of load model structure and the recent research and

knowledge of load model. The primary objective of the current research work is to have a good

knowledge of the power system load and to be able to learn and predict the relations between the

load variables such as real and reactive power and voltages and the different parameters that

determine the amount of constant current, power, and current of the load. Finding the type of

load is important to give us a deeper understanding of the power system model for computer

simulations.

2.2 Voltage and Load Stability

The constant change in the electricity industry creates a new feature of our power

systems. It is represented by complex interconnections, and the applying of a large variety of

controllers for improving the system operation and the utilizing of available sources.

Furthermore, the deregulation also causes the interconnected power network to be more

complex. Therefore, the need for power networks to understand channels for the transfer of

electricity from points of production to points of consumption is crucial. This process depends

on a competitive system and time varying factors. The complexity of the system, the nature of

the dynamics that cause it and the external factors interfering simultaneously require extra care,

in order to maintain a suitably operated power system. The system must supply high reliability

at minimum cost and ensure the smallest impact on the natural environment. To avoid

inconvenience to customers and technical problems which lead to higher costs, the system needs

to handle the frequent variations in active and reactive load. High levels of system security,

availability of “spinning” reserve of active and reactive power, high quality in the design of the

system components and availability of different paths for the delivery of the energy to the

customers are very important [4]. The load representation in these stability studies is discussed

later on in this chapter.

As described in [3], “voltage stability is the ability of a power system to maintain steady

acceptable voltage at all buses in the system at normal operating conditions, and after being

8

subjected to a disturbance.” The important message includes not only maintain the steady

acceptable voltage, but to sustain the voltage after a disturbance and to restore it to a state similar

to the pre-disturbance situation. When the voltage in the system is not controllable and decreases

linearly, variations in load or inappropriate voltage control devices may be applied as the system

becomes voltage unstable. It is a requirement of the power system to stay in equilibrium under

normal scenarios. Referring to [2], “voltage instability is the absence of voltage stability, and

results in progressive voltage collapse (or increase)”. The primary cause of this unstable situation

in the power system is the lack of ability to satisfy the reactive load demand under heavily

stressed conditions. Voltage collapse causes the system to have below normal voltage in a large

part of the power system, and therefore will result in collapse of the power system. The load

characteristic and its dynamics dictate the dependency between the load and the voltage, and

therefore affect the voltage stability phenomenon. A voltage decrease at the beginning will

cause decay in load, and after few seconds, a load restoration process needs to be started. To

make it more complicated, the restoration can lead to heavily stressed loaded conditions. The

restoration will cause voltage instability and even voltage collapse if the conditions remain for

too long or suitable control decisions are not taken or the system is not able to resolve the

reactive load demand.

Furthermore, power system stability can be categorized into angle stability and voltage

stability as described in [3]. Voltage stability can be divided into short and long-term voltage

stability. The ‘short-term’ is a time frame of about a few seconds, and describes the dynamics of

components such as induction motors, static VAR compensators and excitation of synchronous

generators. When the dynamics of the system react in slower time frames, around several

minutes, this is termed ‘long-term stability”, two kinds of stability problems can take place as

well as problems in frequency and voltage. Frequency stability problems are the result of power

not balanced between generators and loads after a large disturbance, and can result in systems

isolated from the main system [3]. Studies of each of these stability problems require some sort

of load model.

9

2.3 History of Load Modeling

As the current trend shows, load modeling has gained interest as the power system load

becomes the new area of research within power system stability. A couple of studies, [5 and 6]

have demonstrated the key effect of load representation in voltage stability studies. Because of

that, there is a need to find more accurate load models than those already used traditional ones

(e.g. all constant impedance or all constant power).

As voltage collapses only took several minutes in the past “real world” cases, the older

load modeling work was focused on induction machines, critical in the range of some seconds

after a disturbance. The load response was taken as a function of voltage [7]. The use of

dynamic load models has become increasingly popular compared to the static load models.

Although knowledge has been acquired from power system load in the recently years, it is one of

the most difficult and unknown areas of study in the midst of the power system models. This is

because of the diverse and complex load components, the high distribution and variation during

the time of day and year, weather, and the lack of information for the load. The new techniques

for the load modeling will result in better understanding of the load and better representation of

the load in simulations of the system. This will help to have a positive impact for the control,

operation, and reliability of the power system. The accurate load model and a real-time

monitoring application will help to introduce more competiveness for the electric industry and

contribute to the development of smart grid information structure [8].

A model that uses a fundamental engineering knowledge and describes the physical

phenomena of a system is called a physical model. The model uses the elementary laws that will

give accurate results when simulating. However, for a more complex system, using the physical

laws to solely find the specific parameters could be difficult. Instead, developing the model

based on empirical laws may be easier and more practical. When developing the load model

with empirical laws, only input and output signals are needed to form a relation because usually

sufficient knowledge is not provided to form a physical model. However, the input and output

can still be used to form a mathematical relation to model the system. This approach is also

called a “black box model” as there is limited amount of available data to find the relation

between the input and output of the system. The physical model for power system loads will be

utilized in the work of this thesis.

10

As referenced by [9], the author showed that the load model consists of two different

characteristics: the static and dynamic, where static part is commonly modeled by the ZIP load

model and the dynamic characteristics can be more complex, often involving induction machine

models. The voltage variation of the system is affected by the load variations. Two major

categories for the study include the physical models and the non-physical models. The physical

model includes the widely applied composite load model that needs the system to maintain the

constant impedance, the constant current, or the constant power (e.g. ZIP load model is one kind

of physical one). The non-physical load models include the exponential load model, the

difference equations model, and the neuron-net model etc. In [9], the non-linear least square

method worked well for the simple load model with measured active load.

The two different composite load characteristics used for load modeling are the

measurement-based approach and the component-based approach. The measurement-based

approach requires people to measure the data at substations and feeders directly. The voltage,

frequency, sensitivity of the active P and reactive Q load were recorded through this approach

[9]. The data was received from measurements on site and included the voltage and frequency

variations as well as the changes in active and reactive load. In order to create this model by

putting the measured data to an approximate model, the parameters would be generated. This is

also called gray-box modeling as a structure model was constructed from measured data. For

static models, this technique is much easier compared to a dynamic model. The advantage is that

this technique is fairly accurate and can be applied as economical investments to observe the

most important loads.

From [6], on the other hand, the component-based approach focuses on constructing a

composite load model from data on the constituent parts. For instance, information can be

obtained from a combination or composition of substations, classes, or load components. The

load composition data is important in this approach and it defines the percentage of each load

component. The load characteristic data is associated to the physical characteristics for those

load components. According to [10], similarly, component-based approach works well with the

static load model, but does a poor job of describing the dynamic load characteristics. Load

parameter representation for dynamic performance can be very complicated as the load varies

along with time. It is a big challenge to change the parameters to follow the variation. The load

11

model parameters need to be adjusted as the load composition changes. Hence, additional

changes need to be done for the dynamic load model. The main advantage of using this

technique is that no field measurements are required. Also, this model can adapt to different

systems and conditions easier as well as applying it to use. However, because of the dependence

on weather and time, the model needs to be constantly updated to be more accurate. For the

research purpose and the need to simplify the study, off-line data is usually studied as it

corresponds to a period of time.

2.4 The Structure of Load and Load Model

The mathematical representation of the relationship between a bus voltage (magnitude

and frequency) and the power (active and reactive) or current flowing into the bus load is called

a load model [9]. It is important for the design, planning, and operation of a power system.

Since the load parameters are usually non-linear, it is a challenging problem to describe the

dynamic characteristics of the load.

As discussed previously, load models can be constructed based on two different

approaches. One approach is measuring the voltage and frequency sensitivity of the active and

reactive powers at the substation or load bus. The second approach constructs a composite load

model for a given substation or load bus, according to the mix of load classes at the substation

[11].

The voltages referred to in this work are the per unit values where the v is the voltage magnitude.

0v

v
v  (2.1)

In the general structure of the ZIP load model used in this work, the active and reactive power

have three components: constant impedance (Z), a constant current (I) and a constant power (P)

injections. The general model, which represents the voltage dependency of loads, is of the form

given below. In this thesis, the parameters given equations (2.2) and (2.3) will be used.

][32
2

10 pvpvpPPZIP  (2.2)

][32
2

10 qvqvqQQZIP  (2.3)

12

The parameters of the model are p1 to p3 and q1 to q3, which define the proportion of each

component respectively. The frequency dependency of load characteristics is represented in the

polynomial ZIP model by a factor including ∆f as indicated below.

)1]([32
2

10 fkpvpvpPP pfZIP  (2.4)

)1]([32
2

10 fkqvqvqQQ qfZIP  (2.5)

∆f is the frequency deviation (f-f0). Kpf ranges from 0 to 3, and Kqf ranges from -2 to 0 [5]. The

frequency in the study is found from time step data using the form below:




2

1

)()1(

)()1(

itit

ii
f





 (2.6)

Aside from the ZIP model or polynomial model, there is also an exponential load model in which

the voltage depends on the load power exponentially. For the exponential model, the real power

and reactive power can be expressed in equations (2.7) and (2.8) below:

a
ZIP vPP][0 (2.7)

b
ZIP vQQ][0 (2.8)

Similarly, the frequency dependent components can be added to the exponential model as shown

in equations (2.9) and (2.10) below [3].

)1(][0 fkvPP pf
c

ZIP  (2.9)

)1(][0 fkvQQ qf
d

ZIP  (2.10)

The exponential components a, b, c, d have common values for various load components such as

air conditioners, resistance space heater, small industrial motors, or fluorescent lightening [6].

 In [3], the author pointed out that the dynamic load models are more complex because

the response of the loads to voltage and frequency variations is a lot faster. The static models

used before will be ineffective models in this fast response case. However, the detecting of

parameters in this case can still rely on measurement based and component-based approaches.

More accurate measurements need to be taken as the system’s response changes rapidly. Due to

the complexity, long term stability, inter-area oscillations, voltage stability become important

criterion to be modeled. The study of systems with large motor loads may require them to be

13

represented in load dynamics as 60 to 70% of the total energy was consumed. Therefore motors

are usually the most important part of dynamic system modeling. Other load components that

will affect the stability study are as below:

 Discharging the lamps and restart the lamp. The lamps that have mercury vapor, sodium

vapor, and fluorescent lamps will affect the voltage recovery or delay the recovery.

 Protective relays especially thermal or over-current relays

 Thermostatic control of loads (i.e. heaters/coolers, water heaters, and refrigerators.). The

voltage will drop once these devices connect to the system.

 ULTCs on distribution transformers, voltage regulators, and voltage-controlled capacitor

banks. Although these are not modeled in a lot studies. They make a difference in the

load. Also these devices help to mitigate a disturbance and aim to make the system

return to the pre-disturbance levels.

Static and dynamic load models are shown in Figure 2.1 below. It represents a wide range of

characteristics shown by many load components. This is an aggregated or complex load model

including small induction motors, large induction motors, static load characteristics, etc.

14

Figure 2.1 Static and dynamic load model [3]

The induction load model is an important component in dynamic load modeling. In Figure 2.2, a

simple induction motor model is displayed.

Figure 2.2 Induction motor model [12]

The variables for the induction motor model are given below.

Rs : stator resistance

Xs: stator leakage reactance

Xm: magnetizing reactance

Xr: rotor leakage reactance

Rr: rotor resistance

S = (ws-w)/ws : rotor slip

According to [12], dynamic load can be displayed as a combination of ZIP load model

and induction motor model. Aggregate load models are frequently used, and are the

combinations of a static load model and dynamic load model. The four aggregate load model

structures are as below.

 ZIP augmented with induction motor

 ZIP augmented with another type of equation (second order)

15

 Exponential augmented with induction motor (three-state)

 Exponential augmented with another type of equation (second order)

There are many dynamic load models. For a specific type of measurement data, one

model structure will be more preferred than the other one. Whichever model that gives the best

results will also be the best model structure for the specific type of measurements. In this thesis,

the ZIP static model augmented with an induction motor model is used for the load model

structure. The frequency part is ignored in here, and the aggregate dynamic load model is shown

below [12].

MOTZIPs PPP ** 11   (2.11)

MOTZIPs QQQ ** 22   (2.12)

The Ps, PZIP, PMOT are the real power loads that are aggregated. Now, γ and δ are the

percentages of static and dynamic load. The more extensive representation of the induction

motor model can be shown in equations (2.13) through (2.18) below [12].

  ''
'

'

)1()'(
1

qqd
d EIXXE

Tdt

dE
  (2.13)

  ''
'

'

)1()'(
1

ddq
q EIXXE

Tdt

dE
  (2.14)

 )()(
2

1 ''2
0 qqdd

E IEIEDCBAT
Hdt

d
 

 (2.15)

 )()(
1 '''

2'2 qqdds
s

d EUXEUR
XR

I 


 (2.16)

 )()(
1 '''

2'2 ddqqs
s

q EUXEUR
XR

I 


 (2.17)

)(2
0

E
L DCBATT   (2.18)

In these equations X’ is equivalent to Xs+((Xm)(Xr))/(Xm+Xr), and it is the transient

reactance or the blocked-rotor (short-circuit) reactance. X or Xs+Xm is the open circuit reactance

or the motor no-load reactance. The rest of the variables are listed below.

16

H: rotor inertia constant

TL: load torque equation

T0: steady state mechanical torque

ω: rotor rotation speed

E’d: d-axis transient EMF of motor

E’q: q-axis transient EMF of motor

Ud: d-axis bus voltage

Uq: q-axis bus voltage

Id: d-axis stator current

Iq: q-axis stator current

The A,B,C,D,E coefficients in load torque equation need to satisfy

EDBAC 00
2
01  

To better understand the system, we also need to find the percentages of each individual load in

the total load. The ZIP load model equations (2.2) and (2.3) have the parameters p1, p2, p3, q1,

q2, q3. From the load composition equations (2.11) and (2.12), the parameters are α1, α2, β1, β2.

Lastly, the parameters from the induction motor model are Rs, Xs, Rr, Xr, Xm, H, A, B, C, D, and

E. Finding the load parameters will give us the best fit between the measurement data and the

actual load model outputs. This work will be the main focus of this thesis. The intelligent

techniques were applied to find these parameters that will give the smallest mean square errors

between the measured data and the actual data.

2.6 The State of Art of Load Modeling

2.6.1 Traditional and Black Box Approaches

The traditional approach used manual calculation to find the best equations or physical

structure to represent the relations between the output and input data. This approach can

sometimes be quite efficient for small sized power systems and can provide high accuracy.

However, for more complex systems and dynamic load systems, this approach is unreliable. In

order to solve more complicated power systems, the black-box approach has been often used

[10]. Due to the complexity of the system, several intelligence techniques were used to predict

17

the output based from the input without representing the model in equation format. This method

can be used to merely predict more complicated systems, but it does not allow the readers to

really understand the power system loads nor does it provide the parameters for use in other

applications. In [14], the writers specified that for general non-linear curve fitting at a precision

problem, back propagation artificial neural network (BP ANN) was a good choice. However,

one of the disadvantages of the BP ANN load model was that it lacked sufficient feedback. A

more advanced method was needed. Hence, for dynamic load system, more complicated ANNs

such as Elman Artificial Neural Network or Hopfield network were used to solve the time

dependant dynamic system. Using field tests to determine the load model parameters indicated

that the ULTC's and feeder voltage regulators are the main source of load recovery dynamics

[14]. In [16], the least square method was sufficient to find the closest curve fit for the power

system load. In paper [16], other practical tests have shown that for an overly conservative load

model, inaccurate data will be an issue for the system.

As stated in paper [17], a general ANN model included voltages at the input, bias and

weights at each neuron, with the output as power. One or more feedback signals went back to

the input as well to form a closed loop system. This model can accurately provide the

characteristics of the load dynamics. The ANN approximation will allow them to find the error

bounds and justify the choice of functions with smaller errors. In [18], we can see that for the

Matlab neural network test, it was concluded that the training algorithm was the most important

factor in the accuracy and performance of the network. The performance for each training

algorithm also depended on the size of the power system network.

In [19], neural network fuzzy dynamic programming approach was another method

used. The procedures can be described as below.

 The input signal is first fed to the artificial neural network.

 Second step is to go through the ANN to construct the fuzzy dynamic programming rules.

It also is helpful to include current status of capacitors and tap positions as ANN inputs.

 Then solve using the rules for the output. The combined approach was efficient as it only

took a little time for ANN to reach the targeted solution.

18

As stated in the article [19], in order to improve the performance when dynamic power

systems are designed and maintained with less stability margin, power system engineers need to

consider the accuracy of loads and data and proper load models for the distribution

equipment. In paper [20], fuzzy inference was suggested by the researchers to solve dynamic

load at the transient case. Adaptive-network-based fuzzy inference system or ANFIS was

developed to construct the basis of fuzzy if-then rules for combining learning the rules of

adaptive network to model the no-linear system performance. The results show that the dynamic

load modeling ANFIS structure emulated the P and Q load response with input voltage and

frequency fairly well.

Another approach as shown in article [21] said that the node-load model by the

application of an indistinct fuzzy logic approach allowed the modeling of a disturbance during

transient conditions and also accounted for the structure of node-loads that were not completely

clear.

2.6.2 Parameter Identification Approach

Parameter identification approach is an essential technology in measurement-based load

modeling. According to [3, 22, 23, 24, and 25], precise load modeling can avoid any

miscalculation or wrong operations. A contrary conclusion can be caused by inappropriate types

of load models [26, and 27]. However, in article [24], the author declared that if a “standard”

load model was used then the load model would not recreate the unstable behavior for a fault

despite of reconstruction. Today, as reported by Southern California Edison and Florida Power

& Light Company in article [28], load modeling has improved because of an increase in air

conditioner load in some areas. Air conditioner load sometimes would cause short-term voltage

instability, quick voltage collapse, and also would slow down voltage recovery. Although there

is a lot of literature related to finding the load model parameters as stated in paper [29], to get the

accurate load model from these parameters can be difficult. Several problems could be shown

below:

 Time variance and stochastic variables are associated with loads

 Some issues with aggregate loads

o Massive diverse load components

19

o New load components getting into the system

o Not enough composition information for certain loads

o Insufficient details to show various load components

 Not enough actual measurements to verify the load models

We can see there are numerous problems with the load models, and an improved load model has

become a challenge for power system analysis and control. The state-of-the-art techniques for

load modeling should be taken advantage of to develop a systematic approach to represent the

aggregate load for power system stability study purposes.

 As discussed before, the load modeling methods are categorized by the component-based

approach and the measurement-based approach. The latter one will be more real-time and more

associated with the dynamic characteristics [30]. Measurement-based approaches are based on

system identification and are more applicable to linear models. For nonlinear models, it could

become more challenging [31]. Analytical-based approaches have been used to derive

parameters in 1977 according to test results. Field tests were recorded and parameters of a

simplified induction motor load model were solved [32]. A step/staged/controlled test could use

this method although measurement error will be detected fairly easily.

 On the other hand, an optimization-based approach can be used to find the best

parameters that minimize an error function between the measured data and the simulated ones.

Many of these approaches have been done to find the best parameter estimation. For instance, as

shown in paper [12], the search algorithms are:

 Search algorithms with statistical techniques

o Least square-based parameter estimation that involved induction motor

models [33].

o Weighted least square-based estimation with Unequal Square [34].

o Instrumental variable-based estimation that minimizes the sum of absolute

residues [35].

o Maximum likelihood-based using a probability density function [36].

o Gradient-based parameter estimation [37].

 Search algorithms with heuristic techniques

20

o Simulated annealing-based parameter estimation used adaptive simulated

annealing [38].

o Neural network-based parameter estimation used measurements to train and

update the load model continuously [17].

o Genetic algorithm-based parameter estimation [39].

Other methods include:

o Multistage algorithm for load parameter identifications [40].

o Nonlinear parameters calculated directly from the linear identification results

[41].

Lastly, the stochastic based approach also was used and this approach makes use of the error

function and therefore is more confined [12].

2.7 Software and Power System Model

As described in previous chapters, static models are commonly used in today’s research.

The models can be used in industries to predict dynamic behaviors of active/reactive loads. In

this research, load bus 3 in a 16-generator power system from a Matlab coded power systems

toolbox (by Cherry Tree software [42]) was used. The load bus voltage, active and reactive

powers were used as the key information in this research. The 16-generator and 52-bus system is

shown in the figure below.

21

Figure 2.3 16-generator and 52-bus system used in the research

For this research, Matlab was used extensively. It helped to alleviate the amount of

matrix calculations needed for the research. Calculations involved data analyzing, accumulating,

and storing. As the Power System Toolbox was coded in Matlab, therefore Matlab software is a

good choice for this research. The Microsoft Excel program was also utilized in the research as

well. This software application helped in calculating large amounts of data as well as displaying

the data in an organized manner. Plots and graphs can be generated fairly readily by this

software as well. In this chapter, the first part focuses on a small simple power system. We used

simple spreadsheet calculations and manipulation to show that the constant power, constant

current, and constant impedance parameters can be obtained and verified using Microsoft Excel.

In the second part, curve fitting and parameter finding by matrix manipulation was used. As

22

some of the matrices are seen as over-determined systems, methods such as pseudo-inverse were

used.

2.8 Problem Statement

The interest in this thesis is to develop methods to readily find the necessary parameters

to represent the load model using “measurement” data from a power system load. The work

utilized the static ZIP load model, as shown in equations (2.2) and (2.3) before and rewritten

below for convenience.

][32
2

10 pvpvpPPZIP 

][32
2

10 qvqvqQQZIP 

We notice that P0 and Q0 are the pre-disturbed active and reactive powers. The representations

for p1 to p3 and q1 to q3 can be summarized in the Table 2.1 below.

Table 2.1The parameter representation for ZIP Load Model

Variable Representation

p1 Percentage of constant real Impedance or Admittance

p2 Percentage of constant real current

p3 Percentage of constant active power

q1 Percentage of constant reactive Impedance or Admittance

q2 Percentage of constant reactive current

q3 Percentage of constant reactive power

The goal of this work is to find these p1, p2, p3, q1, q2, and q3 variables for the load model.

As mentioned before, a simple power system and the 16-genetaor power system from the Matlab

power system tool box were used, and these parameters were identified. Their voltage, real

powers and reactive powers were used as measurements during transient simulation to assist in

finding the parameters. In a more complex power system where 339 time steps were run, an

over determined matrix would be formed. To demonstrate this matrix, we re-arrange the

equations (2.2) and (2.3), and get:

32
2

1
0

pvpvp
P

P
P ZIP

norm  (2.19)

23

32
2

1
0

qvqvq
Q

Q
Q ZIP

norm  (2.20)

As we finished running the transient simulation, data for load voltage, active, and reactive

powers were obtained at different time steps. Let us represent these values as v1, v2, v3, v4, normP

1, normP 2, normP 3, normQ 1, normQ 2, normQ 3 and etc., for their respective value at different time steps.

As we re-arrange the equations, the matrices would be:






























































nnn

p

p

p

vv

vv

vv

vv

 norm

3 norm

2 norm

1 norm

3

2

1

2

3
2
3

2
2
2

1
2
1

P

...

P

P

P

1

.........

1

1

1

 (2.21)






























































nnn

q

q

q

vv

vv

vv

vv

 norm

3 norm

2 norm

1 norm

3

2

1

2

3
2
3

2
2
2

1
2
1

Q

...

Q

Q

Q

1

.........

1

1

1

 (2.22)

These two matrices above are over-determined systems and the parameters would not be 100

percent accurately solved. Moreover, the sum of both active and reactive power parameters is 1.

This is because the total amount of active or reactive power should be 1 or 100% as below:

1321  ppp (2.23)

1321  qqq (2.24)

24

CHAPTER 3 - PARAMETER IDENTIFICATION APPROACH

USING MANUAL CALCULATIONS AND MATRIX

MANIPULATION METHODS

3.1 Mathematical Manipulation and Microsoft Excel Approaches

In this problem, we focused on building a small power system load with real and reactive

loads in parallel. Any impedance or even combinations of impedance and admittance could be

converted to the format below. The small power system load is displayed below in Figure 3.1.

Figure 3.1 Simple Power System Load Used for Study

The parameters were calculated based on this simple schematic diagram to establish and

verify the simple relations between the power system loads values. These simple concepts and

insights would be carried over and be used to construct models of loads in more complicated

power systems later on.

As seen in Figure 3.1, the admittance or the conductance, G, and susceptance, B, were

used in parallel instead of impedance of resistance and reactance in series. This modification

was needed to better understand the load voltage and the corresponding load powers. In fact, in

order to convert the Impedance (Z) to an admittance (Y) form, we would do the following:

  jBGjXRZY   /11 (3.1)

To better understand the conductance (G) and the susceptance (B), we convert the resistance and

reactance as shown below.

25

222 /)/(ZRXRRG  (3.2)

222 /)/(ZXXRXB  (3.3)

jBG
XR

X
j

XR

R

XR

jXR
jXRY 











222222

)/(1 (3.4)

Notice that to simplify the whole mathematical manipulation, we assume V to be the reference

voltage with a zero angle.

3.1.1 Constant Impedance or Admittance

Following the Figure 3.1, for the constant impedance case, we could find the relation between

powers and square of voltages as shown below.

 
 
 

jQP

BVjGV

jBGV

jBGV

YV

Y

V

Z

V

Z

VV

Z

V
VVIS

































22

2

*2

*2

*

2

*

2

*

*

*
*

1

.

 (3.5)

Therefore, we conclude that:

P GV
2

 (3.6)

Q BV
2

 (3.7)

26

Looking back at Equations (2.2) and (2.3), we see that if the load has constant impedance,

p2=p3=0 and p1=1. As we substitute these values in, the simplified equations are as below. Note

they have similar forms as equations (3.6) and (3.7) above.

2
0vPPZIP  (3.8)

2
0vQQZIP  (3.9)

3.1.2 Constant Current

Similarly, for the constant current problem, we look for the relationship between powers and real

and reactive currents. First, we define conductance current and susceptance current in Equations

(3.10) and (3.11) respectively as below.

VGI G  (3.10)

jVBI B  (3.11)

After defining these equations, we solve the complex power as below.

 
 

 BG

BG

BG

IIVjQP

IIVS

jVBVGVS

jVBVGVIIVVIS





 ***)()(

 (3.12)

P and Q can be written separately as in equations (3.13) and (3.24).

P
GVI (3.13)

Q
B

B jVI
j

VI



 (3.14)

Looking back at equations (2.2) and (2.3), we see that if the load has constant current, p1=p3=0

and p2=1. As we substitute these values into the ZIP load equation, the equations are simplified

as below with a similar structure as the equations above. However, we note that only the

magnitude for the reactive power Q is used.

vPPZIP 0 (3.15)

vQQZIP 0 (3.16)

27

3.1.3 Constant Power

For constant power case, P and Q can be perceived fairly readily. Because P and Q need to be

constant, they will be equivalent to the pre-disturbed values of 0P and 0Q . These values for P

and Q are not changed throughout the entire operation as shown in (3.17) and (3.18).

0PP  (3.17)

0QQ  (3.18)

From Equations (2.2) and (2.3), if we have constant power, then p1=p2=0 and p3=1. As we

submit these values in, the equations are simplified as below in (3.19) and (3.20) which are

equivalent to the equations above.

0PPZIP  (3.19)

0QQZIP  (3.20)

3.1.4 Microsoft Excel Approach

Microsoft Excel was used as an extended approach to verify the credibility of ZIP load

equations. The main goal is to prove that ZIP load Equations (2.2) and (2.3) would still hold

when a stream of voltage data was fed into the simple power system in Figure 3.1.

Several key points need to be taken into consideration as outlined below.

 The constant impedance, constant current, and constant power equations are used for

calculating important values on the load such as the equations in (3.6), (3.7), (3.13),

(3.14), (3.17), and (3.18).

 A set of changing voltages are fed into the simple power system in Figure 3.1, and

their respective active, reactive powers were generated from these equations.

 In order to prove the credibility of ZIP load model, the P0 and Q0 values should be

constant during the calculations as this is also the assumption in ZIP load equations.

Now, to first construct the model, we define the admittance Y from the simple power

system to be Y=2.68+j28 per unit. This can also be expressed as:

B=2.68 per unit

28

G=28 per unit

The sections below calculate the P0 and Q0 and use the changing voltage from 0.95 to 1.08 per

unit as the independent variable in the system.

3.1.4.1 Constant Impedance

Let us work with the constant impedance case first. The table for constant impedance or

admittance below shows the injected voltages to be from 0.95 to 1.08 per unit. The B and G

values would stay constant. The calculations for obtaining P, Q, P0, and Q0 are also shown in the

first row of the Table 3.1 below.

Table 3.1 Constant impedance load calculations

Q=V2*B P=V2*G P0=P/(V
2) Q0=Q/(V

2)

Q P V P0 Q0 V
2

Q/Q0 P/P0

25.27 2.4187 0.95 2.68 28 0.9025 0.9025 0.9025

25.8048 2.46989 0.96 2.68 28 0.9216 0.9216 0.9216

26.3452 2.52161 0.97 2.68 28 0.9409 0.9409 0.9409

26.8912 2.57387 0.98 2.68 28 0.9604 0.9604 0.9604

27.4428 2.62667 0.99 2.68 28 0.9801 0.9801 0.9801

28 2.68 1 2.68 28 1 1 1

28.5628 2.73387 1.01 2.68 28 1.0201 1.0201 1.0201

29.1312 2.78827 1.02 2.68 28 1.0404 1.0404 1.0404

29.7052 2.84321 1.03 2.68 28 1.0609 1.0609 1.0609

30.2848 2.89869 1.04 2.68 28 1.0816 1.0816 1.0816

30.87 2.9547 1.05 2.68 28 1.1025 1.1025 1.1025

31.4608 3.01125 1.06 2.68 28 1.1236 1.1236 1.1236

32.0572 3.06833 1.07 2.68 28 1.1449 1.1449 1.1449

32.6592 3.12595 1.08 2.68 28 1.1664 1.1664 1.1664

We notice that P0, and Q0 are constant throughout the calculation. Therefore, these

calculations portray consistent characteristics with the ZIP load equations (P0 and Q0

unchanged). Also, the parameters p2=p3=0, and p1=1, so the ZIP load equation will generate the

same results. Notice that, as described from previous section, the power factor will also affect

the stability of the system. To simplify the work, we avoid the power factor difference between

the active and reactive powers. Therefore, we assume that the parameters for q1 = p1, q2 = p2,

29

and q3 = p3 when we talk about constant impedance, constant current, constant power, or mixed

load. This entire thesis generally follows this rule.

3.1.4.2 Constant Current

Similarly, for constant current, we calculate the constant currents as:

IG = V*G = 1*2.68 = 2.68 per unit

IB = -V*B = -1*28 = -28 per unit (where only the magnitude of the current were used)

By following the calculation on the first row of the Table 3.2 below, we would have the values

shown.

Table 3.2 Constant current load calculations

Q = | V*IB | P = V*IG P0=P/V Q0=Q/V

Q P V P0 Q0 V
2

Q/Q0 P/P0

26.6 2.546 0.95 2.68 28 0.9025 0.95 0.95

26.88 2.5728 0.96 2.68 28 0.9216 0.96 0.96

27.16 2.5996 0.97 2.68 28 0.9409 0.97 0.97

27.44 2.6264 0.98 2.68 28 0.9604 0.98 0.98

27.72 2.6532 0.99 2.68 28 0.9801 0.99 0.99

28 2.68 1 2.68 28 1 1 1

28.28 2.7068 1.01 2.68 28 1.0201 1.01 1.01

28.56 2.7336 1.02 2.68 28 1.0404 1.02 1.02

28.84 2.7604 1.03 2.68 28 1.0609 1.03 1.03

29.12 2.7872 1.04 2.68 28 1.0816 1.04 1.04

29.4 2.814 1.05 2.68 28 1.1025 1.05 1.05

29.68 2.8408 1.06 2.68 28 1.1236 1.06 1.06

29.96 2.8676 1.07 2.68 28 1.1449 1.07 1.07

30.24 2.8944 1.08 2.68 28 1.1664 1.08 1.08

As we can see, the P0, and Q0 are constant throughout the calculation. These calculations

are consistent with the ZIP load equations as the values P0 and Q0 do not change. Since p1=p3=0,

and p2=1, the ZIP load equation will yield the same conclusion.

30

3.1.4.3 Constant Power

For the constant power case, the P and Q need to be constant. Since P0 and Q0 ideally

should be the same number. These two values were consistent in the last two cases before, we

will start using the same number P0 = 2.68 per unit and Q0 = 28 per unit initially to be consistent

with the last two sections. From the Equations (3.17) and (3.18), we would get initial P and Q to

be:

0PP  =2.68 per unit

0QQ  =28 per unit

Therefore the first P and Q equal to 2.68 per unit and 28 per unit respectively initially.

Also, by reversing the Equations (3.21) and (3.22) above, we get:

PP 0 (3.21)

QQ 0 (3.22)

As the P and Q stay the same, therefore from Equations (3.21) and (3.22) above, all the rest of P0

and Q0 will also be equal to 2.68 per unit and 28 per unit respectively. Therefore P0 and Q0 will

still be consistent throughout the constant power calculations. Table 3.3 summarizes the results

below.

31

Table 3.3 Constant power load calculations

Q (constant) P (constant) P0=P Q0=Q

Q P V P0 Q0 V
2
 Q/Q0 P/P0

28 2.68 0.95 2.68 28 0.9025 1 1

28 2.68 0.96 2.68 28 0.9216 1 1

28 2.68 0.97 2.68 28 0.9409 1 1

28 2.68 0.98 2.68 28 0.9604 1 1

28 2.68 0.99 2.68 28 0.9801 1 1

28 2.68 1 2.68 28 1 1 1

28 2.68 1.01 2.68 28 1.0201 1 1

28 2.68 1.02 2.68 28 1.0404 1 1

28 2.68 1.03 2.68 28 1.0609 1 1

28 2.68 1.04 2.68 28 1.0816 1 1

28 2.68 1.05 2.68 28 1.1025 1 1

28 2.68 1.06 2.68 28 1.1236 1 1

28 2.68 1.07 2.68 28 1.1449 1 1

28 2.68 1.08 2.68 28 1.1664 1 1

As the P0 and Q0 stay constant, they are consistent with the ZIP load equations as the

values P0 and Q0 do not change. Since p1=p2=0, and p3=1, the ZIP load equation will perform the

same calculations as shown in the table above.

3.1.4.4 Equally Distributed Load

Moving forward, we look at a new load that has 1/3 constant impedance, 1/3 constant

current, and 1/3 constant power components. The voltage here still goes from 0.95 to 1.08 per

unit. The P and Q values from previous 3 sections were used in the calculations here. The

calculations for P and Q are shown below.

PEDL=0.3333*(PCI+PCC+PCP) (3.23)

QEDL=0.3333*(QCI+QCC+QCP) (3.24)

The representations can be summarized below:

 EDL refers to the value for equally distributed load

 CI refers to constant impedance

32

 CC refers to constant current

 Finally CP refers to constant power

For instance, for voltage at 0.95 per unit, the PEDL and QEDL were obtained as below.

PEDL=0.3333*(PCI+PCC+PCP) = 0.3333 * (2.4187+2.546+2.68) = 2.54798

QEDL=0.3333*(QPCI+QCC+QCP) = 0.3333 * (25.27+26.6+28) = 26.6200671

Since we do not have the manual calculations for a mixed load, we use the ZIP load equations to

get the values for P0 and Q0. As this is the case where the load components were evenly

distributed, parameters p1=p2=p3=q1=q2=q3=0.3333. Hence the zip load equations are as below.

]3333.03333.03333.0[2
0  vvppZIP

]3333.03333.03333.0[2
0  vvQQZIP

Solve for P0 and Q0, we get:

)1(3333.03333.03333.03333.0 220 





vv

p

vv

p
p ZIPZIP

)1(3333.03333.03333.03333.0 220 





vv

Q

vv

Q
Q ZIPZIP

Again, we solve the first case when V=0.95 per unit.

68.2
]195.0)95.0[(3333.0

54798.2
20 


p per unit

28
]195.0)95.0[(3333.0

620671.26
20 


Q per unit

These values are the values for constant power, constant impedance, and constant current loads.

The other instances of PEDL and QEDL, P0 and Q0 can be obtained as shown in the Table 3.4

below. We observe that the P0 and Q0 stay the same at 2.68 and 28 per units respectively which

are consistent like the other sections.

33

Table 3.4 Equally distributed load calculations

Q P V V
2
 P0 Q0 P/P0 Q/Q0

26.620671 2.54798 0.95 0.9025 2.68 28 0.95073825 0.95073825

26.8922438 2.57397 0.96 0.9216 2.68 28 0.96043728 0.96043728

27.1656832 2.60014 0.97 0.9409 2.68 28 0.97020297 0.97020297

27.440989 2.62649 0.98 0.9604 2.68 28 0.98003532 0.98003532

27.7181612 2.65302 0.99 0.9801 2.68 28 0.98993433 0.98993433

27.9972 2.67973 1 1 2.68 28 0.9999 0.9999

28.2781052 2.70662 1.01 1.0201 2.68 28 1.00993233 1.00993233

28.560877 2.73368 1.02 1.0404 2.68 28 1.02003132 1.02003132

28.8455152 2.76093 1.03 1.0609 2.68 28 1.03019697 1.03019697

29.1320198 2.78835 1.04 1.0816 2.68 28 1.04042928 1.04042928

29.420391 2.81595 1.05 1.1025 2.68 28 1.05072825 1.05072825

29.7106286 2.84373 1.06 1.1236 2.68 28 1.06109388 1.06109388

30.0027328 2.87169 1.07 1.1449 2.68 28 1.07152617 1.07152617

30.2967034 2.89983 1.08 1.1664 2.68 28 1.08202512 1.08202512

3.1.4.5 Mixed Load

Similarly to the last section, we would have a mixed load that contains 20% constant

impedance, 30% constant current, and 50% constant power. The P and Q values can be obtained

as below.

PMIXL=0.2*PCI+0.3*PCC+0.5*PCP

QMIXL=0.2*QCI+0.3*QCC+0.5*QCP

In here, MIXL refers to mixed load.

Similar to the last section, we will do a demonstration by calculating the first case where the

voltage is at 0.95 per unit.

PMIXL=0.2*2.4187+0.3*2.546+0.5*2.68 = 2.58754

QMIXL=0.2*25.27+0.3*26.6+0.5*28 = 27.034

Similar to the last example, the ZIP load equations (2.2) and (2.3) are used to get P0 and Q0. In

here, p1=q1=0.2, p2=q2=0.3, and p3=q3=0.5. After this modification, the ZIP load equations

become:

]5.03.02.0[2
0  vvPPZIP

]5.03.02.0[2
0  vvQQZIP

34

Solve for P0 and Q0, we get:

]5.03.02.0[20 


vv

P
P ZIP

]5.03.02.0[20 


vv

Q
Q ZIP

Again, we solve the first case when V=0.95 per unit.





]5.0)95.0(*3.0)95.0(*2.0[

58754.2
20P 2.68 per unit





]5.0)95.0(*3.0)95.0(*2.0[

034.27
20Q 28 per unit

Like the last section, P0 and Q0 stay the same at 2.68 and 28 per units respectively. The rest of P0

and Q0 are also constant in Table 3.5 below. Therefore, we conclude that the ZIP load equations

as we have seen, work fairly well with the small power system load in Figure 3.1.

Table 3.5 Mixed load calculations

Q P V V
2
 P0 Q0 P/P0 Q/Q0

27.034 2.58754 0.95 0.9025 2.68 28 0.9655 0.9655

27.22496 2.60582 0.96 0.9216 2.68 28 0.97232 0.97232

27.41704 2.6242 0.97 0.9409 2.68 28 0.97918 0.97918

27.61024 2.64269 0.98 0.9604 2.68 28 0.98608 0.98608

27.80456 2.66129 0.99 0.9801 2.68 28 0.99302 0.99302

28 2.68 1 1 2.68 28 1 1

28.19656 2.69881 1.01 1.0201 2.68 28 1.00702 1.00702

28.39424 2.71773 1.02 1.0404 2.68 28 1.01408 1.01408

28.59304 2.73676 1.03 1.0609 2.68 28 1.02118 1.02118

28.79296 2.7559 1.04 1.0816 2.68 28 1.02832 1.02832

28.994 2.77514 1.05 1.1025 2.68 28 1.0355 1.0355

29.19616 2.79449 1.06 1.1236 2.68 28 1.04272 1.04272

29.39944 2.81395 1.07 1.1449 2.68 28 1.04998 1.04998

29.60384 2.83351 1.08 1.1664 2.68 28 1.05728 1.05728

35

3.2 Curve Fitting using Inverse Matrix and Pseudo Inverse Approaches

After the study of the simple power system load as in Figure 3.1, we move on to a bigger

power system. As discussed in previous sections, a 16-generator and 52-bus power system in

Figure 2.3 was used for the study.

In a real power system, after a disturbance, the system tries to recover for itself. If parts

of the system fail to recover to its pre-disturbed conditions, then a part of the system will

collapse and might even trigger the surrounding power system to collapse. Hence, a blackout

takes place eventually in cases like this. The 16-genetator system was chosen so a more realistic

system can be studied. In this section, load Bus 3 was where the load under study was located.

As the 16-generator system is coded in Matlab in power system toolbox, various changes

could be adjusted in the program to place the disturbance (fault) at the desired load bus. In this

case, the system trips at the 3-phase fault between the lines connecting between Bus 3 and Bus

18. A 5-second interval was observed during the simulation after the fault. Consequently, the

fault occurs at 0.1 second and the clearing times are 0.35 second and 0.4 second for near end

fault and far end fault, respectively. The load bus voltage magnitude varies during this

disturbance and fights back to the pre-disturbance value. Figure 3.2 below displays the voltage

magnitude during the fault.

36

Figure 3.2 Voltage magnitude of Bus 3 during the fault

The real and reactive powers at load Bus 3 were calculated from the power flows that surround

this bus. For instance, while we zoom in on the 16-generator diagram in Figure 2.3, Bus 3 can

be show as below in Figure 3.3.

Figure 3.3 Load Bus 3

The load power and reactive power were calculated from the power flows surround it.

For instance, according to the diagram, the load active and reactive powers at Bus 3 are:

Pload3= - (P3-2 + P3-4 + P3-18) (3.25)

Qload3= - (Q3-2 + Q3-4 + Q3-18) (3.26)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Voltage Magnitude at 3 data16em

time (s)

37

As we run the simulation, the total running time is 5 seconds and there are 339 time steps during

this interval. Hence, we have 339 different voltages, active, and reactive powers. From matrix

Equations (2.18) and (2.19), we can construct over-determined matrix equations. Recall these

equations below.






























































nnn

p

p

p

vv

vv

vv

vv

 norm

3 norm

2 norm

1 norm

3

2

1

2

3
2
3

2
2
2

1
2
1

p

...

p

p

p

1

.........

1

1

1






























































nnn

q

q

q

vv

vv

vv

vv

 norm

3 norm

2 norm

1 norm

3

2

1

2

3
2
3

2
2
2

1
2
1

Q

...

Q

Q

Q

1

.........

1

1

1

The matrix in here can also be represented by the variable, A, that contains columns of square of

voltage, voltage, and 1. x and y represent the three p parameters and three q parameters that

need to be determined. Lastly, Pnorm and Qnorm are the two vectors on the right hand side of

equations.

Ax=Pnorm

Ay=Qnorm

To construct an inverse matrix of A, we need to have a square matrix A. Therefore limited

information needs to be taken from the 339 time steps. If we have the matrix A as a square

matrix, we can rearrange the equations and get x and y as:

x=A-1 Pnorm

y=A-1 Qnorm

As mentioned above n=339 in this case, and we have several options to solve this problem.

Because it becomes an over-determined system that has more equations than unknown variables,

we can select three different time steps with different voltages and their respective Pnorm and

Qnorm to solve the problem. From the 339 sets of values generated by the simulation, three time

38

steps at time 0.5, 1, and 1.5 or at steps 89, 139, and 164 were selected. Solve the x and y using

inverse matrix in Matlab, we get p1 = -121.3506, p2 = 120.0284, p3 = 4.2373, q1 = 68.8928, q2 = -

56.1995, and q3 = -4.0010.

Although the above methods will solve the equations, only three time steps were chosen.

Therefore, we can still solve the x and y by a proposed pseudo inverse method where all 339

cases will be used. The over-determined system will be solved to yield x and y that would match

the matrix equations as closely as possible. After solving the problem using pseudo inverse, the

parameter values are p1 = -110.2734, p2 = 111.2523, p3= 0.0273, q1= 42.0395, q2 = -42.7255, and

q3 = 0.0013. Using these parameters with the 339 voltages input, the active and reactive powers

look like the ones in Figure 3.4 and Figure 3.5 respectively. Notice that the red lines are the

original power generated by the system, and the blue lines are the simulated lines using these

newly determined parameters.

Time Step

Figure 3.4 Actual and simulated active power of load bus 3RR

0 50 100 150 200 250 300 350
-10

-5

0

5

10

15

20

25

30

Active

Power

39

Time Step

Figure 3.5 Actual and simulated reactive power of load bus 3

Although the curves for the most part were matched fairly well, the parameters do not

seem to provide feasible or meaningful solutions. The problem lies with these p and q parameter

values as they are large numbers instead of decimal fractions that are supposed to represent the

percentage of constant load. Sometimes, these parameters are even negative. Hence, a better

strategy needs to be used to predict these parameters. Other similar techniques such as linear

programming were used and similar values were obtained for these parameters. The aggregated

load buses and power systems do not seem to work as well as the simple power system.

In order to see how well the simulated load Bus 3 works with the ZIP load equations, we

can try to solve for P0 and Q0 with constant impedance, constant current, and constant power.

From Figure 3.6 below, we can see that as power systems get large and more complicated, the

0 50 100 150 200 250 300 350
-35

-30

-25

-20

-15

-10

-5

0

5

Reactive

Power

40

values for P0 and Q0 in each case no longer stay constant as we follow the power system closely.

Figure 3.6 Values for P0 and Q0 for load bus 3

As demonstrated in this section, the parameters of p’s and q’s obtained using matrix

manipulation for the ZIP load model is not feasible for realistic load models. Due to the

complexity of the power systems, other parameter identification methods will be discussed in the

next section.

0 100 200 300 400
-50

0

50
P / (V2)

iteration 1-339

P
 /

 (
V

2)

0 100 200 300 400
-2

0

2
x 10

7 Q / (V2)

iteration 1-339

Q
 /

 (
V

2)

0 100 200 300 400
-50

0

50
P / (V)

iteration 1-339

P
 /

 (
V

)

0 100 200 300 400
-100

0

100
Q / (V)

iteration 1-339
Q

 /
 (

V
)

0 100 200 300 400
-50

0

50
P

iteration 1-339

P

0 100 200 300 400
-50

0

50
Q

iteration 1-339

Q

41

CHAPTER 4 - PARAMETER ESTIMATION USING

INTELLIGENT TECHNIQUES FOR STATIC LOAD MODELS

4.1 Introduction

As briefly touched on in the last section, the conventional matrix calculations do not

work too well for power system load parameter identification. Other techniques need to be

sought to solve the problems. The main idea here is to find the parameters p1, p2, p3, q1, q2, q3

that will form the components of the load model. The general search and use of load parameters

are shown below.

Figure 4.1 Parameter estimation procedures

As shown above, the parameters can be estimated based on difference between the

measured active/reactive power and the simulated active/reactive power. Another approach is to

train the system with inputs as the voltage, active/reactive power, and the outputs as the

parameters p1, p2, p3, q1, q2, and q3. We use the already given system’s information including the

parameters, and train a model that will learn the system to be used with other unknown systems

for finding the load parameters. Figure 4.2 below demonstrates a simple model that will train the

system to find the parameters for power systems with unknown parameters.

42

Figure 4.2 Simple parameter identification training

In order for the training model to work well, we need to have a set of rules for the

training and testing. The trained model should be able to predict the parameters for itself if the

inputs are given. Training and validation need to be done on the same system making the

training model legitimate and useful. For instance, a set of data is used to train the model, and

the rest of the set of data is used to validate and to observe the mean square error between real

and simulated outputs. Consequently, the trained model should be applicable to the other load

buses in other parts of the power systems. The trained model is useful if it can be used to predict

the unknown parameters for the other load buses based on their values of v, P, and Q. Since

compared to the other inputs, the frequency had less effect on the system; we neglect this

component for simplifying our study in this thesis.

4.2 Initial Approaches

4.2.1 Simple Power System

First, we would choose the simple power system that was used in the excel spreadsheet

before to be tested. This simple system would be fairly feasible as it works well with the ZIP

load model. There are only 5 cases of combinations of p1, p2, p3, q1, q2, and q3, and as the p’s and

q’s are assumed to be the same, we will ignore the q’s for now. The five cases of variations in

43

the parameters for percentage of constant real impedance p1, percentage of constant real current

p2, and percentage of constant real active power p3 are displayed in the table below.

Table 4.1 Parameters for simple power system

Status p1 p2 p3

Constant Impedance 1 0 0

Constant Current 0 1 0

Constant Power 0 0 1

Evenly Distributed Load 0.333 0.333 0.333

Mixed Load 0.2 0.3 0.5

After few trials and errors, we observed that instead of training all the inputs and outputs

at once, the model will be more accurate if we split the training into three different sets for each

p1, p2, and p3. We can go to Appendix A.1 to verify the effectiveness of individual training

compared to the original combined training. An illustration of the split training for each p

parameter is shown in Figure 4.3 below.

44

Figure 4.3 Split training method

Training this simple model yields the mean square error to be below 4%. Appendix A.2

shows the difference between the actual and simulated (tested) six parameters in more detail.

Notice also that although p1, p3, q1, and q3 were trained well, p2 and q2 were a bit off. p2 and q2

do not seem to work as well as the other outputs in training. Another method uses v, ∆v, ∆P or

∆Q as the inputs, and the outputs are one of the six p or q coefficient parameters like the previous

part. The result for this method gives similar results to those of the last example; the simulated

p1, p3, q1, and q3 worked well, but p2 and q2 were a bit off.

4.2.2 16-generator power system

Now, we move on to test a more complicated 16-generator power system. The written

code of a backpropagation neural network and an adaptive neuro-fuzzy inference system

45

(ANFIS) were used to initially train and validate the inputs and outputs. Due to the nature of

ANFIS and while declaring sufficient member functions, the training will be fairly slow.

Therefore, the backpropogation neural network was initially used to train and test the system to

see which method worked the best. The training methodology will be discussed in the next

section. The 3-phase fault locations and their relative load buses are shown in Table 4.2 below.

The faults between 41-42 and 43-44 that are highlighted are more sensitive. Therefore, we focus

on the load buses surrounding these two fault locations. To determine the best data sets for

training, we find out whether the selected load bus or buses are close to the fault location. A

combination of load data from various bus or buses at the same or different fault or non fault

location was considered.

Table 4.2 The fault locations and their load buses

3‐phase fault
locations (bus‐bus)

Fault
between
buses 41-42

Location from
the fault

Fault
between
buses43-44

Location from
the fault

 bus 41 at the fault 43 at the fault

 42 at the fault 44 at the fault

 37
far from the
fault 36

far from the
fault

 52
Close to the
fault 51

Close to the
fault

As a result, we can have various training strategies with their respective chosen bus positions

shown in table below. This way, we can identify the best selections and combinations of buses

to choose from for training.

46

Table 4.3 The training strategies with their respective training locations

Training strategy

(Trained on:) Training locations

A1 (37) from fault 41-42

A2 (41) at the fault 41-42

A3 (42) at the fault 41-42

A4 (52) close to fault 41-42

A5 (36) far from fault 43-44

A6 (44) at the fault 43-44

A7 (43) at the fault 43-44

A8 (51) close to fault 43-44

B1 (41, 42) both at the fault 41-42

B2 (44, 43) both close to fault 41-42

B3 (37, 41) one far from, one at the fault 41-42

B4 (36, 44) one far from, one at the fault 43-44

B5 (37, 42) one far from, one at the fault 41-42

B6 (36, 43) one far from, one at the fault 43-44

B7 (41, 52) one close to, one at the fault 41-42

B8 (44, 51) one close to, one at the fault 43-44

B9 (37, 52) one close to, one far from fault 41-42

B10 (36, 51) one close to, one far from fault 43-44

Several attempts and approaches were used to train for the parameter identifications. One

approach (row) in Table 4.3 was used for each test. A list of load characteristic training cases is

listed below to be used for outputs. These values represent the percentage of type of load used in

training.

47

Table 4.4 Load characteristics cases for training

p1 (or q1) p2 (or q2) p3 (or q3)

0 0 1

0 1 0

1 0 0

0.8 0 0.2

0.6 0.2 0.2

0.4 0.4 0.2

0.2 0.6 0.2

0 0.8 0.2

0.6 0 0.4

0.4 0.2 0.4

0.2 0.4 0.4

0 0.6 0.4

0.4 0 0.6

0.2 0.2 0.6

0 0.4 0.7

0.2 0 0.8

0 0.2 0.8

0.8 0.2 0

0.6 0.4 0

0.4 0.6 0

0.2 0.8 0

0.5 0.3 0.2

0.33 0.33 0.33

 Once these cases are trained against a reference load at Bus 41, we tested or verified

them through the load cases in Table 4.5. The trained model needs to be used to test against all

other load buses.

Table 4.5 Load characteristic cases for testing

p1 (or q1) p2 (or q2) p3 (or q3)

0.5 0.2 0.3

0.3 0.2 0.5

0.2 0.3 0.5

0.8 0.1 0.1

0.3 0.4 0.3

0.2 0.1 0.7

 For more details, please refer to Appendix A.3. From the appendix, we see that although

the training works well, the testing against all 29 cases works only well with the p1 and p3 output

48

parameters. p2 could not be verified very well. This might be explained considering that the

constant current component is not very sensitive compared to the other components.

 The weakness with the previous approach is that 339 time steps were trained together

versus one load component case, and then another 339 time steps were trained with the next load

component case and so on. Another weakness is that all the buses’ load components changed

the same way. For instance, when we run the simulations for fault 41-42, load components for

load buses 41, 42, 37, 52 would all change exactly the same way as described on Table 4.3.

Moreover, there is also a lack of finding the relations between these each time steps. Another

method was proposed to train the network only 29 times (29 cases), but with each input taking

voltages and powers at a few time steps each instance. The figure below demonstrates this

training case. To simplify the demonstration, only training with the output parameter p1 is

shown.

Figure 4.4 Parallel training with bus 41

The training accuracy is similar to the training method in Figure 4.3, however.

Parameters p2 and q2 still did not get verified well after training.

49

In studying the previous approaches of finding the parameters, it was noted that an

important component in the training that was missing was the sensitivity of the active and

reactive power values to changes in voltage. The question is how the change of voltages and

reactive or active powers through a fixed time would relate to the load components. To use the

mathematical expressions to find the relations between QPv  ,, , we do the following

derivation for ∆v and ∆P as ∆v and ∆Q will have the similar derivation.

Recall from the simplified ZIP load model, we replace the parameters p1, p2, and p3 with

k1, k2, and k3, and i represents the initial time for the value. The derivation is as follows.

32
2

1 kvkvkP iii 

Let iii vvv 1

312
2

111 kvkvkP iii  

Therefore, we can express ∆Pi as:

   
   

321
2

1

32
2

1

32
222

1

312
22

11

312
22

11

)2(

)(]))((2[

)(]))((2[

kvkvkvk

kvkvvvk

kvvvkvvvvvk

kvvkvvk

kvvkvvkP

iii

iiii

iiiiiiii

iiii

iiiii















 (4.1)

Hence, iP is a function of iv and  2iv . Depending on the value of vi, and if vi is a

known or a constant value, we would also have a similar ZIP load equation in terms of iv .

The training method related to QPv  ,, can be shown in Figure 4.5 below. For

simplicity, only training with output p1 is shown. The time steps taken from the simulations are

also shown in Table 4.6 below.

50

Table 4.6 Time steps for the training system

 ∆ v1 or ∆ p1 ∆ v2 or ∆ p2 ∆ v3 or ∆ p3 ∆ v4 or ∆ p4 ∆ v5 or ∆ p5

initial time (seconds) 2.5 3 3.5 4 4.5

time steps during this ∆ range 214‐215 239‐240 264‐265 289‐290 314‐315

Figure 4.5 Training method with inputs QPv  ,,

The results did not improve, however this system makes a little more sense for the power

system training. After a series of trial and errors, two problems stand out most.

 After training, parameters for p2 and q2 still do not get validated well with the

generated load model.

 Insufficient load characteristics cases for the training. A more diverse and random set

of load components would better represent a real power system.

We need to develop a much larger set of inputs and outputs with more varied and irregular

load components to resemble the real power system data. Also, steps need to be taken for the

51

load model to do a better job predicting the p2 and q2 parameters. The final approach in the next

section talks about the procedures to train, validate, and test the 16-generator power system.

Normalization is also important for the process of passing data from the power system to the

intelligent system. The intelligent systems can better understand and find the pattern for the

system if it is expressed in ratio instead of the actual values. As the output parameters are in the

range of 0 to 1, they do not need to be normalized. The input parameters of v, P, Q, or the delta

values certainly need to be normalized. Assuming that we already know the maximum value,

max, minimum value, min, and the actual value; the normalized value can be expressed as:

 valuenormalized =
min-max

min- valueactual
 (4.2)

Note that for some system, the maximum and minimum values are noise that is either too large

or too small. In case like this, we need to filter out these extreme values.

In order to solve the problem of generating better models for testing p2 or q2, we may go

back to the definition of these parameters. As we know from Equations (2.20) and (2.21), we

have:

1321  ppp

1321  qqq

Therefore, if we get good training results for p1, p3, or q1, q3, we could use the information to

predict the p2 or q2 values. During the training, after normal models were developed for outputs

p1 (or q1) and p3 (or q3), the value for p1 (or q1), p3 (or q3), and as well as 1-p1-p3 (or 1-q1-q3)

could be feed in as inputs to develop the load model for output p2 (or q2). Figure 4.6 displays the

basic strategy for developing a better artificial neural network load model for p2 (or q2).

52

Figure 4.6 Strategy to develop a better load model for output p2 (or q2)

Once we established this special training method for ANN2, we could predict the values

for p2 (or q2) fairly well. To look at this case in further detail, please refer to Appendix A.7.

After these trials and errors, we are ready to set a standard to train and test the load buses. This

standard is presented in the next section.

4.3 Training Methods

4.3.1 Adaptive Neural Fuzzy Logic Method

Fuzzy logic has two theories. One theory states that the fuzzy logic is an extension of

logic with multi-values. The other theory can be used to describe the non-sharp boundaries

where the memberships are matters of degrees. Fuzzy logic is used commonly in solving various

engineering problems as it is flexible and not too difficult to learn. The input-output data set can

be matched with the created fuzzy system. This process can be trained by an ANFIS (adaptive-

neural network-based fuzzy inference system). The Sugeno fuzzy model is used for a three-input

and single output system similar to the model presented in [6]. The fuzzy inference system is the

method of mapping from given inputs to an output using fuzzy logic. Several components of the

system include “membership functions”, “logic operations”, and “if then rules.”

The Neuro-Adaptive learning methods are very similar to neural networks. The learning

technique provides a method for the fuzzy modeling procedure to learn information about a data

53

set. ANFIS is a sample of this learning technique where the membership function parameters are

adjusted by a backpropagation algorithm and in combination with the least squares method [43].

In this thesis, the Sugeno method was used; the algorithm was coded with the Matlab

code “genfis1” to construct the membership functions, and the ANFIS was used to train the

model to recognize the load patterns. The trained fuzzy system has its own membership

functions and rules and generates the model output after feeding in the new inputs. Unlike the

other intelligent techniques (which include randomness in the initial conditions), ANFIS models

do not have to run multiple times in order to choose the best result as all the runs will yield the

same MSE value. However, in this research, ANFIS method is strongly discouraged to use. The

ability for ANFIS to predict parameters of unknown buses has been shown to be fairly poor

relative to the other methods. More membership functions need to be used to yield better results.

However, the simulation process to finish the training already takes a lot of time. By adding

more membership functions, the training will require even more time to finish.

4.3.2 Levenberg- Marquardt algorithm Method

In general, this method does a great job of fitting any simple practical function.

Levenberg-Marquardt algorithm is used in this work [44]. In [45], the author demonstrated for

Levenberg-Marquardt method, we first need to look at the Gauss-Newton method to find the

equation needed. However, if the desired solving system J(x) is rank-deficient, the Gauss-

Newton method would not be able to converge or converge to a stationary point. Therefore,

true-region technique was considered. The least squares problem were included to solve by

rearranging the equations for J(x) [45, 46].

One disadvantage of using the neural networks Levenberg Marquardt algotirhm method

is that sometimes the process does not converge very well. A few runs need to be executed to

get a good result. In this thesis, ten runs were done with different starting points, and the model

that contains the smallest MSE or Mean Square Error was used. In another comparison between

the methods, the learning rates, parameters, number of hidden neurons, and number of epochs for

these methods were all set to be identical. Each method will have distinctive 10 trials for

training, and MSE for the testing these simulated data against the real data were recorded in each

trial. All these results were used to compare between these methods.

54

In our research, Levenberg-Marquardt algorithm approximates the data more accurately

compared to the ANFIS method. However, the training will not always converge to the small

MSE value desired for the Levenberg-Marquardt algorithm. Using the Levenberg-Marquardt

algorithm to train with a large set of data also requires large amount of computation time. Even

though, it has an advantage over the Adaptive Neural Fuzzy Logic method, this method, after a

load model is formed from training, did not do a very good job of validating simulated or

predicted data against actual data in other unknown buses.

4.3.3 Widow-Hoff Backpropagation Method

In reference [44], the author used Widow-Hoff delta learning rule with multiple-layer

networks and non-linear transfer functions are used in this Matlab backpropagation method. A

gradient descent algorithm where the network weights are moved along the negative of the

gradient of the function is the standard backpropagation. Inputs are applied to the network, the

outputs are calculated, and the resulting error is used to adjust the weights in a back to front type

order. The general structure is shown below in Figure 4.12. The backpropagation usually uses

MSE to evaluate the real outputs and the generated outputs. The difference is recorded and will

be used to refine the backward calculation until the real and generated results match closely.

Generally the rule of thumb is the more hidden neurons and the more layers, the better the

results. However, in a very big training set, more layers and hidden neurons will also greatly

delay the computational training time. Figure 4.12 below shows a diagram of a Widow-Hoff

backpropagation method.

55

Figure 4.7 Widow-Hoff Backpropagatioin method with the inputs and outputs [44]

The training methodology is as below:

 Input and output data are gathered from the transient fault simulation.

 Normalization is applied to the input and output data.

 The initial weights are randomized at the beginning for each run.

 Now do ten runs and in each run do 500 epochs of training the networks with the updated

weights using the backpropagation algorithm. The error will be recorded each time, and

the weights will be used in the test data to produce the test error at the same time.

 For each epoch, all data from the input data and output data are trained, the weight is

updated through the backpropagation function with the input and output data.

 In backpropagation, the forward method was used to obtain the net output from the

second layer of the neural networks. The backpropagation is used to get the deltas in the

first and second layers. These values are used to update the weights for both the first and

second layers.

 The final weights were used to calculate the mean square error by comparing the actual

output versus the calculated outputs using the forward method.

 Finally, the plots for both the training and test errors are produced from the above

information.

 During the process, there were times we needed to take off the bias, and add back the bias

and the momentum. The learning rate and momentum factors were adjusted and

optimized by hand after few trial and errors to achieve the smallest error for both the

training and test data.

 Also, to get the confusion matrices, a set of if statements were used and number of

correct or mistaken counts were recorded in order to obtain the percentages of correction

or mistakes in each output case.

Note that each p1, p2, p3, q1, q2, q3, or β were trained separately with the same input

information except p2 and q2, where more care needed to be taken. Figure 4.8 below

summarizes the training procedure.

56

Figure 4.8 Procedure for backprogation algorithm training

Also, ten runs for the whole program were needed, and the best one was used for constructing

the load model. In another section in the thesis, all the trials were recorded and the results were

compared with the other methods. Similar to the previous method, although this Widow-Hoff

method trains the data well for the training set, the weights obtained will not do an excellent job

in predicting the parameters for the unknown buses.

4.3.4 Default Scaled Conjugate Gradient Algorithm Method

As shown in the Matlab manual [44] and discussed in [47], a basic backpropagation

algorithm adjusts the weights according to the direction of the steepest descent or negative of the

gradient. The basic backpropagation algorithm does not produce the fastest convergence. The

conjugate gradient algorithm on the other hand allows a search to be performed along conjugate

directions, and converges faster than the steepest descent directions. Even though the results for

conjugate gradient algorithms varies from one problem to another, this algorithms only needs a

little more storage compared to the basic algorithms. Hence, it works well with networks with a

large amount of weights. Furthermore, Scaled Conjugatge Gradient (SCG) method avoids the

line search per learning iteration. SCG does not include user dependent parameters as the values

will be important for the success of the algorithm. Compared to the line search based algorithms

57

which include these kinds of parameters, avoiding these depending parameters in SCG seems to

be a significant advantage [48].

To do a good job in training with this algorithm, more neurons and more hidden layers

could be used with a cost in computation time. In our work, SCG method worked very well for

training, testing, and validating unknown buses based on load model that was developed through

training. This technique is highly recommended for parameter identification in power system

load model.

4.4 Analyze Strategies and Methods with Best Training Approach

In this section, we trained the data from selected buses (assumed to be the known buses)

with different training methods and strategies. The different training methods are described in a

later part of this section. The training strategies described here involve constructing the model

by selecting data from various combinations of buses from Table 4.7 on the next page for

training. With the specified strategy and method, the weights and models obtained from the

training will be used to test and predict the data (load parameters p1, p2, p3, q1, q2, and q3) from the

unselected buses (assumed to be the unknown buses) as well as the known buses. The mean

square errors between the simulated data and the actual data were recorded from ten trials in each

method and strategy. In this Section 4.4, only the results from the best trials were recorded and

used for comparison between the effectiveness of each strategy and method. Parameters from

these methods, especially ANFIS method were optimized by hand. In ANFIS method, the

member function and epoch numbers were also adjusted in order to train the data more

accurately and with an allowable reasonable time. Section 4.5 later on will do a slightly different

comparison.

4.4.1 Test Cases and Procedures

Recall from the previous sections that in order to train and validate the bus systems well,

we need to have:

 Large size of training sets with irregular and randomized combinations of load

components.

58

 Sensitivities or amount of increase or decrease of voltages, active/reactive powers

need to be used in training

 Normalization needs to be used on the same type of input. Filtering out the excess of

noise should be used but with caution.

 Special training methods need to be used for training outputs p2 or q2.

From the previous lessons, we would train the system with a large training set and

include considerations for all the bullets listed above. After the training, we also realized that the

early time steps that are close to the fault (and thus with larger variations in the variables) need to

be used as these will better represent and can better reflect the load and its characteristics. In this

approach, six different time steps are used for the training.

Table 4.7 Time steps for the final approach

∆ t=0.2 seconds Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6

initial time (seconds) 1.02 1.22 1.42 1.62 1.82 2.02

Final time after this ∆ range 1.22 1.42 1.62 1.82 2.02 2.04

However, the six different time steps will be used to create six input cases, therefore, if there are,

for instance, 20 test cases then we would have 20 *6=120 sets of inputs. The structure of the

training is shown below in Figure 4.7. Note that in order to simplify the demonstration, only

output p1 is shown here.

Figure 4.9 Training Model for 3 inputs and one output

59

The load faults 41-42, 43-44 and their respective load buses used in this approach are shown

below.

Table 4.8 The faults 41-42, 43-44, and their respective load buses

3‐phase Fault Locations
Fault at buses
41‐42

Fault at buses
43‐44

 buses 41 43

 42 44

 37 36

 52 51

 In this section, we have a large set of data. The transient fault simulation is constructed

so that four load buses are used to represent various the load characteristic components of the

power system. Only p3 and p2 need to be expressed, as p1 can be calculated by 1-p3-p2. One

sample set of load components is shown below in Table 4.9.

Table 4.9 One instance of load component for simulation at fault 41-42

Fault at 41‐42 p3 or q3 p2 or q2

37 0.1 0.2

41 0.3 0.7

42 0.1 0.3

52 0.6 0.3

In the Matlab software, a matrix named “load_con” is used to define the ZIP model for

certain loads. Now, we need to construct a large “load_con” matrix so that almost any constant

load component set can be considered and used for training for the intelligent system. For

instance, the Table 4.8 above only has shown one instance of distribution of constant load

components. To get a large amount of instances, the p3 or q3 can be generated by letting load bus

increment from 0 to 1 by a step size of 0.2. Then all these increments will only associated with

the load Bus 41 at 0, and load Bus 41 will also increment from 0 to 1, and each increment will

experience Bus 37 increment from 0 to 1. Consequently, all these changes will happen when

Bus 42 is at 0, and then there will be other values for Bus 42 at which all these described changes

take place. Figure 4.8 shows the illustration of different types of load components for faults at

Buses 41 to 42. As each load bus can have six values from 0 to 1, therefore, there can be 64 or

1296 cases of instances for p3 alone.

60

The value for p2 can be generated by a random number generator that gives a value less

than the value of 1-p3. The p1 value is obtained from 1-p2-p3.

Figure 4.10 Various load components for load buses at fault 41-42

However, we can still generate more load cases. We would create a new set of data from

the pre-existing data that swaps the p3 and p2 values. Also, remember that for each case, there

are six time steps. Hence, the number of instances of load components can be as large as:

1296 x 2 x 6 = 15552 load case instances

Since each simulation for a transient fault at buses 41-42 can record six different sets of inputs

and outputs at six time steps, the simulation for a transient fault at 41-42 needs to be executed

15552 divide by 6 times or 2592 times.

For a standard XP computer in the computer lab, about 9 seconds is need for each run.

Time generating inputs and outputs = 2592 x 9= 23328 seconds = 388.8 min =6.48 hour

A similar method for generating the inputs and outputs information at faults 43-44 was

performed.

4.4.3 Performance Evaluation of Various Methods and Strategies

As mentioned before, in order to evaluate the best case and strategy used, training was only done

with output p1. To test against itself, at fault 41-42, this load bus was trained and tested. The

61

first 10,000 load cases were used to train while the 5,552 load cases were used to test or validate

the load model. Starting at fault 41-42, load bus was trained and tested with the 15,552 cases

with different training methods, and the results are summarized in Table 4.10. Discussions of the

different training methods are presented in Section 4.4. After comparisons against the previous

methods, we see that the ANFIS algorithm does the best training job compared to the other

methods.

Table 4.10 Different methods of training and testing against itself

Fault 41‐42 , load bus: 41

MSE for the different methods on load bus 41 (Full training and testing: all 15552 cases)

 Neuro Fuzzy
method: ANFIS

Levenberg‐
Marquardt
Algorithm

Widow‐Hoff
Backpropagation
Algorithm

Default Scaled Conjugate Gradient
Algorithm

Fully trained
MSE values 0.0068 0.0069 0.0069 0.0077

To validate and test against itself, at fault 41-42, the first 10,000 load cases were used to train

while the 5,552 load cases were used to test or validate the load model. The results are shown

below in Table 4.11. Notice that for a smaller sample size of data, the ANFIS algorithm does the

best job on validating the load model against itself and validating against other load cases.

Table 4.11 Training with 1000 load cases and testing against itself with 5552 load cases

Fault 41‐42 , load bus: 41

Partial training and testing (Train on the first 10000 cases, test on 5552 cases)

 Neuro Fuzzy
method: ANFIS

Levenberg‐
Marquardt
Algorithm

Widow‐Hoff
Backpropagation
method

Default Scaled Conjugate Gradient
Algorithm

Trained MSE
values 0.0056 0.0058 0.0057 0.0063

Validated or
tested MSE
values 0.0095 0.0098 0.0103 0.0106

As the previous test was only done with a small sample size of data, we will test our system with

a much larger set of data. As in Table 4.8 before, we will focus on fault at buses 41-42, and fault

at buses 44-43. We will do a single load bus training and testing, with combinations of 2, 3, or

even 4 load buses shown above for validating and testing. The standard rule is that we train a set

of single or combination of various buses, but we will test the load model on all 8 load buses

shown in Table 4.8 above and record the mean square errors. For instance, for training A1

62

strategy (training on load Bus 37 only), we have the MSE values for the different kinds of

methods shown below. The testing will be done on all the eight load buses and the average error

of these eight cases will be shown at the end. We can see at the end of the A1 section

demonstrated that the Default Scaled Conjugate Gradient Algorithm method gives the most

accurate training results whereas the ANFIS method does a comparably poor job. The training

MSE values for training by using A1 strategy is shown below.

Table 4.12 Training strategy trained on load bus 37

Training
Strategy

Tested on
buses
(MSE)

Levenberg‐
Marquardt
Algorithm

Widow‐Hoff
Backpropagation
Algorithm

Default
Scaled
Conjugate
Gradient
Algorithm

Neuro
Fuzzy
method:
ANFIS

MSE
Column
Average

MSE
Column
Average
(exclude
anfis)

 Trained
on:

A1 (37) error37 0.0087041 0.0086853 0.0509954 0.0082321

 error41 0.4742836 0.0674742 0.0474777 10.141724

 error42 0.1751635 0.0756422 0.047743 44.152189

 error52 0.741254 0.1381595 0.0502348 22.352412

 error36 0.5841999 0.1367574 0.0509954 86.243

 error44 0.2247336 0.1361067 0.0477431 118.05378

 error43 1.6351558 0.21696 0.0476465 30.097273

 error51 0.1283085 0.0921727 0.0502353 161.51818

average
error 0.4964754 0.1089948 0.0491339 59.070848 14.93136 0.218201

Due to the large size of the spreadsheet and instead of showing all the eight tested parameter

errors with the trained load model, we will only show the average mean square error for each

training strategy that combines all the testing mean square error on each of the eight load buses.

Table 4.13 summarizes all the average tested errors for the strategies and methods below.

63

Table 4.13 Training strategies and training methods for static load model

Training Strategy Tested on buses
(MSE)

Levenberg‐
Marquardt
Algorithm

Widow‐Hoff
Backpropagation
method

Default
Scaled
Conjugate
Gradient

Neuro
Fuzzy
method:
ANFIS

MSE
Column
Average

MSE
Column
Average
(exclude
anfis) Algorithm

Trained on:

A1 (37) average error 0.4964754 0.1089948 0.0491339 59.070848 14.931363 0.21820137

A2 (41) average error 0.8134029 0.2605863 0.0482783 3478.4961 869.904592 0.37408917

A3 (42) average error 0.3510092 0.4398576 0.0491547 409.95358 102.6984 0.28000717

A4 (52) average error 0.1971639 0.0981685 0.0491175 319.20747 79.88798 0.11481663

A5 (36) average error 8.7042359 0.5151541 0.0491551 943.42346 238.173001 3.08951503

A6 (44) average error 6.6085212 0.8437232 0.1515104 174.54681 45.5376412 2.53458493

A7 (43) average error 0.0990519 0.0551485 0.0328347 182.73939 45.7316063 0.06234503

A8 (51) average error 2.3565249 0.9344518 0.1089633 76.365919 19.9414648 1.13331333

B1 (41, 42) average error 0.4834025 0.2509 0.0686306 21.891033 5.67349153 0.26764437

B2 (44, 43) average error 0.7291294 0.3800662 0.0559012 292.34947 73.3786417 0.3883656

B3 (37,41) average error 0.1495188 0.0725869 0.0486374 64.995663 16.3166015 0.0902477

B4 (36, 44) average error 0.3257481 0.3300078 0.0813284 425.79405 106.632784 0.24569477

B5 (37, 42) average error 0.2192818 0.1482025 0.0562259 76.784213 19.3019808 0.14123673

B6 (36, 43) average error 0.8097711 0.2396523 0.0469443 2097.6085 524.676217 0.3654559

B7 (41, 52) average error 0.5096352 0.1888463 0.0500835 86.772676 21.8803103 0.24952167

B8 (44, 51) average error 0.2505352 0.6354287 0.0652582 564.86153 141.453188 0.31707403

B9 (37, 52) average error 0.1333552 0.1274686 0.0491529 30.166944 7.61923018 0.10332557

B10 (36, 51) average error 1.6286079 0.5343869 0.048831 351.86842 88.5200615 0.73727527

C1 (37, 41, 42) average error 0.1430585 0.1154196 0.0491513 56.642425 14.2375136 0.10254313

C2 (36, 44, 43) average error 0.1908778 0.3944991 0.0589443 989.85096 247.62382 0.21477373

C3 (41, 42, 52) average error 0.184652 0.2037786 0.0536802 147.30009 36.9355502 0.14737027

C4 (44, 43, 51) average error 0.361787 0.127378 0.0480125 131.5802 33.0293444 0.17905917

D1 (36, 41, 42, 52) average error 0.1339861 0.0786759 0.0494302 46.438301 11.6750983 0.08736407

D2 (36, 44, 43, 51) average error 0.1824207 0.1274614 0.0491551 1762.1668 440.631459 0.11967907

E1 (41, 42, 44, 43) average error 0.0618988 0.057713 0.0386157 9.6149073 2.4432837 0.0527425

E2 (37, 52, 36, 51) average error 0.0819655 0.057171 0.039818 277.67509 69.4635111 0.0596515

E3 (37, 41, 36, 43) average error 0.1173513 0.0780337 0.0436818 100.74114 25.2450517 0.07968893

E4 (42, 52, 44, 51) average error 0.1239898 0.0625158 0.0365435 710.24098 177.616007 0.0743497

MSE Row Average
(averages of the
average_error in
each)

0.9445485 0.2666528 0.0562919 496.04096 124.327113 0.42249773

64

In order to better analyze the training strategies, we plot the different strategies with their

respective mean square error values in Figure 4.11 below.

Figure 4.11 Various training strategies

Also, from Table 4.12, we realize that ANFIS method is fairly inefficient in validating the model

against other load buses. Hence, we exclude ANFIS method, and replot the training strategies

versus their respective MSE values as shown below in Figure 4.12.

0

100

200

300

400

500

600

700

800

900

1000

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1
0

C
1

C
2

C
3

C
4

D
1

D
2 E1 E2 E3 E4

Various Training Strategies

MSE

Strategy

65

Figure 4.12 Various training strategies without using ANFIS

We can see from the Figure 4.12 that the strategies E1, E2, A7, E4, and E3 do a fairly

good job in training and testing against various load buses. Now let us look at the various

training methods. Since it is fairly obvious that ANFIS does not do well in testing, we ignore

this method and plot the other methods in Figure 4.13 below.

0

0.5

1

1.5

2

2.5

3

3.5

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1
0

C
1

C
2

C
3

C
4

D
1

D
2 E1 E2 E3 E4

Various Training Strategies (excluding ANFIS)

MSE

Strategy

66

Figure 4.13 Various Training Methods excluding ANFIS method

 From the diagram above, we see that the Default Scaled Conjugate Gradient algorithm

method works the best here. Therefore, to train a good load model in the future, from the

experience we acquired, we use Default Scaled Conjugate Gradient algorithm and E1, E2, A7,

E4, and E3 strategies. For instance, the p1, p2 and p3 load models can be trained using E2

strategy and pattern recognition method below. The MSE between the simulated parameters p1,

p2 and p3 and the actual parameters in each bus are shown below in Table 4.14. In this case, by

looking at the average MSE values, these simulated parameters seem to closely match the actual

parameters as shown below.

0.9445485

0.2666528

0.0562919
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Levenberg‐ Marquardt
Algorithm

Widow‐Hoff Backpropagation
method

Default Scaled Conjugate
Gradient Algorithm

Various Training Methods (excluding ANFIS)

MSE

Methods

67

Table 4.14 Load model training for p1, p2, and p3

E2 MSE E2 MSE E2 MSE

error37_p1 0.0147255 error37_p2 0.035449 error37_p3 0.01957

error41_p1 0.07612826 error41_p2 0.073415 error41_p3 0.0758

error42_p1 0.09427535 error42_p2 0.075667 error42_p3 0.107402

error52_p1 0.01057614 error52_p2 0.030533 error52_p3 0.012899

error36_p1 0.01453636 error36_p2 0.038002 error36_p3 0.028068

error44_p1 0.09376044 error44_p2 0.078855 error44_p3 0.112588

error43_p1 0.11227931 error43_p2 0.079245 error43_p3 0.105747

error51_p1 0.00955511 error51_p2 0.028468 error51_p3 0.0091

average_error_p1 0.00119439 average_error_p2 0.054954 average_error_p3 0.058897

Although this section seems to draw a reasonable comparison between the strategies and

methods, several shortcomings for comparing training methods include:

 Parameters and learning rate are not equivalent among these methods

 The number of training epochs are determined by effective convergence and are not

equivalent

 Best training error in each method was used to do comparison

Therefore, in the next section, we will equate the parameters, number of training epochs, and

record the range for methods comparison. Average MSE values, median, and range data will be

recorded for all 10 trials in every method in the next section to draw a fairer comparison between

the training methods.

4.5 Analyze Methods with Equivalent Training Criteria

As discussed in the ending of last section, we would work on equate the training

parameters, learning rate, number of training epochs, and number of hidden neurons in each

training parameters. To simplify the problem, an effective strategy E2 or load model obtained by

training buses 37, 52, 36, and 51 was used for each training method. By doing so, we would

have a fairer comparison between these methods. Except ANFIS, the other methods all have the

following training criteria:

 The number of epochs for training is set to be 500.

 The learning rates are all set to be 0.3.

68

 20 hidden neurons were used

The average MSE obtained by using trained models to predict or validating p1, p2 and p3 data for

all eight load buses (buses 37, 41, 42, 52, 36, 44, 43, and 51) was recorded in each of the 10 trials

in Table 4.15 below. In order to better analyze the data, we calculate the average, median,

maximum, minimum MSE, and range in each method and in each trial.

Table 4.15 Average MSE for p1, p2, and p3 with equivalent training criteria

MSE average Fuzzy ANFIS Levenberg‐
Marquardt

Widow‐Hoff
Backpropagation

Default Scaled
Conjugate Gradient

for its p1, p2,
and p3

error 1 414.2555557 0.063198515 0.063860668 0.037668188

error 2 414.2555557 0.079539853 0.078574135 0.039167675

error 3 414.2555557 0.053574795 0.059783156 0.039513893

error 4 414.2555557 0.049195436 0.059881022 0.042653777

error 5 414.2555557 0.066969889 0.083464599 0.047261529

error 6 414.2555557 0.085755512 0.13119704 0.039839317

error 7 414.2555557 0.195083291 0.097044005 0.043701718

error 8 414.2555557 0.082345747 0.043798357 0.042379409

error 9 414.2555557 0.161564714 0.112865941 0.047141321

error 10 414.2555557 0.050235716 0.055168696 0.042298997

average error 414.2555557 0.088746347 0.078563762 0.042162582

median error 414.2555557 0.073254871 0.071217402 0.042339203

maximum
error 414.2555557 0.195083291 0.13119704 0.047261529

minimum
error 414.2555557 0.049195436 0.043798357 0.037668188

range 0 0.145887855 0.087398683 0.009593341

As the ANFIS method is fairly inaccurate, we will ignore this method for the purpose of

avoiding confusion. The descending order to validate the data from the best method to the worst

method based on average and median error is as follows:

 Default Scaled Conjugate Gradient

 Widow-Hoff Backpropagation

 Levenberg-Marquardet

The descending order to validate the data from the smallest range to the largest range based on is

as follows:

69

 Default Scaled Conjugate Gradient

 Widow-Hoff Backpropagation

 Levenberg-Marquardet

Based on the given information in Table 4.14, we plot the graph for all the MSE points for these

three training methods in all 10 trials below in Figure 4.14.

Figure 4.14 MSE average for load parameters with equivalent training criteria

From the analysis and graph above, we notice similar pattern as in Section 4.4 before. The

model obtained by training Default Scaled Conjugate Gradient method works the best in

validating or predicting the load parameters for unknown buses as the range is small and its

median and average MSE is the smallest compared to the other methods. Therefore, we can also

conclude that the descending order to validate the data from the best to the worst as:

 Default Scaled Conjugate Gradient

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11

MSE average
for p1, p2,
and p3

error trial

MSE Average for Load Parameters with
Equivalent Training Criteria

Levenberg‐Marquardt

Widow‐Hoff Backpropagation

Default Scaled Conjugate Gradient

70

 Widow-Hoff Backpropagation

 Levenberg-Marquardet

4.6 Conclusion

In Chapter 4, different approaches to train and test the power system were used in order

to solve the parameter identification problem. These approaches include:

 Training the load model for the simple power system with three inputs: v, P, and

Q.

 Parallel training and testing of the 16-generator power system with 29 load

characteristic cases, and the input are v, P or Q at 5 different time steps for each

load characteristic.

 Sensitivity training and testing the more complex power system with inputs as

QPv  ,, during five time periods as well as the initial time for v, and P or Q.

 In the final approach, QPv  ,, and initial time for 6 time steps were fed into

the inputs for 6 times per load characteristic. The model was constructed based

on observing the smallest MSE in each method.

 Lastly, equivalent training criteria including learning rate, number of epochs, ,

and number of hidden neurons in all training methods were established for the

analysis.

Normalizing the inputs and using more strategies to train p2 or q2 outputs are essential for

training as shown in Figure 4.6. This is also because normalizing the load values allows us to

better train the load model. Throughout these trials and errors, we realized the importance to

have sensitivity in changing voltages versus changing powers in the training. In our final

approach, we decided to use a large set of load characteristics (15552 cases) to generate the

inputs. The final approach would be the best training approach as the large set of load

characteristics makes the training model more adaptable to different cases. For the approach to

construct a load model based on best training mean square error, six changes in voltages with

respect to the changes powers and their initial voltage and powers were fed into the training

model giving the load model the ability to recognize the various time zones. After the training

and testing, the results for different techniques and strategies were recorded. From Table 4.13,

71

highlighted yellow is the average error for testing each training model on each load bus

(including Buses 37, 41, 42, 52, 36, 44, 43, and 51). Furthermore, a fairer comparison between

methods was conducted by equating various training criteria, and a similar pattern was observed.

From studies in Sections 4.4 and 4.5, we realize that Default Scaled Conjugate Gradient method

is very useful to construct load models in training and validating data for known and unknown

buses. The strategies that were successful in obtaining these load parameters include A7, E1, E2,

E3, or E4. From the studies, one thing to note is that the q parameters were shown to be less

accurate than the p parameters in general. Since the p parameters and q parameters are

equivalent to each other in order to reduce the power factor unbalance issue, we consider only

the parameters p1, p2, and p3 for load parameter identification. In Table 4.13 from before, we see

that the testing MSE for p2 and p3 are fairly small as well (0.54954, 0.058897). Although the

MSE for p1 is best (or smallest), the MSE for p2 and p3 are acceptable. To better display the

difference between parameter identifications between methods, we will show results from two

training methods for parameter p1 below. Figure 4.14 and Figure 4.15 below represent the

training results from Levenberg-Marquardt and Widow-Hoff backpropagation methods

respectively. From these two enlarged figures, we can see that, Widow-Hoff backpropagation

algorithm method obtains better training results compared to the other one. For extended

comparisons, we can refer to Appendix A.4.

72

Figure 4.14 Levenbeg-Marquardt method used for validating data on Bus 41

Figure 4.15 Widow-Hoff backpropagation algorithm method used for validating data on

Bus 41

4650 4700 4750 4800 4850 4900 4950 5000 5050 5100

0

0.1

0.2

0.3

0.4

0.5

0.6

The real data v.s. the trained data

The real Data

Trained Data

2300 2400 2500 2600 2700 2800

0

0.2

0.4

0.6

0.8

1

1.2

The real data v.s. the trained data

The real Data

Trained Data

73

CHAPTER 5 - Parameter Estimation using Intelligent Techniques

for Dynamic Load Models

Recall from Equations 2.11 and 2.12, the dynamic ZIP load model can be expressed as

below:

MOTZIPs PPp ** 11  

MOTZIPs QQQ ** 22  

In the dynamic model, we would have to consider the amount of active/reactive induction motor

load power that will be considered to be located at various busses within the system. Hence, as a

starting point, training intelligent systems to yield the percentage of induction load to be modeled

at a given bus will be studied in the thesis. The determining of the other parameters describing

the induction motor loads will be left to future work.

In this case:

 111   (5.1)

122   (5.2)

The equations above represent the total percentage of static ZIP power and dynamic induction

motor power. In our static load model, the active and reactive parameters are assumed to be

equivalent to avoid the stability issues with power factor. (i.e. p1=q1, p2=q2, p3=q3)

To make this rule consistent here or to set constant power factor as before, we will also assume

 1 =  2 and  1 =  2.

From the previous static load model, we will still have 15,552 load component cases.

Now, we will incorporate addition  values in training. Note that the  can be calculated by 1-

 . These  values are 0.05, 0.1, 0.15, 0.175, and 0.2. These  values are fairly small. One

problem observed with a slightly larger  value is that it causes the simulation for faults on 44-

43 to have invalid voltage values at the load bus or other non-convergence problems. Therefore,

these 5  values were chosen. With these additional  values, the number of load component

cases is 15,552 x 5=77,760 cases.

74

About 32.4 hours is needed to generate the inputs and outputs for each faulted load bus. After

the values were obtained, an approach similar to Section 4 was used to train for the dynamic load

model. The diagram for training is shown in Figure 5.1 below.

Figure 5.1 Training Model for dynamic load

The best approach, the Default Scaled Conjugate Gradient method and the best strategies E1, E2,

E3, and E4 used in the static model training were used in this load model training. The MSE

values obtained are displayed below in Table 5.1

75

Table 5.1 Training and validating MSE values for dynamic load model

Training procedures Tested on buses (MSE) Default Scaled Conjugate Gradient

Trained on:

E1 error37 0.105346953

bus(es): error41 0.025872072

41, 42, 44, 43 error42 0.049237347

 error52 0.12347474

 error36 0.145889447

 error44 0.051996439

 error43 0.051535485

 error51 0.124772609

 average error 0.084765636

E2 error37 0.040199252

bus(es): error41 0.097029386

37, 52, 36, 51 error42 0.084719725

 error52 0.05831685

 error36 0.059616769

 error44 0.086380158

 error43 0.093925466

 error51 0.062820319

 average error 0.072875991

E3 error37 0.038623464

bus(es): error41 0.02954644

37, 41, 36, 43 error42 0.139100605

 error52 0.122561639

 error36 0.059202945

 error44 0.192161932

 error43 0.052066952

 error51 0.138394401

 average error 0.096457297

E4 error37 0.060768605

bus(es): error41 0.059869587

42, 52, 44, 51 error42 0.06299373

 error52 0.063834559

 error36 0.070227263

 error44 0.063485102

 error43 0.076367186

 error51 0.064627779

 average error 0.065271726

 MSE Row Average 0.079842663

 (averages of the average error in each)

76

We observe that the MSE average for the dynamic load in the end is worse than the MSE

average for the respective static load. The intelligent techniques, however, seem to do a better

job compared to the previous mathematical manipulation method such as pseudo inverse because

at least feasible solutions are obtained from this approach.

77

CHAPTER 6 - CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we discussed ways to solve parameter identification problems. For

instance, the simple power system was developed to work with mathematical calculations and

ZIP load model verification. Although pseudo inverse and linear programming will solve for the

parameters, the parameters will have infeasible solutions that do not represent the percentage of

constant power, constant current and constant impedance. As a result, intelligent techniques

were used to train intelligent systems that will be used to determine the models for loads that do

not have information about their parameters.

Several intelligent methods were used in this research, included:

 Levenberg-Marquardt

 Widow-Hoff Backpropagation

 ANFIS (or Adaptive Network-Based Fuzzy Inference System)

 Default Scaled Conjugate gradient

A series of combined strategies were used to train and test the load buses as well. These

strategies are trained on two main fault conditions. Namely load buses at fault 41-42 and fault

44-43. The buses that were trained are listed below with their symbol of representation.

 Single bus training: A1(37), A2(41), A3(42), A4(52), A5(36), A6(44), A7(43),

and A8(51).

 Double bus training: B1(41, 42), B2(44, 43), B3(37,41), B4(36,44), B5(37,42),

B6(36,43), B7(41,52), and B8(44, 51).

 Triple bus training: C1(37, 41, 42), C2(36, 44, 43), C3(41, 42, 52), and C4(44, 43,

51).

 Quadruple bus training: D1(36, 41, 42, 52) and D2(36, 44, 43, 51).

 Mixed bus training: E1(41,42,44,43), E2(37, 52, 36, 51), E3(37,41,36,43), and

E4(42,52, 44, 51).

78

Through various training and testing, the Default Scaled Conjugate Gradient method and

A7, E1, E2, E3, E4 training strategies are the most efficient training techniques. The dynamic

load model uses the same techniques and the percentage of induction motor load can be detected

using similar training techniques. Although in the end, the training and testing MSEs can be

fairly small, but we have to realize that several key components need to be considered while

training the set of inputs and outputs:

 Normalization needs to be applied for the similar information inputs.

 For training models that involve p2, extra inputs from p3 and p1 need to be fed into

the training models for p2.

 Large sets of load data need to be used to make the model efficient for use.

 The sensitivities of voltages, active/reactive powers need to be used for the inputs

of the training model.

 ANFIS method does not seem to be a good method for validating the data

although it trains well against itself. Therefore, ANFIS method is not

recommended for this research.

Throughout the research, we tried many different ways to train and test the systems. The

final approach seems to be a fairly reasonable one. The results in Table 4.13 and Table 4.15

demonstrate that there are at least several methods and strategies which are fairly reliable in

training and testing of load bus models. The Figure 4.12, Figure 4.13, and Figure 4.14 further

elaborate the best to worst training methods to obtain a power load model. However, by

choosing the right techniques, we still have to be careful in training and testing the data as some

data are not sensitive to the intelligent techniques and therefore will not predict the unknown

data from unknown buses readily. Overall, this research helps to identify the approaches and

ways to solve load parameters identification problems. It can be used to construct load models,

and it can also be used to predict the load characteristic for unknown buses. It will become

useful when we use the constructed load models through right training to predict data in

unknown buses in a real power system, and to take actions to possibly prevent any power system

related failures from taking place.

79

6.2 Recommendations and Future Work

Sensitivities in voltages and active and reactive powers have been used extensively in this

load model training. However, we regretted that the more recent techniques such as genetic

algorithms were not used in this research. This is something that can be used in the future or

maybe even a combination of artificial intelligence and genetic algorithm techniques can be used

in training. Moreover, the assumption of parameters p1=q1, p2=q2, and p3=q3, α1=α2, and β1=β2

limit the changing load parameters in this thesis. Although by doing so, we would not have to

worry about the power factor related voltage stability issues, the model also becomes less

effective in a real complex system. This can also be said for including frequency variations

parameters that we neglected in our research. Therefore, in the future, we encourage future

students who are interested in this field to choose a varying power factor power system load and

adding frequency components for load model training. In addition, real data is encouraged to be

used in this load modeling research. It will be a big accomplishment to use a developed or even

a more enhanced load model to test and validate on a real power system in the future.

80

References

[1] Canada-U.S. Power System Outage Task Force. Nov. 2003. Web. Aug. 2010.
<http://www.knowledgerush.com/kr/encyclopedia/Canada-
U.S._Power_System_Outage_Task_Force/>.

[2] Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A.,
Taylor, C., Vittal, V. (2003). Causes of the 2003 major grid blackouts in North America
and Europe, and recommended means to improve system dynamic performance, Power
Systems, IEEE Transactions, 20(4), 1922 – 1928, doi: 10.1109/TPWRS.2005.857942

[3] Kundur, P., Balu., N.J., Lauby, M.G. (1994). Power System Stability and Control.
University of Michigan.

[4] Machowski, J., Bialek, J.W., Bumby, J.R. (1997). Power System Dynamics and Stability.
Jonh Wiley & Sons. England, 235-253.

[5] (1990). IEEE Stability Special: Voltage Stability of Power Systems: Concepts, Analytical
Tools and Industry Experience, IEEE Special Publication, doi: 90TH0358-2-PWR

[6] Taylor, C.W. (1994). Power System Voltage Stability, Electric Power Research Institute,
McGraw-Hill, 17-135

[7] Karlsson, D., Hill, D.J. (1994). Modeling and identification of nonlinear dynamic loads
in power systems. IEEE Transactions on Power Systems, 9(1), 157-166

[8] Willis, H.L.. Finley, L.A., Buri, M.J. (1995). Forecasting Electric Demand of
Distribution Planning in Rural and Sparsely Populated Regions, IEEE Transactions on
Power Systems, 10(4), 2008-2013, doi: 10.1109/59.477100

[9] Ma, J., Dong, Z., He, R., Hill, D.J. (2007). Measurement-based Load Modeling using
Genetic Algorithms. IEEE Congress on Evolutionary Computation, 2909 - 2916. doi:
10.1109/CEC.2007.4424841

[10] Shi, J.H., Renmu, H. (2003). Measurement-based Load Modeling - Model Structure.
2003 IEEE Bologna PowerTech Conference, 2, 1-5. doi: 10.1109/PTC.2003.1304621

[11] Mota, L.T.M., Mota, A.A. (2004). Load modeling at electric power distribution
substations using dynamic load parameters estimation. International Journal of Electrical
Power And Energy Systems, 26(10), 805-811, doi:10.1016/j.ijepes.2004.07.002

[12] Bai, H., Zhang, P., Ajjarapu, V. (2009). A Novel Parameter Identification Approach via
Hybrid Learning for Aggregate Load Modeling, IEEE Transactions on Power Systems,
24(3), 1145-1154, doi: 10.1109/TPWRS.2009.2022984

[13] Wen, J.Y., Jiang, L., Wu, Q.H. Cheng, S.J. (2003). Power system load modeling by
learning based on system measurement. IEEE Transactiosn on Power Delivery, 18(2),
364-371. doi: 10.1109/TPWRD.2003.809730J

81

[14] Li, X., Wang, L., Li, P. (2008). The Study on Composite Load Model Structure of
Artificial Neural Network. Electric Utility Deregulation and Restructuring and Power
Technologies, 1564-1570. doi:10.1109/DRPT.2008.4523654

[15] Xu, W., Vaahedi, E., Mansour, Y., Tamby, J. (1997). Voltage Stability Load Parameter
Determination from Field Tests on B.C. Hydro's system, Power Systems, IEEE
Transactions on, 12(3), 1290-1297. doi: 10.1109/59.630473

[16] Coker, M., Kgasoane, H. (1999). Load Modeling, SAPSSI, ESKOM Technology Group,
663-668.

[17] Hiyama, T., Tokieda, M., Hubbi, Walid. (1997). Artificial neural network based dynamic
load modeling, Power Systems, IEEE Transactions on, 12(4), 1576-1583. doi:
10.1109/59.627861

[18] Thukaram, D., Kamalasadan, S., Ghandakly, A Matlab based artificial neural network
algorithm for voltage stability assessment, University of Toledo, 1-4.

[19] Hsu, Y., Lu, F. (1998). A combined Artificial Neural Network – Fuzzy Dynamic
Programming approach to reactive power voltage control in a distribution, National
Taiwan University, 1265-1271.

[20] Oonsivilai, A., El-Hawary, M.E. (1999). Power System Dynamic Load Modeling using
Adaptive-Network-Based Fuzzy Inference System, Electrical and Computer Engineering,
1999 IEEE Canadian Conference on, 3, 1217-1222. doi: 10.1109/CCECE.1999.804864

[21] Radaideh, O.Y. (2003). Selection of Load Node Model in Power Systems: Fuzzy Logic
Approach, Asian Network for Scientific Information, 2(2), 148-153.

[22] (1993). IEEE Task Force on Load Representation for Dynamic Performance, Load
representation for dynamic performance analysis, IEEE Trans. Power Syst., 8(2), 472–
482.

[23] Makarov, Y., Maslennikov, V., and Hill, D. (1996). Revealing loads having the biggest
influence on power system small disturbance stability, IEEE Trans. Power Syst., 11(4),
2018–2023

[24] Craven, R H., George, T., Price, G.B., (1994). Validation of dynamic modeling methods
against power system response to small and large disturbances

[25] (1995). IEEE Task Force on Load Representation for Dynamic Performance: Standard
load models for power flow and dynamic performance simulation, IEEE Trans. Power
Syst., 10(3)

[26] Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A. (1999). Model validation for the August
10, 1996 WSCC system outage, IEEE Trans. Power Syst., 14(3), 967–979, doi:
10.1109/59.780909

82

[27] Kao, W.S., Lin, C.J., Huang, C.T., Chen, Y.T., Chiou, C.Y. (1994). Comparison of
simulated power system dynamics applying various load models with actual recorded
data, 9(1), 248-254, doi: 10.1109/59.317604

[28] (2006). Load Model Parameter Derivation Based on Measurement. Palo Alto, CA: EPRI

[29] (1979). Determining Load Characteristics for Transient Performances, EPRI EL-849, 3,
Project 849-3

[30] Lin, C.-J., Chen, A.Y.-T., Chiou, C.-Y., Huang, C.-H., Chiang, H.-D., Wang, J.-C.,
Fekih-Ahmed, L. (1993). Dynamic load models in power systems using the measurement
approach, IEEE Trans. Power Syst., 8(1), 309–315

[31] Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to
Neural Networks and Fuzzy Models. Heidelberg, Germany

[32] Shackshaft, G., Symons, O.C., Hadwick, J.G. (1997). General purpose model of power
system loads, Proc. Inst. Elect. Eng., 124, 715–723

[33] Qisheng, L., Yunping, C., Dunfeng, D., (2002). The load modeling and parameter
identification for voltage stability analysis, Int. Conf. Power System Technology, 4(4),
2030–2033, doi: 10.1109/ICPST.2002.1047137

[34] Hiskens, I. A. (2001). Nonlinear dynamic model evaluation from disturbance
measurements, IEEE Trans. Power Syst., 16(4), 702–710

[35] Zhu, S.Z., Zheng, J.H., Shen, S.D., Luo, G.M. (2000). Effect of load modeling on voltage
stability, IEEE Power Eng. Soc. Summer Meeting, 1, 395–400, doi:
10.1109/PESS.2000.867617

[36] Kamoun S., Malham, R. P. (1992). Convergence characteristics of a maximum likelihood
load model identification scheme, Automatica, 28(5), 885–896.

[37] De Kock, J.A., Van der Merwe, F.S., Vermeulen, H.J. (1994). Induction motor parameter
estimation through an output error technique, IEEE Trans. Energy Convers., 9(1), 69–76

[38] Knyazkin, V., Canizares, C.A., Soder, L.H. (2004). On the parameter estimation and
modeling of aggregate power system loads, IEEE Trans. Power Syst., 19(2), 1023–1031,
doi: 10.1109/TPWRS.2003.821634

[39] Ju, P., Handschin, E., Karlsson, D. (1996). Nonlinear dynamic load modeling: Model and
parameter estimation, IEEE Trans. Power Syst., 11(4), 1689–1697, doi:
10.1109/59.544629

[40] Jazayeri, P., Rosehart, W., Westwick, D.T. (2007). A multistage algorithm for
identification of nonlinear aggregate power system loads, IEEE Trans. Power Syst.,
22(3), 1072–1079

[41] Karlsson, D., Hill, D.J. (1994). Modeling and identification of nonlinear dynamic loads
in power systems, IEEE Trans. Power Syst., 9(1), 157–166

83

[42] (1997). Power System Toolbox for Matlab, Cherry Tree Scientific Software

[43] (2011). Fuzzy Logic Toolbox User's Guide. Retrieved. July 11, 2011, from The
MathWorks: Accelerating the pace of engineering and science ,Web Site:
http://www.mathworks.com/access/helpdesk/help/pdf_doc/fuzzy/fuzzy.pdf

[44] (2011). Neural Network Toolbox User's Guide. Retrieved. June 11, 2011, from The
MathWorks: Accelerating the pace of engineering and science, Web Site:
http://www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf

[45] Chen, W., Gong, Q.W., Zhang, L., Yanng, M. (2008). Parameters identification of
twelve-phase synchronous generator based on Levenberg-Marquardt algorithm,
International Conference on Electrical Machines and Systems, 3992-3995

[46] Stan, O., Kamen, E.W. (1999). New block recursive MLP training algorithms using the
Levenberg-Marquardt algorithm, 1672-1677, doi: 10.1109/IJCNN.1999.832625

[47] Bartkowiak, A. (2004). Neural Networks and Pattern Recognition, 1-56

[48] Rpley, B.D. (1996), Pattern Recognition and Neural Networks, 1-401

[49] Tchaban, T. , Griffin, J.P., Taylor, M.J. (1997). A comparison between single and
combined backpropagation neural networks in the prediction of turnover, First
International Conference on Knowledge-Based Intelligent Electronic Systems, 347-354,
2, doi: 10.1109/KES.1997.619408

[50] Sugiyama, S. (1995). Twofold type of backpropagation neural network, Conference on
Neural Networks, 1535-1540, 3, doi: 10.1109/ICNN.1995.487391

[51] Bishop, C.M. (1995), Neural networks for pattern recognition, 1-477

[52] Jang, J.R. (1993), ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE
transactions on systems, man, and cybernetics, 23(3), 1-21

[53] He, S., Starrett, S. (2009). Modeling Power System Load using Adaptive Neural Fuzzy
Logic and Artificial Neural Networks. NAPS 2009, 1-5.

[54] CIGRE TF 38-02-10 (1993), Modeling of Voltage Collapse Including Dynamic
Phenomena

[55] Morison, K., Hamadani, H., Wang, L. (2007). Load Modeling for Voltage Stability
Studies, Power Systems Conference and Exposition 2006, 564-568, doi:
10.1109/PSCE.2006.296379

[56] (2011). Conjugate Gradient Algorithms. Retrieved. June 11, 2011, from Neural Network
Toolbox, Web Site: http://www.kxcad.net/cae_MATLAB/toolbox/nnet/backpr14.html

84

Appendix A - Graphs Generated by the Simulations

A.1 Individual training v.s. Combined Training

Load bus 41 training with each parameter, and the combined outputs training

Output 1 output 2

Output 3 combined outputs

Figure A.1 The individual and combined training for bus 41

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

X: 4838
Y: 0.0004659

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

X: 4965
Y: 0.0004027

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

X: 4769
Y: 0.0005007

0 2000 4000 6000
0

0.1

0.2

0.3

0.4

0.5

X: 5000
Y: 0.09744

85

A.2 Simple Power System Training and validating

Figure A.2 The simple power system training for output 1

Figure A.3 The simple power system training for output 2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.005

0.01
The MSE for each of the 6 validating output 1, standard active

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8
The actual and the validated result for output 1, standard active

tested output

actual output

1 2 3 4 5 6
0

0.005

0.01
The MSE for each of the 6 validating output 1, standard reactive

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8
The actual and the validated result for output 1, standard reactive

tested output

actual output

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
The MSE for each of the 6 validating output 2, standard active

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5
The actual and the validated result for output 2, standard active

tested output

actual output

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
The MSE for each of the 6 validating output 2, standard reactive

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5
The actual and the validated result for output 2, standard reactiv

 tested output

actual output

86

Figure A.4 Simple power system training for output 3

A.3 Training and validating on Bus 41

Figure A.5 Training for Bus 41 output 3

1 2 3 4 5 6
0

0.005

0.01

0.015

0.02
The MSE for each of the 6 validating output 3, standard active

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8
The actual and the validated result for output 3, standard activ

tested output

actual output

1 2 3 4 5 6
0

0.005

0.01
The MSE for each of the 6 validating output 3, standard reactive

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8
The actual and the validated result for output 3, standard reactive

tested output

actual output

0 5000
0.01

0.02

0.03

0.04

0.05

0.06

0.07
The MSE for this output 1

0 5000
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065
The MSE for this output 2

0 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
The MSE for this output 3

87

Figure A.6 validating for Bus 41 for output 1 to output 3 from left to right

88

Figure A.7 Validation on bus 1 using trained model for bus 41

A.4 Intelligent methods on Bus 41

ANFIS training on fault 41-42 with load bus information at Bus 41

89

Figure A.8 Enlarged training vs real data for Bus 41

Figure A.9 Normal view for training vs real data for Bus 41

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The real data v.s. the trained data

The real Data

Trained Data

3500 3600 3700 3800 3900 4000 4100 4200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The real data v.s. the trained data

The real Data

Trained Data

90

Figure A.10 The plot for real and trained data in 2-axis for bus 41

With the trained info, we test the Bus 41results using the remaining 5552 points:

Figure A.11 The tested real data v.s. test data for load bus 41 (enlarged version)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The real data v.s. the trained data

1650 1700 1750 1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
The real data v.s. the Test data

The real Data

Test Data

91

Figure A.12 The tested real data v.s. test data for load bus 41

0 1000 2000 3000 4000 5000 6000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The real data v.s. the Test data

The real Data

Test Data

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08
The mean square error of the real and model data

0 1000 2000 3000 4000 5000 6000
-0.4

-0.2

0

0.2

0.4
The difference of the real and model data

92

Figure A.13 The MSE for tested data and the real data

Levenberg-Marquardt Method

Figure A.14 Levenberg-Marquardt method trained on 10000 points

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.02

0.04

0.06

0.08

0.1
The mean square error of the real and model data

4300 4350 4400 4450 4500 4550

0

0.2

0.4

0.6

0.8

1

The real data v.s. the trained data

The real Data

Trained Data

93

Figure A.15 MSE for Levenberg-Marquardt training

Figure A.16 Levenberg-Marquardt method validate on the 5552 points (enlarged)

ANN backpropagation full training on 10000 points

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.02

0.04

0.06

0.08

0.1
The mean square error of the real and model data

0 2000 4000 6000 8000 10000 12000 14000 16000
-0.2

0

0.2

0.4

0.6

0.8

1

The real data v.s. the trained data

The real Data

Trained Data

4650 4700 4750 4800 4850 4900 4950 5000 5050 5100

0

0.1

0.2

0.3

0.4

0.5

0.6

The real data v.s. the trained data

The real Data

Trained Data

94

Figure A.17 ANN backpropagation traininig

Backpropagation tested on 5552 points:

Figure A.18 ANN backpropagation testing

2500 3000 3500 4000 4500

0

0.2

0.4

0.6

0.8

1

The real data v.s. the trained data

The real Data

Trained Data

0 1000 2000 3000 4000 5000 6000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The real data v.s. the trained data

The real Data

Trained Data

95

Pattern recognition, full trained on 10000 points

Figure A.19 Default Scaled Conjugate Gradient training

Default Scaled Conjugate Gradient, validated on 5552 points

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
The real data v.s. the trained data

The real Data

Trained Data

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1
The real data v.s. the trained data

The real Data

Trained Data

96

Figure A.20 Default Scaled Conjugate Gradient testing

300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

The real data v.s. the trained data

The real Data

Trained Data

97

Widow-Hoff backpropagation algorithm code, trained on the first 10000 points

Figure A.21 Widow-Hoff backpropagation training

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1
The real data v.s. the trained data

The real Data

Trained Data

2300 2400 2500 2600 2700 2800

0

0.2

0.4

0.6

0.8

1

1.2

The real data v.s. the trained data

The real Data

Trained Data

98

Widow-Hoff backpropagation validated on the later 5552 points

Figure A.22 Widow-Hoff backpropagation testing

Figure A.23 Widow-Hoff backpropagation testing (enlarged)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The real data v.s. the trained data

The real Data

Trained Data

1450 1500 1550 1600 1650 1700 1750 1800 1850 1900

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The real data v.s. the trained data

The real Data

Trained Data

99

100

Appendix B - Software Code

B.1 Code for Pseudo Inverse method and Inverse Matrix

% Input and output data manipulating for the

%This only caucluates the stuff on bus 3 for trip at line 3-18
%Section 1
% data_combine will include all the training sets with iter =
% focus at bus 3, and the 3-phase fault at line 3-18
% 0 constant impedance
% 1 single constant current load
% 2 single constant power load
% 3 mixed single load
% 4 multiple constant current load
% 5 multiple constant power load
% 6 mixed multiple loads
% 7 yet another mixed loads

%Section 2
%data_combine, the columns are
% 1 - voltage
% 2 - voltage^2
% 3 - frequency
% 4 - real power
% 5 - reactive power
% 6 - time steps t
% line information
% record line information "S1_combine (from), S2_combine (away)" for 1 to 86
lines

%iter=0 for the first case and so on see Section 1 above
iter=0;

data_combine(1+339*iter:339+339*iter, 1)=abs(bus_v(3, 1:339));
data_combine(1+339*iter:339+339*iter, 2)=abs(bus_v(3, 1:339)).*abs(bus_v(3,
1:339));

frequency(1)=0;
for index= 2 : 339
 frequency(index)=(angle(bus_v(3, index))-angle(bus_v(3, index-
1)))/(t(index)-t(index-1))/2/pi;
end

data_combine(1+339*iter:339+339*iter, 3)=frequency;

data_combine(1+339*iter:339+339*iter, 4)=-real(S1(6, :))-real(S1(7, :))-
real(S2(3, :));

data_combine(1+339*iter:339+339*iter, 5)=-imag(S1(6, :))-imag(S1(7, :))-
mag(S2(3, :));

101

data_combine(1+339*iter:339+339*iter, 6)=t;
%pseudo inverse method

b=data_combine(:, 4)

br=data_combine(:, 5)

A(:,1)=data_combine(:, 2)
A(:,2)=data_combine(:, 1)
A(1:339,3)=1

x=pinv(A)*b

y=pinv(A)*br

%inverse matrix method, 3 points at time steps 119, 158, 171 were chosen

index=[119 158 171];
for i=1:3
 b(i,1)=data_combine(index(i), 4);
 br(i,1)=data_combine(index(i), 5);
 A(i,1)=data_combine(index(i), 2)
 A(i,2)=data_combine(index(i), 1)
end

A(1:3,3)=1;

x=inv(A)*b

y=inv(A)*br

B.2 Generate 15552 cases of load_con matrix for fault condition

% p3 values for load buses
clear all;
clc;

index=[0 0.2 0.4 0.6 0.8 1];

%first column for p3 values
for i=1:216
 k=i-1;
 p3values(1+k*6:6+k*6,1)=index(1:6);
end

%second column for p3 values
for i=1:36
 k=i-1;

102

 p3values(1+k*36:6+k*36,2)=index(1);
 p3values(7+k*36:12+k*36,2)=index(2);
 p3values(13+k*36:18+k*36,2)=index(3);
 p3values(19+k*36:24+k*36,2)=index(4);
 p3values(25+k*36:30+k*36,2)=index(5);
 p3values(31+k*36:36+k*36,2)=index(6);
end

%third column for p3 values
for i=1:6
 k=i-1;
 p3values(1+k*216:36+k*216,3)=index(1);
 p3values(37+k*216:72+k*216,3)=index(2);
 p3values(73+k*216:108+k*216,3)=index(3);
 p3values(109+k*216:144+k*216,3)=index(4);
 p3values(145+k*216:180+k*216,3)=index(5);
 p3values(181+k*216:216+k*216,3)=index(6);
end

%fourth column for p3 values
 p3values(1:216,4)=index(1);
 p3values(217:432,4)=index(2);
 p3values(433:648,4)=index(3);
 p3values(649:864,4)=index(4);
 p3values(865:1080,4)=index(5);
 p3values(1081:1296,4)=index(6);

for i=1:4
 for j=1:1512
 total_allowed=10-p3values(j,i)*10;
 if total_allowed==0
 p2values(j,i)=0;
 else
 p2_integer=randi(total_allowed);
 p2values(j,i)=p2_integer/10;
 end
 end
end

%Assign p3 and p2 values to the load con
load_con_test(1:1512,1:4)=p3values;
load_con_test(1:1512,5:8)=p2values;

%Now, swap p3 and p2 values for the next 1512 values
load_con_test(1+1512:1512+1512,1:4)=p2values;
load_con_test(1+1512:1512+1512,5:8)=p3values;

save load_con_test_fault41_42_mediumversion.mat load_con_test

103

B.3 Generate the inputs and outputs for fault 41-42, 44-43 and etc

First, we need to use an existing transient fault simulation. Add the extra components to the

transient fault simulations

%added the load_con matrix
load load_con_test_fault41_42_medianversion.mat

%Now add the following components to change the load_con or the load
characteristic
count_iteration=0;

%change the load bus
%use the one below for fault at 41-42
loadbus_index=[37 41 42 52 0];

%use the one below for fault at 44-43
%loadbus_index=[33 34 36 37 0];
%stop changing the load bus

for iteration=1:2592

load_info=[];
load_con=[];
load_info=load_con_test(iteration, :);

load_con(:,1)=[33 34 36 37]';
load_con(1, 2:3)=load_info(1, 1);
load_con(1, 4:5)=load_info(1, 5);
load_con(2, 2:3)=load_info(1, 2);
load_con(2, 4:5)=load_info(1, 6);
load_con(3, 2:3)=load_info(1, 3);
load_con(3, 4:5)=load_info(1, 7);
load_con(4, 2:3)=load_info(1, 4);
load_con(4, 4:5)=load_info(1, 8);

<<<<<<Now the part below is added at the bottom of the program>>>

%To calculate the complex power flow from the transient simulation results

V1= bus_v(From_idx,:); V2= bus_v(To_idx,:);
[S1,S2] = line_pq(V1,V2,R,X,B,tap,phi);

jjj=0;
loadP=zeros(size(bus,1),size(S1,2));
loadQ=zeros(size(bus,1),size(S1,2));

104

while jjj<size(line,1)
 jjj=jjj+1;

 iii=0;
 while iii<size(bus,1)
 iii=iii+1;
 if busnum(iii)==FromBus(jjj);
 loadP(iii,:)=loadP(iii,:) - real(S1(jjj,:));
 loadQ(iii,:)=loadQ(iii,:) - imag(S1(jjj,:));
 end
 if busnum(iii)==ToBus(jjj);
 loadP(iii,:)=loadP(iii,:) - real(S2(jjj,:));
 loadQ(iii,:)=loadQ(iii,:) - imag(S2(jjj,:));
 end
 end
end

keepsaving=0;

faultbus= sw_con(2,2);

casedata=[1:14]';

%added components to display this
count_i=0;
% loadbus_index=[37 41 42 52 0];
% loadbus_index=[41 0];
% loadbus_index=[33 0];
% loadbus_index=[44 0];
%stop displaying

while keepsaving<1
count_i=count_i+1;
% loadbus=input('Enter the bus for which you want to save data >>');

% altered results for loadbus
loadbus=loadbus_index(count_i);
%stop altering

 if loadbus==0;
 keepsaving=1;
 end

 if isempty(loadbus);
 keepsaving=1;
 end

105

 iii=0;
 while iii<size(bus,1)
 iii=iii+1;
 if loadbus==busnum(iii);

 kkk = 0;
 while kkk<size(load_con,1)
 kkk = kkk+1;

 if load_con(kkk,1)==loadbus;

 ccc=0;
 ttt=100;

 while ccc<10

 ccc=ccc+1;

 ttt=ttt+10;

 newdata=[abs(bus_v(busnum(iii),ttt))
abs(bus_v(busnum(iii),ttt+10)-bus_v(busnum(iii),ttt)) ...
 (loadP(iii,ttt+10)-loadP(iii,ttt))/loadP(iii,1)
(loadQ(iii,ttt+10)-loadQ(iii,ttt))/loadQ(iii,1) ...
 load_con(kkk,2) load_con(kkk,3) load_con(kkk,4)
load_con(kkk,5) ...
 t(ttt) t(ttt+10)-t(ttt) loadP(iii,1) loadQ(iii,1)
loadbus faultbus]';

 casedata=[casedata newdata];
 end
 end
 end

 end
 end

end

% disp(' ')
% disp('Data is in matrix called casedata. ')
% disp(' Each column is one data set. ')
% disp(' There are 10 data sets per bus entered and found in load_con')
% disp(' ')
% disp('In casedata matrix, ')
% disp(' Row 1 is the pu bus voltage magnitude')
% disp(' Row 2 is change in bus pu voltage magnitude')
% disp(' Row 3 is change in load real power over initial real power')
% disp(' Row 4 is change in load reactive power over initial reactive
power')
% disp(' Row 5 is fraction const active power load from load_con')

106

% disp(' Row 6 is fraction const reactive power load from load_con')
% disp(' Row 7 is fraction const active current load from load_con')
% disp(' Row 8 is fraction const reactive current load from load_con')
% disp(' Row 9 is simultation time at beginning of interval')
% disp(' Row 10 is change in time')
% disp(' Row 11 is initial real power')
% disp(' Row 12 is initial reactive power')
% disp(' Row 13 is the load bus number')
% disp(' Row 14 is bus number of the faulted bus in the simulation')

%the input and output training data obtained from here
%this is for load bus 37
for bbb=1:6

count_iteration=count_iteration+1;
datamatrixl37(count_iteration, 1)=casedata(1, bbb+4);
datamatrixl37(count_iteration, 2)=casedata(2, bbb+4);
datamatrixl37(count_iteration, 3)=casedata(3, bbb+4);
datamatrixl37(count_iteration, 4)=casedata(4, bbb+4);
datamatrixl37(count_iteration, 5)=1-casedata(7, bbb+4)-casedata(5, bbb+4);
datamatrixl37(count_iteration, 6)=casedata(7, bbb+4);
datamatrixl37(count_iteration, 7)=casedata(5, bbb+4);

%this is for load bus 41
datamatrixl41(count_iteration, 1)=casedata(1, bbb+14);
datamatrixl41(count_iteration, 2)=casedata(2, bbb+14);
datamatrixl41(count_iteration, 3)=casedata(3, bbb+14);
datamatrixl41(count_iteration, 4)=casedata(4, bbb+14);
datamatrixl41(count_iteration, 5)=1-casedata(7, bbb+14)-casedata(5, bbb+14);
datamatrixl41(count_iteration, 6)=casedata(7, bbb+14);
datamatrixl41(count_iteration, 7)=casedata(5, bbb+14);

%this is for load bus 42
datamatrixl42(count_iteration, 1)=casedata(1, bbb+24);
datamatrixl42(count_iteration, 2)=casedata(2, bbb+24);
datamatrixl42(count_iteration, 3)=casedata(3, bbb+24);
datamatrixl42(count_iteration, 4)=casedata(4, bbb+24);
datamatrixl42(count_iteration, 5)=1-casedata(7, bbb+24)-casedata(5, bbb+24);
datamatrixl42(count_iteration, 6)=casedata(7, bbb+24);
datamatrixl42(count_iteration, 7)=casedata(5, bbb+24);

%this is for load bus 52
datamatrixl52(count_iteration, 1)=casedata(1, bbb+34);
datamatrixl52(count_iteration, 2)=casedata(2, bbb+34);
datamatrixl52(count_iteration, 3)=casedata(3, bbb+34);
datamatrixl52(count_iteration, 4)=casedata(4, bbb+34);
datamatrixl52(count_iteration, 5)=1-casedata(7, bbb+34)-casedata(5, bbb+34);
datamatrixl52(count_iteration, 6)=casedata(7, bbb+34);
datamatrixl52(count_iteration, 7)=casedata(5, bbb+34);

107

end
count_iteration
end

%normalized matrix for load bus 37
datamatrix_normalizedl37(:, 1)=mat2gray(datamatrixl37(:,1));
datamatrix_normalizedl37(:, 2)=mat2gray(datamatrixl37(:,2));
datamatrix_normalizedl37(:, 3)=mat2gray(datamatrixl37(:,3));
datamatrix_normalizedl37(:, 4)=mat2gray(datamatrixl37(:,4));
datamatrix_normalizedl37(:, 5)=datamatrixl37(:,5);
datamatrix_normalizedl37(:, 6)=datamatrixl37(:,6);
datamatrix_normalizedl37(:, 7)=datamatrixl37(:,7);

%normalized matrix for load bus 41
datamatrix_normalizedl41(:, 1)=mat2gray(datamatrixl41(:,1));
datamatrix_normalizedl41(:, 2)=mat2gray(datamatrixl41(:,2));
datamatrix_normalizedl41(:, 3)=mat2gray(datamatrixl41(:,3));
datamatrix_normalizedl41(:, 4)=mat2gray(datamatrixl41(:,4));
datamatrix_normalizedl41(:, 5)=datamatrixl41(:,5);
datamatrix_normalizedl41(:, 6)=datamatrixl41(:,6);
datamatrix_normalizedl41(:, 7)=datamatrixl41(:,7);

%normalized matrix for load bus 42
datamatrix_normalizedl42(:, 1)=mat2gray(datamatrixl42(:,1));
datamatrix_normalizedl42(:, 2)=mat2gray(datamatrixl42(:,2));
datamatrix_normalizedl42(:, 3)=mat2gray(datamatrixl42(:,3));
datamatrix_normalizedl42(:, 4)=mat2gray(datamatrixl42(:,4));
datamatrix_normalizedl42(:, 5)=datamatrixl42(:,5);
datamatrix_normalizedl42(:, 6)=datamatrixl42(:,6);
datamatrix_normalizedl42(:, 7)=datamatrixl42(:,7);

%normalized matrix for load bus 52
datamatrix_normalizedl52(:, 1)=mat2gray(datamatrixl52(:,1));
datamatrix_normalizedl52(:, 2)=mat2gray(datamatrixl52(:,2));
datamatrix_normalizedl52(:, 3)=mat2gray(datamatrixl52(:,3));
datamatrix_normalizedl52(:, 4)=mat2gray(datamatrixl52(:,4));
datamatrix_normalizedl52(:, 5)=datamatrixl52(:,5);
datamatrix_normalizedl52(:, 6)=datamatrixl52(:,6);
datamatrix_normalizedl52(:, 7)=datamatrixl52(:,7);

save input_output_fault41_42_4loadbuses_mediumversion.mat datamatrixl37
datamatrix_normalizedl37 datamatrixl41 datamatrix_normalizedl41 datamatrixl42
datamatrix_normalizedl42 datamatrixl52 datamatrix_normalizedl52

108

B.4 Intelligent Methods

B.4.1 Levenberg-Marquardt, Widow-Hoff backpropagation, and Default Scaled

Conjugate Gradient methods to train strategy E’s

clear all;
clc;
close all;
load input_output_fault41_42_4loadbuses_mediumversion.mat;
load input_output_fault44_43_4loadbuses_mediumversion.mat;

count=0;
number_of_points=15552*4;
% number_of_points=15552;
% number_of_points=10000;

% dataPinput=(datamatrix_normalizedl41(1:number_of_points, 1:3))';
% dataPoutput=(datamatrix_normalizedl41(1:number_of_points, 5))';
% datamatrix_normalized1=datamatrix_normalizedl37;
% datamatrix_normalized2=datamatrix_normalizedl41;

% dataPinput=(datamatrix_normalized(1:number_of_points, 1:3))';
% dataPoutput=(datamatrix_normalized(1:number_of_points, 5))';

% dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
% dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';

% dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))';
% dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))';

for Atrial=4
 datamatrix_normalized1=[];
 datamatrix_normalized2=[];
 datamatrix_normalized3=[];
 datamatrix_normalized4=[];
 dataPinput=[];
 dataPoutput=[];
 if Atrial==1
 datamatrix_normalized1=datamatrix_normalizedl41;
 datamatrix_normalized2=datamatrix_normalizedl42;
 datamatrix_normalized3=datamatrix_normalizedl44;
 datamatrix_normalized4=datamatrix_normalizedl43;
 elseif Atrial==2
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl52;
 datamatrix_normalized3=datamatrix_normalizedl36;
 datamatrix_normalized4=datamatrix_normalizedl51;

109

 elseif Atrial==3
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl41;
 datamatrix_normalized3=datamatrix_normalizedl36;
 datamatrix_normalized4=datamatrix_normalizedl43;
 elseif Atrial==4
 datamatrix_normalized1=datamatrix_normalizedl42;
 datamatrix_normalized2=datamatrix_normalizedl52;
 datamatrix_normalized3=datamatrix_normalizedl44;
 datamatrix_normalized4=datamatrix_normalizedl51;
 end

dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
dataPinput(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))';
dataPinput(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))';
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))';
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))';
dataPoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))';
dataPoutput(1, 46657:62208)=(datamatrix_normalized4(1:15552, 5))';

average_error=100000;

for trial=1:10

count=count+1;
count
%NNtool Levenberg-Marquardt
% net=newfit(dataPinput, dataPoutput, 20);
% net=train(net, dataPinput, dataPoutput);
% traiendoutput=sim(net, dataPinput);

%NNtool Widow-Hoff backpropagation
% net=newff(dataPinput, dataPoutput, 20);
% net=init(net);
% net=train(net, dataPinput, dataPoutput);

%Default Scaled Conjugate Gradient
net=newpr(dataPinput, dataPoutput, 20);
net=train(net, dataPinput, dataPoutput);

traiendoutput=sim(net, dataPinput);

%error calculation
for i=1:number_of_points
 error(i)=0.5*((traiendoutput(i)-dataPoutput(i))^2);
 difference(i)=traiendoutput(i)-dataPoutput(i);
end
error_sum_original=sum(error)/number_of_points;

% x=(1:1:number_of_points)';

110

% plot(x, dataPoutput, x, traiendoutput);
% legend('The real Data', 'Trained Data');
% title('The real data v.s. the trained data');
% figure;
% plot(dataPoutput, traiendoutput);
% title('The real data v.s. the trained data');
%
% figure;
% subplot(2,1,1);
% plot(error);
% title('The mean square error of the real and model data');
% subplot(2,1,2);
% plot(difference);
% title('The difference of the real and model data');

% trained_net41_42=net;
trained_net37=net;
% save NNtoolFitting_bus37.mat trained_net37
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000

%Test on the other buses
sumbus_error=0;
number_of_points2=15552;
for kkk=1:8
 datamatrix_normalized=[];
 error=0;
 error_sum=0;
 if kkk==1
 datamatrix_normalized=datamatrix_normalizedl37;
 elseif kkk==2
 datamatrix_normalized=datamatrix_normalizedl41;
 elseif kkk==3
 datamatrix_normalized=datamatrix_normalizedl42;
 elseif kkk==4
 datamatrix_normalized=datamatrix_normalizedl52;
 elseif kkk==5
 datamatrix_normalized=datamatrix_normalizedl36;
 elseif kkk==6
 datamatrix_normalized=datamatrix_normalizedl44;
 elseif kkk==7
 datamatrix_normalized=datamatrix_normalizedl43;
 elseif kkk==8
 datamatrix_normalized=datamatrix_normalizedl51;
 end

%initializing
dataPinput2=[];
dataPoutput2=[];
trainedoutput2=[];

dataPinput2=(datamatrix_normalized(1:number_of_points2, 1:3))';
dataPoutput2=(datamatrix_normalized(1:number_of_points2, 5))';

111

traiendoutput2=sim(trained_net37, dataPinput2);

%error calculation
for i=1:number_of_points2
 error(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2);
 difference(i)=traiendoutput2(i)-dataPoutput2(i);
end
error_sum=sum(error)/number_of_points2;

 if kkk==1
 error37_trial=error_sum;
 elseif kkk==2
 error41_trial=error_sum;
 elseif kkk==3
 error42_trial=error_sum;
 elseif kkk==4
 error52_trial=error_sum;
 elseif kkk==5
 error36_trial=error_sum;
 elseif kkk==6
 error44_trial=error_sum;
 elseif kkk==7
 error43_trial=error_sum;
 elseif kkk==8
 error51_trial=error_sum;
 end
 sumbus_error=sumbus_error+error_sum;
end
average_error_trial=sumbus_error/8;

if average_error_trial<average_error
 average_error=average_error_trial;
 error37=error37_trial;
 error41=error41_trial;
 error42=error42_trial;
 error52=error52_trial;
 error36=error36_trial;
 error44=error44_trial;
 error43=error43_trial;
 error51=error51_trial;
end

end
 average_error
 d = {'error37' error37; 'error41' error41; 'error42' error42; 'error52'
error52; 'error36' error36; 'error44' error44; 'error43' error43; 'error51'
error51; 'average_error' average_error}

% xlswrite('testedbuses', d, 'Testing buses', 'A1');

 if Atrial==1
 xlswrite('testedbusespE', d, 'Testing buses E1', 'A1');

112

 elseif Atrial==2
 xlswrite('testedbusespE', d, 'Testing buses E2', 'A1');
 elseif Atrial==3
 xlswrite('testedbusespE', d, 'Testing buses E3', 'A1');
 elseif Atrial==4
 xlswrite('testedbusespE', d, 'Testing buses E4', 'A1');
 end
end

B.4.2 Widow-Hoff Backpropagation Method on Strategy B’s

clear all;
clc;
close all;
load input_output_fault41_42_4loadbuses_mediumversion.mat;
load input_output_fault44_43_4loadbuses_mediumversion.mat;

count=0;
number_of_points=15552*2;

for Atrial=1:10
 datamatrix_normalized1=[];
 datamatrix_normalized2=[];
 dataPinput=[];
 dataPoutput=[];
 if Atrial==1
 datamatrix_normalized1=datamatrix_normalizedl41;
 datamatrix_normalized2=datamatrix_normalizedl42;
 elseif Atrial==2
 datamatrix_normalized1=datamatrix_normalizedl44;
 datamatrix_normalized2=datamatrix_normalizedl43;
 elseif Atrial==3
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl41;
 elseif Atrial==4
 datamatrix_normalized1=datamatrix_normalizedl36;
 datamatrix_normalized2=datamatrix_normalizedl44;
 elseif Atrial==5
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl42;
 elseif Atrial==6
 datamatrix_normalized1=datamatrix_normalizedl36;
 datamatrix_normalized2=datamatrix_normalizedl43;
 elseif Atrial==7
 datamatrix_normalized1=datamatrix_normalizedl41;
 datamatrix_normalized2=datamatrix_normalizedl52;
 elseif Atrial==8
 datamatrix_normalized1=datamatrix_normalizedl44;
 datamatrix_normalized2=datamatrix_normalizedl51;
 elseif Atrial==9
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl52;
 elseif Atrial==10

113

 datamatrix_normalized1=datamatrix_normalizedl36;
 datamatrix_normalized2=datamatrix_normalizedl51;
 end

dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))';
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))';
%used for 10 trials
numberInputTrain=3;
NumberOfInputs=3;
MAX_Epochs=500;
N=number_of_points;
%Number of neurons in the hidden layer

HiddenNeurons=20;
epsilon=0.3;
momentum_factor=0.05;

%used for 10 trials
average_error=100000;

%10 trials
for trial=1:10

count=count+1;
count

w1r1=[];
w2r1=[];
 w1r1=(rand(HiddenNeurons,NumberOfInputs+1)-0.5)*3;
 w2r1=(rand(1,(HiddenNeurons+1))-0.5)*3;
 deltaw1r1=0;
 deltaw2r1=0;

for epoch = 1: MAX_Epochs
 for i = 1: N
% FOr output 1--
%watch where to put the p or q for p, it's 1:3, for q, it is 1:2, 4
 xr1=dataPinput(:,i);
 tr1=dataPoutput(1,i);
 [dw1r1, dw2r1, outr1]=backpropagation_single_output(xr1, w1r1, w2r1,
tr1, HiddenNeurons, epsilon);
 deltaw1r1=momentum_factor*deltaw1r1+dw1r1;
 deltaw2r1=momentum_factor*deltaw2r1+dw2r1;
 w1r1=w1r1+deltaw1r1;
 w2r1=w2r1+deltaw2r1;
 errr1(i)=0.5*(tr1-outr1)^2;
 output_1(i)=outr1;
 end
 errorr1(epoch)=sum(errr1(1:N))/N;
end

114

MSE_error=errorr1(epoch)

%error calculation
% for i=1:number_of_points
% error(i)=0.5*((dataPoutput(i)-output_1(i))^2);
% difference(i)=dataPoutput(i)-output_1(i);
% end
% error_sum_original=sum(error)/number_of_points;

% x=(1:1:number_of_points)';
% plot(x, dataPoutput, x, traiendoutput);
% legend('The real Data', 'Trained Data');
% title('The real data v.s. the trained data');
% figure;
% plot(dataPoutput, traiendoutput);
% title('The real data v.s. the trained data');
%
% figure;
% subplot(2,1,1);
% plot(error);
% title('The mean square error of the real and model data');
% subplot(2,1,2);
% plot(difference);
% title('The difference of the real and model data');

% trained_net41_42=net;

% save NNtoolFitting_bus37.mat trained_net37
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000

%Test on the other buses
sumbus_error=0;
number_of_points_2=15552;
for kkk=1:8
 datamatrix_normalized=[];
 error=0;
 error_sum=0;
 if kkk==1
 datamatrix_normalized=datamatrix_normalizedl37;
 elseif kkk==2
 datamatrix_normalized=datamatrix_normalizedl41;
 elseif kkk==3

115

 datamatrix_normalized=datamatrix_normalizedl42;
 elseif kkk==4
 datamatrix_normalized=datamatrix_normalizedl52;
 elseif kkk==5
 datamatrix_normalized=datamatrix_normalizedl36;
 elseif kkk==6
 datamatrix_normalized=datamatrix_normalizedl44;
 elseif kkk==7
 datamatrix_normalized=datamatrix_normalizedl43;
 elseif kkk==8
 datamatrix_normalized=datamatrix_normalizedl51;
 end

%initializing
dataPinput2=[];
dataPoutput2=[];
trainedoutput2=[];

dataPinput2=(datamatrix_normalized(1:number_of_points_2, 1:3))';
dataPoutput2=(datamatrix_normalized(1:number_of_points_2, 5))';

%ntool method
% traiendoutput2=sim(trained_net37, dataPinput2);

w1=[];
w2=[];
w1=w1r1;
w2=w2r1;
N2=number_of_points_2;
for i = 1: N2

 x=dataPinput2(:,i);
 t=dataPoutput2(1,i);
 [dw1, dw2, out]=backpropagation_single_output(x, w1, w2, t,
HiddenNeurons, epsilon);
 output_1(i)=out;
 err(i)=0.5*(t-out)^2;
end

error(1)=sum(err)/N2;

% traiendoutput=sim(net, dataPinput);

traiendoutput2=output_1;

%error calculation
for i=1:number_of_points_2
 error(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2);
 difference(i)=traiendoutput2(i)-dataPoutput2(i);
end
error_sum=sum(error)/number_of_points_2;

116

 if kkk==1
 error37_trial=error_sum;
 elseif kkk==2
 error41_trial=error_sum;
 elseif kkk==3
 error42_trial=error_sum;
 elseif kkk==4
 error52_trial=error_sum;
 elseif kkk==5
 error36_trial=error_sum;
 elseif kkk==6
 error44_trial=error_sum;
 elseif kkk==7
 error43_trial=error_sum;
 elseif kkk==8
 error51_trial=error_sum;
 end
 sumbus_error=sumbus_error+error_sum;
end
average_error_trial=sumbus_error/8;

%find the smallest error among the 10 trials
if average_error_trial<average_error
 average_error=average_error_trial;
 error37=error37_trial;
 error41=error41_trial;
 error42=error42_trial;
 error52=error52_trial;
 error36=error36_trial;
 error44=error44_trial;
 error43=error43_trial;
 error51=error51_trial;
end

%not finding the smallest error coz only 1 trial for anfis
%
% average_error=average_error_trial;
% error37=error37_trial;
% error41=error41_trial;
% error42=error42_trial;
% error52=error52_trial;
% error36=error36_trial;
% error44=error44_trial;
% error43=error43_trial;
% error51=error51_trial;

% end for the 10 trial
end
 average_error
 d = {'error37' error37; 'error41' error41; 'error42' error42; 'error52'
error52; 'error36' error36; 'error44' error44; 'error43' error43; 'error51'
error51; 'average_error' average_error}

117

% xlswrite('testedbuses', d, 'Testing buses', 'A1');

 if Atrial==1
 xlswrite('testedbuses_NB', d, 'Testing buses B1', 'A1');
 elseif Atrial==2
 xlswrite('testedbuses_NB', d, 'Testing buses B2', 'A1');
 elseif Atrial==3
 xlswrite('testedbuses_NB', d, 'Testing buses B3', 'A1');
 elseif Atrial==4
 xlswrite('testedbuses_NB', d, 'Testing buses B4', 'A1');
 elseif Atrial==5
 xlswrite('testedbuses_NB', d, 'Testing buses B5', 'A1');
 elseif Atrial==6
 xlswrite('testedbuses_NB', d, 'Testing buses B6', 'A1');
 elseif Atrial==7
 xlswrite('testedbuses_NB', d, 'Testing buses B7', 'A1');
 elseif Atrial==8
 xlswrite('testedbuses_NB', d, 'Testing buses B8', 'A1');
 elseif Atrial==9
 xlswrite('testedbuses_NB', d, 'Testing buses B9', 'A1');
 elseif Atrial==10
 xlswrite('testedbuses_NB', d, 'Testing buses B10', 'A1');
 end
end

B.4.3 ANFIS Method on Strategy C’s

clear all;
clc;
close all;
load input_output_fault41_42_4loadbuses_mediumversion.mat;
load input_output_fault44_43_4loadbuses_mediumversion.mat;

count=0;
number_of_points=15552*3;

for Atrial=1:4
 datamatrix_normalized1=[];
 datamatrix_normalized2=[];
 datamatrix_normalized3=[];
 dataPinput=[];
 dataPoutput=[];
 trnData=[];
 final_out_fis=[];
 out_fis=[];

 if Atrial==1
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl41;
 datamatrix_normalized3=datamatrix_normalizedl42;

118

 elseif Atrial==2
 datamatrix_normalized1=datamatrix_normalizedl36;
 datamatrix_normalized2=datamatrix_normalizedl44;
 datamatrix_normalized3=datamatrix_normalizedl43;
 elseif Atrial==3
 datamatrix_normalized1=datamatrix_normalizedl41;
 datamatrix_normalized2=datamatrix_normalizedl42;
 datamatrix_normalized3=datamatrix_normalizedl52;
 elseif Atrial==4
 datamatrix_normalized1=datamatrix_normalizedl44;
 datamatrix_normalized2=datamatrix_normalizedl43;
 datamatrix_normalized3=datamatrix_normalizedl51;
 end

dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
dataPinput(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))';
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))';
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))';
dataPoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))';
%used for 10 trials
% average_error=100000;

%10 trials
% for trial=1:10

count=count+1;
count
%NNtool fit a function
% net=newfit(dataPinput, dataPoutput, 20);
% net=train(net, dataPinput, dataPoutput);
% traiendoutput=sim(net, dataPinput);

%NNtool feedforward feedback backpropagation
% net=newff(dataPinput, dataPoutput, 20);
% net=init(net);
% net=train(net, dataPinput, dataPoutput);
%
% traiendoutput=sim(net, dataPinput);

%important trained_net37
% trained_net37=net;

%ANFIS method
trnData(:, 1:3)=dataPinput(1:3, :)';
trnData(:, 4)=dataPoutput(1, :)';
% x=(1:1:number_of_points)';
%it was 15
numMFs=5;
mfType='gbellmf';
epoch_n=20;

119

in_fis=genfis1(trnData, numMFs, mfType);
out_fis=anfis(trnData, in_fis, epoch_n);

traiendoutput=evalfis(trnData(:,1:3), out_fis);

final_out_fis=out_fis;

%error calculation
for i=1:number_of_points
 error(i)=0.5*((traiendoutput(i)-dataPoutput(i))^2);
 difference(i)=traiendoutput(i)-dataPoutput(i);
end
error_sum_original=sum(error)/number_of_points;

% x=(1:1:number_of_points)';
% plot(x, dataPoutput, x, traiendoutput);
% legend('The real Data', 'Trained Data');
% title('The real data v.s. the trained data');
% figure;
% plot(dataPoutput, traiendoutput);
% title('The real data v.s. the trained data');
%
% figure;
% subplot(2,1,1);
% plot(error);
% title('The mean square error of the real and model data');
% subplot(2,1,2);
% plot(difference);
% title('The difference of the real and model data');

% trained_net41_42=net;

% save NNtoolFitting_bus37.mat trained_net37
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000

%Test on the other buses
sumbus_error=0;
number_of_points=15552;
for kkk=1:8
 datamatrix_normalized=[];
 error=0;
 error_sum=0;
 if kkk==1
 datamatrix_normalized=datamatrix_normalizedl37;
 elseif kkk==2

120

 datamatrix_normalized=datamatrix_normalizedl41;
 elseif kkk==3
 datamatrix_normalized=datamatrix_normalizedl42;
 elseif kkk==4
 datamatrix_normalized=datamatrix_normalizedl52;
 elseif kkk==5
 datamatrix_normalized=datamatrix_normalizedl36;
 elseif kkk==6
 datamatrix_normalized=datamatrix_normalizedl44;
 elseif kkk==7
 datamatrix_normalized=datamatrix_normalizedl43;
 elseif kkk==8
 datamatrix_normalized=datamatrix_normalizedl51;
 end

%initializing
dataPinput2=[];
dataPoutput2=[];
trainedoutput2=[];

dataPinput2=(datamatrix_normalized(1:number_of_points, 1:3))';
dataPoutput2=(datamatrix_normalized(1:number_of_points, 5))';

%ntool method
% traiendoutput2=sim(trained_net37, dataPinput2);

traiendoutput2=evalfis(dataPinput2', final_out_fis);

%error calculation
for i=1:number_of_points
 error(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2);
 difference(i)=traiendoutput2(i)-dataPoutput2(i);
end
error_sum=sum(error)/number_of_points;

 if kkk==1
 error37_trial=error_sum;
 elseif kkk==2
 error41_trial=error_sum;
 elseif kkk==3
 error42_trial=error_sum;
 elseif kkk==4
 error52_trial=error_sum;
 elseif kkk==5
 error36_trial=error_sum;
 elseif kkk==6
 error44_trial=error_sum;
 elseif kkk==7
 error43_trial=error_sum;
 elseif kkk==8
 error51_trial=error_sum;
 end
 sumbus_error=sumbus_error+error_sum;

121

end
average_error_trial=sumbus_error/8;

%find the smallest error among the 10 trials
% if average_error_trial<average_error
% average_error=average_error_trial;
% error37=error37_trial;
% error41=error41_trial;
% error42=error42_trial;
% error52=error52_trial;
% error36=error36_trial;
% error44=error44_trial;
% error43=error43_trial;
% error51=error51_trial;
% end

%not finding the smallest error coz only 1 trial for anfis

 average_error=average_error_trial;
 error37=error37_trial;
 error41=error41_trial;
 error42=error42_trial;
 error52=error52_trial;
 error36=error36_trial;
 error44=error44_trial;
 error43=error43_trial;
 error51=error51_trial;

% end for the 10 trial
% end
 average_error
 d = {'error37' error37; 'error41' error41; 'error42' error42; 'error52'
error52; 'error36' error36; 'error44' error44; 'error43' error43; 'error51'
error51; 'average_error' average_error}

% xlswrite('testedbuses', d, 'Testing buses', 'A1');

 if Atrial==1
 xlswrite('testedbusesC', d, 'Testing buses C1', 'A1');
 elseif Atrial==2
 xlswrite('testedbusesC', d, 'Testing buses C2', 'A1');
 elseif Atrial==3
 xlswrite('testedbusesC', d, 'Testing buses C3', 'A1');
 elseif Atrial==4
 xlswrite('testedbusesC', d, 'Testing buses C4', 'A1');
 end
end

B.4.4 Levenberg-Marquardt, Widow-Hoff backpropagation, and Default Scaled

Conjugate Gradient methods training with equivalent training criteria

122

clear all;
clc;
close all;
load input_output_fault41_42_4loadbuses_mediumversion.mat;
load input_output_fault44_43_4loadbuses_mediumversion.mat;

count=0;
average_error=[];
number_of_points=15552*4;

for Atrial=2
 datamatrix_normalized1=[];
 datamatrix_normalized2=[];
 datamatrix_normalized3=[];
 datamatrix_normalized4=[];
 dataPinput=[];
 dataPoutput=[];
 if Atrial==1
 datamatrix_normalized1=datamatrix_normalizedl41;
 datamatrix_normalized2=datamatrix_normalizedl42;
 datamatrix_normalized3=datamatrix_normalizedl44;
 datamatrix_normalized4=datamatrix_normalizedl43;
 elseif Atrial==2
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl52;
 datamatrix_normalized3=datamatrix_normalizedl36;
 datamatrix_normalized4=datamatrix_normalizedl51;
 elseif Atrial==3
 datamatrix_normalized1=datamatrix_normalizedl37;
 datamatrix_normalized2=datamatrix_normalizedl41;
 datamatrix_normalized3=datamatrix_normalizedl36;
 datamatrix_normalized4=datamatrix_normalizedl43;
 elseif Atrial==4
 datamatrix_normalized1=datamatrix_normalizedl42;
 datamatrix_normalized2=datamatrix_normalizedl52;
 datamatrix_normalized3=datamatrix_normalizedl44;
 datamatrix_normalized4=datamatrix_normalizedl51;
 end

%get all the P parameters

dataPinput(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
dataPinput(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
dataPinput(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))';
dataPinput(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))';
dataPoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))';
dataPoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))';
dataPoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))';
dataPoutput(1, 46657:62208)=(datamatrix_normalized4(1:15552, 5))';

dataPoutput_P3(1, 1:15552)=(datamatrix_normalized1(1:15552, 7))';
dataPoutput_P3(1, 15553:31104)=(datamatrix_normalized2(1:15552, 7))';
dataPoutput_P3(1, 31105:46656)=(datamatrix_normalized3(1:15552, 7))';

123

dataPoutput_P3(1, 46657:62208)=(datamatrix_normalized4(1:15552, 7))';

dataPoutput_P2(1, 1:15552)=(datamatrix_normalized1(1:15552, 6))';
dataPoutput_P2(1, 15553:31104)=(datamatrix_normalized2(1:15552, 6))';
dataPoutput_P2(1, 31105:46656)=(datamatrix_normalized3(1:15552, 6))';
dataPoutput_P2(1, 46657:62208)=(datamatrix_normalized4(1:15552, 6))';

%get all the q parameters

% dataQinput(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))';
% dataQinput(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))';
% dataQinput(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))';
% dataQinput(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))';
%
% dataQinput(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))';
% dataQinput(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))';
% dataQinput(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))';
% dataQinput(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))';
%
% dataQoutput(1, 1:15552)=(datamatrix_normalized1(1:15552, 5))';
% dataQoutput(1, 15553:31104)=(datamatrix_normalized2(1:15552, 5))';
% dataQoutput(1, 31105:46656)=(datamatrix_normalized3(1:15552, 5))';
% dataQoutput(1, 46657:62208)=(datamatrix_normalized4(1:15552, 5))';
%
% dataQoutput_q3(1, 1:15552)=(datamatrix_normalized1(1:15552, 7))';
% dataQoutput_q3(1, 15553:31104)=(datamatrix_normalized2(1:15552, 7))';
% dataQoutput_q3(1, 31105:46656)=(datamatrix_normalized3(1:15552, 7))';
% dataQoutput_q3(1, 46657:62208)=(datamatrix_normalized4(1:15552, 7))';
%
% dataQoutput_q2(1, 1:15552)=(datamatrix_normalized1(1:15552, 6))';
% dataQoutput_q2(1, 15553:31104)=(datamatrix_normalized2(1:15552, 6))';
% dataQoutput_q2(1, 31105:46656)=(datamatrix_normalized3(1:15552, 6))';
% dataQoutput_q2(1, 46657:62208)=(datamatrix_normalized4(1:15552, 6))';

%start training

average_error=100000;
for trial=1:10

count=count+1;
count

%Levenberg-Marquardt
% %p1
%
%
% net_p1=newfit(dataPinput, dataPoutput, 20);
%
% net_p1.trainParam.epochs=500;%(number of epochs)

124

% net_p1.trainParam.lr=0.3;%(learning rate)
%
% net_p1=train(net_p1, dataPinput, dataPoutput);
%
% traiendoutput_p1=sim(net_p1, dataPinput);
%
% %q1
% % net_q1=newfit(dataQinput, dataQoutput, 20);
% % net_q1=train(net_q1, dataQinput, dataQoutput);
%
% % traiendoutput_q1=sim(net_q1, dataQinput);
%
% %p3
% net_p3=newfit(dataPinput, dataPoutput_P3, 20);
%
% net_p3.trainParam.epochs=500;%(number of epochs)
% net_p3.trainParam.lr=0.3;%(learning rate)
%
% net_p3=train(net_p3, dataPinput, dataPoutput_P3);
%
% traiendoutput_p3=sim(net_p3, dataPinput);
%
% %q3
% % net_q3=newfit(dataQinput, dataQoutput_q3, 20);
% % net_q3=train(net_q3, dataQinput, dataQoutput_q3);
% %
% % traiendoutput_q3=sim(net_q3, dataQinput);
%
% %p2
% % dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
% dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
% dataPinput_p2(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
% dataPinput_p2(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))';
% dataPinput_p2(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))';
%
% dataPinput_p2(4, 1:62208)=traiendoutput_p1;
% dataPinput_p2(5, 1:62208)=traiendoutput_p3;
% dataPinput_p2(6, 1:62208)=1-traiendoutput_p1-traiendoutput_p3;
%
% net_p2=newfit(dataPinput_p2, dataPoutput_P2, 20);
%
% net_p2.trainParam.epochs=500;%(number of epochs)
% net_p2.trainParam.lr=0.3;%(learning rate)
%
% net_p2=train(net_p2, dataPinput_p2, dataPoutput_P2);
%
% traiendoutput_p2=sim(net_p2, dataPinput_p2);
%
% %q2
% % dataQinput_q2(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))';
% % dataQinput_q2(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))';
% % dataQinput_q2(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))';
% % dataQinput_q2(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))';
% %

125

% % dataQinput_q2(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))';
% % dataQinput_q2(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))';
% % dataQinput_q2(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))';
% % dataQinput_q2(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))';
% %
% % dataQinput_q2(4, 1:62208)=traiendoutput_q1;
% % dataQinput_q2(5, 1:62208)=traiendoutput_q3;
% % dataQinput_q2(6, 1:62208)=1-traiendoutput_q1-traiendoutput_q3;
% %
% % net_q2=newfit(dataQinput_q2, dataQoutput_q2, 20);
% % net_q2=train(net_q2, dataQinput_q2, dataQoutput_q2);
% %
% % traiendoutput_q2=sim(net_q2, dataQinput_q2);

%Widow-Hoff Backpropagation
% %p1
%
%
% net_p1=newff(dataPinput, dataPoutput, 20);
% net=init(net_p1);
%
% net_p1.trainParam.epochs=500;%(number of epochs)
% net_p1.trainParam.lr=0.3;%(learning rate)
% net_p1.trainParam.mc=0.05;%(momentum)
%
% net_p1=train(net_p1, dataPinput, dataPoutput);
%
% traiendoutput_p1=sim(net_p1, dataPinput);
%
% %q1
% % net_q1=newff(dataQinput, dataQoutput, 20);
% % net_q1=train(net_q1, dataQinput, dataQoutput);
%
% % traiendoutput_q1=sim(net_q1, dataQinput);
%
% %p3
% net_p3=newff(dataPinput, dataPoutput_P3, 20);
% net=init(net_p3);
%
% net_p3.trainParam.epochs=500;%(number of epochs)
% net_p3.trainParam.lr=0.3;%(learning rate)
% net_p3.trainParam.mc=0.05;%(momentum)
%
% net_p3=train(net_p3, dataPinput, dataPoutput_P3);
%
% traiendoutput_p3=sim(net_p3, dataPinput);
%
% %q3
% % net_q3=newff(dataQinput, dataQoutput_q3, 20);
% % net_q3=train(net_q3, dataQinput, dataQoutput_q3);
% %
% % traiendoutput_q3=sim(net_q3, dataQinput);
%

126

% %p2
% % dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
% dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
% dataPinput_p2(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
% dataPinput_p2(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))';
% dataPinput_p2(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))';
%
% dataPinput_p2(4, 1:62208)=traiendoutput_p1;
% dataPinput_p2(5, 1:62208)=traiendoutput_p3;
% dataPinput_p2(6, 1:62208)=1-traiendoutput_p1-traiendoutput_p3;
%
% net_p2=newff(dataPinput_p2, dataPoutput_P2, 20);
% net=init(net_p2);
%
% net_p2.trainParam.epochs=500;%(number of epochs)
% net_p2.trainParam.lr=0.3;%(learning rate)
% net_p2.trainParam.mc=0.05;%(momentum)
%
% net_p2=train(net_p2, dataPinput_p2, dataPoutput_P2);
%
% traiendoutput_p2=sim(net_p2, dataPinput_p2);
%
% %q2
% % dataQinput_q2(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))';
% % dataQinput_q2(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))';
% % dataQinput_q2(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))';
% % dataQinput_q2(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))';
% %
% % dataQinput_q2(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))';
% % dataQinput_q2(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))';
% % dataQinput_q2(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))';
% % dataQinput_q2(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))';
% %
% % dataQinput_q2(4, 1:62208)=traiendoutput_q1;
% % dataQinput_q2(5, 1:62208)=traiendoutput_q3;
% % dataQinput_q2(6, 1:62208)=1-traiendoutput_q1-traiendoutput_q3;
% %
% % net_q2=newff(dataQinput_q2, dataQoutput_q2, 20);
% % net_q2=train(net_q2, dataQinput_q2, dataQoutput_q2);
% %
% % traiendoutput_q2=sim(net_q2, dataQinput_q2);

%Default Scaled Conjugate Gradient Descent

%p1

net_p1=newpr(dataPinput, dataPoutput, 20);

net_p1.trainParam.epochs=500;%(number of epochs)
net_p1.trainParam.lr=0.3;%(learning rate)

net_p1=train(net_p1, dataPinput, dataPoutput);

127

traiendoutput_p1=sim(net_p1, dataPinput);

%q1
% net_q1=newpr(dataQinput, dataQoutput, 20);
% net_q1=train(net_q1, dataQinput, dataQoutput);

% traiendoutput_q1=sim(net_q1, dataQinput);

%p3
net_p3=newpr(dataPinput, dataPoutput_P3, 20);

net_p3.trainParam.epochs=500;%(number of epochs)
net_p3.trainParam.lr=0.3;%(learning rate)

net_p3=train(net_p3, dataPinput, dataPoutput_P3);

traiendoutput_p3=sim(net_p3, dataPinput);

%q3
% net_q3=newpr(dataQinput, dataQoutput_q3, 20);
% net_q3=train(net_q3, dataQinput, dataQoutput_q3);
%
% traiendoutput_q3=sim(net_q3, dataQinput);

%p2
% dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
dataPinput_p2(1:3, 1:15552)=(datamatrix_normalized1(1:15552, 1:3))';
dataPinput_p2(1:3, 15553:31104)=(datamatrix_normalized2(1:15552, 1:3))';
dataPinput_p2(1:3, 31105:46656)=(datamatrix_normalized3(1:15552, 1:3))';
dataPinput_p2(1:3, 46657:62208)=(datamatrix_normalized4(1:15552, 1:3))';

dataPinput_p2(4, 1:62208)=traiendoutput_p1;
dataPinput_p2(5, 1:62208)=traiendoutput_p3;
dataPinput_p2(6, 1:62208)=1-traiendoutput_p1-traiendoutput_p3;

net_p2=newpr(dataPinput_p2, dataPoutput_P2, 20);

net_p2.trainParam.epochs=500;%(number of epochs)
net_p2.trainParam.lr=0.3;%(learning rate)

net_p2=train(net_p2, dataPinput_p2, dataPoutput_P2);

traiendoutput_p2=sim(net_p2, dataPinput_p2);

%q2
% dataQinput_q2(1:2, 1:15552)=(datamatrix_normalized1(1:15552, 1:2))';
% dataQinput_q2(1:2, 15553:31104)=(datamatrix_normalized2(1:15552, 1:2))';
% dataQinput_q2(1:2, 31105:46656)=(datamatrix_normalized3(1:15552, 1:2))';
% dataQinput_q2(1:2, 46657:62208)=(datamatrix_normalized4(1:15552, 1:2))';
%

128

% dataQinput_q2(3, 1:15552)=(datamatrix_normalized1(1:15552, 4))';
% dataQinput_q2(3, 15553:31104)=(datamatrix_normalized2(1:15552, 4))';
% dataQinput_q2(3, 31105:46656)=(datamatrix_normalized3(1:15552, 4))';
% dataQinput_q2(3, 46657:62208)=(datamatrix_normalized4(1:15552, 4))';
%
% dataQinput_q2(4, 1:62208)=traiendoutput_q1;
% dataQinput_q2(5, 1:62208)=traiendoutput_q3;
% dataQinput_q2(6, 1:62208)=1-traiendoutput_q1-traiendoutput_q3;
%
% net_q2=newpr(dataQinput_q2, dataQoutput_q2, 20);
% net_q2=train(net_q2, dataQinput_q2, dataQoutput_q2);
%
% traiendoutput_q2=sim(net_q2, dataQinput_q2);

%error calculation for the initial training
for i=1:number_of_points
 error1(i)=0.5*((traiendoutput_p1(i)-dataPoutput(i))^2);
 error3(i)=0.5*((traiendoutput_p3(i)-dataPoutput_P3(i))^2);
 error2(i)=0.5*((traiendoutput_p2(i)-dataPoutput_P2(i))^2);

% errorq1(i)=0.5*((traiendoutput_q1(i)-dataQoutput(i))^2);
% errorq3(i)=0.5*((traiendoutput_q3(i)-dataQoutput_q3(i))^2);
% errorq2(i)=0.5*((traiendoutput_q2(i)-dataQoutput_q2(i))^2);

% difference(i)=traiendoutput_p1(i)-dataPoutput(i);
end
error_sum_original_p1=sum(error1)/number_of_points
error_sum_original_p3=sum(error3)/number_of_points
error_sum_original_p2=sum(error2)/number_of_points

% error_sum_original_q1=sum(errorq1)/number_of_points
% error_sum_original_q3=sum(errorq3)/number_of_points
% error_sum_original_q2=sum(errorq2)/number_of_points

% x=(1:1:number_of_points)';
% plot(x, dataPoutput, x, traiendoutput);
% legend('The real Data', 'Trained Data');
% title('The real data v.s. the trained data');
% figure;
% plot(dataPoutput, traiendoutput);
% title('The real data v.s. the trained data');
%
% figure;
% subplot(2,1,1);
% plot(error);
% title('The mean square error of the real and model data');
% subplot(2,1,2);

129

% plot(difference);
% title('The difference of the real and model data');

% trained_net41_42=net;
% trained_net37=net;
% save NNtoolFitting_bus37.mat trained_net37
% save NNtoolFitting_a_f_trainedfault41_42.mat trained_net41_42
% save NNtoolFitting_a_f_trainedfault41_42f10000.mat trained_net41_42f10000

%Test on the other buses
%for p1
sumbus_error=0;
sumbus_error_p3=0;
sumbus_error_p2=0;
number_of_points2=15552;
for kkk=1:8
 datamatrix_normalized=[];
 error=0;
 error_sum=0;
 if kkk==1
 datamatrix_normalized=datamatrix_normalizedl37;
 elseif kkk==2
 datamatrix_normalized=datamatrix_normalizedl41;
 elseif kkk==3
 datamatrix_normalized=datamatrix_normalizedl42;
 elseif kkk==4
 datamatrix_normalized=datamatrix_normalizedl52;
 elseif kkk==5
 datamatrix_normalized=datamatrix_normalizedl36;
 elseif kkk==6
 datamatrix_normalized=datamatrix_normalizedl44;
 elseif kkk==7
 datamatrix_normalized=datamatrix_normalizedl43;
 elseif kkk==8
 datamatrix_normalized=datamatrix_normalizedl51;
 end

%initializing
dataPinput2=[];
dataPoutput2=[];
trainedoutput2=[];

dataPoutput2_P3=[];
trainedoutput2_P3=[];

dataPinput2_p2=[];
dataPoutput2_P2=[];
trainedoutput2_P2=[];

dataPinput2=(datamatrix_normalized(1:number_of_points2, 1:3))';
dataPoutput2=(datamatrix_normalized(1:number_of_points2, 5))';
traiendoutput2=sim(net_p1, dataPinput2);

130

dataPoutput2_P3(1,
1:number_of_points2)=(datamatrix_normalized(1:number_of_points2, 7))';
traiendoutput2_P3=sim(net_p3, dataPinput2);

dataPinput2_p2(1:3,
1:number_of_points2)=(datamatrix_normalized(1:number_of_points2, 1:3))';
dataPinput2_p2(4, 1:number_of_points2)=traiendoutput2;
dataPinput2_p2(5, 1:number_of_points2)=traiendoutput2_P3;
dataPinput2_p2(6, 1:number_of_points2)=1-traiendoutput2-traiendoutput2_P3;

dataPoutput2_P2(1,
1:number_of_points2)=(datamatrix_normalized(1:number_of_points2, 6))';
traiendoutput2_P2=sim(net_p2, dataPinput2_p2);

error_p1=[];
error_p2=[];
error_p3=[];
%error calculation
for i=1:number_of_points2
 error_p1(i)=0.5*((traiendoutput2(i)-dataPoutput2(i))^2);
 error_p3(i)=0.5*((traiendoutput2_P3(i)-dataPoutput2_P3(i))^2);
 error_p2(i)=0.5*((traiendoutput2_P2(i)-dataPoutput2_P2(i))^2);
 error_combined(i)=error_p1(i)+error_p3(i)+error_p2(i);

% difference(i)=traiendoutput2(i)-dataPoutput2(i);
end
error_sum_p1=sum(error_p1)/number_of_points2;
error_sum_p3=sum(error_p3)/number_of_points2;
error_sum_p2=sum(error_p2)/number_of_points2;
error_sum=sum(error_combined)/number_of_points2/3;

 if kkk==1
 error37_trial=error_sum_p1;
 error37_trial_p3=error_sum_p3;
 error37_trial_p2=error_sum_p2;
 elseif kkk==2
 error41_trial=error_sum_p1;
 error41_trial_p3=error_sum_p3;
 error41_trial_p2=error_sum_p2;
 elseif kkk==3
 error42_trial=error_sum_p1;
 error42_trial_p3=error_sum_p3;
 error42_trial_p2=error_sum_p2;
 elseif kkk==4
 error52_trial=error_sum_p1;
 error52_trial_p3=error_sum_p3;

131

 error52_trial_p2=error_sum_p2;
 elseif kkk==5
 error36_trial=error_sum_p1;
 error36_trial_p3=error_sum_p3;
 error36_trial_p2=error_sum_p2;
 elseif kkk==6
 error44_trial=error_sum_p1;
 error44_trial_p3=error_sum_p3;
 error44_trial_p2=error_sum_p2;
 elseif kkk==7
 error43_trial=error_sum_p1;
 error43_trial_p3=error_sum_p3;
 error43_trial_p2=error_sum_p2;
 elseif kkk==8
 error51_trial=error_sum_p1;
 error51_trial_p3=error_sum_p3;
 error51_trial_p2=error_sum_p2;
 end
 sumbus_error_p1=sumbus_error+error_sum_p1;
 sumbus_error_p3=sumbus_error_p3+error_sum_p3;
 sumbus_error_p2=sumbus_error_p2+error_sum_p2;
end
average_error_trial_p1=sumbus_error_p1/8;
average_error_trial_p3=sumbus_error_p3/8;
average_error_trial_p2=sumbus_error_p2/8;

average_error_trial=(average_error_trial_p1+average_error_trial_p2+average_er
ror_trial_p3)/3;

% if average_error_trial<average_error
 average_error(trial)=average_error_trial;

end

end
 average_error
 d = {'error1' average_error(1); 'error2' average_error(2); 'error3'
average_error(3); 'error4' average_error(4); 'error5' average_error(5);
'error6' average_error(6); 'error7' average_error(7); 'error8'
average_error(8); 'error9' average_error(9); 'error10' average_error(10)}

 xlswrite(Default_Scaled_Conjugated_Gradient_caseE2', d, 'Testing buses
E2', 'A1');

% xlswrite('testedbuses', d, 'Testing buses', 'A1');

% if Atrial==1
% xlswrite('testedbuses_E', d, 'Testing buses E1', 'A1');
% xlswrite('testedbuses_E', d3, 'Testing buses E1', 'D1');
% xlswrite('testedbuses_E', d2, 'Testing buses E1', 'G1');
% save pattern_recognition_caseE1 net_p1 net_p2 net_p3

132

% elseif Atrial==2
% xlswrite('testedbuses_E2', d, 'Testing buses E2', 'A1');
% xlswrite('testedbuses_E2', d3, 'Testing buses E2', 'D1');
% xlswrite('testedbuses_E2', d2, 'Testing buses E2', 'G1');
% save pattern_recognition_caseE2 net_p1 net_p2 net_p3
% elseif Atrial==3
% xlswrite('testedbuses_E3', d, 'Testing buses E3', 'A1');
% xlswrite('testedbuses_E3', d3, 'Testing buses E3', 'D1');
% xlswrite('testedbuses_E3', d2, 'Testing buses E3', 'G1');
% save pattern_recognition_caseE3 net_p1 net_p2 net_p3
% elseif Atrial==4
% xlswrite('testedbuses_E4', d, 'Testing buses E4', 'A1');
% xlswrite('testedbuses_E4', d3, 'Testing buses E4', 'D1');
% xlswrite('testedbuses_E4', d2, 'Testing buses E4', 'G1');
% save Default_Scaled_Conjugated_Gradient_caseE2 net_p1 net_p2 net_p3
%
% end
% end

