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IMTRODUCTIOM

An investigation of the literature reveals a voluminous

amount of work on asphalt and its related bituminous substances;

its physical and chemical properties have been the subject of a

tremendous amount of research over a period of many years* Only

in the past fee years, however, has the problem of stabilisation

of bitumen-soil systems been investigated actively. Bitumen-soil

adhesion leaves much to be desired, in fact, large stretches of

bituminous highways must be repaired or relayed each year because

water stripping and poor bitumen-soil adhesion cause disentegra-

tlon of the highway surface. This problem is of utmost impor-

tance because a large share of all bituminous substances produced

goes into highway construction. Although this problem has been

approached from many angles, too little has been done with re-

spect to the surface properties of bitumens. The purpose of

this research has been to help find some substances that might

possibly be used to increase the work of adhesion between bitu-

men and soil. This problem has been studied with the aid of the

surface pressure balance in which the spreading tendencies of as-

phalts and coal tars on various aqueous substrates have been ex-

amined. A substrate that causes a marked increase in spreading

might possibly be used as a roadbed treatment or admixed with

the bitumen before it is applied, to promote better "wetting" of

the aggregate by the bitumen, thereby increasing the work of ad-

hesion. A stabilized asphalt or coal tar-soil system should thus

result.



SURVEY OF THE LITERATURE

Asphalts

History . Asphalt is one of the oldest and most used con-

struction materials. As early as 3600 BC, the Sumerlans, inhab-

itants of the Euphrates Valley in Babylonia, were using natural

asphalts for water-proofing, ornaments, and as an adhesive. A

few centuries later it was being used in building construction

and floor surfacings.

However, at the beginning of the Christian era the material

fell into disuse and it was not until 1852 that the first modern

asphalt highway was constructed (in France). Since that time,

it has come into wide use throughout the world in many types of

construction (Abraham, 1).

Types of Aaphalt . There are two types of asphalt, natural

and petroleum. natural asphalt was first used in highway con-

struction and came chiefly from the large deposit on the island

of Trinidad. Another important deposit is that found in the

State of Utah, U. S. A., and is known commercially as Ollsonlte.

Oilsonite la employed principally as a protective coating and

serves as an ingredient in certain black paints and varnishes.

Chemically (18) the natural asphalts are complex hydrocarbons

consisting of open-chain paraffins, olefines, acetylene, etc.;

closed-chain eye lo-paraffins, napthenes, polycyclic benzenes,

etc.; also oxygenated, nitrogenous and sulfurated bodies. There

is no generally accepted theory of the origin of asphalts, al-
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though it Is conceded that the mother substance Is petroleum. The

discussion centers around the origin of the petroleum from which

the asphalts are supposed to have been formed by a process of

metamorphosis, under the influence of time, heat, and pressure.

Several chemical processes are involved, e.g., oxidation, sul-

furization, polymerization (i.e., the combination of like mole-

cules), and condensation (i.e., the combination of unlike mole-

cules). Some natural asphalts are derived from the slow evapor-

ation of lower boiling-point fractions from the original petro-

leum; others Indicate conversion by heat and pressure; still

others show evidence of slow oxidation. It is likely that a

combination of all three processes occurs simultaneously. Ge-

ologically, the natural asphalts are found throughout all the

different formations. Trinidad asphalt occurs as a lake, and

Oilsonite occurs in veins and is mined like coal except that more

care and expense are involved.

The first oil wells in the United States produced paraffin-

type oils which yielded practically no liquid aaphaltic residue.

However, the western oil fields discovered late in the nineteenth

century made available a crude oil from which semi-solid and sol-

id residual asphalts could be obtained, according to Kastens

(10), petroleum asphalts can be divided into three classes;

cracked, blown, and straight run.

Cracked asphalts are the residue from thermal cracking op-

erations. They have lower average molecular weights than other

commercial asphalts, and are believed to have a larger percentage

of aromatic constituents. Cracked asphalts exhibit extreme



changes In viscosity with temperature and low oxidation resis-

tance. Because of the latter property, cracked asphalts dete-

riorate relatively rapidly, and are not particularly good for

road surfacing.

Blown asphalt is made by passing air (400° to 600°?.)

through a liquid residuum obtained froa either straight run dis-

tillation or thermal cracking for periods of from 3 to 24 hours.

This produces a material used for roofing material, pipe cover-

ing, etc., which has high weather resistance, a high softening

point, and plasticity at low temperatures.

Straight run asphalt is produced by distilling off the

lighter fractions of a petroleum oil to produce a residue con-

taining the heaviest compounds present in the charge. The charge

to the distillation towers may be topped crude - crude from which

the lightest fractions have already been removed - or high as-

phalt erude. This is the most important type of asphalt, pro-

duced primarily for use in road surfacing where it may be used

unaltered.

Structure of Asphalt . Many of the properties of asphalts

indicate that they are colloids. Nellensteijn (20) found that

their solutions even at 1-30,000 dilution show the Tyndall ef-

fect. Be also noted with ultramicroscopie examination percep-

tible Brownian movement in the solution (19). Nellensteijn has

developed a theory for the colloidal structure of asphaltio bitu-

mens based on his research. lis proposes the existence of three

components. They are (1) the fluid medium or dispersing phase,

(2) the protective bodies which are lyophilic, and (3) a lyophobe
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part. The alee lies of the dispersed phase are composed of the

last two groups, and the stability of the system Is dependent

upon the interfaelal tension existing between the fluid medium

and the micelles. When an asphalt solution is flocculated by the

addition of some organic solvent, a new phase is not formed; the

dispersed particles merely come together because of the change in

interfaelal tension which has taken place between them, and the

surrounding liquid* The theory assumes that elementary carbon

is at the center of the micelle, and Waterman and Nellensteijn

(31) claimed to have obtained carbon from artificial and natural

asphalts by successive extractions with gasoline, carbon tetra-

chloride, and bensene* The dark color of asphalt suggests the

presence of free carbon inasmuch as most hydrocarbons are only

slightly colored* Katz and Beu (11) examined thin films of as-

phalt and oil in the electron microscope in a search for colloidal

asphaltene particles. These films appeared to be free from par-

ticles; but numerous particles appear when suspensions of asphalt

in benzene and petroleum ether are examined* Micrographs at

166,000 diameters indicate asphaltene particles if present in

undiluted oil and asphalt are less than 65 A° in diameter*

Composition * The chemistry of bituminous substances is com-

plicated by the fact that commercial specimens of any given ma-

terial are rarely elite in composition. Even when emanating from

the same source, asphalts - both natural and petroleum - vary

considerably in composition. In the case of petroleum asphalts,

the composition and physical properties depend upon the source

of the raw material and the exact conditions to which they have



bean subjected in their manufacture, including the temperature

and length of treatment, natural asphalts are in a constant state

of transition, as the result of their age and environment, thus

their composition will vary depending upon the degree of exposure

and extent of metamorphosis (Traxler, 28).

Very little is known concerning the chemical composition of

the numerous complex hydrocarbons present in asphaltic bitumen.

Richardson (26) believes the series of polymethylenes make up

part of petroleum asphalt. These compounds are unaffected by

sulfuric acid even though less stable than paraffinlc hydrocar-

bons. Substituting various hydrocarbon radicals for hydrogen

makes the polymethylenes very complex. Small amounts of substi-

tuted hydrocarbons of the aromatic series may be found in the

more volatile fractions of asphalt-base petroleums.

Molecular Weights . According to Traxler (28), Stricter de-

termined the molecular weights of dissolved asphaltic bitumen

in benzene by the lowering of the freezing point. The values

he obtained ranged from 020 to 4252, depending upon the source

of the asphalt. Kate (12) determined the weights to be in the

range from 760 to 2200. The molecular weights of some air-blown

asphalts gave values up to almost 4700, probably due to conden-

sation and polymerisation cauaed by the air.

Solvents . The most effective solvents for asphalt are car-

bon disulfide, carbon tetrachloride, benzene, and light petroleum

naphtha

•

Surface Tension . Obviously the measurement of the surface

tension of asphalts is very difficult because of their high vis-
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cosity. Only by making the measurements at elevated temperatures

has It been possible to obtain estimates of the interfaeial ten-

sion between air and asphalts. Nellensteijn and Roodenburg (21)

measured the surface tensions of several asphalts at temperatures

ranging from 100° to 225<>C. by means of the Du Mouy ring method.

The values obtained ranged from 20.7 to 37.4 dynes per centimeter

depending upon the particular type of asphalt used. Also all of

the temperature -surface tension curves shoved a break at about

150°C. Be liensteijn and Roodenburg discussed the theoretical and

practical significance of this break and attributed it to sudden

changes in the internal structure of the bitumen.

Positive and Negative Asphalts . Petroleum asphalts have

further been classified as positive and negative. The basis of

the classification is a test worked out by Oliensls (22). The

standard test consists of adding 10.2 cc of naphtha to 2 cc of

asphalt. After the asphalt is dissolved under controlled condi-

tions, a spot is made by applying a drop to a No. 50 Whatman

filter paper. Spots which have a dark nucleus or center due to

a small amount of material precipitated from the bitumen by the

naphtha are called "positive", and bitumens giving this type of

spot are designated as heterogeneous. Spots which are uniform

throughout are called "negative", and the bitumens giving them

are designated as homogeneous. Materials that have been cracked

or subjected to abnormally high temperatures give positive spots,

and it is believed by some that such asphalts are poor materials

for highway construction. It has been found that failure of bi-

tumen to function properly in a pavement usually is associated
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with excessive hardening. This hardening is often due to a change

in the colloidal structure of the bitumen. The Ollensis test is

then a test or measure of the stability of the colloid, and high

temperatures are generally thought to reduce thia colloid stabil-

ity. In certain borderline cases, Oliensis modified his test by

using other solvents and changing the dilutions. Vinterkorn and

Eekert (32) have used the ollensis test on a number of different

asphalts, and their results support the claims made for the stand-

ard spot test; however, in certain borderline cases their results

do not distinguish between positive and negative asphalt follow-

ing the method of oliensis.

Coal Tar

Goal tar is a general term that applies to all varieties of

tar obtained from coal. $hen bituminous coal is destructively

distilled or carbonised, coke, gas, tar, phenol, and other prod-

ucts may be recovered.

Low temperature tars are produced by carbonisation equip-

ment which operates at relatively low temperatures, approximately

950 to L300°F. These tars have low binding capacity or small co-

hesion. They have been produced only in small quantities in this

country, and have been used to a very limited extent in road ma-

terials.

High temperature coal tars are produced at temperatures of

approximately 1800 to 2100°P. In general they have higher bind-

ing capacities than low temperature eoal tars. The principal

varieties of high temperature tar produced in the United States
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are coke oven tar, horizontal retort tar and vertical retort tar*

Of these three, coke oven tar is produced in the greatest amount,

and is used most extensively in road tars. Horizontal retort and

vertical retort tars are produced in smaller quantities and, when

used in road tars, usually are blended with coke oven tars. The

physical and chemical characteristics and high binding capacities

of high temperature coal tars make them especially suitable for

road tar purposes.

The quality of the tars derived from different carbonizing

equipment varies according to those characteristics of each type

of apparatus which influence the temperature and the time of con-

tact of the tar vapors with the heated surfaces. Horizontal re-

tort tars usually have a high percentage of so-called free car-

bon, a low concentration of tar acids, and a high specific gravi-

ty. Vertical retort tars are low in "free carbon", have a high

concentration of tar acids, and a low specific gravity. Inter-

mediate between the two are the by-product coke oven tars.

Constitution of Goal Tars . Coal tars are complex mixtures

of a great number of organic compounds, principally of aromatic

structure. They contain also small amounts of inorganic matter.

According to Spielman (27), several hundred constituents so

far have been identified in coal tars. Some of those occurring

in higher concentrations are: naphthalene, monomethyl and di-

methyl naphthalenes, acenaphthene, phenanthrene, phenol, eresols,

xynols, napthols, and pyridene.

One of the components of coal tar is the so-called "free

carbon". This term was originally used to describe the solid
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material which is removed from tar by solvent extraction. It

probably vaa chosen in the belief that the solid residue consist-

ed of elementary carbon. The term has been retained in industry

to describe the amount of benzene - or carbon disulfide - Insol-

uble matter, although it is almost certain that it is not pure

carbon.

With regards to its physical structure, coal tar is a com-

plex dlspersoid. As such it contains:

(1) The dispersing medium consisting of tar oils

(2) The dispersed phase

Within the dispersed phase Klinkmann (13) distinguishes be-

tween a colloidal part and the coarsely dispersed solid material

which can be observed under the microscope. The colloidal part

consists of high molecular polymers which are partly true liquids

and partly also crystalline. Hellensteljn (20), differing from

these views, contends that the dispersed phase is made up solely

of solid materials consisting of elementary earbon surrounded by

a layer of protective bodies. In general, Klinkmann 'a polymers

or resinous materials are similar to Nellensteijn's protective

bodies. By resinous materials are meant those organic substances

of high molecular weight which upon isolation appear to have an

essentially amorphous structure. Very little is known of the

chemical structure of these compounds.

Hellensteljn has done much work on the stability of the col-

loidal system. The chief factor which determines the stability

of colloidal dispersions he considers to be the interfaclal ten-

sion between the solid and liquid phases and the solvation effect
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of the protective layers. He bases his opinion on the well-known

fact that flocculation occurs if tar is brought into contact with

a solvent miscible with the oily medium as well as the protective

bodies provided the surface tension of the solvent reduces ma-

terially that of the liquid phase. Two such solvents are aniline

and pyridine, and the amount insoluble is probably the same ma-

terial which is visible under the microscope and removable by fil-

tration*

Surface Tension . Surface tension determinations on coal tars

have been carried out by Nellensteijn and Hoodenburg (21), Klink-

mann (15), Fricke and Meyering (6), and Volkmann et al. (30).

The best values obtained seem to be those of Ne liensteljn deter-

mined by the maximum bubble pressure method between the tempera-

tures of 120° and 40°C, and those obtained by Volkmann by the

Du Mouy tensiometer method at 37°G. Their results show values

ranging from 32.0 and 38.7 dynes/cm. at B0°C. by the maximum bub-

ble pressure method and values from 36.3 to 48.6 dynes/cm. by the

Du Nouy tensiometer method.

A comparison of the three types of tars shows that the ver-

tical retort tars have surface tensions lower than those of the

other two groups. The values for the coke oven tars and hori-

zontal retort tars fall within the same range.

The Properties of Surfaces

Spreading . Whenever a small quantity of an insoluble and

non-volatile substance is placed on water (which has a high sur-

face tension), it will either remain as a compact drop, leaving
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the rest of the surface clean, or It will spread out over the

surface. According to Harkins and Feldman (9) there are four

general views of the criterion for spreading.

1. All liquids spread on a pure surface*

2. A liquid b will spread on liquid a If tf
ft
> *b • £ab .

where xa0 represents the interfaelal tension between the two

liquids, and tf_ and 2fb , the respective surface tensions. The

condition for non-spreading Is tfa < Jfb *ab #

3. Liquids whose molecules are polar or contain polar

groups spread on water.

4* A liquid will spread If Its work of surface cohesion #c

is less, and will not spread if its work of surface cohesion is

greater, than its work of adhesion Ka with respect to the surface

of the liquid or solid upon which the spreading is to occur* The

spreading coefficient, which under the conditions hereafter speci-

fied gives a measure of the tendency to spread, is defined as

S • » - w° "a "c

It therefore appears that the necessary condition for any

substance to spread on water is that its molecules must attract

the water more than they attract each other. If the substance

spreads, as many of the molecules of the spreading substance as

possible move into direct contact with the water, forming a film

one molecule thick* If space on the water surface permits, the

whole of the substance spreads into such a mono-molecular film*

Harkins and fteldman (9) define the term film by saying that a

film exists whenever a layer, which has a different composition

the body of the liquid or solid, is present at the boundary
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surface, provided the area and form of this layer are independent

of the gravitational forces acting. Whenever the area and the

forms of the layer depend both upon the surface and gravitational

forces, a lens exists. So the layer of liquid at a phase boundary

may be considered to constitute a film whenever the gravitational

forces which tend to change its form or area are inappreciable

in comparison with the surface forces which are active.

The Spreading Coefficient . If when liquid b is placed upon

the surface of liquid a and spreading occurs, the surface of

liquid a disappears while its place is taken by substantially an

equal area of the surface b, plus an equal area of the Interface

ab provided the surface of b and the Interface ab do not lose

their identity. If they do, then only one composite surface e

takes the place of surface a.

Three forces are in operation when a drop of oil b forms a

globule on the surface of liquid a. These forces represented by

*b» *a» and *ab *«»P«c ti*ely ar* t°e surface tension of the

liquids b and a, and the interfaelal tension between these liq-

uids. If the globule is to remain stable, the sum of the ten-

sions holding it together, that is of *b and ^ab , must exceed

the tension £ tending to cause the drop to be pulled apart.

It follows, therefore, that for stability

*b *ab > *•

On the other hand, if * a is greater than the sum of *D and

*ab» th0 giooule will not be stable, but the large value of

* a will cause the liquid oil b to spread over the surfaee of a.

The difference * a - *b - *ab ***• been called the spreading
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coefficient (S) by Karklns et al. (6).

» " ** " *b * *ab (I)

If the area of contact between a layer of liquid b on the

surface of another liquid a la reduced by 1 aq. cm., the Individ-

ual areas of a and b must be increased by 1 sq. en. Since the

work done in producing any surface is equal to the surface ten-

sion multiplied by the area of the surface formed, the work done

in increasing the surfaces of a and b is if a + *"D , and the

work resulting from the diminution of the ab interface is &"
a0 *

The net work done is thus & a • *D - ^ab er88 » and tnl*

must equal the work done against the forces of adhesion acting

across the interface between the liquids a and b, since no other

energy changes are involved in the process under consideration.

Hence it is possible to write

*a *b ' *ab " f* <XI)

where Wa is the adhealonal work between a and b; this relation-

ship is known as Dupre's equation, and was first deduced in 1869.

If a single liquid, for example b, is imagined to be in the form

of a column of 1 sq. em. cross section, and the two ends of the

column are pulled so that the liquid Is divided into two parts

without sny lateral contraction, then two new surfaces each of

1 sq. cm. area will be formed. The work required to form these

two surfaces is

A combination of equations (I), (II), and (II) gives

* - »• " *e

which states the simple relation that spreading occurs if the
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adhesion between the two liquids is greater than the cohesion in

the liquid which is in the position for spreading, while spread-

ing does not occur if the cohesion is greater than the adhesion.

It is obvious that a positive value of the spreading coefficient

corresponds to spreading, a negative to non-spreading. It is all

evident that because the liquid b spreads upon a, it is not at

all a necessary conclusion that a spreads on b. Thus the spread-

ing coefficient is given above for the case where a is the liquid

whose surface is already formed. The eoefficlent for a to spread

upon b is

8 « *b - { *-. • Kmb )

so a high surface energy for the liquid a acts in favor of spread-

ing when a is the lower liquid, and against spreading when b is

the lower liquid. Corresponding with this it is found that al-

most all organic liquids spread upon water, while water spreads

upon very few organic liquids. Harkins and Feldman (9) showed

that hexane, decane, ethyl benzene, and other pure hydrocarbons

with no polar groups have a positive spreading coefficient and do

spread upon water. Therefore, contrary to the views of many sur-

face chemists, the polar group is not essential to spreading.

One of the principal effeeta of the presence of a polar

group, as has been shown by Harkins and his co-workers (6, 7),

Is to Increase the work of adhesion (Wa). It is well known that

the presence of a polar group such as -OH, -COOH, -CHO, -CM,

-UOHHg, etc. generally confers solubility in water on the mole-

cules to which it is attached. As the length of the hydrocarbon

chain is increased, however, the solubility of the molecule de-
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creases very markedly. This decrease is probably not due to the

diminution in the attraction between the water and the polar

group, which is the primary cause of the solubility, but to the

increased length of the hydrocarbon chain. If a very polar group

is present, then Wa is very high, and the tern We in the equation

S =* Wa - Wc is newer large enough to give a negative value to

the spreading coefficient. Nevertheless, when the work of adhe-

sion toward water is small, the liquid may still spread if We is

still smaller. Thus hexane, for which the value of Wa is very

small (40.25 ergs), spreads since Wc is extremely small (36.86

ergs), and the value of S is 3.37. The extremely great effect

of the presence of a polar group In producing spreading is due

to the fact that, in general, it increases the work of adhesion

toward water very much more than It increases the work of co-

hesion. If the surface of the water is impure, then the surface

tension of the water (which occurs as a positive term in the

spreading coefficient equation) is lowered, thus lowering the

value of the spreading coefficient. Therefore, it often has been

found that a liquid with a positive spreading coefficient will

not spread, due to the presence of a slightly Impure water sur-

face. This probably accounts for the nonspreadlng tendencies of

certain organic compounds reported by some Investigators but

which later were found to spread. Langmulr (15) found that the

presence of double linkages in the middle of some hydrocarbon

chains causes the films to expand much more easily than films

with saturated chains of similar length. Langmulr attributed

this to the double bonds attracting the water more than a sat-
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urated linkage. Therefore, it appears probable that doable bonds

will increase the work of adhesion (i*a ) between the unsaturated

film and water*

If a very small quantity of a long chain spreading oil with

a polar group is put on water so as to form a film one molecule

in thickness, it is supposed that the molecules of oil arrange

themselves with their polar groups all attached to the water sur-

face, and the hydrocarbon chains are arranged parallel to one

another, more or less vertically above the polar groups. Being

a long chain hydrocarbon. It will be insoluble due to the fact

that the long chain is difficult to pull into the water. If fur-

ther oil is now added to the surface, there is no tendency for

these additional molecules to become anchored to the water sur-

face, as the latter is entirely covered by an oil films hence

there will be no influence tending to encourage the formation of

a second molecular layer. In fact, the polar groups of the mole-

cules will tend to associate together, and this can occur more

readily if the oil forms globules or lenses rather than if it is

spread out in a film.

Surface Films . Interest in monomolecular films on the sur-

face of water was first aroused by the work of Rayleigh (24) and

Poekels (23) about 1890. It was discovered by Pockels that the

area covered by a spreading oil on the surface of water could be

varied at will by confining the film between movable barriers;

these were made of strips of glass placed across a tray filled

with water on which the oil was spread. Rayleigh repeated and

extended the experiments of Pockels, and confirmed the observe-
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tion that as the area occupied by a given amount of olive oil on

the surface of water was diminished by bringing the barriers

closer together, the surface tension remained almost unchanged

until a certain area was reached, when the tension dropped sud-

denly to about one -half the original value for water* From the

volume of oil placed on the surface and the area it occupies, the

thickness of the film at any stage may be calculated. Rayleigh

(26) concluded that the fall in surface tension occurred when the

surface was just covered with a complete film one molecule in

thickness. Further observations of oil films on water were made

by Devaux (4) and by Maree 11n (17). and these confirmed the view

that the films were unimolecular.

In 1917 a considerable advance In experimental technique

was made by Langmuir (16), and this opened a new era in the study

of surface films. In the course of his preliminary investiga-

tions, Langmuir noted that the forces exerted by the oil films

on the paper barriers which enclosed them were quite consider-

able, and so he conceived the idea of measuring these forces by

means of a balance. A shallow trough was filled with water, and

near one end was floated a paper strip which was just less than

the width of the trough; this strip acted as one of the barriers

to the oil film. Jets of air were used to prevent leakage of oil

through the narrow spaces between the ends of the strip and sides

of the trough. Vertical glass rods attached to the paper strip

were fixed to the knife edge of a balance, so that any movement

of the strip caused by a force acting in the liquid surface caused

a displacement of the equilibrium of the balance. The weight re-
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quired to be added to the balanee pan to bring the paper float

back to the original position is a measure of the force acting

on the latter. A definite amount of an oil, insoluble in water,

was placed on the surface of the water in the trough by dropping

a suitable volume of a solution of the oil in benzene at a known

concentration. The benzene soon evaporated, leaving a clean oil

film. Another paper barrier, extending across the width of the

trough but which could not float, was placed at the other end of

the trough; by moving this barrier towards the float the area

covered by the oil could be varied at will, and the force exerted

for different areas could be determined by means of the balance.

The results of these experiments were plotted on a graph with

the values of the surface force in dynes per cm as ordinate* and

of the area occupied per single molecule as abscissae; the latter

were calculated from the measurement of the total area of the

film and a knowledge of the weight of the oil on the surface, its

molecular weight, and the Avogadro number. By extrapolation of

the curve to zero pressure, a value was obtained giving the area

per molecule at lero pressure.

Types of Films . The different types of insoluble films can

best be classified according to the lateral adhesion between the

molecules. Adam (2) classifies them as follows:

(1} condensed film, in which the molecules are packed close-

ly, and very steeply oriented to the surface, as with the acids

and alcohols investigated by Langmuir;

(2) liquid-expanded film, which are still coherent, but oc-

cupy a much larger area than the gaseous films. These can form
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on the surface a separate phase from a vapor film with which

they are in equilibrium;

(5) vapor-expanded films, which are rather similar to liquid-

expanded films but have less cohesion and do not show a region of

constant surface pressure , with two distinct types of film, be-

tween coherent and gaseous or vapor film on the surface, and;

(4) gaseous or vapor films, in which the molecules are sep-

arate, moving independently, the surface pressure being exerted

on the barriers by a series of collisions.

EXPERIMENTAL PROCEDURE

Description and Use of the Cenco Hydrophil Balance

The balance manufactured by the Central Scientific Company

of Chicago closely resembles that used by Langmuir (16) and later

modified by Adam (2). it consists of an aluminum tray, 27 inches

long by 6 inches wide, provided with leveling screws, drain cock,

and a movable barrier, to one end of which a bridge easting, car-

rying a torsional device for measuring forces against a mica

float, is mounted. The tray is accurately machined at the work-

ing edges to permit making accurate measurements of area. Other

portions of the tray are not machined, thus providing a surface

to which a paraffin film will adhere. A metric scale is attached

along one edge of the tray to indicate the distance of the mov-

able barrier from the mica float. The torsional device consists

of s suspension for a torsion wire, to one end of which a vernier

pointer is attached for indicating the torsional force applied to

the mica float on the circular graduated scale over which the
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vernier travels. The mice float extends to within 0*5 em of

either side of the tray and is Joined to the sides by thin pieees

of platinum foil.

The scale is calibrated by suspending weights from a hook

at the end of the lever arm and noting the number of degrees of

counter torque necessary to restore the pointer to the zero point.

The relationship between the counter torque caused by gravity act-

ing on the weight used and the torque caused by film pressure is

calculated from the length of the respective lever arms between

the weight and torsion wire and the torsion wire and the float.

Before use, the inside of the tray and the working edges

were thoroughly scoured with a stiff brush and securing powder.

The tray was thoroughly rinsed, dried, and then carefully cleaned

with benzene, all parts of the apparatus which come in contact

with the oil film during measurement were coated with paraffin.

The tray and barrier were coated with molten paraffin applied

with a earns l's hair brush. The platinum ribbons and mica float

were coated with paraffin applied as a solution in a volatile

solvent (benzene).

Physical Determinations

The paraffined tray was leveled by means of the leveling

screws after being placed in a water bath at 25° C. The tray was

filled with the desired substrate until the meniscus rose above

the edges of the tray. The surface of the liquid on both sides

of the paraffined float was swept free of contaminants by scrap-

ing the excess liquid away from the float by means of a paraf-
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fined straight edge. It was found impossible to remove all

traces of contaminants by this method, so a small bore glass

tube connected to suction was touched lightly to the surface.

This was found effective in removing the last traces of contam-

ination. The surface was then tested for impurities by moving

the barrier the length of the tray towards the float. If no de-

flection of the pointer ana was produced, the surface was then

clean. leaks past the barriers or float were tested by sprinkling

talc or powdered sulfur on the surface; this traveled with the

film leaking past, and could be seen at once.

A film was formed between the movable barrier (initially

placed near the far end of the tray) and the float by dropping a

definite weight of asphalt-bensene solution upon the liquid sur-

face. The asphalt was weighed into a clean volumetric flask and

diluted with a weighed, dried, and redistilled amount of benzene.

This permitted an accurate knowledge of the asphalt concentration

in the solution. The benzene Itself must not form a stable film,

but serve the dual purpose of diluting the asphalt so that small

quantities may be dispensed as relatively large volumes of solu-

tion and of diminishing the viscosity of the asphalt to the point

where films form almost Instantaneously and measurements may be

begun as soon as the solvent evaporates. The purity of the sol-

vent benzene was tested previously by plaelng some on the sur-

face of the liquid and then by moving the barrier towards the

float to see that no deflection on the pointer arm was indicated.

The asphalt-benzene solution was dropped on the substrate surface

by means of a standard 2 ce medical hypodermic syringe, with a



fine needle. A email cork stopper was kept on the needle except

during the dropping to prevent evaporation looses. By weighing

the syringe before end after dropping, the weight of the solution

added was accurately determined.

After waiting approximately one minute to permit the benzene

to evaporate, the movable barrier was carefully moved toward the

float until a point was reached at which the film exerted a pres-

sure against the float. The force was measured in degrees tor-

sion necessary to bring the pointer back to the hair-line on the

mirror surface (zero position). A record was taken of the posi-

tions of the movable barrier as it was moved intermittently toward

the float and the corresponding forces exerted.

Computations

The data thus obtained are converted to dynes of force per

centimeter (total force divided by the number of centimeters ac-

tive length of float, which includes the length of the mica float

plus one half the width of the gaps occupied by the platinum rib-

bons) and areas in square centimeters. By plotting the forces as

ordinates and areas as abscissae, a curve results which may be

extrapolated to give the total film area under zero compression

at the prevailing temperature.

The weight of the asphalt involved in a measurement can be

calculated from the weight of solution used. The approximate

molecular weight of the asphalt is known, and by employing Avo-

gadro*s number, 6.023 x 10^ , the total number of molecules can

be determined. By dividing the total film area in square Ang-
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strom units by the total number of molecules, the area per mole*

eule in square Angstrom units can be determined.

Total Area x 1Q16

Area/Molee • « »t. of Asphalt x 6.023 x lO^
Kolec. At. Asphalt

Comparing this area obtained on distilled water with that obtain-

ed on other substrates should then give the relative spreading

tendency of asphalt on various substrates with respect to water.

Molecular Weight Determinations

An attempt was made to determine the molecular weights of

asphalts and eoal tars used in this problem by the method of low-

ering the freezing point of benzene.

The experiment was carried out with a salt and ice-water

bath, a Beckaan thermometer, and a glass jar into which was sus-

pended a freezing tube. The freezing tube, containing the Beck-

man thermometer and a stirrer, was prevented from touching the

sides of the glass jar by the use of wooden collars. An air jac-

ket was thus provided between the freezing mixture and the freez-

ing tube. Vigorous stirring of the solution was required in or-

der to prevent supercooling. The air jacket provided for a slow

rate of cooling, thereby minimising the possibility of super-

cooling.

For benzene, the freezing point is 5.4° C. and the molal

freezing point constant is 5.12° C. In other words, a mole of a

soluble substance will lower the freezing point of benzene 5.12°C.

so that the mixture will freeze at 0.28° G. The molecular weights

are then calculated by the use of the following equation
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*b " 100° "b K

A

where M& is the molecular weight of the solute, mb the weight of

the solute used, n* the weight of solvent used, AT the freezing

point lowering, and K. the molal freezing-point constant.

RfcSOLTS AMD DISCUSSION

Molecular Weights

The molecular weights of the bitumens used in this work were

determined by the lowering of the freezing point method, using

benzene as the solvent. This method was discussed above under

the section on experimental procedure. The values obtained were:

,VC-2 negative asphalt 494.46, MO-2 positive asphalt 364.65, and

RT-4 coal tar 230.72. These results are in poor agreement with

those obtained by other workers who found the molecular weights

to range from 620 to 4250. Producers of petroleum asphalt com-

monly "cut back" their product with kerosene or other light sol-

vents so as to reduce the viscosity. It is probable that the

bitumens used in this work had been "cut back", which would tend

to give low values such as those obtained above, since the mole-

cular weights of the solvents are lower than those of the bitu-

mens. The other workers did not specify what methods they used

to remove the "cut back" solvents before making a molecular weight

determination. This difficulty would not be encountered for nat-

ural asphalts which gave the higher values of around 4000.

In an effort to gain some idea as to the percentage of vola-

tile substances present in these bitumens, they were heated in
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open beakers at 50° C. for 40 days. It was found that they lost

weight as follows t KU-2 negative asphalt 20.6 per cent, MC-2

positive asphalt 15.7 per cent, and RT-4 coal tar 22.0 per cent.

However, these values do not give accurate information on the

amounts of "cut hack" solvent present since bitumens themselves

contain a certain amount of volatile products which would be lost

at the same time, k certain amount of oxidation of the bitumens

probably occurred at the same time which would, of course, cause

an increase in weight.

It is interesting to note that the molecular weight of the

negative asphalt is about 33 per cent larger than that of the

positive. In tbe course of their preparation, positive asphalts

are subjected to higher temperatures than negative asphalts. On

the basis of the molecular weights obtained, it would appear that

the positive asphalts undergo considerable "cracking* at the high-

er temperatures, thereby producing smaller molecules.

Surface Pressure Measurements

General Considerations . The data for the surface pressure-

area per molecule measurements are given in Table 1. The data

for each curve given represent an average taken from 5 to 7

curves, all measurements made wijth the substrate at 25° C. Close

agreement was obtained for all curves of one type of bitumen on

a particular substrate, although occasionally at very low pres-

sures, some deviations were encountered. However, these devia-

tions have no effect on the results obtained, since it is the up-

per part of the curve (at high pressures) that is extrapolated to
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Table 1. Effect of substrate s upon areas per molecule (•q. A°>

-

of certain bitumens at varying pressures.

Surface
pressure <

In
dynes/cm.

:

Area per molecule (sq. A°)
Water substrate O.Ui KOH substrate

Asphalt 3oal tar: Asphalt :Coal tar
Keg. : For. : RT-4 J Nog . : Fos

•

: RT-4
1 1 6.79 8.00 : 9.54 8.43 «•

3 i 6.08 5.73 4.43 : 7.86 6.65 -

5 : 5.68 5.12 2.78 : 7.13 5.36 9.76
7 it 5.35 4.81 1.80 : 6.73 4.47 8.49
9 i ; 5.08 4.63 1.18 : 6.42 . 3.95 7.30

11 I: 4.92 4.48 0.87 s 6.17 3.69 6.26
13 4.82 4.39 0.69 ; 5.98 3.51 5.36
15 i 4.73 4.27 0.59 | 5.80 3.37 4.65
17 s 4.65 4.21 0.53 : 5.65 3.26 4.16
19 : 4.53 4.12 0.49 : 5.52 5.17 3.74
21 I 4.43 4.00 0.46 : 5.38 3.10 3.45
23 i; 4.33 3.90 0.45 s 5.25 3.05 3.25

i 0.1M AICI3 substrate t 0.3H NaCl substrate
1 1 13.48 10.02 4.67 : 11.11 10.21 «»

3 i: 10.90 7.70 3.53 : 9.53 8.09 7.91
6 It 8.46 6.30 2.58 t 8.75 7.00 5.88
7 i 7.03 5.50 1.96 x 8.29 6.37 4.16
9 ! 6.32 5.06 1.65 : 7.95 6.05 3.06

11 i 5.98 4.80 1.52 j 7.67 5.84 2.43
13 t 5.66 4.48 1.43 : 7.44 5.68 1.85
15 Ii 5.38 4.20 1.35 i 7.26 5.57 1.66
17 ; 5.06 3.90 1.27 : 7.08 5.46 1.55
19 t 4.80 3.58 1.17 s 6.92 5.38 1.46
21 i 4.52 3.26 1.11 : 6.76 5.28 1.40
23 i1 4.22 2.98 1.02 : 6.59 5.22 1.32

0.1 11 HCl substrate : 0.3N HCl substrate
1 1 30.60 - • : 28.00 23.88 -
3 1 26.56 21.38 • • 22.37 17.50 -

5 ii 24.58 17.42 22 .06 t 19.51 14.55 •

7 i : 22.66 14.86 19.24 : 18.00 13.23 25.40
9 ; 20.92 13.58 16.58 * 17.20 12.42 22.32

11 t 19.78 12.81 13.52 : 16.62 11.78 19.25
13 it 18.74 12.15 10.78 s 16.08 11.25 17.05
15 l i 18.06 11.63 8.52 t 15.62 10.85 15.39
17 j 1 17.47 11.10 7.74 » 15.20 10.64 14.14

*

19 t 16.88 10.64 7.24 : 14.78 10.30 13.22
21 1 ! 16.27 10.14 6.80 s 14.32 10.10 12.45
23 iI 15.77 9.69 6.34 i 13.90 9.90 11.80
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*

Table 1. (concl.) •

Surface
pressure

in
dynes/cm.

Area per molecule (sq . AOJ
: O.lN H2SO4 substrate : 0.3V H2SO4 sub 81rate

:Uoal tar: kaphi Asphalt
t Keg. : Pos. : ft*-4 : Seg. : Pos. t ft*-4

1 «• - 43.85 : . «»

5 : 28.56 21.60 36.40 t 25.12 20.72 «.

6 : 25.48 19.40 31.82 : 22.40 18.10 •
7 i 25.72 17.72 28.46 t 20.45 15.81 22.02
9 i 22.44 16.54 25.28 : 19.64 13.80 19.42

11 1 21.38 15.64 22.36 : 18.75 12.41 16.85
IS : 20.50 14.96 19.66 : 17.94 11.50 14.10
15 : 19.70 14.48 17.10 : 17.36 10.90 11.63
17 t 18.92 14.05 15.10 : 16.84 10.54 9.77
19 : 18.06 13.68 13.48 : 16.42 10.26 8.20
21 : 17.29 13.27 12.32 t 16.02 10.06 7.16
25 : 16.48 12.84 11.31 t 15.64 9.86 6.49

: .IN Aniline 1 : .IS Aniline
: hydrochloride : hydrochloride

* 1 : 29.86 - 28.14 : 28.00 21.20 -

5 : 26.28 28.16 24.36 1 24.50 17.68 29.68
5 : 25.40 24.84 20.62 : 21.40 14.72 26.72

a 7 : 21.40 21.56 16.90 : 19.56 12.92 23.72
9 : 20.19 19.04 13.24 : 17.35 12.04 20.66

11 s 19.54 17.58 10.02 i 15.87 11.62 18.12
15 t 18.79 16.72 8.08 t 15.05 11.28 16.46
15 t 18.26 16.14 7.16 : 14.52 10.94 15.44
17 ; 17.87 15.66 6.48 : 14.13 10.57 14.70
19 1 17.45 15.28 5.98 t 15.80 10.22 14.04
21 t 17.02 14.92 5.50 : 15.45 9.96 13.44
25 : 16.60 14.54 6.06 : 13.17 9.60 12.96

1 0.1N KMn04 substrate
1 : 98.60 67.18 :

5 t 68.70 95.22 64.62 t

5 : 65.84 91.69 63.50 |

6 : 89.55 ••

7 : 63.42 85.68 62.74 1

8 : 83.04 - :

9 : 61.19 82.04 62.04 :

11 : 59.11 80.12 61.32 :

15 : 56.77 78.12 60.65 :

15 ; 55.72 76.18 59.89 :

16 : 50.50 - 1

17 : 46.24 74.14 59.04 t

18 : 45.60 • •

19 I 41.12 71.54 57.74 :

21 : 56.94 68.18 56.52 :

25 : 32.41 64.66 54.92 t
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obtain the areas per molecule at zero pressure.

For the purpose of this work, the molecular weights of the

asphalts and road tars were all assumed to be 2000, which is

about the mean of the values obtained by Stricter (Traxler, 88)

and Katz (12). The exact values are not necessary here since

the measure of spreading is taken from the apparent cross sec-

tional area of the molecule on a particular substrate with rela-

tion to its area on water taken as the standard. In other words,

only the relative apparent molecular cross sectional areas are

necessary to determine the degree of spreading. If the exact

molecular weights could be obtained and substituted in the equa-

tion given previously under the section on experimental proce-

dure to determine the area per molecule, each curve would be off-

set an amount such that the relative areas are unaffected.

Spreading on Water * Figure 1 Illustrates the spreading of

positive and negative asphalts and coal tar on a pure distilled

water substrate. The extrapolated values for the areas per mole-

cule of positive (5.05 sq. A°) and negative (5.50 sq. A°) asphalt

are in close agreement but probably too. low if it can be safely

assumed that 2000 is close to the true molecular weight of the
*

asphalts. The cross sectional area of a straight chain hydro-

carbon is 20.5 sq. A°, and because of the complexity of asphalts

they should have even larger areas. Coal tars are complex aro-

matic compounds, so that their molecular cross sectional areas

should be at least 24.0 sq. A° which is the area of cross section

of the benzene ring. However, the extremely small value of 0.95

sq. A° was obtained. The overall low values obtained here would
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Fig. 1. Bitumen spreading on a water substrate.
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seem to indicate that asphalts and tars do not form monolayer

films, but, instead, multi -layer films.

Interference colors due to the interference of light waves

reflected at the top and bottom surfaces of the film made it ris-

ible. The observed films seemed to be "patchy" in that certain

small areas of the substrate surface were not covered by film.

This would make it appear that bitumens do not spread completely

on water, shen a piece of cotton batting, saturated with benzene,

was placed near the voids in the surface, these void areas soon

filled and a coherent film resulted. As stated previously, the

conditions for spreading are that the work of adhesion (Wa ) be-

tween film and substrate must be greater than the work of cohe-

sion (Wc ) in the film itself. & polar group or a double bond

tends to Increase the work of adhesion more than that of cohe-

sion, and therefore causes spreading. Although not too much is

known of the actual composition of asphalts and coal tars, there

is little evidence of any great number of polar molecules pres-

ent* Since a certain amount of spreading was visibly observed,

the best possible explanation is that double bonds and certain

oxidized groups in the molecule increase the work of adhesion

between bitumen and water. Incomplete spreading was due, then,

to certain molecules being saturated and unoxidized; thus their

work of adhesion for water is less than the work of cohesion of

the bituminous molecules for themselves.

Hysteresis was noted in the films of the bitumens on water

as well as on all other substrates, in that they reacted somewhat

sluggishly to pressure changes. A lapse of a few seconds was
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necessary after compressing the film by moving the barrier to-

wards the float before taking the pressure reading. The full

pressure was not transmitted to the float instantaneously but

required from four to five seconds to reach a maximum. When the

compression on the film was reduced by moving the barrier away

from the float, the pressure fell off slowly. Sometimes 10 min-

utes was required for equilibrium to be established. Even so,

the film did not expand along the original compression curve,

since the pressures always were lower.

Spreading on 0.1H KOH . (Pig. 2) The 0.1M KOH substrate had

an unusual influence on the positive asphalt in that it reduced

the cross sectional area to 3.85 sq. A° while it caused a slight

increase in the cross section of the negative asphalt to 6.85

sq. A . No plausible explanation seems to fit this phenomena.

The K.0H caused an increase in the spreading of the coal tar to

6.20 sq. A°.

Spreading on 0.1N AlCls and 0.3M HaCl . (Figs. 3 and 4) A

substrate of 0.1N AICI3 caused all three bitumens to spread

slightly better than on pure water. A 0.3H MaCl substrate had

practically the same effect as the AlCl^.

Spreading on 0.1M and 0.38 BC1 . (Pigs. 5 and 6) A very

marked improvement in the spreading qualities of all three bitu-

mens was produced by a RCl substrate. A 0.1N ffCl solution in-

creased the apparent molecular areas of negative asphalt about

4 times, positive asphalt 3 times, and coal tar about 12 times

over that observed on water. However, the more concentrated

0.3N HC1 substrate reduced the spreading tendencies of the as-
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phalts from that of the 0.1S HCl, yet Increased the coal tar

spreading an additional 9 times. Other films have been observed

to spread better on acids, and Adam (2) postulates that the polar

ends are ionized by the change in acidity of the substrate. The

ionization develops similar charges on the adjacent end groups,

causing mutual repulsion, and hence a loss of lateral adhesion

between molecules. The net result was an increase in the area

occupied by a molecule of the film.

Spreading on O.lfl and 0.3K HgSOj . (Pigs. 7 and 8) A 0.11

H2SO4 substrate produced a marked increase in the spreading qual-

ities of bitumen; more so than an equivalent concentration of

HCl. This might be attributed both to the ionization of polar

groups and also to an anion valence effect. A very slight oxida-

tion may have occurred, but this seems unlikely because of the

low H2SO4 concentration. A 0.38 BgSO^ solution caused a reduc-

tion in spreading of both asphalts and coal tars from that noted

at the more dilute concentration, yet still eaused better spread-

ing than that detected for pure water.

Spreading on O.IK and 0.3N Aniline Hydrochloride . (Pigs. 9

and 10) A 0.1M aniline hydrochloride substrate caused a large in-

crease in the spreading of both asphalts and tar. The magnitudes

of the increases were similar to those produced by 0.1S HCl. As

in the ease of the more concentrated HCl, 0.3H aniline hydrochlo-

ride reduced the spreading tendencies of the asphalts relative to

that on the lower concentration, yet Increased the spreading of

the eoal tar; in fact, almost doubled it. Aniline hydrochloride

hydrolyzes acid, thus causing ionization of the end groups, so
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this could be a possible explanation of the Increased spreading.

AICI5 should also hydrolyze acid, but it had only a negligible

effect on spreading; therefore, it seems improbable that the

aniline hydrochloride could hydrolyze sufficiently to produce

the large increase in spreading noted. A molecule of aniline

hydrochloride has a polar and a nonpolar end. Some of the mole-

cules of the aniline hydrochloride probably orient themselves at

the film-substrate interface with the nonpolar end dissolved in

the bitumen film and the polar end dissolved in the substrate to

produce an Increase in spreading. This might account for the ad-

ditional spreading on aniline hydrochloride over that on A1C1*.

Spreading on 0.1M &JfaQ4 . (*lg. 11) The most startling re-

sults of all the films Investigated were those on the 0.1N KJAnG*

substrate. A tremendous increase in spreading was observed for

both asphalts and coal tar. Extrapolation of the upper portions

of the respective curves gives an increase in area of 16 times

for the negative asphalt and 18 times for positive asphalt over

that on pure water, while extrapolation of the lower portion of

the curves gives an increase of 13 times for negative asphalt and

20 times for positive asphalt. The cross sectional area of the

coal tar increased in site 69 times over that on water.

Adam (2) found that when oleic acid was spread on perman-

ganate, a large increase in spreading occurred, probably result-

ing from the oxidation of the double bond present into two hy-

droxyl groups. The oleic acid molecule then had several polar

groups which tended to make it lie flat on the substrate and

thus Increase its cross sectional area, a similar mechanism
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could have occurred her* with the double linkages in the bitu-

mens oxidized to form hydroxyIs. it is likely that simultaneous

oxidation of certain other groups occurred with the formation of

other polar groups. Both types of oxidation would contribute to

the great increase in the apparent cross sectional area of the

molecules. From the large increase in spreading noted for coal

tar, it would appear that it is very susceptible to oxidation -

much mors so than either of the asphalts. Of the two asphalts,

the positive spreads better on permanganate, which would seem to

indicate that the high temperature it undergoes in preparation

renders it more susceptible to oxidation.

The positive and negative asphalts gave unusual compression

curves on the permanganate substrate, in that humps or shoulders

appeared at definite pressures* The humps, which corresponded

to a rapid diminution in cross sectional area per small increase

in pressure, occurred in the region from 6 to 8 dynes for the

positive asphalt and 15 to 18 dynes for the negative asphalt.

This suggests that at those pressures there must be a rearrange-

ment of the molecules in the film producing a sizeable diminution

in the area per molecule. This might occur by a vertical rear-

rangement of some of the molecules such that their polar heads

are tucked away into recesses in the chains of neighboring mole-

cules, a study of crystal structure has proved that such chains

are zigzag structures, not straight, so this would tend to sup-

port this theory. Apparently no rearrangement occurred in the

coal tar for no humps appeared on the curve.

The extrapolated values for the apparent areas of toe mole-
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cules at aero pressure taken from Figs. 1 to 11 are summarized

in Table 2.

Table 2. Extrapolated apparent molecular cross sec-
tional areas at zero pressure in sq. A°.

. . Films
Substrate : Mfl-2 Neg. : HC-E pos. t Sf-4

Asphalt : Asphalt t Uoal Tar
H2O 5.50 5.05 0.95
O.IN KOH : 6.85 3.85 6.20
O.IN AICI3 ( 7.65 6.40 1.95
0.3N BaCl I

8.60 6.30 2.40
0.11 BC1 22.70 15.40 12.00
0.3N HC1 18.80 12.50 21.00
O.IN H2SO4 1 25.90 17.70 24.40
0.5N H2SO4 1 20.80 12.80 16.50
O.IN Aniline

hydrochloride \ 21.40 19.00 10.80
0.3N Aniline
hydrochloride i 17.00 13.60 20.10

O.IN KM11O4 1 1 88.00 91.00 65.30
,

\ 71.00* 100 .30*

iuttrapolation of the lower portion of the curve

SUMMARY

1. The molecular weights of MC-2 negative asphalt, M0-2

positive asphalt, and RT-4 coal tar have been determined to be

494.46, 364.65, and 230.72, respectively.

2. Bitumens spread poorly on water.

3. Aqueous substrates of NaCl, AICI3, and EOH have only

small effects cm the surface spreading of bitumens.

4. Aqueous solutions of H2SO4, EC1, and aniline hydrochlo*

ride produce marked increases in the surface spreading of bitu-

mens. In general, low concentrations of the above substances

promote better spreading than higher concentrations*
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5* k solution of KJtaC>4 produces s Tory large increase in

bitumen surface spreading.

6. Plateaus appear at definite pressures on the surface

pressure -area curves of the positive and negative asphalt films

on permanganate which seems to Indicate a molecular rearrange-

ment in the films at those pressures.

7. An attempt has been made to suggest possible mecha-

nisms which bring about bitumen spreading on various aqueous

substrates.
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