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INTRODUCTION

A need for sophisticated methods of handling complicated

contact networks, employing simple ON and OFF switches, has

arisen since the great expansion of automatic and semiautomatic

systems into everyday use at home, office, and industry. A cen-

tury before, an English mathematician, George Boole, developed

Boolean algebra for studying logical relations. It was later

extended by other mathematicians, and finally was adapted by

the engineer as a tool for handling complicated electrical

logic systems employing relays and switches.

In this paper a set of Boolean functions shall be developed

and treated with a double purpose in mind:

1. Investigation of some properties of these functions.

2. Physical interpretation and applications--i . e
.

, a

contact network realization of these Boolean functions.

Separate sections shall be concerned with a recursive re-

lation, alternative forms, and approximations of

which is the number of equivalence classes of the many-to-one

transformation of elementary symmetric functions.



; .
. ELEMENTARY SYMMETRIC FUNCTIONS (ESP's)

* ESP Generation

Let P(x) be a polynomial such, that

.
P(x) = fj {x + a^) = X Pi,x^"^ a^^ = 0, 1

k=l k=0

Upon expansion, one obtains

P(x) = PqX^ + p-lX^"^ + . . . + Pn-iX-"- + PnX° .

Define for r = 1, 2, . . n as the sum over all the

ways of selecting r distinct a^ from the n given a-^. Then

Po = 1

Pi = ^l«k = «1 82 + . . . + a^

P2 ®1^2 a-j^a^ + ^2^2,

•

+ . . «n-l«n

•

•

Pn ^1^2 • • • Sn

Boolean expressions jPk) called £lementary symmetric

functions (ESP's). ...
Boolean variables |aj^| are called variables of symmetry.

The operations are cup and cap.

Definition . A Boolean function of n variables a^, a^t

. . &n i*^ said to be symmetric in these variables if any per-

mutation of these variables leaves the function unchanged (Ref.

9).
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Properties of ESF's

Theorem 1. If any m variables of [aic} ones where

< m < n, and the remaining (n-m) variables of ja^j are zeros,

then = 1 for k = 0, 1, 2, . . . , m and Pj^ = for k = m+1,

m+2, . . . , n. '

Proof . Pj^ is the sum of all possible combinations of pro-

ducts of n variables taken k at a time; hence there are
/n\ ^

^

= nJ/k!(n-k)J distinct terms in p^^, and each term is a pro-

duct of k variables a^. Every term in p^ consists of m vari-

ables a, . If and only if m of the ( ai^l variables are one,
/n\ ^

then one of the products in p^ is one and the rest of the

im]

- 1 products are zeros, and p^, which is the Boolean sum of

/m\
the products, is one. Pv = Pm i

distinct products
^ ^'^ \m-ll

that are ones, and in general p^ = P^_q where ^ q < m has

(
^

products of value one and the rest of the products are

zeros and p = 1.

For k> m, P^ =
^m+q ' ^ n-m, is the sum of products

of m + q variables, but only m of them are ones and the remain-

ing variables are zeros. Thus the value of every product is

zero and P^ = 0«

Corollary . All n- tuples (a.^, ag, . . ., a^) containing m

bits one which are subjected to ESP transformations result in

a single n- tuple (p^, pg, . . p^^) .



Definitions

.

Dl: =

D2: 0^ is a column vector of n bits

D3 : is a column vector of n 1 bits.

Lemma. There exists a recursive algorithm which constructs

a binary sequence.

Proof.

B2 =
1

1 __U2 Bl_

1 1

B3 =

1

1

1

1

©22 B

^22 B

In general, the desired recurrence relation is

Bn =

9 B ,
2^-1 n-1

^2n-l Sn-1
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Theorem 2. For a given binary sequence, containing n

columns and all 2" possible distinct rows, there are I

J

rows
\m/

containing m ones, where m = 0, 1, . . ., n.

Proof . The proof is by induction on n.

1. A binary sequence is constructed for n = 2.

Row count

82 ai

'O "

1

1

1 1

Bo =
02 B]_

U2 Bi

J]

As can be seen from the above binary sequence, Theorem 2 holds

for n = 2.

2. Construct a binary sequence for n + 1 = 3.

^n+l - B3 -
®22 ^2

U22 B2

,n
The first 2 rows of B^^^ obtained by providing additional

'n^

ofcolumn of zeros to B^. Thus there are the same number
\m,

rows containing m ones as in B^^. The remaining 2^ rows are

obtained by providing additional column of ones to B . Thus
n \

^

there are | | rows containing m ones.

3. In general.

[raJ km m-1
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If the above relation holds, then Theorem 2 is true for any n

bits.
/n\

The closed form for I is
\raJ <- >

Thus

n nJ

iiaj ml in - m) I

n\ / n
+

nJ n J

\m-l/ m:(n-m)J (m-1) I (n-m+1)

J

nl

ml (n-m+1) I

(n+l)I /n+1

[(n-m+1) + (m)]

mi (n+l-m)

I

m

Hence the previous relation holds and Theorem 2 is proved.

Theorem 1 is demonstrated for n = 3 by subjecting the

binary sequence to ESF transformations.

Table 1. Truth table for ESP transformations.

^3 82 ^1 P3 P2 Pi

1 1

1 1

1 1 1 .1

1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1



1 , e

,

(Pl> P2> P3) ~ where none of the variables

a^ are ones

(p^, p^) = (1^ 0^ 0) where any one of the variables

a^ IS one

(Pl^ V2> P3) ~ ^> ^) where any two of the variables

a^^ are ones

(p^, P2, p^) = (1, 1, 1) where all the variables a^^

are ones.

The a^'s in Table 1 can be reordered m groups of I I rows

containing iti ones where m = 0, 1, 2. Such a reordered table

is shown in Table 2. In general, every group of I rows
ml

(a-j_, ag, . . a^) containing m ones which is subject to ESP

transformation results in one and only one row, (p^, • * •>

Definitions .

n
Dl: is a in an array of n columns and I 1 distinct

rows where m bits in each row are ones and the remaining bits

are zeros.

n
D2 : is a column vector of | ) zero bits.

D3 : is a column vector of
( )

one bits.

Di,.: = .^ m m >•
J m

D5: = [UA]^ .mm *• J m

D6: The operation is defined by A^ m *
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Table 2. A reordered truth table.

Row count P3 P2 Pi

1

1

1

1

1 1

1 1

0]

D7: The operation^, is defined by ^\

Definitions D2 and D3 differ from previous U^^ and 0^.

The following assertions may be deduced:

A3:

n
- Ao

n
"

n+1
-^n+l

n
m-1
n = A

m
m

Implicit in A3 is a conformability condition:
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has meaning if and only if m = p.

q

Interchange of rows in is an operation which leaves the

count of ones invariant.

Lemma . There exists a recursive algorithm which constructs

l^m"*""^}

^'^''^ ^'^^ integers m such that ^ m ^ n + 1.

Proof . A binary sequence which contains n columns and all

the 2^ possible rows can be reordered into arrays A^ for all m

such that ^ m < n. Given A^ for all integers m such that
m

< m < n, a recursive algorithm for determining A^ where

0^m<n + 1 is shown in Pig. 1. Note that there are

rows in A ; thus the total number of rows in A^ , for all

integers m where O^m^n, is
]
~ ^ '

m=0 \m/

An example of a recursive algorithm which constructs all

A^"*""^ arrays for n = 1, 2, 3, ij. is shown in Pig. 2.

Theorem 3. If the binary sequence is subjected to the

n-1
many- to-one transformation, ESP's, then there exist K
equivalence classes. The principal class is arbitrarily de-

fined to be the upper member of the reordering transformation.

If there exists but one member, then it is the upper member.



A recursive algorithm which constructs

|A^"*"-^jfor all integers m such

that 4 1^ ^ n«
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1
START

1

1 1

1111

Fig. 2. An example of the recursive algorithm

which constructs all A
n+1
'm

arrays

for n = 1, 2, 3, ij..
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A future section will be concerned with approximations of

Realization of ESP's by Contact Networks

Operations in the previous section were cup and cap and

the two states of the variables were represented by and 1.

Thus transformation of Boolean variables into switching variables

can be made. The variable a^ will designate a switch or a relay

in a contact network. The state of a^^ = 1 would represent a

switch in ON position, while the opposite state 8;^ = would

represent a switch in OFF position. Boolean function p^ = 1 or

would represent a closed- or an open-circuit condition between

two terminals. For convenience the output terminal of the func-

tion pj^ will be designated by P^. The input terminal would be

common to all functions p^, and can be denoted by Pq since

Pq = 1 and its input and output terminals are electrically the

same. The overbar will denote "the complementary state "--if

a^ = then a-^ = 1, and vice versa. A switch designated by a^

would represent an open contact when in OFF position, and closed

contact when in ON position. In the same manner a switch desig-

nated by a"-^ would represent a closed contact when in OFF posi-

tion and open contact when in ON position. A function such as

r). = a. + + . . . + a represents a contact network of n112 n

switches in parallel while a function such as p^ = a-j_®2 ' * * ^n

represents a contact network of n switches in series.
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An interesting consequence of Theorem 1 is that in a con-

tact network realization of a set of ESP's, one obtains trans-

mission on terminal P-j^ and no transmission on terminals ^3*

. . ., P by operating any one out of n switches. Transmission

on terminals P-j^ and Pg and no transmission on terminals P^, P|^,

. . • J
Pj^ are obtained by operating any two out of n switches;

and in general one obtains transmission on terminals P-j^,

, . • » P^ and no transmission on terminals P^^^.* ^m+2* • • •>

P^ by operating any m out of n switches.

The ESF's, |p^| , are sums of products of a^; thus it is

always possible to represent such contact networks by simply

assigning a switch or relay to each of the variables a^ and

obtain a simple series-parallel network. An example of such a

contact network for -^p^j for k = 0, 1, 2, 3, 1| is shown in

Pig. 3. Note that a source is connected between Pq and each

light, the other terminal of each light is connected to one of

the corresponding ^j^'s. For simplicity, there is a common

source to all the lights in Pigs. 3) k> and 5«

Theorem Jj.. Series-parallel realization of
jp^j > ^ =

0, 1, . . n can be obtained by using n • 2^ elements.

Proof. Let g be the number of elements (contacts of a
°n

relay or a switch) to be used. Then

n into the previous expression

yields



. . n +
I )

• n + . . . +
I I

• n +
I )

• n.
/ n-

I

t{
k=0

'u

j

n + ... +
1

• n .
(

Vn-2y

m = n, - 1, one obtains

gn
= n • 2

End of proof. ..

Series-parallel realization of ESF's can be economized by

reassocia tion.

Illustrative example . The network shown in Fig. 3 repre-

sents the following ESP's:

P-j^
= a-j^ + ag + a^j + a^^

P2 = ®l®2 ®1®3 ^l^lj. ^2^3 ®2®]4. ^3^I|-

p^ = a-j^a2a.^ + a-|^a2aj^ + a-^a^^J^ ®2®3®ij.

p^ = ^192^3%

By reassociation of the variables in P2 and p^, one obtains

P;^ = a^ + 82 + a3 + a^

P2 = (a-]_ + 82) (a^ + a^) + ^±^2 ®3®I|.

P3 = (a-]_ + 82)8381^ + (a^ + a|^)a-|_a2

% = 91^2^3%

A contact network for representation of this set of ESF's

is shown in Pig. I4..

Though simple to synthesize, the series-parallel representa-

tion of
jp^l

can be reduced to a simpler and more economical

equivalent circuit. An example of such a contact network for

jpj^l
for k = 0, 1, 2, 3, k- and an extension to n > ij. is shown

in Fig. S.
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83

HI

—

82 a

HI—

I

it-

82 83

HI—IN
=1 %

HI—IN

HI—IN

-\\—IH

82 83 a|^

HI—^1

—

"1 «3 %—^H
®1 ®2

HMh-HH
a-j_ 82 83

HHHI—IH

(J

ihhh:

Fig. 3. A series-parallel realization of ESP's.
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82

8 G

HI \\-

~th ^1 ^2

82

Hh

P ^1 ^2 ^3 p

=3

Hh-
a

Pig. ij.. A reassociated series-parallel
realization of ESP's.



17

Pig. 5. Most economical realization of ESF's
in contact network.
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Theorem ^. The ESF's can be realized by the diagram of

Pig. 5.

Proof . This realization obviously works for two switches

and two lights. Presume that it works for n switches. If any

m of n switches are ON, then m first lights would be ON.

Adjoining a stage of OPERATED transfer switches will shift these

m lights UP and the light at the zero level will also be ON.

Therefore adding one stage of transfer switches has caused

(m + 1) lights to be ON when (m + 1) switches are ON. End of

proof. _
Theorem 6. The number of elements required in the contact

network realization of a set of ESF's as represented in the

diagram of Pig. 5, are n .

Proof. Let g^ be the number of elements required. This

satisfies the recurrence relation (see Pig. 5)

Sn+i = g^ + 2n + 1

with initial condition g-j^
= 1. The closed form of this recur-

rence relation is

.2

'n = ^

End of proof.

Applications '• ' >
• ^ i .

• V : ,

Applications of previously discussed contact networks will

be discussed. In general, these networks can be used as sequen-

tial switching control devices. As a particular example, assvime

there is an electronic device whose filament power should always
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be turned on first, grid bias voltage turned on second, and the

plate voltage turned on last. All that one should pay attention

to in operating such a contact network, is to turn any one

switch at a time. A switching control device for such an oper-

ation is illustrated in Pig. 6,

Another application of the contact network is step control

of starting current. Let it be required to accelerate a direct-

current shunt motor. As the motor accelerates, its armature

current drops with a corresponding drop in torque due to a rise

of its countervoltage. It is then necessary to reduce its re-

sistance a step at a time. Normally the resistances reduced in

each of the steps are of different values. Let R-^ be the resist-

ance to be cut out first, and last. An arrangement for such

a step control is shown in Pig. 7. Note that the sequence in

which these switches are operated is of no significance as far

as the required sequence of starting the motor and reducing

resistances is concerned.

RECURSIVE RELATIONS AND ALTERNATIVE
n-l/n\

FORMS POR TT

Theorem ?. If jZ^,n then there exists a recur-

sive relation such that

and there exist three alternative forms
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Fig. 6. Sequential operation of triode amplifier.

Fig. 7. Step control of starting current.



k=l -
:

n-1 /n\
Proof . The form Tf can be written as

k=l \k/

n! nJ n!

(n-l)JlJ (n-2)I2J [n - (n-2)] I (n-2) !

[n - (n-1)] !(n-l) J

n! nl nJ nl

(n-DJli (n-2)J2J 2J(n-2) I II (n-1) J

(nl)

[l!2J...(n-2)l(n-l)ll
2

Substitution of (n-1) for n yields:

""^
[l>2I...(n-3)l(n-2)]]^

The ratio (i^^n/'^n-l^
becomes

izf
'

(n])"-l [lI2]...(n-3)l(n-2)ll'

[(n-1) In] [(n-l)l]"-2(n-r)I n"'^

[(n.l) l]2[(n-l)l]"-2 [(n-1) I]
2 [(n-1) l]

n-2
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n-1 n
n n

(n-1) J nl
.

Therefore the required recursion relation is

/A
Since 0-t =4 ]~ ^> deduce the first alternative form

Vv

The second alternative forin can now be derived. The previous

product can be rearranged as

22 3^ (n-l)^-l n^
= — • — ... • —

21 3< (n-1) J nl

After collecting integers from each factorial, one obtains

=

o2 -,3 / -,\n-l n
2 • 3 . . . (n-1) . n

n 2^-1 .
3n-2

... (n-l)"-("-2) . n^-^^-D

^ 22-(n-l)
.
33-(n-2)

^
(n-1) - [n- (n-2)]

- 2 '3 . . . ( n- 1 ) • n

This yields the second alternative form.

" 2k-n-l



In order to derive the third alternative form let

The ratio (Sj^/S^^.^) becomes

n^ (n-1) J / n

Sj^_-L nJ (n-1) n-1 \n-l

n-1

n-1

S = S -,

n n-1

f n

.n-1,

with initial condition = 1.

Calculation of S^^ yields

1

S2

S3

2"

I)

2^ /3^2

Sn

5vl /.v2 ^ n-1

n-1

But

^n = ^2 • S3 . . .

and this culminates in the final alternative form,

n-1 /k+l\
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n-1 /n\

CLOSE BOUNDS FOR JT
k=l Vkj

n-1 /n\

Theorem 8. If 0'^ = TT , then
" k=l \k/

g(n2+2n-2)/2 ^-{R2 +0.^r^)

= (2^j((2n-l)A) ^( ( 2n+l) /i,.)

where the remainder is given by

n ^
p kP k=p

and simple bounds for r^ are

1

< r^ < (1)

12n + (3/2(2n+l) ) ^ 12n

n .

Proof . Prom Theorem 7, (^^ ~ {k^/'kil)

Stirling's formula for nJ is

nJ = (n/e)" {2%n)-^^^ e''''

and these simple bounds for r^ are given in Reference (6) . The

ratio (n"/nJ) becomes

(nVni) = e^""''^)/(2Tin)^/^ (2)

n
Upon substitution of Equation (2) into FT (k /ki), one obtains

k=2



2S

^ k=2

The previous term can be rearranged to form

^(2-r2) ^(3-r3) ^U-Tn)

e 'e e '/'.e
= (2^)((-l)/2)(^j)l/2 = (2Tc)((^-l)/2)(n])V2

Now, (nl)"'"^^ can be obtained from Stirling's formula:

Substituting (nJ)"^/^ into the above form of one obtains

(n2+n-2)/2 ^'^2 n/2
e ' • e e

n- (2^)((n-l)/2)^(n/2)(2^^)(lA)
.

,0.5r„

(nW2)/2
(-°-^^-

n (2Ti)((2n-l)A)n((2n+l)/i4.)

n ^
Recalling that Rp = ^ r^, one obtains

.
. k=2 1

(n^+2n-2)/2 (-R^-O.^rn) .

"

e e • i.

" (27i)((2n-a)A)^((2n+l)A) '

.

This completes the proof. ^
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An approximation of R2 is developed later,

n ^
Theorem 9. If R = ^ r^, and simple bounds for r^ are

k=p

• 1 1

<^n<
12n + (3/2(2n+l) ) 12n

then

1

12

1

\ifp+l/ \lj-P+l i]-n+5/ \(Ij.p+l)2

1 /n(n+l)\

P 2k \(P-1)P/

Proof . The upper inequality will be considered first.
1

Since r„ < , then
12n 11

+ r„ . T + ... + r„ n + r„ < + + . .

.

p p+1 n-1 n ^2p 12(p+l)

1 1

12 (n-1) 12n

Therefore '
*

„ n 1 n 1

Ic^p ^ 12 It^p k

n 1
The sum — can be estimated by considering the integral of

k=p k . -

l/x. Since l/x decreases monotonically as x increases, it is

clear from Pig. 8 that

•n 1 1 1 rn 1
dx/ -dx - ->--/ —

n-1 X n n n-1 x+1
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Adding these inequalities for k = p, (p+1), '.
. . , (n-1), n, one

obtains

n 1

J - - E ->Z - - /
—

p-1 X k=p k ^p k •'p.i x+1
dx

2-Z - < / - +
k=p k 'p,]^ \ X x+1

Idx

Evaluation of this integral leads to the inequality

2.t -<U"-^]
k=p k \(p-l)p/

Knowing that

n n jL X J. Anil na(n+l)

12 k=p k 2k. \(p-l)p/

one can conclude that

P 2k \(p-l)p>

The lower inequality will be considered next. Since

1 •
•

12n + (3/2(2n+l))
< rn

and

ij-n + 2 1 (I|.n + 2)

12n + (3/2(2n + 1)) i^Sn^ + 2i;n + 3 3 (l^n + 1)2

1

3 Ij-n + 1 ikn + 1)
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therefore

1 n

3 ij.k + 1 (ijic + 1)

n

<X -1 (5)

The sum
"5~

k=p Ijlc + 1 (ij-k + 1)2

1

can be estimated by consider

ing the integral of
i].X + 1 (i|X + 1)

Since
+ 1

decreases as x increases, it is clear from Pig. 9 that:

t
-n+1 1 1

> / dx + -
i|.x+l 2 i^n+l ii.(n+l) + 1

Evaluation of this integral leads to the inequality:

1 1

> -
%n+^ 1 / 1

k=p ij.k+1 [\. \Ij.p+l/ 2\ i+p+1 i|n+5^

Following the same procedure, ^ can be found to
k=p dOc+l)

satisfy the inequality

' >-(
' 1

+ —
k=p ik.-k+l)'^ k\kV+-i k-ry+S) 2 V(i^p+1)2 (ijji+5)2y

n

5 4k+l (i^Jc+l)2 k \^P+l/ i|.\ifp+l kxi+^J

11/1
+ —

2 \,(ii.p+l)2 (i|.n+5)2,

Knowing that
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X

Pig. 8. Determination of upper
bound of 7Z 1/k.

Fig. 9. Determination of lower bound
of S l/(4k+l) .
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„ n 1 n

^ k=p 3 K=i ikk+l) (i|.k+l)2
(6)

one can conclude that

R > —
P 12 (i|p+l)2 (4n+5)2;

(7)

End of proof.

,nCorollary . If p = 2 ia substituted into R , bounds for

R2 + are found to be

1

12

29 8n+l+
+ — +

12n+17

81 (i^n+l)2 (i;n+5)2
<r5 + O.^r,

n

2k n
(8)

.
Values of for n = 1, 2, 10 are given in Table 3.

Lower and upper bounds for as calculated by Equation (3) are

given in Tables k and 5- In Table ij., bounds for R2 are found

by the summation r^, while in Table 5 bounds are found from

Equation ( 8)

.

Per cent error of the approximated jZf^ increases with n,

but it converges and approaches a limit as n—»-oo . The limit

as n 00 of the difference between the upper and the lower

bounds of R^ + 0.5r in Equation (8) yields

1

2^
ini!V-

81/ 81
- -0. 00886100 ; therefore the ratio between upper

and lower bounds of 0^ found from Equation (3) cannot exceed
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^0.00886100 ^ 1.008907. Thu. if «f„^< fS^^ and

1< -7^ < 1.00897, then 1< —< 1.00897, and 1<
^riL ^nL

< 1.00897 and the per cent error would always be smaller than

0.897 per cent.

It is clear from the above discussion that equation (8)

can be simplified to read:

1

2^

n(n+l)'
- 0.00861 <r5 + 0.5rn

1'

< —
n V 2

Since summation of the first few terms of r^ accounts for

the major portion of the error, one can obtain a better approxi-

mation of by calculating the exact value of 0^ for m < n,

_n
then approximate the product || ik^/kl) . Finally, ^ can

k=m+l "

be obtained from the relation jzf^ = 0'^ • (k^/kl). A
k=m+l

formula for the above relation is given in Theorem 10. When

is obtained by = • f| (kk/kJ)
, the per cent error

would be smaller than O.O73 per cent.

, m-1 /m\
.

'^^^o^em 10. If jZf = TT
, then ^

™ k=l \k/ .
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^((n2+2n-m2-2m)/2) g-RS+l+( ( ^m-^n) /2)

= 4 •

( ( ( n-m) /2 ) ^( ( 2n+l) A) ^- ( 2ra-M)A '
2 ^ m < n

where rJJ+i, r^, defined in Theorem 8.

Proof. From Theorem 7, the following relation is obtained;

k=2

The above product can be split into two partial products such

as

m - n

^ k=2 k=m+l

m rn-l /

m

The first partial product 77 (kV^^^) is equal to "R
k=2 k=l \k

Thus •

m

k=2

and

n

k=m+l

n
Upon substitution of Equation (2) into jf (kVki), one obtains

k=m+l

m+1 ^-^m+l ^m+2 „"^m+2

<ji^ [2ai(m+l)] [2Ti(m+2)] ^2
'

n-1 -^n-i n -^n
e e e • e

[27t(n-l)] 1/2 [27tn]V2
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(t ^ -( ±
\k=m+l / \k=m+l >

e • e '

"
(27i)(("-™)/2)(nl/mJ)l/2.

( nj ) 1/2 =
( ^/e ) V2

( ^^^^
l/k ,0 .

5r^

1/2 ,
m/2 1A .

l/2 1/2
Substitution of (nl) ' and (ml) ' into the previous expression,

of ^^J^-^ yields:

n _

f -f x; ri,\
s,k=m+l / \k=m+l / ( n-m-rj^+rj^) /2

G

(2Tt) ( (n-m)/2)^(n/2) (^/^) (lA)^-m/2

((n2+n-m2-m)/2) Vk=in+1 ((n-in)/2) (r™-r„)/2
e e e e

• "
(2^) ((n-m)/2)^((2n+l)A)^-(2m+l)/i4.

(n2+2n-m2-2m)/2 ( k=Sl ''^)
(r^-r^)/2

e e e
.

~
(27t) ( (n-m)/2) (^) ( (2n+l)A)^-(2m+l)A

n n
Recalling that R +-i = X! ^ one obtains

k=Tn+l

^
^((n2+2n-m2-2m)/2)^(-R^+l + {v^-v^) /2)

^
(
2^)(( n-m) /2) J 2n4-l) A) ^-(( 2ia+l) A)

Therefore



3i^.

((n^+2n-m^-2m)/2) ( -RS+l+^^m-^n)/^)
e e

"
' ^2^^{{n-m)/2) ^((2n+l)A) ^-(2m+l)A

End of proof. .

An approximation of R^^^. Theorem 9.

Table 3. Table for values of jzf

n

1 / 1

2
.

' 2

3 '

.
= --.

'

9

. 96

5"
. • .

' 2500

6 162000

7 26i|.71025

8 11011^635520

9 ll75952237i+656

10 32i|.06091200000000
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Table i;. Bounds for as calculated from Equation (3) .

1999 .
10"-^ < ^2

898? . 10-3 <
95953 . 10-3 <^ ^.^

24988 . 10-1 </

16191 . 10^ < izf^

26i|.56 . io3 <
11008 . 10^ <
11751]- • lo9 <
32392 • 10^2 < ^

< 2001 . 10"3

< 9002 . 10-3

< 96028 . 10-3

< 25008 . 10-1

< 16205 . 10^

< 26ij.80 . 103

< 11013 • 10^

< 11763 • 10^

< 32U6 .
10^2
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Table 5. Bounds for as calculated from Equation (3)

.

(Rg in the above equation is approximated
by Equation ( 8) )

.

1990 . 10-3 < ^2 < 2002 . 10-3

891^9 . 10-3 < ^3 < 9013 . 10-3

95i|.ll . 10-3 < ^ < 96159 . 10-3

21^.81^0 . 10-1 < < 250i|.2 . 10-1

16097 . loi < < 16228 . loi

26292 . 103 < < 26510 . 103

1091^-3 • 10^ < < 11030 . 10^

11681 . 109 < ^9 < 11782 . 109

32186 .
10l2<^

^^10< 321^61 . 1012

i
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CONCLUSION

Some properties of Boolean elementary symmetric functions

were investigated. Boolean variables were transformed into

switching variables and contact network realizations of these

functions were obtained. It was shown that networks represent-

ing these many-to-one transformations, ESF's, are not unique,

and several equivalent networks were developed to represent

these functions. Two physical applications of these networks

were shown.

A formula for deteiroining the number of equivalence classes

of the many-to-one transformation, ESF's, was obtained. A

n-1 /n\

recursive relation for this product,
JJ^

(1 , and alternative

forms were found. Finally, close bounds for this product of
r

binomial coefficients were derived.
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A set of tvo-valued elementary symmetric functions is

generated, and some properties are investigated. The states of

these variables are represented by and 1. A realization of

a set of elementary symmetric functions in a contact network
.

is obtained through transformation of Boolean variables into

switching variables, and reduced to more economical equivalent

networks. Basic applications of the networks are given.

The number of equivalence classes of the many-to-one trans-

formation of the elementary symmetric functions is found to be

n-1 /n\

the product of the binomial coefficients JJ ( j
• The last

two sections of the paper are concerned with a recursive

relation, alternative forms, and approximations of this product

of binomial coefficients.


