# A NONLINEAR TRANSISTOR MODEL AND DEVICE CHARACTERIZATION

by

#### PARVIZ KIANKHOOY-FARD

B. S., Missouri University, 1963

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1966

Approved by:

- C C - d - L

Major Professor

# TABLE OF CONTENTS

13 LD 13 LD 16 2668 16 P42 1966

pin by los

| l.   | INTR         | ODU                    | CT:      | ION       | · •      | •         |           | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | • ' | •       | •  | • | • | Page<br>1 |
|------|--------------|------------------------|----------|-----------|----------|-----------|-----------|----------|-----|---------|---------|---------|-----|----------|-----|---------|----------|----------|-----|---------|----|---|---|-----------|
| 2.   | EQUI         | VAT                    | 4~* *i   |           |          |           |           | e        |     | ٢       | ٠       | *       |     | e        | ę.  | -       |          | •        | •   | •       | •  | • | • | 3         |
| 3.   | DEVI         | CE                     | لمد ا    | ARA       | CT       | uR.       | s. Lot    | 111      |     | ĩ       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 24        |
| 4.   | SIMU         | LAT                    | IOI      | N C       | N        | TH        | EC        | 201      | 1PU | JTE     | R       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 34        |
| 5.   | MODE         | LТ                     | ES       | rs        | •        | •         | •         | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 36        |
|      | 5.1          | Ci                     | rc       | uit       | C        | hai       | rac       | ete      | eri | .za     | lti     | or      | l   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 37        |
|      | 5.2          | Sa                     | tu       | rat       | ed:      | I         | nve       | ert      | er  | : C     | lir     | cu      | iit | :        | •   | •       | •        | •        | •   | •       | •  | • | • | 37        |
|      | 5.3          | Em                     | it       | ter       | F        | 01        | lov       | ver      | :   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 42        |
|      | 5.4          | $\mathbf{T}\mathbf{h}$ | ree      | ə S       | ta       | ge        | D-        | -C       | Cc  | oup     | le      | d       | An  | np]      | lii | Eie     | er       | Ci       | lro | cui     | it | • | • | 45        |
| 6.   | MODI         | FIC.                   | AT:      | ION       | 0        | F ?       | THE       | e M      | 101 | DEI     | J       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 47        |
| 7.   | SENS<br>CIRC | ITI<br>UIT             | VI<br>Pž | ry<br>Ara | OF<br>ME | PI<br>TEI | REI<br>RS | DIC<br>• | TE. | ED<br>• | RE<br>• | st<br>• | ITJ | г :<br>• | .0  | DH<br>• | EVI<br>• | ICE<br>• |     | -<br>NI |    | • | • | 51        |
| 8.   | CONC         | LUS                    | IOI      | . I       | •        | •         | •         | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 52        |
| ACKI | NOWLE        | DGM                    | EN.      | rs        | •        | •         | •         | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 54        |
| REFI | ERENC        | ES                     | •        | ••        | •        | •         | •         | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 55        |
| APPI | ENDIX        | A                      | •        | ••        | •        | •         | •         | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 56        |
| APPI | ENDIX        | в                      | •        | • •       |          | •         | •         | •        | •   | •       | •       | •       | •   | •        | •   | •       | •        | •        | •   | •       | •  | • | • | 57        |

.

•

#### 1. INTRODUCTION

As the requirements for computer circuit performance becomes more demanding, there is an ever increasing need for a more efficient method of describing transistor circuits. Before this need can be met, a transistor model must be available which will permit accurate prediction.

There are numerous models available which (3) permit accurate prediction. Many parameters associated with these models are not easily evaluated, and the evaluations often require facilities and measurement techniques which are not commonly available. These models cannot be easily simulated on the computer; such a simulation often requires advanced type computer, and program execution times are lengthy. In short, these models are cumbersome to use in practice. There is need for a model which is based on theoretical principles but which can be easily used in practice. Such a model 1) should be a good compromise between accuracy and tractibility, 2) should have the property of ease of evaluation of its parameters with conventional facilities and reasonable precision, 3) should permit simulation on the computer easily with a reasonable execution time, 4) should be valid for large as

well as small imput signals. Large signal input can be as large as to derive the transistor into saturation, but should not be so large to cause high injection effects.

The model to be described in this report is not a complex model. In fact, it has been around for quite some time. However, with the addition of the nonlinear characteristics and with careful device characterization, this model can provide the necessary means of predicting response to large as well as small input signal.

The characteristics of the p-n junction have been studied by many authors (2). By concentrating study on only one junction, one can understand more readily some of the more important transistor characteristics. In developing this model, each junction of a common base transistor is studied, while the other terminal is shorted to base. The use of superposition is made in obtaining the model. Because the model is nonlinear, the use of superposition may at first be considered invalid. The model is to be simulated on the computer, and the computer obtains the solution to the differential equations by means of numerical integration. By choosing small enough intervals of integration, nonlinearity can be observed as linearity within each interval. The program re-evaluates the nonlinear elements for each given interval. Then using the system of

nonlinear differential equations describing the model, in conjunction with the internal subprograms, the value of the voltages corresponding to that interval are predicted and corrected. If the predicted value is not within specified allowable error from the corrected value, then the program modifies the interval of integration and repeats the cycle until the specified allowable error is met. Thus use of superposition is validated.

Most of the methods described in this report to evaluate the parameters of the model are standard methods; however, they are modified when necessary.

Although the model is tested with fast rise-time input pulses, the model has more general applications. The input pulse tests are more severe than simple a-c or d-c input tests. By fourier-series expansion it can be shown that the pulse has both a-c and d-c components.

#### 2. EQUIVALENT CIRCUIT

The model being derived is based on the Ebers and Moll's equations for transistors (1), Equation (1) and (2). The direction of the currents and polarity of the voltage terminals are shown in Fig. (1).



Fig. 1. The direction of current and polarity of the voltage which corresponds to Equations (1) and (2).

Where:

| I.          | = | Emitter Current           |
|-------------|---|---------------------------|
| IC          | Ξ | Collector Current         |
| VE          | = | Emitter-to-Base Voltage   |
| $v_{c}^{-}$ | = | Collector-to-Base Voltage |

$$I_{E} = a_{11} (e^{qV_{EB}/kT} - 1) - a_{12} (e^{qV_{CB}/kT} - 1)$$
(1)

$$I_{C} = a_{21} (e^{qV_{EB}/kT} - 1) - a_{22} (e^{qV_{CB}/kT} - 1)$$
(2)

Where:

| q                | Electron Charge      |                   |     |                 |     |           |  |  |  |  |  |  |  |  |
|------------------|----------------------|-------------------|-----|-----------------|-----|-----------|--|--|--|--|--|--|--|--|
| k                | Boltzmann's Constant |                   |     |                 |     |           |  |  |  |  |  |  |  |  |
| г                | Temperature          |                   |     |                 |     |           |  |  |  |  |  |  |  |  |
| a <sub>11'</sub> | a <sub>22</sub> ,    | a <sub>21</sub> , | and | a <sub>12</sub> | are | Constants |  |  |  |  |  |  |  |  |

The constants a11, a12, a21 and a22 are functions of transistor material and junction temperature. The meanings given to these constants in this paper are different from the meanings that are given in the reference (1). This will be further discussed. Equations (1) and (2) are derived solely from the diffusion equation for the d-c condition. The assumptions made in deriving Equations (1) and (2) are: that drift current is negligible compared to diffusion current, and that there are no mobile charges in the depletion layers (7). The above assumptions are valid for the first derived model. The model obtained in this manner will be called the intrinsic model. The intrinsic model will be further completed by introducing some of the extrinsic elements. The extrensic elements considered are: depletion junction capacitance, bulk resistance, and header capacitances. The model resulted by introducing extrinsic elements into intrinsic model is called extrinsic model. The extrinsic model further be completed by introducing additional nonlinear elements to the model to account for base width modulation and other effects caused by forward baising collector junction, and this model will be called complete model.

The solution to Equation (1) and (2) for  $I_E$  and  $I_C$  are obtained by superposition. This is done 1) by setting the

voltage  $V_{CB}^{=}$  0 and obtaining the  $I_E$  and  $I_C$  only due to  $V_{EB}$ ; 2) by setting the voltage  $V_{EB}^{=}$  0 and obtaining the  $I_E$  and  $I_C$ only due to  $V_{CE}$ ; 3) the  $I_E$  and  $I_C$  that satisfies equations (1) and (2) are the summation of  $I_E$ 's obtained from condition (1) and (2) and summation of  $I_C$ 's obtained from condition (1) and (2).

The value of  $V_{CB}$  is set equal to zero by shorting the collector to base. The equations (1) and (2) are then reduced to equations (3) and (4) respectively.

$$I_{E1} = a_{11} (e^{qV_{EB}/kT} - 1)$$
(3)  
$$I_{C1} = a_{21} (e^{qV_{EB}/kT} - 1)$$
(4)

Equation (3) is analogous to the voltage v.s. current characteristics of a p-n junction diode. The current-voltage characteristics of a p-n junction can be represented by equation (5).

$$I = I_{s} \left( e^{qV/kT} - 1 \right)$$
(5)

where:

Is back saturation current of a p-n junction.

I<sub>s</sub> is function of cross sectional junction area, diffusion constant, diffusion length and dopping of acceptors and holes in p region and n region.

A close comparison between equations (3) and (5) yields that constant  $a_{11}$  is some sort of back saturation current of a p-n junction. So  $a_{11}$  will be defined as  $I_{SE}$ , the back saturation current of the emitter-to-base junction when the collector is shorted to base. By substituting  $I_{SE}$  in equation (3), equation (6) is obtained.

 $I_{E1} = I_{SE} (e^{qV_{EB}/kT} - 1)$ (6) By Kirchboff's current law:

$$I_{\rm E} = -(I_{\rm C} + I_{\rm B}) \tag{7}$$

By dividing equation (4) into equation (6)  $a_{21}$  is obtained, equation (8).

$$a_{21} = \frac{ICI}{I_{E1}} \cdot I_{SE}$$
(8)

$$A_1$$
 is defined as  $\frac{I_{C1}}{I_{E1}} = A_1$  (9)

Further manipulation results equation (10).

$$I_{C1} = A_1 I_{SE} (e^{qVEB/kT} - 1)$$
 (10)  
Or  $I_{C1} = A_1 I_{E1}$ 

Equations (6) and (11) suggest that the below model can be derived, Fig. (2). The model Fig. (2) suggests that for understanding the behavior or the emitter junction, one can investigate the modified diode of Fig. (2). Hence, the characteristics of the diode will be investigated. The voltage vs. current characteristics of the diode p-n junction is shown in Fig. (3), and for an ideal diode, the functional relationship representing this V-I characteristic is given by equation (12).

The functional relationship describing the conductance of the junction due to the diffusion mechanism is defined in equation (13).

$$G_{\rm D} = \frac{I}{V} = \frac{I_{\rm S} \left(e - 1\right)}{V}$$
(13)

V is applied Voltage.



Fig. 2. Model representation of emitter junction when  $V_{CB} = 0$ .



Fig. 3. V-I Characteristic of Diode.

$$I = I_{S} (e^{V} - 1)$$
(12)  
= q/kT



Fig. 4.  $M_{O}$ del representation of emitter junction with nonlinear elements, when  $V_{CB} = 0$ .

Where:

$$G_{DB} = \frac{I_{SE} (e^{V V EB} - 1)}{V_{EB}}$$
(15)

$$c_{\rm DB} = \gamma_{\rm b} \, \mathbf{I}_{\rm SE} e^{\mathbf{X} \mathbf{V}_{\rm EB}} \tag{16}$$

The functional relationship describing the diffusion capacitance of the junction is given by equation (14).

$$c_{\rm D} = \Upsilon_{\rm bdV} \stackrel{\rm dI}{=} \Upsilon_{\rm b} I_{\rm Se} {}^{\rm V} \tag{14}$$

 $\Upsilon_{\rm b}$  the effective minority lifetime in the base.

The model in Fig. (2) can be presented as shown in Fig. (4).

Now, by setting the value of  $V_{\rm EB}$  equal to zero in equations (1) and (2), characteristics of the collector junction may be obtained which are similar to the emitter characteristics when  $V_{\rm CB}$ = 0.

$$I_{E2} = -a_{12} (e^{\mu V_{CB}} - 1)$$
 (17)

$$I_{C2} = -a_{22} (e^{\mu V_{CB}} - 1)$$
(18)

$$\mu = q/kT$$

$$A_2$$
 is defined as  $A_2 = \frac{I_{E2}}{I_{C2}}$  (19)

A close comparison between equations (5) and (18) yields that constant  $a_{22}$  is some sort of back saturation current of a p-n junction. Then  $a_{22}$  will be defined as  $I_{SC}$ , the back saturation current of the collector to base junction when the emitter is shorted to the base. By substituting

 $I_{SC}$  in equation (18), equation (20) is obtained.

$$I_{C2} = -I_{SC} (e^{\mu V CB} - 1)$$
 (20)

Further manipulations similar to the manipulation done for the emitter junction yield equations (21-22) for collector junction.

$$I_{C2} = -I_{SC} (e^{\mu V_{CB}} - 1)$$
(21)  
$$I_{E2} = A_2 I_{C2}$$
(22)

The equations (21) and (22) suggest that model Fig. (5) can be derived. The model in Fig. (5) can be presented as shown in Fig. (6) by introducing nonlinear elements.

Now the solution to the equations (1) and (2) are:

$$I_{E} = I_{E1} + I_{E2}$$
 (23)

 $I_{C} = I_{C1} + I_{C2}$  (24)



Fig. 5. Model representation of collector junction when  $V^{}_{\rm EB}$  = 0.



Fig. 6. Model representation of collector junction with nonlinear elements, when  $V_{\rm EB}$  = 0.

Therefore:

$$I_{E} = I_{SE} (e^{\forall V_{EB}} - 1)$$
 (25)

$$I_{C} = A_{1}I_{E1} - I_{SC}(e^{\mu V_{CB}} - 1)$$
 (26)

Equations (25) and (26) suggest that model in Fig. (7) can be derived. The Model in Fig. (7) can be represented as in Fig. (8) by introducing nonlinear elements.

An equivalent circuit for the common emitter configuration of the equivalent circuit of Fig. (8) will be obtained. The first step is to redraw the circuit of Fig. (8) into a "T" equivalent circuit as shown in Fig. (9). Further manipulations of Fig. (9) suggest the below equations.

$$I_{B} = I_{E1} + A_{2}I_{C2} - A_{1}I_{E1} - I_{C2}$$
 (35)

Or 
$$I_B = -I_{E1}(1 + A_1) - I_{C2}(1 + A_2)$$
 (36)

And 
$$I_{C} = A_{1}I_{E1} + I_{C2}$$
 (37)

Or 
$$I_{C} = I_{C2}(1 - A_2) + I_{C2}A_2 + A_1I_{E1}$$
 (38)

Equations (36) and (37) suggest Fig. (10).

 $A_1$  and  $A_2$  can be related to hFE and hFEI respectively. This is done as follows. The transistor is operated inversely and  $V_{\rm EB}$  is set equal to zero.



Fig. 7. Model representation of a common base transistor.

.

$$I_{E1} = I_{SE} (e^{\forall V_{EB}} - 1)$$
(27)

$$I_{C2} = -I_{SC} (e^{\mu V_{CB}} - 1)$$
 (28)

$$I_{E2} = A_2 I_{C2} \tag{29}$$

$$I_{Cl} = A_l I_{El} \tag{30}$$



Fig. 8. Intrinsic Model representation of a Common base configuration of transistor with nonlinear elements.

Where:  $G_{DB} = \frac{I_{SE}(e^{\delta V_{EB}} - 1)}{V_{EB}}$   $C_{DB} = \gamma'_{b} I_{SE}e^{\delta V_{EB}}$   $\delta = q/kT$   $G_{SB} = \frac{I_{SC}(e^{\mu V_{CB}} - 1)}{V_{CB}}$   $C_{SB} = \gamma'_{b}hFE I_{SC}e^{\mu V_{CB}}$   $\mu = q/kT$ 

hFE - short-circuit current gain for common-emitter mode of transistor operation.



Fig. 9. "T" Equivalent Circuit of Fig. 8.



Fig. 10. Intrinsic Common Emitter Equivalent Circuit of Transistor.

$$I_{E1} = I_{SE} (e^{-VV_{BE}} - 1)$$
 (39)

$$I_{C2} = -I_{SC} \left( e^{\beta (V_{CE} - V_{BE})} - 1 \right)$$
(40)

The parameter hFEI is defined as short-circuit common-emitter current gain for a transistor operated inversely.

$$\frac{I_{\rm E}}{I_{\rm B}} = \rm hFEI$$
 (41)

$$A_2 = \frac{I_E}{I_C}$$
(42)

$$Or \quad A_2 = \frac{I_E}{I_E + I_B}$$
(43)

Or 
$$A_2 = -\frac{1}{1+I_B} = -\frac{hFEI}{1+hFEI}$$
 (44)

Now  $V_{\rm CE}$  is set equal to zero, therefore:

$$\frac{I_{C}}{I_{B}} = \frac{A_{1}}{1 - A_{1}} = hFE$$
(45)

$$Or \quad A_1 = \frac{hFE}{1 + hFE}$$
(46)

The Intrinsic Model representation of a common-emitter configuration of transistor with nonlinear elements is shown in Fig. (11).

The model in Fig. (11) is based on the diffusion mechanism only, and is called an intrinsic model. This model can be further completed by introducing extrinsic elements in the model which are: junction depletion capacitance, bulk resistances, and header capacitance. Although the extrinsic elements are not derived from diffusion equation, they may be dependent on the junction current or junction voltage. This will be discussed.



Fig. 11. Intrinsic Model for a Common-Emitter Configuration.

.

-

Where:  

$$G_{D} = \frac{I_{SE}(e^{-\delta V_{BE}} - 1)}{(hFE + 1)V_{BE}}$$

$$G_{S} = \frac{I_{SC}(e^{-\beta (V_{BE} - V_{CE})} - 1)}{(hFEI + 1)(V_{CE} - V_{BE})}$$

$$C_{D} = \frac{\gamma_{h}I_{SE}e^{-\delta V_{BE}}}{(hFE + 1)}$$

$$C_{S} = \frac{\gamma_{h}hFE}{(hFEI + 1)}$$

$$C_{S} = \frac{\gamma_{h}hFE}{(hFEI + 1)}$$

$$I_{1} = hFE V_{BE}G_{D}$$

$$I_{2} = hFEI G_{S}(V_{BE} - V_{CE})$$

The variation of the depletion layer capacitance of the diode p-n junction as a function of the applied voltage depends on the nature of the charge distributed on the junction. This capacitance for the abrupt charge density distribution is in the form of equation (47).

$$C_{J} = \frac{C_{1}}{(V\phi - V)^{\frac{1}{2}}}$$
(47)

Where:  $C_1$  is a constant function of the dopping level, area of the junction and permittivity of the junction.  $V_{\phi}$  is the built-in depletion layer voltage which is a function of semi-conductor material. V is the externally applied voltage across the junction.

The depletion layer capacitances for the linearly graded charge density is in the form of equation (48).

$$c_{\rm J} = \frac{c_{\rm l}}{(V \phi - V) \, 1/3} \tag{48}$$

The charge distributions used in the transistor junctions are usually either abrupt or linearly graded. However, they are not ideally abrupt or linearly graded, so that the value m is chosen instead of the powers 1/2 or 1/3 for  $(V\phi - V)$ .

Thus 
$$C_J = \frac{C_1}{(V_{\phi} - V)^m}$$

It should be pointed out that the assumption was made that there are no mobile carriers in the depletion layer.

The bulk resistance of the emitter region or the collector region is obtained from the conductivity of the emitter region or the collector region respectively. However, these resistances are small enough to be ignored for all practical purposes. The bulk resistances of the base region is not only due to the conductivity of the base region, but also depends on the recombination of the carriers in the base region which is strongly dependent on the magnitude of emitter current. This phenomena is not well understood.

The header capacitances are due to the lead wires to transistor and the transistor encopsilation. These capacitances could affect the performance of the transistor at high speed application.

The model including the extrinsic parameter for the common emitter configuration is shown in Fig. (12).

The functional relationship representing the parameters of Fig. (8) for PNP and NPN transistor are on page of this report.





The parameters corresponding to Fig. (9) for PNP and NPN transistors are given below:

PNP

NPN

$$C_{E} = \frac{C_{E1}}{(V_{E} - V_{B'E})^{m}}$$
  $C_{E} = \frac{C_{E1}}{(V_{B'E} - V_{E})^{m}}$ 

$$c_{C} = \frac{c_{C1}}{(v_{CE} - (v_{CE} - v_{B'E}))^{n}} \qquad c_{C} = \frac{c_{C1}}{((v_{CE} - v_{B'E}) - v_{C})^{n}}$$

$$c_{\rm D} = \frac{\gamma_{\rm b} \ I_{\rm SE} \ e^{-\zeta V_{\rm B'E}}}{(h_{\rm FE} \ + \ 1)} \qquad \qquad c_{\rm D} = \frac{b \ I_{\rm SE} e^{\zeta V_{\rm B'E}}}{(h_{\rm FE} \ + \ 1)}$$

$$G_{D} = \frac{I_{SE}(e^{-V_{B}'E} - 1)}{(h_{FE} + 1)V_{B'E}} \qquad G_{D} = \frac{I_{SE}(e^{\delta V_{B}'E} - 1)}{(h_{FE} + 1)V_{B'E}}$$

$$c_{s} = \frac{\gamma_{b} \frac{I_{schFE}}{(h_{FEI} + 1)}}{(h_{FEI} + 1)} \qquad c_{s} = \frac{\gamma_{b} I_{schFE}}{(h_{FEI} + 1)} \frac{(e^{\mu(V_{CE} - V_{B'E})} - 1)}{(h_{FEI} + 1)}$$

$$G_{S} = \frac{I_{SC}(e^{-\mu(V_{CE}-V_{B'E})} - 1)}{(h_{FEI} + 1)(V_{B'E} - V_{CE})} \qquad G_{S} = \frac{I_{SC}(e^{\mu(V_{CE}-V_{B'E})} - 1)}{(h_{FEI} + 1)(V_{CE} - V_{B'E})}$$

| 0                | Emitter innetion deplotion epopeitones                                    |
|------------------|---------------------------------------------------------------------------|
| E                | Emitter Junction depiction capacitance.                                   |
| CEL              | The value of $C_E$ when $(V_E - V_{B+E}) = 1$ .                           |
| m                | The parameter related to the $C_{\rm E}$ , evaluated emperically.         |
| c <sub>C</sub> , | $C_{C1}$ , n Collector parameters which are analogous to the $C_{E}$ ,    |
|                  | C <sub>El</sub> , and m respectively.                                     |
| CD               | Emitter junction diffusion capacitance.                                   |
| $r_{\rm b}$      | The effective minority carrier lifetime in the base.                      |
|                  | It is a function of q/kT for emitter junction.                            |
| I <sub>SE</sub>  | Back saturation current for emitter junction.                             |
| $h_{FE}$         | Short-circuit current gain for common-emitter mode, of                    |
|                  | normal transistor operation. Equation (45).                               |
| Vøe              | The barrier potential of the emitter junction.                            |
| н, І             | $S_{\rm C}, V_{{ m OC}}$ Collector parameters, which are analogous to the |
|                  | $\gamma$ , I <sub>SE</sub> , and V $_{m arsigma E}$ , respectively.       |
| hFEI             | Short-circuit common-emitter current gain for a                           |
|                  | transistor operated inversely. Equation (41).                             |

#### 3. DEVICE CHARACTERIZATION

The techniques used to characterize the device will be discussed here. It will become apparent later from the sensitivity studies that not all device parameters discussed will need to be measured on each and every device (5). In practice nominal values will suffice for a given family of devices.

Because of the similarity in which the emitter and collector junctions are represented in the model it is sufficient to describe only the measurements performed on the emitter junction in detail. The few differences that exist in the measurement techniques for the collector are appropriately cited.

The parameter  $I_{SE}$  and å are determined with the emitter biased in the forward direction and the collector shorted to base. The emitter input is a ramp input. Although the value of q/kT is attached to the å in most device treatises, it is found experimentally that the å is equal to the  $\frac{q}{akT}$  where  $\underline{a}$ is experimentally found. The existence of  $\underline{a}$  can be explained by the approximation used in evaluating  $G_D$  and  $C_D$ . Further manipulation of equation (5) reveals equation (50).

$$I_{E} = I_{SE} (e^{\delta V} - 1)$$
 (5)

$$Or \quad I_E = I_{SE} e^{\delta V} \qquad e^{\delta V} \gg 1 \tag{50}$$

And  $\log_{10}I_E = \log_{10}I_{SE} + V(\delta \log_{10}e)$  (50)

The value of  $I_{SE}$  then, is obtained by plotting  $\log_{10}I_E$  vs. V. The intersection of the extrapolated line with the  $\log_{10}I_E$ axis is the value of log  $I_{SE}$  and the slope of the line is  $\log_{10}e$ . A plot of the  $V_{EB}$  vs.  $I_E$  is shown in Fig. 14. It is incorrect to use the terminal voltage  $V_{EB}$  for the value of V in equation (50), because the V in equation (50) is the intrinsic voltage applied across the junction. The value V in terms of  $V_{EB}$  is given in equation (51).

 $V = V_{BE} - I_E R_{SE}$  (51) Where  $R_{SE}$  is emitter bulk resistance.

The modified V-I characteristic is shown in Fig. (13). The graphical technique used to evaluate  $\gamma$  and  $I_{SE}$  for the transistor X is shown in Fig. (14). (See Appendix 1 for information on Transistor X).

The Barrier junction potential  $V \not o$  can be evaluated by equation (52).



Fig. 13. The Diode V-I Characteristic.

Solid line is terminal voltage v.s. current. Dash line is corrected value of voltage v.s. current.



Fig. 14. Graphical technique to evaluate  ${\rm I}_{\rm SE}$  and  $\delta$  .

$$V \not = \frac{kT}{q} \ln \frac{NaNd}{Ni^2}$$
 (52)  
Na = density of acceptor atoms.  
Nd = density of donor atoms.  
Ni = carrier density in an intrinsic semi-conductor

Equation (52) is very cumbersome to use in practice. Vø can be evaluated easily by approximation. The sensitivity study has revealed that the Vø is not a very sensitive parameter and a close approximation is accurate enough. A diode at high current can be approximated by a series circuit consisting of a battery equivalent to barrier potential, a resistance which is equivalent to the diffusion resistance of the diode, and an ideal diode. The extrapolation of the slope to the V-I characteristic will meet the V-axis approximately at Value Vø. The graphical evaluation of this barrier potential is shown in Fig. 13. The nominal value of .8 volts can be used for a silicon transistor (5).

 $C_{E1}$  and m are obtained from capacity measurements on the emitter junction (collector open circuited). The capacitance remaining, after the contribution of the lands and header are removed, versus the true junction voltage is plotted on log-log paper. The junction voltage is the applied voltage less the contribution of the barrier potential. Fig. 15 is an example of how the values of  $C_{E1}$  and m are obtained.



Fig. 15. Graphical technique for obtaining the value  ${\rm m}$  and  ${\rm C}_{\rm El}.$ 

A computer program can be written to evaluate  $C_{El}$ , m and Vø simultaneously. This can be done by sequential least square fit, which will find those values of  $C_{El}$ , m and Vø to fit experimental data and equation (49).

Short circuit common emitter current gain is measured in the conventional manner. Fig. 16 is an example of the dependency of this parameter on emitter current.

The value of  $\boldsymbol{\gamma}_{\mathrm{b}}$  may be obtained by

$$\Upsilon_{\rm b} = \frac{1.22}{(1-\alpha_{\rm N}) \ \omega_{\rm N}} \tag{53}$$

Where  $\alpha_N$  is low frequency of short circuit current gain for common base circuit. Where  $W_N$   $\alpha$  cut off frequency for the common base short-circuit current gain for a normally operated transistor.

In practice it is cumbersome to use equation (53) for evaluation of  $\mathcal{T}'_{\rm b}$ . The charge method technique is more widely used for evaluation  $\mathcal{T}'_{\rm b}$ , which is:

$$\gamma'_{\rm b} = \frac{\Delta Q_{\rm B}}{\Delta I_{\rm B}} \tag{54}$$



Fig. 16. Common emitter, short circuit current gain versus emitter current.

By manipulating equations (55) and (54), equation (56) will result.

$$\mathcal{T}_{C} = \mathcal{T}_{B} \cdot hFE$$
 (56)

Commonly  $\widetilde{\gamma}_{c}$  is found first and then  $\widetilde{\gamma}_{B}$  is calculated. This is done because the error involved in evaluating  $\widetilde{\gamma}_{c}$  is less than the error in evaluating  $\widetilde{\gamma}_{B}$ .

Base spreading resistance,  $R_B$  can be obtained from a small-signal bridge measurement of the  $R_B \cdot C_C$  product, Fig. 17.

The values of  $R_B$  indicate that  $R_B$  is a function of the emitter current and decreases as the emitter current increases; however, these values level off at higher emitter current. For the transistor X, a nominal value of 15 ohms is obtained for the emitter current beyond 3ma. For emitter currents less than 3ma,  $R_B$  increases to about twice the nominal value at 1ma.

 $I_{SC}$ ,  $\mu$ ,  $C_{C1}$ , n and hFEI are determined in the same manner as  $I_{SE}$ ,  $\lambda$ ,  $C_{E1}$ , and m and hFE respectively, with the exception that the emitter and collector leads are interchanged.



Fig. 17. The diagram used to evaluate  $R_{\rm B}^{}$ .

 $\begin{array}{l} R \\ K \\ C_{K}^{K} \end{array} is Known Resistance. \\ C_{K} \\ is Known Capacitance. \\ D \\ is Detector. \end{array}$ 

And:

$$R_{\rm B} = \frac{R_{\rm k}C_{\rm k}}{C_{\rm C}}$$

#### 4. SIMULATION ON THE COMPUTER

The model in Fig. 12 is programmed on IBM 7090. This program can be used on the IBM 709X series. The program is written in the FORTRAN II language. A brief discussion of the program is given below. (See Appendix B)

The time response of the circuit is found by forming node equations and solving for derivatives where there are reactive elements at the node. This yields a system of nonlinear differential equations. These equations are:

$$_{\rm B}v_{\rm B} - G_{\rm B}v_{\rm BP} + (C_{\rm BES} + C_{\rm CBS})v_{\rm B} - C_{\rm CBS}v_{\rm O} = 0$$
 (59)

$$-V_{B}G_{B} + (G_{B} + G_{D} + G_{S})V_{BP} - G_{S}V_{O} + (C_{E} + C_{D} + C_{C} + C_{S})$$

$$V_{EP} - (C_{C} + C_{S} + C_{CBS})\dot{V}_{O} = 0$$

$$-G_{S}V_{BP} + G_{S}V_{O} - C_{CBS}\dot{V}_{B} - (C_{C} + C_{S})\dot{V}_{BP} + (C_{CBS} + C_{C})$$

$$\dot{V}_{O} = -hFEV_{BP}G_{D} + hFEI G_{S}(V_{O} - V_{BP})$$
(61)

Where:

G

$$v_{\rm B} = v_{\rm BE} \qquad v_{\rm BP} = v_{\rm B} \mathbf{1}_{\rm E} \qquad v_{\rm O} = v_{\rm CE}$$
$$\dot{v}_{\rm B} = \frac{\mathrm{d} v_{\rm B}}{\mathrm{d} t} \qquad \dot{v}_{\rm O} = \frac{\mathrm{d}}{\mathrm{d} t} v_{\rm O}$$

Equations 59 - 61 are solved by a predictor-corrector numerical integration technique. Nonlinear elements are handled by computing their value at each interval of integration step. The

accuracy and running time of this program is highly dependent on the initial value of voltages, the integration interval, and the maximum allowable relative error for each integration interval. The value of 1.0E - 7 has yielded accurate results and is recommended for use. The interval at which the program prints also determines the minimum integration interval which in turn affects the accuracy of the solution. Accurate calculations of the initial condition of the voltages ( $V_B$ ,  $V_{BP}$ , and  $V_O$ ) will decrease running time and have a solutary effect on the computed response. The input signal to the transistor should not be programmed at the initial time  $T_O$ . This is to allow the transients introduced by inconsistent initial conditions to dissipate before applying the input signal.

The functional relationships describing the  $R_B$  and hFE as a function of the emitter current are of complex nature; also, these relationships are not very representative of the phenomenom occurring. The values of  $R_B$  and hFE as a function of the emitter current are given by the table of values to the computer. An error is introduced in this program to reduce the computing time. This is done by evaluating the present value of  $R_B$  and hFE through using the last value of  $I_E$ . This error is of no consequence, and the approximation is justifiable, because the variation of the  $R_B$  and hFE as a function of  $I_F$  for an integration interval is negligible.

## 5. MODEL TESTS

The model of Fig. 12 has been exercised in a single saturated inverter circuit, in an emitter follower circuit, and in a three stage d-c coupled amplifier (5). The saturated inverter circuit exhibits the behavior of the model under large signal application. The emitter follower circuit exhibits the behavior of the model under small signal application. The three stage amplifier exhibits behavior of the model under both small and large signal simultaneously. The results indicate that the model is capable of predicting in detail both the steady-state and transient response of the device.

In all three circuits the components were chosen so as not to obscure the device performance. Although planar silicon transistors (Fairchild 1312) were used in the experimental work, the model has more general application. The systems of simultaneous nonlinear differential equations resulting from these circuits have been programmed on the 7090 in conjunction with the described program in part 4 of this paper.

#### 5.1 CIRCUIT CHARACTERIZATION

The circuits used for these studies were carefully constructed to minimize stray inductance and capacitance. The remaining stray capacitances present were measured in the absence of the transistor and added to respective header and land capacitances to form  $C_{CBS}$ ,  $C_{EBS}$ , and  $C_{CES}$ . The remaining circuit elements were measured by entirely conventional means. The equivalent resistance of the pulse generator and its termination were added to the lumped resistor in the base lead to form  $R_G$ . A carefully calibrated sampling scope driving an X-Y plotter was used to measure the .7 nanosecond ramp input pulse and the output voltage. Shunt capacitance of the scope probes were taken into account where appropriate (5).

#### 5.2 SATURATED INVERTER CIRCUIT

The saturated inverter of Fig. A was driven under the conditions of the resistance  $R_G$  with a value of 525 ohms,  $V_{int}$  was a pulse with the peak value of 2.5 volts, and the rise time of the .7 nanosecond. Fig. 18 programmed on the 7090 computer as is described. The system of nonlinear differential



Fig. 18. Nonlinear transistor model in saturating inverter circuit.

$$(G_{g} + G_{B}) - G_{B}V_{BP} + (C_{CBS} + C_{CES})\dot{v}_{B} - C_{CBS}\dot{v}_{0} = G_{g}V_{in}(t)$$
(62)  
$$-G_{B}V_{B} + (G_{B} + G_{D} + G_{S})V_{BP} - G_{S}V_{0} + (C_{E} + C_{D} + C_{C} + C_{S})\dot{v}_{BP} - (C_{S} + C_{C} + C_{CBS})V_{0} = 0$$
(63)  
$$-G_{S}V_{BP} + (G_{L} + G_{S})V_{0} - C_{CBS}\dot{v}_{B} - (C_{C} + C_{S})\dot{v}_{BP} + (C_{CBS} + C_{L} + C_{C} + C_{S})\dot{v}_{0} = -h_{FE}V_{BP}G_{D} + E_{CC}G_{L} + h_{FEI}G_{S}(V_{0} - V_{BP})$$
(64)

equations describing Fig. 18 are given in equations 62 - 64.

The input voltage to the computer was described as shown in Fig. 19 and the functional relationships representing Fig. 19 were given in equations 65 - 71.

$$v_{in} = v_K \qquad 0 \leq T < T_0 \qquad (65)$$

$$v_{in} = v_{K} + v_{R} (1 - e^{-\delta(T - T_{0})}) \qquad T_{0} \leq T < T_{R}$$
(66)

$$v_{in} = v_L \qquad T_R \leq T < T_F \qquad (67)$$

$$v_{in} = v_L + (1 - e^{-\alpha (T - T_F)}) v_F \quad T_F \leq T < T_Q \quad (68)$$

$$\delta = \frac{-\ln\left(\frac{\nabla_{R} - \nabla_{L}}{\nabla_{R} - \nabla_{K}}\right)}{T_{R} - T_{O}}$$

$$T \in T_{Q}$$

$$T \in T$$

$$\alpha = \frac{\ln\left(\frac{V_{\rm L} - V_{\rm F}}{V_{\rm K} - V_{\rm F}}\right)}{T_{\rm Q} - T_{\rm F}}$$
(71)

The comparison of experimental and predicted result for saturated inverter Fig. 18 is shown in Fig. 20. The experimental performance of the device agreed with the predicted values better than 10 percent for turn-on delay, turn-on, and turn-off. Only the prediction of storage time did not agree with experimental results. This will be further discussed in section 6 of this paper.



Fig. 19. This form of the input is simulated on the Computer.

•

•



T -- 4 nanosecond/division

Fig. 20. Comparison of experimental and predicted results for saturated inverter.

```
Solid line is experimental results.
Dotted line is predicted results.
V_{in} = 2.5 volts with .7 nanosecond rise time.
R_g = 525 ohms.
```

#### 5.3 EMITTER-FOLLOWER CIRCUIT

The stability of the emitter-follower has been investigated by many authors. It has been pointed out that the input of a transistor in the emitter-follower configuration appears, under certain conditions, to be a capacitance shunted with negative resistance. Therefore, if the driving source to this device appears to be inductive, instability and oscillation are quite likely to occur. Fig. 21 presents an equivalent circuit for a simple emitter-follower. The device model is the same as that used in the saturated inverter circuit with the exception that  $G_s$  and  $C_s$  were set to zero. The deriving source contains the inductance L necessary for instability. This inductance L in practice is usually caused by lead wire inductance. Fig. 22 shows a comparison of theoretical and experimental results for a representative device (transistor X) and for a value of inductance. The device value used to obtain the emitter-follower results were precisely those used to obtain saturated inverter of Fig. 20. This result demonstrates that this model need not be restricted to large signal applications but is equally useful in representing the device in the "linear" region.



Fig. 21. Nonlinear transistor model in emitterfollower circuit.

.



Fig. 22. Comparison of experimental and predicted results for emitter-follower.

| L  | = | 160 | nh   | $R_q = 50 \text{ ohms.}$ |
|----|---|-----|------|--------------------------|
| RO | Ξ | 250 | ohms | $v_{in(t)} = 1$ volt     |

## 5.4 THREE STAGE D-C COUPLED AMPLIFIER CIRCUIT

The model was exercised further in a three stage d-c coupled amplifier of Fig. 23. The device model was the same as that used in the saturated inverter circuit. The circuit used for this study was carefully constructed to minimize stray inductance. Stray inductances due to the circuit-wire were found to be negligible. No inductance was programmed as it was done for emitter-follower. Fig. 24 shows a comparison of the theoretical and experimental results for a representative device (transistor X). The result indicates that the use of a nonlinear model makes it possible to obtain both the steady-state and transient solution simultaneously.

In the analysis,  $T_1$ ,  $T_2$  and  $T_3$  are represented by the nonlinear transistor model of Fig. 12.



Fig. 23. Three-stage D-C Coupled Amplifier.



Fig. 24. Comparison of predicted and experimental results for the circuit of Fig. 23.

V = 5 mV pulse, 500 sec. in duration.

#### 6. MODIFICATION OF THE MODEL

The extrinsic model of Fig. 12 is capable of predicting the turn-on, turn-on delay, turn-off delay, and d-c characteristics of the transistor in detail. However, it fails to predict the turn-off (storage time) in detail. This suggests that the extrinsic model should be further completed. Fig. 25 is a plot of collector deplation capacitance versus junction voltage. The equation (49) is used to describe this phenomena. The result indicates that the equation (49) is only capable of the predicting of the depletion layer capacitance for reversed biased condition. This indicates that the functional relationship used to describe the deplation junction capacitance was inadequate and failed to predict forward biased characteristic. This failure used to be blamed on the 1) difficulty of reproducing the forward biased data characteristic of deplation capacitance, 2) the diffusion capacitance. A careful capacitance measurement with a-c signal as small as 20 microvolts has made it possible to reproduce the forward biased data. The diffusion capacitance values were calculated and they indicated that for emitter junction the calculated value of the diffusion capacitance were very close to the

observed values. However, for collector junction the diffusion capacitance was by order of magnitude smaller than observed value. As a result, a new functional relationship for describing deplation layer capacitance is being adopted. The new functional relationship is capable of predicting depletion layer capacitance for the forward biased condition as well as reversed biased condition within five percent of the measured value. The results are plotted in Fig. 25 and the functional relationship is given by equation (72).

$$C_{\rm C} = \frac{C_{\rm C1}}{(V_{\phi \rm C} - V_{\rm CB})^{\rm III}} + \frac{C_{\rm FC1}}{(V_{\phi \rm C} - V_{\rm CB})^{\rm P}}$$
(72)

Where  $C_{C1}$ , m,  $C_{FC1}$  and p are found empirically.

Although this new functional relationship is not in exact exponential form, it closely resembles the work done by C. T. Sah and will predict the same result at the limits. C. T. Sah attributes this effect to free carriers in the transistor region (8).

The new functional relationship makes it possible to predict storage time within a few percent. The results are plotted in Fig. 26. The extrinsic model is called complete model when substituting equation (72) for equation (49).



Fig. 25. Collector depletion layer capacitance v.s. voltage across the junction.



T -- 4 nanosecond/Division

Fig. 26. Comparison of predicted and experimental results for the circuit, Fig. 18.

Solid line = experimental results. Dotted line = predicted results.

# 7. SENSITIVITY OF PREDICTED RESULT TO DEVICE AND CIRCUIT PARAMETERS

Every measurement made is subject to a number of errors. In order to determine the influence of measurement errors on the predicted results, nominal values for each parameter were used in the inverter program (5). These results were compared to the results obtained when each nominal value was incremented independently by 5 percent. The sensitivity results indicate that  $C_C$  and the parameters that determine base current  $V_{in}$ ,  $R_G + R_B$ , and were by far the most important parameters for this circuit. The circuit response is relatively insensitive to parameters such as hFE and  $\mathcal{T}_b$ . The results of the sensitivity study make it possible to determine which device parameters need only be specified nominally, thus reducing drastically the number of parameters to be measured.

The program from which these results were obtained has facilities for emitter current dependence of hFE and  $R_B$ . However, all the results presented assume constant values for hFE and  $R_B$ . The predicted result from nonlinear hFE and  $R_B$ agree to the third place with the linear results. If a circuit with a saturation current approaching ma for the transistor X had been chosen, it would be anticipated that results would be a great deal different.

#### 8. CONCLUSION

The results shown in this paper demonstrate the feasibility of using a nonlinear, equivalent circuit model to represent a transistor in large signal, small signal and both large signal and small signal operation simultaneously. Although the range of devices and circuit conditions is quite limited in this study, it is significant to note that none of the devices strayed more than ten percent from their predicted behavior, and the majority of this is attributed to the great dependence the circuit has to  $V_{in}(t)$ .

The model does not require any advanced programming and machine running time is not lengthy. Machine running time for the results of saturated inverter circuit was forty seconds, including read and write tape.

The model does an excellent job in predicting transient time. The model is not a cumbersome model. It does not introduce any new circuit elements. It is compatible with the other circuit elements to which it is to be connected and it does not require a circuit designer to be accustomed to new circuit elements. The relationship to device physics is relatively clear, and the model is capable of providing device people with information about their products.

The linear form of the model has found wide acceptance in the design of small signal amplifiers. The introduction of nonlinear elements intensifies the value of this model for small signal design since it permits simultaneous a-c and d-c analysis.

Parameters of the model can be evaluated easily with conventional techniques. Circuit elements and device parameters may be optomized long before the devices are available. This approach is particularly useful in the design of integrated circuit where the trimming of a circuit is impractical. The model can be used as the basis of an integrated specification which would include large signal and small signal application.

The model and the paragram can be combined to a subroutine paragram. The subroutine can be used instead of transistor in the circuit, and the performance of the circuit can be predicted easily.

In short, this model is a practical model.

#### ACKNOWLEDGMENTS

The author wishes to express his deep appreciation to Mr. Joseph E. Ward, Jr., of the Department of Electrical Engineering for his guidance and encouragement during the preparation of this paper.

The author also wishes to express his gratitude to R. J. Wilfinger of the International Business Machine Corporation, who contributed to the work on this study, and to the staff of the Department of Electrical Engineering of Kansas State University for their useful discussion during the preparation of this paper.

#### REFERENCES

- Ebers, J. J. and J. L. Moll. Large-signal Behavior of Junction Transistors. Proc. IRE, December, 1954, pp. 1761-1772.
- Ghausi, M. S. Principles and Design of Linear Active Circuits. New York: McGraw-Hill, 1965, Chapters 6, 7, 8 and 9.
- Giacoletto, L. J. Study of PNP Alloy Junction Transistors from D-C through Medium Frequencies. RCA Review, December, 1954, pp. 506-562.
- Gray, P. E., D. DeWitt, A. R. Boothroyd and J. F. Gibbons. Physical Electronics and Circuit Models of Transistors. New York: John Wiley & Sons, Inc., 1964, Chapter 9.
- Kiankhooy-Fard, P. and R. J. Wilfinger. A Nonlinear Transistor Model for the Prediction of Circuit Transient Response. 1964 International Solid-State Circuits Conference, p. 46.
- Moll, J. L. Large-Signal Transient Response of Junction Transistors. Proc. IRE, December, 1954, pp. 1773-1784.
- Nanavatti, R. P. An Introduction to Semiconductor Electronics. New York: McGraw-Hill, 1963, Chapters 9 and 10.

 Sah, C. T. Effects of Electrons and Holes on the Transition Layer Characteristics of Linearly Graded P-N Junctions. Proc. IRE, March, 1961.

#### APPENDIX A

Transistor X is a NPN planar silicon transistor manufactured by Fairchild and was designated type 2B8.

The breakdown voltage of either junction is about 9 volts. The hFE of the transistor is about 75, the detail hFE characteristic is given in Fig. 16 of this paper. Other characteristics of this transistor are given in the device characteristics of this paper.

Other types of transistors were used in the experimental work, which all have exhibited similar results as transistor X. However, all the data and results represented in this paper are of transistor X.

#### APPENDIX B

The listing of the program used to predict the theoretical value is given in this Appendix. The data and programming of this Appendix is a portion of a published paper by the International Business Machines Corporation which is a supplement to reference (X). The paper identification is as follows.

# Identification

Nonlinear Transistor model for the prediction of circuit transient response

R. J. Wilfinger/P. Kiankhooy-Fard/S. C. Plumb

Program Description - A. Selby, Scientific Computation, International Business Machines Corporation, Components Division, Fishkill, New York 

```
С
                           CF ADDITION
     TRANSIST V
С
C
C
      VERSION WITH HYPERBOLIC FORM OF CF
     DIMENSION A(80), AIR(50), AIH(50), RB(50), HFE(50), V(4), VP(4),
     $ VC(4), TBL(16)
      EQUIVALENCE (V(1), VBP), (V(2), VO), (V(3), VB), (VP(1), DVBP),
     $ (VP(2), DVO), (VP(3), DVB), (V(4), VG), (DVG, VP(4))
      READ INPUT TAPE 20 50 A
 5
      FORMAT (20A4)
      READ INPUT TAPE 2, 2, IVSN, ERR
 1
      FORMAT (15, 5%, E5.0)
 2
      READ INPUT TAPE 2, 3, VG,VB,VB,VO,DT,TMAX
      READ INPUT TAPE 2, 3, VK, VL, VR, TO, TR
      READ INPUT TAPE 2, 3, VF, TF, TQ
      READ INPUT TAPE 2, 3, RG, CBES, CCBS, RL, CL, ECC
      READ INPUT TAPE 20 30 CCESOR2OC2OR3OROC
      READ INPUT TAPE 2. 3. AISE, GAM, Q. P. TB, VPHI
      READ INPUT TAPE 2, 3, CE1, EM, CC1, EN, AA, BB
      READ INPUT TAPE 20 30AISC 0 AMU 0 VPHC0. TS0 HFEI 0HFX
 3
      FORMAT (6E12.4)
      READ INPUT TAPE 2, 4, N, (AIH(I), HFE(I), I = 1,N)
      READ INPUT TAPE 20 40 Mo (AIR(I) + RB(I) + I = 10M)
      FORMAT (15/ (2E12.4))
 4
      CALL GIRL
      CALL TITLE
      WRITE OUTPUT TAPE 3, 6, A(1), VB, A(2), VBP, A(3), VO, A(4), DT,
     SA(5), TMAX
      WRITE OUTPUT TAPE 3, 6, A(6), VK, A(7), VL, A(8), VR, A(9), TO, A(
     $10), TR
     WRITE OUTPUT TAPE 3, 6, A(11), VF, A(12), TF, A(13), TQ, A(55), CCES
     WRITE OUTPUT TAPE 3, 6, A(14), RG, A(15), CBES, A(16), CCBS, A(17)
     $, RL, A(18), CL, A(19), ECC
     WRITE OUTPUT TAPE 3, 6, A(20), AISE, A(21), GAM, A(22), Q, A(23),
     $ P, A(24), AISC, A(25), AMU
     WRITE OUTPUT TAPE 3, 6, A(26), VPHI, A(27), CE1, A(28), EM, A(29),
     S CC1, A(30), EN, A(31), HFEI
     WRITE OUTPUT TAPE 3, 6, A(53), VG, A(56), R, A(57), C, A(58), R2,
     $ A(59), C2, A(60), R3
      GG = 1.7RG
      GL = 1./RL
      G = 1 \circ / R
     G_2 = 1.0/R_2
      G3 = 1.0/R3
      ALPHA = LOGF((VL - VF)/(VK - VF))/(TQ - TF)
      DELTA = -LOGF((VR - VL)/(VR - VK))/(TR - TO)
     WRITE OUTPUT TAPE 3, 6, A(32), TS, A(33), TB, A(51), ALPHA, A(52),
     $ DELTA, A(61), AA, A(62), BB
      WRITE OUTPUT TAPE 3, 6, A(64), VPHC
      FORMAT (1X, 6(A4, E12.5, 4X))
 6
      T = 0.
      TC =0.
      I = 0
      NN = 4
```

59 20 . 1 . 05 C. . / . V. . 22 20 20 0 20 6. 0 100 13 ( - The A . . . 2 -The and the state of the state JU TO . CU . C. C. T. T. . . . . . . . . . - V. Le si march Ĵ . VI. 1 . . . VILLE VE + JUL - JULE PE LEADERAN (I - TEX) 1F (T) 1-C. - T. 15 20 ATT = LIMACHES A D' PROB + (NO - ECC)AGE + DVORCE + GGR(VB - VIN) :\_) 1. ALE - ATEIS, . . . 120,250 . 20 4=X = HEET. 30 10 150 07 140 1 = 290 18 0 18 - 2180 17 12 4150 140 - , 0 CONTRACE HEA = HEEIA) 30 10 160 -REX = NFE(I→1) + NALE → AIN(I+1)//(AIN(I) → AIR(I+1))\*(HFE(I) → 150 3 HFENIML, J 100 10 10 165 :00 171 Rh. . KP't 10 10 210 10 DC 197 : = 2... 17 (ALE - ALRII,, 2.0 200.100 CRETINUE R X = RB ND 60 70 210 |<=>X == R6(|−1) = (AIE = AIR(I−1))/(AIR(I) = AIR(I−1))\*(R6(I) = R6(I 5 - 111 X = EIPELCAREVSP, 2.0 Y = EXPERTURNING - VOID 210 OD HILISEW AHID / (THEXHID) #V8P; COMITE GAM (SEAN, / (HEX-1.)) I = CEI/ VPAI - VBP, ALEA CC = CC1/IVO - VBP + VPHC)\*\*EN 35-1 A:SC\*(Y-1)) /, HEE:+ 101\*(VBP.-VO)) CS= ITS MANU AISC Y)/( HEEI WIW) WCF CA = 1. RAX (A = (NR - VOP) GE + VR\*C2 + (VS - VIN \*GG 18 - VARAGO + GD - GS, - V3\*GB - V0\*CS X. = VO\*(GL + US) - VEP\*GS + HEX\*VBP\*GD - ECC\*GL - HEEI\*GS\*(VBP -XD = CRES + CCRG + CC 1. E CCB ... CONCERNENT CONCERNES = CC + CSX. = CCR3 + CL + CC + C + CC 3 >>> = ―(こうぶ(スケー・(ら (I/XG) ☆ > ◇>E)/(― E+ 2 + XD\*(―XI\*\*2/XG ☆ XJ))

1

-.)

|                                                                           |                                                                           |                                                                            |                                                                          |                                                                            |                                                                           | 1                                                                         |                                                                             | 1                                                                          | · ·                                                                           |                                                                            |                                                                           | t (* 1                                                                    |                                                                           |                                                                           |                                                                           |                                                  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|
| 10                                                                        | 10                                                                        | 10<br>10                                                                   | 10                                                                       | 10<br>10                                                                   | 10                                                                        | 10                                                                        | 10                                                                          | 10                                                                         | 10                                                                            | 10                                                                         | 10                                                                        | 10                                                                        | 10<br>10                                                                  | 01<br>02                                                                  | 01<br>02                                                                  | 01 02                                            |
| 0.25000E<br>0.52911E                                                      | 0.25000E<br>0.55272E                                                      | 0.25000E<br>0.57961E                                                       | 0.25000E<br>0.61106E                                                     | 0.25000E<br>0.65905E                                                       | 0.25000E<br>0.59640E                                                      | 0.25000E<br>0.75475E                                                      | 0.25000E<br>0.81692E                                                        | 0.25000E<br>0.86846E                                                       | 0.25000E<br>0.90655E                                                          | 0.25000E<br>0.93515E                                                       | 0.25000E<br>0.95342E                                                      | 0.25000E<br>0.97851E                                                      | 0.25000E<br>0.9969 <b>5E</b>                                              | 0.25000E<br>0.10143E                                                      | 0.25000E<br>0.10309E                                                      | 0.25000E<br>0.10471E                             |
| ζä∧<br>Cα                                                                 | VI N<br>CE                                                                | VIN<br>CE                                                                  | VI N<br>CE                                                               | VIN<br>CE                                                                  | VIN<br>CE                                                                 | VIN<br>CE                                                                 | VIN<br>CE                                                                   | AI N<br>CE                                                                 | VI N<br>CE                                                                    | VI N<br>CE                                                                 | VIN<br>CE                                                                 | VIN<br>CE                                                                 | VI N<br>CE                                                                | VI N<br>CE                                                                | VI N<br>CE                                                                | VIN<br>CE                                        |
| C.42496E-00<br>0.85477E-06                                                | 0.38741E-00<br>0.16325E-04                                                | 0.35512E-00<br>0.24148E-03                                                 | 0.32674E-00<br>0.28618E-02                                               | 0.30278E-00<br>0.27725 <u>5</u> -01                                        | 0.27153E-00<br>0.21826E-00                                                | 0.21832E-00<br>0.12759E 01                                                | 0.13674E-00<br>0.45792E 01                                                  | 0.75098E-01<br>0.97222E 01                                                 | 0.47951E-01<br>0.14974E 02                                                    | 0.30079E-01<br>0.19633E 02                                                 | 0.27300E-01<br>0.23803E 02                                                | 0.19239E-01<br>0.27528E 02                                                | 0.19988E-01<br>0.31282E 02                                                | 0.28337E-01<br>0.34830E 02                                                | 0.15563E-01<br>0.38279E 02                                                | 0.20984E-01<br>0.41693E 02                       |
| 0 48                                                                      | 0.00                                                                      | DV8<br>00                                                                  | 010                                                                      | 0.0000000000000000000000000000000000000                                    | 0 V 8<br>C 0                                                              | 0 V 8<br>C 0                                                              | 0.00000                                                                     | 0 V 8<br>3 0                                                               | 0 V B<br>C D                                                                  | 0.0000000000000000000000000000000000000                                    | 0 V 8<br>C 0                                                              | 0 V 8<br>C 0                                                              | 000000000000000000000000000000000000000                                   | 0 V 8<br>C D                                                              | 0.0000000000000000000000000000000000000                                   | 0 V 8<br>C 0                                     |
| V8 0.31483E-00<br>GS 0.32610E-07<br>CF 0.82064E-04                        | VB 0.39597E-00<br>GS 0.33560E-07<br>CF 0.90796E-04                        | v8 0.47015E-00<br>GS 0.34550E-07<br>CF 0.10052E-03                         | V8 0.53826E 00<br>GS 0.35574E-07<br>CF 0.11123E-03                       | V8 0.60087E 00<br>GS 0.36622E-07<br>CF 0.12292E-03                         | V8 0.65784E 00<br>GS 0.37687E-07<br>CF 0.13556E-03                        | V8 0.70691E 00<br>GS 0.38776E-07<br>CF 0.14929E-03                        | VB 0.74241E 00<br>GS 0.39978E-07<br>CF 0.16540E-03                          | V8 0.76293E 00<br>GS 0.41514E-07<br>CF 0.18748E-03                         | VB 0.77428E 00<br>GS 0.43530E-07<br>CF 0.21903E-03                            | V8 0.78130E 00<br>GS 0.46043E-07<br>CF 0.26254E-03                         | V8 0.78637E 00<br>GS 0.49046E-07<br>CF 0.32066E-03                        | V8 0.79037E 00<br>GS 0.52562E-07<br>CF 0.39728E-03                        | V8 0.79379E 00<br>GS 0.56654E-07<br>CF 0.49808E-03                        | V8 0.79685E 00<br>GS 0.61430E-07<br>CF 0.63133E-03                        | V8 0.79944E 00<br>GS 0.67043E-07<br>CF 0.80887E-03                        | V8 0.80190E 00<br>GS 0.73724E-07                 |
| CV0 0.10332E-00<br>GC 0.11046E-07<br>CVG 0.42496E-00                      | CV0 0.67966E-01<br>GD 0.16050E-06<br>CVG 0.38741E-00                      | CV 0 0.41635E-01<br>GD 0.19484E-05<br>CVG 0.35512E-00                      | CVD 0.21799E-01<br>GD 0.19827E-04<br>CVG 0.32674E-00                     | DV0 0.58698E-02<br>GD 0.17002E-03<br>DVG 0.30278E-00                       | CV 0-0.13823E-01<br>GC 0.12119E-02<br>CVG 0.27153E-00                     | CV Q-0.63761E-01<br>GD 0.65546E-02<br>CVG 0.21832E-00                     | DV 0-0.17751E-00<br>GD 0.22315E-01<br>CVG 0.13674E-00                       | DV 0-0.31035E-00<br>GD 0.45986E-01<br>CVG 0.75098E-01                      | CV C-0.40702E-00<br>GC 0.69654E-01<br>DVG 0.47951E-01                         | CVC-0.46221E-00<br>GC 0.90387E-01<br>CVG 0.30079E-01                       | CV 0-0.48974E-00<br>GC 0.10879E-00<br>CVG 0.27300E-01                     | CV 0-0.50176E 00<br>GD 0.12556E-00<br>CVG 0.19239E-01                     | CV 0-0.50555E 00<br>GD 0.14151E-00<br>DVG 0.19988E-01                     | CVC-0.50469E 00<br>GD 0.15693E-00<br>CVG 0.28337E-01                      | DV0-0.50281E 00<br>GC 0.17187E-00<br>CVG 0.15563E-01                      | CV C-0.49866E-00<br>CD 0.18661E-00               |
| VC 0.25924E 01<br>RB 0.15000E-01<br>VG 0.31483E-00                        | VC 0.26093E 01<br>RB 0.15000E-01<br>VG 0.39597E-00                        | VC 0.26202E 01<br>R8 0.15000E-01<br>VG 0.47015E-00                         | VC 0.26264E 01<br>RB 0.15000E-01<br>VG 0.53826E 00                       | VC 0.26291E 01<br>R8 0.15003E-01<br>VG 0.60087E 00                         | VC 0.26285E 01<br>R2 0.1500nE-01<br>VG 0.65784E 00                        | VC 0.26216E 01<br>R8 0.15000E-01<br>VG 0.70691E 00                        | VC 0.25984E 01<br>RB 0.15000E-01<br>VG 0.74241E 00                          | VC 0.25493E 01<br>R8 0.15000E-01<br>VG 0.76293E 00                         | VC 0.24768E 01<br>R8 0.15000E-01<br>VG 0.77428E 00                            | VC 0.23893E 01<br>R8 0.15000E-01<br>VG 0.78130E 00                         | VC 0.22937E 01<br>R8 0.15000E-01<br>VG 0.78637E 00                        | VC 0.21944E 01<br>R8 0.15000E-01<br>VG 0.79037E 00                        | VC 0.20935E 01<br>R8 0.15000E-01<br>VG 0.79379E 00                        | VC 0.19923E 01<br>RB 0.15000E-01<br>VG 0.79685E 00                        | VC 0.18915E 01<br>R8 0.15000E-01<br>VG 0.79944E 00                        | VC 0.17913E 01<br>RB 0.15000E-01                 |
| 60E-00 DVP 0.43404E-00<br>63E-01 HFE 0.85C00E 02<br>35E 01 CS 0.82064E-04 | 46E-00 DVP 0.39556E-00<br>19E-01 HFE 0.85000E 02<br>16E 01 CS 0.90796E-04 | 18E-00 DVP 0.36241E-00<br>86E-01 4FE 0.85000E 02<br>98E 01 C S 0.10052E-03 | 68E-00 DVP 0.33290E-00<br>05E-02 HFE 0.85000E 02<br>81E 01 5 0.11123E-03 | 48E 00 3VP 0.30457E-00<br>83E-02 HFE 0.85000E 02<br>62E 01 C S 0.12292E-03 | 46E 00 DVP 0.27244E-00<br>63E-01 HFE 0.85000E 02<br>41E 01 CS 0.13556E-03 | 13E 00 DVP 0.21826E-00<br>89E 00 HFE 0.85000E 02<br>18E 01 CS 0.14929E-03 | 96E 00 DVP 0.13886E-00<br>51E 01 HFE 0.85000E 02<br>07E 01 C \$ 0.16540E-03 | 17E 00 DVP 0.78306E-01<br>86E 01 4FE 0.85000E 02<br>39E 01 C S 0.18748E-03 | 34E 00 DVP 0. 46483E-01<br>76E 01 HFE 0. 85000E 02<br>29E 01 C 5 0. 21903E-03 | 99E 00 DVP 0.31358E-01<br>24E 01 HFE 0.35000E 02<br>71E 01 C 5 0.26254E-03 | 39E 00 DVP 0.23186E-01<br>69E 01 HFE 0.85000E 02<br>51E 01 CS 0.32066E-03 | 59E 00 DVP 0.18915E-01<br>45E 01 HFE 0.85000E 02<br>64E 01 CS 0.39728E-03 | C8E 00 DVP 0.15941E-01<br>11E 01 HFE 0.85000E 02<br>04E 01 C5 0.49808E-03 | C9E 00 DVP 0.13610E-01<br>96E 02 HFE 0.85000E 02<br>71E 01 CS 0.63133E-03 | 75E 00 DVP 0.12509E-01<br>96E 02 HFE 0.85000E 02<br>65E 01 CS 0.80887E-03 | 15E 00 DVP 0.11110E-01<br>97E 02 HFE 0.85C00E 02 |
| .263<br>.829<br>.338                                                      | .346<br>.361<br>.361                                                      | .422<br>.171<br>.341                                                       | .491<br>.432<br>.343                                                     | - 555<br>- 489<br>- 345                                                    | . 613<br>. 774<br>. 347                                                   | . 663<br>. 540<br>. 349                                                   | .698<br>.165<br>.351                                                        | .720<br>.318<br>.353                                                       | .732<br>.461<br>.356                                                          | .739<br>.589<br>.359                                                       | .745<br>.702<br>.363                                                      | .749<br>.811<br>.367                                                      | .753<br>.916<br>.372                                                      | .756<br>.101<br>.376                                                      | .758<br>.111<br>.331                                                      | .761                                             |
| V8P 0<br>1E-0<br>CC 0                                                     | V8P 0<br>1E-0<br>CC C                                                     | VBP 0<br>1E-0<br>CC 0                                                      | V8P 0<br>1E-0<br>CC 0                                                    | V8P 0<br>1E-0<br>CC 0                                                      | V8P 0<br>IE-0<br>CC 0                                                     | V8P 0<br>1E-0<br>CC 0                                                     | V8P 0<br>1E-0<br>CC 0                                                       | V8P 0<br>1E-0<br>CC 0                                                      | V8P 0<br>1E-0<br>CC 0                                                         | V8P 0<br>1E-0<br>CC 0                                                      | V8P 0<br>1E-0<br>CC 0                                                     | V8P 0<br>1E-0<br>CC 0                                                     | V8P 0<br>1E-0<br>CC 0                                                     | V8P 0<br>IE-0<br>CC 0                                                     | V8P 0<br>16-0<br>CC 0                                                     | VBP 0<br>IE-0                                    |
| 1                                                                         | 1                                                                         | 10                                                                         |                                                                          | 1                                                                          | 1                                                                         | 1                                                                         | 7                                                                           | =                                                                          | 1                                                                             | 1                                                                          | 1                                                                         | -                                                                         | 1                                                                         | 1                                                                         | 1                                                                         | 10                                               |
| 05                                                                        | 0 2 0                                                                     | 05 0                                                                       | 05 0                                                                     | 05 05                                                                      | OE C                                                                      | 05 0                                                                      | 0 5 0                                                                       | 05 0                                                                       | 05 0                                                                          | 0 E C                                                                      | 0 5 0                                                                     | οĘ C                                                                      | 0 3 0                                                                     | 05 0                                                                      | 0 30                                                                      | OE O                                             |
| 2400                                                                      | 2600                                                                      | 2800                                                                       | 3000                                                                     | 3200                                                                       | 3400                                                                      | 3600                                                                      | 3800                                                                        | 4000                                                                       | 4200                                                                          | 4400                                                                       | 4600                                                                      | 4800                                                                      | 2000                                                                      | 5 200                                                                     | 5400                                                                      | 5600                                             |
| ••                                                                        | •                                                                         | •                                                                          | •0                                                                       | •                                                                          | 0                                                                         | •                                                                         | 0                                                                           | 0                                                                          | 0                                                                             | 0                                                                          | 0                                                                         | 0                                                                         | 0                                                                         | •                                                                         | Ö                                                                         | •0                                               |
| -                                                                         | -                                                                         | -                                                                          | -                                                                        |                                                                            | -                                                                         | -                                                                         | -                                                                           |                                                                            | )                                                                             | 5-m                                                                        | -                                                                         | -                                                                         | -                                                                         | F                                                                         | -                                                                         | (and                                             |

٠

.

\*

٠

60

,

.

ł

| 01<br>02              | 01 02 02                   | 01 02                | 01<br>02                                 | 01<br>02                                | 01<br>02                | 01<br>02                                | 01<br>02             | 01 02                                   | 01 02                                   | 01<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01<br>02                                                                                         | 01<br>02            | 01<br>02                                | <b>01</b><br>02      | 01          |
|-----------------------|----------------------------|----------------------|------------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|----------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|----------------------|-------------|
| 165                   | 000                        | 000<br>85 E          | 00E<br>\$2E                              | 4 9 E                                   | 56E                     | 00 C                                    | 00E<br>72E           | 00E<br>79E                              | 00E<br>86E                              | 00E<br>92E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00E<br>98E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00E<br>02E                                                                                       | 00E<br>07E          | 00E<br>11E                              | 00E<br>15E           | 00E<br>18E  |
| 1287                  | 2500                       | 250(                 | 250(                                     | 129.                                    | 129                     | 250                                     | 129                  | 250<br>129                              | 250<br>129                              | 250<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250<br>130                                                                                       | 250<br>130          | 250<br>130                              | 250<br>130           | 250<br>130  |
| 00                    | 00                         | 00                   | 00                                       | 00                                      | ° °                     | 00                                      | 00                   | 00                                      | 00                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00                                                                                               | 00                  | 00                                      | 00                   | 00          |
| VI N<br>CE            | VI K<br>C E                | VI:<br>CE            | VI N<br>C E                              | VIN<br>CE                               | VI N<br>C E             | VIN<br>CE                               | VI A<br>CE           | VI N<br>CE                              | VI N<br>CE                              | VI N<br>CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VI N<br>CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VI N<br>C E                                                                                      | VI N<br>CE          | VI N<br>CE                              | VIN<br>CE            | VI N<br>C E |
| 05                    | 02                         | - 02                 | -02                                      | -02                                     | 02                      | - 03                                    | - 03                 | -03                                     | - 02 02                                 | - 02<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 02<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.2                                                                                            | -02<br>02           | - 02<br>02                              | -01                  | -02         |
| 25E-                  | - U00<br>000<br>000        | 53E-                 | 29E-<br>59Ê                              | 65E-                                    | 52E-<br>89E             | 386-                                    | 1 5E -               | 09E-<br>63E                             | 49E                                     | 98E-<br>69E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36E<br>66E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96E.<br>37E                                                                                      | 76E.<br>18E         | 12E.<br>74E                             | 77E.<br>45E          | 535<br>856  |
| 535(<br>885           | 575(                       |                      | 264                                      | 175                                     | 124<br>902              | 706                                     | 783                  | 751<br>906                              | 669<br>9 <b>0</b> 7                     | 127<br>908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 942<br>909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120<br>910                                                                                       | 967<br>911          | 131<br>911                              | 106<br>912           | 174<br>912  |
| 00                    | 00                         | 00                   | ပီဝိ                                     | ° ° °                                   | 00                      | 00                                      | 00                   | 00                                      | 00                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00                                                                                               | 00                  | 00                                      | 00                   | 00          |
| 0 V3<br>C D           | 0.0000                     | 0.0<br>C D           | 0 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 V B<br>C D                            | 670<br>0 0              | 0 < 0                                   | 0 < 0                | 0 \ 0                                   | 0 2 0                                   | 0 \ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 \ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 Å Å                                                                                            | 0 \ 0               | 0 A B                                   | 013                  | 0 10        |
| 001                   | 00-01-01                   | 00-                  | - 00                                     | 00<br>00<br>02                          | 00<br>02<br>02          | 000                                     | 00<br>01<br>02       | 00<br>01<br>02                          | 00<br>01<br>02                          | 00<br>01<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00<br>01<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00<br>01<br>02                                                                                   | 00<br>01<br>02      | 00<br>01<br>02                          | 00<br>01<br>02       | 00          |
| 16E<br>26E-<br>85E    | 785<br>326                 | 340<br>255<br>74E    | 05E<br>76E<br>36E                        | 4.8E<br>5.4E<br>4.9E                    | 78E<br>12E<br>06E       | 998<br>116<br>405                       | 15E<br>61E<br>31E    | 27E<br>14E<br>98E                       | 50E<br>05E<br>10E                       | 4.6E<br>0.5E<br>4.6E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58E<br>33E<br>56E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58E<br>80E<br>87E                                                                                | 68E<br>51E<br>35E   | 66E<br>45E<br>79E                       | 77E<br>67E<br>27E    | 69E<br>22E  |
| 826<br>298<br>296     | 827<br>912<br>586          | 828<br>203<br>101    | 829<br>354<br>155                        | 829<br>528<br>215                       | 829<br>711<br>279       | 829<br>895<br>346                       | 830<br>107<br>410    | 830<br>125<br>475                       | 830<br>142<br>541                       | 830<br>158<br>604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E30<br>173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 830<br>187<br>726                                                                                | 830<br>201<br>785   | 830<br>214<br>841                       | 830<br>226<br>896    | 830         |
| 000                   | 000                        | 000                  | 000                                      | 000                                     | 000                     | 000                                     | 000                  | 000                                     | 000                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                                              | 000                 | 000                                     | 000                  | 00          |
| C L C R               | C F C                      | C F C                | C F C                                    | 2 0 0<br>0 0 0<br>0 0                   | 200                     | N C C C                                 | 200                  | 200                                     | 200                                     | C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                              | 200                 | 200                                     | 200                  | 200         |
| -00-                  | -00                        | -00                  | -0 <b>1</b><br>-00                       | -01<br>-02                              | -01<br>-00<br>-02       | -01<br>-03                              | -01<br>-00<br>-03    | -01<br>-00<br>-03                       | -01<br>-02                              | -01<br>-00<br>-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -01<br>-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -01<br>-00                                                                                       | -01<br>-00          | -01<br>-00<br>-02                       | -01<br>-01           | -02         |
| 37E                   | 396<br>396<br>006          | 45E<br>53E           | 978<br>936<br>296                        | 18E<br>38E<br>65E                       | 836<br>906              | 136                                     | 2116<br>3986<br>3986 | 928<br>476                              | 71E<br>95E                              | 799E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 164E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 5 5 E                                                                                          | 222<br>386<br>766   | 866<br>616<br>126                       | 936                  | 393E        |
| 262                   | 390                        | 134<br>391<br>405    | 940<br>391<br>264                        | 392                                     | 520<br>392              | 410<br>393                              | 333                  | 276                                     | 231                                     | 197<br>395<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149<br>396<br>120                                                                                | 132                 | 116                                     | 396                  | 333         |
| 000                   | 000                        | 000                  |                                          | 000                                     | 000                     |                                         | 000                  | 000                                     | 000                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                                              | 000                 | 000                                     | 000                  | 00          |
| 202                   | 202                        | 0 ° C C              | 202                                      | 2 ° C                                   | 0000                    | 0 ° C C                                 | 0 ° C                | 202                                     | C C C                                   | 0 ° C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0                                                                                            | 202                 | 2020                                    | 2020                 | 0 0         |
| -01-00                | -01-00                     | -00                  | -01                                      | -00                                     | -00<br>-01              | -01                                     | -00<br>-01           | -00                                     | -01                                     | -00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -00                                                                                              | -01                 | -01                                     | -00                  | -00         |
| 82<br>000<br>16<br>16 | 21E<br>000E<br>740E        | 7696<br>0006         | 0001                                     | 006E<br>000E                            | 111<br>000<br>078<br>6  | 1966<br>1995                            | 0486<br>0006<br>0156 | 43E<br>000E<br>027E                     | 39E<br>000<br>50E                       | 10E<br>000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142E<br>000E<br>058E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 322E<br>000E<br>058E                                                                             | 416<br>000<br>008   | 293E                                    | 776<br>0006          | 3756        |
| 325                   | 280<br>150<br>827          | 241<br>150<br>826    | 150                                      | 203<br>150<br>825                       | 197                     | 187                                     | 150<br>150<br>830    | 174                                     | 169                                     | 1501150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 156<br>156<br>830                                                                                | 1551                | 152                                     | 150                  | 148         |
| 000<br>000            | 000<br>u m 0               | 000<br>U m u         | 000<br>U © 0                             | 000<br>Uno                              | 000<br>000              | 000<br>U @ 0                            | 000<br>U 8 0         | 000<br>000                              | 000<br>w @ 0                            | 000<br>U m 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000<br>U m 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000<br>0 ± 0                                                                                     | 000<br>U © 0        | 000<br>U 8 0                            | 000<br>0 ± 0         | ၀၀<br>ပ ထ   |
| > ~ >                 | > ~ >                      | > < >                | > ~ >                                    | > ~ >                                   | > ~ >                   | > ~ >                                   | > ~ >                | > ~ >                                   | > ~ >                                   | > & >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | > ~ >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > ~ >                                                                                            | > ~ >               | > ~ >                                   | > ~ >                | > 2         |
| -02<br>02<br>01       | -03<br>02<br>01            | -03<br>02<br>02      | -03<br>02<br>02                          | -03<br>02<br>02                         | -03<br>02<br>02         | -03<br>02<br>02                         | -03                  | -03<br>02<br>02                         | -04<br>02<br>02                         | -03<br>02<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -04<br>02<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -03<br>02<br>03                                                                                  | -05<br>02<br>03     | -04<br>02<br>03                         | -04<br>02<br>03      | -03         |
| 464E<br>000E<br>293E  | 757E<br>000E<br>782E       | 492E<br>000E<br>055E | 5876<br>0006<br>7776                     | 000E<br>583E                            | 102E<br>000E<br>941E    | 055E                                    | 887E                 | 216E<br>000E<br>772E                    | 962E<br>000E<br>202E                    | 233E<br>000E<br>318E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 775E<br>000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 587E<br>000E<br>377E                                                                             | 390E<br>000E        | 159E                                    | 350E<br>000E<br>760E | 276E        |
| .16<br>85<br>33       | . 85<br>. 70               | -22,<br>85(          | 15<br>85<br>20                           | 18]<br>85(                              | 20]                     | 200                                     | 188<br>856           | 172<br>85(                              | 78                                      | 132<br>856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.<br>85(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100<br>85(                                                                                       | 688<br>856          | 831<br>85(                              | 37<br>85(<br>12      | 850         |
| 0 0 0<br>0 0          | с о о о<br>N ш л           | 0 0 0<br>0 0 0       | ο ο ο ο                                  | o o o o<br>N lu J                       | 000                     | 000                                     | 000<br>A U V         | ο ο ο ο<br>ω ω ω                        | ο ο ο ο<br>α ω ν                        | ο<br>ο<br>ο<br>ο<br>ο<br>ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000<br>4 w V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | οοο<br>νμω                                                                                       | 0 0 0<br>0 0 0      | 000<br>000                              | S 0 0                | 00<br>4 m   |
| A H U.                | 0 F 1                      | N H L                | HE O                                     | ° H °                                   | 7 H C                   | N H C                                   | 2 H C                | NP 0 V                                  | > L O                                   | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > L ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | > H O                                                                                            | N H D               | 2 H U                                   | > 4 0                | N L         |
| 000                   | 0000                       | 0100                 | 000                                      | 000000000000000000000000000000000000000 | 000                     | 000000000000000000000000000000000000000 | 00000                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>02<br>01                                                                                   | 00200               | 00<br>02<br>01                          | 0020010              | 000         |
| 246E<br>967E<br>787E  | 2 6 9E<br>1 6 0E<br>9 3 2E | 2505                 | 2 806<br>3 1 16<br>1 3 86                | 284E<br>372E<br>252E                    | 225                     | 292E<br>68E<br>382E                     | 96E<br>02E           | 99E                                     | 802E<br>83E<br>92E                      | 06E<br>08E<br>392E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 C B E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 E 0 4 1 | 57E<br>564E                                                                                      | 813E<br>85E<br>348E | 315E<br>97E<br>64E                      | 17E<br>722E<br>335E  | 19E         |
| - 25                  | - 78<br>- 26               | 78.26                | 78<br>26<br>64                           | 265                                     | - 782<br>- 264<br>- 661 | - 26/                                   | - 78<br>- 26<br>- 67 | 782                                     | 78<br>26<br>68                          | 783<br>266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78:<br>266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 783<br>266                                                                                       | 783                 | 701                                     | 78<br>26<br>70       | 78.         |
| 000                   | 000                        | 000                  | 000                                      |                                         | 000                     |                                         | 000                  |                                         | 000                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | 000                 | 000                                     | 000                  | 00          |
| <pre>&lt; C</pre>     | <pre></pre>                | LB<br>C              | C I <                                    | 1<br>C                                  | 2 - 0                   | C II                                    | 0 <b>1</b> 0         | 0 10                                    | C I I                                   | <ul><li>28</li><li>28</li><li>29</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20</li><li>20&lt;</li></ul> | 20 × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | C 18                | 2 N N N N N N N N N N N N N N N N N N N | <pre>C II</pre>      | VB          |
| 01                    | 10                         | 0 1                  | 0 1                                      | 0 1                                     | . 1                     | 02                                      | 20                   | 02                                      | 02                                      | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02                                                                                               | 02                  | 02                                      | 02                   | 02          |
| ш                     | ш<br>0                     | 30                   | 0 0                                      | 0.6                                     | OE                      | OE                                      | ш                    | 0 E                                     | ОШ                                      | 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BO E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ы                                                                                                | о ш<br>О            | OE OE                                   | U U                  | OE OE       |
| 000                   | 200                        | 005                  | 009                                      | 800                                     | 000                     | 020                                     | 040                  | 090                                     | 080                                     | 100(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140(                                                                                             | 1600                | 180(                                    | 2000                 | 2200        |
| 0.9                   | 0.9                        | 0.9                  | 0.9                                      | 6.0                                     | 0 ° I                   | 0.1                                     | 0.1                  | 0.1                                     | 0.1                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                              | 0.1                 | 0.1                                     | 0.1                  | 0.1         |
| -                     | +                          | -                    | -                                        | -                                       | -                       | -                                       | jun .                |                                         | +                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                | +                   | +                                       | -                    | -           |

.

.

|                                                                                                  |                                         |                     |                      |                                                                      |                               | *                                                                  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                         |                                         |                      |                                                                             |                                                                                             |                                       |              |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|----------------------|----------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|--------------|
| 01<br>02                                                                                         | 01<br>02                                | 01 02               | 01<br>02             | 010                                                                  | 01.02                         | 01 02                                                              | 01<br>02                                                           | 01<br>02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 02                                                                     | 01<br>02                                | 01<br>02                                | 01<br>02             | 01<br>02                                                                    | 01<br>02                                                                                    | 01<br>02                              | 01<br>02     |
| 00E                                                                                              | 900<br>59E                              | 50E                 | 51 m                 | 00E<br>52E                                                           | 52E                           | 00E<br>53E                                                         | 00E<br>53E                                                         | 00E<br>54E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00E<br>54E                                                                | 00E<br>55E                              | 00E<br>55E                              | 00E<br>56E           | 56E                                                                         | 00E<br>57E                                                                                  | 00E<br>57E                            | 00E<br>58E   |
| 130                                                                                              | 250<br>130                              | 250                 | 250<br>130           | 250                                                                  | 130                           | 130                                                                | 130                                                                | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                                                                       | 130                                     | 130                                     | 130                  | 250                                                                         | 130                                                                                         | 130                                   | 130          |
| 00                                                                                               | 00                                      | ° °                 | 00                   | °°                                                                   | 00<br>20 UI                   | oo<br>zw                                                           | oo<br>zw                                                           | 00<br>2 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200<br>200                                                                | оо<br>Х ш                               | оо<br>х ш                               | оо<br>Z ш            | оо<br>х ш                                                                   | оо<br>х ш`                                                                                  | 00<br>∡ ш                             | 00<br>2 m    |
| VI N<br>CE                                                                                       | VI N<br>CE                              | VI N<br>CE          | VI N<br>CE           | VI ?                                                                 | CE<br>CE                      | VI V<br>CE                                                         | V1 P<br>CE                                                         | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VI I<br>CE                                                                | CE                                      | CE CE                                   | CE<br>CE             | VI V<br>CB                                                                  | VI V<br>CB                                                                                  | CE                                    | VII          |
| -01                                                                                              | -02                                     | - 01<br>02          | - 02                 | - CI<br>02                                                           | - 02 02                       | -01                                                                | - 02<br>02                                                         | -01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 02                                                                      | -01<br>02                               | -02                                     | -01<br>02            | -02<br>02                                                                   | -01                                                                                         | - 02<br>02                            | +01<br>02    |
| 855                                                                                              | 31E<br>190E                             | 132E                | 977E<br>316E         | 3475<br>0376                                                         | 01.6E<br>3338                 | 361E<br>358E                                                       | 009E                                                               | 350E<br>377E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95 95<br>87 6E                                                            | 348E<br>893E                            | 923E<br>892E                            | 339E                 | 869E                                                                        | 324E<br>921E                                                                                | 801E<br>918E                          | 305E         |
| 133                                                                                              | 915                                     | .916                | - 48<br>- 918        | .13<br>.91                                                           | . 49                          | . 13                                                               | 16.                                                                | . 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 48<br>- 91                                                              | • 13                                    | - 4 S                                   | . 13                 | - 48<br>- 91                                                                | . 13                                                                                        | . 91                                  | .13          |
| 00<br>80                                                                                         | 0 0<br>0 0                              | 80                  | 800                  | 0 0<br>0 0                                                           | 0 0                           | 8/0                                                                | 0 0                                                                | 8/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0                                                                       | 8/0                                     | 8/0                                     | 8/0                  | 0 0                                                                         | 8/0<br>0 0                                                                                  | 80                                    | 8/0          |
| 20                                                                                               | 20                                      | 20                  | 010                  | 046                                                                  | 3 0                           | 010                                                                | 010                                                                | 0 I 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 T P                                                                     | 0 7 6                                   | 010                                     | 010                  | 016                                                                         | 3 0                                                                                         | 010                                   | 10           |
| 000                                                                                              | 000                                     | 000                 | 000<br>шшш           | 000                                                                  | 000<br>                       | 000<br>www                                                         | 000                                                                | 000<br>www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000<br>1000                                                               | 000                                     | 000<br>                                 | 000<br>              |                                                                             | 000<br>uuuu                                                                                 | 000<br>000                            | оо<br>шш     |
| 107<br>892<br>591                                                                                | 109298                                  | 108                 | 1111<br>046<br>237   | 1110<br>390<br>431                                                   | 1112                          | 1110                                                               | 1112<br>1312<br>958                                                | 1111587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1113<br>1847<br>1267                                                      | 8112<br>1094<br>1410                    | 3114<br>326<br>545                      | 1113<br>1547<br>1674 | 115                                                                         | 1113<br>1953                                                                                | 3115<br>1139<br>3022                  | 1114         |
| 0.83                                                                                             | 0.83                                    | 0.83                | 0.83                 | 0.31                                                                 | 8.0<br>                       | 0.36                                                               | 0.36                                                               | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8                                                                       | 0.39                                    | 0.8                                     | 0.8                  | 0.10                                                                        | 0.11                                                                                        | 0.830.40                              | 0 • 8 C      |
| S S S S S S S S S S S S S S S S S S S                                                            | C L S C                                 | C L S               | C L C C              | C L R                                                                | C F S S                       | C C C C                                                            | C C S S                                                            | C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C C C C                                                                   | C C C                                   | 0 V U U U                               | C C C                | C C C C C C C C C C C C C C C C C C C                                       | C C C B                                                                                     | C C C C                               | CS<br>CS     |
| 000                                                                                              | 002                                     | 01                  | 502                  | 0 1 0 0 7                                                            | 005                           | 000                                                                | 202                                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                       | 0 0 0 0                                 | N 0 N                                   | 000                  | 202                                                                         | 002                                                                                         | 5 0 M                                 | ۳ O          |
| 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 4 E - 0                                 | 9 H - 0             | 7 E - 0              | 2E-0<br>9E-0<br>7E-0                                                 | 6 П – (<br>6 П – (<br>6 П – ( | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 4 E - 0                                                            | 5 m − 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 E = 0                                                                   | 0 U U U U U U U U U U U U U U U U U U U | 9 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 H H H              | 8 H - 6                                                                     | 6 Е – (<br>4 Е – (<br>4 Е – (                                                               | 8 E - 0                               | 8 E - (      |
| 425<br>991<br>330                                                                                | 202<br>992<br>893                       | 135<br>992<br>333   | 933<br>993<br>897    | 887<br>993<br>334                                                    | 703<br>994<br>901             | 674<br>994<br>336                                                  | 505<br>994<br>900                                                  | 490<br>995<br>336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 333<br>995<br>895                                                         | 331<br>996<br>334                       | 184<br>996<br>892                       | 192<br>996<br>333    | 054<br>996<br>886                                                           | 070<br>997<br>332                                                                           | 411<br>997<br>880                     | 542          |
| 0.3                                                                                              | 0.3                                     | 0.2                 | 0.3<br>0.3<br>0.4    | 0.1<br>0.3<br>0.1                                                    | 0.1<br>0.3                    | 0.1                                                                | 0.4<br>0.3                                                         | 0.1<br>0.3<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0 - 1<br>0 - 3<br>0 - 4                                                  | -0.1<br>0.3<br>0.1                      | 0.1<br>0.3<br>0.4                       | 0.1                  | 0.3                                                                         | 0.1                                                                                         | 0-0<br>0-3                            | 0.0          |
| 070                                                                                              | 000                                     | 000                 | 000                  | -<br>200<br>200<br>200                                               | 0,00                          | 070-070                                                            | 0,00                                                               | 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -000<br>000<br>000                                                        |                                         | 0000                                    |                      |                                                                             | ပ်ပပ္ပေ                                                                                     |                                       | 070          |
| 0010                                                                                             | 0010                                    | 0000                | 0000                 | 010                                                                  | 000                           | 000                                                                | 000                                                                | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                      | 000                                     | 850                                     | 010                  | 0.00                                                                        | 8 <b>-</b> 8                                                                                | 000                                   | 000          |
| 5 E-<br>0 E-<br>7 E                                                                              | 1<br>0<br>9<br>6<br>                    | 9 E-<br>0 E-<br>8 E | 06-<br>06-           | 0.00                                                                 | 9 E-<br>0 E-<br>2 E           | 7E-<br>0E-                                                         | 2 E                                                                | 8 E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36-36-                                                                    | 16 E-                                   | 4 m m                                   | 3 m - 1 m -          | 5 m -                                                                       |                                                                                             | 2E-<br>3E-                            | 14 E-        |
| 1324<br>1500<br>3310                                                                             | 1320<br>1500<br>3310                    | 1315                | 1312<br>1500<br>3311 | 1306<br>1500<br>3311                                                 | 1304                          | 1301                                                               | 12961500                                                           | 1295<br>1500<br>3311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1293                                                                      | 1290<br>1500<br>3311                    | 12861500                                | 1286<br>1500<br>8311 | 1284                                                                        | 1282<br>1500<br>8311                                                                        | 12801500                              | 1278         |
| 000                                                                                              | 000                                     | 000                 | 000                  | 000                                                                  | 000                           | 000                                                                | 000                                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                       | 000                                     | 000                                     | 000                  | 000                                                                         | 000                                                                                         | 000                                   | •••          |
| A C C C C C C C C C C C C C C C C C C C                                                          | V C<br>R B<br>V G                       | V C<br>RB<br>VG     | RB<br>VG<br>VG       | 2 8 8<br>7 8 8<br>7 8<br>8 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 | R 8<br>R 8<br>V G             | 2 C<br>8 B<br>7 C<br>7 C                                           | A B<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B | P C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S C P S | 2 C<br>7 B<br>7 B<br>7 B<br>7 B<br>7 B<br>7 B<br>7 B<br>7 B<br>7 B<br>7 B | R B<br>R B<br>VG                        | V C<br>R B<br>V C                       | V C<br>R B<br>V G    | 2 X C<br>X 8<br>X 8<br>X 8<br>X 8<br>X 8<br>X 8<br>X 8<br>X 8<br>X 8<br>X 8 | 2 X C<br>X 8<br>X 8<br>X 8                                                                  | R R R R R R R R R R R R R R R R R R R | V C<br>R B   |
| -03<br>03                                                                                        | -04<br>03                               | -03<br>03<br>03     | -04<br>02<br>03      | -03<br>03<br>03                                                      | -04<br>02<br>03               | -03<br>02<br>03                                                    | -04<br>02<br>03                                                    | -03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -04<br>02<br>03                                                           | -03                                     | -04<br>02<br>03                         | -03<br>03<br>03      | -04<br>02<br>03                                                             | -03<br>02<br>03                                                                             | -04<br>02<br>03                       | -03          |
| 1 6E<br>100E<br>79E                                                                              | 14 4 E<br>10 0 E<br>13 0 E              | 1 0E<br>000E<br>66E | 0.8E<br>0.0E<br>3.7E | 64E<br>00E<br>94E                                                    | 07E<br>00E<br>38E             | 80E<br>10E                                                         | 21E<br>00E<br>90E                                                  | 47E<br>99E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71E<br>00E<br>97E                                                         | 94E<br>100E<br>86E                      | 4 0E<br>00E<br>6 4E                     | 06E<br>00E<br>33E    | 37E<br>00E<br>94E                                                           | 03E<br>00E<br>147E                                                                          | 55E<br>100E                           | 89E          |
| 133<br>850<br>217                                                                                | 358<br>850<br>220                       | 136<br>850<br>223   | 384<br>850<br>226    | 138<br>850<br>228                                                    | 407<br>850<br>231             | 140<br>850<br>233                                                  | 425<br>850<br>235                                                  | 142<br>850<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 441<br>850<br>239                                                         | 143<br>850<br>241                       | 455<br>850<br>243                       | 145<br>850<br>245    | 467<br>850<br>246                                                           | 146<br>850<br>248                                                                           | 478<br>850<br>249                     | 146<br>850   |
| о.<br>О.<br>О.                                                                                   | о<br>0<br>0<br>0<br>0                   | 0°0°                | 0°0°                 | S 0.                                                                 | S 0.                          | S 0.                                                               | 0°0°                                                               | 0°-0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S 0.                                                                      | 0°-0°-                                  | S 0.                                    | S 0.                 | 00°-                                                                        | S 0.0                                                                                       | S 0.                                  | 0.0<br>- U   |
| N H D                                                                                            | HFH                                     | N H H               | N LA                 | HF E                                                                 | HF D                          | HFB                                                                | HFR                                                                | HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HF                                                                        | U C H                                   | N H H                                   | HF                   | P H H                                                                       | N H C                                                                                       | N H D                                 | D VI         |
| 000000000000000000000000000000000000000                                                          | 000000000000000000000000000000000000000 | 00<br>02<br>01      | 00<br>02<br>01       | 00<br>02<br>01                                                       | 00<br>02<br>01                | 000000000000000000000000000000000000000                            | 00<br>02<br>01                                                     | 00<br>02<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00<br>02<br>01                                                            | 00                                      | 000000000000000000000000000000000000000 | 00<br>02<br>01       | 00<br>02<br>01                                                              | 00<br>02<br>01                                                                              | 00<br>02<br>01                        | 00000        |
| 333E<br>374E<br>374E                                                                             | 334E<br>369E<br>470E                    | 34E<br>32E<br>521E  | 34E<br>376E<br>376E  | 335E<br>325E<br>325E                                                 | 335E<br>83E<br>58E            | 36E<br>34E<br>394E                                                 | 36E<br>388E<br>36E                                                 | 36E<br>99E<br>72E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36E<br>336E<br>393E<br>305E                                               | 37E<br>004E<br>337E                     | 37E<br>397E<br>366E                     | 37E<br>908E<br>395E  | 337E<br>001E<br>021E                                                        | 337E<br>911E<br>946E                                                                        | 338E<br>964E<br>969E                  | 338E<br>914E |
| - 78                                                                                             | - 78.                                   | 78.26               | -78                  | -78<br>-26                                                           | -726                          | 78.                                                                | 78.268                                                             | - 78<br>- 266<br>- 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 783                                                                       | -783<br>-269                            | 783                                     | - 78                 | 78.26                                                                       | 78.                                                                                         | -78                                   | .78.         |
| c - 0<br>c - 0                                                                                   | C - 0 0                                 | 000<br>Cu-0         | 000                  | 2 0 0<br>C 0                                                         | 000                           | C - 0 0                                                            | 000                                                                | P 0<br>E 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                                                       | C 000                                   | C 00 0                                  | 000                  | C - 0<br>C - 0                                                              | 000                                                                                         | 000                                   | P 0          |
| 2 10                                                                                             | 28<br>CC                                | 0 <b>~</b> 0        | с - В<br>С           | 2 N N                                                                | C N                           | C. VB                                                              | C . 8                                                              | C I<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C.18                                                                      | C.18                                    | C                                       | <pre></pre>          | 2 × 0                                                                       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | < < < < < < < < < < < < < < < < < < < | 8 V<br>8     |
| 02                                                                                               | 02                                      | 02                  | 02                   | 02                                                                   | 02                            | 02                                                                 | 02                                                                 | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02                                                                        | 02                                      | 02                                      | 02                   | 02                                                                          | 02                                                                                          | 02                                    | 02           |
| Ш<br>О                                                                                           | ш                                       | ы<br>О              | ш                    | ОE                                                                   | DE                            | ы<br>ОШ                                                            | 9 .                                                                | 9 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                                       | 9 H O H                                 | шo                                      | 00                   | 0 E                                                                         | ОE                                                                                          | ΟE                                    | οE           |
| 1560                                                                                             | 1580                                    | 600                 | 620                  | 640                                                                  | 660                           | 680                                                                | 700                                                                | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 740                                                                       | 760                                     | 780                                     | 800                  | 820                                                                         | 840                                                                                         | 860                                   | 880          |
| .0                                                                                               | 0                                       | 0.1                 | 0.1                  | 0.1                                                                  | 0.1                           | 0.1                                                                | 0.1                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                       | 0.1                                     | 0.1                                     | 0.1                  | 0.1                                                                         | 0.1                                                                                         | 0•1                                   | 0.1          |
| )-                                                                                               | )m                                      | -                   | per l                | -                                                                    | -                             | -                                                                  | ⊨                                                                  | ter (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                         | -                                       | -                                       | -                    | -                                                                           | -                                                                                           | -                                     | -            |

# A NONLINEAR TRANSISTOR MODEL AND DEVICE CHARACTERIZATION

by

#### PARVIZ KIANKHOOY-FARD

B. S., Missouri University, 1963

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

An approach to transistor transient and steady state prediction for large signal, small signal, and both large signal and small signal simultaneously is described which uses a nonlinear equivalent circuit model. The model is based on the Eber and Moll's equations (intrinsic model). The model is modified by introducing extrinsic elements. The model is further completed by further investigation of collector junction under forward biased condition. A comparison of experimental and predicted results are presented for a saturated inverter circuit, an emitter-follower, and a three stage d-c coupled amplifier. The method of device characterization is outlined in detail. A sensitivity study is performed, and the relative sensitivity of the device parameter is pointed out. Theoretical results are obtained from numerics solution of a system of nonlinear differential equations describing the model and circuit diagram. The nature of the errors in the program are pointed out. The capability of the model to linear amplifier design is discussed and an integrated switching and linear amplifier specification is proposed. A subroutine program is proposed, which will enable the circuit designer to handle the transistor as one would have handled such circuit elements as the resistor, or the capacitor in a circuit without much knowledge about the material of the resistor or the capacitor.