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Abstract 

Sweet Sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum grown primarily 

for its sugar-rich stalks. Because of its high fermentable sugar content, the crop is widely 

recognized as an alternative feedstock source for bio-fuel production. The extent to which stalk 

sugar accumulation occurs may be determined by several factors including the sink size. Grain is 

the most important sink in sorghum and other grain crops. Three experiments were conducted in 

this study to determine the extent to which the grain sink can reduce sugar accumulation in the 

stalks, to test and validate a genetic system that allows development of sterile sweet sorghum 

hybrids, and to assess the potential of sugar-rich hybrids to overcome stalk rot diseases.  

The first experiment, based on 22 sweet sorghum genotypes, was undertaken to study the 

effect of eliminating the grain sink (removing the head prior to anthesis) on stalk juice yield, sugar 

accumulation, and biomass. The data showed that the grain sink had a significant effect on all traits 

measured. Elimination of the grain sink significantly increased oBrix % (17.8%), dry biomass 

(27.8%), juice yield (23.9%), and total sugar yield (43.5%).  

The second experiment was aimed at validating the role of A3 genetic male sterility system 

for producing sterile sweet sorghum hybrids. Ten sweet sorghum pollinator lines of variable sugar 

content were selected among the entries included in the previous experiment. The lines were 

crossed to four A1 and A3 cytoplasmic male sterile (CMS) lines using a Design II mating scheme. 

The A3 females did not have effective restorers so that the hybrids were expected to be sterile. The 

parental lines and corresponding hybrids were evaluated for biomass production, oBrix, juice and 

sugar yield using a randomized complete block design. All A3 hybrids were sterile and did not 

produce seed when heads were covered prior to pollination. The effect of grain sink represented 

by the A1 vs. A3 CMS were highly significant for Brix%, biomass, juice, and sugar yield. 



  

Comparison of parents vs. crosses component was highly significant, indicating marked heterosis 

effect for the traits. Both general (GCA) and specific (SCA) combining ability effects were also 

significant for all traits, indicating the role of both additive and dominance genetic effects in the 

inheritance of the characters. 

Earlier studies have shown positive relationships between stalk sugar concentration and 

stalk rot disease resistance in sorghum. Thus, the objective of the third experiment was to study 

the effects of the CMS mediated differential accumulation of stalk sugar on severity of charcoal 

rot disease caused by Macrophomina phaseolina. The experiment provided an opportunity to test 

the effect of variable stalk sugar in the same genetic backgrounds. The data indicated that hybrids 

produced from A3 cytoplasm were more resistant to charcoal rot (7.1cm lesion length) compared 

to those produced from the A1 hybrids (9.5 cm lesion length). The enhanced resistance of hybrids 

with higher sugar yield could have significant agronomic advantage in sugar based bio-fuel 

feedstock production.   
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Abstract 
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for its sugar-rich stalks. Because of its high fermentable sugar content, the crop is widely 

recognized as an alternative feedstock source for bio-fuel production. The extent to which stalk 

sugar accumulation occurs may be determined by several factors including the sink size. Grain is 
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effect of eliminating the grain sink (removing the head prior to anthesis) on stalk juice yield, sugar 

accumulation, and biomass. The data showed that the grain sink had a significant effect on all traits 

measured. Elimination of the grain sink significantly increased oBrix % (17.8%), dry biomass 

(27.8%), juice yield (23.9%), and total sugar yield (43.5%).  

The second experiment was aimed at validating the role of A3 genetic male sterility system 

for producing sterile sweet sorghum hybrids. Ten sweet sorghum pollinator lines of variable sugar 

content were selected among the entries included in the previous experiment. The lines were 

crossed to four A1 and A3 cytoplasmic male sterile (CMS) lines using a Design II mating scheme. 

The A3 females did not have effective restorers so that the hybrids were expected to be sterile. The 

parental lines and corresponding hybrids were evaluated for biomass production, oBrix, juice and 

sugar yield using a randomized complete block design. All A3 hybrids were sterile and did not 

produce seed when heads were covered prior to pollination. The effect of grain sink represented 

by the A1 vs. A3 CMS were highly significant for Brix%, biomass, juice, and sugar yield. 



  

Comparison of parents vs. crosses component was highly significant, indicating marked heterosis 

effect for the traits. Both general (GCA) and specific (SCA) combining ability effects were also 

significant for all traits, indicating the role of both additive and dominance genetic effects in the 

inheritance of the characters. 

Earlier studies have shown positive relationships between stalk sugar concentration and 

stalk rot disease resistance in sorghum. Thus, the objective of the third experiment was to study 

the effects of the CMS mediated differential accumulation of stalk sugar on severity of charcoal 

rot disease caused by Macrophomina phaseolina. The experiment provided an opportunity to test 

the effect of variable stalk sugar in the same genetic backgrounds. The data indicated that hybrids 

produced from A3 cytoplasm were more resistant to charcoal rot (7.1cm lesion length) compared 

to those produced from the A1 hybrids (9.5 cm lesion length). The enhanced resistance of hybrids 

with higher sugar yield could have significant agronomic advantage in sugar based bio-fuel 

feedstock production.  
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General Introduction 

Bioethanol is a renewable and sustainable liquid fuel alternative that is expected to have a 

promising future in tackling today’s global energy crisis and the worsening of the environmental 

quality (Aditiya et el., 2016). It is a biodegradable, non-toxic and renewable resource with a 

potential to minimize particulate emissions in compression ignition engines (Hernandez and 

Kafarov, 2009). United States is the world’s largest producer of bioethanol (Wang et al., 2012). 

US bioethanol is primarily produced by fermenting maize grain (RFA, 2016). However, the 

Renewable Fuel Standard (RFS) requires that 60 billion of the 136 billion liters of renewable 

bioethanol must be produced from non-grain feedstocks by 2022 (EPA, 2015). Therefore, a 

transition to dedicated bioethanol feedstocks will be required to meet the cellulosic bioethanol 

production goals established by the RFS (Rooney et al., 2007). 

Currently, energy crops are mainly represented by perennial grasses such as switchgrass 

(Panicum virgatum L.), sugarcane (Saccharum spp.), sweet/forage sorghum, and miscanthus 

(Miscanthus spp.). Of these, sweet sorghum has emerged as one of the most promising energy 

crops (Jessup, 2009). Sweet sorghum is of a particular interest because of the large volume of 

readily fermentable juice that it can produce. Hunter and Anderson (1997) indicate that sugar 

produced in sweet sorghum has the potential to yield up to 8,000 L ha-1 ethanol or about twice the 

ethanol yield potential of maize grain and 30% greater than the average Brazilian sugarcane 

productivity of 6,000 L ha-1.  

Sweet sorghum accumulates high concentration of fermentable sugar in soluble form in the 

stalks which can be converted directly to ethanol without the additional process required by grains 

to hydrolyze starch before fermentation (Bryan et al., 1981). Sweet sorghums are typically 

characterized by low grain yields, but high biomass production. The tall juicy stalks, contain 10-

http://www.sciencedirect.com/science/article/pii/S1364032117314430?via%3Dihub#bib5
http://www.sciencedirect.com/science/article/pii/S1364032117314430?via%3Dihub#bib6
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25% sugars (mainly sucrose, glucose, and fructose) near the time of grain maturity (Smith and 

Frederiksen, 2000). The extractable juice component of sweet sorghum provides a non-food source 

of readily fermentable sugar comparable to the carbohydrates of maize grain and juice of 

sugarcane, which are food resources currently used for ethanol production. High biomass 

production of sweet sorghum also provides a cellulosic source of ethanol in sufficient quantity to 

further enhance economic opportunities for this crop. Along with the recent worldwide interest in 

sweet sorghum, widespread agronomic evaluations across the United States have demonstrated 

that it has wide adaptability and efficient production potential (Smith et al., 1987; Smith & Buxton, 

1993). 

Sweet sorghum could fit well in areas where sugarcane is currently produced because 

sugarcane is harvested only during a rather short period primarily between November and 

February. Harvest of sweet sorghum should be possible from as early as late July for early cultivars 

until frost hits which is typically after the start of sugarcane harvest (Bradford, 2008). Sweet 

sorghum can extend the season of sugar mill operation each year to enhance economic viability of 

this established industry, while contributing to development of the new biofuels industry. Thus, 

sweet sorghum has been identified as a particularly promising complementary crop for 

diversification of sugarcane croplands. 

Integrating two complimentary bioenergy crops such as sweet sorghum and sugarcane can 

significantly reduce the cost of producing ethanol (Nguyen and Prince, 1996). The cane milling, 

and ethanol distillation facilities are a large portion of the cost to produce ethanol from sugarcane 

or sweet sorghum. Staggering the planting dates of sweet sorghum crops to be harvested before 

and after the sugarcane crop in the same region will extend the length of time an ethanol plant 

operates each year and reduces cost per unit of production. 
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The economic value of sweet sorghum is in the stem and not in the grain as in the grain 

sorghum. Hence, if photosynthates used in grain formation and development could be diverted into 

the stems, stem yield and juice quality may be improved. Sweet sorghum stores starch as the 

principle nonstructural carbohydrate in the grain, but primarily stores sucrose in the stems (Miller 

and Creelman, 1980). It is speculated that the smaller grain yield in sweet sorghum may be due to 

competition between elongating stems and pre-anthesis head development (Willey and Basiime, 

1973). The present investigation was primarily aimed at determining the impact of manipulating 

the sink size on enhancing sugar content in alloplasmic isonuclear sweet sorghum hybrids. The 

specific objectives are: 

1. To study the effect of grain sink on stalk juice yield, sugar accumulation of sweet sorghum 

2. To determine the potential of A3 cytoplasmic male sterility system to eliminate grain formation 

in sweet sorghum hybrids and asses its impact on stalk sugar accumulation and agronomic 

performance.  

3. To determine the combining ability for biofuel traits of selected sweet sorghum pollinators lines 

when tested in the A3 CMS system.  



 4 

Chapter 1 - Review of Literature 

 Origin and domestication 

Sorghum [Sorghum bicolor (L.) Moench] has been under cultivation in arid and semi-arid regions 

of Africa for thousands of years. The north-eastern part of the continent, the Ethio-Sudan region, 

is widely considered as geographical area of origin (Dhillon et al., 2007; Kimber, 2000; Vavilov, 

1951). The wide distribution and high genetic diversity of the crop observed in the continent is an 

indication not only that Africa is the natural home to sorghum but also its inhabitants have 

persistent social and economic attachment to this crop. From its home in eastern Africa, sorghum 

was believed to have spread to other parts of the continent and eventually moved out of Africa to 

further areas such as India, the Middle East, and China either through trade or human migration 

(Doggett, 1970; Kimber, 2000). 

As the very early domesticated sorghum plants were selected and dispersed, genetic 

adaptation and intercrossing followed by selection and continued intercrossing in isolated 

ecosystems gave rise to new and stable sorghum biotypes in almost all places the crop had reached. 

The cultivation of native cultivars and introduction of cultivars evolved in other locations offered 

additional opportunity for intercrossing and selection of new, more adapted cultivars. All these 

domestication events, cultivar evolution, selection, and adaptation were associated with human 

migrations both on land and water throughout Africa, and later to the Middle East and gradually 

further to India some 3,000 years ago (Kimber, 2000). This movement and evolution of new 

cultivars under different environments gave rise to the development of five domesticated sorghum 

races classified into: bicolor, caudatum, guinea, kafir, and durra, based primarily on the 

morphology of the spikelet, seed, and panicle (Smith and Frederiksen, 2000). 
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 Sorghum in North America 

Like elsewhere, the introduction of sorghum to America was linked to human migration and 

movement, in this case the movement of native Africans to North America via slave ships during 

the 17th century. After widespread distribution following the initial introduction, production of 

sorghum slowly dropped off and eventually disappeared (Maunder, 2002). The next introduction 

of grain sorghum into America occurred through California in 1874. Shortly after its introduction, 

the crop became widely distributed in the southern Great Plains and other arid regions of the United 

States perhaps due to its ability to produce more grain than corn under drought conditions (Smith 

and Frederiksen, 2000).  

Like the grain types, sweet sorghums also were introduced to the US from Africa and also 

from China in the 1850s (Murray et al., 2009). Throughout the late 1800s and early 1900s ‘Chinese 

Amber’ and other syrup producing sorghums were more important in the US than grain sorghums, 

producing millions of gallons of syrup annually (Winberry, 1980). In the early decades of the 20th 

century, many sweet sorghum varieties were developed for syrup production and most of these 

varieties exist today. They were developed primarily from six African landraces, MN960 (PI 

534165), MN1054 (PI 152965), MN1056 (PI 152967), MN1060 (PI 152971), and MN1500 (PI 

154844) (Murray et al., 2009).  

 

 Sorghum a multipurpose crop 

 Sorghum as food grain 

Due to its adaptability to dry and high temperature conditions, sorghum is widely cultivated in 

semi-arid regions of the world. In regions where it is produced, it used for making various types 

of foods such as breads, fermented or unfermented porridges, couscous, and fried products (Leder, 
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2004). It is considered as a principal source of energy, protein, vitamins and minerals for millions 

of poor people in Africa and Asia.  In the USA, South America and Australia, the grains are 

predominantly utilized for animal feed and ethanol production, while a small percentage is used in 

the production of snacks and gluten-free foods (Taleon et al., 2012). The grain composition of 

sorghum resembles that of other cereals containing 60-75% carbohydrates, 8-13% protein and 4-

6% lipids, and the grains also are used in the production of alcoholic and nonalcoholic beverages 

such as beer and malts (Adegbola et al., 2013). The stalks are used as source of fuel, building 

material, and fencing structure (Rooney and Waniska, 2000). The stem and foliage are used for 

green chop, fodder, hay, silage, and pasture (Dahlberg et al., 2011). The digestibility of sorghum 

proteins is low, and it is further reduced when wet cooked to process the crop as a food product 

(Axtell et al., 1981; Duodu et al., 2002; Hamaker et al., 1986). The raw digestibility of sorghum 

starch is also the lowest among cereals, because the starch granules are strongly associated with 

endosperm proteins (kafirins), restricting the accessibility of α- amylase to starch (Rooney and 

Pflugfelder, 1986). This is considered as a negative aspect for animal feeding (Serna-Saldivar and 

Rooney, 1995), but may be beneficial for human nutrition since it helps to lower the caloric intake 

(Barros et al., 2012).  

  

 Sorghum as feed grain 

In the developing world, sorghum is grown as major source of food.  In the United States and other 

western countries, sorghum is used primarily as a feed grain for livestock. It has been reported that 

51% of the global sorghum grain is used as feed for livestock, while 49% is for human food and 

other uses (Maunder, 2002). Other reports show 48% of sorghum grain production is fed to 

livestock, and its feed value is comparable to maize (Carter et al.,1989; Dowling et al., 2002).  

http://www.sciencedirect.com/science/article/pii/S073352100800129X#bib3
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Sorghum is also widely grown for forage or silage with the dried leaves and stems making a 

valuable roughage for cattle and horses. The well matured plant can be used as green fodder or 

silage. The kernel of sorghum is somewhat similar to maize, though smaller in size. Whole 

sorghum grains can be given to sheep, pigs and even poultry but are usually ground for cattle 

(McDonald et al., 1987; Carter et al., 1989) 

  

 Sweet Sorghum as biofuel feedstock  

The concern about over reliance on non-renewable fossil fuel and the growing environmental 

pollution associated with greenhouse gas emissions have increased interest to seek and explore 

renewable clean energy sources. Biofuels are among the top clean-energy alternatives on the table. 

Because of its potential to produce massive biomass and the sugar-rich, juicy stalks, sorghum is 

rated as one of the top candidate feedstock sources for biofuel production. All parts of sorghum 

can be converted to biofuels. At present, sorghum grain is among the major feedstocks used in the 

biofuel industry. Furthermore, because of the massive biomass it produces, especially from 

photoperiod sensitive tropical sorghums, and sugar rich juices from certain variants of sorghum 

that can be directly converted to liquid ethanol, sorghum has even more potential as a biomass and 

sugar based bioenergy source. The relatively short growth cycle of the crop and ample knowledge 

of its agronomy may facilitate its production without the need for further study on production 

practices. The emphasis in this particular study is to explore and test genetic systems that can 

maximize sugar and biomass production as biofuel feedstock.  

The name ‘‘sweet sorghum’’ was perhaps coined to distinguish varieties of sorghum with 

high concentration of soluble sugars in the stalk sap or juice compared to grain sorghum, which 

has relatively less sugar and juice in the stalks. Unlike grain sorghum that is produced for its grain, 
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the economic value of sweet sorghum lies in its sugar-rich stalks that are exploited in various ways. 

Apart from the difference in the economically important part of the crop, both grain and sweet 

sorghums belong to the S. bicolor species and can routinely intercrossed and produce fertile 

hybrids just like grain  grain or sweet  sweet type crosses. Sweet sorghum stores starch as the 

principle nonstructural carbohydrate in grain, but primarily stores sucrose in the stalk (Miller and 

Creelman, 1980). In addition to producing carbohydrates that can be easily fermented to ethanol, 

sweet sorghum has high biomass yield, which is composed of as much as 25% to 50% soluble 

carbohydrates with the majority of these sugars within the stalk consisting of fructose, mono-

saccharide glucose, and disaccharide sucrose (Whitfield et al., 2012). The proper stage for greatest 

sugar concentration in sorghum is at physiological maturity. Total sugar and non- reducing sugars 

in the juice increase from flowering to physiological maturity whereas, reducing sugars decrease 

during this period (Channappagoudar et al., 2007). Most of the sugar accumulation in the stalk 

takes place during inflorescence development (McBee and Miller, 1982) and is accelerated after 

flowering (Prasad et al., 2007; Almodares et al., 2008).   

Typical sweet sorghum cultivars can grow to 2.4-3.0 meters (8-10 feet) in height, can 

produce up to 30 Mg ha-1 of dry biomass in favorable environments (Rooney et.al., 2007), and can 

accumulate large amounts of juice in the stalk with a high sugar concentration.  Sugar yield varies 

depending on variety, location, and maturity, but can exceed 4 Mg ha-1 (Morris and McCormick, 

1994). Stalks of sweet sorghum cultivars contain approximately equal quantities of soluble 

(glucose, fructose and sucrose) and insoluble carbohydrates (cellulose and hemicellulose) (Yu et 

al., 2012). Stalk juices contain 13-20% total fermentable sugars and thus provide a better source 

of carbohydrates for the production of fuel ethanol (Woods, 2001). At physiological maturity °Brix 

(soluble content) of juice from sweet sorghum cultivars can range up to 22.85%, depending on 
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variety, but before anthesis the plant sugar concentration is estimated at 12.5% (Prasad et al., 

2007). The types of sugars and their relative proportion within the stalk varies depending on the 

variety. However, as the plant matures, sucrose content typically increases, replacing glucose and 

fructose in the stalk (Whitfield et al., 2012).  

Sweet sorghum is characterized by high photosynthetic efficiency and is one of the most 

promising crops for ethanol production. It can be grown in both temperate and tropical zones in 

both irrigated and non-irrigated environments. Its C4 photosynthetic pathway enables it to achieve 

maximum short-term growth rates (Loomis and Williams, 1963). In addition to sugary juices, 

sweet sorghum also produces enormous biomass, which contributes to the production of both sugar 

and cellulosic biomass. Sweet sorghum can outperform corn in terms of total biomass production 

over short periods. It also has rapid growth and can mature in 3 to 5 months. The top high-yielding 

varieties can produce well over 60 tons per ha (fresh weight of above-ground biomass) in 5 months 

under good agronomic conditions (Mastrorilli et al., 1999). 

Research into sweet sorghum as an ethanol feedstock is relatively novel when compared to 

that of more traditional feedstocks such as corn, sugar beet, or sugarcane (Zegada-Lizarazu and 

Monti, 2012). The fact that sugarcane can be grown only in tropical regions and that the harvestable 

portion of sugar beets is located underground and requires additional energy inputs makes these 

crops less attractive as bioenergy feedstocks. Sweet sorghum on the other hand, is both water and 

nutrient efficient and can be produced within a relatively short period of time compared to other 

bioenergy feedstock sources (Whitfield et al., 2012).  

Swanson and Parker (1931) reported that stalk juiciness in sweet sorghum is controlled by 

a single recessive gene. In agreement with this, Ayyangar et al. (1936) suggested a single dominant 

gene conferring the non-sweet characteristic. Later studies provided support for the presence of 
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multiple genes with additive effects (Li et al., 2004). A recent study indicates that both sugar and 

juice accumulation are the result of additive genes with dominance effects (Godoy and Tesso, 

2013). Another study by Ritter et al. (2007) reported that stalk sugar is controlled by recessive 

genes. It appears that, depending on the background, multiple genes of various modes of action 

control stalk sugar in sweet sorghum.   

Several studies have shown significant differences among genotypes with regards to mean 

sugar content and associated traits. Mean oBrix percent in sorghum ranges between 6.48 and 20.68 

at maturity, and 7.24 to 18.48 at anthesis (Makanda et al., 2009). Juice yield and composition are 

highly variable depending on genotype. Mohite and Sivaraman (1984) reported a composition of 

60% sucrose, 33% glucose and 7% fructose in the sweet sorghum. Prasad et al. (2007) reported 

that sweet sorghum juice is made up of anywhere between 50% to 60% sucrose, 25% to 35% 

glucose, and 7% to 20% fructose. Sugar content in the sorghum stalk is a quantitative character 

determined by polygenes, with the genes controlling lower sugar content appear partially 

dominant, and low heritability of sugar content (Hongtu and Xide, 1989). 

 

 The development of hybrid technology in sorghum 

Hybrid sorghum production utilizes a unique genetic system, cytoplasmic male sterility (CMS), 

that allows commercial production of hybrid seeds. This requires the use of a tri-parent system, 

the cytoplasmic male sterile seed parent line (A-line), the female parent maintainer line (B-line), 

and the fertility restorer line (R-line) used as the pollinator parent in hybrid seed production. 

Sterility is a function of the joint action of sterile cytoplasm and a defective nuclear gene that is 

incapable of restoring male fertility in sterile cytoplasm. Hence, seed production from such plants 

is possible only through the use of maintainer lines (B-lines) that have normal cytoplasm but 
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inactive fertility restorer genes. The functional fertility restoration gene can override the effect of 

sterile cytoplasm and produce functional pollen.  

The CMS first discovered in onion and was exploited for the production of hybrid seeds 

before the trait was even discovered in other crops (Jones, 1943). Since then, CMS has been used 

extensively in a number of other crop species including corn, sorghum, pearl millet, sugar beet, 

sunflower, rice, and carrot. In sorghum, CMS was first discovered in the 1940s. The male sterility 

in CMS plants is considered to be the result of a mutation in a mitochondrial gene that interacts 

with the nuclear fertility restorer gene to result in male sterility. In addition to the CMS, sterility 

is governed by the allelic state of the fertility restorer gene. Genotypes carrying the recessive form 

of the fertility restorer gene that also carry the CMS mutation in the cytoplasm are incapable of 

producing fertile pollen. But when such genotypes occur in normal cytoplasm they will produce 

fertile pollen. Hence, selected lines carrying the recessive form of fertility restorer genes (B-lines) 

are crossed to CMS lines to produce sterile hybrids. Repeated backcrossing with pollen from the 

selected B-line will lead to the development of A-line version of the B-line which is used as a seed 

parent for hybrid production (Hanson and Conde, 1985). 

The mechanism leading to male sterility in CMS lines is not very clear. But it has been 

suggested that normal anther development is prevented through interaction among substances in 

the anther and organelles within plants with altered cytoplasm. Additional regulatory substances 

may be involved to determine the extent of sterility and the environmental effect on the expression 

of sterility (Flavell, 1974). The CMS is associated with the expression of novel, chimeric open 

reading frames (orf’s) encoded by mitochondrial genome. The chimeric orf’s carry recognizable 

segments of essential mitochondrial gene coding novel proteins that interfere with the expression 

of normal gene (Schnable and Wise, 1998; Hanson and Bentolila, 2004). The CMS trait is of 
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special significance in agriculture as it allows large scale production of hybrid seeds. When CMS 

plants are crossed to normal B-lines, the resulting progeny will invariably be male sterile. 

Therefore, restoration of male fertility is essential for obtaining fertile F1 hybrids.  

  

 The three-parent hybrid breeding system in sorghum 

Just as male sterility is crucial for seed production, restoration of fertility is critical for commercial 

production of grains from hybrid crops. Thus, in order to deploy CMS systems to develop 

commercial hybrids, it is essential to have an effective restorer line (Acquaah, 2007). Fertility 

restoration relies on nuclear genes that suppress or compensate for mitochondrial dysfunction and 

restores fertility in CMS plants known as fertility restorer (Rf) genes (Schnable and Wise, 1998). 

Genotypes carrying the wildtype allele for the fertility restorer gene can restore fertility in CMS 

genotypes. The classical method to identify restorer sources is to cross the lines to known CMS 

females and evaluate the hybrids for male fertility. However, there are several sources that are not 

complete restorers known as partial restorers. Hence, breeders need to exercise judgement to 

determine if a given pollinator line is an effective restorer. As with CMS, fertility restorer alleles 

are known for almost all well characterized CMS system, but the mechanism of action has not 

been determined definitely for any of them (Li et al., 1998) apart from attempts in a few studies. 

Schertz (1994) reported fertility restoration is under single or two gene controls or could be 

polygenic based on the type of cytoplasm used. For example, ogu CMS of Raphanus (Ogura, 1968) 

and ‘pol’ CMS of B. napus (Fang and McVetty, 1989) are restored by single nuclear genes. The 

T-cytoplasm of maize, PET cytoplasm of sunflower, and T-cytoplasm of onion need two unlinked 

genes for fertility restoration (Dill et al., 1997). Restorer genes are specific to each CMS system 

and are usually introgressed from the cytoplasm donor species. Hence, restorer genes also are used 
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to differentiate CMS systems within the same species (Bellaoui et al., 1999). Although different 

restorer genes can be found for a given CMS system, a single restorer capable of fertility 

restoration in two systems is very rare (Bhat et al., 2005). In sorghum, fertility restoration depends 

on nuclear backgrounds of both male and female parents (Schertz et al., 1989). The Al cytoplasm 

requires the action of two complementary nuclear male-fertility restorers (RfI and Rf2), similar to 

T-cytoplasmic maize (Klein et al., 2001). Both Rf1 and Rf2 alleles exhibit dominant gene action, 

and a dominant allele at each locus is necessary for fertility restoration (Maunder and Pickett, 

1959).  Unlike the A1, the A3 CMS has not been commercially utilized for hybrid seed production 

because of the low frequency of restorer genes among sorghum lines (Worstell et al., 1984; 

Bosques-Vega et al., 1989). Genetic analyses of fertility restoration in the A3 source of CMS lead 

to the determination that restoration conferred by the male-fertile source of the cytoplasm, 

IS1112C, was through a gametophytic mechanism requiring complementary action of two 

restoring alleles designated Rf3 and Rf4 (Tang et al.,1998; Pring et al., 1999). 

In sorghum there are several CMS systems identified designated as A1, A2, A3, A4, etc., 

and they all have their own unique restorers, except A3 that appears to have only few restorers. 

Commercial exploitation of F1 hybrids in the crop also started after the discovery of the A1 system 

in mid-1950s (Quinby, 1974). This discovery allowed a cost effective way to produce F1 hybrid 

seeds. Once large scale hybrid seed production and marketing became possible, then the hybrid 

technology got accepted rapidly by sorghum producers, and open pollinated cultivars were 

effectively replaced by hybrids in a period of less than ten years (Maunder, 2002).  

The first CMS was discovered, characterized, and described by Stephens and Holland 

(1954) as an interaction between milo/durra cytoplasm and a kafir nuclear background, and was 

designated as A1 CMS.  Sorghums with A1 cytoplasm have small pointed anthers and normal 
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meiosis, but microspores remain uninucleate and abort (Singh and Hadley, 1961). Restorers for 

the A1 CMS are common and are estimated to be in approximately 68% of the sorghum lines from 

the USDA-Texas Agricultural Experiment Station Sorghum Conversion Program (Torres-Cardona 

et al., 1990; Bosques-Vega et al., 1989).  As a result, most global sorghum hybrid production 

depends on the A1 system. The A2 cytoplasm was first reported by Schertz (1977).  The source of 

the original A2 cytoplams is 1S1266C, which is from the Caudatum Nigrican group (Guinea race) 

from Ethiopia. The source of nuclear genes and the maintainer is IS5344C, which is in the 

Roxburghii group (Guinea Race) from India. Miller (1986) and Miller et al. (1992) released the 

seed parents with this CMS system A2Tx632, followed soon after by A2Tx636 and A2Tx637, 

respectively.  Miller (1984) released RTx432 for restoration of fertility in A2 CMS in grain 

sorghum hybrids. Quinby (1980) reported the sterility-inducing cytoplasm from the line IS1112C 

and designated it as A3 cytoplasm. The A2 CMS system has effective restorers and is the major 

CMS system used in commercial hybrid seed production in China. The A3 cytoplasm system was 

introduced with the release of A3Tx398 (Schertz, 1984).  Since that time, several groups have 

released seed parents with A3 CMS (Pedersen and Toy, 1997; Pedersen et al., 1997). Fertility 

restorers of A3 CMS are much rarer; only three (0.7%) were found (SC426, SC835, and SC273) 

in sorghum lines screened by Torres - Cardona et al. (1990) and Bosques Vega et al. (1989).  As a 

result, the A3 CMS system is not being used in commercial hybrid seed production. Others such 

as A4, A5, A6, 9E and KS have been described in sorghum elsewhere (Rao, 1962; Hussaini and 

Rao, 1964; Webster and Singh, 1964; Ross and Hackerott, 1972; Schertz and Ritchey, 1978; 

Worstell et al., 1984).  

The product of a cross between two unrelated parents (F1 generation) is called a “hybrid”. 

Three parents are essential for creating a commercial F1 hybrid using the CMS system, the R line 
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(pollen parent, homozygous for nuclear restorer genes with normal or male fertile cytoplasm), the 

A-line (female or seed parent, homozygous for nuclear non-restorer gene with male-sterile 

cytoplasm), and the B-line (maintainer of A-line, homozygous for nuclear non restorer genes with 

normal cytoplasm) (Acquaah, 2007). All these must be continually available for use in hybrid 

production. The need for three parents comes from the genetic behavior of sorghum and the need 

for a commercially viable seed production system. The male sterile (A) lines lack the Rf gene in 

their nucleus which restores fertility to the sterile cytoplasm. Hence the need for a B-line, which 

is genetically identical to the A-line apart from the fertility, in order to make sure that the A-line 

is continually available. The A-line is the seed parent that is used in the seed production field, and 

F1 hybrid seeds are harvested from this A1 plant. Because it is male sterile, any seed produced on 

the A1 plant must be the result of fertilization by the pollen from the nearby R- plant. The only 

difference between A and B lines is the male sterility inducing cytoplasm, were A has defective 

cytoplasm and B has normal cytoplasm, the two lines are called “iso-cytoplasmic” (Rooney and 

Smith, 2000).  The R-line is the male parent in commercial hybrid seed production. It is genetically 

different from the iso-cytoplasmic A- and B-lines, and it carries the dominant fertility restorer Rf 

gene necessary in the restoration of male fertility in its hybrids with the A-cytoplasm (Acquaah, 

2007). 

 

 Effect of CMS systems on economic sorghum hybrid traits 

The effect of cytoplasmic male sterile systems on the performance of sorghum hybrids has been 

varied. When comparing hybrids possessing A1, A2, and A3 cytoplasm, Maves and Atkins (1988) 

found that A2 and A3 CMS hybrids reached 50% flowering later, had reduced number of seeds 

per panicle, and reduced grain yield compared to A1 CMS hybrids. Secrist and Atkins (1989) 
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found no significant differences in grain yield between A1 and A2 CMS hybrids, but they reported 

a 6% reduction in grain yield in A3 CMS hybrids compared to A1 hybrids.  

Moran and Rooney (2003) have reported that A1, A2, and A3 cytoplasms had no effect on 

plant height and had minimal effect on days to flowering. However, grain yield in the A3 

cytoplasmic background was significantly reduced compared with A1 and A2 cytoplasm-based 

hybrids. Karper and Quinby (1963) reported an increase in stem sugar from 15 to 17% when male-

sterile plants did not set seed vs. when cross-pollination and seed set was allowed. In forage 

sorghum, Pedersen and Toy (1997) tested the effect of A1 and A3 cytoplasm in forage hybrids of 

sorghum × sudangrass, and they found no differences associated to cytoplasm alone for maturity, 

height, and dry matter yield. 

 

 Combining ability and test cross performance 

Combining ability of inbred lines is a determinant of the potential usefulness of an inbred line in 

hybrid combination and the final evaluation of inbred lines can be best determined by hybrid 

performance. The concept of combining ability was developed by Sprague and Tatum (1942) and 

two terms to explain this concept were introduced general and specific combining ability (GCA 

and SCA, respectively). GCA is a measure of additive genetic effects, which are responsive to 

selection. On the other hand, SCA is a measure of the residual, dominance, epistatic, and 

interaction effects of genes (Betran et al., 2003; Aguiar et al., 2003). The knowledge of combining 

ability of the parents and the inheritance of the traits provide useful information to guide selection 

of parents and designing breeding schemes (Makanda et al., 2010; Amiruzzaman et al., 2011).  

Panhwar et al. (2008) defined combining ability as the ability of parents or cultivars to 

combine amongst each other during the process of hybridization so that favorable genes or 
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characters are transmitted to their progenies. On the other hand, Singh et al. (2013) defined 

combining ability as the relative ability of a genotype to transmit its desirable performance to its 

crosses. The inbred lines that display higher value for the trait of interest when crossed to series of 

other lines are said to have favorable combining ability (Qu et al., 2012). Beil and Atkins (1967) 

reported that both general and specific combining ability effects were important in the expression 

of grain yield in Sorghum.  GCA effects were greater than SCA effects for number of panicles per 

plants, weight of 100 seeds, and the number of seeds per panicle. They concluded that in the 

selection of lines for use in hybrid combinations, greatest progress could be made by first selecting 

on the basis of general combining ability of the lines with further selection guided by evaluation 

for specific effects.  

Combining ability for non-grain traits also were explored primarily in forage improvement. 

GCA for four male sterile sorghum varieties was evaluated by crossing with four sudangrass 

cultivars, and the result showed that all the F1 hybrids were taller than the parental female 

genotypes (perhaps three or two dwarf type) with fewer tillers and showed the highest specific 

combining ability for fresh yield (Tarumato, 1970). Desai et al. (1980) reported a good GCA and 

SCA for yield and SCA variance was higher than GCA variance for dry matter and tillers per plant, 

but negative GCA effects were observed for plant height. Makanda et al. (2009) reported 

significant general combining ability (GCA) effect for stem brix and associated traits implying the 

importance of additive gene action. Baocheng et al. (1986) reported GCA effects to be more 

important (10-26 times) than SCA effects. However, these results do not necessarily give general 

indication of the behavior of these genes at different environments and in different genetic 

backgrounds. 
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 The use of the hybrid technology for designing dedicated  

sorghum based biofuel feedstock 

 High biomass feedstock hybrids 

Biomass sorghums are managed to maximize lignocellulosic biomass yields (McKendry, 2002). 

They are tall (3.5–5 m) with dry, pithy stems and produce high dry matter yields. Biomass sorghum 

genotypes are specifically photoperiod sensitive (PS) because delaying maturity has particular 

advantages in the production of biomass (McCollum et al., 2005).  Tall stature and delayed 

flowering favor biomass production, but these traits make seed production difficult, especially in 

long day environments. To produce photoperiod-sensitive seed, seed production can occur in lower 

latitudes where short day lengths and long growing seasons provide flexibility. Alternatively, they 

can be made with a seed production system that enables the production of photoperiod sensitive 

hybrids regardless of day length (Rooney and Aydin, 1999; Mullet et al., 2010). This system 

manipulates the sorghum maturity loci Ma1, Ma5, and Ma6 to use early maturing, photoperiod-

insensitive parental lines to produce photoperiod-sensitive hybrids with delayed flowering. With 

a dominant allele at each of these loci, flowering is delayed until day lengths are ≤12 h 20 min. By 

crossing a photoperiod-insensitive parental line that is homozygous recessive at one of these loci 

with a parent having the opposite allelic configuration (ma1ma1Ma5Ma5ma6 ma6/Ma1 

Ma1ma5ma5Ma6Ma6), photoperiod-sensitive hybrid progeny (Ma1ma1Ma5ma5Ma6ma6) are 

obtained. Besides facilitating seed production, producing biomass sorghums as hybrids also may 

permit the exploitation of high-parent heterosis for increasing biomass yields. High-parent 

heterosis is (HPH) the superior performance of a hybrid compared to its best parent. High-parent 

heterosis is used for increasing yield and has been exploited in many crops for decades (Duvick, 

1999). In sorghum, the existence of HPH for grain yield is well established and extensively used 

http://www.sciencedirect.com.er.lib.k-state.edu/science/article/pii/S0378429014002214?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb&ccp=y#bib0065
http://www.sciencedirect.com.er.lib.k-state.edu/science/article/pii/S0378429014002214?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb&ccp=y#bib0120
http://www.sciencedirect.com.er.lib.k-state.edu/science/article/pii/S0378429014002214?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb#bib0025
http://www.sciencedirect.com.er.lib.k-state.edu/science/article/pii/S0378429014002214?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb#bib0025
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in commercial production (Quinby, 1963; Duvick, 1999; Axtell et al., 1999).  High yields reduce 

the fixed costs per unit of energy, particularly land and transportation costs (Epplin et al., 2007). 

  

 High oBrix sweet sorghum hybrids 

Current opportunities to produce ethanol from sweet sorghum are limited by seed stock of 

acceptable cultivars. Traditional cultivars produce low yields of seed on tall plants that are difficult 

to harvest mechanically.  Utilizing a hybrid production system based on cytoplasmic male sterility, 

well established in grain sorghum and forage sorghum production, would ease the seed production 

limitations of the current sweet sorghum cultivars (Pfeiffer et al., 2010). Female seed parents can 

be selected for greater seed yields, increased sugar concentration in the stalks, and combining 

ability to develop hybrids that produce large amounts of fermentable sugar. In addition to making 

seed production more reliable, sorghum hybrids typically express a moderate level of heterosis. 

However, the expression of heterosis for stem biomass yield may imply an enhancement of total 

sugar yield (Makanda et al., 2009, Pfeiffer et al., 2010). Because sugar yield is higher in sterile 

hybrids due to avoidance of sink competition, the preferential use of the A3 cytoplasm in which 

most male lines do not affect fertility restoration has been suggested (Pfeiffer et al., 2010).  

 

 Heterosis in Sweet sorghum 

Heterosis has been defined as superiority of the F1 hybrid over both of its parents (Singh, 2003). 

The term heterosis was first used and defined by Shull (1952) as the superiority of heterozygous 

genotypes with respect to one or more characters in comparison with the corresponding 

homozygotes. Khan et al. (2009) defined heterosis as the difference between a hybrid mean and 

its two parents. Falconer (1981) showed that heterosis is expressed when some level of dominance 

http://www.sciencedirect.com.er.lib.k-state.edu/science/article/pii/S0378429014002214?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb#bib0110
http://www.sciencedirect.com.er.lib.k-state.edu/science/article/pii/S0378429014002214?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb#bib0035
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is present at a locus affecting the trait. Heterosis can be described as either mid-parent heterosis 

(MPH) and high-parent heterosis (HPH). MPH is the performance of the offspring compared with 

the average performance of the parents, and HPH is the performance of the offspring compared 

with the best parent in the cross (Lamkey and Edwards, 1999). Because the goal is to enhance a 

given trait, high parent heterosis is of high priority to breeders and producers. Superior 

performance of hybrids is only meaningful if it has increased value over the better parent (Blum 

et al., 1977). 

Many studies have been carried out to understand the genetic and physiological basis of 

heterosis.  The most evident expression of heterosis in sorghum was increased vegetative growth 

and higher grain production associated with extreme lateness (Bartel, 1949; Stephens and Quinby, 

1952).  In sweet sorghum, very low high parent heterosis for maturity and brix, and moderate 

values for plant height have been observed.  Greater levels of heterosis were observed for grain 

yield, stalk yield, and juice yield, which was highly variable (Meshram et al., 2005).  A recent 

work by Corn (2009) suggests the involvement of several genes affecting biofuel traits in sweet 

sorghum. In this study with a consisted fixed set of parents, HPH ranged from -24% to 7% for 

stem brix, and 27% to 43% for stem biomass, indicating that multiple genes are responsible for 

these traits.  The wide range of variability of oBrix, percent sucrose, stalk yield, and biomass yield 

indicate the great potential for genetic improvement to produce high yielding sweet sorghum 

hybrids with high sucrose percent (Reddy et al., 2005). The predominant role of non-additive gene 

action for plant height, stalk diameter, brix, stalk yield, and extractable juice yield indicates the 

importance of breeding for heterosis for improving these traits (Reddy et al., 2005; Sankarapandian 

et al., 1994).   
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 Standability and stalk rot in biofuel feedstock sorghums 

Standability or lodging resistance is an important consideration in grain sorghum production. It is 

particularly so in mechanized farming in that lodged plants are not picked up by harvest machines 

and directly account for grain loss. Several factors undermine standability including the inherent 

anatomical characteristics of the plant, plant height and the occurrence of stalk rotting pathogens. 

Stalk rots have been recognized as leading causes of lodging in commercial grain production. 

Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid., the most aggressive type of stalk 

rot in sorghum, is an economically important disease worldwide (Mughogho and Pande, 1983).  It 

is a disease of great destructive potential, especially when vigorous and maturing crops face 

terminal drought stress (Edmunds et al., 1964; Odvody and Dunkle, 1979). Charcoal rot has been 

reported from all the ecologically diverse areas of sorghum culture in the tropics, subtropics, and 

temperate regions (Tarr, 1962).  In the United States, stalk rot is a common problem in the southern 

states and in the central Great Plains extending from Texas to Kansas (Edmunds et al., 1964; 

Edmunds and Zummo, 1975). There are also reports of stalk rot incidence as far north as Nebraska 

(Duncan, 1983). 

Stalk rot is systemic in nature, characterized by degradation of pith tissue near the base of 

the stalk as a result of senescence of the stalk pith cells (Tesso et al., 2012), resulting in reduced 

transportation of nutrients and water, and breakage of the stalk at the zone of infection causing 

lodging (Hundekar and Anahahosur, 1994). The incidence of stalk rot diseases is generally 

associated with high temperature, drought stresses, and senescence (Rosenow and Clark, 1995; 

Tesso et al., 2004) and is more severe when drought and high temperature stress occurs during 

grain development followed by wet, cool conditions near physiological maturity.  
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Little research on stalk rot diseases of sweet sorghum has been reported (Dogget, 1988; 

Zummo, 1986). These diseases pose a serious constraint for yield and quality of sweet sorghum 

juice and bagasse (Funnell-Harris et al., 2014). In particular, stalk rot diseases can reduce biomass 

and are associated with lodging, which reduces the harvestable yield (Bean et al., 2013; Funnell-

Harris et al., 2014; Tesso et al., 2005).
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Chapter 2 - Effect of the grain sink on stalk juice yield, sugar 

accumulation, and biomass of sweet sorghum 

 Abstract 

Sweet Sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum grown primarily 

for its sugar-rich stalks. Because of its high fermentable sugar content, the crop is widely 

recognized as industrial raw material for syrup and table sugar production and as an alternative 

feedstock source in biofuel industries. The extent to which stalk sugar accumulation occurs may 

be determined by several factors including the sink size. Grain is the most important sink in 

sorghum and other grain crops, however, there is opportunity to eliminate the grain sink to facilitate 

sugar accumulation in the hybrids. Before engaging in the development of such system, it is 

important to determine the potential of the grain sink removal on stalk sugar yield. The aim of this 

study was to determine the effect of eliminating the grain sink on biomass, juice yield, and sugar 

accumulation in the stalk. The experiment consisted of two factors. The variety factor consisted of 

22 genotypes of variable sugar content, and the sink factor consisted of a with and without grain 

treatment. The experiment was arranged in split plot with a randomized complete block design 

with variety assigned to the main plot and the sink effect to the subplot units. The study was 

conducted in four replications and three environments 2013, 2014, and 2015 in Manhattan Kansas. 

Treatments without grain sink were applied by manually removing the panicles prior to anthesis. 

At physiological maturity, all plants within a pre-marked one-meter section in each plot were 

harvested and used to determine oBrix, biomass, juice, and sugar yield. Results showed that the 

genotype effect was significant (P  0.01) for all traits. Elimination of the grain sink prior to 
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anthesis significantly (P  0.05) increased oBrix by 8%, biomass yield by 12%, sugar yield by 

17%, and total sugar by more than 20%, but had minimal effect on juice yield.  

Key words: Sorghum bicolor, fermentable sugar, grain sink, Brix, biomass yield, physiological 

maturity. 

 

 Introduction 

Sorghum is a warm season cereal with outstanding potential for biomass accumulation. Due to this 

and its relative tolerance to drought, low input requirements and ability to accumulate a high 

volume of sugary juice (15-23%) (Miller and Creelman, 1980; Woods, 2001; Sarath et al., 2008; 

and Gnansounou et al., 2005), sorghum is recognized as one of the most promising feedstock 

sources for biofuel production. Sweet sorghums in particular are of significant interest in that they 

produce readily fermentable sugar and can be produced more easily than sugarcane. Sweet 

sorghums are reported to produce 23% more fermentable sugars while requiring 37% less nitrogen 

fertilizer, and 17% less irrigation water than maize (Hills et al., 1990). Unlike sugarcane, sweet 

sorghum is easily established using seeds and is ready for harvest in a single season, offering better 

returns on a unit area basis (Prasad et al., 2007; Grassi, 2001). 

Typical sweet sorghum cultivars grow from 2.4 to 3.0 meters (8-10 feet) height and can 

produce up to 30 Mg ha-1 of dry biomass per acre in favorable environments (Rooney et al., 2007). 

They also produce a large volume of sugary juice, which consists of sucrose, glucose, and fructose 

in relative proportions of 70, 20 and 10%, respectively (Wu et al., 2010). The relative concentration 

of sugars and juice volume, however, may vary depending on varieties, management conditions, 

and the grain sink size (Pfeiffer et al., 2010; Erickson et al., 2011; Hills et al., 1990; Grassi, 2001). 

These differences may be responsible for reported variation in ethanol yields among sweet 

sorghum feedstocks (Putnam et al., 1991; Pfeiffer et al., 2010).  
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The two major sink sources in sweet sorghum are the stalk and the panicle (grain). In sweet 

sorghum, the stalk, which is the main growing center, serves as the major sink. The panicle or the 

grain sink develops later during reproductive growth and, depending on the inherent genetic 

potential for grain formation, this sink can be significant enough to affect stalk sugar accumulation. 

However, the accumulation of dry matter in both sinks take place at the same time with both 

reaching the maximum at physiological maturity (Djanaguiraman et al., 2005). Sweet sorghum 

photo-assimilates are first used for plant growth and development during early vegetative stages. 

Afterwards, when the internodes have elongated, stems transition to sugar storage organs where 

most of the accumulated carbon is stored as sucrose (Lingle 1999; Almodares et al., 2008; 

Almodares and Hadi, 2009; Slewinski, 2012). It has been proposed that stored sugars in the stem 

are used to buffer photoassimilate supply to the grains during plant growth and development (Batta 

and Singh, 1986; Slewinski, 2012). 

Grain yield in sweet sorghum has not been found to be correlated with juice yield, but it 

has been negatively correlated with sugar concentrations (Murray et al., 2008; Ritter et al., 2008; 

Shiringani et al., 2010). Sweet sorghums produce relatively low grain sink because of the 

competing need for photosynthate between stem elongation and head development during pre-

anthesis growth phases. After anthesis, much of the photosynthates are directed to filling grain 

with some of the assimilates accumulated prior to anthesis also being available for filling grain as 

required (Rajendran et al., 2000). Hence, although sweet sorghums tend to have stronger sink in 

the stalk compared to grain types, the reproductive sink also can be significant. Therefore, 

eliminating this sink or reducing its strength should theoretically lead to further accumulation of 

sugars in the stalk. Routine observations made in sorghum and maize crops support this theory. In 

Africa, stalks of corn plants with barren ears are routinely selected and harvested for chewing by 
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children because of its sweet taste from accumulation of sugar that otherwise should have been 

translocated to the grain. Similarly, cane sorghum with little grain sink are sold at premium price 

vs. others because of the extra sweetness of the stalk. In sorghum a genetic system exists that 

allows production of sweet sorghum hybrids where the grain sinks are totally eliminated. This may 

provide an opportunity to further increase sugar accumulation in sweet sorghum cultivars and 

increase the value of sweet sorghum as a feedstock source for biofuel production or use by the 

table sugar industry. However, before embarking on the development and deployment of such 

system, it is important to experimentally validate the value of eliminating the grain sink to increase 

sugar accumulation. Therefore, the objective of this study was to determine the impact of 

eliminating the reproductive sink on total fermentable sugar yield and sugar composition in sweet 

sorghum.   

 

 Material and Methods 

 Genetic materials 

A total of 22 sweet sorghum genotypes were used in this study (Table 2.1). These included fifteen 

sweet sorghum genotypes of diverse genetic background, some of which are commonly grown for 

syrup production in the United States or as a forage crop for livestock, while others have been 

recently identified as having elevated stalk sugar. The remaining seven were the brown midrib 6 

and brown midrib12 versions of four popular genotypes, namely Kansas collier, Rox orange, Early 

hegari, and Atlas (only bmr6).   
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 Experimental design and management 

The experiment was conducted using a Randomized Complete Block Design (RCBD) arranged in 

split-plots with four replications. The whole plots consisted of genotypes planted in paired rows 

of five-meter length spaced 0.75 m apart with a 0.6 m alley at the end of each plot. The sub-plot 

consisted of the grain sink treatment, with and without grain. The experiment was established by 

directly seeding 3 g treated (Maxim 4FS, Apron XL, Concept III, and colorant) seeds of the 

genotypes using a cone planter. Fertilizer nitrogen (urea) and phosphorous (di-ammonium 

phosphate, DAP) were applied at the rates of 90 kg ha-1 and 40 kg ha-1, respectively. Pre-emergence 

weeds were controlled with 0.55 kg ha-1 Atrazine TM, 0.76 kg ha-1 Dual II Mg TM, and, 0.16 kg 

ha-1 CallistoTM. Post-emergence weeds were controlled by hand weeding, and this practice was 

used to keep the field weed-free throughout the seasons. Prior to anthesis, all heads from main 

plants and tillers in one of the two rows in each plot were eliminated by manually clipping the 

panicles with garden shears while the other row remained intact. These formed the subplot 

treatment units of with and without grain sink. The experiment was conducted in three 

environments during the 2013 and 2014 seasons at the Ashland Bottoms Agronomy Research Farm 

and in 2015 at the Agronomy North Farm near Manhattan, KS.    

 

 Data collection and analysis 

The fields were closely supervised throughout the experiment periods, and notes were taken as 

necessary. Data were collected on a range of characteristics including both agronomic and biofuel 

traits. Important agronomic parameters collected, including plant height, lodging score, and days 

to flowering. Plant height was measured as length of the plant from the ground to the top of the 

panicles. The severity of stalk lodging was visually scored on a scale of 1 to 5 with a score of 1 
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representing no lodging to 10% lodging, 5 representing 90% lodging to complete lodging, with 

values in between representing different lodging severities between 10 and 90%. Days to flowering 

were recorded as the number of days from planting to the day when 50% of the plants in each plot 

had reached half bloom.  

The biofuel traits were determined at physiological maturity. Here all plants within a one-

meter long section of the plot were harvested by cutting at the base of the plant, 5 cm from the soil 

surface. The harvested plants were bundled and immediately taken to the laboratory where they 

were separated into panicles, stems, and leaves, which were weighed separately. The stems were 

then crushed in a three-roller sorghum press to extract the juice and the pressed stems were 

weighed. The volume and weight of extracted juice was immediately recorded and the oBrix was 

determined using a hand-held refractometer (Atago U.S.A, Inc., Bellevue, WA, USA). A 15 ml 

juice sample was obtained from each experimental unite and were frozen for HPLC analysis of 

sugars. Briefly, each trait was estimated as: 

1- Fresh, dry Biomass, and juice yield were calculated from a sample taken at harvest using 

the formula:  

       (weight of sample from 1m) / (sample row area in m2) then calculated as Mg ha-1. 

2- Juice extractability (%):  juice extractability in percent was calculated using the data of 

total weight of the fresh stalks using the formula: 

                   Juice extractability (%) = [(Juice weight / Fresh stalk yield) * 100] 

3- Sugar yield was estimated using the formula developed by Corn (2009)  

      Sugar yield (Mg ha-1) = 0.95 *juice yield (Mg ha-1) *0.97*0.873*(°Brix/100) 

 This formula approximates sugar values assuming commercial sugar extraction rates whereas;  
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0.95 extraction efficiency; 0.97 adjusts for using the first expressed juice to represent all juice (for 

every 100 parts brix in the first roller juice, there are approximately 97 parts in the whole juice of 

stalk); 0.873 accounts for percent fermentable sugars present in the brix. 

 Fresh panicles, leaves, and pressed stems were oven dried at 120oC for 10 days to determine dry 

biomass.  

 

 Compositional analysis 

Juice samples for compositional analysis were collected from each plot for the first two 

replications of the 2012 and 2015 environment experiments and immediately placed in refrigerator. 

The frozen samples were thawed, and 1.5 ml of the juice samples were collected into 2 ml 

Eppendorf tubes. The samples were then centrifuged at 3000 rpm for 10 min. and were filtered 

through 0.2 μm hydrophilic PTFE syringe filters (Millipore, Billerica, MA) membrane prior to 

HPLC analysis. The samples were analyzed by high-performance liquid chromatography HPLC 

(Agilent, Santa Clare, CA) equipped with an RCM monosaccharide column (300 × 7.8 mm; 

Phenomenex, Torrance, CA) and a refractive index detector (RID, Santa Clare, CA). The mobile 

phase was 0.6 mL min-1 of double-distilled water, the oven temperature was 80°C, and the cell 

temperature was 40°C. Retention time for sucrose, glucose, and fructose are 9.03, 11.04, and 12.05 

min, respectively. The sucrose, glucose, and fructose present in the 10 μL injected sample were 

calculated using the peak area and equation of the corresponding standard curve (Y = aX + b, R2 > 

0.99). Sugar content (g) in the original sample was calculated as: C= X x V (g); where X = 

concentration (g/L) in the 10 μL injected sample and V = total volume of sweet sorghum juice 

samples (L). 
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 Statistical analysis 

The data were subjected to analysis of variance (ANOVA) performed using a PROC MIXED 

COVTEST procedure in SAS (version 9.4) as appropriate for the design. The environment and 

replicates were treated as random effect parameters. The variety, sink size and the interaction 

between them were treated as fixed effects. Means for significant effects were separated using the 

LSD method. Pearson correlation coefficients were estimated from combined environment data to 

determine the degree of association between all traits using PROC CORR procedure in SAS 

(version 9.4). 
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Table 2.1. Origin and GRIN identification number of parental sweet sorghum lines used for this 

study. 

 

No. Genotypes Identification no. 
Place of 

origin/source 

1 Atlas NSL 3986 Texas 

2 Atlas bmr 12 PI 636763 Nebraska 

3 Atlas bmr 6 PI639708 Nebraska 

4 Dale PI 651495  Mississippi 

5 Early hegari PI 665029 Texas 

6 Early hegari bmr 6 PI639706 Nebraska 

7 Kansas collier PI 586540  Austrailia 

8 Kansas collier bmr 12 PI639705 Nebraska 

9 Kansas collier bmr 6 PI639704 Nebraska 

10 M81E PI 653411  Mississippi  

11 MN4179 PI302131  Portugal  

12 Masuda PI193073 Japan 

13 No.8 PI257602  Ethiopia  

14    // PI 185672 Delhi India 

15 Kaoliang  PI195754  China 

16 Red Amber PI17548  Texas/Kansas 

17 Rox orange PI 641836  Georgia 

18 Rox orange bmr 12 PI639703 Nebraska 

19 Rox orange bmr 6 PI639702 Nebraska 

20 Sugar drip PI146890  Zaire  

21 Topper 76-6 PI583832   Georgia 

22 Tracy 669651 Mississippi  
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 Results 

 Analysis of variance 

The combined analysis of variance for all traits is presented in Table 2.2. As expected, the genotype 

effect was highly significant (P ≤ 0.01) for all traits measured. Similarly, the environment and 

genotype  environment interaction effects were significant except for lodging and juice 

extractability for both environment and genotype  environment interaction effects and for sugar 

yield for the environment effect (Table 2.2). Likewise, the effect of the grain sink was highly 

significant for all traits except for juice yield and juice extractability. The grain sink  genotype 

and grain sink  environment interaction effects were significant for lodging and brix score, while 

juice extractability, juice yield, and sugar yield were significant for the grain sink  genotype 

interaction effect only. The three-way interaction effect, grain sink  genotype  environment, was 

also significant for °Brix, fresh and dry biomass, as well as juice and sugar yield (Table 2.2). 

  

 The effect of genotypes on agronomic and biofuel traits 

The combined mean for agronomic and biofuel parameters among genotypes is presented in Table 

2.3. As indicated in the ANOVA in Table 2.2, days to flowering, plant height, and lodging score 

were significantly different among genotypes, and this reflects the inherent differences in the 

backgrounds of the genotypes. Moreover, there also were marked difference in these traits among 

entries of similar background. Plant height in wild-type genotypes of Atlas, Kansas collier, Rox 

orange, and Early Hegari was greater than their bmr versions. It is not clear whether this was due 

to insufficient backcrossing during the creation of the sister lines or if the bmr alleles have an effect 

on internode elongation. Days to flowering also was different between bmr lines and their wild 

type counterparts, but all were within the range of the entries. The result for lodging score, 
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however, was interesting in that it clearly depicted the impacts of bmr mutations on stalk strength. 

All wild type genotypes were less prone to lodging compared to their respective bmr mutants, with 

bmr6 seemingly having more impact on standability than bmr12.  

Mean fresh and dry biomass among genotypes ranged from a low of 24.51 and 8.54 Mg 

ha-1 in Early Hegari to 61.75 and 22.11 Mg ha-1 in Topper 76-6, respectively, with the across entry 

mean for the two traits being 40.99 and 14.63 Mg ha-1 in that order. The popular sweet sorghum 

variety M-81 E had the second highest fresh and dry biomass yield of 60.36 and 21.16Mg ha-1. 

Thus, the highest fresh and dry biomass yields were 50% and 51% greater than the average, and 

the lowest yields were 40 and 42% less for fresh and dry biomasses, respectively. Likewise, the 

juice and sugar yields were least, 12.54 and 1.14 Mg ha-1, respectively, again in the bmr6 version 

of cultivar Early Hegari, but the greatest juice yield of 32.03 Mg ha-1 was obtained in M81E 

followed by 29.93 Mg ha-1 in Topper 76-6. The greatest sugar yield was also obtained in Topper 

76-6 followed by M81E and Dale. The mean juice and sugar content across entries was 20.65 and 

2.52 Mg ha-1, respectively (Table 2.3). Similarly, the highest juice yield was 55% higher and sugar 

yield 50% higher than the average while the lowest readings were 39% and 55% lower than the 

average for juice and sugar yield, respectively. The range for brix across genotypes was narrower 

spanning from a low of 11.15% (30% lower than the average) to a high of 19.2% (21% higher than 

the average). Unlike the biomass and juice yield where the same group of genotypes consistently 

performed high, oBrix showed a slightly different pattern. The traditional sweet/forage sorghums 

like Atlas, Early hegari, Rox orange, and Kansas collier seem to have greater oBrix than the rest of 

the entries including the popular M 81E. However, because of their relatively lower biomass and 

juice yield, the total sugar from these genotypes was less.   



 49 

 The effect of sink on biofuel traits 

The central aim of this study was to determine the effect of reduced grain sink size on accumulation 

of stalk sugar and cellulosic biomass as biofuel feedstock. The data from this study is expected to 

provide practical evidence for justifying efforts to develop sterile sweet sorghum hybrids as 

dedicated feedstock source for biofuel production. As shown in Table 2.2, sink removal had a 

significant effect on both sugar and biomass related traits. Although plant height was reduced by 

an average of 22.34 cm (an average panicle length) in plants where heads were removed (Table 

2.4), removal of the heads seem to have a positive impact on biofuel traits (Table 2.4).  The results 

clearly showed that removing the grain sink prior to flowering significantly increased both sugar 

and biomass yields in sorghum. Both fresh and dry biomass were greater from plants with removed 

heads, 46 vs. 35.97 Mg ha-1 for fresh biomass and 16.41 vs. 12.84 Mg ha-1 for dry biomass. 

Similarly, grain sink elimination increased juice yield 23.9% (22.84 vs. 18.44 Mg ha-1) compared 

to the score from intact plants. Likewise, sugar yield and °Brix were 43.5% and 17.8% greater in 

sink removed plots (2.97 vs. 2.07 Mg ha-1 for sugar yield and 17.4 vs. 14.55% for °Brix). In 

addition to increasing biomass, sugar yield and °Brix, removing the sink reduced propensity for 

lodging by 22% (Table 2.4).  

  

 Correlation between biofuel traits 

Correlation between the measured traits depicted the expected pattern (Table 2.5). Fresh and dry 

biomass and juice and sugar yield were significantly and positively correlated with plant height 

and days to flowering. Lodging score was not significantly correlated with any of the traits. Many 

of the feedstock traits also had significant correlations with each other with fresh biomass having 

a significant correlation with dry biomass, juice yield and sugar yield. Dry biomass also was 
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significantly correlated with both juice yield and sugar yield while juice yield and sugar yield 

correlated at r =0.93. °Brix however was significantly correlated only with sugar yield (Table 2.5). 
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Table 2.2. Combined analysis of variance for agronomic traits, biomass yield, sugar and juice quality components of the sweet 

sorghum genotypes evaluated at Manhattan, KS during 2013, 2014, and 2015 sowing season. 

 

  

Source of  

variation 

Mean squares 

df 

Day to 

50% 

flowering 

lodging 

Plant 

height 

(cm) 

°Brix  

  (%) 

Fresh 

biomass 

(Mg ha-1) 

Dry 

biomass 

(Mg ha-1) 

Juice 

extractability 

(%) 

Juice 

yield 

(Mg h-1) 

Sugar 

yield 

(Mg h-1) 

Environments (E) 2 1541.65** 1.79 28625* 62.12 4440.63* 552.46* 1262.15 1891.81* 21.27 

Block/E 9 3.51 0.44 688.58 5.21 153.18* 28.99* 115.84* 29.47 0.70 

Genotypes (G) 21 2305.40** 1.56** 67925** 132.23** 2448.61** 293.43** 2622.66** 706.26** 13.50** 

G × E 42 62.85** 0.33 2949.69** 27.08** 495.40** 62.13** 333.67** 149.45** 3.19** 

Error a 189 4.39 0.16 481.92 2.68 48.13 8.85 52.38 14.64 0.38 

Sink size (H) 1 4.68 42.04* 65883* 885.80* 13268* 1689* 158.51 2563.71 103.97* 

H × E 2 2.65 2.50* 956.69 28.47* 17.47 4.99 498.60* 158.34* 5.13** 

H × G 21 3.33 0.96* 316.09 9.49* 55.89 6.65 35.09 20.20 0.40 

H × G × E 42 6.19 0.28 297.53 4.81** 39.94** 6.43* 24.76 15.13** 0.26** 

Error b 189 1.11 0.23 319.19 0.79 15.02 2.92 22.90 4.27 0.10 

*, ** statistically significant at P ≤ 0.05 and P ≤ 0.01 probability, respectively. 
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Table 2.3. Combined mean performance of sweet sorghum genotypes for agronomic traits, biomass yield, sugar and juice quality 

components, evaluated at Manhattan, KS during 2013, 2014, and 2015 sowing season.   

 

Genotypes 
Day to 

flowering 
Lodging 

Plant  

height 

(m) 

°Brix 

(%) 

Fresh  

biomass 

(Mg ha-1) 

Dry 

 biomass 

(Mg ha-1) 

Juice  

extractability 

(%) 

Juice  

yield 

(Mg ha-1) 

Sugar  

yield 

(Mg ha-1) 

Atlas 71 1.29 260.88 15.20 47.77 16.61 43.32 22.98 2.64 

Atlas bmr 12 63 1.33 223.92 18.68 39.15 14.03 51.72 19.45 2.72 

Atlas bmr 6 70 1.54 219.25 15.50 38.87 13.99 35.17 20.60 2.40 

Dale 87 1.00 311.33 16.84 52.99 17.60 50.08 28.96 3.65 

Early hegari  68 1.13 151.83 12.91 32.16 10.89 34.64 15.89 1.58 

Early hegari bmr 6 71 1.17 130.67 11.15 24.51 8.54 33.46 12.54 1.14 

Kansas collier 66 1.00 235.46 18.45 38.32 14.37 36.33 20.64 2.86 

Kansas collier bmr 12 72 1.54 227.13 17.78 34.74 12.59 31.83 17.56 2.44 

Kansas collier bmr 6 71 1.67 218.88 19.20 32.13 12.08 35.44 15.83 2.33 

M 81E 93 1.29 336.71 15.35 60.36 21.06 50.33 32.03 3.65 

Masuda 63 1.21 251.83 15.28 46.95 15.35 37.33 24.68 2.86 

MN 4179 69 1.63 243.79 16.13 33.16 11.15 35.57 17.30 2.16 

No.8 89 1.21 263.96 16.52 55.79 19.77 37.75 27.49 3.52 

PI185672 87 1.75 301.71 12.51 45.04 18.73 13.33 21.45 2.15 

Kaoliang 72 1.21 239.13 11.18 31.21 13.14 13.07 13.49 1.18 

Red Amber 78 1.00 136.08 14.88 27.39 10.85 33.08 12.55 1.44 

Rox orange 69 1.75 217.79 16.17 36.66 12.50 34.69 18.39 2.25 

Rox orange bmr 12 67 1.71 217.42 19.16 40.62 14.21 39.71 20.55 2.96 

Rox orange bmr 6 64 1.17 186.63 18.31 36.14 12.17 47.96 18.30 2.52 

Sugar drip 67 1.42 218.46 16.03 43.57 14.56 45.15 21.96 2.66 

Topper 76-6 94 1.00 285.83 16.64 61.75 22.11 44.39 29.93 3.79 

Tracy 68 1.38 288.33 14.85 42.54 15.60 21.63 21.64 2.45 

Mean 74 1.34 234.86 15.85 40.99 14.63 36.64 20.65 2.52 

LSD 1.81 0.33 16.19 1.44 5.89 2.17 4.69 3.35 0.51 
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Table 2.4. Combined mean of the effect of head removal treatment on agronomic traits, biomass yield, sugar and juice quality 

components of sweet sorghum genotypes evaluated at Manhattan, KS during 2013, 2014, and 2015 sowing season. 

 

Head treatment Lodging 
Plant height 

(cm) 

°Brix 

  (%) 

Fresh 

Biomass 

(Mg ha-1) 

Dry 

biomass 

(Mg ha-1) 

Juice 

extractability 

(%) 

Juice yield 

(Mg ha-1) 

Sugar yield 

(Mg ha-1) 

No grain sink 1.05 223.69 17.14 46 16.41 37.18 22.84 2.97 

With grain sink 1.61 246.03 14.55 35.97 12.84 36.08 18.44 2.07 

Mean 1.34 234.86 15.85 40.99 14.63 36.64 20.65 2.52 

LSD 0.08 4.65 0.37 1..84 0.62 ns ns 0.13 

Difference -22% -22.34cm 17.8% 27.9% 27.8% 3% 23.9% 43.5% 

LSD = Least significant difference; ns= not significant. 
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Table 2.5. Pearson correlation coefficients between agronomic traits, biomass yield, sugar and juice quality components of sweet 

sorghum genotypes evaluated at Manhattan, KS during 2013, 2014, and 2015 sowing season.   

 

 NC= Grain sink; C= No grain sink. 

*, ** statistically significant at P ≤ 0.05 and P ≤ 0.01, respectively. 

Traits 

Correlation (r) 

Grain 

sink 
Lodging 

Plant 

height 

(cm) 

°Brix 

(%) 

Fresh 

Biomass 

(Mg ha-1) 

Dry 

biomass 

(Mg ha-1) 

Juice 

extractability 

(%) 

Juice 

yield 

(Mg ha-1) 

Sugar 

yield 

(Mg ha-1) 

Day to flowering 
NC -0.20ns 0.52* -0.20ns 0.66** 0.74** 0.03ns 0.63* 0.41* 

C -0.15ns 0.58* -0.11 ns 0.63* 0.71* 0.05 ns 0.57* 0.49* 

Lodging 
NC 1 0.11ns 0.13ns -0.12ns -0.11ns -0.26ns -0.11ns -0.07ns 

C 1 0.00* 0.23 ns -0.26 ns -0.23 ns -0.17 ns -0.27 ns -0.18 ns 

Plant height (cm) 
NC  1 0.14 ns 0.81** 0.85** 0.04 ns 0.80** 0.66* 

C  1 0.08 ns 0.80** 0.83** 0.06 ns 0.79** 0.73* 

°Brix (%) 
NC   1 0.30 ns 0.19 ns 0.57* 0.34 ns 0.69* 

C   1 0.08 ns 0.04 ns 0.58* 0.12 0.46* 

Fresh Biomass (Mg ha-1) 
NC    1 0.96** 0.43* 0.98** 0.88** 

C    1 0.95** 0.35 ns 0.97** 0.90** 

Dry biomass (Mg ha-1) 
NC     1 0.21 ns 0.92** 0.79** 

C     1 0.17 ns 0.88** 0.80** 

Juice extractability (%) 
NC      1 0.49* 0.61* 

C      1 0.42* 0.58* 

Juice yield (Mg ha-1) 
NC       1 0.90** 

C       1 0.94** 
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 The effect of grain sink removal on sugar composition  

The combined analysis of variance for sugar components is presented in Table 2.6. The data 

showed that both genotype and sink effects were highly significant (P ≤ 0.01) for component traits 

except the sink effect for fructose.  Genotype  environment (G  E) effects were not significant 

for any traits. Genotype  sink and sink  environment interaction effects were significant only for 

sucrose and total sugars, but the three-way genotype  sink  environment interaction effect was 

significant for glucose and total sugar.  

Mean yield for total sugar across treatments was 1.55 Mg ha-1, the largest proportion, 

(63%), of which was attributed to sucrose while (21%) and (16%) contributed by glucose and 

fructose, respectively (Table 2.7). Total sugar from intact plants was 1.239 Mg ha-1 compared to 

1.858 Mg ha-1 in treatments where the grain sink was removed. Removal of the grain sink increased 

total sugar concentration across genotypes by an average of 50%. All the three sugar components 

also showed similar increases when the grain sink was removed but to a different degree, with the 

greatest increase of 76% for sucrose with fructose and glucose showing only 15% increase (Table 

2.7).   

Mean sugar yield of genotypes across the grain sink treatments is presented in Table 2.8. 

Regardless of the sink effect, genotypes Dale and M81E had the greatest total sugar yield among 

genotypes followed by Topper 76-6 and Atlas. All genotypes with relatively greater total sugar 

also had greater sucrose, glucose, and fructose concentration, showing that these traits are 

interrelated and that improvement for one trait can lead to improvement in the others. Similarly, 

genotypes with medium or low total sugar also had sugar components in that range.  

Analysis of relationships between sugar components showed that many of the traits were 

interrelated (Table 2.9). °Brix was significantly correlated with sucrose (0.75) but no significant 
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relationship with glucose or fructose. Sucrose in turn was highly correlated with both glucose and 

fructose, while the two glucose and fructose showing the highest correlation (0.93) (Table 2.9). 

None of these traits had a negative relationship with another. 
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Table 2.6. Combined analysis of variance for the effect of genotypes and head removal treatments 

on sugar components of sweet sorghum genotypes evaluated at Manhattan, KS during 2013 and 

2015 sowing season. 

 

 

  

Source of  
Mean squares  

variation 
df 

Sucrose  

(Mg h-1) 

Glucose  

(Mg h-1) 

Fructose  

(Mg h-1) 

Total sugars 

 (Mg h-1) 

Environment (E) 1 3.702 0.199 0.011 6.141 

Block/E 2 0.975* 0.0006 0.009 0.762 

Genotype (G) 21 1.401** 0.553** 0.363** 5.462** 

G × E 21 0.271 0.038 0.016 0.488 

Error a 42 0.260 0.030 0.028 0.567 

Grain sink (H) 1 12.781* 0.088* 0.053 16.848* 

H × E 1 0.436* 0.0001 0.007 0.536* 

H × G  21 0.098*
 
 0.014 0.006 0.203* 

H × G × E 21 0.075 0.007* 0.004 0.113* 

Error b 42 0.041 0.003 0.003 0.047 

*, ** statistically significant at P ≤ 0.05 and P ≤ 0.01, respectively.  



 58 

Table 2.7. Combined mean of the effect of head removal treatment on sugar components of 

sweet sorghum genotypes evaluated at Manhattan, KS during 2013 and 2015 sowing season. 

 

 

 

 Head treatment 
Sucrose  

(Mg h-1) 

Glucose  

(Mg h-1) 

Fructose  

(Mg h-1) 

Total sugars 

(Mg h-1) 

Grain sink  0.705 0.299 0.234 1.239 

No grain sink  1.244 0.344 0.269 1.858 

% change 76 15 15 50 

Mean 0.975 0.322 0.252 1.549 

 LSD 0.115 0.042 ns 0.170 

   LSD = Least significant difference; ns= not significant. 
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Table 2.8. Combined mean performance of the effect of head removal treatment on sugar components of sweet sorghum 

genotypes evaluated at Manhattan, KS during 2013 and 2015 sowing season. 

 

 Genotype 

Sucrose 

 (Mg h-1) 

Glucose  

(Mg h-1) 

Fructose  

(Mg h-1) 

Total sugars  

(Mg h-1) 

NC C Mean NC C Mean NC C Mean NC C Mean 

Atlas 0.81 1.54 1.17 0.48 0.58 0.53 0.35 0.44 0.40 1.64 2.56 2.10 

Atlas bmr 12 1.26 1.73 1.50 0.30 0.34 0.32 0.19 0.24 0.22 1.75 2.31 2.03 

Atlas bmr 6 0.62 1.20 0.91 0.29 0.26 0.27 0.21 0.21 0.21 1.12 1.67 1.39 

Dale 1.34 2.15 1.74 0.96 0.95 0.95 0.87 0.89 0.88 3.17 3.98 3.58 

Early hegari 0.22 0.92 0.57 0.19 0.22 0.20 0.19 0.27 0.23 0.60 1.41 1.01 

Early hegari bmr 6 0.06 0.41 0.24 0.10 0.09 0.10 0.07 0.06 0.07 0.24 0.56 0.40 

Kansas collier 1.14 1.69 1.41 0.12 0.11 0.12 0.11 0.09 0.10 1.37 1.89 1.63 

Kansas collier bmr 12 0.80 1.00 0.90 0.09 0.10 0.10 0.07 0.08 0.08 0.95 1.18 1.07 

Kansas collier bmr 6 0.97 1.23 1.10 0.15 0.19 0.17 0.10 0.13 0.11 1.22 1.54 1.38 

M 81E 1.28 2.12 1.70 0.88 1.17 1.03 0.60 0.78 0.69 2.76 4.07 3.42 

Masuda 0.54 1.15 0.85 0.36 0.51 0.43 0.27 0.39 0.33 1.17 2.06 1.61 

MN 4179 0.71 1.47 1.09 0.31 0.38 0.34 0.33 0.30 0.32 1.34 2.16 1.75 

No.8 0.84 1.52 1.18 0.39 0.46 0.43 0.26 0.33 0.29 1.49 2.31 1.90 

PI185672 0.48 0.74 0.61 0.12 0.12 0.12 0.09 0.09 0.09 0.70 0.95 0.82 

Kaoliang 0.12 0.38 0.25 0.05 0.08 0.07 0.04 0.06 0.05 0.21 0.52 0.37 

Red amber 0.16 0.57 0.37 0.11 0.11 0.11 0.05 0.10 0.07 0.32 0.78 0.55 

Rox orange 0.70 1.06 0.88 0.30 0.22 0.26 0.21 0.17 0.19 1.21 1.46 1.34 

Rox orange bmr 12 0.90 1.28 1.09 0.22 0.26 0.24 0.17 0.20 0.18 1.29 1.74 1.51 

Rox orange bmr 6 0.93 1.34 1.13 0.19 0.20 0.19 0.13 0.13 0.13 1.24 1.67 1.46 

Sugar drip 0.41 1.18 0.80 0.34 0.32 0.33 0.30 0.25 0.27 1.05 1.75 1.40 

Topper 76 0.78 1.74 1.26 0.52 0.75 0.64 0.46 0.61 0.53 1.76 3.10 2.43 

Tracy 0.45 0.95 0.70 0.12 0.16 0.14 0.10 0.12 0.11 0.67 1.22 0.95 

Mean 0.71 1.24  0.30 0.34  0.23 0.27  1.24 1.86  
LSD (P=0.05) 0.2   0.04   NS   1.54   

 NC= Grain sink; C= No grain sink. 

 LSD = Least significant difference; NS= not significant.
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Table 2.9. Pearson correlation coefficients between sugar and juice quality components of sweet 

sorghum genotypes evaluated at Manhattan, KS during 2013 and 2015 sowing season. 

 NC= Grain sink; C= No grain sink. 

 *, ** statistically significant at P ≤ 0.05 and P ≤ 0.01, respectively. 

  

Trait 

Correlation (r)  

Grain 

sink 

Sucrose 

(Mg h-1) 

Glucose 

(Mg h-1) 

Fructose 

(Mg h-1) 

Total sugars 

(Mg h-1) 

Brix 
NC 0.75** 0.13 ns 0.13 ns 0.47* 

C 0.46* -0.04 ns -0.03ns 0.21 ns 

Sucrose (Mg ha-1) 

  

NC 1 0.59* 0.55* 0.86** 

C 1 0.78** 0.77** 0.94** 

Glucose (Mg ha-1) 

 

NC  1 0.97** 0.91** 

C  1 0.97** 0.94** 

Fructose (Mg ha-1) 

 

NC   1 0.88** 

      1 0.93** 



 61 

 Discussion 

Breakthroughs in science witnessed during the last century have impacted human life in many 

ways. Such discoveries involved development of novel techniques and tools for exploiting natural 

resources to meet human needs. Among these discoveries are the development of techniques and 

tools for exploiting natural energy sources and make them available for human use. Developments 

in petroleum engineering has positively affected every sector including mechanized agriculture 

that is heavily dependent on petroleum products as source of energy. Nevertheless, as a result of 

numerous competing needs for this resource including transportation fuels and the fact that it is 

nonrenewable has led to market volatility of petroleum products at different times. At the same 

time the extensive burning of fossil fuel has threatened the wellbeing of the environment that the 

need for alternative source of clean and renewable energy has become the ultimate target for 

powering our planet in the 21st century.  

Biofuels are considered among the many renewable energy sources receiving global 

attention. Although plant based fuels have been in use for centuries, the resource has not been 

exploited at an industrial scale to enter the global power grid. Sorghum is one of the top plant 

species recognized to serve as feedstock sources for producing biofuels. Grain-based ethanol has 

already been in use for transportation fuel with nearly 30% of sorghum grain produced in the 

United States going to ethanol production. Because of its inherent potential to produce large 

biomass, and its sugar rich stalks and knowledge of its cultivation and management, it is poised to 

have even bigger impact. Sugars from stalks of sugary genotypes can be easily fermented in to 

ethanol and opportunities exist to enhance stalk sugar using different breeding techniques.  

 Sorghum is already recognized for its efficiency for converting CO2 into sugar, its 

tolerance to abiotic stresses (drought, water logging, and salinity) and enhanced productivity 
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(Hallam et al., 2001; Promkhambut et al., 2010). The juice extracted from the fresh stem of sweet 

sorghum has been shown to contain 15 to 23% soluble fermentable sugar (Rao et al., 2009; Vinutha 

et al., 2014). This can be increased by reducing the grain sink to further increase sugar 

accumulation in the stalks and increase cellulosic biomass there by enhance its value as feedstock 

source for biofuel and table sugar production. 

The current results confirmed the presence of genotypic variation for biomass production 

and sugar accumulation (Table 2.2). Similar results have been reported by several previous 

investigators (Almodares et al., 1997; Ali et al., 2008; Murray et al., 2008; Wang et al., 2009; 

Murray et al., 2009). The genotypes included in this study were sweet sorghum types deliberately 

selected based on existing information. Observing this level of variation for sugar, oBrix and juice 

yield among a small set of designated sweet sorghum accessions simply tells how robust the 

sorghum crop is with respect to variability for biofuel traits and the opportunity for enhancing the 

crop as biofuel feedstock. The early sweet sorghum cultivars such as Kansas collier, Rox orange 

and Early hegari continue to have greater oBrix compared most of the entries evaluated (Table 

2.3). However, they were not necessarily the greatest in terms of total sugar or juice yield, which 

again shows the opportunity to recombine these traits to further improve the feedstock value of the 

crop. Cultivars such as Dale and M81E and a new accession from Ethiopia (No.8), though not 

among the highest in oBrix, ranked near the top in juice and sugar yield. Similar studies in the past 

have produced a conforming report where genotypes with greater juice yield and lower oBrix were 

considered better stem sugar yielders than those with lower juice yield and higher oBrix (Makanda 

et al., 2009). The brown mid rib (bmr) versions of the traditional sweet cultivars also were included 

to determine the potential role of higher lignin on the traits of interest. It appears that lignin has no 

impact on brix, juice accumulation and extractability, as well as total sugar (Table 2.3), indicating 
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that, unlike the forage/silage sorghum, energy sorghums do not need to be low lignin types which 

is a positive element considering high biomass type sweet sorghums because the presence of lignin 

reduces propensity to lodging.  

The key purpose of this study was to determine the potential of deploying sterile sweet 

sorghum hybrids for improving biofuel traits. A genetic system based on A3 cytoplasmic male 

sterility (CMS) or a B pollinator on A1 CMS can produce sterile hybrids that can be commercially 

deployed if removal of the grain sink is proven to contribute to enhancing biofuel traits. Here all 

of the twenty-two genotypes were grown in double row plots where heads from one of the rows 

were clipped prior to anthesis to eliminate grain formation. The results showed that removing the 

grain sink significantly improved dry biomass, oBrix, juice and sugar yield while at the same time 

reducing lodging (Table 2.4). The increase in oBrix (17%) and sugar yield (43%) in plots without 

grain sink may be due to much of the photo-assimilates accumulating in the stalk as opposed to 

the intact rows where they were translocated to fill the grain. The higher biomass (28%) and 

reduced lodging (-22%) in headless rows could be due to a profuse nodal tiller caused by head 

removal and the increased stalk girth compared to intact rows.  The increase in juice yield (24%), 

is difficult to explain but may be related to increased stalk thickness that provided more room for 

juice accumulation. These results are corroborated by reports from previous studies. In an older 

report by Broadhead (1973), which was later confirmed by other studies (Pfeiffer et al., 2010; and 

Erickson et al., 2011), removing the heads before grain formation increased oBrix and sugar. Such 

a change has been attributed to changes in patterns of assimilate partitioning with the stem 

becoming the predominant alternative sink (Lin and Lin, 1994). The increase in biomass yield in 

clipped plants found in this study was also consistent with the results obtained by Ferraris (1981). 
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Similarly, both genotypes and the sink effects were significant for sugar composition 

(Tables 2.6, 2.7, and 2.8). Differences in sucrose, glucose, and fructose content among the 

genotypes may be due to differences in the expression of the amylase enzyme, a possible scenario 

especially given that genotypes with high sucrose had lower glucose, and fructose content. In all 

cases, sucrose was the most dominant sugar followed by glucose, and this was consistent across 

genotypes. Moreover, genotypes with greater sucrose content tended to have greater concentration 

of the other sugars as well, such that selection for total sugar or sucrose only (whichever is easier 

to measure) can be used to improve other sugar components (Table 2.8). Total sugar is not 

necessarily related to oBrix, so one has to make proper choice of traits when attempting to improve 

biofuel traits. Removing the grain sink had a greater effect on sucrose (76% increases) than glucose 

(15% increases) and the effect on fructose was not significant. Increased sucrose with head 

removal in this study was similar to other findings where a 13% increase in sugar occurred with 

head removal in M81E (Erickson et al., 2011) and in similar report by Broadhead (1973) where 

increases of sucrose content was reported in plants with heads removed at boot stage.  

 

 Conclusion 

Results of this study confirm the previous findings and expectations that there is significant 

genotypic effect for accumulation of biomass and biochemical traits (juice and sugar yield) among 

genotypes. The significant genotype × environment interaction observed for many of the traits 

suggests that optimal environment and management condition be identified for producing sweet 

sorghum based feedstock sources for biofuel or table sugar production. The most important 

finding, however, is that removing the grain sink from potentially high sugar and high juice 

accumulating genotypes can significantly increase juice, biomass and sugar yields, indicating the 
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potential benefit of deploying non-grain forming sweet sorghum hybrids as feedstock for 

producing biofuels or table sugars. Future research should explore genetic systems where 

genetically improved male sterile sweet sorghum hybrids can be produced and marketed to benefit 

the major players in the industry including growers, seed producers and ethanol/sugar industries. 
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Chapter 3 - Effect of male sterility inducing cytoplasm on biomass, 

stalk juice yield and sugar content in sweet sorghum hybrids 

 Abstract 

Sweet sorghum [Sorghum bicolor (L.) Moench] has considerable potential for bioenergy and table 

sugar production. Previous research and results reported in Chapter 2 of the current study show 

that reduction of assimilate competition by eliminating the grain sink can increase the quality and 

quantity of sugar in sweet sorghum. The objective of the current study is to explore the opportunity 

to deploy the A3 cytoplasmic male sterility (CMS) system to force hybrid sterility and thus 

increase sugar production. Four seed parent lines in the A1 and A3 CMS systems were intercrossed 

with 10 diverse sweet/biomass sorghum lines to create 40 hybrids each in A1 and A3 backgrounds. 

The resulting hybrids and the parents were evaluated in three environments. At the panicle 

emergence, heads from all A3 hybrid rows were covered prior to anthesis with a pollination bag 

to exclude pollen from other plants and also to determine the fertility of the hybrids. Data were 

collected on major agronomic and biofuel traits including brix, juice, biomass, and sugar yields. 

The biofuel data were collected by manually harvesting all plants from a one-meter section of the 

plot and separating them in to stalk, leaf and panicle components. The stem was pressed to 

determine the juice yield, and sugar content of the juice was determined. Examination of pollen 

production and seed set in A3 rows showed that all A3 hybrids failed to set seeds under bag and 

were sterile. Analysis of the data showed significant differences between the inbred parents and 

hybrids for both agronomic and biofuel traits. More importantly, there was a significant difference 

between A1 and A3 hybrids for all of the biofuel traits, with the A3 hybrids invariably having 

superior values for all traits, indicating potential for deploying the A3 CMS in sweet sorghum 
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production to enhance sugar yield. Moreover, perhaps due to the stronger stalk achieved due to 

absence of the grain sink or lower torque imposed from the panicle, the A3 hybrids showed 

stronger resistance to stalk lodging than the A1 hybrids. The result indicated that the A3 CMS 

system can be effectively deployed to facilitate production of sterile sweet sorghum hybrids to 

increase sugar yield from sweet sorghum. The technique can benefit sorghum producers, biofuel 

industries, and sugar/syrup industries and can contribute to the competitiveness of the sorghum 

industry. 

Keywords: Sorghum bicolor, cytoplasmic male sterility, grain sink, biomass, juice quality, 

combining ability 

 

 Introduction 

Sweet sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum that is recognized 

as a potential alternative biofuel feedstock source due to its sugar rich, juicy stalks (Wang et al., 

2009). Sorghum has many characteristics such as wide adaptability, rapid growth (Reddy et al., 

2007), drought tolerance (Tesso et al., 2005), tolerance to waterlogging and salinity (Almodares 

et al., 2008), and high biomass production (Almodares and Hadi, 2009) that make it attractive both 

as a food/feed grain as well as for biofuel production. 

Global hybrid sorghum production relies on cytoplasmic male sterility system (CMS) to 

facilitate seed production. Two mechanisms of sterility induction have been identified in CMS 

systems, primarily based on when the sterility is manifested in relation to meiosis. Sterility induced 

before meiosis (sporophytic) results in pollen abortion and is restored by the nuclear genotype of 

the plant. Manifestation of sterility after meiosis (gametophytic) also results in pollen abortion but 

fertility is restored by the genotype of the individual haploid male gamete. In sorghum, the first 

http://akademiai.com/keyword/Combining+Ability
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CMS was discovered, characterized, and described by Stephens and Holland (1954). This system, 

designated as A1 CMS, is based on the interaction of nuclear and cytoplasmic genes. In the A1 

system, fertility is restored in a sporophytic manner by one or two dominant fertility restoration 

alleles (Schertz et al., 1989). Thus, the A1 CMS system allows the production of uniformly male 

sterile lines that can produce progeny in which fertility is restored through the action of nuclear 

restorer (Rf) genes (Kempken and Pring, 1999). In addition to the original A1 CMS, which is the 

most commonly used CMS source for sorghum, several other CMS sources e.g. A2, A3, A4, A5, 

A6, 9E, and KS, have been developed (Quinby, 1981).  

The A3 CMS system was introduced with the release of A3Tx398 (Schertz et al., 1984). 

Since that time, several groups have released seed parents carrying the A3 CMS (Pedersen et al., 

1997; Miller et al., 1999). In the A3 CMS, a unique two-gene gametophytic fertility restoration 

system that requires complementary action of two nuclear restoration genes was identified (Tang 

et al., 1998).  Fertilility restoration genes designated as Rf3 and Rf4 must be present in an individual 

male gamete for its viability to be restored. Because the occurrence of such genes in the normal 

population is rare, the majority of hybrids between A3 females and the commonly existing 

sorghum lines tend to be sterile because none of the pollen of such hybrids be fertile (Tang et al., 

2007; Pring et al., 1999; Tang et al., 1998).  

Although this property of A3 CMS makes it difficult to deploy the system in routine grain 

sorghum hybrid production, the rare fertility restoration tendency of the A3 system will be of 

significant benefit for developing hybrids in which seed production is not desired. One such 

specialty crop is sweet sorghum. Sweet sorghums are the type of sorghum that tend to accumulate 

large quantity of sugar in the stalk, similar to sugarcane, but have a reduced grain sink compared 

to grain type sorghums. As such, sweet sorghums have been looked at as a transition crop to fill 
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the feedstock supply gap between sugarcane harvests in the sugar industry. The value of sweet 

sorghum as a transition or substitute feedstock for sugar production can be increased through 

enhancing the stalk sugar yield of the crop. One possible avenue would be to reduce or eliminate 

the grain sink from the sweet sorghum backgrounds such that the assimilate will remain in the 

stalk to enrich the stalk sugar. In this study we explored the possibility of deploying the A3 CMS 

system to reduce grain formation and thus increase stalk sugar in sorghum.  

Previous studies comparing different CMS systems for agronomic adaptability have shown 

no marked effect of the system. Lee et al. (1992) compared a specific A1 hybrid with its 

corresponding A3 hybrid, and detected no significant differences for days to flowering or plant 

height. Moran and Rooney (2003) evaluated 36 iso-cytoplasmic hybrids that were developed in 3 

different cytoplasms (A1, A2, and A3) for agronomic performance, and found that cytoplasm type 

had no effect on plant height, minimal effect on days to flowering, but a significant reduction in 

yield was observed in A3 cytoplasm hybrids compared to A1 and A2 hybrids.  

Information comparing the agronomic performance and the sugar and juice yield and 

quality of A1 and A3 sweet sorghum hybrids is limited. The objective of this study was to 

investigate the effects of A3 cytoplasm on biomass production, juice yield and stalk sugar 

accumulation and composition and thereby determine its potential for developing sugar based 

alternative feedstocks for sugar and biofuel production.  

 

 Material and methods 

 Genetic materials 

The experimental materials comprised of 4 grain type female parental lines and 10 sweet/high 

biomass type pollinator lines. The female lines included Tx399, Tx623, Ks57 and N122, each in 
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two different cytoplasms, A1 and A3. Two of the females, Tx399 and Tx623 were originally 

developed and released with the A1 CMS system by Miller et al. (1999). Female N122 also were 

first developed and released with the A1 cytoplasm system by Andrews et al. (1990) and Ks57 

released by Pedersen and Toy (1997) also were first developed and released with the A1 cytoplasm 

system. All of the females were later converted in to the A3 system. The female parents were 

selected based on their historical significance as commonly used public lines and the availability 

of A3 cytoplasm versions of the lines. The 10 pollinator lines were selected based on the results 

of Chapter Two experiment of this thesis and previous study by Godoy and Tesso (2013).  

For experimental hybrid synthesis, each of the females were crossed to all of the 10 R-lines 

(Atlas, Early hegari, Kansas collier, M81E, Masuda, No.8, PI185672, Kaoliang, Rox orange and 

Sugar drip) in a Design II mating scheme to produce 80 hybrid combinations in A1 and A3 

cytoplasm backgrounds. Hybrid seed production was conducted using a partial irrigation facility 

at KSU Agronomy Research Farm at Ashland Bottoms near Manhattan, KS and at winter nursery 

(Puerto Rico) during the 2012 and 2013 crop seasons. The hybrids along with the B-versions of 

the respective female parents and the 10 R-lines, were evaluated at KSU the Research Farm 

Ashland Bottoms during the 2013, 2014, and 2015 sowing seasons.  

  

 Experimental design and field procedure 

The experiment was laid in a Randomized Complete Block Design (RCBD) with three 

replications. The plots consisted of genotypes planted in a single row of five-meter length spaced 

0.75 m apart with a 0.6m alley at the end of each plot. The experiment was established by directly 

seeding 3 g treated (Maxim 4FS, Apron XL, Concept III, and colorant) seeds of the genotypes 

using a cone planter. Fertilizer nitrogen (urea) and phosphorous (di-ammonium phosphate, DAP) 
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were applied at the rates of 90 kg ha-1 and 40 kg ha-1, respectively. Pre-emergence weeds were 

controlled with 0.55 kg ha-1 Atrazine TM, 0.76 kg ha-1 Dual II Mg TM, and, 0.16 kg ha-1 CallistoTM. 

Post-emergence weeds were controlled by hand weeding, and this practice was used to keep the 

field weed-free throughout the seasons. The experiment was conducted in three environments 

during the 2013 and 2014 seasons at the Ashland Bottoms Agronomy Research Farm and in 2015 

at the Agronomy North Farm near Manhattan, KS.    

The plots were routinely supervised throughout the growing period. Prior to flowering 

panicles from the A3 hybrids were covered with pollination bags to provide isolation from random 

pollen from nearby plots (Figure 3.1).  

 

 

Figure 3.1. Sweet sorghum hybrids tested at Manhattan Kansas (A) bagged heads of A3 hybrids 

to maintain isolation (B) A3 hybrids heads (1) bagged heads with no seed set (2) open head 

outcrossed and set seeds. 

 

 Data collection  

The fields were closely supervised throughout the experiment periods and notes taken as 

necessary. Data were collected on a range of characteristics related to both agronomic and biofuel 

traits. Important agronomic parameters measured included plant height, lodging score, and days to 

 

A B 
2 1 
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flowering. Plant height was measured as the distance from the ground to the top of the panicles. 

The severity of stalk lodging was visually scored on a scale of 1 to 5 with a score of 1 representing 

no lodging to 10% lodging, 5 representing 90% to complete lodging with values in between 

representing different lodging severities between 10 and 90%. Days to flowering were recorded as 

the number of days from planting to the day when 50% of the plants in each plot had reached 

flowering.  

Biofuel traits were determined at physiological maturity. All plants within a one-meter-

long section of the plots were harvested at the base 5 cm from the soil surface. The plants were 

bundled and immediately taken to the laboratory where they were separated into panicles, stems, 

and leaves, and each component was separately weighed. The stems were then crushed in a three-

roller sorghum press to extract the juice, and the pressed stems were weighed. The volume and 

weight of extracted juice was immediately measured and the oBrix determined using a hand-held 

refractometer (Atago U.S.A, Inc., Bellevue, WA, USA). Briefly each trait was measured as below: 

1- Biomass, and juice yield were calculated from a sample taken at harvest using the 

formula:  

(weight of sample from 1m) / (sample row area in m2) then calculated as Mg ha-1. 

2- Sugar yield was estimated using the formula developed by Corn (2009)  

Sugar yield (Mg ha-1) = 0.95 × juice yield (Mg ha-1) × 0.97 × 0.873 × (°Brix/100) 

This formula approximates sugar values assuming commercial sugar extraction rates whereas;  

0.95 extraction efficiency; 0.97 adjusts for using the first expressed juice to represent all juice (for 

every 100 parts brix in the first roller juice, there are approximately 97 parts in the whole juice of 

stalk); 0.873 accounts for percent fermentable sugars present in the brix. 
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Fresh panicles, leaves, and pressed stems were oven dried at 120oC for 10 days to determine 

biomass yield.  

 

 Statistical analysis  

The analysis of variance (ANOVA) was performed using a PROC MIXED procedure in SAS 

(version 9.4) as appropriate for the design. The environment and replicates were treated as random 

effect parameters. The hybrid effect was further partitioned into male, female, and male × female 

interaction effects representing general combining ability (GCA) for male and female parents as 

well as the specific combining ability (SCA) effect. Design II fixed model (Model I) of Hallauer 

and Miranda (1988) was used to obtain independent estimates of the GCA and SCA. The GCA for 

each parental line was calculated as the difference between the grand mean of the hybrids and the 

marginal means for each male and female parent.  

Means for significant effects were separated using the LSD method. Pearson correlation 

coefficients were estimated using data from all combined environments to determine the degree of 

correlation between all traits using the PROC CORR procedure in SAS (version 9.4). 

Specific combining ability was computed as the deviation of the value of a given cross 

from the sum of the grand mean and GCA of the lines involved in that cross as follow: 

SCAij = Xij – (μ + GCAi + GCAj) Where; 

SCAij = specific combining ability of a cross between parent i and parent j;  

Xij = the observed value of the cross between parents i and j; μ = the overall 

Mean of the hybrids; and GCAi and GCAj = General combining ability of parent i and 

parent j. 
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Significance of the effects was tested using a two-tailed t-test procedure in SAS after 

rearranging the data set. The result was confirmed by manually computing standard error for GCA 

for both male and female parents and SCA for the hybrids following the procedure outlined by 

Cox and Frey (1984). 

Mid parent and high parent heterosis were computed to estimate the performance of the 

hybrids in relation to the mean and the best parents for each trait. The estimates of heterosis were 

obtained from average data of three environments using the formula given by Falconer and Mackay 

(1996): 

Mid-parent heterosis = [(F1-MP)/MP] x 100 

High-parent heterosis = [(F1 – HP)/HP] x 100 

Where, 

MP = mid parent value of the particular F1 cross [(P1 + P2)/2]. 

HP = high parent value in the particular F1 cross (P1 or P2). 

Test of significance: 

The significance of heterosis over mid-parent and high-parent were determined using a t-test 

(Wynne et al., 1970).  

 

 Results 

Analysis of the data showed significant differences between hybrids of A1 and A3 CMS systems 

for all parameters measured. All pollinator lines used in the study failed to restore fertility when 

crossed with females in A3 CMS system. This was confirmed by failure of the A3 hybrids to 

produce seeds when heads were covered prior to flowering (Figure 3.1).  On the other hand, all the 
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pollinators restored fertility in the A1 CMS system, confirmed by the fact that all A1 hybrids had 

normal seed set under pollination bags. 

  

 Analysis of variance 

Mean squares for the combined analysis of variance across the three environments for 

biofuel and agronomic traits are presented in Tables 3.1 and 3.3, respectively. Although there were 

significant environment and entry  environment interaction effects for most parameters, the 

pattern of the effects in an individual environment was generally consistent with the effects in the 

combined analysis (Appendix 1 and 2). 

In the combined analysis, environment, entry, and entry × environment interaction effects 

were highly significant (P ≤ 0.01) for all biofuel and agronomic traits except the effect for lodging 

was not significant for any sources of variation except entry (Tables 3.1 and 3.3). Partitioning the 

entry effect in to inbred, hybrid and inbred vs. hybrid components showed that all of them were 

significant for both agronomic parameters and biofuel traits (Tables 3.1 and 3.3).  

Further partitioning of the hybrid effect into male and female components revealed that 

both male and female parents and male × female interaction effects significantly contributed to 

variability observed among the hybrids (Tables 3.1 and 3.3). The male effect, also referred to as 

the general combining ability (GCA) for males, was highly significant (P ≤ 0.01) for all biofuel 

and agronomic traits. The GCA effect for females also was significant for all traits except for days 

to flowering. The male × female interaction effect, the specific combining ability (SCA), also was 

significant for all measured traits (Tables 3.1 and 3.3).  

Across all environments, the effect of hybrids based on A1 and A3 cytoplasm were 

significant for all biofuel and agronomic traits except for the effect of A3 hybrid on lodging (Tables 
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3.2 and 3.4). Cytoplasm effect (A1 vs. A3 hybrids) was not found to be significantly different for 

any of the agronomic traits except for head weight. Whereas, the effect was significant (P ≤ 0.05) 

for all biofuel traits, indicating that low or absence of seed set in A3 cytoplasm hybrids have had 

a direct effect on stalk sugar accumulation and biomass production (Table 3.2 and 3.4). The 

cytoplasm × environment interaction effect was significant (P ≤ 0.05) for juice and sugar yield and 

was highly significant (P ≤ 0.01) for lodging and head weight (Tables 3.2 and 3.4). 

  

 The effect of the grain sink on biofuel traits of sweet sorghum hybrids 

The effect of the grain sink is manifested by comparison of the A1 and A3 hybrids because 

all A3 hybrids failed to produce grain and hence did not have the grain sink. The mean squares for 

A1 vs. A3 component was highly significant for all the biofuel related traits (Table 3.2). Among 

hybrids, the across environment oBrix values ranged from 11.2 to 19.8% with mean of 15.6%. 

When disaggregated by the CMS system, the range of oBrix values in A1 hybrids extends from 

11.2 to 17.5% with a mean of 13.8% while the range in A3 hybrids was 14.8 to 19.8% with an 

average of 17.4% (Table 3.6). The mean oBrix was significantly different between A1 and A3 

CMS systems with the A3 hybrids having 26% more oBrix than the A1 hybrids. However, there 

was no genotype by CMS interaction observed with pollinators M81E, and No.8 consistently 

produced hybrids with superior oBrix percent in combination with all females of both CMS groups 

but the percentage was consistently greater in A3 than A1. Mean oBrix percent in the parental lines 

per se was comparable with that of the A1 hybrids (Tables 3.5 and 3.6) but was markedly less than 

that of the A3 hybrids (14.7 vs. 17.4). oBrix percent was understandably lower among the seed 

parents compared to the pollinator parents.  
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Similar to oBrix, there was wide variation observed for biomass production among the 

hybrids. The combined across environment biomass yield ranged from 9.19 to 26.5 Mg h-1 with a 

mean of 15.4 Mg h-1. But it was again different for the different CMS systems with yield among 

A1 hybrids ranging from 9.2 to 22.8 Mg h-1 and, among the A3 hybrids from 12.2 to 26.54 Mg h-

1 with mean of 13.4 and 17.3 Mg h-1 in A1 and A3 hybrids, respectively (Table 3.6). Hybrids of 

M81E and No.8 that had the greatest oBrix also produced the greatest biomass followed by hybrids 

of PI185672 in both A1 and A3 backgrounds. Again, the A3 hybrids produced 29.2% more 

biomass than A1 hybrids. Unlike the oBrix percent where the inbred per se had values comparable 

to those for A1 hybrids, mean biomass yield was remarkably higher in the hybrids than in the 

inbred lines. This is a commonly observed effect of heterosis where hybrids tend to accumulate 

more biomass than inbreds. Nevertheless, lines that had the greatest biomass yield in hybrid 

combination with the females also had greater relative biomass as inbred per se (Table 3.5 and 

3.6).  

Among the hybrids, juice yield ranged from 10.31 to 33.27 Mg h-1 with an average of 19.93 

Mg h-1 (Table 3.6). Hybrids KS57 × No.8, Tx399 × M81E and Tx623 × No.8 in A3 cytoplasmic 

backgrounds recorded the highest juice yield of 33.3, 31.1, and 30.2 Mg h-1, respectively (Table 

3.6). Similar to oBrix and biomass, mean juice yield was greater among the hybrids than the inbreds 

and among the A3 hybrids than A1 hybrids with hybrids No.8 and M81E continue ranking near 

the top in both A1 and A3 CMS hybrids.  

Similar to the juice yield, sugar yield also was higher in the hybrids with an across-

environment average of 2.69 Mg h-1 compared to 1.92 Mg h-1 in the male and 0.3 Mg h-1 in the 

female lines (Tables 3.5 and 3.6). Among the A1 hybrids, sugar yield ranged from 0.9 to 3.4 with 

an average of 1.9 Mg h-1 and, the range was 1.6 to 4.8 among A3 hybrids with an average of 2.9 
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Mg h-1 (Table 3.6). Hybrids Ks57 × No.8, Tx399 × M81E and Tx623 × No.8 in A3 hybrids 

recorded the highest sugar yield of 4.8, 4.5 and 4.3 Mg h-1, respectively, while the hybrids Tx399 

× M81E, Tx623 × No.8 and Ks57 × No.8 recorded highest sugar yield in A1 hybrids with values 

of 3.4, 3.2 and 3.1 Mg h-1, respectively (Table 3.6). Among the parental lines, pollinators No.8 and 

M81E produced significantly greater sugar yield with a mean of 3.5 and 3.0 Mg h-1, respectively 

(Table 3.5).  

  

 The effect of A3 system on agronomic traits 

As revealed in the ANOVA, mean agronomic parameters, including days to flowering and 

plant height, were significantly different among the entries (inbreds and hybrids). However, unlike 

for other traits, the effect of CMS system was not significant except for panicle weight. Given the 

variation in plant height and days to flowering among inbreds, variation for those traits among the 

hybrids was expected. Because differences between A1 and A3 hybrids is largely the result of 

cytoplasmic mutation and fertility restorer genes in the nucleus, the CMS was not expected to 

cause difference in the agronomic traits. However, because of poor fertility restoration in A3 

cytoplasmic system, seed set was low in A3 hybrids, and thus there was significant effect of CMS 

on panicle weight of the hybrids (Appendix 3).  
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Table 3.1. Combined analysis of variance for biofuel traits of sweet sorghum genotypes grown at 

Manhattan, KS during 2013, 2014, and 2015 sowing season.   

 

Source of variation df 

Mean squares 

oBrix 

(%) 

Biomass 

  Yield 

(Mg ha-1) 

Juice     

yield 

(Mg ha-1) 

Sugar   

yield 

(Mg ha-1) 

Environment (E) 2 130.98** 588.22** 7099.91** 100.05** 

Replication / E 6 1.51 17.55** 10.47* 0.26* 

Entry 97 71.24** 246.01** 403.35** 9.74** 

   Inbred 17 98.83** 252.19** 498.79** 10.16** 

   Hybrid 79 49.52** 187.29** 265.46** 7.41** 

      Male 9 104.65** 1114.93** 1369.83** 31.74** 

      Female 7 348.96** 434.89** 671.52* 31.08** 

      Male  Female 63 8.38** 27.27** 62.58** 1.30** 

   Inbred vs. Hybrid 1 1317.97* 4779.26* 9674.19* 186.87 

Entry  E 194 6.65** 16.87** 48.91** 1.05** 

  Inbred  E 34 6.52* 8.66** 26.72** 0.42** 

  Hybrid  E 158 5.7** 18.14** 49.32** 1.03** 

     Male  E 18 12.6** 49.90** 155.34** 3.16** 

     Female  E 14 4.51* 17.25** 75.75** 1.75** 

     Male  Female  E 126 4.84** 13.70** 31.24** 0.67** 

   Inbred vs. Hybrid  E 2 84.38* 56.04 393.46* 13.03** 

Error 582 2.25 3.5 2.81 0.1 

 

 

  

**, * statistically significant at 1% and 5% levels of probability. 
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Table 3.2. Combined analysis of variance for biofuel traits of iso-nuclear sweet sorghum hybrids 

grown at Manhattan, KS during 2013, 2014, and 2015 sowing season.   

 

      **, * statistically significant at 1% and 5% levels of probability. 

 

  

Source of variation df 

Mean squares 

oBrix 

(%) 

Biomass 

  Yield 

(Mg ha-1) 

Juice     

yield 

(Mg ha-1) 

Sugar   

yield 

(Mg ha-1) 

   Hybrid 79 49.52** 187.29** 265.46** 7.41** 

     A1 hybrids 39 21.49** 132.53** 216.57** 4.13** 

     A3 hybrids 39 16.82** 175.75** 228.03** 5.62** 

     A1 vs. A3 hybrids 1 2418.16* 2773.64* 3632.18* 204.62* 

  Hybrid  E 158 5.7** 18.14** 49.32** 1.03** 

     A1 hybrid  E 78 6.21** 13.05** 39.79** 0.67** 

     A3 hybrid  E 78 5.1** 23.28* 55.77** 1.29** 

     A1 vs. A3 hybrids  E 2 8.85 15.94 169.41* 5.35* 

Error 474 2.13 3.86 2.9 0.11 
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Table 3.3. Combined analysis of variance for agronomic traits of sorghum genotypes grown at 

Manhattan, KS during 2013, 2014, and 2015 sowing season.   

 

Source of variation df 

Mean squares  

Day to 

flowering 
Lodging 

Plant 

Height 

(m) 

Heads 

weight 

(Mg ha-1) 

Environment (E) 2 4640.98* 4.87 1106819** 205.52** 

Replication /E 6 431.18** 2.09** 1472.43** 3.45** 

Entry 97 869.62** 1.32** 25760** 78.05** 

   Inbred 17 772.57** 0.99* 59048** 18.83* 

   Hybrid 79 877.88** 1.4** 10386** 91.74** 

      Male 9 7005.41** 5.27** 71287** 18.76* 

      Female 7 198.86 3.65* 14987* 928.11** 

      Male x Female 63 77.97** 0.60** 1174.79** 9.23** 

   Inbred vs. Hybrid 1 1866.58 0.33 674383* 3.15 

Entry  E 194 81.42** 0.42** 1927.46** 8.06** 

   Inbred  E 34 88.71** 0.43* 2560.6** 8.38** 

   Hybrid  E 158 78.3** 0.42** 1293.76** 8.02** 

     Male  E 18 130.62** 0.29 2788.06** 7.87** 

     Female  E 14 141.9** 0.77** 1605.58** 20.33** 

     Male  Female  E 126 63.75** 0.40** 1045.65** 6.67** 

   Inbred vs. Hybrid  E 2 204.03 0.47 41226** 5.55 

Error 582 20.34 0.19 185.94 0.65 

        **, * statistically significant at 1% and 5% levels of probability. 
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Table 3.4. Combined analysis of variance for agronomic traits of iso-nuclear sweet sorghum 

hybrids grown at Manhattan, KS during 2013, 2014, and 2015 sowing season. 

 

      **, * statistically significant at 1% and 5% levels of probability. 

 

 

Source of variation df 

Mean squares 

Day to 

flowering 
Lodging 

Plant 

height 

(m) 

Heads 

weight 

(Mg ha-1) 

   Hybrid 79 877.88** 1.4** 10386** 91.74** 

     A1 hybrids 39 919** 2.14** 9483.67** 18.05 

     A3 hybrids 39 832** 0.27 11555** 1.53* 

     A1 vs. A3 hybrids 1 1063.36 17.11 12.27 6483.84* 

  Hybrid  E 158 78.3** 0.42** 1293.76** 8.02** 

     A1 hybrid  E 78 60.06** 0.48** 1362.18** 13.38** 

     A3 hybrid  E 78 96.07** 0.25* 1220.61** 0.57** 

     A1 vs. A3 hybrids  E 2 96.33 4.52** 1478.51 89.29** 

Error 474 22.59 0.19 208.44 0.64 



87 

 

Table 3.5. Combined mean performance of sorghum parental lines for biofuel and agronomic traits grown at Manhattan, KS in 

2013, 2014, and 2015 sowing season. 

 

Entries 
oBrix 

(%) 
 

Biomass 

yield 

(Mg ha-1) 

 
Juice 

yield 

(Mg ha-1) 

 
Sugar 

yield 

(Mg ha-1) 

 Day to 

flowering 
 Lodging  

Plant 

height 

(m) 

 
Head 

weight 

(Mg ha-1) 
  

Females         

  

      

Tx399 8.72 b 5.46  4.66  0.30  67.9 ab 1.01  88.2 b 4.40  
Tx623 9.38 a 5.39  4.83  0.32  69.3 a 1.00  103.6 a 4.35  
Ks57 9.00 ab 5.21  4.93  0.31  66.0 b 1.02  84.2 b 5.06  
N122 9.57 a 4.99  5.06  0.38  70.2 a 1.00  78.8 c 4.38  
Mean  9.17 5.26  4.87  0.33        68.4 1.01   88.7 4.55  
LSD (0.05) 1.07        NS  NS  NS       2.6 NS    4.07 NS   
Males         

  
      

Atlas 15.3 dc 14.7 c 21.9 b 2.6 c 81.9 c 1.4 bc 250.8 cb 7.2 b 

Early hegari 8.4 f 6.0 h 9.0 g 0.6 g 68.3 gf 1.4 bc 149.9 e 5.4 ed 

Kansas collier 17.1 ba 9.0 g 14.3 e 1.8 ed 66.7 g 1.4 bc 217.3 d 5.0 ef 

M81E 17.6 a 17.9 b 23.5 b 3.1 b 89.3 b 1.2 c 311.9 a 4.5 f 

Masuda 15.8 bc 11.7 ed 16.5 dc 1.9 d 74.2 ed 1.9 ba 242.4 c 4.6 f 

No.8 17.5 a 23.9 a 27.2 a 3.6 a 96.1 a 1.0 c 244.4 cb 8.5 a 

PI185672 13.8 de 10.0 egf 9.3 g 1.0 f 89.2 b 2.1 a 245.4 cb 5.5 ed 

Kaoliang 12.6 e 12.3 d 11.8 f 1.1 f 82.3 c 1.3 bc 253.2 b 9.0 a 

Rox orange 13.8 de 10.9 edf 15.1 de 1.5 e 77.6 d 1.4 bc 219.6 d 6.0 cd 

Sugar drip 15.0 dc 9.7 gf 17.5 c 2.0 d 71.4 ef 1.3 bc 223.0 d 6.7 cb 

Mean 14.7     12.62       16.6       1.92        79.71      1.47            235.8          6.22 

LSD (0.05) 1.55    1.63       1.84        0.33      3.51      0.59      10.62          0.73 

LSD, least significant difference; NS, not significant. 

Means within the same column with different letter are significantly different at P<0.05. 
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Table 3.6. Combined mean performance of sweet sorghum hybrids for biofuel traits as influenced by male-sterility inducing 

cytoplasm evaluated at Manhattan, KS in 2013, 2014, and 2015 sowing season.   

 

Hybrids 

oBrix 

(%) 

Biomass yield 

(Mg ha-1) 

Juice yield 

(Mg ha-1) 

Sugar yield 

(Mg ha-1) 

A1 A3 Diff. A1 A3       Diff. A1 A3 Diff.   A1   A3 Diff. 

Tx399  Atlas 13.2 h-n 17.9 d-i ** 12.2 hgi 12.2 w NS 17.8 j 20.8 lmn NS 1.8 lmn 2.7 j-n * 

Tx399  Early hegari 13.7 f-k 17.4 g-j ** 12.7 fg 16.7 i-n NS 18 ij 22.7 ijk NS 2 lk 3.1 g-j * 

Tx399  Kansas collier 13.4 f-n 16.5 i-m * 10.7 j-n 13.1 r-w NS 14.5 o-s 18.3 op NS 1.5 o-r 2.3 qpo NS 

Tx399  M81E 16 a-e 18.9 a-d * 21.3 b 21.9 feg NS 28.3 a 31.1 b NS 3.4 a 4.5 b * 

Tx399  Masuda 12.4 l-p 15.8 n-q * 12 g-j 16.9 i-m * 14.5 p-s 19.8 omn * 1.4 p-s 2.5 l-p * 

Tx399  No.8 14.7 d-h 19.8 a ** 22 ba 24.7 bac NS 26.1 cb 28.7 c-f NS 2.9 edc 4.3 cbd ** 

Tx399  PI185672 13.3 g-n 15.5 n-q * 18.3 dc 22.1 d-g NS 23.5 ed 25.8 gh NS 2.3 ihj 3 hji NS 

Tx399  Kaoliang 12.8 k-o 15.5 n-q * 12.4 hg 18.8 ih * 12.5 tu 15.1 sr NS 1.2 str 1.8 ts NS 

Tx399  Rox orange 13.1 i-n 16.4 k-n * 9.4 mn 13.1 r-w NS 13.5 ts 16.5 qr NS 1.3 p-s 2 qrs NS 

Tx399  Sugar drip 14.2 f-k 17.7 e-i ** 10.2 l-n 13.5 q-w NS 16.1 k-n 19 on NS 1.7 l-n 2.5 l-o NS 

Tx623  Atlas 14.6 d-i 17.5 g-j * 11.7 g-k 13.4 q-w NS 11.5 vu 14.8 sr NS 1.3 p-s 1.9 trs NS 

Tx623  Early hegari 12.7 k-p 18 d-i ** 12.8 fg 17.2 ijk * 21.3 gf 23.9 ij NS 2.1 kj 3.2 hg * 

Tx623  Kansas collier 14.4 e-j 17 i-m * 10.8 i-m 14.7 n-t NS 15.9 k-o 19.8 omn NS 1.7 l-n 2.5 l-p NS 

Tx623  M81E 16.5 bac 19.2 bac * 19.6 c 24.1 bdc * 25.9 cb 27.5 gf NS 3.2 ba 3.9 ed NS 

Tx623  Masuda 13 i-n 17.9 d-i ** 11.2 i-l 12.6 vwu NS 14.2 qrs 21.1 lmk * 1.4 p-s 2.8 j-m ** 

Tx623  No.8 16 a-d 19.2 bac * 17.8 d 25 ba ** 22 f 30.2 cbd ** 2.6 egf 4.3 cb ** 

Tx623  PI185672 12.8 k-o 15.1 qpo * 22.9 a 23.9 b-d NS 26.9 b 28.1 ef NS 2.6 ghf 3.2 hg NS 

Tx623  Kaoliang 12.3 l-p 15 qp * 13.1 fg 14.3 p-v NS 12.6 tu 15.3 sr NS 1.1 st 1.7 ts NS 

Tx623  Rox orange 13.7 f-k 17.4 g-j ** 10.9 i-m 14.1 q-w NS 15.1 m-q 19 on NS 1.5 m-p 2.5 m-p * 

Tx623  Sugar drip 13.7 f-k 18.3 b-h ** 11.9 g-j 17.7 ij * 19.3 ih 28.4 efd ** 2 lk 3.9 ed ** 

Ks57  Atlas 14.7 d-h 17.6 g-i * 14.2 fe 14.7 o-t NS 21.6 gf 22.2 ljk NS 2.5 igh 2.9 h-k * 
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A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background. 

ᵃLSD least significant difference between hybrids within same CMS system. 

 ᵇLSD least significant difference between A1 and A3 CMS systems. 

 Means within the same column with different letter are significantly different at P ≤ 0.05. 

 

Ks57  Early hegari 11.3 po 17.1 i-m ** 12 g-j 15 m-r NS 17.1 kj 19.5 omn NS 1.5 o-r 2.6 k-n * 

Ks57  Kansas collier 12 m-p 18.7 b-f ** 10 mln 14.8 m-s * 15.3 m-q 22.6 ijk * 1.3 p-s 3.2 hgi * 

Ks57  M81E 17 ba 19.3 bac * 15.6 e 20.2 hg * 22 f 27.3 gf * 2.8 edf 4 ced * 

Ks57  Masuda 12.1 m-p 16 m-p ** 10.5 j-n 14.7 n-t * 16.3 klm 21.1 lmk NS 1.5 n-q 2.6 l-o * 

Ks57  No.8 15.8 b-e 19.4 ba ** 17.5 d 26.5 a ** 25.6 cb 33.3 a * 3.1 bac 4.8 a * 

Ks57  PI185672 14.4 e-j 17.4 g-j * 17.9 d 21.6 fg NS 24.9 cd 25.9 g NS 2.7 d-f 3.4 fg NS 

Ks57  Kaoliang 12.7 k-p 15.6 n-q * 10.3 l-n 12.4 vw NS 12.4 tu 18.9 op * 1.1 st 2.2 qpr * 

Ks57  Rox orange 13.6 f-m 17.8 d-i ** 11.6 g-k 12.9 s-w NS 13.6 trs 18.9 op * 1.4 p-s 2.5 m-p * 

Ks57  Sugar drip 12.2 l-p 15.7 n-q * 10.2 l-n 16.3 j-n * 16.4 kl 24.1 ih * 1.5 o-r 2.8 i-l ** 

N122  Atlas 15.9 b-e 18.4 b-g * 12.3 hgi 16.1 j-p NS 12.4 tu 18.6 op * 1.5 n-q 2.5 l-o * 

N122  Early hegari 12.8 k-o 18.3 b-h ** 9.7 mln 12.3 vw NS 12.7 tu 17.2 qp NS 1.2 str 2.4 npo * 

N122  Kansas collier 13 j-n 18.8 a-e ** 9.8 mln 14.6 o-u * 13.3 ts 21.2 lmk * 1.2 sqr 3 hji ** 

N122  M81E 17.5 a 18.7 a-f NS 17.8 d 22.3 fed * 22.5 ef 29.3 b-e * 3 bdc 4.1 cd * 

N122  Masuda 13.8 f-k 18.2 c-h ** 10.8 i-m 17.1 i-l * 14.9 n-r 20 omn * 1.5 n-q 2.7 j-n * 

N122  No.8 15 c-f 18.3 b-h * 15.1 e 22.7 c-f ** 15.9 k-p 18.6 op NS 1.8 lm 2.6 k-n NS 

N122  PI185672 14.8 d-g 16.2 l-n NS 17.8 d 25.9 ba ** 20.2 gh 30.3 cb ** 2.3 ij 3.7 fe ** 

N122  Kaoliang 11.9 pno 14.8 q * 10.5 j-n 15.3 k-q * 10.3 v 14.5 s NS 0.9 t 1.6 t * 

N122  Rox orange 13.1 i-n 17.2 h-l ** 9.4 mn 15.1 l-r * 15.4 m-q 19 op NS 1.5 n-q 2.4 npo * 

N122  Sugar drip 11.2 p 18.5 b-g ** 9.2 n 12.7 t-w NS 15 m-q 18.8 op NS 1.2 sqr 2.6 l-o * 

Mean 13.8 17.4   13.4 17.3   17.7 22.2  ** 1.9 2.9  ** 

ᵃLSD (0.05) 1.6 1.1  1.5 2.1  1.3 1.8     0.3  0.3 
 

ᵇLSD (0.05) 0.32   0.71   0.88   0.13   
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 Combining Ability  

The ANOVA tables 3.1 and 3.3 depict both general combining ability (GCA) effects for both male 

and female parents included in the test and also a specific combining ability (SCA) effect referred 

to as the male × female interaction. Both GCA and SCA were significant (P ≤ 0.01) for the majority 

of biofuel and agronomic traits, except female GCA effects for days to flowering. The GCA × 

environment interaction also was significant (P ≤ 0.01) for these traits except male GCA × 

environment effect for lodging. The SCA × environment interaction was significant (P ≤ 0.01) for 

all traits (Tables 3.1 and 3.3).  

 

 Cytoplasmic effects on General Combining Ability (GCA) Effects 

The estimates of cytoplasmic effects on GCA for female and male lines with respect to biofuel and 

agronomic traits are presented in Tables 3.7 and 3.8.  

 

 GCA effect for biofuel traits 

Most of the pollinator lines included in the test had significant GCA for one or more of the biofuel 

traits with few genotypes consistently expressing positive GCA for the trait indicating their value 

for use directly as a hybrid parent or as a parental source for breeding sugar-based biofuel feedstock 

cultivars.  

For oBrix percentage, none of the female parents had significant GCA in either A1 or A3 

CMS systems except Tx399 had significant negative GCA in the A3 CMS system. As shown in 

their hybrid means, pollinator lines M81E, No.8, and Atlas showed significant and positive GCA 

for oBrix in both A1 and A3 CMS systems. On the other hand, male lines Masuda and Kaoliang 

showed significant negative GCA for the trait in both A1 and A3 CMS systems. Few other 
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pollinators, such as Early hegari, Rox orange and sugar drip exhibited significant negative GCA 

in A1 and were not significant in A3 CMS system, but GCA for others (PI185672 and Kansas 

collier) had the opposite result (Table 3.7). 

For biomass production, female parents Tx623 followed by Tx399 had significant positive 

GCA, but the other two had significant but negative GCA for the same trait in A1 CMS system. 

No female parents were significant in A3 except KS57 that had significant negative GCA (Table 

3.7). On the other hand, all pollinator lines had significant GCA for the trait. The three lines, M81E, 

No.8, and PI185672, that produced high biomass hybrids in both A1 and A3 CMS systems, also 

had the highest positive and significant GCA for the trait. All other pollinators had significant 

negative GCA for the trait with lines such as Rox orange, Kansas collier and Sugar drip having the 

greatest negative GCA (Table 3.7). 

The GCA for juice and sugar yield in A1 and A3 CMS systems were generally similar. 

Female lines Tx623 and Ks57 exhibited highly significant positive GCA for both juice and sugar 

yield in both A1 and A3 CMS backgrounds. Further, female Tx399 exhibited significant positive 

GCA in A1 CMS but was negative in A3 (Table 3.7). In contrast, female N122 exhibited highly 

significant negative GCA in both A1 and A3 CMS background. As noted for other traits, pollinator 

lines M81E, No.8 and PI185672 were found to have significant positive GCA for both sugar and 

juice yield in both A1 and A3 CMS backgrounds while all the reimaging pollinator had significant 

negative GCA for both juice and sugar yield in both CMS systems (Table 3.7). 

  

 Heterosis for biofuel and agronomic traits 

Heterosis is a genetic mechanism where the performance of an F1 hybrid between a given parental 

lines is considerably superior from the performance of both of the parents (high parent heterosis) 
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or average performance of the parents (mid-parent heterosis). In this study both mid-parent and 

high-parent heterosis were observed for various traits studied. Tables 3.10 and 3.11, and Appendix 

5 and 6 show the list of hybrids and the heterosis for various traits in both A1 and A3 backgrounds.  

Heterosis was markedly different for the two CMS systems, at least for some of the traits. 

For oBrix MPH ranged from -12.4 to 30.3% in A1 hybrids with the lowest and highest recorded in 

N122  Sugar drip and the highest in Tx399 x Early hegari. Ten A1 hybrids exhibited positive 

significant MPH for the trait while other were either non-significant or significant but negative. In 

A3 hybrids, the average MPH for oBrix ranged from 23.4 to 60.7%, much larger than that of A1 

hybrids. All hybrids had highly significant positive MPH (Table 3.10). On the other hand, HPH 

among A1 hybrids ranged from -29 to 26.5% with only 7 of them being positive and significant. 

The majority of the A3 hybrids exhibited positive and significant HPH except for two entries 

Tx399  Kansas collier and Tx623  Kansas collier, that had negative and significant HPH of -

3.2% and -0.7%, respectively (Table 3.11).  

For biomass yield, all hybrids outperformed the mean of their parents with MPH among 

A1 hybrids ranging from 4.5 to 79.2%. Out of 40 hybrids, 16 had significant positive MPH with 

N122 x No.8 having the smallest and Tx623  PI185672 having the greatest MPH value. Among 

the A3 hybrids, all of the hybrids showed significant positive MPH for biomass yield except 

hybrids Ks57  Kaoliang, Tx623  Atlas, and Tx399  Atlas (Table 3.10). Several hybrids 

produced relatively less biomass than the high parent with HPH ranging from -36.8 to 35.5%. Only 

12 A1 hybrids out of 40 had significant positive HPH while the others were either not significant 

or negative. Although the majority of the A3 hybrids expressed positive and significant HPH with 

the maximum HPH of 89.8%, a few had negative HPH of as low as -17.1% (Table 3.11).  
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Similar to oBrix, both positive and negative MPH were observed for juice yield with values 

for A1 hybrids ranging from -13.8 to 96.5% (Table 3.10). Hybrid Tx623  PI185672 exhibited 

highest significant positive MPH followed by Ks57  PI185672, Tx399  PI185672 and Tx623  

Early hegari. On the other hand, hybrids of Atlas and No.8 (Tx623  Atlas, N122  Atlas and 

N122  No.8) showed negative heterosis.  Unlike in the A1 hybrids, MPH in A3 hybrids was all 

positive and ranged from 10 to 137.1% with hybrids Ks57  PI185672, Tx399  PI185672, and 

Tx623  Early hegari having the highest and significant positive MPH for the trait, and hybrids 

N122  Atlas and N122  No.8 having the lowest (Table 3.10). HPH for the trait ranged from as 

low as -47.4 to 36.2% in A1 hybrids and -32.3 to 99.5% in A3 hybrids. Only ten hybrids showed 

significant positive HPH in A1 cytoplasm while most A3 hydrides had positive and significant 

HPH for the trait. 

MPH for sugar yield was positive in both A1 and A3 hybrids though it was significantly 

greater in the A3 hybrids. The range was 10.9 to 101% in A1 hybrids and 33.2 to 183.5% in A3 

hybrids. Hybrids Tx623  Early hegari, Tx399  Early hegari, Ks57  PI185672, and Tx623  

PI185672 recorded the highest significant positive MPH in both A1 and A3 backgrounds, while 

N122  Atlas and N122  No.8 were the lowest in both CMS systems (Table 3.10). HPH for sugar 

yield, however, ranged from as low as -49.8 to 27.4% in A1 hybrids and from -26.1 to 111.9% in 

A3 hybrids. Again, most A3 hybrids exhibited highly significant positive HPH and only three 

hybrids showed significant negative HPH (Table 3.11).  

Heterosis for agronomic traits is widely known for sorghum, and the current study agrees 

with the general observation for the species. For days to flowering, high parent heterosis tends to 

be negative since they reach anthesis earlier than the latest parent note necessarily earlier than the 

average of the parents. In this study MPH ranged from -8.6 to 27.2% and -4.3 to 26.8% in A1 and 
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A3 hybrids respectively. Hybrids tend to be taller than their inbred parents. Hence MPH for plant 

height was all positive and ranged from 20.5 to 89.7% and 26.7 to 92.6% among A1 and A3 

hybrids, respectively (Appendix 6). Since A3 CMS has very few restorers, most of the A3 hybrids 

were sterile, and hence there was no significant difference in head weight among A3 hybrids. But 

among A1 hybrids, MPH for head weight ranged from -7.5 to 98.7% with hybrids N122 x Kansas 

collier, N122 x Masuda, Tx399 x M81E and Tx399 x Masuda having the highest positive MPH 

(Appendix 6). 

  

 Genotypic and phenotypic correlation for biofuel and agronomic traits 

Correlations among some biofuel and agronomic traits are presented in Table 3.12. Highly positive 

significant correlation was shown between days to flowering and plant height, biomass yield, juice 

yield and, sugar yield, but it was significantly negative with lodging for both A1 and A3 hybrids. 

There was also a significant positive correlation between days to flowering with oBrix for both 

cytoplasms. Further, days to flowering was positively correlated with head weight for A3 hybrids 

but negatively correlated for A1 hybrids, which indicates that this traits association affected by 

cytoplasm (Table 3.12).  

Lodging score was significantly and negatively correlated with biomass yield but exhibited 

non-significant correlation with head weight in both A1 and A3 hybrids. Significant negative 

correlation also was recorded between lodging and plant height, oBrix, juice and sugar yield for 

A1hybrids but it showed non-significant correlation with these characters in A3 hybrids. Highly 

positive significant correlation was shown between plant height and biomass yield, juice and sugar 

yield in A1 and A3 hybrids. Moreover, plant height recorded significant positive correlation with 

oBrix at A1 hybrids and non-significant correlation in A3 hybrids. Further, the correlation between 
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plant height and head weight was significantly positive for A3 hybrids and did not show such 

correlation in A1 hybrids (Table 3.12). 

Highly significant and positive correlation was observed between oBrix, juice, and sugar 

yield in both A1 and A3 highly positive correlation was shown between oBrix and biomass yield 

for A1 hybrids, but the correlation in A3 it was not significant. Biomass yield was significantly 

and positively correlated with juice and sugar yield and juice yield, was significantly and positively 

correlated with sugar yield in both A1 and A3 hybrids (Table 3.12). 
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Table 3.7. Estimates of general combining ability (GCA) effects of parental lines for biofuel traits evaluated at Manhattan, KS during 

2013, 2014, and 2015 sowing season.   

 

Entries 

oBrix 

(%) 

Biomass yield 

(Mg ha-1) 

             Juice yield 

     (Mg ha-1) 

Sugar yield 

  (Mg ha-1) 

A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. 

Females             

Tx399 -0.11 -0.30* NS 0.71* -0.04 * 0.80** -0.40* ** 0.07* -0.07* ** 

Tx623 0.19 0.01 NS 0.85* 0.36 NS 0.80** 0.64** NS 0.09* 0.07* NS 

Ks57 -0.2 0.01 NS -0.41* -0.41* NS 0.83** 1.19** NS 0.08* 0.16** * 

N122 0.11 0.29 NS -1.14** 0.09 ** -2.42** -1.43** ** -0.25** -0.16** * 

Males             

Atlas 0.82** 0.40* NS -0.80** -3.23** ** -1.86** -3.08** ** -0.10* -0.40** ** 

Early hegari 1.15** 0.25 ** -1.59** -2.03** NS -0.41* -1.35** ** -0.18** -0.10* NS 

Kansas collier -0.56** 0.29 ** -3.06** -3.01** NS -2.93** -1.69** ** -0.43** -0.20** ** 

M81E 2.96** 1.59** * 5.17** 4.78** NS 7.00** 6.61** ** 1.23** 1.18** NS 

Masuda -0.96** -0.47* * -2.29** -2.00** NS -2.71** -1.67** NS -0.43** -0.28** * 

No.8 1.61** 1.72** NS 4.70** 7.40** ** 4.71** 5.50** ** 0.76** 1.06** ** 

PI185672 0.04 -1.39** ** 5.81** 6.03** NS 6.18** 5.35** * 0.61** 0.39** ** 

Kaoliang -1.37** -2.23** ** -1.81** -2.13** NS -5.74** -6.24** * -0.77** -1.11** ** 

Rox orange -0.41* -0.24 NS -3.09** -3.54** NS -3.27** -3.84** NS -0.42** -0.58** * 

Sugar drip -0.98** 0.07 ** -3.03** -2.26** ** -0.98** 0.41* ** -0.27** 0.03 ** 

**, * statistically significant at 1% and 5% levels of probability; NS, non-significant. 

 A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background. 
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Table 3.8. Estimates of general combining ability (GCA) effects of parental lines for agronomic traits evaluated at Manhattan, KS 

during 2013, 2014, and 2015 sowing season.   

 

Entries 
Day to flowering Lodging 

Plant height 

(m) 

Head weight 

(Mg ha-1) 

A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. 

Females             

Tx399 0.9 0.18 NS -0.25** 0.01 ** 4.58* 5.51** ** -0.13 0.1 ** 

Tx623 0.81 -0.01 NS 0.07 0.02 NS 17.36** 19.86** NS 0.04 -0.13 ** 

Ks57 -0.75 0.47 NS 0.05 0.03 NS -6.86** -2.64* ** 0.17* 0.19* NS 

N122 -0.96* -0.65 NS 0.14* -0.06 ** -15.08** -11.72** NS -0.08 -0.16 NS 

Males             

Atlas -5.60** -3.00** ** -0.10* 0.18** ** -21.64** -19.82** NS 0.75** -0.12 ** 

Early hegari 3.07* 2.06* NS -0.13* -0.1 NS -25.73** -26.32** NS 0.36** 0.19* ** 

Kansas collier -9.43** -11.11** * 0.51** 0.18** ** -16.28** -17.99** NS 0.18 -0.26* ** 

M81E 12.10** 11.64** NS -0.33** -0.07 ** 54.22** 57.98** NS 0.46** 0.25* ** 

Masuda -6.57** -5.86** NS 0.93** 0.23** ** -16.45** -9.88** NS 0.64** -0.16 ** 

No.8 11.87** 10.78** NS -0.46** -0.1 ** 28.97** 29.59** NS 0.34** 0.47** ** 

PI185672 16.51** 15.97** NS -0.27** -0.1 * 35.33** 48.98** NS 1.92** 0.20* ** 

Kaoliang -5.04** -3.36** * -0.21** -0.13* NS 7.99** 1.4 * 1.16** 0.08 ** 

Rox orange -5.96** -6.33** NS -0.13* -0.02 NS -22.92** -36.93** ** -1.55** -0.31** ** 

Sugar drip -10.96** -10.78** NS 0.20** -0.07 ** -23.48** -27.02** NS 0.25* -0.33** ** 

**, * statistically significant at 1% and 5% levels of probability; NS, non-significant. 

 A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background. 
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Table 3.9. Estimates of specific combining ability (SCA) effects of sweet sorghum hybrids for biofuel traits evaluated at Manhattan, 

KS during 2013, 2014, and 2015 sowing season 

  

Hybrids 

oBrix 

(%) 

Biomass yield 

(Mg ha-1) 

Juice yield 

(Mg ha-1) 

Sugar yield 

(Mg ha-1) 

A1 A3 A1 A3 A1 A3 A1 A3 

Tx399  Atlas -1.29* 0.32 
a
 -1.10 -1.87* 1.21* 2.07**

 a
 -0.06 0.27*

 a
 

Tx399  Early hegari 1.13* -0.02 0.22 1.49*
 a

 -0.09 2.22**
 a

 0.19 0.31*
 a

 

Tx399  Kansas collier 0.31 -0.89 -0.40 -1.20 -1.01 -1.76* -0.06 -0.39** 

Tx399  M81E -0.66 0.19
 a

 1.97* -0.22 2.80** 2.69** 0.22* 0.41** 

Tx399  Masuda -0.28 -0.85 0.16 1.60*
 a

 -1.26* -0.28 -0.16 -0.08 

Tx399  No.8 -0.56 0.92 a 3.20** -0.02
 a

 2.91** 1.42* 0.20 0.33*
 a

 

Tx399  PI185672 -0.43 -0.28 -1.66* -1.24 -1.13* -1.30* -0.21 -0.27* 

Tx399  Kaoliang 0.49 0.61 0.13 3.63**
 a

 -0.27 -0.44 0.02 0.03 

Tx399  Rox orange -0.20 -0.47 -1.62* -0.63 -1.73* -1.46* -0.19 -0.25* 

Tx399  Sugar drip 1.49* 0.47 -0.91 -1.53* -1.44* -3.14** 0.04 -0.36**
 a

 

Tx623  Atlas -0.22 -0.32 -1.79* -1.08 -5.11** -4.92** -0.57** -0.68** 

Tx623  Early hegari -0.10 0.33
 a

 0.14 1.51*
 a

 3.22** 2.44** 0.34* 0.34* 

Tx623  Kansas collier 1.01* -0.77 -0.34 0.01 0.36 -1.30* 0.20 -0.29* 

Tx623  M81E -0.46 0.13
 a

 0.15 1.64*
 a

 0.45 -1.97** 0.01 -0.26* 

Tx623  Masuda 0.03 0.88
 a

 -0.80 -3.08** -1.56* -0.01 -0.15 0.08 

Tx623  No.8 0.45 0.02 -1.18 -0.11 -1.15* 1.85**
 a

 -0.09 0.22 

Tx623  PI185672 -1.23* -0.95* 2.80** 0.17
 a

 2.20** -0.07
 a

 0.03 -0.21 

Tx623  Kaoliang -0.32 -0.23 0.67 -1.29* -0.15 -1.27* -0.05 -0.15 

Tx623  Rox orange 0.17 0.16 -0.30 -0.07 -0.10 0.05 0.01 0.06 

Tx623  Sugar drip 0.67 0.75 0.66 2.30**
 a

 1.84** 5.20**
 a

 0.28* 0.89**
 a

 

Ks57  Atlas 0.31 -0.22 2.02* 0.98 4.90** 1.92**
 a

 0.63** 0.25* 
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Hybrids 

oBrix 

(%) 

Biomass yield 

(Mg ha-1) 

Juice yield 

(Mg ha-1) 

Sugar yield 

(Mg ha-1) 

A1 A3 A1 A3 A1 A3 A1 A3 

Ks57  Early hegari -1.09* -0.61 0.57 0.12 -0.98 -2.50** -0.29* -0.37** 

Ks57  Kansas collier -0.98* 0.91
 a

 0.09 0.94 -0.32 0.94 -0.19 0.26*
 a

 

Ks57  M81E 0.48 0.26 -2.55** -1.51*
 a

 -3.50** -2.69** -0.34* -0.29* 

Ks57  Masuda -0.57 -1.01* -0.21 -0.18 0.50 -0.65 -0.01 -0.24* 

Ks57  No.8 0.63 0.20 -0.18 2.22**
 a

 2.35** 4.39**
 a

 0.44** 0.65**
 a

 

Ks57  PI185672 0.80 1.37*
 a

 -0.88 -1.37* 0.16 -2.85** 0.14 -0.09 

Ks57  Kaoliang 0.45 0.37 -0.88 -2.37** -0.37 1.76*
 a

 -0.04 0.19 

Ks57  Rox orange 0.39 0.60 1.73* -0.50 -1.61* -0.64 -0.14 -0.05 

Ks57  Sugar drip -0.41 -1.87** 0.28 1.67*
 a

 -1.12* 0.33
 a

 -0.20 -0.30* 

N122  Atlas 1.20* 0.23 0.87 1.97*
 a

 -1.00 0.93 0.00 0.16
 a

 

N122  Early hegari 0.06 0.30 -0.93 -3.12** -2.15** -2.16** -0.24* -0.27* 

N122  Kansas collier -0.34 0.75
 a

 0.65 0.24 0.98 2.12**
 a

 0.04 0.43**
 a

 

N122  M81E 0.64 -0.59 0.42 0.09 0.26 1.98**
 a

 0.11 0.14 

N122  Masuda 0.82 0.97* 0.85 1.66* 2.31** 0.95
 a

 0.33* 0.24* 

N122  No.8 -0.51 -1.14* -1.84* -2.10** -4.11** -7.66**
 a

 -0.55** -1.20**
 a

 

N122  PI185672 0.86 -0.15 -0.27 2.45**
 a

 -1.23* 4.22**
 a

 0.04 0.56**
 a

 

N122  Kaoliang -0.63 -0.74 0.08 0.04 0.79 -0.04 0.07 -0.06 

N122  Rox orange -0.35 -0.29 0.19 1.21 3.43** 2.06** 0.32* 0.25* 

N122  Sugar drip -1.75** 0.65
 a

 -0.03 -2.44**
 a

 0.73 -2.39**
 a

 -0.12 -0.24* 

**, * statistically significant at 1% and 5% levels of probability; a, Significant cytoplasm differences 

 A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background.  
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Table 3.10. Estimates of mid-parent heterosis (MPH) of sweet sorghum hybrids for biofuel traits evaluated at Manhattan, KS during 

2013, 2014, and 2015 sowing season. 

 

Hybrids 

              oBrix 

                (%) 

Biomass yield 

(Mg ha-1) 

   Juice yield 

       (Mg ha-1) 

        Sugar yield 

          (Mg ha-1) 

A1 A3 A1   A3 A1 A3 A1 A3 

Tx399  Atlas 10.04 48.82** 20.95 20.71 34.31 56.4 23.96 90.82* 

Tx399  Early hegari 30.30** 60.72** 71.50** 127.06** 86.98* 231.26** 100.51* 181.01** 

Tx399  Kansas collier 4.04 28.14* 47.02 80.34* 53.58 93.59* 36.3 111.79* 

Tx399  M81E 21.61* 44.10** 69.87** 86.99** 84.06** 120.95** 88.67* 163.59** 

Tx399  Masuda 1.36 28.96* 40.02 97.36** 37.58 87.83* 21.62 125.51* 

Tx399  No.8 12.29 50.93** 49.92** 67.94** 64.10* 80.49** 50.64 120.95** 

Tx399  PI185672 18.01 37.44* 73.69** 184.72** 94.38** 135.35** 95.71* 195.69** 

Tx399  Kaoliang 19.81 45.29** 40.07 111.52** 51.54 83.49 69.76 152.97* 

Tx399  Rox orange 15.86 45.71** 15.1 60.37* 36.21 66.45 45.88 123.65* 

Tx399  Sugar drip 19.57 49.06** 34.11 77.90* 45.15 72.02* 50.66 122.80* 

Tx623  Atlas 13.45 36.45** 15.85 33.02 -13.82 10.86 -10.95 33.25 

Tx623  Early hegari 28.10* 57.50** 71.85** 128.29** 93.64** 133.39** 101.02* 183.52** 

Tx623  Kansas collier 4.85 23.42* 50.33 103.60** 66.49 107.53* 59.55 131.68* 

Tx623  M81E 17.84 37.15** 67.93** 107.01** 83.27* 93.99** 87.79* 130.28** 

Tx623  Masuda -0.59 36.16** 30.89 48.02* 33.68 98.65* 21.96 148.87* 

Tx623  No.8 14.89 37.50** 21.24 70.53** 37.85 88.67** 35.34 120.66** 

Tx623  PI185672 5.55 24.83* 79.29** 129.51** 96.55** 137.19** 97.63** 197.69** 

Tx623  Kaoliang 6.6 30.02* 48.19* 61.30* 51.55 84.19 59.44 142.92 

Tx623  Rox orange 13.29 43.26** 33.4 72.89* 51.4 90.52* 67.61 169.06* 

Tx623  Sugar drip 7.52 43.71** 57.25* 120.77** 73.40* 129.78** 71.48 193.69** 

Ks57  Atlas 21.23 45.29** 42.40* 47.17* 60.70* 65.57* 71.6 104.50* 
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Hybrids 

              oBrix 

                (%) 

Biomass yield 

(Mg ha-1) 

   Juice yield 

       (Mg ha-1) 

        Sugar yield 

          (Mg ha-1) 

A1 A3 A1   A3 A1 A3 A1 A3 

Ks57  Early hegari 30.23* 59.30** 70.70* 123.78** 85.37* 180.88* 92.18 180.29** 

Ks57  Kansas collier -7.71 43.04** 40.57 108.34** 58.87 125.50** 23.53 192.37** 

Ks57  M81E 29.28* 45.52** 35.02* 74.65** 55.05* 92.15** 66.59* 134.37** 

Ks57  Masuda -2.91 28.77* 24.4 74.86* 52.6 96.97* 33.77 129.41* 

Ks57  No.8 19.41 46.25** 20.24 82.29** 59.41* 107.35** 62.32* 197.8** 

Ks57  PI185672 26.51* 53.02** 72.98** 124.87** 92.64** 134.92** 99.1** 426.58** 

Ks57  Kaoliang 17.04 44.15** 17.67 41.84 48.35 125.86* 59.55 205.64* 

Ks57  Rox orange 18.83 56.11** 44.5 59.99* 35.92 88.28* 51.22 168.95* 

Ks57  Sugar drip 1.62 30.40* 37.1 118.89** 46.5 115.16** 29.54 147.37* 

N122  Atlas 23.43* 42.38** 24.95 63.75* -8 37.95 2.32 71.23 

N122  Early hegari 28.21* 58.19** 68.57* 119.19** 81.08 129.61* 190.4 195.16** 

N122  Kansas collier -5.84 36.02** 40.32 108.75** 37.6 118.96* 10.92 168.65** 

N122  M81E 24.70* 33.57** 55.88* 94.58** 57.86* 105.61** 70.30* 135.64** 

N122 x Masuda 4.43 38.51** 30.02 105.24** 38.28 86.13* 30.61 135.94* 

N122  No.8 7.02 30.82** 4.58 57.20** -1.5 15.39 -7.46 33.57 

N122  PI185672 21.66* 33.27* 75.79** 130.43** 89.57** 183.60** 94.9* 197.9** 

N122  Kaoliang 2.78 27.54* 21.74 77.22** 22.35 71.57 23.28 114.38 

N122  Rox orange 7.9 41.40** 17.81 89.87** 52.72 87.68* 58.8 155.63* 

N122  Sugar drip -12.49 44.62** 25.06 72.95* 33.18 66.47 4.69 117.31* 

**, * statistically significant at 1% and 5% levels of probability. 

 A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm. 
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Table 3.11. Estimates of high-parent heterosis (HPH) of sweet sorghum hybrids for biofuel traits evaluated at Manhattan, KS during 

2013, 2014, and 2015 sowing season.    

 

 Hybrids 

oBrix 

(%) 

Biomass yield 

(Mg ha-1) 

Juice yield 

    (Mg ha-1) 

Sugar yield 

   (Mg ha-1) 

A1 A3 A1 A3 A1 A3 A1 A3 

Tx399  Atlas -13.59 16.86** -17.12 -17.29 -18.57 -5.18 -30.91 6.36* 

Tx399  Early hegari 26.56** 33.24** 39.72** 88.08** 100.42* 93.26** 23.83* 109.09** 

Tx399  Kansas collier -21.44 -3.25* 17.88 44.60* 1.81 28.34* -20.95 22.83* 

Tx399  M81E -8.99* 7.85** 18.64** 21.98** 20.47** 32.38** 9.94* 44.41** 

Tx399  Masuda -21.40 0.00* 2.80 44.91** -11.75 20.49* -29.90 29.99* 

Tx399  No.8 -15.87 13.08** -7.93** 3.14** -3.89* 5.71** -18.43 19.63** 

Tx399  PI185672 -3.70 12.16* 38.88** 84.72** 154.28** 95.06** 21.69* 99.06** 

Tx399  Kaoliang 1.23 22.76** 1.10 52.68** 5.64 27.91 7.40 60.05* 

Tx399  Rox orange -5.54 18.80** -13.62 20.35* -10.96 8.80 -12.95 33.47* 

Tx399  Sugar drip -5.48 17.84** 4.74 38.93* -8.11 8.90* -13.41 28.04* 

Tx623  Atlas -4.65 14.68** -20.90 -9.18 -47.42 -32.37 -49.88 -25.00 

Tx623  Early hegari 22.20* 30.21** 33.61** 89.88** 137.23** 94.25** 22.41* 111.90** 

Tx623  Kansas collier -15.66 -0.71* 19.93 62.44** 11.35 38.80* -6.26 36.11* 

Tx623  M81E -6.14 9.24** 9.21** 34.62** 10.46* 16.93** 3.73* 27.19** 

Tx623  Masuda -17.61 12.84** -4.30 8.22* -13.56 28.44* -28.82 45.25* 

Tx623  No.8 -8.38 9.65** -25.72 4.47** -18.83 11.09** -26.19 20.34** 

Tx623  PI185672 -7.41 9.50* 35.58** 84.73** 190.20** 99.62** 19.14** 100.70** 

Tx623  Kaoliang -2.81 18.54* 6.53* 15.96* 6.73 29.72 2.87 56.73 

Tx623  Rox orange -0.72 25.54** -0.33 29.18* -0.19 25.60* 1.56 63.02* 

Tx623  Sugar drip -8.96 21.69** 22.22* 82.48** 10.61* 62.53** -0.24 98.78** 
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 Hybrids 

oBrix 

(%) 

Biomass yield 

(Mg ha-1) 

Juice yield 

    (Mg ha-1) 

Sugar yield 

   (Mg ha-1) 

A1 A3 A1 A3 A1 A3 A1 A3 

Ks57  Atlas -3.71 15.41** -3.63* -0.40* -1.58* 1.39* -3.84 14.60* 

Ks57  Early hegari 24.05* 32.00** 26.97* 86.31** 90.75* 92.46* 18.36 107.00** 

Ks57  Kansas collier -29.56 9.16** 10.78 64.19** 6.82 58.34** -27.84 70.78** 

Ks57  M81E -2.97* 10.06** -12.86* 12.72** -6.21* 16.23** -8.32* 28.98** 

Ks57  Masuda -23.86 0.98* -9.99 26.52* -0.87 27.96* -22.36 33.15* 

Ks57  No.8 -9.59 10.73** -26.78 11.01** -5.85* 22.47** -11.76* 34.95** 

Ks57  PI185672 4.51* 26.41** 25.42** 83.79** 168.59** 96.53** 19.42** 101.87** 

Ks57  Kaoliang 0.18 23.37** -16.25 0.95 5.11 60.03* 2.04 95.48* 

Ks57  Rox orange -1.93 28.84** 6.79 18.24* -9.94 24.74* -8.99 61.85* 

Ks57  Sugar drip -18.73 4.29* 5.31 68.15** -6.13 37.87** -25.05 43.12* 

N122  Atlas 4.14* 20.13** -16.37 9.60* -43.38 -15.10 -41.19 -1.59 

N122  Early hegari 21.78* 33.00** 25.13* 83.76** 41.54 91.98* 15.61 105.69** 

N122  Kansas collier -23.98 9.81** 8.87 61.97** -6.84 48.24* -33.00 62.28** 

N122  M81E -0.32* 6.77** -0.35* 24.39** -4.07* 24.95** -4.24* 32.49** 

N122  Masuda -13.12 15.23** -7.15 46.57** -9.61 21.68* -21.71 41.43* 

N122  No.8 -14.35 4.70** -36.80 -5.00** -41.58 -31.56 -48.74 -26.01 

N122  PI185672 7.17* 17.39* 23.20** 86.76** 118.49** 99.54** 17.89* 104.07** 

N122  Kaoliang -5.89 16.78* -14.44 24.55** -12.62 22.53 -17.07 44.20 

N122  Rox orange -5.06 24.42** -14.12 38.41** 1.86 25.18* -0.60 60.01* 

N122  Sugar drip -25.61 22.95** -5.35 30.89* -14.15 7.31 -37.48 29.78* 

**, * statistically significant at 1% and 5% levels of probability. 

 A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background. 
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Table 3.12. Pearson correlation coefficients between different biofuel and agronomic traits of sweet sorghum genotypes evaluated at 

Manhattan, KS in 2013, 2014, and 2015 sowing season.   

 

Traits Cytoplasm 

Correlation (r) 

Lodging 

Plant 

height 

(m) 

Head 

weight 

(Mg ha-1) 

oBrix 

(%) 

Biomass 

yield 

(Mg ha-1) 

Juice 

yield 

(Mg ha-1) 

Sugar 

yield 

(Mg ha-1) 

Day to flowering A1 -0.53* 0.73** -0.32* 0.54* 0.85** 0.75** 0.76** 

 A3 -0.42* 0.78** 0.51* 0.15* 0.81** 0.63** 0.57** 

Lodging A1 1 -0.41* NS -0.41* -0.49* -0.40* -0.46* 

 A3 1 NS NS NS -0.34* NS NS 

Plant height A1  1 NS 0.53* 0.82** 0.70** 0.73** 

 A3  1 0.42* NS 0.77** 0.68** 0.62** 

Head weight A1   1 NS 0.52* 0.48* 0.47* 

 A3   1 NS NS NS NS 
oBrix A1    1 0.58** 0.53* 0.74** 

 A3    1 NS 0.43* 0.65** 

Biomass yield A1     1 0.87** 0.87** 

 A3     1 0.79** 0.75** 

Juice yield A1      1 0.95** 

 A3      1 0.96** 

**, * statistically significant at 1% and 5% levels of probability; NS, not significant 
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 Discussion 

The central theme for improvement of sweet sorghum for industrial application (biofuel or table 

sugar production) is increasing stalk sugar accumulation. Two major avenues may lead to realizing 

this goal, exploiting high sugar alleles deployed in suitable backgrounds and altering the source-

sink dynamics with the aim of reducing the grain sink. The current study is focused on estimating 

the extent to which stalk sugar accumulation could be improved through reducing the grain sink 

and evaluating its impact on other agronomic characteristics. Ten sweet sorghum cultivars were 

intercrossed with four seed parent lines in A1 and A3 backgrounds and the resulting 80 hybrids, 

40 in A1 and 40 in A3 CMS systems tested across environments.  

The analysis of variance indicated that the entry effect and its components are significant 

for all of the parameters measured (Table 3.1) and this is expected given the variability in genetic 

backgrounds of the entries. Like most other economically important traits, biofuel parameters 

collected in this study appear to be largely controlled by additive genes as shown by higher and 

more significant male and female GCA effects compared to male  female interaction (SCA) 

effects that represent dominance (Table 3.1).  Comparison of the hybrid and inbred components of 

the entry factor shows much larger mean square values, indicating the traits were markedly 

different in hybrid vs. inbred backgrounds with hybrids always having the larger value for the 

traits.  

A further breakdown of the hybrid effect in to A1 and A3 CMS systems shows that both 

A1 and A3 hybrids were significantly different for all traits studied (Table 3.2). Comparison of the 

A1 and A3 systems on the other hand was even more significant (Table 3.2), indicating that 

elimination of the grain sink may have positive contribution to increasing biofuel production. The 

results show similar a trend for agronomic traits (Tables 3.3 and 3.4) except the inbred vs. hybrid 
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effect was not significant for most agronomic traits (Table 3.3), and the A1 vs. A3 hybrid effect 

was not significant except for head weight (Table 3.4). These results agree with common 

observations in that A3 hybrids do not produce grain. A3 hybrids were also less prone to lodging 

due to a sturdy stalk structure built from excess photo assimilates remaining in the stalk and low 

or no torque developed from the head due to low or no grain formation.  

Nevertheless, due to variable genetic background of the test entries, there is significant 

variation between the test entries, and a breakdown of these into male and female components 

show that much of the variability comes from the males (Table 3.5). While entries vary for both 

agronomic and biofuel traits, the variation between grain forming (A1) and non-grain forming 

(A3) hybrids for biofuel traits was remarkably significant. The A1 and A3 hybrid pairs in this 

study are of similar genetic background except the A3 CMS system lacks strong restorer genes 

and hence most of its hybrids are sterile. The difference between A1 and A3 hybrid pairs are thus 

simply the effect of the grain sink and are genetically similar otherwise.  

Across entries mean oBrix percent was 26% higher in A3 hybrids compared to A1 hybrids 

with the extent of the difference varying between different A1/A3 pairs. Similarly, biomass 

accumulation, juice yield, and sugar yield in A3 hybrids were 29%, 25%, and 53% greater than in 

the A1 hybrids (Table 3.6). The greater biomass of the A3 hybrids may be the result of the visibly 

thicker stalk girth and the extensive nodal tillers that occurred later in the season. There was no 

evidence of difference in photosynthetic capacity between A1 and A3 hybrids pairs. The wide 

difference in biomass yield appears to be the result of the excess photoassimilate that was normally 

destined for grain filling remaining in the stalk and contributing to stalk sturdiness and stimulating 

further lateral growth as evidenced from the appearance of nodal tillers in the A3 hybrids (Figure 

3.1 A). Although  A1 hybrids translocated much of post anthesis photoassimilates to the grain, the 
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contribution of that to total biomass was not as high as that of A3 hybrids, perhaps because 

formation of grain biomass (various types of starch, proteins, lipids, etc.) requires more energy 

than building cellulosic biomass (Fisher and Wilson, 1976; Broadhead and Freeman, 1980; 

Slewinski, 2012). 

In addition to CMS effect, the combining ability of the lines involved in the study were 

evaluated to determine their potential use as breeding parents for biofuel sorghum improvement. 

General combining ability (GCA) was not of much interest in the females (Table 3.7 and 3.8). 

However, the pollinator lines exhibited significant GCA effect in both A1 and A3 backgrounds 

with the results being consistent across the CMS backgrounds. Accordingly, the sweet sorghum 

line M81E exhibited the greatest positive GCA for all biofuel traits studied followed by No.8, a 

durra sorghum from east Africa (Table 3.7). Other lines such as PI85672 did not have favorable 

GCA for oBrix but was among the superior parents for biomass production, juice yield, and sugar 

yield, indicating that these traits can be independently manipulated in breeding programs. These 

lines should be of positive value as breeding parents. The most negative GCA for the traits was 

recorded in the Chinese cold tolerant source Kaoliang. GCA for agronomic traits were markedly 

different among the males with Sugar drip having the most negative GCA of -10.78 (early 

flowering), PI85672 producing the latest hybrid followed by No.8 (Table 3.8). M81E, No.8, and 

PI185672 had the greatest positive GCA for plant height as well as for biomass. 

  The specific combining ability (SCA) for the crosses was significant (Tables 3.1 and 3.3). 

For oBrix percent, the highest SCA was recorded for Ks57 x PI185672 in A3 background followed 

by N122 x Masuda. The SCA for oBrix tends to be greater in A3 CMS than A1 except for few 

crosses such as Tx623 x Kansas collier, Tx399 x Sugar drip, and Ks57 x Sugar drip. On the other 

hand, the greatest SCA for biomass 3.63 was recorded for Tx399 x kaoliang followed by 2.45 for 

http://www.sciencedirect.com/science/article/pii/S0378429016307778#bib0115
http://www.sciencedirect.com/science/article/pii/S0378429016307778#bib0115
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N122 x PI185672, both in the A3 system. For juice and sugar yield, Tx623 x Sugar drip had the 

greatest SCA followed by Ks57 x No.8 in the A3 CMS background (Table 3.9). Although SCA is 

an important consideration for choosing specific hybrid combination, it is not useful for choosing 

breeding parent as it is contributed by dominance effect, and dominance gene action is not heritable 

(Kenga et al., 2004; Mutengwa et al., 1999; Sharma, 1994).  

As observed on the inbred vs. hybrid component of the entry in Tables 3.1 and 3.2, heterosis 

had a significant effect on expression of these traits. Table 3.10 shows estimates of mid-parent 

heterosis for each of the hybrids. For oBrix there was positive heterosis for most hybrid 

combinations in A1 CMS background except five hybrids where heterosis was negative but not 

significant. Mid-parent heterosis for oBrix in A3 CMS system was positive and significant in all 

cross combinations with the largest heterosis values approaching 60% and the least 23%. Heterosis 

for biomass, juice yield, and sugar yield were positive except for Tx623 x Atlas and N122 x No.8 

where both juice yield, and sugar yield and for N122 x Atlas for juice yield in A1 CMS was 

negative. High parent heterosis may provide better information on the performance of the hybrids. 

For oBrix, only seven hybrids had significant and positive high parent heterosis in A1 CMS and 

only two had negative high parent heterosis in A3 CMS.  The trend is similar for other traits with 

several hybrids in A3 CMS having positive high parent heterosis compared to the A1 CMS. The 

results indicate that eliminating the grain sink using A3 or other sterility system from a potential 

sweet sorghum crop may significantly increase the value of the feedstock for biofuel or sugar 

production. Apart from increasing sugar yield and component traits, low or no grain sink 

contributes to agronomic adaptation with the most significant adaptive trait needed in such crop 

being resistance to lodging. The sterile sweet sorghum hybrids counter lodging either by increasing 
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stalk girth and improving mechanical strength of the stalk or through reducing the torque that could 

be imposed as a result of the grain sink on the head.  

 

 Summary 

The analysis of variance revealed that genotypes exhibited highly significant differences among 

themselves for all the traits studied. Inbreds exhibited significant differences for all the traits 

studied, indicating greater diversity in the parental lines. Highly significant mean squares due to 

inbred vs. hybrids showed presence of heterosis for all the traits. When the effects of crosses were 

partitioned into female, male, and female × male interaction effects, the effects of females were 

found to be significant for all the traits except for days to flowering, whereas the effects of males 

were significant for all the traits studied. These results indicated diversity among the female and 

male lines for all the traits. The female x male interaction effect was found to be significant for all 

the traits studied, indicating that A1 and A3 hybrids differed significantly for their SCA affects for 

most of the traits. Thus, despite similarity of the lines with respect to their GCA effects, significant 

SCA effects of the hybrids is attributable to non- predictable dominance and dominance-based 

epistasis in the inheritance of most of the traits in sweet sorghum. These results indicated that, 

irrespective of cytoplasm, the lines have comparable ability to transmit genes with additive effects 

to their progenies. Significant influence of cytoplasm on MPH and HPH were detected for all traits 

except for days to flowering and lodging in mosty of the A1 and A3 hybrids. High level of heterosis 

were noticed for biofuel traits (oBrix, biomass yield, juice yield, and sugar yield) followed by head 

weight. In general, A3 hybrids exhibited greater overall MPH and HPH compared with A1 hybrids 

in all traits except for head weight.   
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 Conclusion 

The study revealed the presence of significant genetic variability for biomass production, brix, 

juice yield, and sugar concentration among sweet sorghum germplasm. These resources can be 

effectively exploited for further enhancing sugar yield and increase feedstock available for table 

sugar or clean energy production. 

The current and previous studies indicate that juice yield, brix, and sugar concentration 

tend to be inherited from one parent implying that these traits are under the control of a few major 

genes. These phenomena make the sweet sorghum improvement effort with regard to increased 

brix, juice, and sugar a relatively easy undertaking, which saves time and money. Moreover, the 

fact that dominant genes play major roles in affecting these traits allows for only one of the parents 

to have these traits, which again makes the breeding less complicated. The current result also 

confirms that the grain sink places significant pressure on stalk performance by competing for 

assimilates. Although the grain is also of value, it is not a desirable trait in dedicated sugar-based 

biofuel feedstocks.  

The implication of the effect of the grain sink on biofuel traits opens a new research venue 

for developing non-grain forming hybrids. The A3 CMS system used in the current study 

effectively demonstrated that a genetic system can be deployed to prevent grain production in 

sugar based feedstocks and as a result increase all components of sugar. In addition to sugar, 

elimination of the grain sink promoted lateral tillering and stalk girth thereby significantly 

contribution to cellulosic biomass, another dedicated feedstock source. The increase in stalk 

strength in non-grain forming hybrids and the absence of grain torque in the panicle significantly 

contributed to lodging resistance, an important trait in high biomass production system. 
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Chapter 4 - Relationship between the grain sink and stalk rot disease 

response in sweet sorghum [Sorghum bicolor (L.) Moench] 

 Abstract 

Sorghum [Sorghum bicolor (L.) Moench] grain yield is severely affected by abiotic and biotic 

stresses during post-flowering stages. Stalk rot caused by Macrophomina phaseolina is one of the 

economically important biotic stresses in major sorghum-growing areas across the world. The 

objective of this study was to study the effects of the cytoplasmic male sterility-mediated 

differential accumulation of stalk sugar on severity of charcoal rot disease caused by M. 

phaseolina. Ten sweet sorghum pollinator lines of variable sugar content were selected from the 

entries included in an experiment examining sorghum as biofuel feedstock for juice yield, sugar 

content and lignocellulosic biomass. The lines were crossed to four A1 and A3 cytoplasmic male 

sterile (CMS) lines using a Design II mating scheme. The A3 females do not have effective 

restorers so the hybrids are expected to be sterile. Before anthesis, six plants at uniform panicle 

developmental stage from A1 hybrid plots and nine plants from A3 hybrid plots were tagged using 

two distinct plastic tapes. Six of the tagged plants in A3 hybrid plots were covered with pollination 

bags to prevent seed set from random pollen and the remaining three were left uncovered. All of 

the tagged plants were used for pathogen and control inoculation tor measure stalk rot disease 

development. The results of this study indicated that hybrids produced from A3 cytoplasm were 

more resistant to charcoal rot (7.1cm lesion length) compared to those produced from the A1 

hybrids (9.5 cm lesion length). Therefore, removing the grain sink, which resulted in higher stalk 

sugar content, may have delayed senescence, and thus the growth and spread of fungus in the stalk 

was impeded. 
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Key words: Sorghum bicolor, abiotic, Macrophomina phaseolina, grain sink, charcoal rot. 

 

 Introduction 

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop worldwide serving as source 

of food and feed (Liu et al., 2009; Miller et al., 1980; Woods, 2001). In developing countries, the 

crop has wider application where stalks are used as fodder and as building materials. Sweet 

sorghum is a special type of sorghum that accumulates large amounts of fermentable sugars (10 –

20%) in its stalks, similar to its close relative, sugarcane (Saccharum spp.). The sugary juice of 

sweet sorghum can be extracted and directly fermented into ethanol. The fact that it is established 

from seeds, unlike sugarcane, and hence can be produced anywhere grain sorghum is produced 

(Keeney and DeLuca, 1992; Smith et al., 1987), makes it a versatile feedstock source that can be 

produced anywhere it is needed. Like other sorghums, sweet sorghums are tolerant to drought, 

water-logged conditions, and saline/alkali soils (Reddy and Reddy, 2003; Ali et al., 2008). They 

are cultivated in a wide range of environments in Africa, China, USA, India, Mexico, etc., and are 

well adapted between 40N and 40S latitudes (Dogget, 1988). The crop can be grown and utilized 

for food, biofuel, fodder, and fiber (Woods, 2001) and is one of the most efficient dryland crops 

to convert atmospheric CO2 into sugar (Schaffert and Gourley, 1982).  

Although sorghum has a wide range of adaptability and can be grown in diverse ecologies 

including areas prone to severe abiotic stresses, high temperature, drought, salinity, and flooding 

(Ejeta and Knoll, 2007), the crop tends to suffer from some pre- and post-flowering drought 

(Tuinstra et al., 1997; Kebede et al., 2001; Blum, 2004) because it is almost exclusively grown 

under these conditions. Post-flowering drought stress is associated with stalk rot diseases, which 

lead to significant lodging and yield loss (Rosenow and Clark, 1995; Tesso et al., 2004). Stalk rot 

https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR14
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR54
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR23
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR6
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR39
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR49
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diseases are characterized by the degradation of pith tissue at or near the base of the stalk, which 

weakens stem strength and may result in lodging. Infected plants often have damaged vascular and 

cortical tissues in both the root and stalks that may reduce nutrient and water absorption and 

translocation, and perhaps lead to breakage of the stalk at the zone of infection causing lodging 

(Hundekar and Anahahosur, 1994). One of the predominant stalk rot diseases is charcoal rot. 

Charcoal rot is caused by Macrophomina phaseolina (Tassi) Goid. and is a serious problem under 

high soil temperature and low moisture, particularly during the grain filling stage (Hassan et 

al., 1996). Charcoal rot pathogens can be found in host tissues at various growth stages, but disease 

symptoms are visible only after flowering and during the grain filling stage (Reed et al., 1983; 

Khune et al., 1984). Under severe conditions, the disease may lead to complete stalk collapse and 

crop lodging (Mughogho and Pande, 1984). 

The stalk rot problem seems to have become more serious following the introduction of 

hybrid system that significantly increased grain yield. Stalk rot pathogens often are considered 

weak, since they infect and take over hosts that are either in environmental stress such as drought 

or are undergoing physiological stress such as senescence (Tuinstra et al., 1997). The massive 

movement of assimilates from the stalk to the grain imposes physiological stress on the stalk and 

this becomes more severe in high yielding cultivars that translocate a greater proportion of 

assimilates to fill grain.  

With the emergence of sorghum as biofuel feedstock requiring high-biomass cultivars, the 

problems associated with stalk lodging, whether physiological or stalk rot induced, become a 

primary concern. Increasing feedstock production requires one to grow taller cultivars that tend to 

have high propensity for lodging. The main theme of this work was to explore the potential of non-

grain forming hybrids for sugar production. The fact that such hybrids possibly may be less prone 

https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR19
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-650#CR18
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to lodging due to reduced weight imposed by the grain or less physiological stress that would 

otherwise occur due to massive movement of assimilates to the grain is a plus for enhancing 

standability. Another area of interest was to explore the effect of other factors responsible for 

lodging. Therefore, the main objective of this study was to investigate the reaction of grain-

forming and non-grain-forming hybrids to infection by M. phaseolina. This pathogen is the causal 

agent of the most aggressive type of stalk rot, charcoal rot, which is the major cause of lodging in 

dryland sorghum production in the United States (Bramel-Cox et al., 1988; Leslie et al., 1990; 

Marasas et al., 2001).  

 

 Material and methods 

 Genetic materials 

The experimental material was comprised of 4 female parental lines, Tx399, Tx623, Ks57, and 

N122, each in two cytoplasmic male sterility systems (CMS), A1 and A3. Each female was crossed 

to each of the 10 R-lines (Atlas, Early hegari, Kansas collier, M81E, Masuda, No.8, PI185672, 

Kaoliang, Rox orange, and Sugar drip) using a Design II mating scheme to produce 40 hybrid 

combinations each for A1 and A3 CMS systems. All hybrid seed production was conducted at the 

Kansas State University sorghum breeding nursery near Manhattan Kansas and using a winter 

nursery in Puerto Rico during 2012 and 2013. All of the female parents were developed as B-line 

selections and converted to A1 CMS (Andrews et al., 1990; Miller et al., 1999). The lines were 

later converted to A3 CMS by Pedersen et al. (1997) such that the lines are available in both A1 

and A3 CMS systems. The hybrids along with their respective B-lines and the 10 R-lines were 

evaluated at the Kansas State University research farm near Manhattan, Kansas during the 2013, 

2014, and 2015 swing seasons.  
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 Experimental design and producers 

The experiment was laid out in a Randomized Complete Block Design (RCBD) with three 

replications. The plots consisted of five-meter long single row spaced 0.75 m apart with 0.6 m 

alley at the end of each plot. The experiment was established by directly seeding 3 g treated 

(Maxim 4FS, Apron XL, Concept III, and colorant) seeds of the genotypes using a cone planter. 

Fertilizer nitrogen (urea) and phosphorous (di-ammonium phosphate, DAP) were applied at the 

rates of 90 kg ha-1 and 40 kg ha-1, respectively. Pre-emergence weeds were controlled with 0.55 

kg ha-1 Atrazine TM, 0.76 kg ha-1 Dual II Mg TM, and, 0.16 kg ha-1 CallistoTM. Post-emergence 

weeds were controlled by hand weeding, and this practice was used to keep the field weed-free 

throughout the seasons. The experiment was conducted in three environments during the 2013 and 

2014 seasons at the Ashland bottoms Agronomy Research Farm and at the north campus agronomy 

farm in Manhattan, KS in 2015.   

Before anthesis, six plants at uniform panicle development stage from A1 hybrid plots and 

nine plants from A3 hybrid plots were tagged using two distinct plastic tapes in A1 plots and three 

in A3 plots. Six of the tagged plants in A3 hybrid plots were covered with a pollination bags to 

prevent seed set from random pollen while the remaining three left open headed. All of the tagged 

plants were used for pathogen and control inoculation for measuring stalk rot disease development.  

 

 Inoculum preparation and inoculation 

Fresh culture of Macrophomina phaseolina was initiated in potato dextrose agar (PDA) from pure 

cultures of the pathogen obtained from the laboratory of Dr. Christopher Little at Kansas State 

University. The choice of pathogen was based on previous reports that this pathogen is one of the 
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most virulent organisms causing stalk rot diseases in sorghum (Bramel-Cox et al., 1988; Leslie et 

al., 1990).  

The inoculum was initiated by sub-culturing small section (2-3 mm) of the pathogen mat 

into several fresh potato dextrose agar PDA plates. Then sterile toothpicks were placed on the plate 

and incubated at 30°C until the media and the toothpicks were covered with the growing sclerotia. 

At 14 days after flowering, three tagged plants from the bagged A3 plots and three from A1 plots 

were inoculated with a sterile toothpick as the control, and the remaining tagged plants in both A1 

and A3 plots were inoculated with M. phaseolina pathogen by inserting the infested toothpick into 

small holes made on the stalk of the plants using a sterile needle. Inoculations were made on the 

basal stalk about 10 cm above the soil surface.  

  

 Data collection 

Twenty-eight days after inoculation, entire stalks of the inoculated plants are harvested and scored 

for disease severity. The scoring was done by longitudinally splitting the stalks and measuring the 

length of the visible necrotic lesion and counting the number of nodes contained within the 

lesioned region. 

 

 Statistical analysis 

The analysis of variance (ANOVA) was performed using the a PROC MIXED procedure in SAS 

(version 9.4) as appropriate for the design. The environment and replicates were treated as random 

effect parameters. The hybrid effect was further partitioned into male, female and male × female 

interaction effects representing general combining ability (GCA) for male and female parents as 

well as the specific combining ability (SCA) effect. Design II fixed model (Model I) of Hallauer 
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and Miranda (1988) was used to obtain independent estimates of the GCA and SCA. The GCA for 

each parental line was calculated as the difference between the grand mean of the hybrids and the 

marginal means for each male and female parent.  

Mean of significant were separated using the LSD method. Pearson correlation coefficients 

were estimated from combined environments data to determine the degree of correlation between 

all traits using PROC CORR procedure in SAS (version 9.4). 

 

 Results 

 Analysis of variance 

The combined analysis of variance for A1 and A3 hybrids response to infection by M. phaseolina 

is presented in Table 4.1 and 4.2. The ANOVA revealed that entry effect was highly significant (P 

≤ 0.01) for both lesion length and nodes crossed. Partitioning the entry effect into inbred and 

hybrids also showed both components to be highly significant for both parameters, indicating the 

inherent variation for stalk rot disease response among the parental lines (Tables 4.1 and 4.2). 

Further partitioning of the hybrid effect into male and female components showed that both parents 

contributed to the disease response variation observed among the hybrids, but the contribution by 

male parents appear to be greater, indicating more diversity for the trait among the males (Tables 

4.1 and 4.2). The male and female effects, also referred to as the GCA for males, and GCA for 

females was highly significant (P ≤ 0.01) for male parents and significant (P ≤ 0.05) for female 

parents for both traits. The female × male interaction effect referred to as specific combining ability 

(SCA) effect was highly significant for both traits in both A1 and A3 hybrids (Tables 4.1 and 4.2).  

The interaction between entry and environment was not significant for either disease 

parameter in A1 hybrids but was significant (P ≤ 0.05) for nodes crossed among A3 hybrids. The 
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inbred by environment interaction was not significant for either trait in both A1 and A3 hybrids 

(Table 4.1 and 4.2). The male and female  environment interaction effects were significant for 

lesion length in A1 hybrids, and both interactions were significant for both disease parameters in 

A3 hybrids. Likewise, the male  female  environment interaction was significant for lesion 

length in A1 hybrids and significant for both lesion length and nodes crossed in A3 hybrids (Table 

4.1 and 4.2). 

Comparison of the performance of the inbred parents for disease response showed that 

Tx623, a tropically adapted seed parent, expressed greater susceptibility to the disease among the 

female parents (Table 4.3). It had mean lesion length of 7.19 cm, significantly greater than all 

females parents and 59% greater than the overall mean of 4.58 cm for females. Female N122 had 

the shortest lesion length. The score for nodes crossed 2.56 nodes per plant for Tx623 was 

significantly greater than other females but was comparable to Tx399. Other females had close to 

the mean disease score for both lesion length and nodes crossed. Among the male parents, line 

M81E had the shortest lesion length, indicating the strongest resistance to charcoal rot, followed 

by and No.8. The longest lesion length among males of 15.68 cm was recorded for Early hegari, 

which was significantly greater than all entries followed by Masuda, PI185672, and Sugar drip, 

which had almost similar lesion length scores. Again, the score for nodes crossed in these lines 

was fairly proportional to lesion length, with Early hegari having a score of 2.00 nodes per plants 

and the others close to 1 node per plant, with Sugar drip having 1.55 nodes crossed.  The reaction 

of other males was intermediate. Overall, the male lines had greater mean lesion length (8.88 cm) 

compared to the mean values for the females (Table 4.3). This could be largely the effect of 

differences in plant height rather than difference in disease response per se.  
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 The effect of the grain sink on stalk rot disease response of hybrids  

The analysis of variance comparing the A1 and A3 CMS hybrids revealed that disease parameters 

were highly affected by the grain sink. Although there is significant difference among A1 hybrids 

as well as within A3 hybrids for these traits, the greater A1 vs. A3 hybrid effect on lesion length 

was remarkable (Table 4.4).  Nodes crossed for this effect was not significant despite greater mean 

square value. This was due to the large A1 vs. A3 by environment interaction effect, which was 

used to test the effect of A1 vs. A3 effect.  

Comparison of the mean lesion length for A1 and A3 hybrids explain results from the 

ANOVA that the across-hybrid mean lesion length in A1 hybrids was 9.55 cm compared to 7.10 

cm in A3 hybrids, the difference that was statistically significant. Although not statistically 

significant, mean nodes crossed was also greater in A1 hybrids compared to A3 (Table 4.5). 

Similarly mean lesion length for control inoculations was greater in A1 hybrids. Mean lesion 

length from pathogen-inoculated, unbagged A3 hybrids (9.65), however, was comparable with that 

of A1 hybrids, showing that the seed sink was the primary factor responsible for differences in 

stalk rot response between A1 and A3 hybrids (Table 4.5). The strongest resistance reaction was 

observed in hybrids of No.8 and M81E (Table 4.5). All hybrids from these males exhibited the 

shortest mean lesion length except in crosses with Tx399 and KS57 in both A1 and A3 CMS. The 

most susceptible hybrids, however, was that of Masuda and Kansas collier, especially in crosses 

with Tx399 and N122. Other crosses of these lines had intermediate reaction.  

As shown in the ANOVA, the GCA effect for both male and female parents was significant 

in both A1 and A3 hybrids (Tables 4.1 and 4.2).  Estimation of the GCA effect for each of the lines 

showed Tx623 as having the highest negative GCA among females for resistance to the disease in 

both A1 and A3 CMS (Table 4.6). Its GCA for lesion length was -0.89 cm and -0.78 cm and nodes 
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crossed were -0.25 and -0.17 in both A1 and A3 CMS backgrounds, respectively, all of which 

were statistically significant. This line, however, exhibited the greatest men lesion length when 

evaluated as an inbred per se. Ks57 on the other hand, expressed the highest GCA for susceptibility 

in both traits regardless of the CMS backgrounds (Table 4.6).  

Among the males, M81E and No.8 had the greatest, significant GCA for resistance both 

for lesion length and nodes crossed in both A1 and A3 CMS systems (Table 4.6). Though not 

significant in A1, PI185672 had significant GCA for resistance in A3 background for lesion length 

and in both A1 and A3 backgrounds for nodes crossed. The lines, Kansas collier and Sugar drip, 

had the greatest, and significant GCA for susceptibility in terms of both lesion length and nodes 

crossed in both A1 and A3 backgrounds. Kaoliang expressed significant GCA for susceptibility 

for lesion length and Rox orange for nodes crossed in both A1 and A3 CMS systems.  

  

 Genotypic correlations 

Correlations of disease response with agronomic are traits presented in Table 4.7. Highly negative 

significant correlations were shown between days to flowering with lesion length and number of 

nodes crossed at both A1 and A3 hybrids. Lodging score was significantly and positively 

correlated with number of node crossed at both A1 and A3 hybrids, but it was not significantly 

correlated with lesion length in A3 hybrids. Moreover, there was a significant negative correlation 

between oBrix with lesion length in both cytoplasms but, it was not significantly correlated with 

nodes crossed in A3 hybrids. Highly significant and positive correlations were observed between 

lesion length and number of node crossed in both A1 and A3 hybrids (Table 4.7). 
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Table 4.1. Combined analysis of variance of sweet sorghum A1 hybrids for reaction to severity of 

stalk rot infection caused by Macrophomina phaseolina evaluated at Manhattan, KS during 2013, 

2014, and 2015 sowing season.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              **,* statistically significant at 1% and 5% levels of probability 

 

  

Source of variation df 

       Mean squares 

Lesion length Nodes crossed 

(cm) (no. plant-1) 

Environment (E) 2 0.52 0.23 

Replication / E 6 7.39 1.26* 

Entry 53 49.65** 3.60** 

   Inbred 13 104.24** 5.84** 

   Hybrid 39 24.44** 2.48** 

      Male 9 53.05** 6.46** 

      Female 7 57.48* 3.79* 

      Male x Female 27 11.24** 1.01** 

   Inbred vs. Hybrid 1 323.22 18.46* 

Entry  E 106 3.49 0.32 

   Inbred  E 26 1.71 0.18 

  Hybrid  E 78 3.39* 0.36 

     Male  E 18 4.53* 0.29 

     Female  E 6 3.27 0.63 

     Male  Female  E 54 2.87* 0.35 

   Inbred vs. Hybrid  E 2 3.03 0.32 

Error 318 4.33 0.334 
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Table 4.2. Combined analysis of variance of sweet sorghum A1 hybrids for reaction to severity of 

stalk rot infection caused by Macrophomina phaseolina evaluated at Manhattan, KS during 2013, 

2014, and 2015 sowing season.   

 

Source of variation df 

       Mean squares 

Lesion length Nodes crossed 

(cm) (no. plant-1) 

Environment (E) 2 1.19 1.80 

Replication / E 6 2.12 1.23* 

Entry 53 40.69** 3.52** 

   Inbred 13 105.98** 5.22** 

   Hybrid 39 19.23** 2.24** 

      Male 9 44.08* 5.02** 

      Female 3 48.84* 5.83* 

      Male  Female 27 7.65** 0.92** 

   Inbred vs. Hybrid 1 29.19 31.37* 

Entry  E 106 4.54 0.43* 

   Inbred  E 26 1.27 0.20 

  Hybrid  E 78 4.73** 0.48* 

     Male  E 18 6.08** 0.56* 

     Female  E 6 15.23** 0.28 

     Male  Female  E 54 3.11* 0.47* 

   Inbred vs. Hybrid  E 2 39.77* 1.95* 

Error 318 3.78 0.337 

**, * statistically significant at 1% and 5% levels of probability. 
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Table 4.3. Combined mean performance of sweet sorghum parental lines tested against the 

infection caused by Macrophomina phaseolina evaluated at Manhattan, KS during 2013, 2014, 

and 2015 sowing season.   

 

Entries Lesion 
Nodes 

crossed Control 

length (cm) (no. plant-1) (cm) 

Females     

Tx399 4.22
b
 2.55

ab
 1.44

b
 

Tx623 7.19
a
 2.56

a
 1.92

a
 

Ks57 4.21
bc

 2.00
b
 1.20

b
 

N122 2.71
c
 2.01

b
 1.14

b
 

Mean (females)  4.58 2.29 1.42 

Males    

Atlas 7.75
bc

 1.11
bc

 2.41
a
 

Early hegari 15.68
a
 2.00

a
 2.49

a
 

Kansas collier 8.68
bc

 1.01
c
 2.33

a
 

M81E 3.41
d
 0.33

d
 1.27

b
 

Masuda 8.31
bc

 0.88
c
 2.34

a
 

No.8 6.87
cd

 0.22
d
 2.31

a
 

PI185672 10.48
b
 0.88

c
 2.14

a
 

Kaoliang 10.20
bc

 0.82
c
 2.46

a
 

Rox orange 7.46b
c
 0.86

c
 1.56

b
 

Sugar drip 10.05
bc

 1.55
ab

 2.31
a
 

Mean (males)  8.88 0.96 2.16 

Means within the same column with different letter are  

significantly different at P<0.05. 
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Table 4.4. Combined analysis of variance of iso-nuclear sorghum hybrids tested against infection 

caused by Macrophomina phaseolina evaluated at Manhattan, KS during 2013, 2014, and 2015 

sowing season.   

 

Source of variation df 

         Mean squares 

Lesion length  Nodes crossed 

 (cm) (no. plant-1) 

Hybrid 79 35.21** 2.39** 

     A1 hybrids 39 24.44** 2.48** 

     A3 hybrids 39 19.23** 2.24** 

     A1 vs. A3 hybrids 1 1078.55* 5.01 

Hybrid  E 158 4.01** 0.44* 

     A1 hybrids  E 78 3.39* 0.36 

     A3 hybrids  E 78 4.73** 0.48* 

     A1 vs. A3 hybrids  E 2 0.109 2.12* 

Error 474 2.07 0.31 

**, * statistically significant at 1% and 5% levels of probability. 
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Table 4.5. Combined mean performance of sweet sorghum A1 and A3 hybrids tested against infection caused by Macrophomina 

phaseolina evaluated at Manhattan, KS during 2013, 2014, and 2015 sowing season.   

Hybrids 
Lesion length (cm) 

Nodes crossed 

(no. plant-1) 

Control 

(cm) 

A1 A3 A3 ‡ ᵊDiff. ᵉDiff. A1     A3 Diff. A1        A3 Diff. 

Tx399  Atlas 9.8 e-k 8.3 c-f 10.5 d-f NS NS 0.9 e-i 0.8 e-i NS 2.3 d-k 2.6 ba NS 

Tx399  Early hegari 7.2 npo 6.3 mnl 8.1 k-o NS NS 0.7 g-j 0.2 klj NS 2.3 d-k 2.3 a-h NS 

Tx399  Kansas collier 12.3 ba 8.0 c-h 11.1 bcd ** NS 2.1 a 1.1 b-f NS 2.9 b-e 2.3 a-g NS 

Tx399  M81E 6.5 qpo 5.0 pqo 8.1 k-o NS NS 0.1 kl 0.0 l NS 2.1 h-k 1.9 d-j NS 

Tx399  Masuda 12.7 a 10.4 a 13.3 a * NS 1.6 bc 2.0 a NS 2.7 b-h 2.4 a-d NS 

Tx399  No.8 9.5 
g-l 6.7 

j-m 8.2 
j-n * NS 0.4 

i-l 0.1 
kl NS 2.3 

e-k 1.8 
ihj NS 

Tx399  PI185672 7.8 nmo 4.9 pqo 9.4 f-k * NS 0.4 i-l 0.2 klj NS 2.5 c-j 2.4 a-g NS 

Tx399  Kaoliang 10.0 d-k 9.1 bc 10.0 d-h NS NS 0.8 f-i 0.9 d-h NS 2.3 d-k 2.4 a-d NS 

Tx399  Rox orange 10.6 c-j 8.5 ecd 10.1 d-h NS NS 1.3 ecd 0.6 g-k * 2.8 b-g 2.2 a-i NS 

Tx399  Sugar drip 10.6 c-j 9.9 ba 12.0 ba NS NS 1.9 ba 1.2 b-e NS 3.1 ba 2.2 a-i * 

Tx623  Atlas 7.3 npo 5.1 pqo 7.7 m-p NS NS 0.9 e-i 0.7 f-j NS 2.2 f-k 1.8 ihj NS 

Tx623  Early hegari 8.4 
nml 5.0 

pqo 8.0 
l-o * NS 0.4 

i-l 0.4 
h-l NS 2.2 

g-k 1.6 
j NS 

Tx623  Kansas collier 9.5 h-l 7.4 e-l 10.8 d-f NS NS 0.8 f-i 0.7 f-j NS 2.8 b-f 1.8 f-j * 

Tx623  M81E 6.3 qp 4.1 q 6.7 op NS NS 0.0 l 0.0 l NS 1.4 l 1.8 g-j NS 

Tx623  Masuda 9.2 m-l 6.8 i-m 8.8 g-m * NS 0.7 g-j 0.7 f-j NS 2.1 kji 1.7 ij NS 

Tx623  No.8 5.6 q 4.4 pq 6.4 p NS NS 0.0 l 0.0 l NS 2.0 kjl 1.8 h-j NS 

Tx623  PI185672 10.4 c-k 6.9 h-m 9.9 d-h * NS 0.8 f-i 0.3 i-l NS 2.5 b-j 2.2 a-i NS 

Tx623  Kaoliang 9.7 e-l 7.9 c-h 10.0 d-h NS NS 0.9 e-i 0.9 d-h NS 2.2 g-k 2.3 a-h * 

Tx623  Rox orange 9.9 
d-k 8.0 

c-h 9.8 
d-i NS NS 0.9 

e-i 1.1 
b-f NS 2.3 

d-k 2.2 
a-i NS 

Tx623  Sugar drip 10.4 c-k 7.7 d-k 10.3 d-g * NS 1.6 bc 1.2 b-e NS 2.6 b-j 2.3 a-h NS 

Ks57  Atlas 11.1 b-e 7.1 f-l 9.6 d-j ** NS 0.9 e-i 0.6 g-k NS 2.9 b-e 2.5 bac NS 

Ks57  Early hegari 10.3 c-k 7.6 d-k 10.1 d-h * NS 1.9 ba 1.6 ba NS 3.1 ba 2.1 b-j * 

Ks57  Kansas collier 11.5 bac 8.7 bcd 11.0 b-d * NS 1.6 bc 1.3 bcd NS 3.6 a 2.6 ba * 
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Hybrids 
Lesion length (cm) 

Nodes crossed 

(no. plant-1) 

Control 

(cm) 

A1 A3 A3 ‡ ᵊDiff. ᵉDiff. A1     A3 Diff. A1        A3 Diff. 

Ks57  M81E 10.0 
d-k 6.9 

g-l 10.1 
d-h * NS 0.7 

g-j 0.7 
f-j NS 2.7 

b-i 2.6 
bac NS 

Ks57  Masuda 11.0 b-g 8.1 c-g 10.8 d-f * NS 1.3 ecd 1.4 bc NS 2.9 bdc 2.2 a-i NS 

Ks57  No.8 9.3 i-l 7.7 d-k 10.2 d-g NS NS 1.0 d-h 1.0 c-g NS 2.6 b-i 2.7 ba NS 

Ks57  PI185672 11.0 b-f 7.1 f-l 10.2 d-h ** NS 1.0 d-h 1.1 b-f NS 2.5 b-j 2.7 a NS 

Ks57  Kaoliang 10.7 c-i 8.7 bcd 10.7 d-f NS NS 0.6 h-k 0.8 e-i NS 3.0 bac 2.6 ba NS 

Ks57  Rox orange 9.9 d-k 7.7 d-k 10.7 d-f NS NS 1.3 ecd 1.4 bc NS 2.9 bdc 2.2 a-i NS 

Ks57  Sugar drip 10.8 b-h 8.1 c-g 11.2 bc * NS 1.4 bcd 1.6 ba NS 2.5 b-j 2.5 a-d NS 

N122  Atlas 9.6 
f-l 7.1 

f-l 9.4 
f-k * NS 1.0 

d-h 0.9 
d-h NS 2.3 

d-k 2.1 
b-j NS 

N122  Early hegari 9.1 kml 6.6 mkl 9.6 e-k * NS 1.3 ecd 0.7 f-j NS 2.5 c-j 2.4 a-f NS 

N122  Kansas collier 11.3 a-d 7.8 c-h 10.7 d-f * NS 1.3 ecd 1.0 c-g NS 2.2 g-k 2.2 a-i NS 

N122  M81E 6.5 qpo 5.3 pno 8.4 i=n NS NS 0.0 l 0.0 l NS 1.8 kl 1.6 j NS 

N122  Masuda 9.0 kml 7.0 g-l 9.7 d-i NS NS 1.0 d-h 1.0 c-g NS 2.0 kj 2.1 b-j NS 

N122  No.8 7.6 npo 5.7 mno 8.3 j-n NS NS 0.2 jkl 0.3 i-l NS 2.2 h-k 2.3 a-h NS 

N122  PI185672 9.1 
kml 4.8 

pqo 7.2 
nop ** NS 0.4 

i-l 0.0 
l NS 2.3 

d-k 2.1 
c-j NS 

N122  Kaoliang 10.2 c-k 6.8 i-m 8.7 h-m * NS 1.0 d-h 0.4 h-l NS 2.4 c-k 2.3 a-h NS 

N122  Rox orange 9.8 e-k 7.4 e-l 9.5 f-k * NS 1.2 c-f 1.0 c-g NS 2.5 b-j 1.9 e-j NS 

N122  Sugar drip 10.7 c-i 7.7 d-k 10.3 d-g * NS 1.1 c-g 0.9 d-h NS 2.9 bdc 2.4 a-e NS 

Mean   9.55  7.10  9.65    0.94  0.78   2.49 2.21  

ᵃLSD (0.05) 1.44 
 

1.22 
 

1.51    0.53 
 

0.53   0.60 NS  

ᵇLSD (0.05)    0.32  -    NS              NS 

Means within the same column with different letter are significantly different at P<0.05. 

A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background; A3‡, A3 sorghum 

hybrids in A3 cytoplasm background (open heads).  

ᵃLSD least significant difference between cytoplasm at same levels of A-line. 

 ᵇLSD least significant difference between A1 and A3 cytoplasm background. 

ᵊDiff., significant differences between A1 and A3 hybrids; ᵉDiff., significant differences between A1 and A3‡ hybrids. 
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Table 4.6. Estimates of general combining ability (GCA) effects of sweet sorghum parental lines 

for stalk rot infection caused by Macrophomina phaseolina evaluated at Manhattan, KS in 2013, 

2014, and 2015 sowing season.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

            

**, * statistically significant at 1% and 5% levels of probability. 

 A1, sorghum hybrids in A1cytoplasm background. 

 A3, sorghum hybrids in A3 cytoplasm background. 

 

 

Entries 

Lesion length  

(cm) 

Nodes crossed 

(no. plant-1) 

A1 A3 Diff. A1 A3 Diff. 

Females       

Tx399 0.16 0.59* NS 0.09 -0.06 NS 

Tx623 -0.89** -0.78** NS -0.25** -0.17* NS 

Ks57 1.01** 0.66** NS 0.23** 0.38** NS 

N122 -0.28 -0.48* NS -0.07 -0.15* NS 

Males 
      

Atlas -0.10 -0.19 NS -0.02 -0.05 NS 

Early hegari -0.82* -0.72* NS 0.15* -0.05 * 

Kansas collier 1.57** 0.89** * 0.51** 0.26* * 

M81E -2.24** -1.77** * -0.74** -0.60** NS 

Masuda 0.92** 0.96** NS 0.20* 0.51** ** 

No.8 -1.56** -1.01** * -0.52** -0.41** NS 

PI185672 0.05* -1.19** ** -0.27** -0.35** NS 

Kaoliang 0.61* 1.02** NS -0.13 -0.02 NS 

Rox orange 0.48 0.77* NS 0.26** 0.26* NS 

Sugar drip 1.09** 1.25** NS 0.56** 0.45** NS 
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Table 4.7. Pearson correlation coefficients between agronomic traits of sweet sorghum genotypes 

and stalk rot infection caused by Macrophomina phaseolina evaluated at Manhattan, KS during 

2013, 2014, and 2015 sowing season.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**, * statistically significant at 1% and 5% levels of probability. 

 

 

  

Traits Cytoplasm 

Correlation (r) 

Lesion length 

(cm) 

Nodes crossed 

(no. plant-1) 

Day to flowering 

A1 -0.39** -0.39** 

A3 -0.41** -0.32** 

Plant height 

A1 -0.12* -0.19** 

A3 -0.16* -0.26** 

Lodging 

 A1 0.21** 0.16** 

A3 0.06 ns 0.14* 

oBrix 

A1 -0.30** -0.26** 

A3 -0.11* 0.001 ns 

Lesion length 

A1 1 0.68** 

A3 1 0.59** 



133 

 

 Discussion 

Stalk rot is a serious and wide spread disease of sorghum that reduces both yield and quality of the 

grain and stalk. The disease is caused by several species of pathogen that occur singly or as 

complexes. Of all, post flowering stalk rot caused by M. phaseolina is the most important disease 

worldwide. A number of physiological and anatomical characteristics of the host plant has been 

implicated as modulating the response of genotypes to stalk rot infection. The current study 

investigated the disease response of sweet sorghum hybrids of diverse genetic background variable 

sink size to infection by stalk rot pathogen M. phaseolina.  

The mean disease score rated as lesion length was greater in the hybrids than in the parental 

lines (Table 4.3 and 4.4). This may be due to the fact that hybrids with larger sink size tended to 

draw more assimilates from the stalk to fill the grain than the inbreds that had relatively smaller 

sink size. This is in general agreement with the widely reported thought that the severity of stalk 

rot infection is greater among high-yielding hybrids than in inbred lines (Seetharama et al., 1991). 

There were also significant differences among parent lines, hybrids, and between A1 and A3 

hybrids (Table 4.3 and 4.4). Although all hybrids were generally higher yielders than inbreds, there 

was significant difference in yield potential of the hybrids. Thus, the amount of physiological stress 

imposed due to variable assimilate partitioning could be different in high and low-yielding hybrids 

leading to differences in their response to stalk rot infection. All of the non-grain forming A3 

hybrids had lower infection rates than their grain forming A1 counterparts. Nevertheless, due to 

the inherent genetic difference between the hybrids, response to infection between A1 and A3 

hybrids was different, indicating that assimilate partitioning was just one of the many factors 

contributing to the stalk rot disease.  
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Because male parents were more divergent with respect to their reaction to stalk rot with 

mean lesion length ranging from 3.41 cm contained within 0.33 nodes in the resistant line M81E, 

to 15.68 cm that crossed 2.00 nodes in the susceptible Early hegari, the greatest proportion of the 

variation among parent lines should have come from the males. Male lines No.8, Rox orange, and 

Atlas also expressed lower disease scores with necrotic lesion of 6.87, 7.46, and 7.75 cm, 

respectively (Table 4.3).  

The most relevant information in this study is the difference in the reaction of A1 and A3 

hybrids to infection by M. phaseolina. All of the 40 A1 hybrids had mean lesion length longer than 

their corresponding A3 hybrids with the overall mean A1 and A3 hybrids being 9.55 and 7.10 cm, 

respectively. This conforms with many earlier reports that physiological stress resulting from 

massive movement of assimilates from the stalk to the grain may weaken the host condition and 

predispose to infection by stalk rot diseases (Odvody and Dunkle, 1979; Dodd, 1980). Because the 

A3 hybrids had more sugar and juice in the stalk than their corresponding A1 hybrids, those may 

be among factors responsible for resistance. Disease score from unbagged A3 hybrids was 

comparable with that of A1 hybrids, confirming that the greater stalk sugar in the A3 hybrids was 

indeed the factor responsible for improved resistance. This is an important agronomic implication 

in sweet sorghum production. In addition to increasing the feedstock value through improving 

sugar and biomass yield, the use of A3 CMS system has added the benefit of great stalk rot 

resistance. As reported in the previous chapter, A3 hybrids were more tolerant to lodging because 

of stronger stalk and less torque from the grain. This plus the improved resistance to stalk rot 

disease addresses concerns with standability, one of the important considerations in high biomass 

sweet sorghum production.  
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 Conclusion 

In addition to increasing sugar yield and biomass, removal of the grain sink, significantly 

contributed to increased resistance to stalk rot diseases. Such resistance combined with less 

propensity for lodging in non-grain forming hybrids greatly contributes to standability. The A3 

CMS system has great potential for increasing sweet sorghum productivity and increasing the 

value of the crop as a transition feedstock in sugar industries or as dedicated sugar-based feedstock 

for biofuel production. 
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Appendix A - Supplemental information for chapter 3 

Table A.1. Mean squares for the analysis of variance of biofuel traits for individual test 

environments. 

Source of variation df 
Mean squares 

Brix  Biomass yield Juice yield  Sugar yield  

Environment one (2013)  
    

Replication  2 2.14 12.73* 27.81** 0.51* 

Entry 97 31.92** 124.75** 151.28** 3.35** 

   Parent 17 45.68** 122.4** 216.6** 4.42** 

   Hybrid 79 25.21** 102.9** 113.2** 2.77** 

      Male 9 52.59** 636** 525.1** 11.04** 

      Female 7 148.89** 176.5** 174.9** 8.95** 

      Male x Female 63 7.55** 18.55** 47.53** 0.90** 

   Parent vs. Hybrid 39 328.7** 1890.3** 2045** 31.20** 

     A1 hybrids 39 10.36** 68.54** 80.99** 1.17** 

     A3 hybrids 39 14.76** 115.26** 128.3** 2.98** 

     A1 vs. A3 hybrids 1 1011** 960.8** 782.1** 56.68** 

Environment two (2014)      
Replication  2 1.82 21.47* 2.33 0.07 

Entry 97 18.86** 64.51** 139.2** 2.8** 

   Parent 17 19.34** 77.65** 146.28** 2.73** 

   Hybrid 79 16.68** 50.08** 113.3** 2.38** 

      Male 9 33.45** 219.3** 612.1** 11.04** 

      Female 7 106.3** 119.3** 185.8** 7.05** 

      Male x Female 63 4.32** 18.21** 34** 0.63** 

   Parent vs. Hybrid 1 182.8** 980.3** 2065** 36.44** 

     A1 hybrids 39 9.29** 37.45** 109.4** 1.59** 

     A3 hybrids 39 5.84** 46.47** 101.9** 2.19** 

     A1 vs. A3 hybrids 1 727.6** 683.8** 708.3** 40.94** 

Environment three (2015)      
Replication  2 0.57 18.44* 1.27 0.18 

Entry 97 33.76** 90.49** 210.6** 5.69** 

   Parent 17 46.85** 69.46** 189.2** 3.84** 

   Hybrid 79 19.03** 70.59** 137.5** 4.32** 

      Male 9 102.7** 359.3** 462.1** 15.97** 

      Female 7 43.81** 173.4** 543.2** 18.21** 

      Male x Female 63 6.19* 17.90** 43.54** 1.12** 

   Parent vs. Hybrid 1 975.1** 2020** 6350.6** 145.2** 

     A1 hybrids 39 14.26** 52.63** 105.7** 2.70** 

     A3 hybrids 39 6.43** 60.59** 109.3** 3.04** 

     A1 vs. A3 hybrids 1 696.3** 1160** 248** 117** 

Error 194         

 **, * - statistically significant at 1 % and 5% levels of probability, respectively. 
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Table A.2. Mean squares for the analysis of variance of agronomic traits for individual test 

environments. 

Source of variation df 

Mean squares 

Day to 

flowering Lodging 

Plant 

Height   

Head 

weight  

Environment one (2013)  
    

Replication  2 148.18** 0.207* 1902** 8.66** 

Entry 97 358.37** 0.87** 11896.4** 37.43** 

   Parent 17 365.3** 0.319** 24388** 12** 

   Hybrid 79 354.35** 0.98** 5484** 43.37** 

      Male 9 2795** 2.88** 38013** 14.08** 

      Female 7 191.7** 2.60** 6488** 395** 

      Male x Female 63 23.72* 0.53** 725.4** 8.48** 

   Parent vs. Hybrid 39 557.71* 1.27* 306109* 0.505 

     A1 hybrids 39 326.5** 1.43** 5256** 17.15** 

     A3 hybrids 39 369.2** 0.20** 5828** 0.66** 

     A1 vs. A3 hybrids 1 855.03* 14.01** 928.2 2731** 

Environment two (2014)      
Replication  2 646.7** 3.18** 2315** 0.21 

Entry 97 390.7** 0.28* 4778** 20.81** 

   Parent 17 365.3** 0.35 8339** 9.26** 

   Hybrid 79 381.03** 0.26** 3323** 23.38** 

      Male 9 2113** 1.13** 18868** 5.71** 

      Female 7 163.8* 0.304 3087** 186.4** 

      Male x Female 63 157.7** 0.141 1128** 7.79 

   Parent vs. Hybrid 1 1587* 0.011 59258** 13.74 

     A1 hybrids 39 403.9** 0.28* 3795** 14.21** 

     A3 hybrids 39 365.4** 0.25* 2934** 0.68** 

     A1 vs. A3 hybrids 1 95** 0.004 63.03 1266** 

Environment three (2015)      
Replication  2 498.5** 2.90* 199.5 1.50* 

Entry 97 238.3** 1.02** 33.76** 35.92** 

   Parent 17 219.3** 1.17* 31441** 14.33** 

   Hybrid 79 299.09** 1.002** 4166** 41.02** 

      Male 9 2358** 1.84** 19982** 14.70** 

      Female 7 127.1** 2.29** 8622** 387.2** 

      Male x Female 63 24.03** 0.73* 1412** 6.31** 

   Parent vs. Hybrid 1 129.2 0.001 391468** 0.006 

     A1 hybrids 39 308.6** 1.38** 3156** 13.45** 

     A3 hybrids 39 289.3** 0.33 5232** 1.33** 

     A1 vs. A3 hybrids 1 306** 12.15** 1978 2664.2** 

Error 194         

**, * - statistically significant at 1 % and 5% levels of probability, respectively. 
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Table A.3. Combined mean performance of sorghum hybrids as influenced by male-sterility inducing cytoplasm of their A1 and A3-

lines for agronomic traits grown in Manhattan KS during 2013, 2014 and 2015 crop seasons. 

Hybrids 

Day to 

flowering 
Lodging Plant height Head weight 

A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. 

Tx399 x Atlas 69.9 75.2 NS 1.1 1.2 NS 222.3 222.2 NS 10.1 2.3 ** 

Tx399 x Early Hegari 79 81.8 NS 1.3 1.1 NS 218.4 223.9 NS 7.8 3.1 * 

Tx399 x Kansas collier 66.6 67.3 NS 1.4 1.2 NS 234.8 214.9 NS 8.3 1.9 ** 

Tx399 x M81E 93.7 91.8 NS 1 1 NS 303.9 286.7 NS 8.8 3.4 ** 

Tx399 x Masuda 71.3 71.4 NS 1.7 1.7 NS 237.8 217.9 NS 8.8 2.4 ** 

Tx399 x No.8 87.4 91.9 NS 1 1 NS 276.1 287.8 NS 7.4 2.8 * 

Tx399 x PI185672 97 99.7 NS 1 1.1 NS 279.1 281.7 NS 6.2 2.2 * 

Tx399 x Kaoliang 76 78 NS 1 1 NS 242.8 227.8 NS 10.4 2.3 ** 

Tx399 x Rox Orange 74 74.6 NS 1.2 1 NS 227.9 195.1 * 6.4 1.9 * 

Tx399 x Sugar Drip 66.2 66.6 NS 1.3 1.2 NS 219.7 206.7 NS 7.6 1.9 ** 

Tx623 x Atlas 73.8 76.9 NS 1.6 1.6 NS 247.1 243.1 NS 10.1 1.8 ** 

Tx623 x Early Hegari 87.6 85.2 NS 1.3 1 NS 239.8 244.1 NS 8.5 2.1 ** 

Tx623 x Kansas collier 70.3 67.9 NS 1.9 1.6 NS 242.4 240 NS 7.8 2.3 ** 

Tx623 x M81E 83 85.6 NS 1.1 1.1 NS 308.6 317.1 NS 10.4 2.4 ** 

Tx623 x Masuda 69.7 74.6 NS 2.6 1.3 ** 234.7 258 NS 8.7 1.9 ** 

Tx623 x No.8 93.6 86.6 NS 1 1.1 NS 286.3 280.9 NS 7.5 2.6 ** 

Tx623 x PI185672 95.1 97.7 NS 1.6 1 * 290.9 307.8 NS 5.3 2 * 

Tx623 x Kaoliang 72.2 79.7 NS 1.3 1 NS 284.6 283 NS 10.9 2.8 ** 

Tx623 x Rox Orange 68.2 72.7 NS 1.7 1.1 * 230.1 212.3 NS 5.5 1.8 * 

Tx623 x Sugar Drip 66.8 69.7 NS 1.3 1 NS 226.1 231.9 NS 9 2.1 ** 

Ks57 x Atlas 68.2 75.7 NS 1.1 1.4 NS 201.9 212.8 NS 10.7 2.6 ** 

Ks57 x Early Hegari 75.8 83.4 NS 1.7 1.1 * 222.1 209 NS 9.5 2.5 ** 

Ks57 x Kansas collier 64.9 69.8 NS 2.1 1.2 ** 216.8 213.7 NS 8.6 2.1 ** 
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Hybrids 

Day to 

flowering 
Lodging Plant height Head weight 

A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. A1 A3 Diff. 

Ks57 x M81E 89.4 93 NS 1.3 1.2 NS 287.8 312.1 NS 7.5 2.6 ** 

Ks57 x Masuda 71.1 75.9 NS 2.6 1.2 ** 210.9 228.3 NS 9.4 2.3 ** 

Ks57 x No.8 88.2 90.8 NS 1 1.1 NS 289.1 275 NS 7.8 3 ** 

Ks57 x PI185672 95.4 94.8 NS 1 1 NS 278.4 289.8 NS 6.9 2.9 * 

Ks57 x Kaoliang 70.8 74.4 NS 1.2 1.1 NS 234.2 235 NS 7.4 2.7 * 

Ks57 x Rox Orange 74.1 73 NS 1.1 1.3 NS 206.1 209.8 NS 7.9 2.1 ** 

Ks57 x Sugar Drip 66.6 70.3 NS 2 1.1 ** 201.1 207.8 NS 9.1 2.4 ** 

N122 x Atlas 74.6 78.8 NS 1.7 1.1 * 208.9 210.4 NS 5.4 2.1 * 

N122 x Early Hegari 78.8 76.3 NS 1 1 NS 183.6 185.6 NS 9 2.3 ** 

N122 x Kansas collier 69.3 69.1 NS 2.4 1.3 ** 207.7 227.3 NS 9.3 1.9 ** 

N122 x M81E 91.1 94.8 NS 1.1 1 NS 283.4 283.9 NS 8.4 1.9 ** 

N122 x Masuda 70.4 73.2 NS 2.8 1.3 ** 217.7 224.1 NS 8.9 2.1 ** 

N122 x No.8 87.1 92.4 NS 1 1 NS 231.1 242.6 NS 9.2 2.7 ** 

N122 x PI185672 87.3 90.3 NS 1.2 1.1 NS 259.7 284.6 NS 7.2 3 * 

N122 x Kaoliang 69.7 73 NS 1.4 1 NS 237.2 227.7 NS 9.3 1.8 ** 

N122 x Rox Orange 68.7 73 NS 1.3 1.1 NS 211 202.9 NS 7.3 2.2 ** 

N122 x Sugar Drip 65.4 68.9 NS 2 1 ** 226 213.4 NS 8.6 1.6 ** 

Mean 77.2 79.6  1.5 1.2  241.7 242   8.3 2.3   

ᵃLSD (0.05) 4.3 4.6  0.4 0.4  14 12.8  1 0.2  
ᵇLSD (0.05) NS            NS  NS   0.3 

A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background. 

ᵃLSD, least significant difference between cytoplasm at same levels of A-line. 

 ᵇLSD, least significant difference between A1 and A3 cytoplasm background. 

 NS, Non-significant.  
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Table A.4. Estimates of specific combining ability (SCA) effects as influenced by male sterility inducing cytoplasm (A1and A3) for 

agronomic traits of sorghum hybrids grown in Manhattan KS during 2013, 2014 and 2015 crop seasons.  

Hybrids 

Day to                      

flowering 
Lodging Plant height     Head weight   

A1 A3 A1 A3 A1 A3 A1 A3 

Tx399 x Atlas -2.43 -1.60 0.04 -0.11 10.13* 18.08** 1.81** -0.89**
 a

 

Tx399 x Early Hegari -1.99 -0.10 0.29 0.06 10.32* 26.25**
 a

 -0.08 -0.43** 

Tx399 x Kansas collier -1.93 -1.38 -0.24 -0.11 17.21** 8.92* 0.64 -1.10**
 a

 

Tx399 x M81E 3.65* 0.32 0.15 -0.08 15.82** 4.72 0.80* -0.12
 a

 

Tx399 x Masuda -0.02 -2.52 -0.44* 0.28
 a

 20.38** 3.81
 a

 0.68 -0.79**
 a

 

Tx399 x No.8 -2.35 1.29 0.29 -0.06 13.29* 34.22**
 a

 0.24 -0.98**
 a

 

Tx399 x PI185672 2.57 3.87* 0.09 0.06 9.93* 8.72 0.58 -1.29**
 a

 

Tx399 x Kaoliang 3.12* 1.54 0.04 -0.03 0.93 2.42 1.74** -1.05**
 a

 

Tx399 x Rox Orange 2.04 1.07 0.18 -0.14 16.96** 8.08 0.41 -1.09**
 a

 

Tx399 x Sugar Drip -0.74 -2.49 -0.05 0.14 9.29 9.72* -0.13 -1.13**
 a

 

Tx623 x Atlas 1.54 0.26 0.16 0.20 22.13** 13.61* 1.70** -1.15**
 a

 

Tx623 x Early Hegari 6.66** 3.53* -0.04 -0.08 18.88** 21.11** 0.40 -1.14**
 a

 

Tx623 x Kansas collier 1.93 -0.63 -0.12 0.20 12.10* 8.66 -0.11 -0.52** 

Tx623 x M81E -6.93** -5.72** -0.06 0.01 7.71 9.80* 2.29** -0.93**
 a

 

Tx623 x Masuda -1.59 0.78 0.13 -0.08 4.49 18.55**
 a

 0.34 -0.98**
 a

 

Tx623 x No.8 3.85* -3.86* -0.04 0.03 10.74* 1.97 0.19 -0.92**
 a

 

Tx623 x PI185672 0.77 2.06 0.33* -0.08
 a

 8.93 9.47* -0.45 -1.25**
 a

 

Tx623 x Kaoliang -0.57 3.39* 0.05 -0.05 29.93** 32.27** 2.00** -0.39**
 a

 

Tx623 x Rox Orange -3.65* -0.63 0.30 -0.05 6.40 -0.06 -0.68 -0.95** 

Tx623 x Sugar Drip -0.09 0.81 -0.37* -0.11 2.96 9.58* 1.02* -0.65**
 a
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Hybrids 

Day to                      

flowering 
Lodging Plant height     Head weight   

A1 A3 A1 A3 A1 A3 A1 A3 

Ks57 x Atlas -2.44 -1.44 -0.26 0.08 1.12 5.77 2.13** -0.71**
 a

 

Ks57 x Early Hegari -3.56* 1.28
a
 0.32* 0.02 25.42** 8.49

 a
 1.32** -1.08**

 a
 

Ks57 x Kansas collier -1.94 0.78 0.13 -0.14 10.64* 4.83 0.64 -1.06**
 a

 

Ks57 x M81E 1.08 1.25 0.18 0.11 11.14* 27.30**
 a

 -0.76* -1.07** 

Ks57 x Masuda 1.42 1.64 0.15 -0.20 4.92 11.38* 0.97* -0.99**
 a

 

Ks57 x No.8 0.08 -0.11 -0.01 0.02 37.73** 18.58**
 a

 0.29 -0.84**
 a

 

Ks57 x PI185672 2.67 -1.31 -0.21 -0.09 20.70** 13.97* 1.03* -0.70**
 a

 

Ks57 x Kaoliang -0.44 -2.31 -0.04 0.05 3.81 6.77 -1.63** -0.80**
 a

 

Ks57 x Rox Orange 3.81* -0.78
 a

 -0.24 0.16 6.62 19.88**
 a

 1.65** -0.95**
 a

 

Ks57 x Sugar Drip 1.25 1.00 0.32* -0.01 2.17 7.97 1.05* -0.67**
 a

 

N122 x Atlas 4.10* 2.79 0.20 -0.17 16.34** 12.52* -2.96** -0.81**
 a

 

N122 x Early Hegari -0.34 -4.71*
 a

 -0.44* 0.00 -4.91 -5.87 1.04* -0.91**
 a

 

N122 x Kansas collier 2.71 1.23 0.37* 0.06 9.75 27.57**
 a

 1.51** -0.86**
 a

 

N122 x M81E 2.96* 4.15* -0.13 -0.03 15.03* 8.16 0.34 -1.43**
 a

 

N122 x Masuda 0.96 0.09 0.29 0.00 19.92** 16.24** 0.68 -0.79**
 a

 

N122 x No.8 -0.82 2.68 -0.10 0.01
 a

 -12.05* -4.79 1.96** -0.81**
 a

 

N122 x PI185672 -5.23** -4.63* -0.07 0.11 10.14* 17.82** 1.52** -0.30**
 a

 

N122 x Kaoliang -1.34 -2.63 0.09 0.03 15.03* 8.52 0.56 -1.30**
 a

 

N122 x Rox Orange -1.43 0.34 -0.10 0.03 19.73** 22.07** 1.29** -0.56**
 a

 

N122 x Sugar Drip 0.35 0.68 0.23 -0.03 35.28** 22.71** 0.74* -1.10**
 a

 

**, * statistically significant at 1% and 5% levels of probability; a, Significant cytoplasm differences. 

 A1, sorghum hybrids in A1cytoplasms background; A3, sorghum hybrids in A3 cytoplasm background.  
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Table A.5. Estimates of high-parent heterosis of sorghum hybrids as influenced by male-sterility inducing cytoplasm of their A1 and 

A3-lines for agronomic traits of sorghum hybrids grown in Manhattan KS during 2013, 2014 and 2015 crop seasons. 

Hybrids 

  

Day to 

 flowering 
Lodging 

Plant  

height 

Head  

weight 

A1 A3 A1 A3 A1 A3 A1  A3 

Tx399 x Atlas -14.65 -8.14 -23.08 -15.38 -11.34 -11.39 39.46** -68.10 

Tx399 x Early Hegari 5.61* 9.67* -7.69 -12.08 17.74* 21.37* 44.08* -43.26 

Tx399 x Kansas collier -1.96 -0.82 0.00 -15.38 8.03* -1.12 68.63* -60.64 

Tx399 x M81E 4.85* 2.74* -18.18 -18.18 -2.57* -8.09* 96.68** -23.05 

Tx399 x Masuda -3.89 -3.74 -11.76 -11.76 -1.92 -10.13 92.99** -48.34 

Tx399 x No.8 -9.02 -4.39* 0.00 0.00 12.95* 17.73* -12.56 -67.00 

Tx399 x PI185672 8.72* 11.71* -30.63 -14.37 13.72* 14.76* 13.48 -59.22 

Tx399 x Kaoliang -7.69 -5.26 -25.00 -25.00 -4.12 -10.05 16.41* -73.92 

Tx399 x Rox Orange -4.58 -3.87 -15.38 -30.77 3.80 -11.13 5.78 -68.28 

Tx399 x Sugar Drip -7.31 -6.84 0.00 -8.33 -1.49 -7.32 14.96 -72.19 

Tx623 x Atlas -9.91 -6.11 7.69 7.69 -1.46 -3.06 40.25** -74.96 

Tx623 x Early Hegari 16.28* 11.62* -7.69 -30.77 21.97* 23.86* 56.05* -60.77 

Tx623 x Kansas collier 1.44 -2.08 30.77 7.69 11.55* 10.43 56.75* -53.69 

Tx623 x M81E -7.09 -4.23 -9.09 -9.09 -1.07* 1.67* 97.78** -46.39 

Tx623 x Masuda -6.14 0.45 17.29* -29.41 -3.21 6.42* 89.24** -57.65 

Tx623 x No.8 -2.66* -9.94 0.00 11.11 17.14* 14.91* -11.09 -69.01 

Tx623 x PI185672 6.60* 9.46* -15.32 -15.63 18.52* 19.40* -2.36 -62.90 

Tx623 x Kaoliang -12.28 -3.24 0.00 -25.00 12.37* 11.76* 21.27** -69.19 

Tx623 x Rox Orange -12.03 -6.30 15.38 -23.08 4.81 -3.29 -9.35 -69.75 

Tx623 x Sugar Drip -6.53 -2.49 0.00 -25.00 1.40 3.99 34.76* -68.58 

Ks57 x Atlas -16.69 -7.60 -13.08 0.00 -19.49 -15.15 48.18** -64.42 

Ks57 x Early Hegari 6.89 8.11* 31.38 -23.08 20.18* 20.44* 75.54** -53.74 

Ks57 x Kansas collier -2.67 4.67 46.15* -15.38 -0.26 -1.69 70.90* -59.13 

Ks57 x M81E 0.12* 4.10* 9.09 0.00 -7.73* 0.07* 48.99* -49.21 

Ks57 x Masuda -4.19 2.25 35.29* -35.29 -13.02 -5.82 86.47** -55.48 

Ks57 x No.8 -8.21 -5.55* 0.00 11.11 18.27* 12.50* -8.33 -64.31 
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Hybrids 

  

Day to 

 flowering 
Lodging 

Plant  

height 

Head  

weight 

A1 A3 A1 A3 A1 A3 A1  A3 

Ks57 x PI185672 6.97* 6.23* -30.63 -11.63 13.44* 18.06* 27.23 -46.93 

Ks57 x Kaoliang -14.04 -9.58 -8.33 -16.67 -7.50 -7.20 -17.78 -70.22 

Ks57 x Rox Orange -4.44 -5.87 -23.08 -7.69 -6.12 -4.45 31.46 -64.57 

Ks57 x Sugar Drip -6.84 -1.56 16.00* -16.67 -9.82 -6.83 37.28* -64.07 

N122 x Atlas -8.96 -3.80 15.38 -23.08 -16.70 -16.08 -25.77 -70.56 

N122 x Early Hegari 9 .18 8.70 -17.77 -30.77 19.46 23.80 65.58** -57.01 

N122 x Kansas collier -1.27 -1.58 69.23* -7.69 -4.45 4.60 87.17** -61.15 

N122 x M81E 1.99* 6.09* -9.09 -18.18 -9.12* -8.98* 87.55** -58.19 

N122 x Masuda -5.09 -1.35 47.06* -29.41 -10.22 -7.56 94.04** -54.11 

N122 x No.8 -9.36 -3.82 0.00 0.00 -5.45 -0.77* 8.38* -68.09 

N122 x PI185672 -2.12 1.25* -27.11 -13.37 5.79* 15.93* 31.49 -45.86 

N122 x Kaoliang -15.38 -11.34 8.33 -25.00 -6.32 -10.09 3.76* -79.55 

N122 x Rox Orange -11.46 -5.87 -7.69 -23.08 -3.90 -7.59 21.25 -63.76 

N122 x Sugar Drip -8.40 -3.58 16.00* -25.00 1.35 -4.29 28.81* -75.62 
**, * statistically significant at 1% and 5% levels of probability. 
A1 = sorghum hybrids in A1cytoplasms background; A3 = sorghum hybrids in A3 cytoplasm background. 
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Table A.6. Estimates of mid-parent heterosis of sorghum hybrids as influenced by male-sterility inducing cytoplasm of their A1 and 

A3-lines for agronomic traits of sorghum hybrids grown in Manhattan KS during 2013, 2014 and 2015 crop seasons. 

Hybrids 

Day to  
Lodging 

Plant  Head  

flowering height weight 

A1 A3 A1 A3 A1 A3 A1 A3 

Tx399 x Atlas -6.68 0.45 -9.09 0.01 31.17 31.1 73.35** -60.34 

Tx399 x Early Hegari 15.99* 20.07* 9.09 -9.09 83.48* 88.05* 58.98* -37.39 

Tx399 x Kansas collier -1.07 0.08 18.18 0 53.67* 40.65 78.54* -58.33 

Tx399 x M81E 19.15* 16.75* -10 -10 51.90* 43.29* 98.15** -22.47 

Tx399 x Masuda 0.39 0.55 15.38 15.38 43.82 31.79 96.88** -47.29 

Tx399 x No.8 6.64 12.06* 0 0 66.00* 73.01* 15.11 -56.56 

Tx399 x PI185672 20.48* 26.87* -19.71 -28.57 67.30* 68.83* 25.56 -54.88 

Tx399 x Kaoliang 1.18 3.85 -14.29 -14.29 42.21 33.42 56.08* -65.03 

Tx399 x Rox Orange 1.76 2.52 0 -18.18 48.09 26.79 22.34 -63.31 

Tx399 x Sugar Drip -4.94 -4.47 14.29 4.76 41.16 32.81 38.37 -66.53 

Tx623 x Atlas -2.42 1.69 27.27 27.27 39.48 37.22 75.11** -68.73 

Tx623 x Early Hegari 21.20* 23.81* 9.09 -18.18 89.22* 92.63* 73.10* -56.48 

Tx623 x Kansas collier 3.43 -0.16 54.55 27.27 51.11* 49.58 66.87* -50.7 

Tx623 x M81E 4.62 7.84 0 0 48.54* 52.66* 95.90** -45.67 

Tx623 x Masuda -2.94 3.87 76.92* -7.69 35.65 49.13* 94.17** -56.55 

Tx623 x No.8 13.10* 4.63 0 11.11 64.56* 61.43* 17.52 -59.04 

Tx623 x PI185672 19.97* 23.20* 0 -35.71 66.70* 76.38** 8.6 -58.74 

Tx623 x Kaoliang -4.76 5.05 14.29 -14.29 59.51* 58.64* 63.22** -58.53 

Tx623 x Rox Orange -7.11 -1.06 36.36 -9.09 42.43 31.43 5.36 -64.84 

Tx623 x Sugar Drip -5.13 -1.03 14.29 -14.29 38.48 42.02 62.95* -62 

Ks57 x Atlas -7.74 2.33 -9.09 18.18 20.53 27.03 74.32** -58.15 

Ks57 x Early Hegari 12.82 24.23* 36.36 -9.09 89.75* 78.55* 81.52** -52.17 

Ks57 x Kansas collier -2.18 5.19 72.73* 0 43.77 41.71 72.77* -58.68 

Ks57 x M81E 15.16* 19.74* 20 10 45.30* 57.59* 58.26* -46.05 

Ks57 x Masuda 1.43 8.24 76.92* -15.38 29.12 39.8 95.70** -53.27 

Ks57 x No.8 8.84 11.99* 0 11.11 75.93* 67.34* 14.8 -55.3 
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Hybrids 

Day to  
Lodging 

Plant  Head  

flowering height weight 

A1 A3 A1 A3 A1 A3 A1 A3 

Ks57 x PI185672 19.98* 22.12* -19.71 -35.71 68.92* 75.80* 31.95 -44.97 

Ks57 x Kaoliang -4.57 0.37 4.76 -4.76 38.82 39.28 5.05 -61.95 

Ks57 x Rox Orange 3.25 1.7 -9.09 9.09 35.7 38.11 43.01 -61.46 

Ks57 x Sugar Drip -3.15 2.34 71.43* -4.76 30.92 35.26 55.93* -59.19 

N122 x Atlas -1.97 3.58 36.36 -9.09 26.77 27.71 -7.52 -63.32 

N122 x Early Hegari 13.71 10.18 -18.18 -18.18 60.54 62.29 83.21** -52.43 

N122 x Kansas collier 1.3 0.97 10.0** 9.09 40.26 53.55 98.74** -58.75 

N122 x M81E 14.21* 18.80* 0 -10 45.11* 45.34* 89.53** -57.75 

N122 x Masuda -2.46 1.38 92.31* -7.69 35.52 39.54 98.55** -53.04 

N122 x No.8 4.74 11.16 0 0 43 50.09* 42.98* -57.9 

N122 x PI185672 9.55 13.31* -21.43 -28.57 60.18* 75.53* 45.88 -39.93 

N122 x Kaoliang -8.67 -4.3 23.81 -14.29 42.9 37.15 39.40* -72.53 

N122 x Rox Orange -7.07 -1.2 9.09 -9.09 41.45 36.01 40.59 -57.97 

N122 x Sugar Drip -7.61 -2.75 71.43* -14.29 49.78 41.46 55.40* -70.59 

**, * statistically significant at 1% and 5% levels of probability. 
A1 = sorghum hybrids in A1cytoplasms background; A3 = sorghum hybrids in A3 cytoplasm background. 

 


