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Abstract

We propose the grouped coefficients estimator to reduce bias in dynamic panels
with small T that have a multilevel structure to the coefficient and factor loading
heterogeneity. If groups are chosen such that the within-group heterogeneity is small,
then the grouped coefficients estimator can lead to substantial bias reduction compared
to pooled GMM dynamic panel estimators. We also propose using a Wald test that
can be used to assess whether pooled estimators suffer from heterogeneity bias. We
illustrate the usefulness of grouped coefficients with an application to labor demand in
which the coefficients are grouped by sub-sector. Our results suggest that the standard
pooled estimates are substantially biased.
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1 Introduction

We study dynamic panel regression models in which the number of time series observations

T is small and all coefficients may vary across individuals. We aim to estimate the average

of the coefficients across individuals.1 Pooling across individuals, and thereby ignoring the

heterogeneity, generates large biases in this setting. The fact that ignoring heterogeneity of

the intercept generates large biases has been well known since the work of Nerlove (1967) and

Nerlove (1971), and many papers have been written on this topic. However, heterogeneity

in the other coefficients can also generate large biases and this issue has received much less

attention in the literature.

There is a large literature that proposes alternative estimation methods for dynamic

panel models with small T that exhibit heterogeneity only in the intercept. Some of the

alternative approaches include Generalized Method of Moments (GMM) estimators that

use lags as instruments (e.g., Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell

and Bond, 1998), deriving bias corrections for fixed effects (e.g., Kiviet, 1995; Hahn and

Kuersteiner, 2002; Bruno, 2005; Bun and Carree, 2005), maximizing a transformed likeli-

hood function (Hsiao, Pesaran, and Tahmiscioglu, 2002), or using alternative differencing

procedures (Hahn, Hausman, and Kuersteiner, 2007; Han, Phillips, and Sul, 2014).

The GMM estimators, in particular, have become extremely popular in empirical ap-

plications. For example, Google Scholar indicates nearly 15,000 citations of Arellano and

Bond (1991) as of 2014 and the number of citations has been increasing rapidly in recent

years (Wansbeek, 2012). The GMM estimators, however, are not consistent when either

(i) the coefficient on the lagged dependent variable or an autocorrelated regressor is het-

erogeneous (Pesaran and Smith, 1995) or (ii) there is cross-sectional dependence (Sarafidis
1In many cases, the average effect is of greatest interest since it corresponds to the aggregate effect.

The distribution of coefficients may also be of interest. Our estimator gives group-specific estimates of
the coefficients—which is useful—but does not describe the full distribution of individual coefficients, so
we focus attention on the average coefficient. Estimating the distribution of individual coefficients requires
different methods and may require more stringent assumptions about the model (e.g., Hsiao, Pesaran, and
Tahmiscioglu, 1999). Individual coefficients cannot be consistently estimated with small T .
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and Robertson, 2009). All of the other estimators listed above were also developed under

the assumption of coefficient homogeneity. Given the popularity of the GMM estimators in

applied econometrics, it is important to evaluate the magnitude of the bias due to coefficient

heterogeneity and cross-sectional dependence and propose a method to reduce the bias.

We argue that, in many empirical settings, individuals can be sorted into relatively

homogeneous groups based on observables. Examples include individuals who are more

similar to others in their school, county, or state than those outside, and firms that are more

similar to those in their sector or region than those outside. We use the term multilevel to

describe this data structure, although the words cluster and hierarchical have also been used

in this context (e.g., Gelman, 2006). We make three contributions to the literature. First,

we propose the grouped coefficients estimator, which entails pooling within groups to reduce

bias in the estimated average effects. Second, we provide Monte Carlo evidence on the large

bias of commonly used dynamic panel estimators when coefficients are heterogeneous. Third,

we propose a simple test to determine whether grouping significantly reduces bias.

We implement our proposed grouped coefficients by applying dynamic panel estimators

separately to groups of relatively homogeneous individuals. We then obtain an estimate

of the mean effect by averaging across groups. The success of this estimator in reducing

bias depends on the groups being sufficiently large and homogeneous.2 For example, if

all individuals within each group have the same coefficients, then OLS provides consistent

group-level estimates and the resulting grouped coefficients estimator is consistent for the

average effect. If individuals in each group have heterogeneous intercepts but otherwise

homogeneous coefficients, then applying a GMM dynamic panel estimator to each group

produces consistent estimates of the average effect. In general, estimating coefficients specific

to each group removes the pooling bias from coefficient heterogeneity, while pooling within

the groups reduces the bias of the coefficient on the lagged dependent variable due to small

T .
2The relevant asymptotic theory here is one in which group size goes to infinity and T is fixed.
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A multilevel structure is not necessary for bias reduction in panels with large T . Pesaran

and Smith (1995) note that, when T is large, a researcher can consistently estimate the

coefficients that characterize each individual. Thus, they propose running separate regres-

sions for each individual and then averaging over individuals to estimate the average effect.3

Related methods for large T are proposed by Maddala et al. (1997) and Hsiao and Tahmis-

cioglu (1997). Maddala et al. (1997) consider a random coefficient model of dynamic panels

using shrinkage estimators and Hsiao and Tahmiscioglu (1997) estimate separate random

coefficient models for groups of homogeneous individuals. These methods do not work well

for small T . In essence, one needs a sufficient number of observations in each pool. With

small T , we propose increasing the size of the pool beyond the individual to groups of similar

individuals.

Few previous articles deal with heterogeneous coefficients in dynamic panels with small

T . Hsiao, Pesaran, and Tahmiscioglu (1999) suggest the use of a hierarchical Bayes estimator

for random coefficients and find that it performs well in Monte Carlo simulations. Hsiao,

Shen, and Fujiki (2005) apply this hierarchical Bayes estimator to estimate money demand.

Cai and Li (2008) and Tran and Tsionas (2009) take an alternative approach by specifying

the coefficients as nonparametric functions of observable covariates. Their specification is

flexible because it produces estimates of the heterogeneous coefficients, but it requires the

user to specify variables that determine the heterogeneity. In our setting, the heterogeneity

is not constrained to be a function of any observables.

Other articles develop approaches to correct bias when the dynamic panel model is mis-

specified. Lee (2012) considers the effect of misspecifying the lag order and Zhou, Faff, and

Alpert (2014) consider the effect of second-order serial correlation of the error term. Al-

though heterogeneous coefficients also induce serial correlation of the error term in pooled
3Pesaran and Smith (1995) call their estimator the mean group estimator. This name could also describe

our estimator, but we use the term grouped coefficients instead to avoid confusion with Pesaran and Smith’s
mean group estimator. In addition, for the remainder of this paper, we refer to the mean group estimator as
individual coefficients OLS to distinguish from grouped coefficients estimators that estimate separate models
for groups of individuals.
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models, Pesaran and Smith (1995) note that the serial correlation due to heterogeneous coef-

ficients has a highly complex form and standard methods of correcting for serial correlation

are unlikely to be successful. Therefore, the methods implemented by Zhou, Faff, and Alpert

(2014) are unlikely to resolve the bias due to heterogeneous coefficients.

Another set of previous literature proposes bias reduction methods in dynamic panel

estimators with cross-sectional dependence and small T . Sarafidis and Robertson (2009)

show that time fixed effects can reduce the bias of GMM estimators with cross-sectional

dependence as long as the variance of the factor loadings is small. Phillips and Sul (2007)

derive a bias correction for fixed effects with incidental trends and common factors. Nauges

and Thomas (2003) propose a double-differencing approach with GMM to remove the in-

fluence of common factors. None of these methods exploit a multilevel structure or address

heterogeneous coefficients.

The grouped coefficients estimator reduces the bias due to cross-sectional dependence

if the dependence is characterized by common factors with loadings that have a multilevel

structure. If there is no within-group heterogeneity in the factor loadings, then the common

factors can be treated as time fixed effects within each group. The grouped coefficients

estimator is especially beneficial when the overall variance of the factor loadings is large, but

the variance of the factor loadings within groups is small.

We also provide Monte Carlo evidence on the large impact of heterogeneous coefficients

on pooled estimators. Although the bias can be very large, our results indicate that grouped

coefficients estimation can substantially reduce the bias. For example, using the Blundell-

Bond GMM estimator, we find that choosing groups with just half of the coefficient variation

arising within groups reduces the bias by about half in several realistic settings.

Our work is related to Bester and Hansen (2013) who consider a grouped effects estimator

(i.e., group-specific intercepts) in nonlinear static panel data models to reduce the bias from

the incidental parameters problem. Our setting is different in that we consider a linear

dynamic panel model where all coefficients may vary across individuals. But similar to
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Bester and Hansen (2013), we find that a trade-off exists in the specification of groups. If

the groups are large, then pooling reduces the bias of the coefficient on the lagged dependent

variable due to small T . But if groups are large, then the groups are likely to have more

heterogeneity within groups and the pooling bias from heterogeneous coefficients is larger.

2 Grouped Coefficients Estimator

We consider the following heterogeneous dynamic panel model:

yigt = γigyig,t−1 + βigxigt + αig + εigt, (1)

for individual i in group g at time t. Each individual is uniquely assigned to a group and

group membership does not vary over time. The total number of individuals in the sample

is denoted N , the total number of individuals in group g is Ng, and the number of time

periods is denoted T . We consider the case where T is small and |γig| < 1. Aside from the

multilevel structure, this is the same as the model in section 2 of Pesaran and Smith (1995).

We specify the following multilevel structure:

γig = γ + uγg + vγig, (2)

βig = β + uβg + vβig,

αig = α + uαg + vαig,

where the coefficient heterogeneity has a group-level component (denoted with subscript g)

as well as an individual-level component (denoted with subscript ig). The individual level

components are independent across individuals. Our objective is to estimate γ and β.

The grouped coefficients estimator exploits knowledge of the multilevel structure of the

data. To implement the grouped coefficients estimator, we estimate separate small-T dy-

namic panel regressions for each group. We consider three estimators for these group-level
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regressions based on the following moment conditions:

OLS: E [zigtwigt] = 0 t = 2, ..., T

Arellano-Bond GMM: E
[
z∗igt∆wigt

]
= 0 t = 3, ..., T

Blundell-Bond GMM: E
[
z∗igt∆wigt

]
= 0 t = 3, ..., T

E [z̃igtwigt] = 0 t = 3, ..., T,

where wigt = yigt − (γ + uγg)yig,t−1 − (β + uβg )xigt − (α + uαg ), zigt = [yig,t−1, xigt, 1]′, z∗igt =

[yig,1, ..., yig,t−2,∆xigt]′, and z̃igt = [∆yig,t−1, xigt, 1]′. We expect the GMM estimators to

perform better than OLS when αig has significant within-group heterogeneity, and we expect

OLS to perform better when all parameters are (close to) homogeneous within groups. We

use the Arellano-Bond estimator because it is extensively used, and we use the Blundell-

Bond estimator because its additional moment conditions improve performance significantly

(Blundell and Bond, 1998).4 Several other estimators have been proposed to reduce bias

in models with heterogeneous intercepts, and these estimators could also be used to form a

grouped coefficients estimate.

Let θ̂g denote the vector of parameters from the estimator for group g. The grouped

coefficients estimate of the mean coefficient is the weighted average of the coefficients across

groups,

θ̂GC =
Ng∑
g=1

wgθ̂g, (3)

where wg is the weight for group g. The weight will typically be the share of observations

within each group (Ng/N), but a particular application may call for a different weighting

scheme. Assuming independence between individuals, the variance matrix is calculated as

V
(
θ̂GC

)
= ∑Ng

g=1 w
2
gV

(
θ̂g
)
. Otherwise, the variance matrix could be estimated using a

4The Arellano-Bond estimator is also commonly referred to as difference GMM and the Blundell-Bond
estimator as system GMM. The Blundell-Bond estimator is also sometimes called the Arellano-Bover es-
timator since Arellano and Bover (1995) also proposed using moment conditions based on the level of the
composite error.
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bootstrap procedure that permits cross-sectional dependence of the errors (see Cameron and

Trivedi, 2005).

If groups are defined such that there is no within-group coefficient heterogeneity—there

may still be within-group heterogeneity of intercepts—and the groups are sufficiently large,

then the grouped coefficients estimator consistently estimates the coefficients specific to each

group. Of course, it is unlikely in practice to be able to define large groups that have no

within-group heterogeneity. But as we show in our Monte Carlo simulations, the bias from

coefficient heterogeneity is reduced as groups are defined with less within-group heterogeneity

and group size remains large.

The grouped coefficients estimator may also reduce the bias from cross-sectional depen-

dence due to common factors by including time fixed effects in the group-specific regres-

sions.5 Sarafidis and Robertson (2009) show that GMM estimates with small T can be

severely biased in the presence of a common factor even when the common factor is serially

uncorrelated. They show that including time fixed effects reduces the bias, but the bias can

still be large if the variance of the factor loadings is large. The grouped coefficients estimator

further reduces the bias from common factors when the variance of the factor loadings is

large by estimating coefficients on the time fixed effects separately for groups of relatively

homogeneous individuals.

2.1 Comparison to Other Approaches

The individual coefficients OLS estimator proposed by Pesaran and Smith (1995) is a special

case of grouped coefficients with Ng = 1 and OLS as the within-group estimator.6 This

estimator gives consistent estimates of the short-run and long-run average marginal effects

when T is large. Individual coefficients OLS is, however, inconsistent for small T because

the coefficients in each individual regression exhibit small-sample bias.
5Alternatively, if all coefficients are expected to be homogeneous except for the factor loadings of common

factors, then bias can be reduced by estimating a single model with group-specific coefficients on time fixed
effects.

6Pesaran and Smith call this the mean group estimator.
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Pooled GMM estimators such as Arellano-Bond or Blundell-Bond are also inconsistent

when the coefficients are heterogeneous (Pesaran and Smith, 1995). These estimators use

lagged values as instruments for yig,t−1. Intuitively, pooled GMM estimators are biased

because the composite error term in the pooled model contains yig,t−1. Thus, lags of the

dependent variable are not valid instruments. The grouped coefficients estimator seeks to

manage the trade-off between the small-T bias that afflicts individual coefficients OLS and

the pooling bias that afflicts pooled GMM. Estimating coefficients specific to each group

removes the pooling bias from coefficient heterogeneity, and the small-T dynamic panel

estimator removes the bias from heterogeneous intercepts and small T .

An advantage of the grouped coefficients estimator over the Bayesian random coeffi-

cients estimator proposed by Hsiao, Pesaran, and Tahmiscioglu (1999) is that the grouped

coefficients estimator does not impose a specific distributional form on the coefficient hetero-

geneity and allows any form of correlation between the coefficients at the group level. The

grouped coefficients estimator also allows the unobserved group-specific heterogeneity to be

correlated with the regressors. Furthermore, the grouped coefficients estimator is appealing

because it is computationally simple compared to Bayesian estimators.

The use of grouped coefficients to reduce bias in dynamic panels is related to the work

of Bester and Hansen (2013). They consider a grouped effects estimator (group-specific

intercepts) in nonlinear static panel data models with fixed effects to reduce bias from the

incidental parameters problem. They find a trade-off from the bias of incidental parameters

and the bias from misspecification of the unobserved heterogeneity. Estimating group-specific

intercepts reduces the bias from incidental parameters if groups are specified with a large

number of individuals, but if groups have a large number of individuals, then there is also

likely to be more unobserved heterogeneity within groups. An analogous trade-off exists

in the specification of groups in our setting.7 If the groups are large, then dynamic panel
7The incidental parameters problem underlies the bias of fixed effects in linear dynamic panels as well

(see Lancaster, 2000).
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estimators have minimal bias from small T . But if the groups are large, then they are likely

to have more within-group coefficient heterogeneity and the pooling bias is larger.

3 Monte Carlo Simulations

3.1 Simulation Design

We compare the bias of pooled, individual-coefficients, and grouped-coefficients estimators

using Monte Carlo simulations. We simulate the heterogeneous dynamic panel model defined

in (1) with normally distributed coefficients. The model is:

yigt = γigyig,t−1 + βigxigt + αig + εigt, (4)

xigt = µig(1− ρ) + ρxig,t−1 + ηigt,

γig ∼ N
(
γ, σ2

γ

)
, βig ∼ N

(
β, σ2

β

)
, αig ∼ N

(
α, σ2

α

)
,

εigt ∼ N
(
0, σ2

ε

)
, µig ∼ N

(
µ, σ2

µ

)
, ηigt ∼ N

(
0, σ2

x

)
,

The regressor xigt is strictly exogenous and is uncorrelated with the unobserved heterogene-

ity in the intercept, αig. The idiosyncratic errors, εigt, are independently and identically

distributed. The random coefficients are assumed to have a multilevel structure, where the

individual and group-level components are independently and normally distributed:

γig = γ + uγg + vγig

uγg ∼ N (0, (1− δ)σ2
γ) vγig ∼ N (0, δσ2

γ), E
[
uγgv

γ
ig

]
= 0,

βig = β + uβg + vβig

uβg ∼ N (0, (1− δ)σ2
β) vβig ∼ N (0, δσ2

β), E
[
uβgv

β
ig

]
= 0,

αig = α + uαg + vαig

uαg ∼ N (0, (1− δ)σ2
α) vαig ∼ N (0, δσ2

α), E
[
uαg v

α
ig

]
= 0. (5)

9



The parameter δ measures the proportion of the parameter variance that occurs within

groups (i.e., δ is the intraclass correlation coefficient).

Pesaran and Smith (1995) derive the asymptotic bias of pooled fixed effects for the large

T , large N case. These expressions are complicated, and the analogous expressions for

small T are even more complicated. In the supplemental appendix, we present two special

cases of Pesaran and Smith’s expressions. These bias expressions allow us to determine the

parameters that are likely to affect to bias of pooled estimators when T is small in order

to determine which parameters to vary in our simulations. The formulas show that the

bias depends on the mean coefficients (γ and β), the degree of parameter heterogeneity (σ2
γ

and σ2
β), the autocorrelation of the independent variable (ρ), and the signal-to-noise ratio

(σ2
x/σ

2
ε). We do not vary β or ρ in our simulations for brevity, but in general we expect

pooled estimates of the coefficient on the lagged dependent variable to have less upward bias

if the independent variable explains less of the variation in yigt (i.e., β smaller) or there is

less autocorrelation in the independent variable (i.e., ρ smaller).

Table 1 shows the parameter values used in our simulations. We chose these values to

be similar to those in the simulations of Arellano and Bond (1991) and Hsiao, Pesaran, and

Tahmiscioglu (1999). The top half of table 1 shows parameter values that we hold constant

throughout all of our simulations. The bottom half of Table 1 shows parameter values that

we vary in our simulations. We simulate every potential combination of these parameter

values. We hold σε constant in our simulations, so that we vary the signal-to-noise ratio

by varying σx. Our simulated dataset has 1,600 individuals in 40 groups, thus each group

has 40 individuals. For each set of parameters, we perform a Monte Carlo simulation for

different estimators with 500 replications.

When generating the data, we use the normal distributions in (5), but we censor them

to impose stationarity and non-negative effects for each individual. We replace individual

values of γig with -0.95 if the random draw is less than -0.95, and replaced γig with 0.95 if

the random draw is greater than 0.95. For the coefficient on the independent variable (βig),
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we ensure that the coefficients for all individuals had the same sign by replacing βig with

zero if the random draw is less than zero. The values of yigt and xigt are set to their mean,

0, in the first period. Then, we simulate T + 10 periods of data and discard the first ten

simulated periods. Different estimators are then used to estimate the mean coefficient on

the lagged dependent variable (γ) and the mean coefficient on the independent variable (β).

3.2 Monte Carlo Results

Figures 1 and 2 show results with σx = 0.5 and T = 6. Simulation results with σx = 2.0

and T = 10 are presented in the supplemental appendix. These figures plot the mean

estimated coefficient as a function of within-group heterogeneity (δ). When δ = 0, none of

the parameter variation is within groups. When δ = 1, all of the parameter variation is

within groups. The first row of plots shows results with σγ = 0.25 and the second row shows

results with σγ = 0.5. The first column of plots shows results with σβ = 0.5 and the second

column shows results with σβ = 1.0.

The solid black line shows the true average coefficient (True). Note that the true mean

coefficient may differ from the mean of the simulated normal distribution because we censor

the simulated coefficients as described in the previous section. The dashed lines show results

from pooled estimators. We estimate by OLS, fixed effects (FE), Arellano-Bond (AB), and

Blundell-Bond (BB). The solid purple line shows results from individual coefficients (IC-

OLS), where a separate regression is estimated for each individual. The solid red line is for

grouped coefficients OLS (GC-OLS), in which a separate OLS regression is estimated for

each group. The solid orange line is for grouped coefficients Arellano-Bond (GC-AB) and

the solid blue line is for grouped coefficients Blundell-Bond (GC-BB), where the Arellano-

Bond and Blundell-Bond estimators are applied separately for each group. These figures are

available in color in the online version of this article.

The pooled OLS and pooled Blundell-Bond estimates of the coefficient on the lag are

biased upwards because the parameter heterogeneity induces positive autocorrelation of the
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composite error term. The pooled Arellano-Bond estimates of the coefficient on the lag are

often biased downward when σx = 0.5 in agreement with the negative bias found by Bun

and Kiviet (2006). But the direction of the bias of pooled Arellano-Bond estimates changes

direction depending mostly on the magnitude of σx (see the supplemental appendix).

Pooled fixed effects has two sources of bias. The bias from small T creates downward

bias in the coefficient on the lag and the bias from heterogeneous coefficients creates upward

bias. For T = 6 and σx = 0.5, the pooled fixed effects estimate of the coefficient on the lag is

biased downwards (see Figures 1 and 2). However, when T = 10 or σx = 2 the coefficient on

the lag can be biased upwards with fixed effects (see the supplemental appendix). Therefore,

the standard result from the literature that estimates of the coefficient on the lag from pooled

OLS and fixed effects create upper and lower bounds of the true coefficient (e.g., Nerlove,

1971) does not necessarily hold when there is coefficient heterogeneity.

The pooled Blundell-Bond estimator gives severely biased estimates of the coefficient

on the lag when there is coefficient heterogeneity. When γ = 0.5, the pooled Blundell-

Bond estimate of the coefficient on the lag is about 0.65 when σγ = 0.25 and σβ = 0.5

(upper left plot of Figure 1). The upward bias is much larger when there is more coefficient

heterogeneity. When γ = 0.8, we simulate the true average coefficient on the lag as about

0.75 when σγ = 0.25 and σβ = 0.5 because we censor the individual coefficients at 0.95

(upper left plot of figure 2). But the pooled Blundell-Bond estimate of the mean coefficient

on the lag is roughly 0.97—larger than any of the individual coefficients.

The source of the bias of the pooled Blundell-Bond estimator is the autocorrelation of

the error term. This suggests that the Arellano and Bond (1991) test for autocorrelation of

the errors could be used to provide a warning that the Blundell-Bond estimator is biased.

However, our Monte Carlo simulations indicate that this test generally lacks power. In

Table 2, we report the probability of rejecting the null of no autocorrelation of the error.8

The probability of rejecting the null hypothesis is relatively low for our parameter values
8That is, we report the probability of rejecting the null of no second-order autocorrelation of the first

differences.
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unless the coefficient heterogeneity is very large. For example, when γ = 0.8, σγ = 0.25, and

σβ = 0.5, the pooled Blundell-Bond estimate of the mean coefficient on the lag is roughly 0.97

(figure 2) but the Arellano-Bond test only rejects the null hypothesis of no autocorrelation

of the error with a probability of 0.07 (table 2).

Grouped coefficients estimators can substantially reduce the bias from coefficient hetero-

geneity. When groups are chosen such that there is no within group parameter heterogeneity

(δ = 0), then the grouped coefficients OLS and grouped coefficients Blundell-Bond estima-

tors are unbiased.9 When groups are chosen such that all of the coefficient heterogeneity is

within groups (δ = 1), then the bias of grouped coefficients estimate of the coefficient on the

lag is similar to the bias of pooled estimators. For the Blundell-Bond estimator, the bias

reduction on the coefficient on the lag is nearly linear in δ. Therefore, even if groups are

chosen such that only half of the coefficient heterogeneity is within groups (δ = 0.5), grouped

coefficients Blundell-Bond can reduce the bias on the coefficient on the lag by roughly half.

The grouped coefficients Arellano-Bond estimator does not perform well when σx = 0.5.

This appears, however, to be more a problem of the bias of the Arellano-Bond estimator

under these conditions rather than the bias of grouped coefficients.

For the coefficient on the independent variable, the pooled OLS and fixed effects esti-

mators are biased downward and the individual coefficients estimates are biased upwards.

Note that grouped coefficients Blundell-Bond estimates of the coefficient on the indepen-

dent variable can be biased more than pooled Blundell-Bond when most of the parameter

heterogeneity is within groups (large δ). But the bias of grouped coefficient Blundell-Bond

is relatively small as long as groups are chosen such that less than half of the coefficient

heterogeneity is within groups.
9We obtain the result that grouped coefficients OLS is unbiased because we assume that there is no

heterogeneity of the intercepts when δ = 0. In practice, there may be substantial heterogeneity of the
intercepts within groups in which case the grouped coefficients Blundell-Bond estimator would be preferred.
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4 Test for Coefficient Heterogeneity

If the coefficients are homogeneous across individuals, then pooled dynamic-panel estimators

are consistent. The grouped coefficients estimator is also consistent in this setting, although

in general it would be less efficient. If the coefficients are heterogeneous but have no multilevel

structure, then the pooled and grouped coefficients estimators are consistent for the same

parameter (see the δ = 1 case in our simulations). Both estimators are biased, but because

each group is representative of the population, grouping does not enable bias reduction. The

two estimators are consistent for different parameters if the coefficients have a multilevel

structure.

We test for coefficient heterogeneity using a Hausman-type test with a Wald statistic.10

To construct the statistic, we combine the data into a pooled model with group-level inter-

action terms, i.e.,

yigt =
G∑
j=1

(γijdgjyig,t−1 + βigdgjxigt + αigdgj) + εigt, (6)

where dgj is a dummy variable that equals 1 if g = j and 0 otherwise and G is the total

number of groups. Applying the OLS, Arellano-Bond GMM, and Blundell-Bond GMM

estimators to (6) produces the same coefficient estimates as the group-by-group regressions,

but it enables easy tests of cross-group restrictions. We calculate the Wald statistic for a

test of the null hypothesis H0 : θ1 = θ2 = ... = θG with (G− 1) k degrees of freedom, where

k denotes the number of regressors. This test is robust to heteroskedasticity if the variance

matrix is estimated with robust standard errors.
10We could instead have implemented the test in the more conventional Hausman form as H =(

θ̂GC − θ̂P L

)′ (
N−1V̂H

)−1 (
θ̂GC − θ̂P L

)
, where θ̂GC denotes the grouped coefficients estimate, θ̂P L de-

notes the analogous pooled estimate, and V̂H denotes an estimate of the asymptotic variance of the limiting
distribution of the root-N difference of the two estimates. Hsiao and Pesaran (2008) suggest a similar ap-
proach based on individual coefficients OLS when T is large. Standard asymptotic theory implies that the
H is asymptotically distributed χ2 (k) under the null hypothesis.
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Under the null hypothesis, there is no coefficient heterogeneity across groups and the

pooled estimator and grouped coefficients estimator are consistent for the same parameter.

Under the alternative hypothesis, coefficients are significantly different between groups. Re-

jection of the null hypothesis implies that the pooled estimator is biased unless the parameter

heterogeneity is of the sort that does not cause bias because, for example, the yigt and xigt

variables are not autocorrelated. If the parameter heterogeneity is of the sort that does

not cause bias, then we would expect the average of the grouped coefficients to be similar

to the pooled estimates. Rejection of the null does not necessarily imply that the grouped

coefficients estimator is consistent for the parameters of interest. Consistency of grouped

coefficients depends on the amount of within-group coefficient heterogeneity. With sufficient

data, researchers may be able investigate this possibility by subdividing the groups and as-

sessing whether the estimated parameters change significantly. Overall, the Wald statistic

can provide useful information even if a researcher is suspicious that there remains some

within-group heterogeneity and therefore that the grouped coefficients estimator is biased.

5 Empirical Example: Labor Demand

We illustrate the grouped coefficients estimator by estimating labor demand using the data

from Arellano and Bond (1991). Our estimates are from a sample of 123 manufacturing

firms grouped in 7 sub-sectors over the six year period 1977-1982. The original data from

Arellano and Bond (1991) are an unbalanced panel of 140 firms grouped in 9 sub-sectors

over the period 1976-1984. Data are missing for roughly half the firms in 1976, 1983, and

1984, so we drop data from these years.11 We also drop data from two sub-sectors that have

little data and produce outlier results.12

11A table with the number of firms in each year is in the supplemental appendix.
12We dropped data from sub-sectors labeled “3” and “6” in the data. Sub-sector 6 was dropped since

it only contained data from 5 firms. Sub-sector 3 was dropped because Arellano-Bond and Blundell-Bond
estimates of the coefficient on the lagged dependent variable were -1.22 and -0.91, respectively. Including
sub-sector 3 in our sample would further strengthen our result that grouped coefficients estimates give a
smaller coefficient on the lagged dependent variable.
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Several different labor demand equations have been estimated in previous articles. We

estimate the same dynamic labor demand equation as Blundell and Bond (1998):

ni,t = γni,t−1 + β1wi,t + β2wi,t−1 + β3ki,t + β4ki,t−1 + αi + λt + εit, (7)

where ni,t is the log of the number of employees in firm i in year t, wi,t is the log of the wage

rate, ki,t is the log of the capital stock, αi are firm fixed effects, and λt are year fixed effects.

Table 3 reports coefficient estimates from seven different estimators. Pooled estimators

(columns 1-3) estimate a single coefficient on each variable for all firms. Grouped coefficients

(columns 4-6) estimate separate coefficients for each of the 7 sub-sectors and calculates a

weighted average of the coefficients across sub-sectors, where weights are the share of firms

within each sub-sector. Pooled and grouped coefficients OLS omit the firm fixed effect.

Individual coefficients OLS (column 7) estimates a separate OLS regression for each firm

and calculates the average of the coefficients across firms. We omit lagged wages and lagged

capital from the firm-specific regressions since there are only a maximum of 6 observations

per firm. All standard errors are robust to heteroskedasticity across firms. The variance of

grouped and individual coefficients estimators are calculated assuming independence between

firms.

We use two-step GMM for the Arellano-Bond and Blundell-Bond estimators. We do not

assume wages and capital are exogenous. Our specification of these estimators is the same

as in Blundell and Bond (1998) except that they use one-step GMM and the identity matrix

as the initial weighting matrix for GMM. For grouped coefficients, we use the share of firms

within each sub-sector as the weights. Standard errors are robust to heteroskedasticity across

firms but assume independence between firms.

The results in Table 3 generally conform with our expectations from the preceding sec-

tions. Estimates of the coefficient on the lagged dependent variable do not differ substantially

between pooled OLS (column 1) and grouped coefficients OLS (column 4) because there likely
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remains substantial heterogeneity of the intercepts between firms within sub-sectors. The

average coefficient from estimating separate regressions for each firm is only 0.499 (column

7). This estimate is biased downwards because of small T bias, as seen in our simulations.

Estimates of the coefficient on the lagged dependent variable from pooled Arellano-Bond

and pooled Blundell-Bond (columns 2 and 3) are still quite large. For neither of these

estimators do we reject the null hypothesis of no serial correlation of the errors at the 10

percent level (results not reported), giving no indication that there may be misspecification.

However, the average coefficient on the lag from grouped coefficients Arellano-Bond and

grouped coefficients Blundell-Bond estimators are much smaller. One explanation for the

larger coefficient for the pooled estimators is that there is coefficient heterogeneity and the

pooled coefficient on the lag is capturing autocorrelation of wages, capital, or common factors.

Table 4 reports test statistics for a test of coefficient heterogeneity. We test for coefficient

heterogeneity by estimating the model with interaction terms between each variable and

indicators for each group as in (6), then calculate a Wald statistic testing if the group-

specific coefficients are equal for each variable. Panel A of table 4 reports tests for the

Arellano-Bond estimator and panel B for the Blundell-Bond estimator. The last row in

each panel reports the statistic for the test with the null hypothesis that coefficients on all

variables are homogeneous between groups. We strongly reject coefficient homogeneity for

the Arellano-Bond and Blundell-Bond estimators. Other rows in table 4 test for coefficient

heterogeneity for a subset of variables. The Wald statistic is much smaller for homogeneity of

the coefficient on the lagged dependent variable than other coefficients. Thus, the primary

source of bias in the estimate of the coefficient on the lag is likely due to cross-sectional

dependence from heterogeneous coefficients on autocorrelated independent variables (wages

and capital) and heterogeneous factor loadings of common factors (year fixed effects).
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6 Conclusion

We propose the use of a grouped coefficients estimator to reduce the bias in small-T dynamic

panels with coefficient heterogeneity or cross-sectional dependence from common factors.

The grouped coefficients estimator provides substantial bias reduction if groups are defined

with relatively little within-group heterogeneity. We assume that the researcher has knowl-

edge of the group membership. A natural extension of our work would be to define methods

that assign groups when membership is unknown along the lines of Li, Ouyang, and Racine

(2013) and Lin and Ng (2012).

In Monte Carlo simulations, we show that pooled GMM estimates of the coefficient on the

lagged dependent variable can be severely biased upwards. Furthermore, the Arellano-Bond

test for autocorrelation has little power to reject the null hypothesis of no autocorrelation

of the errors. We provide a Hausman-type test that can be used to assess whether this bias

is present. Our application to labor demand illustrates the upward bias of the coefficient on

the lag from pooled estimators and that grouped coefficients provides a simple method to

reduce the bias.
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Table 1: Parameters for Monte Carlo Simulations

Parameter Value(s)
Parameters Constant across Simulations
α 0
σα 1.0
β 1.0
µ 0
σµ 0
ρ 0.8
σε 1.0
N 1,600
Ng 40
Number of Reps 500

Parameters Varying across Simulations
γ {0.5, 0.8}
σx {0.5, 2.0}
T {6, 10}
σγ {0.25, 0.5}
σβ {0.5, 1.0}
δ {0, 1/3, 2/3, 1}

Table 2: Probability of Rejecting Null Hypothesis of No Autocorrelation of Error with σx=0.5
and T = 6

Probability of
σγ σβ Rejecting Null

γ = 0.5
0.25 0.5 0.272
0.25 1.0 0.222
0.5 0.5 0.736
0.5 1.0 0.658

γ = 0.8
0.25 0.5 0.070
0.25 1.0 0.048
0.5 0.5 0.326
0.5 1.0 0.232
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Table 3: Estimates of Labor Demand

Pooled Grouped Coefficients
OLS AB BB OLS AB BB IC-OLS
(1) (2) (3) (4) (5) (6) (7)

ni,t−1 0.954∗∗∗ 0.900∗∗∗ 0.846∗∗∗ 0.944∗∗∗ 0.535∗∗∗ 0.719∗∗∗ 0.499∗∗∗
(0.008) (0.149) (0.096) (0.011) (0.130) (0.084) (0.104)

wit -0.380∗∗ -0.348 -0.492∗ -0.263∗∗∗ -0.546∗∗∗ -0.435∗∗∗ -0.408∗∗
(0.169) (0.293) (0.277) (0.075) (0.197) (0.138) (0.200)

wi,t−1 0.331∗∗ 0.189 0.116 0.232∗∗∗ -0.165 0.160
(0.162) (0.190) (0.198) (0.074) (0.171) (0.392)

kit 0.334∗∗∗ 0.335∗ 0.444∗∗∗ 0.307∗∗∗ 0.443∗∗∗ 0.393∗∗∗ 0.487∗∗∗
(0.056) (0.176) (0.133) (0.042) (0.080) (0.103) (0.080)

ki,t−1 -0.290∗∗∗ -0.424∗∗∗ -0.303∗∗∗ -0.254∗∗∗ 0.039 -0.031
(0.055) (0.150) (0.113) (0.044) (0.126) (0.122)

Notes: This table reports coefficient estimates of equation (7). Pooled estimators estimate a single coefficient
on each variable for all firms. Grouped coefficients estimate separate coefficients for each sub-sector, then
averages coefficients across sub-sectors. We abbreviate the estimators as follows: Ordinary Least Squares
(OLS), Arellano-Bond (AB), and Blundell-Bond (BB). Individual coefficients OLS (IC-OLS) estimates a
separate OLS regression for each firm, then averages coefficients across firms. Estimates in columns (1)-(6)
include year fixed effects. All standard errors are robust to heteroskedasticity across firms.
∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Table 4: Tests for Coefficient Heterogeneity of Labor Demand Equation (H0 = Coefficient
Homogeneity)

Variables χ2 p-value
Panel A. Arellano-Bond
Lagged Dependent Variable 10.15 0.118
Wages and Lagged Wages 16.63 0.083
Capital and Lagged Capital 51.28 <0.001
Year Fixed Effects 72.39 <0.001
All 309.67 <0.001

Panel B. Blundell-Bond
Lagged Dependent Variable 12.99 0.023
Wages and Lagged Wages 40.98 <0.001
Capital and Lagged Capital 87.26 <0.001
Year Fixed Effects 42.87 0.007
All 8,363.80 <0.001

24



Figure 1: Monte Carlo Results with γ = 0.5, σx=0.5, and T = 6
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Notes: We abbreviate the estimators as follows: Ordinary Least Squares (OLS), Arellano-
Bond (AB), and Blundell-Bond (BB). Individual coefficients OLS are denoted IC-OLS. The
“GC-” abbreviation that preceeds the estimators indicates grouped coefficients. This figure
is available in color in the online version of the article.

25



Figure 2: Monte Carlo Results with γ = 0.8, σx=0.5, and T = 6
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Bond (AB), and Blundell-Bond (BB). Individual coefficients OLS are denoted IC-OLS. The
“GC-” abbreviation that preceeds the estimators indicates grouped coefficients. This figure
is available in color in the online version of the article.
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