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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

The LEAST SQUARES ANALYSIS OF VARIANCE Program (LSQRS), which has
been in consistent use for analysing designs with unbalanced data, could
be more useful to experimenters and researchers if a procedure for multiple
separations can be made available. This project has been undertaken
to modify LSQRS to provide estimates of the standard errors and LSD's
for differences of every pair of means.

There are two basic schools of thought regarding computational
techniques to be adopted to analyse General Linear Models not of full
rank. The classical way of attacking the problem has beep the use of
restrictions on the parameters to reparameterize the model to one of full
rank, and apply the results of the full rank medel, The problem of
multiple separations in this case is not easy to handle and the genera-
lization of the computing techniques is complex.

The more modern apprcach has been to use the results obtained for the
General Linear Model of less than full rank directly in the computationms.
This involves the development of algorithms for the computation of
the generalized inverse of matrices and also for conditions of estima-
bility of parameters and testabilitv of hvpotheses that are easily
computed and used in a program. These techniques are discussed in detail
in BENTZ [l]. The method adopted herein is an attempt to use the repara-
meterized model for obtaining data necessary to use the results available

for the model of less than full rank.



1.2 Contents and Goals of This Report

The goal of this report is to develop, program and implement
algorithms which carry out multiple separations in the Least Squares
program. The program uses restrictions on the parameters to reparamet-
erize a less than full rank model to a full rank model. The proposed
algorithm involves the construction of a matrix L, which is used to
transform the non=-full rank design matrix to the full rank design matrix
obtained by the above mentioned restrictions.

The differences of the means, which are actually linear combinations
of estimable functions of parameters, and their standard errors can
then be estimated in terms of this matrix L and the inverse of the
reduced sums of squares and cross-products matrix which is already avail-
able. This technique attempts to overcome the need for computing the
generalized inverses and still use the results of the linear model of
less than full rank.

Computation of estimates of estimable functions of the parameters
requires the construction of vectors of constants. The proposed modifi-
cations contain routines for developing these vectors for every mean
required to be analysed.

Chapter 2 contains a brief statement of the theory of the General
Linear Model, in particular, the results which will be used in this report.
Chapter 3 contains a description of the Least Squares Program and the
reparameterization that is used in the program. The results used in
the suggested modifications and how these are implemented in the
program will be discussed in Chapter 4 while an example illustrating

the computational techniques will be presented in Chapter 5.



CHAPTER 2

THE GENERAL LINEAR MODEL

This chapter consists of a review of the basic theorems and defini-
tions concerning the General Linear Model. Most of the theory will be
necessary for stating the problem in mathematical terms and for develop-
ing the results used in the computations. The detailed proofs and the

required theory of matrices can be found in Graybill [2].

2.1 Notations and Definitions

In the foregoing statement of theorems, uppercase letters such as
A,X,U, denote matrices while underlined uppercase letters such as Y,Z
denote random vectors. Underlined lowercase letters, such as r,a,l,
denote fixed column vectors. The transpose of matrix A is denoted by
A'. Lower case letters which are not underlined denote scalars or
constants.

The generalized inverse of a matrix A will be denoted by A~ and

will be referred to as the g-inverse of A. A conditional inverse of A

will be denoted by A€ and will be referred to as a c-inverse of A.

Definition 2.1,1 Graybill [2]

General Linear Model - Let Y be an n x 1 observable vector of random

variables, X be an n x p matrix (n > p) of known fixed numbers, B8 be
a p x 1 vector of unknown parameters and € be an n x 1 unobservable
vector of random variables where S[e]= 0 and Cov [e] =I where I is an
n x n matrix of constants, then the general linear model is defined by

Y=X8+¢.



‘Throughout this report it will be assumed that £ is distributed normally

2y

with mean zero and covariance matrix 021, where ¢ 0 is an unknown

parameter, and I an n x n identity matrix.

2.2 The General Linear Model of the Full Rank

Definition 2.2.1

In the model defined in Definition 2.1.1 if we assume that the rank

of X is p, then it is called the General Linear Model of full rank.

Theorem 2.2.1 Graybill [2]

Let ¥ = XB + ¢ where ¢ is distributed N(0, 021), be as given by
Def. 2.1.1. The results below follow:
1) E = XY is the maximum likelihood estimator of B.

2) ¥'(I-X (X'X)"l X')Y is the maximum likelihood

2 =
n-p

estimator of 02 (adjusted for bias).
3) B is distributed N(8, o?(X'x)"1),

(n - p)82

4
) =2

= U is distributed Xz(u; n - p)
5) _é_and 62 are independent.
6) £ and 62 are sufficient statistics for B and o

7) _@_ and 82 are complete statistics.

Remark: Johnson [3]
'8 1s distributed N(2'8, 022" (X'0)711)
Since &'E is the unbiased estimator of £'B, and
since _!;_'E is a function of the complete sufficient
statistics 2 and 62, we have that 2'8 is the

UMVU estimator of 1'B .



Theorem 2.2.2 Graybill [2]

In the general linear model Y = XB + € where € is distributed
N(O, 021), W is a (function of the) generalized likelihood ratic test

statistic for testing the hypothesis

where H is a q x p matrix of rank q.

Mg - 0)' ' 0" ) g - w
W= =
qo?
_ . YOI -xX) ¥
where B =X Y and o? = are
n-p

UMVU estimators of B and 02, respectively.
Another form of W and the distributional properties of W are also

included in this theorem, which are omitted here.

2.3 The Linear Model of less than full rank

Definition 2.3,1

Y = X8 + ¢, € is distributed N(0, 0°I)
X has size n x p and rank k where n > p > k.
The parameter space is Q = {(8, 02) : B € Ep, o2 > 0}

This model is referred to as a linear model of less than full

rank.

Definition 2.3.2

Estimable Function Consider the design model defined above. A function,

say q(8, 02), of the parameters B, 02 is defined to be an estimable funct-

ion if and only if there exists an unbiased estimator for q(38, 02).



Theorem 2.3.2 Graybill [2]

Consider the design model given in Definition 2.3.1. A specified
linear function of B, namely L'8 where £ is a given p x | constant
vector, is an estirmable function if and only if any of the conditions

below are satisfied.
1) % is a linear combination of the colummns of X'
2) rank (X', &) = rank (X')
3) rank (X'X) = rank (X'X, 2)
4) a solution vector r exists for the equations X'Xr = %
5) &' x°x = L' for any c-inverse of X

6) X' (X)L = 2 for any c-inverse of X'

7) (X'X) (X'X)C_& = £ for any c-inverse of X'X

8) &' (X'X)C(X'X) = 4' for any c-inverse of X'X

Definition 2.3.3 Graybill [2]

Linearly Independent Estimable Functions of 8

A set of m linear functions of 8, say %18, £%3,...... -?:;n B is

defined to be a set of m linearly independent estimable functions of g if

and only if (1} each 1._;_ B is an estimable function; (2) the p x 1 vectors

Ris Roy senwws i’m are linearly independent (or the rank of L is m where

L= [&3, 22, evvve £ 1

A
=



Theorem 2.3.3 Graybill [2].

The number of linearly independent estimable functions of B is

equal to the rank of X, which is k.

Definition 2.3.4. Graybill [2]. Set, Full Set, and Basis Set of Estimable

Functions.

Consider the p x m matrix of constants L= [ , £, .... £ ] where
=* 5 ~m

5; B is an estimable function for each r=1, 2, ......, m. Then L' 2 is

defined
1)

2)

3)

to be

A Set of m estimable functions.

A Full Set of estimable function if L has rank k.

A Basis Set of estimable functions if m = k and L has rank k.

Theorem 2.3.4. Graybill [2].

Consider the design model in Def. 2,3.1. and the normal equations,

9]

2)

3)

4)

X'Xg = X'Y

If &fﬁ is an estimable function, then &ﬂg is invariant for

"any" solution § of the normal equations, and

2!

| »

= 4'XY

If 2'B is an estimable function, then 2'B is the UMVU
estimator of '8,

62 = (n-%k) ! (Y'Y - 'X'Y) is invariant for any solution B of

the normal equations.

02 is the UMVU estimator of o2.



5) Every element of Xg is an estimable function.

6) The WMVU estimator of any estimable function t'g must be a
linear combination of the UMVU estimators of every Basis Set
of Estimable Functions (and also of every Full Set of Estimable

Functions).

Note: Below are some equivalent expressions for g2, where B is any

solution to the normal equations:

-1~ - -
(n -k) o2 =7Y'Y-g'X'Y=y¥'"(I-XX)Y

= Y'(I - X(X'X)°x")Y.

where (X'X)® is any c-inverse of X'X.

Theorem 2.3.5. Graybill [2].

Consider the design model in Def. 2.3.1. Let L'g be any set of
estimable functions (where L' is q x p of rank m) and let ﬁ_denote any

solution to the normal equations X'Xg = X'Y

1) L'é_is distributed as the q - variate normal distribution of
rank m with mean L'g and covariance matrix 2L

where (X'X)€ is any c-inverse of (X'X).

1

2) U= (n - k) 92/g2 is distributed x2(n - k).

3) The random vector L'é is independent of U.

2.4, Reparameterization.

In section 2.2, the results for the full rank model were presented

while in section 2.3 the methods available for estimation of functions



of parameters when the rank of X is less than p was discussed. Although,

in the non-full rank case the estimators for L'2 and o2

are unique for
any solution of the normal equaticns, it is more difficult to standardise
the methods for solution, so that a computer program can be used. At
least a c~inverse of X'X (or the g-inverse of X'X) has to be found.

If the matrix X, whose rank is less than the number of its columms
can be transformed to a matrix U whose rank is equal to the number of
its colums, and if we can obtain a transformed model involving U, which
conforms to Def. 2.2.1., then all the results in Section 2.2 could be
applied directly to this model.

The procedure will be to transform the B vector and the X matrix to
a new vector 6 and a new matrix U of size n x k such that Xg = US. 1If
Uis n x k of rank k, then the transformed model Y = U8 + £ satisfies
all conditions of the general linear model of full rank. This transfor-
mation will be accomplished by transforming the parameter R to a new
parameter € by a k x p matrix L' or rank k where the rows of L' form
linearly independent estimable functions. The transformation 6 = L'8 of

the parameter £ to the parameter @ is called reparameterization.

Definition 2.4.l. Graybill [2]. Transformation and Reparareterization.

Consider the design model Y = X3 + ¢ in Def. 2.3.1., where X is
n x p of rank k. Let L be any p x m matrix and let 6 = L'B. Denote

the ith columm of L by so that L -[11, foy ceneein, Em}' Then

4
1) L'B is defined to be a "transformation" of the vector 8 to

vector 6;
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2) L'B is defined to be an "estimable transformation" of the vector
B to the vector 8 if and only if each 8, (each &i B) is estimable
for 1 = 1,2,..000., m;

3) L'3 is defined to be a "reparameterization" of the vector
8 to the vector 8 if and only if each 8, (each 2 B) 1is

estimable for 1 = 1,2,.¢444.., m where L has rank k and

k=mi.e. & is a Basis Set of estimable functions of g.

Let L' be a k x p matrix of rank k, such that 8 = L'8 is estimable. Then

it can be shown that (Johnson [3]),

Y=X8 + ¢ 1f and only if
Y= (X'C) (L'R) + ¢
= U8 + ¢ where U= XL'® 1s n x k and rank (U) = k

and & = L'B

Thus the less than full rank model, Y = X8 + € has been reparameterized
to a full rank model Y = U8 + €. All the theorems in section 2.2 hold for

this model. 1In particular 8 and g2 = Y'(I - L’U—)E_ are complete

n-%k
sufficient statistics.

Theorem 2.4.1 Johnson (3].

Let Y = U8 + £ be any reparameterization of Y = X8 + €. Then

~

8 =L'8 where 8 is any solution to the normal equations X'X8 = X'Y.
Two theorems are included here which may be found useful later.

One concerns the test of the hypothesis HO : HE = 0 vs Ha : HR # 0 where
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H3 is a set of linearly independent functions (referred to as a

testable hypothesis) and the other, the distribution of 2'B.

Theorem 2.4.2., Graybill [2].

In the design model in Def. 2.3.1 let HZ (H known) be a set of
q independent estimable functions of 8, W is the generalized likelihood

ratio test statistic for Hy : H8 = 0 vs H_: HB # 0 where

0272

m3)' (1 (X1 %) s

W=

-~

qa

where 8 is any solution of the normal equations X'X8 = X'Y and

02 = (n -k ('Y - B'XY).

Theorem 2.4.3, Johmson [3].

Consider the design model given in Def. 2.3.1. Suppose £'B is an

estimable function. Then %'8 ~ N(&'B, c?&'(X'X)CE ).
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CHAPTER 3

THE LEAST SQUARES PROGRAM

Since most design matrices are of less than full rank, the ordinary
least squares procedures cannot be used directly to analyse the models.
In order to reduce the non-full rank model to a full rank model, the
least squares program utilizes the technique of imposing restrictions on
the parameters of the original model. This procedure as well as a method
of obtaining the restricted normal equations by means of a reparameteri-
zation as introduced in Section 2.4,, will be discussed in this chapter.

The techniques are illustrated using a two-way model with interac-

tion. Extension to other models follow the same pattern.

3.1. General Description,

In the case of the two-way model with interacticn and n obser-

i3

vation per cell,
Yijku u+ui+1j +Yij+eijk
where a, = parameter for ith level of treatment A, 1 = 1,.....,a

1, = parameter for jth level of treatment B, j = 1,.....,b

= parameter for interaction effect of ith level of A

giid 4™ lewsl oF B

the kth observation of the ijth treatment combination.

v
]

= the random errors, assumed to be NID(O, a2y,



13

With the usual notation, this model could be written in the form of the

General Linear Model,

where Y = vector of observations (Y

Y=X+¢e

ij)
X = design matrix of zeros and ones

g = the vector of parameters where

' - ( * L] - L ] L] [ | LA B B O “
HQ (O es*sse 0] T T LA T ]
= 1 2 a 1 2 b ")y a2 Vab

£ = the error vector ; £~N(0, I)

The design matrix in this

the normal equations given

where T = g2I

case will not be of full column rank and thus

by

X'Xg = X'Y

cannot be used to obtain a unique estimate of g - vector, by applying the

results of the GLM of full
full rank must be used and
ratios used for hypothesis

inverse of the X'X matrix

3.2. Estimation of Parame

rank. Thus the results of the CLM of less than
the estimates of 8, o and the likelihood
testing involve the use of the generalized

{or the c-inverse of the X'X matrix).

ters

In the LSQRS program
used to reduce the X'X mat
the use of the results obt

The procedure used is

a set of restrictions on the parameters are
rix to a matrix of full rank, thus enabling
ained for a full rank model.

to set a number of non-estimable functions
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of £ to zero. If the rank of the X'X matrix of size p x p is k, then the
number of such non-estimable conditions needed are given by p-k. In the
documentation for the LSQRS program (KEMP [4] ), the non-estimable
conditions used are described as restrictions on the parameters. To
clarify the foregoing the two-way model described in Section 3.1 is

used here. In this case ui(i = 1,e0nesey 8)y tj(j = ],..0:004, b) and

Yij(i = l,eeeesey; @3 J = 1l,00000., b) are all non-estimable functions
a b a
of B. In addition, a -Zu s T -ZT s Y -ZT (J = 1,.004.b),
©oimt R OIS

b
Yy, ™ 2:111 ({1 =1,.....,a) are non-estimable. In LSQRS, the non-estimable
L] j‘i

conditions used as restrictions are these; 1i.e.

B s 0

T =0
Yy, " 0 ;1=1,i000e.5a
Y.j w0 &4 = lyssasespD

It has to be pointed out that the sums of squares for testing the hypothe-
ses HO PO T8 T oaeeess =0 and HO PTTT Ty T oeece... =T ocan be
obtained by using the R( ) - notation, from the restricted model by emploving
the above restrictions (SPEED and HOCKING [5] ). The method of obtaining
these sums of squares is described in KEMP [4].

Using these restrictions, the original X'X matrix, which is less
than full rank is converted to a full rank matrix by deleting the columns
corresponding to the last class of each main effect and adiusting the

colums corresponding to the other classes. The elements of columms due

to interaction effects in the adjusted matrix are obtained by the products
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of the appropriate elements of the adjusted main effect columms. This
procedure is treated completely in KEMP [4].

To exemplify the foregoing, a simple model is used.

Let Y =uyu+a, +1,+y,, +e i=1,2
ijk i i ij ijk y=1.2,3
k=1,2

be the model under consideration. Each cell corresponding to each 1ij
combination contains 2 observations.

Then the model could be written as

Y=y Yo Yo Y20 Y13 Vi Yo Yoio Yoo

Y Y Y

222 231 )

232

' =
& (e ey T T, T3y Yy Yy Yo Yoo Ya3) 12 x 1

1 01 001 0 O0O0OO0OO01 ] 12 = 12
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Note that X'X will be of rank 6 and thus 6 restrictions on the parameters
are needed to transform X'X to a full rank matrix. If the restrictions
u‘ = T = Ti‘ = ‘\r‘j

these restrictions, then the matrix U is obtained where

] A

= 0 are imposed and the matrix X is adjusted using

1 -1 -1 -1 1 1 J 12 x 6

-

and the corresponding vector of parameters 6§ is

-e-' = (u* a* T* T* Y x Y *)_
1 1 2 11 12

Now U'U can be computed which is of rank 6 and thus the normal equations

U'U8 = U'Y can be solved to obtain the UMVU estimate of 8.
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3.3 A reparameterization to obtain a model equivalent to the model

obtained bv the irposing of above restrictions.

It is observed that by post-multiplving X
full column rank, U may be obtained directly,

purpose is denoted by P.

r

1 0 0

1

0

0

1

0

0

12 x 12

1

1

.J

by a 12 x 6 matrix of

The matrix used for this

= XP (say)

60 0 0 0 0-1

0 0 0 0 1 1

7

12 x 6

That is U = XP where P is given by the 12 x 6 matrix shown above. Thus,

the procedure described above can be looked upon as a reparameterization

of the model Y = Xg + € to the model Y = U8 + €, as introduced in Section

2,

4.



L' =

Consider the matrix

/2 1/2 1/3 1/3
1/72 -1/2 0 0
0 0 2/3 ~1/3
0 0 -1/3 2/3
0 0 0 0

0 0 0 0

L'

1/3

-1/3

-1/3

1/6
1/6
1/3
-1/6
1/3

-1/6

1/6
1/6
-1/6
1/3
-1/6

1/3

1/6
1/6
-1/6
-1/6
-1/6

-1/6

1/6
-1/6
1/3
-1/6
-1/3

1/6

18

1/6
-1/6
-1/6

1/3

1/6

-1/3

This matrix has been arrived at by constructing rows of L' such that

1/6
-1/6
-1/6
-1/6

1/6

1/6

6 x 12

L'8 = 8 where § is a set of estimable linear combinations of the parameters.

If the B vector is pre-multiplied by L' we obtain a vector § where

~

v + a, +
a - a +
1 L]
T - T, +
£ -
6 x1 _
T - 1+
2 L ]
- ;’ -
11 1,
- ? -
12 1,
.

Let elements of 6 be denoted by 8' = (u

a* T*

1

T*
2

11

y ® ¥y
1

*), By the
2

theory of the two-way design model with interaction, it can be shown that

uhG @k, T T R v ¥

1

2 11 12

of the model given above, namely Y = X3 + g.

are all estimable functions of the parameters
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Now consider the matrix product L'PL'., This is shown to be equal
to L', which indicates that actually P is a c-inverse of the matrix L'.
Therefore let L'C = P,

So using the results of Section 2.4, L'R = 8 is a reparameterization
of the model Y = X8 + ¢ to the model Y = UB + ¢ where L' is as given above.

Since 6 is unique, 8 = (U'U)-l

U'Y, it follows that whatever L' chosen
such that it satisfies the above conditions, will give the same 6. Thus
imposing the above restrictions on the parameters 1s equivalent to

reparameterization using the L' matrix indicated. It is observed that

c
the matrix L'~ 1is a matrix possessing a certain pattern; in this case

' ~

1 0

[
0 |1 0
1 3%2
0 -1
X 0
. el ex2
' -
L o I,
3X2 _at
l 3x2
I 11)
0 K
exh -_j_' -1
{ X2 2x1

Thus L' is a matrix that can be constructed for a particular design
given the levels of cach effect. The L'® that is constructed this wav,

will be a c-inverse of a matrix L' which transforms the 8-vector to a
1

vector of estimable functions of the parameters. Since (U'U) ~ and 8 are

already computed in the LSQRS program, the results of Section 2.4, used

=1

in conjuction with L'C, (r'e) and & may be used for computation of

standard errors of linear combinations of 8.
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CHAPTER 4

THE MODIFICATIONS TO THE LEAST SQUARES PROGRAM

This chapter describes the computations that are to be carried
out in the mean separation routine. Sec., 4.1 contains the derivation of
the results that will be used for the calculation required in the program.
Sec. 4.2 gives a brief outline of the organization of routines within the

program which performs these computations.

4.1, Results used in the computations.

In Section 2.4, it is shown that § = L'_§_ is a reparameterization

of the model.

Y = X8 + £ where X is n x p and rank (X) = k to

Y = UB + ¢ where U = XL'® is n x k of rank k.

From the theorems in Section 2.2 the UMVU estimator of 6 is given by
8= U.}i = (L"U)-IU'L From the theorems in Section 2.4, 6 = L'B where
B is any solution to the normal equations X'X8 = X'Y.

4.1.1, Estimation of £'8.

let 2'8 be any estimable function of the parameters of the model
Y = X3+ e. Then from the results in Section 2.2, '8 is the UMVU
estimator of £'Z.

Now consider &' L'® & where 8 and L'® are as defined above

oy o>

-&I Llc a &l Lic U-Z‘

=a Uy
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Since L'R 1s estimable, there exists a vector a such that a' X = &',

S L% =a Uy

=a' XY
8ince it can be proved that UU = XX as shown below;
X is a n x p matrix of rank k
L' is a k x p matrix of rank k

Uis a n x k matrix of rank k where U = XL'€

Since L' 158 a k x p matrix of rank k, it follows that L'L' = Ik (By a
theorem concerning generalized inverses,)
Therefore UU = UL'L' U
Since Udis n x k of rank k and L' is k x p of rank k,
(UL')” = L'U and thus

Ut UL'(UL')

>

Thus it follows that

=a' XY

| »

£| Llc

¥ =g

| »

|
e

-~

So the UMVU estimator of 2'B is equal to_&'L'cg_where 8 is the solution

to the normal equations U'U8 = UY.

| »

4.1.2, Estimation of the variance of &'

From the theorems in Section 2.4 it follows that the variance of
2'3 can be estimated by oc22' (X'X)S2 (or by 022" (X'X)72 since £'(X'0)°2

is invariant to the choice of the pseudo-inverse) where o2 is the UMVU
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estimator of ¢2 which is given by

- Y'(I - xxX)Y | Y'(I-xX'0 )Y
gc = =
n-k n -~k
or by . Ya-wHy Y- v(o'w )y
g« = =
n-k n-k

In LSQRS o2 is estimated by

XY - 'u'y

n-k

which is equivalent to above statements.

Now consider
&'L'c (U'U)-I (L'c)'_£ where £'B 1s estimable as before.

S AR ARG (AL A
=-&! Llc U- U!- (Llc)l £

=a' XL'CU U'” (L'%)" X' a since £'8 is estimable

=a'UU U U a=a"UU UU a

Thus the variance of £'8 can be estimated by o2 2' L'c(U'U)_I(L'c)'E
where a2 is known, Thus it can be seen that only the matrix L' is

required additionally to compute the estimate of a given estimable
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function of the £ vector and its variance. Ofcourse, the appropriate
f-vector for the estimable function of 2 required has to be built within

the program.

4.1.3. Comparison of Means.

This procedure is illustrated here using the model introduced in

Section 3.2 i.e.

Yijk = u+ ay + Tj + Yij + Eijk

e
nanan
[ o
- W
NN R
-

W

It can be derived that the best unbiased estimator of

a, —a + Yy~ ;' which is estimable

i . -

is E; - where

%y " Vg, AL T jgl Ly By =M

2
z =)z
L N ) i=1 L ]

Similarly ui' - u_ + Yi'. -y 1s estimated by

Ei'. - E..
Therefore Zi. - Zi,. estimates a, = ey + i. ~ Yi'.

Since £'B is estimated by 2'B, Z, =2, = 2'B where ' is chosen
depending on, i, and 1',

-
—

- 7 = M
For instance Zl. 22- 31 B where

2= (01-10001/31/31/3-1/3-1/3 -1/3)
1 x12
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Similarly Z , - Z ,, estimates 7. - 1,, + vy . - y
y 'j .jl j jl Y

— - = & ' -~
For example, Z, 2.3 %, 8 where

=0 0 0 10 -1 %0 -5 % 0 -k

1 x 12
Also Zij - zi'j' estimates
@ — e, Tj - le + Yij * Yi'j'
For instance, Z,, = 2., = 2! _g_where

11 12 3

£5 =(0 001 -1 01 -10200 0)
1 x 12

4.2. Description of the Program

The proposed modifications to LSQRS, carrvout 3 main functions.
These are to construct the L'S matrix internally, to construct the
appropriate f£-vectors required for each mean and lastly to carryout the
final computations required, As shown in Section 3.3, L'C is a patterned
matrix and given the number of levels of each effect, it can be constructed
easily. The only complexity arises when constructing the portion of the
L' matrix which corresponds to interacrions. This involves a routine
to form the direct product of up to 3 matrices. The portions of LY®
corresponding to the main effects are constructed in subroutine MAINF and

those corresponding to interactions in subroutine INTF. The subroutines
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VECTOR and INTVEC are the routines which construct the i-vectors required
for estimating the differences of the means. Subroutine LSDCAL completes
the analysis by carrying out the calculations given in Section 4.1, to
obtain the required estimates and the LSD's,

All the subroutines required to construct the L'C matrix and the
i-vectors for a given model (MAINF, INTF, VECTOR, INTVEC) are activated
by a driver subroutine called SEPAR. This routine is called from subroutine
MEANSE in LSQRS if the parameter card activating means separation proce-~
dures is present., SEPAR calls the appropriate routines depending on the
model and causes the L'C to be constructed. SEPAR also calls in the routines
which construct all the fZ-vectors for all possible differences of means
and writes on disk with appropriate identifiers.

Subroutine MEANSE later calls in LSDCAL to calculate the estimates
of differences of means, thelir standard errors and the LSD's using 1.F*
and the g-vectors and output LSD tables, for those effects which are
significant in the AOV at the given level.

The LSQRS program supplies the details regarding the model to the
above routines through a common block named STUFF2 which consists
of arrays containing information such as the depth of each effect (i.e.
main effect, 2-way interaction or 3-way interaction), the name of each
effect (1.e. the number the effect is identified with, in the model
parameter) the number of levels of each effect and the address of each
effect. These are computed in subroutine MEANSE and are in appropriate

form to be easily accessible to the routines mentioned above.
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4,3. Testing of Hypotheses using the Reparameterization

As a further development, the c-inverse of the reparameterization
matrix L which 1s constructed for the purpose of obtaining the estimates
of '8 and it's variance where 2'5 is estimable, can be used to obtain
the test statistic for testing a given 'testable' hypothesis on the
parameters.

Suppose the following hypothesis has to be tested.

H 3 HE =0 s, H : HB 0,
where H is q x p and of rank q. The program has to ensure first that
this is a testable hypothesis and then use Theorem 2.4.2 to obtain the
test statistic or the sum of squares given by the numerator of the test
statistic divided by the rank of H., The hypothesis is testable if and
only if each row of HR is estimable and thus the condition of 'testability'
can be stated as:
H :H8=0 vs., H :HB # 0 is "testable' if and
only 1f H (X'X)%(x'x) = H.

H (X'X)%(X'X) = H 1if and only if

H (I - (X'X)°X'X) = 0 if and only if

tr [H (I - (X'X)CX'X)H'] = 0 where tr (A) indicates the
trace of the matrix A,

"Now using the notations and results used in Section 4.1, U = xL'©

and UL' = X ,

X'X = LU'UL' .
Now let the c-inverse of X'X be given by L'C(U'U)-ILC. I1f this relation
holds X'X(X'X)®X'X should be equal to X'X. To verify this fact, subs-

tituting for X'X and (X'X)S,



XXX 0K = LutuLL Sty LSt e

LLSLU'UL' since L'L'= 1

Lu'uL!

= X'X,

Thus ,the c-inverse of X'X is given by L'C(U‘U)_lLc .

Therefore,
X'0%x = Loy X x
- L Swm Lt
Now, (L'S)' = L% since
@@’ v =1
= L'
implying that L(L'S)'L = L.
Thus,L® = (L'%)".
Therefore,(LcL)' = L'L'c- T
implying that 1fL=1.
Therefore,(X'X) “X'X = L'°L'
Thus the condition for testability reduces to
tr H(I - L'SLY)E' = 0.

To evaluate this L must be derived.
Notice that (L.c)c = L' since
L'C(L'C)CL'C = L'CL.L'C

::L'c.

27

as shown below.
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Since AS = (A‘A)_IA' where A is of full column rank,

w5 = 1aSy s @
i o @S LN,

Therefore,L'c L' = o'¢ (Lc L'c)-l LS .

Thus the condition for testability can be obtained in terms of H and
the L'C matrix which is available. Although this involves the evaluation
of (L€ L'c)_l, the condition of testability ultimately reduces to checking
whether the trace of [H(I - L'C(LCL'C)_ILC)H'] is equal to zero
or not.

Once testability of the hypothesis is established, the hypothesis
can be tested using Theorem 2,4.2, It might also be verified that rank
of H is actually q, by deriving the rank of H by some technique.

The sum of squares due to the hypothesis Ho is given by SSH ,where
o

®e)' ' a1t @)

SSH =
o q

-~

HL'S 8)' (LS L%y mwC e

q

This result can be derived easily using similar methods indicated in

Section 4.1,
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CHAPTER 5

EXAMPLE ILLUSTRATING THE TECHNIQUES

This chapter provides an example illustrating the internal computa-
tions of the program. The example used is from Winer (6) and is a 2-way
design with interaction. Factor A represents two levels of calibrating
a dial and the four levels of B are background illumination. The response

variable (Y) is the accuracy score obtained from a series of readings.

The data:
5 B By B,
Al 3,4,6,7 5,6,6,7,7 4,6,8,8 8,10,10,7,11
A2 2,3;4 3,5,6:3 912,128 9,1,12,11
The model:
Yijk =y + ai + Bj + (aB )ij + eijk ; : 1:5’3,4
with the usual notation.
The design matrix
( ‘ 1
1 1 0 1 o o0 O t O O O O O O O 3
!l 1 0 1 0 O 0 1 O 0 O O O o0 O 4
1 1 o0 1 0 0 0 1 O O O O 0 o0 o 6
l1 1.0 1 0 O O 1 O O O O O O O 7
X={ 1 1 0 0 1 0 0 o0 1 0o O 0 o0 o0 O Y = Sl
l1 1 0 0 1 0 o O 1! O O O O O O 6|
1 1 0 o 1 o o0 o0 ! O O O O O O 6
1 1. 0 0 1 0 O0 0 1 0 O O O 0 O 7
1 1.0 O 1 O O o 1 0 O 0o O O O 7
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33 x 15

10

10

11

12

12

12

11




3l



U'U matrix, U'Y

(v'y)=

r

33

33

vector

=2

0

16

and (U'U)—1

-1

-1

-1

are:

4] -1
0 -1
0 =1
0 -1
1 1
1 1
1 1
1 1
”
0 ~1
0 -1
1 1
2 1
1 1
9 9
18 9
9 17

33 x 8

8 x 8

229




4 it O

Thus 6 is given by:

—
0.03099
-0.00286 0.03099
0.00547 -0.00234 0.10390
-0.00286 ~-0.00026 -0.03359 0.08724
0.00026 0.00286 -0.03672 -0.02839
-0.00234 0.00547 -0.01328 0.00547
-0.00026 -0.000286 0.00547 -0.00911
0.00286 0.00026 0.00234 0.00026
=
0.10390
-0.03359 0.08724
-0.03672 -0.02839 0.09349
-0.044 =2,769 -=1,544 1.606

8= [6.769

0.09349
0.00234
0.00026

-0.00286

1.044

1.019

-1.831]

All the above results are computed by LSQRS for the purpose of obtaining

the AOV.

. c
On entry to the means separation routine, the matrix denoted by L'~ in the

previous chapters, is constructed first.

by:

In this case L'C is given
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15 % 8

It can be verified that U= XL'®. Next the L-vectors which are
required for the comparison of means are formed and written on disk,
sequentially. In this case, effect A is found to be not significant
and the comparison of means for effect A are not made. For effect B,
since there are 4 levels, six comparisons can be made.

With the notation developed in Section 4.1.3 the means for effect

B can be denoted by Z ., where j=1,2,3.

J
Recall that 2,, = ¥,, and Z , = ?Yij-
= — — _
Bj - le + (US).j - (BB).jl = Z.j = z-j'
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Thus, i; g = Z, -z s

where £'=[0 0 0 1 -1 0 0 % =% 0 0 % -% 0 O]
1 1 x 15

Note that 2' =[x a a 8 B 8 B (af) (aB) {(ar) (aB) (a?)
- 11 12 13 14 21

4

(a)  (aB)  (ar) ]
22 23 24

where_g;=[00010-10’10—150%0—'/201.
The 2-vectors for estimating the differences of all pairs of means of

B are given below:

Comparison L'

E.l-"z"2 0001 -1 0 0% <% 0 0%Y%-% 0 o0
5_1—5_3 0001 0-1 0% 0= 0% 0 -4 o0
-2-.1'2.4 0001 0 0=-1% 0 0 -%1% 0 0 -%
3:‘2-2_3 0000 1 -1 00 % -5 00 % <% 0
E.z'i.a 0000 1 0-10 % 0= 0 Y% 0 -%
E.B—E& 0000 0 1 -10 0 % %0 0 % -%

For the interaction effect, since it turns out to be significant, 28

comparisons can be made. In general,

Zij - Zi'j' is estimated by
= 2 - a
ui ail +5j Sj' +auij Gpi|j'
' 3 = -
Thiss L E™ &y ~%p

where i; =[0001-1001-1000000)

1 = -
e A B &4y =ity

where £' = [01-110-10100000 -10]
=2
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Because it is-unnecessary to tabulate the appropriate f-vectors for the
set of 28 comparisons of the interaction means, it is omitted here.

Thus all the 2-vectors required to compute the estimates of the
differences and their standard errors, are made available at this stage.
All requirements necessary to make the mean comparisons as indicated in
Section 4.1, are supplied to the routine which carries out the computa-
tions indicated in Section 4.1,

The results of the calculations for the comnarisons of means of

effect B are tabulated below:

Comparison I L'“é -\/Jzy L'C(U'U)-I(L'c)'_l_ LSD
E_l -Z, -1.22499 0.855646 1.76263
Z,-7, ~4.37499 - 0.876103 1.804771
Z,-2, -5,474998 0.855646 1.762630
2, - Z , -3.14999 0.820419 1.644986
2,~2, -4.24999 0.798537 1.644986
Z,=T; -1.10000 0.820419 1.690063

The second column gives the estimated differences and the third column,
the standard errors. A similar tabulation for the comparisons of the

interaction effect of this problem i1s included in the appendix.
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CHAPTER 6

CONCLUSIONS

As demonstrated in previous chapters, it has been possible to
make means comparisons and test hypotheses about the parameters of the
unrestricted model. This goal has been achieved without the actual
computing of a pseudo-inverse of the X'X matrix. Although the procedure
involved the construction of the L'C matrix, the major task proved to be
the development of the algorithms necessary to construct the vectors
corresponding to the comparisons of means.

The portions of the program to carry out the above procedures
were developed independent of the LSQRS program and implemented in the
program at a later stage. The means separation routines in LSQRS may
be made active by using a single parameter card, in which the user
specifies a significance level at which comparisons have to be made and
optionally, indicates a selection of effects of which the user requires
the means separated. If the latter is omitted means of all effects

significant at the given level, will be separated.
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An algorithm for the computation of differences of means and
their standard errors is implemented in the LEAST SQUARES ANALYSIS OF
VARIANCE (LSQRS) program, which is a program developed and maintained
by the Statistical Laboratory, Department of Statistics of the Kansas

State University.

The basic function of the algorithm is the construction of a
transformation matrix for the purpose of converting a non-full rank
linear model to one of full rank, using information regarding the
design model to be analyzed. This matrix and the availability of the
inverse of the transformed (or reduced) sums of squares matrix, make
possible the calculation of estimates of estimable functions of the
parameters of the original design model along with estimates of their

variances,

In addition, this matrix could be used to obtain the sums of

squares for testing any testable hypothesis of the original model.



