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Nomenclature

inlet length.

Depth between plates.
hydraulic diameter, DH = 4Yo
duct half width.

’ 1
function of x, n = 1 = ¥
l+ex
. . 1
parameter in n transformation, n = 1 - :
Itex
4YoU
Reynold number, R = ——§—2

fluid density.

Width of element.

Length of element,.

Mass of cell.

Thickneés of a cell in Y direction.
Location of a cell in Y direction.
Location of a element in x direction,
Interface area between cells.

End area of cell.

End area of the control volume.
Momentum entering first control volume,
Momentum entering ith control volume.

Fictitious momentum leaving ith control volume.

Actual momentum leaving ith control volume.

Difference in momentum.
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M Coefficient of absolute viscosity.

Ti,j+l: shear stress at interface of cell j and j+l1, in element i.

Fi,j+l: Shear force at interface between cells j and j+l, in element 1.

AV, ¢ Change in velocity due to the shear force.

AVZ: Change in velocity due to the pressure.

AP: pressure difference between two faces of cell; dynamic pressure
difference.

At Incremental time.

V., .3 Velocity of cell i at element j in x-direction.

VPi i Velocity of cell i at element j in y-direction.
L]

dP ; ; ;

o pressure gradient in x-direction.

dpP . ; ;

E;: pressure gradient in Y-direction.

+ > " , . +

X : dimensionless Cartesian coordinate, x = x%/Yo.
+ . \ ; ; +

Y : dimensionless Cartesian coordinate, Y = Y/Yo.
+ . L
vV: dimensionless x-component of velocity V =7
+ , _ +

VP dimensionless Y-component of velocity. VP = -
+ ; ; +

P: dimensionless pressure, P = -EE

plU

Ti.+1 j:shear stress at end area of cell j, between elements i and i+1.
b

Fi.+1’j:shear stress at end area of cell j between elements i and i+ 1.
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Chapter I
Introduction

The problem to be studied in this report was that of inlet flow for
an incompressible and Newtonian fluid flowing between infinite parallel
plates. The inlet region is often described as the downstream distance
required for the constant velocity profile, assumed at inlet, to be
changed to the parabolic distribution typical of the fully developed
laminar flow.

A number of approximate methods have been used to attack this
problem, these include:

(1) the matching method

(2) the momentum integral method.

(3) the linearization method,

(4) the finite difference methad.

In each case the Navier Stokes Equationé are subjected to a numerical
technique to obtain a solution.

It is intended to obtain a solution to this problem using finite
element analysis, The finite element method of analysis differs in that
the governing differential equations are by-passed, and hence the con-
sideration of the behavior of a differential element is by-passed, in
favor of consideration of arbitrarily selected elements of fluid used
to represent the system, each of which is forced to satisfy physical
laws such as conservation of mass, conservation of energy, and conser-
vation of momentum, as well as boundary conditions and constitutive

equations, during any incremental time being considered. While finite



element analysis has been used effectivelv In =o0lid mechanics for some
while, only recently has it been applied to problems in‘fluid mechanics.
Figure 1 compares the more traditional numerical techniques which have
been used in the inlet flow problem with the finite element analysis

to be used in this report.

Since finite element analysis is concerned only with the sequence of physical
events directly, "transient" and "steady state" are not differentiated
in the basic formulation. Rather, a description of the system for each
small time interval is developed and is cobserved from some initial time,
for a finite time finally reaching a stale where solution for additional
time intervals shows no change In the soluticn obtained, signifying that

a steady state has been reached.



Physical Laws, Kinematical or Constitutive
Relations
Assumptions (e.g,, flow is laminar)

FINITE ELEMENT ANALYSIS MATHEMATICAL ANALYSIS
Direct application Derivation of differential
of above laws and or integral equation by

relations in the mathematical procedure
"finite elements"

: ; Explicit or Intractable
Computerization closed~-form )
i equations
solution
1 f
FINAL RESULT .
; Numerical
IN ot Computation jes i —_——
NUMERICAL FORM ¥y

FIG. 1. Comparison of finite element and mathematical analytic schemes.



Chapter IL

Literature Survey

Many studies of steady laminar inlet flow of an incompressible
Newtonian fluid between parallel plates have been carried out using ap-
proximate numerical techniques to obtain a solution,

In general, there are two different approaches to the problem. One uses
2]

- AP
boundary layer theory which neglects the derivatives é—% and %;u The

9x
other does not use the boundary layer theory assumption, so that no

terms in the Navier Stokes Equations are neglected.

If boundary layer theory is applied, several methods are avail-
able for obtaining a solution to the problem.

In 1922, Schiller (3) employed a method based on conservation of
momentum. This approach was devised and applied to flow in a circular
tube and was similar to Karmen-Pohlhausen momentum integral method
commonly applied to the flat plate problem,

In 1934, Schlichting (4) studied laminar flow in the inlet section
between parallel plates and found that the boundary layer close to the
inlet developed much the same as did the boundary layer over a flat
plate which had a pressure gradient in the direction of flow. In 1961,
Bodoia and Osterle (6) numerically integrated the boundary layer equation,
and in 1962, Colluin and Schowalter (7,8), used Schlichting's method with re-
finements.

In 1940, Langhaar (9) assumed the inertia terms of boundary layer

equation could be linearized. Based on this assumption, a sclution was



obtained for inlet flow in a straight tube. Although the solution derived
from this metﬁod was more accurate than that_of Schiller's (3), the compu-
tational procedure was much more complicated.

Although boundary-layer theory is a powerful tool, it is well known
that its assumptions are not valid in the vicinity of the leading edge of

a plate such as is found in this case. In this region the derivative

2 2
Q_% is not negligible in relation to 2—%, and the pressure gradient in the
9x oy

y direction is not necessary small, so that momentum equation for V is not
negligible,

In 1964, Wang and Longwell, (19) using a finite- difference technique

solved the case of laminar flow in the inlet section between parallel

plates without using the usual boundary layer assumptions (i.e. neglecting

2
2—% and‘gg). Their analysis was therefore exact in the sense that no
9x

terms in the momentum equation, which were not identically zero, were
82U
neglected. Their solution indicated that-—§ was not negligible relative
IxX
2

to é—g-and the velocity normal to the plates was not negligible in the

vicinity of the leading edge.
In 1968, a new approach was set forth by David and Ray, in that
they proposed solving fluid flow problems using finite element analysis.

Based upon their work, a finite element analysis was employed to

solve the inlet flow problem.



Chapter TI1
Finite Element Analysis

The baslc assumptions regarding this problem were:
1. The parallel plates were infinitely wide, straight and rigid.
2. The fluid was incompressible and viscous.

3. The flow was laminar and isothermal.

4, The system was conservative, energy dissipation in the form of heat

was neglected, as well as other thermodynamics effects.

o
==
]

300, and the material properties were known.

6. The fluid was Newtonian.

7. The fiow approaching the inlet section was uniformly distributed
over its width, Vi,j =U, at x = 0, 3=2, ..., N,

8. Pressure acting on a cross section was constant.

It was then necessary to subdivide the section into elements of the
proper geometric shape. Fig 4. shows a section of arbitrary length, %,
in the direction of the flow, the X direction, while the plates were as-
sumed to be infinitely long in the Z direction, without variation along
the Z-axis. Therefore, an arbitrary width W waé chosen in that direction.
The height, which is the gap between the two parallel plates was designated
by D. This section with dimension 2.W.D. was divided into a number of
cells (elements), as shown in Fig,5, by passing planes parallel to the
plate at equal intervals AY in the Y direction. Starting with the bottom
cell in Fig.4, each cell of size LWAY was labeled for identification in

successive positions of the cell interface, as



Y =0, Yj+l=Yj+&Y.

The interface afea between cells was given by

A(l) = W,
and the end area by

A(2) = WAY,
while the mass of the cell was gilven by

M= (A(1) - AY)p.

If it is known how the system changes from time t to a new time value,
expressed as t' = t + At, this in effect provides an inductive procedure
that, when repeated, will solve the problem from t = 0 to a specified-
time, t' = t .

The boundary conditions and initial conditions must be considered also.

(a) Initially, the total momentum at entry section is

J
Zm
H = MV (l)
e Je1 1,J g .

where He is the net momentum entering the first element. Only when i=1
can HE be expressed by
Hy = He | (2)
(b) The presence of boundary layer at the wall poses the boundary conditions

0, VP, ,=VP 0 &)

v = 0’ Vv 1,1 i,N+l - v

151 Laien

The initial conditions of the system are expressed as

vl’J = Ub’ Jm P8 wwey A (4)

Because the flow is symmetrical to the center line, there can be no flow

across the center line, so the control volume ABCD is as shown in Fig. 7.
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F. . :
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i

Fig 6. Typical element showing shear stress and pressure forces

control volume ABCD

s 133
1.2 l .
‘ \
i=1 i=2
Fig 7. Entrance Problem, finite element subdivision of

transition region.
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A control volume which has a fixed volume which has fixed wvolume in space

and through which fluid flows.

14,54
iy A
: - 1+1I] 5
1
i i i+l
VP, |
i3
Fig. 8

i Figs. 6 i i
Consider Figs & 8, in which Vi,j’ VPi,j’ Pi,j were known.

Then, analysing this element, it 1s required to find

VP

iy Trn,ge Fagene Pty Ve

Fi,3 Fi,9410 Basn g0 Vien, 5
There are nine unknowns, hence nine equations are needed to find those
unknowns. These nine equations are as follows:

(1) Newton's Law of Viscosity

S 0515 B L

1,441 ¥ AY >

Figel = Tage1 - AMD, anh
F, . =1, .+ AQ1) , 2"

i3 % |

(2) Conservation of Momentum
Consider a control volume ABCD in Fig. 7, a control volume which

has a fixed volume in space and through which fluid flows.
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P. . is known.
¥

T i

- 1
Pi+l,j i,] e (39

(3) Conservation of Energy

Since the system is isothermal frictional losses owing to the action
of viscosity and the formation of the boundary layer will cause an ad-
ditional pressure drop, théreby increasing the kinetic energy of the fluid
as it passes downstream.

= 1
Vipg q = Vi g+ 00 + 88 4")

{4) Conservation of Mass.

VP - (Visj - Vi‘f“lsj) ) A(z) + VP (51)
i,j+1 A1) a (O :
(5) Newton's Law of Viscosity
VP, . - VP. ,)
T =y ( 1,] 1"1:3
it 23 '} 2

= . 1
Fi' ,j Til 5 A(Z) 7 (6 )
= 5 & Af2) (7"

Forn,1 ™ Tt



13

(6) The property of the pressure

=1 1
Piv3 77 Cpy PRy, (8
(7) Force Equilibrium in Cell
F.' .- F 1 s
- 1l ,] i +l,_'] 1
itgn TR T TR . ol

The computational procedure was carried out in sequence from j=1,
to hih NRY

The constitutive equation to be satisfied, Newton's Law of Viscosity,
expresses the shear stress generated at the interface between two fluid
cells in terms of the veloeity gradient and the absolute viscosity of

the fluid, p. Therefore,

= n(V, ) AY, (5)

Ty, 541 1,5+1771,5

The total shearing force F over the interface is given by

F = 1 © A(L). (6)

i,j+1 i,j+1

Note that there is no interface at j = 1, therefore, Ty 1 and Fi 1
¥ 2
1f initialized, will quite properly remain zero, and the expression for

Ty 20 will give the shear stress on the upper and bottom plate respectively.
3

._......_._._.._.__.._.._.-—{--{).SAY

///////////f

Fig. 9 cell near the plate
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this is Vi 5 ~ 0
T. =yt
1.2 0.5 = AY ]
The Impulse — Momentum relationships must be satisfied.

The internal viscous forces calculated with equations (5) and (6)
glve rise to retardation of the fluid, that is, a ;hange of the momentum
of the fluid currently in the element. Any ith element may be considered
as a control volume.

The change in velocity caused by viscous forces alone is given by

(F, .., - F, At
+ .
L = i,i+1 . 1,] , ‘ (7

and the velocity is temporarily updated by

V! . =V, .+ AV.. , 8
1,] 1,3 1 (8

For 1 = 1 only, however, the entrance condition is inserted by using
equation (1).

Since the system is isothermal, frictional losses, caused by the
action of viscosity and the formation of the boundry layer, will cause an
additional pressure drop, thereby increasing the kinetic energy of the
fluid as it passes downstream. To determine the dynamic pressure drop,
as well as its effect on the velocity, consider a control volume, shown
in Fig. 7, consisting of a space bounded by the cross-section planes,
one plane at the left end and the other at the right end of an ith
element. The momentum flowing in and out of the control volume must be

balanced.
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Hi,representing a fictitious momentum that would have left the ith
control volume if there had been no dynamic pressure drop, based on the

velocity recently updated with equation (8), will be given by
J
Hi= ] Mv, .. | - . (9

Then the net momentum build-up in the control volume as the result

of internal losses to viscous action is given by

The value of Hi’ tﬁe.entering momentum, has been calculated previously
for i = 1 by Eq. 2. For subsequent values of i, it is calculated progres-
sively by Eq. 13,.which yields the actual moméntum leaving the right
plane of the i control volume under consideration. Eventually, this
becomes the momentum entering the left plane of the next control volume
in the downstream direction, and can be used for Hi in equation (9)
when the sequence ofpperations is carried out for the next element.

Because the fluid is incompressible, the mass in tﬂe control volume

remains constant, and the dynamic pressure drop along the element is

" found by
AP = - —-—%ﬁ-— . (10)
(A AL)

. e . y
in which A is the cross-sectional area of the control volume, and AP is
considered positive along the increasing direction of i.

The force equilibrium is applied to determine the dynamic pressure

drop,



16

Fl
-
_........m.-_h— e e
P P
i,4 i+1, ]
¥l
Ti’z = li(Vi’2 - 0)/(0.5 - AY) ,
Fl = Ti,2 = A(1) ,
P,, - P = =
i i+l 2F1 2Ti.2 A(Ll) ,
AP =
Zri’z_A(l) v

This pressure drop causes an acceleration of the fluid cells in the
control volume, and the change in velocity in the direction of increasing

i is given by

Av, = (A% AP) At /M, . ; (11)

The final updated velocity of the fluid leaving a particular cell is

given by

1 = ! .
Vi,j Vi,j + AVZ (12)

Equations (10) and (11) are repeated for cells j = 1 through j = jm'

The same value of AP is used for all cells because of the assumption that
the pressure acting on the cross section is constant.
Since Vg . 1s the final velocity of fluid as it leaves the jth~cell of

the ith element, the actual momentum leaving the right side of the ith control
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volume is updated by

J
Hv s M, V?, 13
L )

and the value so obtained becomes the value of Hi for the next element, i+1.
When the sequence of equations for the i element is completed, i is in-
creased to the next value i+l., The steps from (2) to (13) are repeated
till the terminating value im is reached.

To determine the velocity in the y direction, one applies conservation

VP, ., are the velocities in the y direction entering

of mass. VP, ., .,
1’3—1 1,]

and leaving the cell,

Y I
1,9 Vidl,q

Conservation of mass, requires that

V., « AY « W+ pVP, . « 2 W
B i} . [

DV AY'W+pVPi -E:nWo

1+1,5 23

Therefore, VPi ., = (v, , -V j) AY/2 + VPi

o] i,]j i+l, S

Note that at the wall there is no flow in y-direction, so VP, = 0.
i
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The following is applied to determine the pressure gradient in X

direction.
i, j+1
Pi,3 = Fis1,3
F, .
i,j
F, . =
1,540 7 Ti,541 A
F, . =1, ,
1,] i, AL,
F. - + P s = .
1,540 7 P,y A =By gt A 4 E L
. A(l) + = .
1,000 A1+ Py g A@Y =Ry A+ 1y A,
and P_ - P = _
- iHl,g 1,3 7 (1,51 T2,y 0 AD/AD)
where

ALY =W .2,

AQ2) =W « AY ,

(t, .,. - . .
AP = P - P. = i,j+1 Tls]) Y .
i+1 i W . AY ’
ap . ap (T o= T ) e W g ' _
= - L]+ 1’7) . (Ti,j’rl Ti,j)
X W e & « AY = NG .

The following analysis yields the pressure gradient in y direction:
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1
Figm
F 1 .
Fi‘;]1 1 E +l,J
P., .
1 i',]
Tyr g1 = WPy g = VB P70,
Fi'+l,j &= Ti‘,j""l # A(z) ¢
Fin,g = i,y A -
Pi',j+l A(l) t Ti‘+l’j A(Z) = Pil,j'}‘l * A(l)
1 AQ),
Pi',j - Pil’j+1 = (Ti"l-l,j - Tif ,j) ~ A(Z)/A(]_) -
d S 2 X . (fyrgg g 7 Tyr, g0 T W MY
= (Til+l,j - Til,j)/gl "

The velocity obtained from the above procedure is at the center of

the element.

IO 1A

! i B C

| I

n |

I | B L

I xl ] Fig. 9. position of the lst element.
0 A

The velocity at section A-A can be found using the above procedure.
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|
B 12 o
|
|
‘1

Fig. 10. position of 2nd element

Because the wvelocity at section A-A was applied to find the velocity
for the next element, that element should be started at section A-A thus, the

velocity at section B-B was obtained in similar manner as that at section

A-A. The positions of the element

A general equation can be obtained, which is

X, = X,
i i-1

£
+2.

For convenience, £ is equal to

UAt

To facilitate comparison of this result with that of Y., L. Wang and

P. A. Longwell, the following dimensionless variables are introduced:

+4- vV + VP + X
= — = o X = -
L u? v U’ Yo
+ Y + P D
T = Yo? B o= 2° to = 2°
pU



ubD
Also, H pU - &Yo

and

1
= i s

+
14 cx

where ¢ is a constant equal to 1.2. The value ¢ = 1,2 was

chosen so that the results of this analysis could be directly compared

with the results of Y. L. Wang and P. A. Longwell (10).

21
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Numerical Results-

The velocity profiles and pressure gradients for Reynold number 300
arc shown in Figs. }11 through 26. In addition, the results of Y. L. Wang
and P. A. Longwell, (5),are shown.

In the computations perférmed for this study,'the numerical values
of AY and At were arbitrarily chosen. Using smal;er numerical values,
the effect of these values upon the calculations are repeated until
further reduction had no effect. For this problem, a small number of
cells proved to be adequate. A satisfactory range for At, the increment
interval, was 1/500 part of the total time, s required for the system
to reach a steady state. This is the time beyond which further time in-
crements will not change the value of the variables in the system, and is
the time fequired to be reached steady state. It will be affected, of
course, by physical properties of fluid, such as density and viscosity,
as well as Initial and boundary conditions.

The results obtained compare favorably with the results of Y. L. Wang
and P, A. Longwell. At the center line, the velocity is littler higher
than that they obtained because of the assumption that the pressure acting
on the cross section was constant (i.e. The effects of pressure variation
and flow in y-direction were neglected). The results were a little lower
than the results of Schlichting (5). At the leading edge the velocity
gradient is very large, but the time increment.is very short, so it is
difficult to define the AY and At adequately. In this report, this effect
was neglected. From the results obtained, this effect is very small, and

is estimated to be 0,3%.
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The flow studied was symmetrical about the center line. Theoretically,
the VP at centerline must be zero, and there can be no flow across the
centerline, From the results, it appears that VP approaches zero, but
is not exactly zero. This resultslfrom numerical error,

The pressure gradient was derived by the force equilibrium in the
cell. Because of the difference in the velocity profile from that of
Y, L. Wang and P. A, Longwell, the calculated pressure gradient in X, Y
direction was different from the results of Y, L, Wang and P. A, Longwell.
When the flow become fﬁlly developed, g%-is constant, and gg-is equal zero.

Initially, it was assumed the pressure acting on a cross section was
constant. Finally, it was found that the pressﬁre gradient in Y direction
were different from zero. At n = 0.1, the maximum error in the pressure
gradient was 0.7602, but its effect on velocity profile was very small,

and estimated to be 0.03. As most errors were below 0.03, the assumption

seems to be reasonable.
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Conclusion

The result of this study demonstrated excellent agreement between finite
element analysis and the results of others who have used different tech-
niques in solving this problem.

The finite element analysis yields more realistic velocity profile
than will a finite difference solution and it will do so more quickly

and at less cost.
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Abstract

The purpose of this report was to investigate, using finite element
analysis, the laminar flow of an i;compressible fluid within the inlet
region when the flow was constrained between two infinite parallel plates.

The results of this study are shown to be consistent with solutions
which were obtained byothers working in this area, but the finite element
analysis requires much less computer time to obtain these results.

In addition, inflection peints in wvelocity profiles, which would
indicate points of potential instability in the laminar flow, are not
present in the profiles developed in this report. In this sense, then,

the finite element solution would seem to yield more reasonable results.



