
*fl

GRAPHICAL PAGE DEVELOPMENT OF AN

ELECTRONIC HORIZONTAL SITUATION INDICATOR

by

CHARLES A. ROBERTSON

B. S. , Kansas State University, 1985

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Approved by:

Major Professor
h.

TABLE OF CONTENTS

A11207 30153?

CHAPTER ONE INTRODUCTION

1. 1 What is an EHSI? 1

1.

2

Purpose of the EHSI 2

1.

3

Development System Basics 3

Goals for the EHSI Development System.

.

3
EHSI System Components 7

1.4 Present Status of the EHSI Development 13
System

Previous Accomplishments 13
EHSI Host-side Development

:

14
Gruenbacher 's Accomplishments

EHSI Host-side Development

:

19
Robertson's Accomplishments

EHSI Host-side Development 22
Robertson and Gruenbacher

1.5 EHSI Host-side Programming Model 23

CHAPTER TWO MAIN ROUTINE

2. 1 Functions 26
2. 2 Data Structures 29
2. 3 High-level Flowchart 33

CHAPTER THREE TOOLS FOR VECTOR GRAPHICS
DEVELOPMENT OF THE EHSI

3. 1 General-Purpose Tools 36
3. 2 Page-Specific Tools 42

DATA PAGE Tools 42
NAV PAGE Tools 44
ILS PAGE Tools 47

CHAPTER FOUR HP 1345A VECTOR GRAPHICS 49

CHAPTER FIVE VECTOR MEMORY LAYOUT FOR THE EHSI 61

CHAPTER SIX DATA PAGE

6. 1 Static Portion 66
6. 2 Dynamic Portion 69
6. 3 High-level Flowchart 73

TABLE OF CONTENTS CONTINUED

CHAPTER SEVEN NAV PAGE

7. 1 Static Portion 76
7. 2 Dynamic Portion 78
7. 3 Future Development 81
7. 4 High-level Flowchart 84

CHAPTER EIGHT ILS PAGE

8. 1 Static Portion 89
8. 2 Dynamic Portion 90
8. 3 Future Development 92
8. 4 High-level Flowchart 97

CHAPTER NINE CONCLUSION

9. 1 Results 99
9. 2 Future Development 100
9. 3 Another Application 101

REFERENCES 103

APPENDIX A CHANGES TO THE DACI 104

APPENDIX B EHSI USER'S MANUAL 116

APPENDIX C EHSI HOST PROGRAM MAINTENANCE 123

APPENDIX D EHSI HOST PROGRAM SOFTWARE LISTINGS 139
Main and Page Routines 139
General-Purpose Routines 184
Page-Specific Tools 223
Include-Files 276

GLOSSARY 290

LIST OF FIGURES

Figur* P»0»

1. 1 Data Page 4

1. 2 Navigational Page 5

1.3 ILS Page 6

1.

4

Development System Components 8

1.5 Control Keyboard 11

1.6 EHSI Host Program Model 25

2.

1

Main Routine Basic Functions 30

4. 1 Set Condition Command 55

4.

2

Plot Command 56

4.3 1345A Modified ASCII Character Set 57

4. 4 Text Command 58

4.

5

Boundary Limits for Character Plotting 59

4.

6

Vector Memory Commands 60

5.

1

Vector Memory Layout for the EHSI 64

6.

1

Present Flight Data Page 72

7.

1

Present Navigational Page 77

8.

1

Present ILS Page 88

8. 2 ILS Page Using Two Crosshairs 93

8. 3 ILS Page with Approach Tunnel 94

A.

1

DACI to Host Parallel Port 107
Addition of IRQIN and IR00UT

A.

2

Control PIA and Alarm Horn 108
Addition of IRQIN and IRQOUT

A. 3 OUTSHAKE IRQ Routine 109

LIST OF FIGURES CONTINUED

Figur* P«9»

A. 4 EEPROM's and Real-time Clock 110
Addition of External Clock Switch

C. 1 Brief Quick Reference Commands 111

C. 2 Brief Quick Reference Commands 112

CHAPTER ONE

INTRODUCTION

1.1 What la an EHSI?

An electronic horizontal situation indicator (EHSI) is

a digital avionics system which utilizes a cathode-ray tube

(CRT) display. The EHSI provides a pilot with a pictorial

representation of a plane's position relative to known

navigational fixes. This representation contains distance

and directional information to the fixes along with other

pertinent data.

EHSI's have been developed for the larger commercial

jets such as the Boeing 757 and the Airbus A310. Many of

the military jets also contain EHSI's. However, no

affordable EHSI system has been developed for general

aviation aircraft in the lower and middle price ranges.

This is surprising because most of these types of aircraft

are flown by single pilots under instrument conditions. An

EHSI would be ideal for such a pilot flying under instrument

flight rule (IFR) conditions.

The main goal of our EHSI is to provide an affordable

EHSI for the general aviation public.

1.2 Purpose of the EHSI

The purpose of the Electronic Horizontal Situation

Indicator (EHSI) is to ease the burden of assimilating all

the data that a pilot has to make use of during the course

of a flight. It will provide the pilot with three different

pages of information which will be displayed on a vector

graphics display and will have a control keyboard so that

the pilot can enter flight parameters and control the

various functions of the EHSI.

The functions which will be available on the EHSI will

consist of the following:

1) FLIGHT DATA PAGE : This page will contain such
information as the plane's heading, airspeed,
present altitude, assigned altitude, minimum
descent altitude (MDA) or decision height (DH),
navigational frequencies, communication
frequencies, automatic direction finder (ADF)
frequency, way points, current time, temperature,
etc.

2) NAVIGATIONAL PAGE : This page will provide the pilot
with information about the plane's heading in a
compass type format, position information with
regard to known navigational fixes such as
VORTAC's and non-directional beacons (NDB's),
present altitude, airspeed, etc.

3) INSTRUMENT LANDING SYSTEM (ILS) PAGE : This page
will provide information about a plane's position
on an ILS approach. It will contain the plane's
position relative to the glideslope and localizer

and display It In some useful format to allow the
pilot to do an Instrument landing. Heading,
altitude, MDA/DH, and marker status will also be
displayed.

4) calculator functions : Basic calculator functions
will be available to the pilot for making various
calculations during the course of a flight.
These functions will be implemented in an HP-style
format.

5) miscellaneous functions : Other functions which will
be incorporated will be the ability to enter
various flight parameters such as the
navigational, communication, and adf frequencies,
assigned altitude, MDA/DH, and estimated wind.
The EHSI will also contain a real-time clock which
can be set with the control keyboard and a timer
which will allow the pilot to know the time that
he has been on an ILS approach.

All the pages discussed above will be dealt with in

detail in subsequent chapters. The pageB are also discussed

in CI] and C21. The majority of the information for the page

layouts was derived from these papers. Examples, of these

pages can be seen in Fig. 1.1 through 1.3.

1.3 Development System Basics

1.3.1 Goals for the EHSI Development System

The EHSI Development System has six basic goals which

it needs to accomplish. These goals are the following:

1) provide access to pertinent flight data from flight

simulator

2) retrieve control keyboard inputs, execute operation

or send input to host

HEADING: 217

-v 500 -

12: 05: 06

L/0

242

ETER:

AIRSPEED: 153 CAS

TAS

GNDSPEED:

ASSIGNED: 3000

C

L

I

M

B

ALTITUDE: 3040

MDA/DH: 1229

TIMER: 05: 39

TIME-OUT: 05:50

TIME:

EDT

iULU

SINCE

^DF:

iAROM

C0M1 119.10

COM2

NAVl

NAV2

RNAV

TEMP:

121.90

112.6

110.1 !

WP1 1

WP2

I

Figure 1. 1 DATA PAGE

AIRSPD: 147

GNDSPD:

TRK:

ALT: 3125

DME: 08

Figure 1.2 NAVIGATIONAL PAGE

ALT: 3040

DH: 1000

180

rTTnTI'llYllllTTrrn

170 s 190

DME: 08

Figure 1.3 INSTRUMENT LANDING SYSTEM (ILS) PAGE

3) provide alarm capability

4) provide screen data transfer capability

5) have a simple communications protocol between

interface and host

6) graphics development and data manipulation are to

be done on host computer

1.3.2 EHSI System Components

The EHSI Development System consists of five basic

components which can be seen in Fig. 1.4. The five

components are the following:

1) Data Acquisition and Communications Interface (DACI)

2) Control keyboard with system on/off switch

3) HP 1345A Vector Graphics Display (VGD)

4) ATC-610 flight simulator

5) Host computer : Zenith 158-A PC

The DACI is a Motorola MC68000-based system which makes

use of a Motorola MC6S000 Educational Board as the controll-

er. The DACI provides the means by which all the other

system components talk with each other. This interface was

necessary because those components are stand-alone devices

and have no otherwise effective means of communicating with

one another. The DACI acquires all the analog and binary

signals from the flight simulator. The DACI also conditions

all of these signals, converts them to digital values, and

VECTOR
GRAPHICS

DISPLAY

HP
134SA

7^1

\Zl

CONTROL
KEYBOARD

L2L,

DATA ACQUISITION

AND
COMMUNICATIONS

INTERFACE

(DACI)

7^

(
'

B-BIT BUSJ>

ANALOG
SIGNALS

FROM
SIMULATOR

Z-15B1

HOST
COMPUTER

ATC-610
FLIGHT

SIMULATOR

Figure 1. 4 DEVELOPMENT SYSTEM COMPONENTS

stores them away so they are available to be sent to the

host computer when requested. The host computer will then

process these digital values. The DACI has a real-time

clock and calendar on it. The real-time clock value is also

sent with the converted flight simulator signals when re-

quested by the host. The DACI processes all key presses,

including the state of the system on/off switch, and sends

them to the host for evaluation. The DACI sends display

commands to the HP 1345A VGD and allows the host to transfer

display commands to or from the VGD. The DACI contains a

piezo-electric alarm which can be toggled by the host. The

DACI also performs all the necessary initializations for the

display. This initial system was designed by Lagerberg and

more details about the DACI can be found in [2].

The commands accepted by the DACI are the following:

1

)

send data package

2) send screen data to the VGD

3) receive screen data from the VGD

4) toggle alarm

All command requests are sent by the host to the DACI via a

parallel port. The commands allow the host to get the

flight data from the simulator, process it, generate dis-

plays, and send them to the VGD. All processing for the

displays is done by the host; the DACI just acts as an

intermediary between the host and the VGD. The alarm is

used to alert the pilot of impending conditions which may be

threatening.

The control keyboard, shown in Fig. 1.5, is a six-by-

six matrix keyboard with system on/off switch. This key-

board is used to determine system status (on or off) and to

allow entry of various commands or parameters. These para-

meters include such things as navigational frequencies,

communication frequencies, ADF frequency, timer, assigned

altitude, MDA/DH, and estimated wind. These are entered by

the pilot either during preflight or during the course of a

flight. The commands which can be entered by the keyboard

are "start timer," "reset timer," basic Hewlett-Packard < HP)

-

style calculator functions, "clear, " "enter, " "toggle

alarm, " "set clock, " etc. The three different page keys are

used to switch among the various pages displayed by the

EHSI. It should be noted that when the system switch is

turned off, the system enters a wait state. When the system

switch is turned back on, the whole system is reinitialized

and is set up in its original state, ready for commands from

the host and for retrieval of data from the flight simulator.

The HP 1345A is a high-resolution vector graphics dis-

play. It is used to display all the graphics generated by

the interface and host. It has a 2048-by-2048 addressable

area for plotting. It is especially suited for this type of

application since it is capable of operating up to 15, 000

10

EHSI

SYSTEM
SWITCH

ON

$
OFF

START
TIMER

BRG/HLD
INBND TIMER

RESET
TIMER

SET
CLOCK

ADF
FLIGHT
DATA
PAGE

MDA/DH
ASGN
ALT

EST
1JIND

SET/RST
ALARM

VOR1
RNAV
PAGE 7 8 9

V0R2
ILS

PAGE + 4 5 6

COM1 CLEAR X 1 2 3

COM2 ENTER
•

t • /

Figure 1.5 CONTROL KEYBOARD

11

feet pressure altitude. It accepts four basic commands and

has a built in character set. The display and its various

commands and attributes will be discussed in more detail in

Chapter 4.

The ATC-610 flight simulator is used to obtain all the

pertinent flight data. It is an FAA approved instrument

flight simulator. All of the analog signals from the simu-

lator are conditioned by the DACI and converted into digital

values which can by requested by the host.

The host computer that was chosen for this system was

the Zenith 158-A PC. It is responsible for manipulating the

data retrieved by the DACI and generating all the graphics

for the different pages of the EHSI. The C programming

language was chosen; it has many high-level language fea-

tures, can still do bit manipulations very easily, and is a

fast-running language. The Microsoft C Compiler, Version

4. 0, was used.

The Z-158 used has a standard RS-232C serial asynchron-

ous communications port, a Centronix standard parallel

printer port, a CPU clock speed of either 4. 77 Mhz or 8 Mhz,

an 8087 numeric co-processor, and additional backplane exp-

ansion slots. The computer is configured with 640k bytes of

RAM. It has one floppy disk drive and a 20-megabyte Win-

chester hard disk system. It should be noted that all the

routines are run with the Z-158 set at the 8 MHz clock rate

12

to keep processing time to a minimum.

The Centronix standard parallel port is used as the

general purpose I/O port. It should be noted that hardware

modifications were made to this port and are discussed by

Lagerberg in [21. Since the standard parallel port drivers

have a limited transfer rate of 1000 characters per second,

parallel port drivers were written in 8088 assembly language

to communicate at 10, 000 characters per second with the

DACI. This transfer rate was need for the development

system. These routines were written by Gruenbacher and are

discussed in detail in [31. These drivers are accessed by

the C routines used to generate the displays.

The Z-158 operates in an interrupt environment and

makes use of the parallel port autovectored interrupt number

seven. This interrupt is actually installed as a background

process and is discussed in detail in [33. The background

interrupt process retrieves all interrupts sent by the DACI

and stores them in a 20-byte stack. The stack is needed so

that no interrupts will be missed.

1.4 Present Statue of the EHSI Development System

1.4.1 Previous Accomplishments

Lagerberg designed the initial development system which

satisfied the six basic goals stated previously. The ini-

tial system accomplishes the following:

13

1) provides access to pertinent flight data from flight
simulator

2) retrieves control keyboard inputs, execute operation

or send input to host

3) has alarm capability

4) provides screen data transfer capability

5) has a simple communications protocol between

interface and host

6) allows graphics development and data manipulation to

be done on host computer

This system involves a combination of hardware and software

to accomplish its duties. Details about this portion of the

development system can be found in [2].

1.4.2 EHSI Hoat-side Development:
Gruenbacher 's Accomplishments

Gruenbacher developed five separate areas of the host-

side of the development system:

1

)

background interrupt process to accept interrupts

from the DACI

2) interface communications routines in 8088 assembly

language

3) interface of the assembly routines with the C

programs

4) portions of the main routine of the EHSI program

5) key routines of the EHSI program

14

The background interrupt process retrieves all inter-

rupts sent by the DACI and stores them in a 20-byte stack.

The stack structure was implemented so no interrupts would

be missed while display data is being generated in the EHSI

routines. This interrupt process is installed when the EHSI

system switch is turned "on". Note, the EHSI program must

running before the system switch is turned "on".

The interface communications routines allow the host

computer to talk with the DACI. They are written in 8088

assembly language and handle all the communications with the

DACI. They also allow the EHSI program to use the four

basic DACI commands which were discussed previously.

The 8088 assembly routines had to be interfaced with

the EHSI program which is written in C. This involved using

several public data structures which could be accessed by

both the assembly and C routines. These public structures

were necessary so that both the assembly routines and the C

routines could access them. There are two main public

structures which were used. The first one contains the

flight simulator data collected by the DACI. It is called

the data_pkg. The second contains the screen data to be

sent to the VGD. It is called SCREEN and is basically a

single dimensional array of display commands in word form.

All the assembly communications routines can be access-

ed by the C routines. These include the routines which send

15

commands to the DACI. The DACI command routines are which

can be accessed are the following:

1

)

BET_DATA_PACKAGE ()

2) SEND_SCREEN<

)

3) TOGGLE_ALARM_SWITCH<

)

4) RECEIVE_SCREEN(

>

The GET_DATA_PACKAGE routine requests the DACI to send

the twenty-four flight data values retrieved by the DACI.

As the data values are transferred from the DACI to the host

they are stored in the data_pkg structure which was men-

tioned previously. Once this has been accomplished any C

routine can access the flight simulator data.

The SEND_SCREEN routine requests the DACI to accept the

vector graphics display data in the SCREEN structure and

transfer the data to the VGD. This display data which is

generated by the C routines consists of the necessary

commands to generate the various graphics needed for the

different pages of the EHSI. The routine sends the data a

word at a time until an hexadecimal value of FF is encount-

ered in the upper byte of a screen data word. The routine

then sends the word with FF in the upper byte to the DACI to

indicate to the DACI that this is the end of the screen data

being sent. The SEND_SCREEN routine then terminates.

The TOGGLE_ALARM_SWITCH routine requests that the DACI

toggle the bit which activates or deactivates the piezo-

16

electric alarm on the DACI. This routine is used when

enabled alarm conditions are impending. This alarm will

indicate to the pilot that an alarm condition exists. It

will be coupled with a warning message to indicating the

cause of the alarm.

The RECEIVE_SCREEN routine requests the DACI to send a

portion of the display memory. The portion of the display

memory to be read is sent by the routine to the DACI. It

consists of a beginning address and ending address of the

block of the block to be read. As the block of memory is

transferred by the DACI a word at a time it is stored in the

SCREEN data structure. This data can then be accessed by

the C routines for purposes of analysis.

The main routine is the controlling routine for all the

vector graphics development of the EHSI. It is written in C

and performs several basic functions. FirBt, the background

interrupt process which was discussed previously is instal-

led. Second, initialization of data structure values passed

to other routines is accomplished. Third, the static data

for the various pages of the EHSI is sent to the V6D.

Fourth, the data page is put as the first page to be dis-

played. Fifth, the routine watches for interrupts received

from the DACI by the background interrupt process. Sixth,

it evaluates the interrupts received from the DACI. If they

are valid interrupts, it takes appropriate action to execute

17

the DACI interrupt. Note, the main routine and its func-

tions will be discussed in more detail in Chapter 2.

The key routines implement the DACI interrupts gener-

ated by the control keyboard. These routines are written in

C and consist of the following:

1) update_key_buffer : This routine converts the DACI
interrupts for the numbers 0-9 and the decimal
point into characters and stores them in a buffer.
It also displays the buffer on the VGD.

2) roll_stack : This routine pushes the present value
in the key buffer onto the two number HP-style
stack used for the calculator functions.

3> clear_stack : This routine clears out both locations
of the HP-style stack used for calculator
functions.

4) insert_new_freq : This routine enters the commun-
ication frequency, navigational frequency, or the
ADF frequency which is in the key buffer and
stores it in the proper frequency variable. If
the frequency entered is out of range, an error
message is displayed on the VGD.

5) set_timer : This routine enters the timer value in
the key buffer and stores it in the timer var-
iable. Note, the timer value is entered in min-
utes and seconds with a decimal point between
them. The routine separates the number into min-
utes and seconds.

6) reset_alarm : This routine is used to toggle the
alarm on the DACI. It is just like an on/off
switch for the alarm.

7) do_math : This routine implements all the math func-
tions that are available on the control keyboard.
The number which is presently on the bottom of
the stack is the first operand and the number in
the key buffer is the second operand. The oper-
ation to be performed is implemented on the two
operands and the result is displayed on the VGD.
Note, if the denominator is equal to zero when a
divide operation is being implemented, an appro-

18

priate "zero divide error" is displayed on the
VGD.

8) display_data_page # display_nav_page,
display_ils_page :

These routines change the internal jump in the
first word of the vector memory of the VGD.
The jump is changed to point to the appropriate
section in vector memory which contains the infor-
mation used to generate the graphics for the page
control key that has been pressed. Thus, this
routine switches among the various pages displayed
by the EHSI, depending on what page control key
has been pressed.

These routines along with the other areas of the host-

side developed by Gruenbacher will be discussed in more

detail in [3].

1.4.3 EHSI Host-aid* Development:
Robertson's Accomplishment's

Robertson's portion of the host side of the EHSI devel-

opment system consisted of developing all the necessary code

to generate the various pages of the EHSI. This involved

doing the following:

1) Data structures passed to the routines that generate

the various pages of the EHSI were developed.

2) Basic tools used to generate the vector graphics

displays for each page were developed.

3) The static and dynamic portions of the FLIGHT DATA

PAGE were developed.

4) The static and dynamic portions of the NAVIGATIONAL

PAGE were developed.

19

5) The static and dynamic portions of the ILS PAGE were

developed.

6) Command line and warning areas were developed for

each of the pages for displaying appropriate warning

messages, entering pertinent flight data, and using

the calculator functions of the control keyboard.

All of the above areas will be discussed in detail in

subsequent chapters, but a brief overview of each of the

areas follows.

Data structures were needed to pass information between

the various routines of the EHSI program. There are two

structures at the present time which are being used. The

first structure is is the clock package. It contains the

information which is used by the timer function of the EHSI

and the frequencies, altitudes, and estimated wind values

which can be entered by the pilot via the control keyboard.

The second structure is the alarm package. It contains the

various alarm flags which are used to Indicate the status of

the various warning and alarm conditions which are entered

by the pilot.

To generate the various pages of the EHSI some basic

tools had to be developed. These tools do some of the gen-

eral things which are needed on all of the pages. For

example, a routine was written to insert data which has been

generated into the screen data structure which was discussed

20

earlier. Another routine generates a line given two sep-

arate coordinates. There are many other tools which were

developed and they are discussed in a Chapter 3.

The FLIGHT DATA PAGE was developed in two different

parts. First, the static portion of the page was developed.

The static portion contains those portions of the DATA PAGE

which will not change. This includes all the various titles

for the information being displayed and certain portions of

the climb rate indicator. The routine which generates this

data is run only once when the EHSI system is powered up.

The data generated is stored in the vector memory of the VGD

at a certain location. Next, the dynamic portion of the

data page was developed. This portion contains all the

various information which can change during the course of a

flight. For example, the air speed and altitude are gen-

erated by the dynamic routine and displayed next to their

appropriate titles which were generated by the routine which

generates the static information. It should be noted that

the dynamic routine has to manipulate the data which is

collected by the DACI and convert it into value which is

usable.

The NAVIGATIONAL PAGE and the ILS PAGE are also divided

into static and dynamic portions. Once again the routines

used to generate the static data are only run once upon

power up of the EHSI system. This static data is stored in

21

its proper location in the vector memory of the VGD. The

dynamic portions of these two pages are much more complicat-

ed than that of the FLIGHT DATA PAGE. The algorithms and

procedures for these portions will be discussed in sub-

sequent chapters of the thesis. These pages involve con-

verting data received from the DACI, analyzing the converted

data, and generating the appropriate vector display data to

produce the graphics for each of the pages.

Command line and warning areas are used to display

pertinent information to the pilot. These areas are Blight-

ly different for each page but contain the same basic infor-

mation. This information includes appropriate warning mess-

ages when conditions occur which warrant the pilot's atten-

tion. Also, flight parameters entered by the pilot on the

control keyboard are displayed along with entries which are

to be operated on by the calculator functions of the EHSI.

1.4.4 EHSI Ho»t-«ide D»v»lopm»nt s Rob»rt«on and Gru»nb«ch»r

There were a few things which were added to the EHSI

through a collaborative effort by Gruenbacher and myself.

First, dedicated interrupt lines were added to the system.

This involved both hardware and software modifications to

the DACI and software modifications to the host. The chang-

es to the DACI appear in Appendix A. Second, the clock

interrupt routine of the DACI was modified to analyze what

22

would need to be done to speed up the EHSI system. This

involved changing the main routine of the DACI to retrieve

the clock data every time in its main loop rather than on an

interrupt from the real time clock, disabling the real time

clock interrupt, and removing the interrupt handshaking from

the clock interrupt routine. The results of this test

showed that a faster processor is needed on the host-side

and that a key decoder with latched outputs is needed for

the control keyboard. These changes were then removed and

the DACI routines were returned to their original state.

Third, a switch was added to the DACI to allow the input of

an external clock to the clock interrupt line of the DACI.

This was also added to analyze the speed of the EHSI system.

It also served to demonstrate the operation the interrupt

stack on the host side. Finally, as a temporary cure for

noise problems, the flat cables of the EHSI system were

twisted and wrapped in a foil shield, which was grounded to

the chassis of the host computer.

1.3 EHSI Host-side Programming Model

The functional programming model for the EHSI consists

of five basic levels:

1) BACKGROUND INTERRUPT PROCESS

2) INTERRUPT STACK

3) MAIN ROUTINE

23

4) EHSI FUNCTION MODULES

5) COMMUNICATION ROUTINES

These levels can be seen in Fig. 1.6. The paths between these

different levels can also be seen in the figure.

24

BACKGROUND INTERRUPT

PROCESS: Retrieves

interrupts from DACI

INTERRUPT STACK:

Contains interrupts

received by BACKGROUND

INTERRUPT PROCESS

V^
MAIN ROUTINE:

1) Installs BACKGROUND INTERRUPT PROCESS

23 Evaluates all DACI interrupts and

executes appropriate actions

3) Removes BACKGROUND INTERRUPT PROCESS

JL
MISC.

FUNCTIONS

"A"

~A

__V

DA

PAGE

~fc~

w

Y_
NAV

PAGE

"fi

v v v M/

a

_v
ILS

PAGE

COMMUNICATION ROUTINES:

Written in Intel 8086

assembly language

Figure 1.6 EHSI HOST PROGRAM MODEL

25

CHAPTER TWO

MAIN ROUTINE

The main routine is the controlling routine for all the

vector graphics development of the EHSI. It is written in

the C programming language and has to perform several basic

functions. This routine continually loops once it is start-

ed and terminates when the EHSI system switch is turned

"off. "

2. 1 Functions

The first function performed by the main routine is the

installation of the background interrupt process. The back-

ground interrupt process retrieves all the interrupts sent

by the DACI and stores them in a twenty-byte stack. This

stack decreases the possibility of missing a DACI interrupt

while display data is being generated by the functions

called by the main routine.

Second, all the data structure values passed to other

routines are initialized. This includes clock package val-

26

ues such as the timer minutes and seconds, time-out minutes

and seconds, ADF frequency, communication frequencies, navi-

gation frequencies, timer status, and timer operation.

Alarm conditions in the alarm package are also initialized

to the off state.

Note, at this point, the main routine enters a cont-

inuous loop and waits for the "system on" interrupt to be

sent by the DACI. The main routine is executing the clock

interrupt at this time, but the static information for the

different display pages has yet to be installed. Therefore,

nothing is displayed on the vector graphics display.

Third, when the "system on" interrupt is sent by the

DACI, a system on message is displayed and the static data

for the different pages to be displayed is installed in the

vector graphics memory. The term static is used here to

indicate display data that will not change for the various

pages. This includes such things as headings for the var-

ious flight data that are to be displayed. The DATA PAGE of

the EHSI is now displayed on the VGD. This page will always

be the first page shown when the "system on" interrupt is

received from the DACI.

Fourth, the main routine continues looping and checks

for interrupts from the DACI. When an interrupt is received

it is then evaluated and checked for validity. There are

three types of valid interrupts and they consist of the

27

following:

1) key interrupts
A) function keys
B) number keys
C) page keys

2) clock interrupts

3) system status
A) system on
B) system off

Key interrupts are generated when a key is pressed on

the control keyboard of the EHSI. The function key inter-

rupts are used to execute the various functions which are

available. These functions include entering the ADF freq-

uency, communication frequencies, navigational frequencies,

timer functions, calculator functions, etc. When an inter-

rupt is evaluated to be a key interrupt, the appropriate

function used to execute the key interrupt is called by the

main routine. Upon completion of the key interrupt routine,

control is returned to the main routine. Number key inter-

rupts are used to enter numerical values into a buffer.

These numerical values in the buffer are then used when the

various function keys of the EHSI are pressed. Page key

interrupts are used to determine which page is to be dis-

played by the EHSI. Remember, the system first displays the

DATA PAGE. However, after the "system on" interrupt is

received, any of the three pages available on the EHSI may

be selected by pressing the appropriate page key on the

control keyboard.

26

Clock interrupts are interrupts generated by the DACI's

real-time clock. Presently, the interrupt occurs every half

second. This corresponds to a frequency of two hertz. When

a clock interrupt is received, the routine which generates

the dynamic data for the present page being displayed is

called. The term dynamic here is used to refer to the

vector graphics commands which are subject to change for the

various displays.

System status interrupts are generated when the system

switch of the EHSI is turned "on" or "off". As was stated

earlier, the "system on" interrupt results in the install-

ation of all the static data for the various pages into the

VGD memory. When the "system off" interrupt is received

from the DACI, the main routine removes the background

interrupt process which was installed, displays a system off

message, and exits to DOS.

The basic functions of the main routine can be seen in

Fig. 2. 1.

2. 2 Data Structures

The main routine has four different data structures

which it accesses. Two of these structures are public

structures and two are local to the main routine. The

reason for the use of the public structures was to allow the

interface of the C routines and the assembly routines of the

29

DATA PAGE NAY PAGE

INSTALL

BACKGROUND

PROCESS

DATA

PAGE

COORD.

DATA

PAGE

STATIC

NAV

PAGE

COORD.

->
NAV

PAGE

STATIC

NAV

PAGE

DYNAMIC

EXECUTE

PROPER

FUNCTION

(?)

REMOVE

^BACKGROUND

PROCESS

IIS PAGE

ILS

PAGE

COORD.

ILS

PAGE

STATIC

ILS ,

PAGE

DYNAMIC

Figure 2. 1 MAIN ROUTINE BASIC FUNCTIONS

30

host-side.

The first of the public data structures is the data

package. This structure contains all the raw digital flight

values obtained by the DACI from the flight simulator.

There are a total of twenty-four different values. These

values are manipulated and converted by various routines to

generate the various pages of the EHSI. They are retrieved

by calling the assembly routine, GET_DATA_PACKAGE() , which

was mentioned in the introduction.

The second of the public data structures is the screen

data. This structure contains all the VGD commands which

are to be sent to the VGD. It is one-dimensional array

consisting of up to one thousand different display commands.

These commands are sent by calling the assembly routine,

SEND_SCREEN(), which was mentioned in the introduction.

The third data structure is the clock package. This

structure is local to the main routine and contains a var-

iety of values which are passed by the main routine to

various functions which it calls. This structure contains

the following:

1) time values
A) timer minutes and seconds
B) time-out minutes and seconds
C) timer operation flag
D) timer status flag

2) frequency values
A) ADF frequency
B) communication frequencies
C) navigation frequencies

31

3) altitude values
A) assigned altitude
B) MDA/DH

4) estimated wind direction

5) math operation flag

The fourth structure is the alarm package. This struc-

ture is also local to the main routine and is passed by the

main routine to other routines. This structure contains the

alarm flags for the EHSI. Presently there are alarm flags

for the airspeed, assigned altitude, MDA/DH, and the time-

out. The structure also contains alarm enable flags for the

MDA/DH and assigned altitude and a system alarm status flag.

32

2.3 High Level Flowchart

CjTART^)

±
INSTALL

BACKGROUND

PROCESS

PRINT

Intjium

stack depth

<h

>©

Call

Data_page_

dynamic

y.
Call

Nav_page_

dyna/nJc

PRINT

System 0,

message

A^L
Install

static

portion of

pages

33

2.3 High Level Flowchart (cont.)

<D

Put keys

0-9 S . in

key buffer

Put value

in buffer

on stack

<D

V
Clear

value in

buffer

JL
Put buffer

value in

freq. var.

v
Put buffer

value in

alt. var.

<D

Put buffer

value in

wind var.

Put buffer

value in

timer var

Start

timer flag

set

<D

34

2.3 High Level Flowchart (cont.

)

Execute

math

function

Display

the DATA

PAGE

Display

NAV PAGE

Display

ILS PAGE

M 4)

35

CHAPTER THREE

TOOLS FOR VECTOR GRAPHICS
DEVELOPMENT OF THE EHSI

The first step in developing the vector graphics dis-

plays for the EHSI was the development of some basic gra-

phics tools. These tools were needed to facilitate the task

at hand. These tools consist of functions which were writt-

en in the C programming language. They accomplish a variety

of separate tasks and can be divided into two different

categories. The first category consists of those functions

which have a general-purpose nature. These functions or

tools are used in the development of the graphics for all

the pages of the EHSI. The second category consists of

those tools which are page specific. These page-specific

tools accomplish tasks which are unique to the vector gra-

phics development of specific pages of the EHSI.

3. 1 General-Purpose Tools

There are many different general purpose tools which

36

were developed to help generate the different pages of the

EHSI. For the most part, these tools were the first func-

tions that were written to ease the burden of the vector

graphics development for the EHSI. Presently, these tools

consist of the following:

i> Insert

2) liM

3) •rc_circ

4) atring_g«n

5) box

6

)

zarojpad

7) altitude

8) dme

9> mirapead

10) arrow

11) heading

12) timer

The inaart function inserts a conversion array into the

screen data structure which was discussed earlier. It in-

serts this array based on an index which is passed to the

routine. The conversion array contains the VGD commands

which have been generated by other functions. The routine

only inserts a certain number of commands in the conversion

array. The number of commands Inserted is determined by a

length passed to the routine. This routine is used more

37

than any of the other general routines.

The lin» function generates the necessary VGD commands

to plot a line between two points on the vector graphics

display. The coordinates of the end-points are passed to

the routine and the VGD commands which are generated are

stored in a conversion array.

The ro_oiro function generates the necessary VGD

commands to generate an arc between zero and three hundred

sixty degrees. The plot origin for the arc is at the center

of the arc. The arc is drawn at a certain radius. The

routine generates this arc by drawing many separate line

segments. The angle increment for drawing the line segments

is determined by the radius, with a larger radius having a

smaller angle increment. This is necessary to make the arc

appear to have a smooth curvature. The VGD commands gen-

erated are stored in a conversion array. The plot coord-

inates, start angle, end angle, and radius are all passed to

the routine.

String_g»n is a function which generates the necessary

VGD commands to place a string at a given plot coordinate on

the VGD. It can generate characters of four different

sizes. The character size, plot coordinate, and string are

all passed to the routine. The commands generated are

stored in a conversion array. This routine is used extens-

ively.

38

Box is a function which used to generate a box around a

given string being plotted on the display. The size of the

box generated is based on the number of characters in the

string and the size of the characters. The location of the

box is based on the plot location of the string on the

display. The plot coordinates, character string, and char-

acter size are all passed to the routine. All the VGD

commands generated are stored in a conversion array.

The z»ro_p«d function is used to zero pad values which

are to be displayed. Zero padding is just the addition of

zeros to a value to maintain the number of digits shown at a

constant. The zeros are added to the front of a number.

For example, since a compass can have a heading of up to 3S0

degrees, it might be desirable to have the heading displayed

with a three digit field. In the case of a heading of 185

degrees, no zero padding would be necessary. However, a

heading of 5 degrees would be zero padded to 005 degrees.

This function takes a given number to be padded , zero pads

the number based on a given pad limit, and converts the

padded value to a string. The value to be padded, the pad

limit, the precision, and the type of number to be padded

are all passed to the function. The padded value is stored

in a conversion string.

Altitud* is a function which retrieves the digital

altitude value from the data package structure and converts

39

this value using a linear conversion into feet. This con-

verted value is zero padded and is plotted as string at a

given location on the VGD. This routine also monitors the

alarm conditions for the assigned altitude and MDA/DH. It

will control the alarm horn of the EHSI and will display

appropriate warning messages when necessary. The clock

package, alarm package, and plot coordinates are passed to

the routine. The VGD commands generated are stored in a

conversion array.

Dm* is a function which retrieves the digital DME value

from the data package structure and converts this value

using a linear conversion into nautical miles. This con-

verted value is zero padded and is plotted as string at a

given location on the VGD. The clock package, alarm pack-

age, and plot coordinates are passed to the routine. The

VGD commands generated are stored in a conversion array.

Airap»»d is a function which retrieves the digital

airspeed value from the data package structure and converts

this value using a linear conversion into knots. This

converted value is zero padded and is plotted as string at a

given location on the vector graphics display. This routine

also monitors the alarm conditions for the stall airspeed of

the aircraft. Later, a structural-limit airspeed may be

added. It will control the alarm horn of the EHSI and will

display appropriate warning messages when necessary. The

40

clock package, alarm package, and plot coordinates are pass-

ed to the routine. The VGD commands generated are stored in

a conversion array.

Arrow generates the necessary VGD commands to plot an

arrow head on the display. The arrow is plotted for a given

radius, location, angle, and direction. The direction de-

termines whether or not the arrow head points "to" or "from"

the given plot location. The commands generated are stored

in a conversion array.

Heading retrieves the digital value for the plane head-

ing from the data package and converts it into an appro-

priate plane heading in degrees. It accomplishes this conv-

ersion by using a lookup table which is in the form of a

structure. If the value retrieved does not equal a value in

the lookup table, interpolation is used to get the appro-

priate plane heading. The plane heading found is passed to

the calling routine.

Tim»r implements the TIMER and TIME-OUT function avail-

able on the EHSI. The routine keeps track of the timer

value and compares it to the time-out value which is entered

by the operator via the control keyboard. The routine

reacts to all key presses dealing with the timer. These

include the "TIMER" key, "RESET TIMER" key, and "START

TIMER" key of the control keyboard. When the timer value is

greater than or equal to the time-out value which has been

41

entered, the alarm horn of the EHSI is sounded and an appro-

priate message is displayed. The only page which displays

the timer and time-out value is the DATA PAGE. The routine

stores all generated vector graphics commands in a con-

version array. The clock package and the alarm package are

required by the routine.

3. 2 Page-Specific Tools

Each of the pages of the EHSI has certain portions

which are unique to that particular page. To generate these

unique graphics, functions had to be written to accomplish

these tasks. These functions are page-specific, which means

that they are only used in the development of a graphical

portion of one specific page of the EHSI. The page-specific

tools can thus be broken down into categories defined by the

EHSI pages.

3. 2. 1 DATA PAGE Tools

The DATA PAGE tools were the first page-specific tools

which were developed. For the most part, they are very

simple routines because the graphics generated for the DATA

PAGE are not that complicated. The page-specific tools for

the DATA PAGE consist of the following:

1) tim»_stringj»n

2) climb_box

42

3) climJiBh

4) clim_«rrov

5) cllmbjjti

The Tim»_«trino_o«n routine is used to generate a

string depicting the time in hours, minutes, and seconds.

The routine retrieves the values of the real-time clock on

the DACI from the data package. These values, which consist

of the hours, minutes, and seconds, are converted into char-

acters and are zero padded when appropriate. These zero-

padded values are put together as a string with colons

between them.

Climb_box is a routine which generates the vector VGD

commands for the climb indicator box of the DATA PAGE. It

is a very straight forward routine which consists of gener-

ating the five necessary connected line segments which form

the climb indicator box. The only values needed by the

routine are the plot coordinates for the box. The generated

commands are stored a conversion array.

The clim_h«h routine is also a very straight forward

routine. It generates the hash marks for the climb in-

dicator of the DATA PAGE. These hash marks are just line

segments plotted at certain intervals along the climb in-

dicator arc. Four hash marks are generated by this routine

at evenly spaced intervals. The intervals are determined by

dividing a given arc into four parts. Note that the routine

43

does not put a hash mark in the middle of the arc. The

information required by the routine consists of the plot

coordinates of the climb indicator arc, the start and end

angle of the climb indicator arc, and the radius of the

climb indicator arc. The VGD commands generated by the

routine are stored in a conversion array.

Clitn_»rrow is a routine which generates the VGD

commands to plot the climb indicator arrow of the DATA PAGE.

The routine generates this arrow given a plot location,

angle, and radius. This arrow consists of three connected

line segments. One corresponding to the shaft of the arrow

and the other two making up the head of the arrow. The

VGD commands for the arrow are stored in a conversion array.

Climb_r«t« is a function which retrieves the digital

vertical speed value from the data package structure and

converts this value using a linear conversion into feet per

minute. This converted value is zero padded and is plotted

as string at a given location on the vector graphics dis-

play. The clock package, alarm package, and plot coor-

dinates are passed to the routine. The VGD commands gener-

ated are stored in a conversion array.

3.2.2 NAV PAGE TooIb

The tools needed for the vector graphics development of

the NAV PAGE vary greatly in their complexity. Some are

44

very straight forward and simple while others are rather

complex and involve a large number of calculations and

decisions to accomplish their tasks. The simple tools of

this page consist of the following:

1) plan*

2) vaypoint

3

)

vortac

4) ndb

All of these simple routines basically the same. The

first three involve connecting numerous line segments to

form the appropriate graphic to be displayed. The ndb

routine makes three calls of the arc_ciro function which was

discussed in the general tools section. The only infor-

mation required by these routines is the plot coordinates

for the graphic. All the VGD commands are stored in a

conversion array.

The more complicated tools of the NAV PAGE consist of

the following:

1

)

compass

2) h»ading_and_b»aring

3) g»t_pdb_plot_angla

Compass is the routine which generates the vector gra-

phics commands to plot the hash marks and appropriate mar-

kings for the compass portion of the NAV PAGE. A ninety

degree portion of the compass is generated showing forty-

45

five degrees to either side of the plane's heading. The

information which is required by this routine consists of

the plot coordinates for center of the compass arc, the

radius of the compass arc, and the heading of the plane.

Hash marks are generated in intervals of five degrees. The

hash marks which are at a compass headings which are div-

isible by ten are twice as long as those that are not div-

isible by ten. Markings along the compass are done at

compass headings which are divisible by ten. These markings

consist of headings between and 360 degrees with markings

of N, E, W, and S for respective headings of degrees, 90

degrees, 180 degrees, and 270 degrees. The VGD commands

generated by this routine are stored in a conversion array.

H»«ding_«nd_b»«rlnfl calculates the heading and bearing

of an NDB or VORTAC. It calculates these, given information

consisting of the plane's heading in degrees and the plot

angle of the VORTAC or the NDB. After calculating the

heading and bearing the routine generates the appropriate

VGD commands to plot the heading and bearing as strings on

the VGD. The heading is plotted at distance two-thirds of

the way between the NDB or VORTAC. The bearing is plotted

at a distance one-third of the way between the NDB or

VORTAC. The distance of the NDB or VORTAC is passed to the

routine. Arrows are also drawn by the routine, with an

arrow pointing "to" the NDB or VORTAC at the heading loca-

46

tion and an arrow pointing "from" the NDB or VORTAC at the

bearing location. The VGD commands are stored in conversion

array.

Gat_ndb_plot_angl» retrieves the digital value for the

ADF from the data package and converts it into an appro-

priate NDB plot angle. It accomplishes this conversion by

using a lookup table which is in the form of a structure.

If the value retrieved does not equal a value in the lookup

table, interpolation is used to get the appropriate plot

angle for the NDB. The angle found is passed to the calling

routine. The converted NDB plot angle is in degrees.

3.2.3 ILS PAGE Toola

Presently, there are only two page-specific tools on

the ILS PAGE. The first tool is the runway function.

Runway generates the necessary VGD commands to plot a runway

on the display. The runway is plotted for a given location,

scale factor, and angle. The plot coordinate is centered at

the intersection to the runway centerline and touchdown

line. The runway is drawn using vanishing-point techniques.

The commands generated are stored in a conversion array.

Ila_compaBB is the second tool. This routine generates

the vector graphics commands to plot the hash marks and

appropriate markings for the compass portion of the ILS

PAGE. A twenty-degree portion of the compass is generated

47

showing ten degrees to either side of the plane's heading.

The information which is required by this routine consists

of the plot coordinates for center of the compass arc, the

radius of the compass arc, and the heading of the plane.

Hash marks are generated in intervals of one degree. The

hash marks which are at compass headings divisible by five

are twice as long as the other hash marks generated. Mark-

ings along the compass are done at compass headings which

are divisible by ten. These markings consist of headings

between and 360 degrees with markings of N, E, W, and S

for respective headings of degrees, 90 degrees, ISO deg-

rees, and 270 degrees. The VGD commands generated by this

routine are stored in a conversion array.

48

CHAPTER FOUR

HP 1343A VECTOR GRAPHICS

The HP 1345A is a high-resolution vector graphics dis-

play. It was chosen for the EHSI development system because

it is especially suited for this type of application. The

display is capable of operating up to 15, 000 feet pressure

altitude. The plotting area is 9.5 cm high and 12.5 cm wide

and has 2048 addressable points in either direction. The

display also contains the vector memory option which allows

storage of up to 4096 command words and provides automatic

refresh capability for the CRT. The display also has a

built-in character set.

The HP 1345A accepts four basic commands:

1) SET CONDITION

2) PLOT

3) TEXT

4) GRAPH

These commands allow complete text and vector genera-

49

tion, while keeping programming overhead to a minimum.

Note, each command word is 16 bite long. The GRAPH command

was the only command which was not used in the development

of the EHSI.

The SET CONDITION command is used to establish vector

attributes. The attributes which it affects are line type,

speed, and intensity. Using the line intensity and speed

parameters, the user can generate up to 12 different in-

tensity levels. This allows the user to intensify certain

areas of the display and generate background areas. The

vector generated will be the brightest when the line in-

tensity is set at full brightness and the slowest writing

speed. Once the SET CONDITION command has been executed, it

stays in effect until another SET CONDITION command is

executed. This command can be executed at any time. The

bit patterns required for the SET CONDITION can be found in

the found in Fig. 4.1C4].

The PLOT command is used to draw vectors on the dis-

play. The command moves a beam to a specific location in

the Cartesian plane of the display each time an X-Y coord-

inate pair is received. The origin of the Cartesian plane

is in the lower left hand corner of the display. The X-Y

value at the origin is equal to (0,0). The plotting range

is from to 2047 in both the X and Y the directions. The

beam can also be turned on and off by the command. A vector

50

is drawn from the previous beam coordinates to the coor-

dinates specified by a new PLOT command. Note, all vectors

are drawn in accordance with last SET CONDITION command

received by the display. The bit patterns for the PLOT

command can be found in Fig. 4.2141.

An example will demonstrate how easy it is to use the

PLOT command of the HP 1345A. Sending the following command

words will draw a vector on the display. The command words

are 16 bits wide and are shown in hexadecimal format.

COMMAND SENT COMMAND WORD

1) SET CONDITION $7818

2) PLOT XO(beam off) $0000

3) PLOT Y0(beam off) $0800

4) PLOT XI (beam off) SOOFF

5) PLOT YKbeam on) $18FF

Executing these commands will draw a line from the

origin on the display to a point located at (255,255) on the

display. The first command sets the line type to full

solid, full brightness, and the slowest writing speed. The

next two commands move the beam to the origin of the display

with the beam off. The last two commands move the beam to

(255,255) with beam on.

If a vector is to be drawn vertically, the Y value is

the only command which is needed to establish the vector

endpoint. This is possible because the display has a "last

51

X" register which stores the value of the last X location

entered. This allows drawing of vertical vectors with one

less command word.

There are a few limitations which should be noted when

using the PLOT command of the HP 1345A. It was found that

when drawing a vector, only one of the commands for the

vector end location should be executed with the beam on.

When both the commands for the end location were executed

with the beam on, the display reacted unpredictably. The

user should also take into account that the display width

and height are different. But, there are 2048 addressable

points in either direction. If this difference is not taken

into account, a box will appear as a rectangle and a circle

as an ellipse. To correct for this difference, a scaling

factor must be used when calculating vector endpoints. The

screen is 9.5 cm high and 12.5 cm wide; a scaling factor

can be derived from this information. The user should also

make sure that all vectors are plotted within the usable

plotting area of the display. If vectors are drawn outside

the vector drawing area, the vectors will be drawn to the

opposite side of the display. This phenomenon is known as

"wrap around". This can result in a very distorted image

and should be avoided at all times.

The TEXT command is used to plot characters on the HP

1345A. The display has a complete built-in character set.

52

It is a modified ASCII set for graphics use. A portion of

the set can be seen in Fig. 4.3C4]. The characters drawn on

the display are drawn in accordance with the last SET CONDI-

TION command received. The characters are always drawn at

the slowest writing speed. Note, line type has no affect

except on the largest character size. Characters are drawn

at the last X-Y coordinates received.

Automatic spacing is provided between the characters

when they are generated. Characters can be rotated up to

four different ways and can be drawn in four different

sizes. The starting position for each character is in the

lower left hand corner of the defined character cell. Bit

patterns for text generation can be found in Fig. 4. 4C4],

The "wrap around" phenomenon which was discussed

earlier applies to text generation as well. Characters

should not be plotted to close to the plotting boundaries or

"wrap around" will occur. If the boundary specifications

shown in Fig. 4.5C4: are followed, no problems will be

encountered when writing text at the screen boundaries.

The vector memory option of the HP 1345A makes the job

of programming the display much easier. It allows the user

to store up to 4096 command words and provides automatic

refresh for the CRT at a SO Hz rate or a rate defined by an

external clock. This relieves the user processor of data

storage and refresh requirements.

53

The vector memory recognizes two commands for pro-

gramming. These commands are for memory address pointer

manipulation and data transfer. Address-pointer operations

are used for positioning data in the vector memory. Data

transfer can be either a read or a write of data in the

vector memory.

There are two pointers used to control access of data

to and from the vector memory. The first pointer is not a

user accesBable pointer and is used for refresh purposes.

The second pointer is the vector memory address pointer.

This is the pointer which is used to control the part of the

vector memory which is being accessed by the user. The bit

patterns for the available vector memory commands can be

seen in Fig. 4. 6C4I.

54

MSB LSB
D14 D13 D12 Dll D10 D09 DOS D07 D06 D05 D04 D03 D02 DOl DOO
1 1 II 10 X X LI LO X Wl WO X X X

Note: Bit 6 (DOS) must be zero.

Command Modifiers:

a. To Set Line Intensity:

II 10 Intensity
Blank

1 Dim
1 Half Brightness
1 1 Full Brightness

b. To Set Line Type:

LI LO

1

Typ»
Solid Line
Intensified End Points

1

1 1

Long Dashes
Short Dashes

c. To Set Writing Speed:

Wl wo Sp»ed
1 1 0. 05 in. per microsec
1 0. 10 in. per microsec

1 0. 15 in. per microsec
0.20 in. per microsec

Figure 4.1 SET CONDITION COMMAND [4]

55

"SB LSB
D14 D13 D12 Dll D10 D09 DOS D07 D06 D05 D04 D03 D02 DOl DOO

XY PC DIO D09 DOS D07 DOS D05 D04 D03 D02 DOl DOO
< DATA >

Command Modifiers:

a. XY Information (D12)

= X coordinate (0-2047), specified by D00-D10
1 " Y coordinate (0-2047), specified by D00-D10

b. PC Beam Control Information (Dll)

= Beam OFF (move)
1 Beam OK (draw)

Figure 4.2 PLOT COMMAND [4]

56

LEAST
SIGNIFICANT
CHARACTER

MOST SIGNIFICANT CHARACTER

2 3 4 5 6 7

SP 1? P P
1 ! 1 A Q a q
2 2 B R b r
3 # 3 C S c s
4 $ 4 D T d t
5 y. 5 E U e u
6 & 6 F V f V
7 7 G w g v
8 (8 H X h x
9) 9 I Y i y
A * : J 2 z
B +

i K : k {

C t < L \ 1 1

D - = M : m)

Figure 4.

3

Partial 1345A MODIFIED ASCII CHARACTER
SET [4]

57

MSB LSB
D14 D13 D12 Dll D10 D09 DOS D07 D06 D05 D04 D03 D02 DOl DOO
1 SI SO Rl RO ES D07 D06 D05 D04 D03 D02 DOl DOO

CHARACTER >

Command Modifiers:

a. ES Establish Size of Character

= Use previous size and rotation
1 Establish new size and rotation according to

SI, SO, Rl, and RO

b. Rotate Character CCW

Rl RO Rotation
degrees

1 90 degrees
1 ISO degrees
1 1 270 degrees

c. Character Size

SI SO Siz* W X H
IX 24 X 36

1 1. 5X 36 X 54
1 2. OX 48 X 72
1 1 2.5X 60 X 90

Figure 4.4 TEXT COMMAND [4]

58

2047-

2033-

2026-

2019-

2012-

BOUNDARY FOR 2.5X

BOUNDARY FOR 2. OX

BOUNDARY FOR 1.5X

BOUNDARY FOR 1 . OX

--2029

--2035

--203B

-2041

.-2047

-35

-28

-21

-14

B 9 12 IB

Figure 4.5 BOUNDARY LIMITS FOR CHARACTER PLOTTING [4]

59

VECTOR MEMORY WORD

MSB LSB
M15 M14 M13 M12 Mil MIO M9 MS M7 MS M5 M4 M3 M2 Ml MO

B14 B13 B12 Bll BIO B9 B8 B7 BS B5 B4 B3 B2 Bl BO

Note: See data bit definitions for 1345A commands

INTERNAL JUMP

MSB LSB
M15 M14 M13 M12 Mil MIO M9 MS M7 MS M5 M4 M3 M2 Ml MO
1 X X All A10 A9 A8 A7 AS A5 A4 A3 A2 Al AO

Note: All-AO specify jump to vector memory address
during refresh

ADDRESS POINTER

MSB LSB
M15 M14 M13 M12 Mil MIO M9 MS M7 MS M5 M4 M3 M2 Ml MO
1 1 X X All A10 A9 A8 A7 AS A5 A4 A3 A2 Al AO

Note: Sets address pointer to address specified by
All-AO

Figure 4. S VECTOR MEMORY COMMANDS C4]

60

CHAPTER FIVE

VECTOR MEMORY LAYOUT FOR THE EHSI

Since the HP 1345A has the vector memory option, a

memory layout for the EHSI was designed. The vector memory

was broken up into seven separate areas. Three of these

areas contain the static data for the different pages of the

EHSI. The four other areas of the memory are used for the

dynamic portions of the EHSI. The fourth dynamic area is

used for the command line and warning messages which are to

be displayed.

The vector memory layout can be seen in Fig. 5. 1. The

first word of the vector memory contains the jump vector

which determines which page of the EHSI is being displayed.

The jump vector is changed whenever one of the page keys is

pressed on the control keyboard. The first section of

memory contains the static information for the DATA PAGE.

This is located in the vector memory between 50001 and

S02FF. Note, the last command of the static data for the

61

DATA PAGE contains a jump to the location in the vector

memory which contains the dynamic portion of the DATA PAGE.

The second section of memory contains the static information

for the NAV PAGE. This is located in the vector memory

between 90300 and S04FF. Note, the last command of the

static data for the NAV PAGE contains a jump to the location

in the vector memory which contains the dynamic portion of

the NAV PAGE. The third section of memory contains the

static information for the ILS PAGE. This is located in the

vector memory between S0500 and S06FF. Note, the last

command of the static data for the ILS PAGE contains a jump

to the location in the vector memory which contains the

dynamic portion of the ILS PAGE. The fourth section of

memory contains the dynamic information for the DATA PAGE.

This is located in the vector memory between $0700 and

S08FF. The fifth section of memory contains the dynamic

information for the NAV PAGE. This is located in the vector

memory between $0900 and S0BFF. The sixth section of memory

contains the dynamic information for the ILS PAGE. This is

located in the vector memory between 50C00 and sODFF. Note,

the last command of the dynamic data for all the pages of

the EHSI contains a jump to the location in the vector

memory which contains the command line and warning area for

the EHSI. The final section of memory contains the command

line and warning area for the EHSI. This is located in

62

vector memory between SOEOO and SOFFE. The final word of

the vector memory contains a NO-OP. This NO-OP is necessary

because a jump may not be made to another internal jump.

This memory layout can be changed at any time with the

programming capability of the vector memory. This will make

it possible to change the memory layout easily, when changes

are made to the host-side of the EHSI program.

63

OOOH

001H

300H

500H

Jump vector to static DATA, NAV, or ILS page

700H

900H

COOH

EOOH

FFFH

Static DATA page
Last command is jump to 700H

Not used

Static NAV page
Last command is jump to 900H

Not used

Static ILS page
Last command is jump to COOH

Not used

Dynamic DATA page
Last command is jump to EOOH

Not used

Dynamic NAV page
Last command is jump to EOOH

Not used

Dynamic ILS page
Last command is jump to EOOH

Not Used

Command line screen code
Last command is jump to FFFH

Not used

NO-OP

Figure 5. 1 VECTOR MEMORY LAYOUT FOR THE EHSI

64

CHAPTER SIX

DATA PAGE

The DATA PAGE provides the pilot with basic flight

information. It shows flight parameters which are inputed

by the pilot prior to take-off or during the course of a

flight and basic flight data showing the plane's status.

Enabled alarm conditions are also shown on this page to

alert the pilot as to which of the available alarms are set.

For the most part, this page ie in a digital type format.

This means that most of the flight parameters are shown as

digital values. The one portion of the DATA PAGE which is

analog in appearance is the rate of climb indicator. This

indicator will show the plane's rate of climb in feet per

minute. An example of the DATA PAGE can be seen in Fig.

6. 1.

The DATA PAGE is broken down into two basic parts. The

first part consists of the static information for the page.

This is information which will not change during the course

65

of the EHSI operation. This static information is loaded

into the vector memory only once. This loading occurs when

the EHSI system switch is turned "on". The second part

consists of the dynamic information for the page which is

generated during the course of the flight. When the DATA

PAGE is the present page being displayed, this information

gets loaded into the vector memory every time a clock inter-

rupt is received from the DACI.

6. 1 Static Portion

The static portion of the DATA PAGE can be broken down

into three areas. The first area consists of text strings.

These strings provide the headings for the information being

displayed on the DATA PAGE. The strings are all generated

using the (1.5) character size of the HP 1345A's built-in

character set. All the plot locations for the strings are

in an include file entitled "datpg_xy. h". This was done to

allow the developer to easily change the location of the

heading strings. This makes it possible to try new con-

figurations on the DATA PAGE with a minimal amount of

effort. Presently, some of the text strings are grouped

together. Some of this grouping is random, while other

groups of the strings share information which is similar in

nature. The VGD commands used to plot the strings were

generated using the stringjen routine which was discussed

66

in the tools chapter. The text strings which are presently

shown on the DATA PAGE are the following:

1) HEADING: plane's present heading

2) AIRSPEED

A) CAS: calculated airspeed

B) TAS: true airspeed

3) GROUNDSPEED: plane's speed relative to the ground

4) ALTITUDES

A) ASSIGNED: plane's assigned flight altitude

B) PRESENT: plane's present altitude

C) MDA/DH: minimum descent altitude/decision
height

5) TIMER

6) TIME-OUT

7) FREQUENCIES

A) COMMUNICATION: radio frequencies

B) NAVIGATION: VORTAC frequencies

C) ADF: automatic direction finder frequency

8) WAYPOINTS: intermediate navigation points on flight
path

9) TEMPERATURE: outside temperature

10) BAROMETER: outside barametric pressure

11) REAL TIME VALUES

A) MILITARY: military standard time

B) EDT:

C) ZULU: Greenwich Mean Time (GMT)

67

12) TIME SINCE LIFT-OFF

The second area of the static portion of the DATA PAGE

is the climb indicator. The plot location for the indicator

is also contained in the include file, "datpg_xy. h". Al-

though the indicator is comprised of several different

parts, the whole indicator can be moved by changing just one

plot coordinate in the include file. This indicator is in

the upper right corner of the display and consists of the

following:

1) LETTERING: The letters are plotted vertically and
spell out the word "CLIMB". The characters used
are size (1.5) of the built-in character set.
Strlng_g»n was used here.

2) INDICATOR ARC: The arc was plotted using «ro_circ.
It provides the boundary for the meter.

3) INDICATOR CENTERLINES: Lin» was used to plot these.
They provide the zero climb rate reference for
the meter.

4) CLIMB BOX: The climb_box routine was used here. The
climb box provides a starting point for the climb
indicator arrow which is in the dynamic part of
the page. It also boxes in the indicator's
lettering.

5) INDICATOR HASH MARKS: These marks provide reference
points on the indicator at certain climb rates.
These reference points are at rates of -2000,
-1000, +1000, and +2000 feet per second. They
are plotted using clim_h«h.

The third area contains the command line. Below this

line is where all messages to the pilot will be displayed.

These include both warning and error messages. This area

68

will show numeric entries from the control keyboard and

results of operations performed with the HP-style calculator

functions available on the EHSI. This line is plotted using

the Una routine.

6. 2 Dynamic Portion

The dynamic portion of the DATA PAGE is responsible for

plotting the flight status information, flight parameters

entered by the pilot, and the climb indicator arrow of the

climb Indicator. This portion also uses the "datpg_xy. h"

coordinate file when plotting the vector graphics which it

generates. Note, all the VGD commands used to plot strings

in this portion of the page are generated using atringjan.

Also, all zero padding of values is done with the zaro_pad

routine. The dynamic section of this page consists of the

following:

1) HEADING: The heading of the plane is calculated
using the gatjiaading routine. It is then zero
padded and plotted.

2) AIRSPEED: The airspeed of the plane is calculated
using the airapaad routine. It is then zero
padded and plotted. Alarm conditions are also
monitored by this routine for the stall airspeed.

3) GROUNDSPEED: The groundspeed has yet to be im-
plemented.

4) ALTITUDES

A) ASSIGNED ALTITUDE: The assigned altitude is
retrieved from the clock package, zero
padded, and plotted. This is entered by the
pilot.

69

B) PRESENT ALTITUDE: The present altitude is
calculated using the altitud* routine. It is
then zero padded and plotted. Alarm con-
ditions are monitored for both assigned alti-
tude and MDA/DH.

C) MDA/DH: The MDA/DH is retrieved from the clock
package, zero padded, and plotted. This is
inputed by the pilot.

5) TIMER and TIME-OUT: The tim»r routine is called
for both these values. The timer routine calc-
ulates the TIMER value and monitors the alarm con-
dition for the TIME-OUT value. The TIME-OUT value
is entered by the pilot. Both values are zero
padded and plotted.

6) FREQUENCIES

A) COMMUNICATION: The communication frequencies
are retrieved from the clock package, zero
padded, and plotted. These are entered by
the pilot.

B) NAVIGATION: The navigation frequencies are re-
trieved from the clock package, zero padded,
and plotted. These are entered by the pilot.

C> ADF: The ADF frequency is retrieved from the
clock package, zero padded, and plotted. It
is entered the pilot.

7) WAYPOINTS: Waypoints have yet to be implemented.
They will be entered by the pilot.

8) TEMPERATURE: Temperature has yet to be implemented.
It will be entered by the pilot and will be dis-
played in both fahrenheit and Celsius.

9) BAROMETER: The barometer has yet to be implemented.
This will be entered by the pilot.

10) REAL-TIME CLOCK:

A) MILITARY: The tim»_ptrinB_B»n routine is
called which retrieves the clock values, zero
pads them, and generates the time string.
The time string is then plotted.

B) EDT: EDT time has yet to be implemented.

70

C) ZULU: ZULU time has yet to be implemented.

11) TIME SINCE LIFT-OFF: This has yet to be
implemented.

71

HEADING: 217

^nn

AIRSPEED: 153 CAS

TAS

GNDSPEED:

ASSIGNED: 3000

c \

L \

M /

B /

\
ALTITUDE: 3040 - — — -

MDA/DH: 1229

i

12: 05: 06

TIMER: 05: 39

TIME-OUT: 05:50

riME:

IDT

OJLU

3INCE L/O

\DF: 242

iAROMETER:

C0M1 119.10

COM2

NAVl

NAV2

RNAV

TEMP.

121.90

112.6

110.1 !

WP1 /

WP2

I

Figure 6. 1 PRESENT FLIGHT DATA PAGE

72

6.3 High Level Flowchart

JL
Get the

DATA

PACKAGE

Ji.
Put up

REAL TIME]

JL
Put up

plane's

HEADING

J^.

Put up

ASSIGNED

ALTITUDE

Put up

plane's

ALTITUDE

Put up

rate of

climb

arrow

_}£

Put up

plane's

AIRSPEED

v
Put up

ADF

v
Put up

CDM1

J^L
Put up

COM2

j£
Put up

V0R1

J^
Put up

V0R2

J£_
Put up

TIMER and

TIME-OUT

JJl

Send data

to vector

memory

73

CHAPTER SEVEN

NAV PAGE

The NAV PAGE is probably the page which is of most

interest to the small plane pilot. It provides a large of

amount of information to the pilot. This information is

assimilated from various flight instruments and is displayed

in a format which will show the position of the plane rela-

tive to known navigational fixes. Unlike the DATA PAGE,

most of the information on this page is provided in an

analog type format. An example of the NAV PAGE can be seen

in Fig. 7. 1. The information supplied on this page consists

of the following:

1) HEADING:

A) The heading is displayed in an analog type
compass format.

B) A digital value for the heading is displayed
at the compass heading.

2) VORTAC:

A) The heading "to" and bearing "from" the
VORTAC are displayed along with appropriate

74

arrows.

B) DME information to the VDRTAC is displayed.

C) The VORTAC is displayed in its position rela-
tive to the plane.

3) HDB:
A) The heading "to" and bearing "from" the NDB are

displayed along with appropriate arrows.

B) Later, possibly, distance information to the
NDB will be implemented.

C> The NDB is displayed in its position relative
to the plane.

4) MISCELLANEOUS INFORMATION: This information is dis-
played in a digital format.

A) AIRSPEED

B) GROUNDSPEED

C) TRACK

D) ALTITUDE

E) DME

5) WARNING MESSAGE AREA: Warning messages to the pilot
are displayed in this area. These messages are
generated by various routines.

S) COMMAND LINE AREA: This area is for displaying num-
eric values entered by the pilot via the control
keyboard.

This page will make it much easier for the pilot to

navigate an established course between two points. Rather

than having to draw a mental picture of the plane's position

relative to known navigational fixes, this position will be

shown graphically with all relative navigational fixes dis-

played.

75

The programming for the NAV PAGE is broken down into

two basic parts as in the DATA PAGE. The first part con-

sists of the static information for the page. The second

part consists of the dynamic information. Remember, the

static information is loaded into the vector memory only

once when the EHSI system switch is turned "on". When the

NAV PAGE is the present page being displayed, the dynamic

information is generated and loaded into the vector memory

every time a clock interrupt is received from the DACI.

7. 1 Static Portion

The static portion of the NAV PAGE can be broken down

into four areas. The first area consists of text strings.

These strings provide the headings for the information being

displayed on the NAV PAGE. All the plot locations for the

strings are in an include file entitled "navpg_xy. h". This

is the same type of include file that was used in the DATA

PAGE for its plot locations. All the strings are generated

using the (1.5) character size of the built-in character

set. String_s»n was used to generate the VGD commands to

plot the strings. The text strings which are presently

shown on the NAV PAGE are the following:

1) AIRSPEED: calculated airspeed

2) GROUNDSPEED: speed relative to ground

3) TRACK: ground track of airplane

76

AlflSPD: 147

GNDSPD:

TRK:

ALT: 3125

DME: 08

Figure 7. 1 PRESENT NAVIGATIONAL PAGE

77

4) ALTITUDE: present altitude

5) DME: distance information to VORTAC or localizer

The second area of the static portion is the plane

graphic. The plot location for the plane is also contained

in the "navpg_xy. h" file. It is plotted in the center of

the NAV PAGE and is generated using the plan* routine. All

VOR's and NDB's are plotted relative to this plane graphic.

Therefore, this graphic represents the position of the plane

relative to the navigational fixes being plotted.

The arc of the analog compass generated by the NAV PAGE

is the third area of this portion. This arc has an angle of

ninety degrees and is plotted at the top of the NAV PAGE.

Its plot location is contained in the plot coordinate in-

clude file. All the static text strings generated are

displayed above this arc.

The fourth area of the static portion of the NAV PAGE

is the heading box and pointer. This area will contain the

digital heading of the airplane and will provide a pointer

to the plane's heading on the compass. It is plotted above

the compass arc in the middle of the display. Its plot

coordinates are in the plot coordinate include file.

7. 2 Dynamic Portion

The dynamic portion of the NAV PAGE is much more comp-

licated than that of the DATA PAGE. It is responsible for

78

calculating and plotting the flight status information men-

tioned and generating the graphical representation of the

plane's position relative to the known navigational fixes.

The latter of these is the more complicated part of this

portion. It involves assimilating all the flight infor-

mation about the known navigational fixes collected by the

DACI and generating the VGD commands to plot this assimilat-

ed data in a usable graphical representation. All plot

coordinates for the vector graphics generated in this

portion are also contained in the "navpg_xy. h" include file.

All strings are plotted using Btringjen and are zero padded

using zero_pad. The dynamic portion of the NAV PAGE con-

sists of the following:

1) AIRSPEED: The airspeed of the plane is calculated
using the airspeed routine. It is then zero
padded and plotted. Alarm conditions are also
monitored by this routine for the stall airspeed.

2) GROUNDSPEED: The groundspeed has yet to be im-
plemented.

3) TRACK: The track has yet to be implemented.

4) ALTITUDE: The present altitude is calculated using
the altitude routine. It is then zero padded and
plotted. Alarm conditions are monitored for both
assigned altitude and MDA/DH.

5) DME: The DME value is calculated using the dme
routine. It is then zero padded and plotted.

6) HEADING

A) The heading is calculated using the get_heading
routine. It is then zero padded and plotted in
the heading box.

B) The compaaa routine is then used to generate

79

the dynamic portion of the compass. The head-
ing is passed to the routine. This routine
then generates the vector graphic commands to
put the hash marks and markings for the heading
sent. The heading of the plane is centered at
the base of the heading pointer below the head-
ing box.

7) VORTAC

A) A VORTAC is displayed if it is within 20 naut-
ical miles.

B) Position of VORTAC relative to plane is calc-
ulated.

C) VORTAC's angle relative to plane is calculated.

D) Heading information is added into this angle
and the angle range is checked.

E) Distance to VORTAC is scaled.

F) VORTAC is plotted using the vortao routine.

G) If the plot distance of the VORTAC is greater
than a certain limit the heading "to" and the
bearing "from" the VORTAC are generated.

1. H««ding_«nd_b»«ring is called to calc-
ulate the heading and bearing.

2. The heading and bearing are plotted with
appropriate arrows.

8) NDB

A) The angle of the NDB relative to the plane is
calculated using the g»t ndb_plot angle rou-
tine.

B) The NDB is then plotted at a constant distance
from the plane graphic using the ndb routine.

C) H»ading_«nd_b»mring is called to calculate the
heading and bearing.

D) The heading and bearing are plotted with
arrows.

80

7. 3 Future Development

The present status of the NAV PAGE leaves allot of room

for Improvement. There are many things which could be added

to the page and several problems which must be overcome.

The first thing which must be added to the page is the

use of waypoints. These waypoints will provide the pilot

with intermediate navigational fixes. A routine must be

written which allow the pilot to enter the waypoints. The

dynamic portion of the NAV PAGE will also need to be modi-

fied to incorporate the calculation of the waypoints posi-

tion relative to the airplane.

Second, the ground track will need to be implemented.

This will involve writing a routine to calculate the ground

track. Another routine will also be required to plot the

ground track arrow above the compass arc.

Third, a wind speed vector will need to be added. This

will involve using basic vector mechanics and the available

flight information provided by the DACI after it has been

converted.

Fourth, an additional vortac will have to be implement-

ed. This will be necessary because most small planes can

have two VORTAC 's tuned in at once. This addition will

involve slight modifications of the dynamic portion of the

NAV PAGE to incorporate the navigational frequencies entered

by the pilot. These frequencies will be used by the

81

routine, along with the information being used presently, to

calculate the position of each of the VORTAC's relative to

the plane.

Fifth, a data base should be added. This data base

could contain the navigational coordinates for VORTACS's,

NDB's, area airports, cities, towns, and other known land-

marks. Such information would be invaluable when calculat-

ing the position of waypoints. It would also make it

possible to show the position of the plane relative to

navigational fixes in the data base.

Sixth, a way of calculating the distance to an NDB

would be convenient. If a data base existed this calc-

ulation would be easy. Without a data base, however, an-

other method must be found to calculate this distance. A

possible solution is found in Lagerberg's thesisC2].

The first problem which must be overcome is that of

processing speed. Presently, the dynamic portion of the NAV

PAGE takes the most time of all the routines. However, this

may not prove to be true when the ILS page is developed

further. A way must be found to speed up the VGD update as

close to real time as possible. This will probably involve

moving to a faster processor and coprocessor along with a

decoded and latched keyboard.

Second, there is a problem the positional information

for the VORTAC's obtained from the flight simulator. The

82

positional information retrieved from the flight simulator

is the form of rectangular coordinates. Thus, the position

of the plane can viewed as the origin of a cartesian coord-

inate system with the VORTAC located at some specific coord-

inate in that system. Positional information to a VORTAC in

a real plane is in the form of radial information along with

DME information. Therefore, minor changes will have to be

made in the dynamic portion of the software to calculate the

position of VORTAC 's relative to the plane.

S3

7.4 High L»v»l Flowchart

CjjtarT)

Get the

DATA

PACKAGE

Put up

plane's

AIRSPEED

Put up

GROUND

SPD S TRK

i
Put up

plane's

ALTITUDE

v
Put up

DME

Calculate

DELTAJ S

DELTAJ
of VOR

^
Calculate

angle

of VOR

using

DELTAJ,

DELTAJ,

S plane's

HEADING

-X-
Calculate

VOR plot

radius

JL
Calculate

VOR plot

coord.

JZ
Put up

VOR

&

84

7.4 High L»vel Flowchart <oont.

>

relative

to plane

Put up

heading S

bearing

of NDB

Send data

to vector

memory

85

CHAPTER EIGHT

ILS PAGE

The ILS PAGE provides a graphical representation of an

ILS approach to an airfield. This is something which will

be of great interest to the small plane pilot who has an IFR

rating or who is in the process of obtaining one. A large

amount of information is assimilated from the flight instru-

ments on this page. This assimilated information is pre-

sented in a format which will show the plane's position

relative to the approach path. This will make it easier for

a pilot to stay on the approach path. The pilot will no

longer have to rely on a mental picture of where the plane

is located relative to the approach path. At present, a

very simple graphical representation of an ILS approach is

being generated. However, future development of this page

will result in a very complex graphical representation which

will make it even easier for the pilot to fly an ILS

approach. The algorithm for the future ILS PAGE will be

86

much more complicated and involve a larger amount of calc-

ulations than the present algorithm. The ILS PAGE will then

be the most complicated of the three pages of the EHSI.

Most of the information on this page is in an analog

type format. An example of the present version of the ILS

PAGE can be seen in Fig. 8.1. The information presented on

this page is the following:

1) HEADING:

A) The heading is displayed in analog type compass
format showing a 10 degree view either side of
the heading.

B) A digital value for the heading is displayed at
the compass heading.

2) ALTITUDE:

A> PRESENT: The present altitude of the plane is
displayed in a digital format.

B) MDA/DH: The MDA/DH is displayed in a digital
format.

3) DME: The DME information to a localizer or VORTAC
is displayed in a digital format.

4) APPROACH STATUS: This is in an analog format.

A) Plane's position relative to glideslope is
displayed.

B) Plane's position relative to localizer is
displayed.

C) Scaled runway is shown.

D) Heading of runway relative to the plane's
heading is shown.

87

ALT: 3040 180

DH: 1000 v/
nrrn niTpiri

170 s
'n

190

DME: 08

Figure 8.1 PRESENT INSTRUMENT LANDING SYSTEM (ILS) PAGE

88

5) WARNING MESSAGE AREA: Warning messages to the pilot
are displayed in this area. These messages are
generated by various routines.

6) COMMAND LINE AREA: This area is for displaying num-
eric values entered by the pilot via the control
keyboard.

The programming for the ILS PAGE is also broken up into

two basic parts just like the DATA and NAV pages. The first

part generates the static information for the page. The

second part generates the dynamic information for the page.

Once again, the static information is loaded into the vector

memory only one time. When the ILS PAGE is the present page

being displayed, the dynamic information is generated and

loaded into the vector memory every time a clock interrupt

is received from the DACI.

8. 1 Static Portion

The static portion of the ILS PAGE consists of three

separate areas. The first area is comprised of text

strings. These strings provide headings for the flight

status information being displayed on the page. This page

also has an include file of the same type used in the DATA

and NAV pages which contains the plot coordinates for the

strings. This file is entitled "ilspg_xy. h". All the

strings are generated using the (1.5) character size of the

HP 1345A internal character set. String_g«n is used to plot

the strings. The text strings presently being displayed on

S9

the ILS PAGE are the following:

1) ALTITUDE: present altitude

2) MDA/DH: minimum decision altitude or decision
height

3) DME: distance information to VORTAC or localizer

The second area of this portion of the page consists of

the arc of the analog compass. This is a twenty degree arc

which is plotted at the middle of the top part of the page.

It is generated with the •rc_circ routine and its plot

coordinates are contained in the coordinate include file.

The third area of the static portion of the ILS PAGE

consists of the heading box and pointer. This area will

contain the digital heading of the airplane and will provide

a pointer to the plane's heading on the twenty degree por-

tion of the analog compass. Its plot coordinates are also

in the coordinate include file. It is plotted above the

compass arc in the middle of the display.

S. 2 Dynamic Portion

The dynamic portion of the ILS PAGE generates the

graphical representation of the plane's position relative to

the approach path. It also plots the flight status infor-

mation which was mentioned above. To generate the re-

presentation of the approach, data is assimilated from the

localizer, glidepath, heading, and DME. As was stated pre-

90

viously, the present version is a very simple. This is the

second most complicated page of the EHSI. All plot coord-

inates for the vector graphics generated by this portion are

in the "ilspg_xy. h" include file. All strings are plotted

using Btringj^n and are zero padded using the z»ro_pad

routine. The dynamic portion of the ILS PAGE consists of

the following:

1) ALTITUDE: The present altitude is calculated using
the altitud* routine. It is then zero
padded and plotted. Alarm conditions are
monitored for both assigned altitude and
MDA/DH.

2) MDA/DH: The MDA/DH is retrieved from the clock
package, zero padded, and plotted. This is
inputed by the pilot.

3) HEADING

A) The heading is calculated using the g»t_heading
routine. It is then zero padded and plotted
inside the heading box.

B) The il»_cmp» routine is then used to generate
the dynamic portion of the compass. Remember,
this compass only shows a twenty degree portion
around the heading. The heading of the plane
is centered at the base of the heading pointer
below the heading box.

4) DME: The DME value is calculated using the dm»
routine. It is then zero padded and plotted.

5) APPROACH STATUS

A) If plane is within 20 nautical miles, the
following procedure is executed.

1. The runway scale is calculated.

2. The plot boundaries are calculated based
on the runway scale.

91

3. The crosshairs are plotted.

4. If the plane is within 15 nautical miles,
the following procedure is executed.

a. The approach sensitivity is calculat-
ed based on the DME value.

b. The glideslope is calculated using
the approach sensitivity and boundary
conditions.

c. The course deviation from the local-
izer is calculated using the approach
sensitivity and boundary conditions.

d. The crab angle is calculated using
the plane heading and the runway
heading.

e. The runway is then plotted based on
the glideslope, course deviation, and
runway scale.

8. 3 Futur* Developments

There are many improvements which could be made to the

present version of the ILS PAGE. Eventually, these improve-

ments will probably result in a graphical representation of

an ILS approach which is only vaguely similar to the present

version. An example of what the future ILS PAGE might look

like appears in Fig. 8.2 and Fig. 8.3C2].

The later versions of software which generate the ILS

PAGE will assimilate a larger amount of data from the flight

instruments than the present version of the page. In the

final version of the EHSI, the ILS PAGE will become the most

complicated of the three pages available on the system.

92

ALT: 3040

DH: 1000

180 DME: 08

mTrrHiijimrrrm

170 s 190

1

\

Figure 8.2 ILS PAGE USING TWO CROSSHAIRS

93

[ALT: 2100

DH: 1000

HDG: 230 DIST: 5.5 NM
OM

Figure 8.3 ILS PAGE WITH APPROACH TUNNEL [2]

94

The first thing which might be added to the page is the

addition of tendency information. This information will be

very important to the pilot. It will give immediate feed-

back about whether or not a maneuver being made is going to

get the plane back on the approach path. Digital filters

will have to be written to accomplish this task. Gruen-

bacher discusses the development of such filters in his

thesis [35. An example of tendency representation can be

seen in the box with the arrow at the top of the display in

Fig. 8.3C2J. The arrow represents the plane's tendency to

move off the glideslope and localizer. If the arrow is

pointing up and to the right, the plane's tendency is to

move up and away from the approach path. Another example of

representing the tendency information can be seen in Fig.

8. 2. The dotted crosshairs and solid crosshairs are used to

indicate the plane's tendency. When both the crosshairs are

on top of one another the plane is on the approach path.

Second, an ILS approach tunnel might be added. This

tunnel would display the boundaries of the approach path.

The outer and middle marker information would be represented

by the beginning and end of the tunnel. The plane's posi-

tion on the approach path would be indicated by the graph-

ical representation of the tunnel on the VGD. An example of

the ILS tunnel can be seen in Fig. 8. 3C2J.

Third, outer and middle marker information needs to be

95

incorporated into the ILS page. This was mentioned in the

previous paragraph. This information is important because

it lets the pilot know how far he is into an approach.

There are many possible ways the marker information might be

presented.

Fourth, the addition of a data base like the one dis-

cussed in the future developments of the NAV PAGE would be

of great importance. This data base could contain infor-

mation for each airport such as the runway heading, outer

marker distance, middle marker distance, MDA/DH, and field

altitude. This information would be invaluable in generat-

ing any version of the ILS PAGE.

Fifth, reverse course information would be a convenient

addition. This would allow the pilot to fly outbound on an

ILS approach path without having to change his reactions to

the graphical representation of the approach. This would be

especially nice on the present version of the ILS PAGE. If

an ILS tunnel was being used, this information would not

would not be necessary.

96

8.4 HiQh-lev»l Flovchmrt

Get the

DATA

PACKAGE

Put up

plane's

ALTITUDE

I

Put up

plane's

HEADING

Put up

Compass

Put up

DECISION

HEIGHT

-V

M
Put up

initial

crosshair

Add in

sensi-

tivity

Calculate

runway

coords

V

©

97

8.4 High-level Flowchart (cont.

)

Put up

pegout

boundary

Jl
Put up

approach

crosshair

v
Calculate

crab

angle

v
Put up

runway

©

Y_
Send data

to vector

memory

98

CHAPTER NINE

CONCLUSION

9. 1 Results

The present version of the EHSI is still basically in

its infancy. However, a large amount of progress has been

made since the initial proposal by Dyer in 1982C1]. An EHSI

Development System now exists, so that the different pages

of the EHSI can be developed. This development system is

discussed briefly in Chapter 1 and in detail in [23. Usable

communication routines have been developed to allow the host

computer to communicate with the DACI of the development

system. These routines are discussed in Chapter 1 and in

detail in C31. The initial software to generate the gra-

phics for the three pages of the EHSI has been developed.

This software is written in the C programming language and

is discussed Chapters 2, 6, 7, and S. The code for the

necessary routines can be seen in Appendix E. The DATA PAGE

and the NAVIGATIONAL PAGE are the pages which have seen the

99

most progress. The ILS PAGE is going to require much more

development.

The present working version of the EHSI gives

confidence that the goal of providing an affordable EHSI for

the general-aviation public can be reached. However, the

final version of the EHSI will take several more person-

years of development.

9. 2 Future Development

Along with the future development of the NAVIGATIONAL

PAGE and the ILS PAGE discussed in Chapters 7 and 8, there

are several other areas which must be developed. First,

EEPROM's must be programmed with the DACI control program.

This will include the code in C2] and the additions

discussed in Appendix A.

Second, the possibility of developing a dedicated

graphics processor should be considered. This would take

the burden of generating the VGD commands to produce the

various graphics of the EHSI pages off the host. The host

could then be used for evaluating DACI interrupts, making

decisions, and processing data retrieved by the DACI.

Third, a faster processor and coprocessor are needed on

the host side of the development system. This could be

accomplished by upgrading the present host to a faster PC

with a faster numerical coprocessor. Or, a dedicated host

100

processor could be designed to handle the host-side respons-

ibilities of the development. This is probably the most

logical way to proceed after the pages have been fully

developed because the final EHSI system will have to contain

such a dedicated processor.

Fourth, a data base should be incorporated into the

EHSI system. This would be valuable in the development of

all the pages of the EHSI. The benefits of data base are

discussed in the future development sections of Chapters 7

and S. Such a data base will have to be implemented in the

final version of the EHSI to make it a highly marketable

product.

9. 3 Another Application

As was stated, the goal of our EHSI is to provide an

affordable EHSI for the general-aviation public. This EHSI

will ease the burden of the single pilot flying under IFR

conditions. The EHSI will be designed for use in the small

airplane. However, this will not be its only application.

The EHSI would be invaluable in a teaching environment. It

could be used to help a pilot obtaining an IFR rating to

better understand what the instruments are telling him.

This will be especially true on the NAVIGATIONAL and ILS

PAGES of the EHSI. Oftentimes it is difficult to draw a

mental picture of the plane's position relative to a navi-

101

gational fix or to get immediate feedback as to whether or

not a maneuver will get the plane back onto a selected

course or ILS approach path. The EHSI will provide this

information for the pilot and speed up the learning process.

102

REFERENCES

tU Dyer, S. A. , "A Proposed Electronic Horizontal
Situation Indicator for use in General-Aviation
Aircraft, " Proceedings of 1982 Position. Location
and Navigation Symposium, pp. 198-205.

t2] Lagerberg, J. D. , An Electronic Horizontal Situa-
tion Indicator and Development System. Kansas
State University, 1987.

C33 Gruenbacher, D. J. , Low-level Software for an EHSI
Development System. Kansas State University, 1987.

C4] Hewlett-Packard Inc., HP-1345A Digital Display
Module Designers Manual. 1981.

C5] UnderWare Inc., BRIEF Quick Reference Card Version
1.33. 1984.

103

APPENDIX A

CHANGES TO THE DACI

First, dedicated interrupt lines were added to the

DACI. This involved both hardware and software modifi-

cations to the DACI. This addition greatly improved the

reliability of the system. Prior to this addition, noise on

the communications bus was causing the DACI to interpret

noise spikes as interrupt requests from the host. Since

there was no Interface command on the bus at the time of the

interrupt, the interrupt was determined to be an illegal

interface command and an error message resulted from the

DACI.

The hardware changes to implement the dedicated inter-

rupt lines can be seen in Fig. A. 1[2] and Fig. A. 2C23.

These dedicated lines are called IRQOUT and IRQIN. The

IRQOUT line is used when the DACI wishes to interrupt the

host. The IRQIN line is used when the DACI is being inter-

rupted by the host. In Fig. A. 1, the original OUTSHAKE line

104

of the DACI was moved from pin 19 of the EHSI parallel port

connector to pin 25 of the parallel port connector. The

dedicated IRQOUT line was then connected to pin 19 of the

parallel port. The IRQOUT line originates from pin 14 of

the control PIA in Fig. A. 2. The SPAREIRO line was origin-

ally connected to the control PIA at pin 14 and was not

being used. The dedicated IRQIN line was implemented by

cutting the original INSHAKE line going to pin 5 of U13 in

Fig. A. 2 and adding a 4.7k ohm resistor as a pullup. This

IRQIN line ie connected at pin 6 of the EHSI parallel port

connector as seen in Fig. A. 1. Pins 4, 23, 21, 26 of the

parallel port were also grounded.

The software additions for the dedicated interrupt

scheme were very simple. Only one additional routine was

needed and it is entitled OUTSHAKE_IRQ. This routine is

presently located at S28DC in the RAM of the DACI. The code

for OUTSHAKE_IRQ is seen in Fig. A. 3. Additional changes to

other DACI routines were also necessary to incorporate the

OUTSHAKE_IRQ routine. Copies of the original DACI routines

from C2] are at the end of this appendix. The changes made

are noted in these routines. Note, PB4 of the control PIA

in Fig. 2. A is configured as an output for the OUTIRO line.

Second, a switch was added to the DACI to allow the

input of an external clock to the clock interrupt line of

the DACI. This was added to analyze the speed of the EHSI

105

system and to demonstrate the operation of the interrupt

stack on the host-side. It also made it possible to re-

trieve data at specific frequencies for the design of digi-

tal filters for various portions of the EHSI. The hardware

modifications that were made are seen in Fig. A. 4. The

CLKIRQ line was cut and a two-pole switch was added. One

pole of the switch is connects the CLKIRQ line to the real-

time clock interrupt of the system. The other pole connects

the CLKIRQ line to an external clock input.

106

YYYY'I-Y A

Figure A. 1 DACI TO HOST PARALLEL PORT C2]
ADDITION OF IRQIN AND IRQOUT

107

<!

* 5

lY IT lY

Figure A. 2 CONTROL PIA AND ALARM HORN [2]
ADDITION OF IRQIN AND IRQOUT

108

SUBROUTINE OUTSHAKE_IRQ

PURPOSE: To send out a pulse on the IRQOUT line
of the parallel port.

INITIAL CONDITIONS: This subroutine requires no parameter
to be passed to it.

ACTI0N: The pulse on the IRQOUT line has a pulse
width of approximately 25 microseconds.
The actual pulse width can be varied
according to the value in DO. L. The
expression for the pulse width is

3 « (DO + 1) -v 4 microseconds.

REGISTER USAGE: No registers are affected.

»»*»»**»»»»»»« «tlllltM«OIIO««Ot« ohi ••>

ORG. S20SDC
MOVE. L DO, S9CS
MOVE. L #6, DO
BCLR #4, $30005
DBRA DO, SELF5
BSET #4, $30005
MOVE. L S98C, DO
RTS

SAVE REGISTER DO
SET PULSE LOW WIDTH
BRING OUTIRQ LOW

DBRA DO. SELF5 HOLD OUTIRQ LOW
TAKE OUTIRQ HIGH
RESTORE REGISTER DO
RETURN TO CALLING ROUTINE

Figure A. 3 OUTSHAKE_IRQ ROUTINE

109

:1s

m.
II.

1U Ai| E

^
*~-3

ggsaaa

oaissa

A A A A A

lit!

333;aS555333

«<«««««
'

5 33 33

SSSSSSXSm I

IU

1

Figure A. 4 EEPROM'S AND REAL TIME CLOCK [2]
ADDITION OF EXTERNAL CLOCK SWITCH

110

APPENDIX A (CONTINUED)

CHANGES TO DACI ROUTINES FROM [2] NOTED

111

START
LF1

SP1

ORG.
MOVE. L
MOVE. B
MOVE. B
TRAP
DBRA
MOVE. B

MOVE. B

TRAP
MOVE. L
MOVE. B
MOVE. B

TRAP
DBRA
MOVE. L
MOVE. L
MOVE. B

TRAP

$20900
#8, D3
#$A, DO
#248, D7
#14
D3, LF1
#$D, DO
#248, D7
#14
#30, D3
#$20, DO
#248, D7
#14
D3, SP1
#$39D4, A5
#$39E8, A6
#227, D7
#14

SEND EIGHT LINE FEEDS
TO THE TERMINAL OUTPUT
CHARACTER HANDLER

SEND CARRIAGE RETURN
OUTPUT CHARACTER HANDLER

SEND THIRTY SPACES
TO THE TERMINAL
OUTPUT CHARACTER HANDLER

DISPLAY "EHSI SYSTEM
RUNNING" ON THE TERMINAL
OUTPUT STRING HANDLER

PIA#1PA

PIA#1PB

MOVE. L
MOVE. B

JSR
MOVE. B

MOVE. L

MOVE. B
JSR
MOVE. B

REVISION 3/3/87

#$30001, AO
#$FF, DO
INTPIA
#$0F, $30001

INIT PIA #1 PORT A OUTPUT

INIT CONTROL BITS

#530005, AO INIT PIA #1 PORT B
#•13, DO (I) I/P 0/P
INTPIA
#»13,»30003© INIT CONROL BITS

© ENABLES PB4 AS OUTPUT
® INITIALIZE IRQOUT LINE TO HIGH STATE

112

LOGO

SYSON

SYSUP

CLR. L
MOVE. L
MOVE. W
JSR
MOVE. W

BTST
BEQ
JSR
MOVE. W
JSR

MOVE. B

JSR
MOVE. B

JSR
MOVE.L
MOVE. B

JSR

ENIRQS OR.

B

ENCLKIRO MOVE.

B

MAIN
MOVE. B
JSR
NOP
NOP
MOVE. B
BTST
BNE

AND. B
MOVE. B
BSET

MOVE. L
CLR. L
MOVE. W
JSR
MOVE. L
MOVE. B
JSR
MOVE. B

JSR
MOVE. B
JSR

REVISION 3/3/87

SYSDN

SHUTN

Dl
#S3A90, AO
< AO>*,Dl
SNDLST
#SCOOO, DO

#3, $30005
SYSON
SNDCMD
#0, DO
SNDCMD

#$65, $30021
OUTSHAKE_IRQ
#$2, D2
INSHAKE
#$30021
#0, DO
INTPIA

AO

#$F0, $30001

#$0C, 53007F

SET UP LOGO FOR DISPLAY
ON THE HP DISPLAY

SEND THE LOGO TO VGD
SET UP ADDRESS POINTER

WAIT FOR SYSTEM ON
LOW OFF, HIGH ON
SET UP ADDRESS PTR $0
SEND A NOP WHERE JUMP
WAS SO LOGO CAN BE
DISPLAYED
SEND SYS UP VEC TO HOST

© SEND STROBE TO HOST
SET ERROR FLAG TO ACKERR
WAIT FOR ACKNOWLEDGE
MAKE PARALLEL PORT INPUT

ENABLE ALL INTERRUPTS

ENABLE INT INTERVAL

#24, S1FA0 PUT # OF ENT IN DATA PAK
ANALOG PUT ANALOG VAL IN PACK

©NOP'S ADDED FOF CALL TO
MODIFIED CLOCK_IRO

$30019, $1FB1 PUT BINARY I/P'S IN PACK
#3, $30005 CHECK TO SEE IF SYS IS ON
MAIN IF ON, GO THRU MAIN AGAIN

#$0F, $30001
#$2700, SR
#0, $30005

#$3AA4, AO
Dl
<A0>+, Dl
SNDLST
#$30021, AO
#$FF, DO
INTPIA
#$66, (AO) SEND SHUTDN VEC TO HOST
OUTSHAKE_IRQ © STROBE THE HOST
*2

>
D2 SET ERROR FLAG TO ACKERR

INSHAKE WAIT FOR ACKNOWLEDGE

CALLS TO OUTSHAKE_IRQ ADDED
NOP'S ADDED FOR HIGH SPEED OPERATION

DISABLES INTERRUPTS
DISABLES ALL INT LEVELS
TURN ALARM OFF IF ON

DISPLAY SYS SHUTDOWN MSG

MAKE PARALLEL PORT 0/P

113

ORG. 520760
KEYIRQ MOVEM. L D0/D2/A0, S9BC

JSR GETKEY
CMPI. B #37, D2
BEO NOKEY
CMPI. B #36, D2
BNE C0NT5
JSR SETCLK
BRA NOKEY

CQNT5 MOVE. L #330021, AO
MOVE. B #$FF, DO
JSR INTPIA
MOVE.

B

D2, S30021
MOVE. B #2, D2
JSR OUTSHAKE IRQ ©
JSR INSHAKE
BSET #7, S30001
MOVE. L #530021, AO
MOVE. B #0, DO
JSR INTPIA

UOKEY BCLR #6, $30001
BSET #6,330001
MOVEM. L S9BC, D0/D2/A0
RTS

SAVE REGISTERS
GET VAL OF KEY PRESSED
WAS THERE KEY FOUND
IF NO KEY THEN RETURN
CHECK FOR SET CLOCK KEY
IF NOT SET CLOCK KEY
SET THE CLOCK/CALENDAR
AFTER CLOCK IS SET, RET
CHANGE PARALLEL PORT, 0/P

SEND VALID KEY, PAR PORT
SET ERROR FLAG TO ACKERR
STROBE THE HOST
WAIT FOR ACKNOWLEDGE
ENABLE PAR PORT TO INT'S
CHANGE PAR PORT TO I/P

CLEAR KEYBOARD INTERRUPT

RESTORE REGISTERS
RETURN

REVISION 3/3/87 © CALL TO OUTSHAKE_IRQ ADDED

114

©

FAST

MOVE. B 53006F, DO
AND. W #3F, DO
MULU. W #10, DO
MOVE. B S3006D, D2
AND. B #SF, D2
ADD. B D2, DO
MOVE. B DO, -<A0)
MOVE. B $30073, DO
AND. W #SF, DO
MULU. W #10, DO
MOVE. B $30071, D2
AND. B #5F, D2
ADD. B D2, DO
MOVE. B DO, -<A0>
MOVE. B $30075, DO
AND. B #3F, DO
MOVE. B DO, -(AO)
MOVE. B $30079, DO
AND. W #3F, DO
MULU. W #10, DO
MOVE. B $30077, D2
AND. B #$F, D2
ADD. B D2, DO
MOVE. B DO, -(AO)
MOVE. B $30063, DO
MOVE. L #$30021, AO
MOVE. B #$FF, DO
JSR INTPIA
MOVE. B #$60, $30021
JSR OUTSHAKE IRQ ©
MOVE. B #2, D2
JSR INSHAKE
BSET #7, $30001
MOVE. L #$30021, AO
MOVE. B #0, DO
JSR INTPIA
MOVE. B $3007F, DO
MOVE. B S3007F, DO
MOVE. B $3007F, DO
BCLR #5, $30001
BSET #5, 330001
MOVEM. L S9BC, DO/D2/A0
RTS

REVISION 3/3/87

READ TENS OF HOURS
CLEAR DATA4 - DATA7

READ THE ONES OF HOURS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF HRS
PUT IN THE DATA PACKAGE
READ TENS OF DAYS
CLEAR DATA4 - DATA7

READ THE ONES OF DAYS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF DAYS
PUT IN THE DATA PACKAGE
READ DAY OF WEEK
CLEAR DATA4 - DATA7
PUT IN THE DATA PACKAGE
READ TENS OF MONTHS
CLEAR DATA4 - DATA7

READ THE ONES OF MTHS
CLEAR DATA4 - DATA7
ADD TENS AND ONES OF MTHS
PUT IN THE DATA PACKAGE
READ DAY OF WEEK
MAKE PAR PORT 0/P

SEND THE TIME VEC TO HOST
SEND DATA STROBE
SET ERROR FLAG TO ACKERR
WAIT FOR ACKNOWLEDGE
ENABLE PAR PORT FOR INT'S
CHANGE PAR PORT TO I/P

3 READS CLEARS CLOCK IRQ

CLEAR CLOCK INT LATCH

RESTORE REGISTERS
RETURN

© A JUMP TO FAST CAN BE ADDED HERE FOR
HIGH SPEED OPERATION WITH THE CLOCK
INTERRUPT DISABLED. CLOCK VALUES
WILL BE RETRIEVED AND HOST WILL NOT
BE INTERRUPTED.

© CALL TO OUTSHAKE_IRQ ADDED

115

APPENDIX B

EHSI USER'S MANUAL

SYSTEM ON PROCEDURE

To bring the EHSI system to its operational state,

complete the procedures of the following sections in order.

DACI ON

The procedure to start up the DACI contains the follow-

ing steps:

STEP 1) Make sure all the ribbon cables are connected

to their appropriate ports on the DACI.

STEP 2) Connect the green *5 volt cable to the +5 volt

output of the power supply for the Motorola

MC68000 Educational Board.

Warning: Never turn off the power supply for the
Educational Board or the DACI control program
will be lost. This warning will be in affect
until the EEPROM's are burned for the DACI
control program.

STEP 3) Turn on the power supply for the HP 1345A and

115

the DACI interface board.

STEP 4) Turn on the Zenith Z-29 video terminal. This

is the terminal connected to the Educational

Board. The power switch is located on the back

of the terminal at the bottom of the right-hand

side.

STEP 5) Press the "CAPS LOCK" key of the Z-29. This

will place the Z-29 in the capital letter mode

which is necessary for entering Educational

Board commands.

STEP S) Press the black hardware reset button on the

Educational Board.

STEP 7) Press the red software abort button on the

Educational Board.

STEP 8) Make sure the EHSI system switch is in the

"off" position. This switch is located above

the control keyboard and should be in the down

position.

STEP 9) Run the DACI control program by entering the

following command:

GO 2900

Then, hit the RETURN button on the Z-29. The

following message should appear:

EHSI SYSTEM RUNNING

INITIALIZATIONS COMPLETE

117

CONTINUE TO FLIGHT SIMULATOR

If any error messages occur, refer to C2] for

actions to be taken.

This completes the necessary steps to turn on the DACI.

Proceed to the next section.

HOST ON

Execute the following steps to turn on the host side of

the EHSI system:

STEP 1) Turn on the Zenith Z-158 host computer. The

power switch is located on the power strip on

top of the lab bench to the right of Z-158.

This switch will also turn on the Z-158 mon-

itor. The following prompt should be

displayed:

Ci\>

STEP 2) Enter the following command at the prompt:

cd\»h«i

Then, hit the RETURN button on the Z-158. The

following prompt should be displayed:

C:\ehBi>

STEP 3) Enter the following command at this prompt:

ehsi

Press the RETURN button.

118

This completes the necessary steps to turn on host side

of the EHSI. Proceed to the next section.

FLIGHT SIMULATOR OH

Execute the following steps to turn on the ATC-610

Flight Simulator:

STEP 1) Get the flight simulator key and insert it

into the ignition switch. Turn the key until

the switch is in the "on" position.

STEP 2) Push the master switch to the "on" position.

this switch is located to the right of the ig-

nition switch.

STEP 3) For instructions on the use of the flight

simulator proceed to the ATC-610 Flight

Simulator User's Manual.

This completes the necessary steps to turn on the

simulator. Proceed to the EHSI ON section.

EHSI ON

Turn the EHSI system switch located above the control

keyboard to the "on" position. The switch will be in the up

position. The following message will appear on the monitor

of the Z-158:

SYSTEM SWITCH ON.

The DATA PAGE will now be displayed on the HP 1345A. The

119

EHSI is now fully operational. Proceed to the flight simu-

lator.

This completes the SYSTEM ON PROCEDURE.

SYSTEM OFF PROCEDURE

To shut down the EHSI system, complete the procedures

of the following sections in order.

DACI OFF

Turn the EHSI system switch located above the control

keyboard to the "off- position. The switch will be in the

up position. The following message will appear on the

monitor of the Z-158 along with the DOS prompt:

SYSTEM SWITCH OFF.

C:\eh«i>

A shutdown message will also appear on the HP 1345A. Pro-

ceed to the next section.

FLIGHT SIMULATOR OFF

Execute the following steps to turn off the ATC-610

Flight Simulator:

STEP 1) Push the master switch to the "off- position.

This switch is located to the right of the ig-

nition switch.

STEP 2) Turn the key in the ignition switch to the

120

"off" position. Remove the key and return it

to the flight simulator log book.

This completes the necessary steps to turn off the

flight simulator. Proceed to the next section.

HOST OFF

Turn off the Zenith Z-158 host computer. The power

switch is located on the power strip on top of the lab bench

to the right of the Z-158. The switch also turns off the Z-

158 's monitor. The host should now be in its off state.

Proceed to the next section.

DACI OFF

Execute the following steps to turn off the DACI:

STEP 1) Press the red software abort button on the

Educational Board.

STEP 2) Turn off the Zenith Z-29 video terminal.

This is the terminal connected to the

Educational Board. The power switch is

located on the back of the terminal at the

bottom of the right-hand side.

STEP 3) Turn off the power supply for the HP 1345A and

the DACI interface board.

STEP 4) Disconnect the green *5 volt cable from the

output of the power supply for the Motorola

121

MC68000 Educational Board.

Warning: Never turn off the power supply for the
Educational Board or the DACI control program
will be lost. This warning will be in affect
until the EEPROM's are burned for the DACI
control program.

STEP 5) Disconnect the ribbon cables going to the host,

flight simulator, and control keyboard.

This completes the SYSTEM OFF PROCEDURE

122

APPENDIX C

EHSI HOST PROGRAM MAINTENANCE

All the host programs for the EHSI are located in the

•hal directory. To get to the •hai directory, type in the

following command at the prompt:

C:\>cd\»h«i

Then, press the RETURN key. The following prompt will

appear on the monitor:

C:\»hai>

The EHSI host programs can now be edited, compiled, and

linked.

EDITING

All editing for the host programs of the EHSI is done

using BRIEF, Version 1.33. The is a full-screen editor

designed specifically for the editing of programs. To

begin editing a file, type the following command at the

prompt

:

123

C:\ehsi>b XXXXXX.

c

The program name to be edited should be inserted at XXXXXX.

Press the RETURN key to execute the editor. The name of the

file being edited will appear at the top of the screen. To

exit the editor, press the Alt key followed by the X key and

answer the questions which appear in the command line at the

bottom of the screen. The various editing commands avail-

able can be seen in Fig. C. 1C5] and C.2:53. This is the

BRIEF Quick R»f»r»nc» C»rd. For a more detailed description

of the commands refer to the BRIEF manual.

COMPILING AND LINKING WITHOUT USING MAKE UTILITY

COMPILING

The Microsoft C compiler, Version 4. 0, is the compiler

used for the EHSI. Compiling of the host programs for the

EHSI can be done in two different ways. The first method is

to compile the programs directly. The second method is to

compile the programs from inside the BRIEF editor using a

macro.

To compile the programs directly type in the following

command at the prompt

:

C:\ehsi>m«a XXXXXX;

The program name to be compiled should be inserted at XXXXXX.

Press the RETURN key to execute the compilation. The

following message will be displayed:

124

Buffer Commands Search/Translate Commands

Alt-b Buffer list Alt-c
Alt -e Edit file (create buffer) F5,Alt-s
Alt-f Display buffer file name F€,Alt-t
Alt-n Edit next buffer Shlft-F5
Ctrl-minus Edit previous buffer Shlft-F6
Alt-r Read file into buffer Alt-F5
Alt-o Change output file name Alt-F6
Alt-w Write buffer

Alt -minus Delete current buffer

Regular Ex

rsor Commands

Down arrow Down one line

Left arrow Left one column

flic/lit srrow Right one column

Up srrow Up one line

PgDn
PgUp

Page down

Page up

Top of window

\<num>

End End of window l~
Ctrl-PgDn End of line

Ctrl -PgUp Beginning of line

Ctrl-Home Top of buffer

Ctrl-End End of buffer

Alt-g Goto line \n
Ctrl-Left srrow Previous word \t
Ctrl-Right srrow Next word <, %

Ctrl-b Line to bottom of window >. 9

Ctrl-c Center line in window \o
Ctrl-d Scroll down one line

Ctrl-t Line to top of window

Ctrl-u Scroll up one line

Shift-PgUp Left edge of window

Shift -PgDn Right edge of window

Toggle case sensitivity

Search forward

Translate

Search backward

Search again

Incremental search forward

Toggle regular expressions

Zero or more of any characters

Any one character

Zero or more of previous character

or group

Begin group

End group

Substitute text matched by <nuo>th

group

Begin inclusive character group

Begin exclusive character group

End character group

Define range in character group

Either the preceding or the following

character or group

Newline character

Tab character

Beginning of line

End of line (excluding newline)

Place cursor at specified character

Basic Text Commands

Backspace
Del
Enter
Tab

Backspace and delete/overwrite

Delete character

Insert new line/Move to next line

Insert tab/Next tab stop

Figure C. 1 BRIEF Quick Reference Card C5]

125

JUt-d
Alt-k
Ctrl-Enter

Delete line

Delete/Kill [o end of line

Open new line after current line

Macro Commands

Block Text Commands

Ait -a, Alt-m Man:

jat-p Print

Alt-* Write to file

Dal Delete

Ins Paste from scrap

Gray/Kaypad minus Cut to scrap

Gray/Kaypad plum Copy to scrap

Window Commands

F7
FB
F9

Record/Slop recording

Pliy back recording

Load micro file

F10 Execute macro

Shltt-F9 Delete micro Tile

Fl

F2

F3

w
Shift-Down arrow
Shi ft -Lm ft arrow
Shi.ft -Right arrow
Shift-Up arrow

Change window

Resize window

Create window

Destroy window

Change to window below

Change to left window

Change to right window

Change to window above

Miscellaneous Commands

ISO Escape/Cancel

Alt-h Help

Alt-1 Toggle insert mode
Alt-a Undo

Gray/Keypad * Undo
Mt-r Display vertical ID

Alt-x Exit

Alt-x Suspend session

Ctrl-Braa* Hall search or macro

Ctrl-* Toggle backup files

Shlft-FlO Insert key code in buffer

Alt-FlO Compile program in buffer

Ctrl-n Locate next error

Ctrl-p Display pre<?ous error text

Ctrl-r Repeat following command

Figure C. 2 BRIEF Quick Reference Card [5]

126

Microsoft <R) C Compiler Version 4.00
CopyriBht (C) Miorosoft Corp 1984, 1985, 1986. All right*
reserved.

If there are any errors or warnings, the number of each

respectively will also be displayed. The XXXXXX. ERR can

then be viewed to note what error or warning occurred as

well as the location of the error or warning. The error

file can be viewed inside the BRIEF editor or by executing

the type DOS command.

To compile EHSI program inside the BRIEF editor, open

up the file to be compiled as was discussed in the EDITING

section above. Execute the compiler macro by pressing the

Alt key followed by the F10 key. The program will then

begin compiling. The command line at the bottom will show

what compiler is being used and the options that are select-

ed. When compilation is complete, the location of the first

error or warning will be indicated by the cursor. The

command line will display the nature of the error or warn-

ing. To move to the next error or warning, press the Ctrl

key followed by the N key. When all the error and warning

messages have been displayed, the following message will

appear in the command line:

No more errors

To execute the error handler again, repeat the key sequence

for looking at the next error or warning.

Both of the key sequences for compiling and viewing the

127

errors and warnings are under the Miscellaneous Commands of

the quick reference card in Fig. C. 1C51.

«»«WARNING«««

When the Make Utility is not being used to compile and

edit, special care will have to be taken when making modifi-

cations to the olookjpkg and »l«rm_pkg data structures of

the host EHSI program. These structures are in a file

entitled data_ptr. h which is included in the following rou-

tines:

1

)

insert_new_freq

2) set_timer

3) dat_pg_dynamic

4) nav_pg_dynamlc

5) ils_pg_dynamic

6) altitude

7) dme

8) airspeed

9) timer

10) climb_rate

11) set_estimated_wind

12) set_altitude

13) ehsi

These routines will have to be recompiled and added to the

library whenever a change is made to these data structures.

128

If this procedure is not followed, the results of the host

EHSI program will be unpredictable.

LIBRARY

All the routines used by the host EHSI program are

contained in a library which is used when linking the EHSI

routine. Linking the EHSI routine will be discussed in the

next section. The libraries for the host EHSI program are

called ahai. lib and kay_ahai. lib. When a new compiled

routine is ready to be added to the library, type in the

following command at the prompt:

C:\ehsi>lib ehei-XXXXXX

Insert the name of the routine to be added at XXXXXX. Press

the RETURN key to begin installation of the routine into the

library. The following will then appear:

Microsoft <R> Library Manager Varaion 3.04

reaari'd*
<C> Mioro"°" Corp 19fl3» 1984, 198S, 1986 All righta

Liat Filai

Enter croaa after the Liat filai prompt and hit the RETURN

key. This will provide a cross listing of all the files

presently contained in the library.

To add a new version of a routine which already exists

in the library, type in the following at the prompt:

C:\ehsi>lib ehai-XXXXXX*YYYYYY

Insert the name of the old version of the routine contained

129

in the library at XXXXXX. Insert the name of the new ver-

sion of the routine at YYYYYY. Usually, XXXXXX and YYYYYY

will be the same. Then, press the RETURN key and proceed as

before.

LINKING

To produce the executable file for the host EHSI pro-

gram, the EHSI routine must be linked to the other routines

of the EHSI. This is done by typing in the following co-

mmand at the prompt

:

C:\ehsi>link ehsi XXXXXX/«t»cki4000

Then, press the RETURN key. Insert any new routine being

tested at XXXXXX. Note, more than one routine can be linked

with the EHSI routine. Put a space between any additional

routines being tested. The stack option is used to increase

the stack size allotted for the program. The following

message will now appear:

Microsoft (R) Overlay Linker Version 3. SI
Copyright (C) Microsoft Corp 1983,1984,1983,1986 All rights
reserved.

Run File [EHSI. EXE]

i

List File CNUL. MAP]|
Libraries [.LIB]

I

Press the RETURN key after the Run File and List File

prompts. For an explanation of these, refer to the linker

portion of the manuals. Enter ehsi and key_ehel after the

Libraries prompt and press the RETURN key. The new routines

130

being tested and the routines in »h«i. lib and k»y_eh»i. lib

will now be linked to the EHSI routine. This will produce

an executable file. Any error messages will be displayed as

the linking process progresses.

COMPILING AND LINKING WITH THE HAKE UTITILITY

Compiling and linking of the EHSI host programs can be

done in one step with the make utility. The make file for

the EHSI can be seen at the end of the appendix and is

entitled thai in the ahai directory. This file contains the

directory names of the EHSI host programs and the dependenc-

ies for each of the programs. The file also contains the

the link list for the EHSI program and other necessary

parameters.

The make utility recompiles any routine whose source

file is newer than the latest object file for the routine.

Routines which are also dependent on certain include files

will also be recompiled when the include file is newer than

the latest object file for the routine. After compiling all

the routines specified in the make file, the EHSI program is

linked with the link list specified in the make file along

with the listed parameters.

To execute the make utility available, enter the

following command at the prompt:

C:\ehsi>m«k» ahai

131

Press the RETURN key to execute the compilation and linking

of EHSI programs into an exectuable EHSI file. If no errors

occur while the make utility progresses through the

compilation and linking process, a new executable file will

be produced in the directory entitled eh»i.»xe. If there

are any errors or warnings, the number of each respectively

will be displayed. The XXXXXX. ERR can then be viewed to

note what error or warning occurred as well as the location

of the error or warning. The error file can be viewed

insided the BRIEF editor or by executing the typ» DOS

command.

Not*, when any new routines are added to the EHSI

program, changes must be made to the thai make file. Refer

to the programming user's manual for formats when making

these changes to the make file.

Warning, when compiling programs which are added to the

•h»i. lib and k»y_»h»i. lib without using the make utility,

make sure to erase the latest object file generated for the

source file being compiled. If this is not done, the latest

version will not be added to the appropriate library when

the make utility is run and the latest version will not be

linked with the EHSI program.

132

APPENDIX C (CONT.

)

EHSI HAKE PILE

File I ehsi

133

*

ehsi* SOURCE FILE!
it

*

» FUNCTION: None.

* DESCRIPTION:
*

*

»

*

* DOCUMENTATION
* FILES:

Make file for the EHSI host program.
Used when running make utility.

None.

* ARGUMENTS:
*

*

« RETURN:

None.

None.

» FUNCTIONS
* CALLED:
*

*

* AUTHOR:

* DATE CREATED:
*

*

• REVISIONS:
*

None.

DAVE GRUENBACHER AND CHUCK ROBERTSON

10Apr87 Version 1.

None.

»*»»***«*«»*.**.»»«»»»»».»»»»,»«.»»»»« »,»«»,»»»,»»»«».»»,„„/

insert. obj : insert.

c

msc insert;
lib ehsi-+insert, ehsi. crs;

time_gen. obj : time_gen. c
msc time_gen;
lib ehsi- + time_gen, ehsi. crs;

line, obj : line, c
msc line;
lib ehsi-*line, ehsi. crs;

134

clim_box. obj : clim_box. c
msc clim_box;
lib ehsi-+clim_box, ehsi. ors;

clim_hsh. obj : clim_hsh. c
msc clim_hsh;
lib ehsi-i-clim_hsh, ehsi. ere;

climrate. obj : climrate.

c

msc climrate;
lib ehsi-*climrate, ehsi. crs;

climfilt. obj : climfilt. c climfilt.

h

msc climfilt;
lib ehsi-+climfllt, ehsi. crs;

arc_circ. obj : arc_circ. c
msc arc_circ;
lib ehsi-+arc_circ, ehsi. crs;

str^gen. obj : str_gen. c
msc str_gen;
lib ehsl-*str_gen, ehsi. crs;

plane. obj : plane.

c

msc plane;
lib ehsi-*plane, ehsi. crs;

waypoint.obj : waypoiht.c
msc waypoint;
lib ehsi-+waypoint, ehsi. crs;

vortac. obj : vortac.

c

msc vortac;
lib ehsi-+vortac, ehsi. crs;

box. obj ; box.

c

msc box;
lib ehsi-+box, ehsi. crs;

compass. obj : compass.

c

msc compass;
lib ehsi -•• compass, ehsi. crs;

clim_aro. obj : clim_aro. c
msc clim_aro;
lib ehsi-+clim_aro, ehsi. crs;

arrow. obj : arrow.

c

135

msc arrow;
lib ehsi-+arrow, ehsi. crs;

ndb. obj : ndb. c
msc ndb;
lib ehsi-+ndb, ehsl. era;

heading, obj : heading.

c

mac heading;
lib ehsi-+heading, ehsi. era;

runway, obj : runway.

c

mac runway;
lib ehsi-+runway, ehai. crs;

zero_pad. obj : zero_pad. c
mac zero_pad;
lib ehsi-+zero_pad, ehsi. crs;

timer. obj ; timer. c data_atr. h
msc timer;
lib ehsi-+timer, ehai. crs;

altitude, obj : altitude, c data_str. h
"so altitude;
lib ehsl-+altitude, ehai. crs;

dme. obj : dme. c data_str. h
mac dme;
lib ehsi-+dme, ehsi. crs;

ndb_angl.obj : ndb_angl.c
msc ndb_angl;
lib ehsi-+ndb_angl, ehai. era;

airapeed. obj : airapeed. c data_str. h
msc airspeed;
lib ehei-1-airapeed, ehai. era;

climrate. obj : climrate. c data_atr. h
mac climrate;
lib ehsi-+climrate, ehsi. crs;

ils_oirpe. obj : ils_cmpa. c
mac ila_cmpa;
lib ehsl- + ils_cmps, ehai. crs;

hdg_brg. obj : hdg_brg. c
msc hdg_brg;
lib ehai-*hdg_brg, ehai. era;

136

key_alrm. obj : key_alrm. c
msc key_alrm;
lib key_ehsi-*key_alrm, key_ehsi. era;

key_dat. obj : key_dat. c
msc key_dat;
lib key_ehsl-+key_dat, key_ehsl. era;

key_nav. obj : key_nav. c
msc key_nav;
lib key_ehsi-+key_nav, key_ehai. era;

key_ils. obj : key_ila. c
msc key_ils;
lib key_ehsi-+key_ils, key_ehsi. crs;

key_entr.obj : key_entr. c
msc key_entr;
lib key_ehsi-»key_entr, key_ehsi. crs;

key_cler. obj : key_cler. c
msc key_cler;
lib key_ehsi-+key_cler, key_ehsi. crs;

key_freq. obj : key_freq. c data_str. h
msc key_freq;
lib key_ehsl-*key_freq, key_ehsi. crs;

key_atmr. obj ; key_atmr. c data_atr. h
mac key_atmr;
lib key_ehsl--key_stmr, key_ehsi. crs;

key_math. obj : key_math. c
mac key_math;
lib key_ehai-*key_math, key_ehsi. crs;

key_buff . obj : key_buff .

c

msc key_buff;
lib key_ehsi-*key_buff, key_ehsi. crs;

key_alt.obj : key_alt. c data_str. h
msc key_alt;
lib key_ehai-i-key_alt, key_ehal. crs;

key_wind.obj : key_wind. c data_str. h
msc key_wind;
lib key_ehsi-fkey_wind, key_ehsi. crs;

key_cmd3. obj : key_cmd3. c

137

msc key_cmd3;
lib key_ehsi-*key_cmd3, key_ehsi. era;

dat_pg_s. obj : dat_pg_s. c datpg_xy. h
msc dat_pg_s;

dat_pg_d. obj : dat_pg_d. c data_str. h datpg_xy. h
msc dat_pg_d;

nav_pg_s. obj : nav_pg_s. c navpg_xy. h
msc nav_pg_s;

nav_pg_d. obj : nav_pg_d. c data_str. h navpg_xy. h
msc nav_pg_d;

ils_jpg_s. obj : ils_pg_s. c ilspg_xy. h
msc ils_pg_s;

ils_pg_d. obj : ils_pg_d. c data_str. h ilspg_xy. h
msc ils_pg_d;

int_ehsi.obj : int_ehsi.asm
masm int_ehsi;

com_ehsi. obj : com_ehsi. asm
masm com_ehsi

;

ehsi.obj : ehsi.c data_str. h
msc ehsi;

ehsi.exe
: ehsi.obj dat_pg_s. obj nav_pg_s. obj ils_pg_s. obj\
dat_pg_d. obj nav_pg_d. obj nav_pg_d. obj\
com_ehsi.obj int_ehsi. obj ehsi. lib key_ehsi. liblink ehsi dat_pg_s nav_jpg_s ils.jpg_s dat_pg_d nav_pg_d

ils_pg_d com_ehsi int_ehsi/stack: 4000, ehsi. ehsi
ehsi. lib key_ehsi. lib;

138

APPENDIX D

EHSI HOST PROGRAM SOFTWARE LISTINGS

139

/**

SOURCE FILE: ehsi.c

FUNCTION:

DESCRIPTION:

« DOCUMENTATION
* FILES:

main!

)

Controls the actions taken on receipt
of an interrupt vector from the
interrupt vector stack. Iniatializa-
tion and restoration are also perform-
ed from this routine. The data pack-
age, SCREEN array interrupt vector
stack, and calculator stack are
declared within this routine.

None.

* ARGUMENTS:

»

* RETURN:

None.

None.

« FUNCTIONS
» CALLED

:

* AUTHOR:
*

*

* DATE CREATED:
*

*

* REVISIONS:

None.

Dave Gruenbacher S Chuck Robertson

19Jan87

None.

Version 1.

#define ehsi_main
include <stdio. h>
include "data_str. h"

void main(

)

{

static unsigned short int_depth = 0, int_stack[90]= (0)

;

int page_number = 1, i, int_number;

140

char key_buffer C 50]

;

double x_bu£fer, y_buffer;

void INITIALIZE ()

;

void REST0REO;
void dat_pg_dynamic(

)

;

void nav_pg_dynamic(
)

;

void ils_pg_dynamic<
)

;

void dat_pg_static()

;

void nav_pg_static<
)

;

void ils_pg_static ()

;

void update_key_buf£er ()

;

void roll_stack< >;
void set_altltude(

)

;

void eet_estimated_wind<
)

;

void exit()

;

void clear_stack<
)

;

void insert_nev_freq<
)

;

void set_timer(
)

;

void reset_alarm(
)

;

void do_math();
void call_cmd3<);
void display_ils_page<

)

;

void display_data_page<
)

;

void dieplay_nav_page(
)

;

CL0CK_PKG clock_pkg;
ALARM_PKG alarm_pkg;

clock_pkg. timer_min = 0;
clock_pkg. timer_sec = 0;
clock_pkg. time_out_rain = 0;
clock_pkg. time_out_sec = 0;
clock_pkg. adf_freq = 242.0;
clock_pkg. conl_freq 119.1;
clock_pkg. com2_freq = 121.9;
clock_pkg. vorl_freq = 112.6;
clock_pkg. vor2_freq = 110.1;
clock.jpkg. assigned_altitude = 0;
clock_pkg. mda_dh = 0;
clock_pkg. eetimated_wind = 0;
clock_pkg. timer_operation_flag = NULL_TIMER;
clock_pkg. timer_status_flag = TIMER_0FF;
clock_pkg. math_operation_flag = 0;

alarm_pkg. airspeed_alarm_flag = ALARM_0FF;
alarm_pkg. assigned_altltude_alarm_flag = ALARM_0FF;
alarm_pkg. mda_dh_alarm_flag = ALARM_0FF;
alarm_pkg. time_out_alarm_flag = ALARM_0FF;
alarm_pkg. alarm_status_flag = ALARM_0FF;

141

alarm_pkg. assigned_altitude_enable_flag = DISABLED;
alarm_pkg. mda_dh_enable_flag = DISABLED;

INITIALIZE <£int_depth, int_stack>

;

key_bufferC0] = *\0';

for (;;)
{

if (int_depth != 0)
{

t* If (int_stackCO] != 0x60) */
printf ("XX y.X\n", int_depth, int_stack[0]) ;

int_number = int_stack[0]

;

lnt_depth -= 1;
for (i=0;i!=lnt_depth;i-n-)

int_stackCl] = int_stackCi+l]

;

switch <int_number) {

case 0x60:
int_number = 0;

switch (page_number) {

case 1

:

dat_pg_dynamic (&clock_pkg, £alarm_pkg >

;

break;

case 2:

nav_pg_dynamic(&clock_pkg, &alarm_pkg)

;

break;

case 3:

ils_pg_dynamic(&clock_pkg, &alarm_pkg>

;

break;

default:
break;

)

break;

case 0x65:
int_number = 0;
printf ("\n\nSYSTEM SWITCH ON. \n\n">;
/* set up vector table »/
dat_pg_static(); /» Install data page static

mem. */
for <i=0;i!=100;i*f

)

;

nav_pg_static(); /* Install nav. page static
mem. */

142

for (i=0;i!=100;i*+)

;

ilsjpg_static<); /» Install lis page static
mem. */

break;

case 0x66:
RESTORE ()

;

printf ("\n\nSYSTEM SWITCH OFF. \n\n"
>

;

exit<)

;

break;

default:
if (<int_number ==

break;
0) II <int_number > 0x23))

switch <int_number> {

case 0x04:
case 0x05:
case OxOA

:

case OxOB:
case OxOC:
case 0x10:
case Oxll:
case 0x12:
case 0x16:
case 0x17:
case 0x18:

/» received from keypad */
/* . received from keypad */
/* 1 received from keypad */
/* 2 received from keypad */
/* 3 received from keypad */
/* 4 received from keypad »/
/* 5 received from keypad */
/» 6 received from keypad */
/» 7 received from keypad */
/» 8 received from keypad */
/* 9 received from keypad */

/» clear the buffer if a math operation was
just completed. */

if (clock_pkg. math_operation_flag == 1)
{

key_bufferC0] = '\0';
clock_pkg. math_operation_flag 0;

update_key_buffer < int_number, key_buffer)

;

int_number = 0;
break;

case 0x02: /» ENTER hit on keypad »/
roll_stack(key_buffer, &x_buffer, £y_buffer) ;int_number 0;
break;

case 0x08: /» CLEAR hit on keypad »/
int_number 0;
clear_stack(key_buffer, Sx_buffer, S,y_buffer) ;break;

143

case 0x01: /* new C0M1 freq. entered »/
case 0x07: /» new COM2 freq. entered */
case OxOD: /» new V0R1 freq. entered */
case 0x13: /. new V0R2 freq. entered */
case 0x19: /« new ADF freq. entered */

insert_new_freq < int_number, key_buffer,
&clock_pkg)

;

int_number = 0;
break;

case OxlB: /* new mda/dh entered */
case OxlC: /» new asgn. alt. entered */

set_altitude (int_number , key_buffer

,

£clock_pkg, Salarm_pkg)

;

lnt_number 0;
break;

case OxlD: /» new est. wind entered »/
int_nutnber = 0;

break '• set_estimated_wind (key_buffer , &clock_pkg
)

;

case 0x22: /» SET TIMER hit »/
lnt_number « 0;
set_timer(key_buffer, Sclockjpkg)

;

clock_pkg. timer_operation_flag = SET_TIMER;
break;

case OxlF: /» START TIMER hit */
int_number =0;
cloclcjikg. timer_operation_flag

= START_TIMER;
break;

case 0x23: /« RESET TIMER hit */
int_number 0;
clock_pkg. timer_operation_flag

RESET_TIMER;
break;

case OxlE: /« SET/RST ALRM hit */
int_number =0;
reset_alarm(

)

;

break;

case 0x03: /. div key hit on keypad */
case 0x09: /» mu i t key hit on keypad »/
case OxOF: /» add key hit on keypad »/
case 0x15: /» sub key hit on keypad */

do_math(int_number, key_buffer, &x_buffer,
&y_buffer)

;

144

int_number = 0;
clock_pkg. math_operation_flag = 1;
break;

case 0x21

:

call_cmd3(key_bu:ffer, £x_buffer, &y_buffer) ;

int_number 0;
break;

case 0x1 A:
int_nurober = 0;
page_number 1

;

dieplay_data_page<) ;

break;

case 0x14:
int_number = 0;
page_number = 2;
display_nav_page<

)

;

break;

case OxOE:
lnt_number = 0;
page_number = 3;
display_lle_page<

)

;

break;

default:
lnt_number = 0;
break-;

)

break;

)

)/» end main */

145

» SOURCE FILE: dat_pg.

c

* FUNCTION: dat_pg_static(

)

» DESCRIPTION: This routine generates the static
data for the DATA PAGE. It is only
called once when the SYSTEM SWITCH is
turned on.

» DOCUMENTATION
* FILES: None.

* ARGUMENTS: None.

* RETURN: None.

» FUNCTIONS
* CALLED:

*

«

*

»

»

*

«

UPDATE_SCREEN<

)

strcpy (

)

string_gen(

)

insert (

)

box()

line(

)

arc_circ(

)

climb_box<

)

dim hsh()

AUTHOR: CHUCK ROBERTSON

* DATE CREATED: 15Jan87 Version 1.

« REVISIONS: None.

#include<stdlib. h>
#include<string. h>
#include<stdio. h>
•include "datpg_xy. h"

146

include "data_str. h"

/* conversion array */
/* address pointer */
/* line characteristic */
/* HP internal jump */
/» plot coordinates »/
/* conversion array

index »/
/* insertion length */
/» loop counter */
/* total words sent to

vector memory

/» string arrays */

/* character size */

»/

void dat_pg_static<

)

<

unsigned short conv[300];
unsigned short address_ptr;
unsigned short line_char;
unsigned short internal_jmp;
int XO, YO;
int p;

int length;
int i;
int total_sent;

int error;
char final_string[30]

;

char cat_stringC10]

;

double size;

int insert ()

;

void string_gen(
)

;

void box()

;

void line()

;

void arc_circ<
)

;

void climb_box();
void clim_hsh(

)

;

addressjptr = OxCOOO; /» point at first byte in
vector memory */

internal_jmp = 0x8001; /* store jump to 0001 in
vector memory */

line_char = 0x7813; /* set line characteristics */
size = 1.5; /« set character size */

p=0;
SCREEN Cp-n-] address_ptr;
SCREENCp+O = internal_jmp;
SCREEN [p-n-] = llne_char;

strcpy(final_string, "HEADING:-)

;

stringjfen(final_string, heading_X0, heading_Y0,
size, fclength, conv)

;

p insert (p, length, conv)

;

etrcpy(final_atring, "AIRSPEED: CAS");
strlng_gen < final_string, airspeed_CAS_X0,

airspeed_CAS_Y0, size, Slength, conv)

;

p = insert (p, length, conv)

;

147

box (coll, 1890, size, length-2, Slength, conv)

;

p = insert <p, length, conv)

;

strcpy (final_strlng, " TAS"
)

;

string_gen (final_string, airspeed_TAS_XO,
airspeed_TAS_YO, size, Slength, conv) ;

p = insert (p, length, conv)

;

strcpy (final_string, "GNDSPEED: ")

;

string_gen (final_string, gndspeed_XO,
gndspeed_YO, size, Slength, conv)

;

p = insert <p, length, conv)

;

strcpy (final_string, "ASSIGNED; ")

;

string_jgen (final_string, assigned_XO,
assigned_YO, size, Slength, conv)

;

p = insert (p, length, conv)

;

strcpy (final_string, "ALTITUDE: "
)

;

stringjen(final_string, altitude_XO,
altitude_YO, size, Slength, conv)

;

p insert (p, length, conv)

;

box(altitude_XO, altitude_YO, size, length-2,
Slength, conv)

;

p insert (p, length, conv)

;

strcpy (final_string, "MDA/DH: ")

;

string_gen < £inal_string, mda_dh_X0,
mda_dh_Y0, size, Slength, conv) ;

p insert (p, length, conv)

;

strcpy (final_string, "TIMER: •)

•

string_aen < final_string, timer_X0,
tlmer_Y0, size, Slength, conv) ;

p = insert (p, length, conv)

;

box(tiraer_XO, timer_Y0, size, length-2, Slength, conv)
p insert <p, length, conv)

;

strcpy (final_string, "TIME-OUT: ");
string_aen (final_string, time_out_X0,

time_out_Y0, size, Slength, conv)

;

p = insert (p, length, conv)

;

strcpy (final_string, "C0M1 : "
)

;

string_gen<final_string, coml_X0, coml_Y0,
size, Slength, conv)

;

p insert (p, length, conv);

148

box(coml_XO, coml_YO, size, length-2, Slength, conv)

;

p insert <p, length, conv);

strcpy(final_string, "COM2: ")

;

string_gen(final_string, com2_X0, com2_Y0,
size, Slength, conv)

;

p = insert (p, length, conv)

;

strcpy <final_string, "NAV1:")

;

string_gen (final_string, navl_XO,
navl_YO, size, Slength, conv)

;

p = insert (p, length, conv)

;

strcpy(final_string, "NAV2: ")

;

string_jgen(final_string, nav2_X0,
nav2_Y0, size, Slength, conv)

;

p = insert (p, length, conv);

strcpy(final_string, "RNAVrWPl . / .-).
string_gen (final_string, rnav_wpl_XO,

rnav_wpl_YO, size, Slength, conv) ;

p = insert (p, length, conv)

;

strcpy(final_string, " WP2 . / .»);
string_gen (final_atring, rnav_wp2_X0,

rnav_wp2_Y0, size, Slength, conv) ;

p = insert (p, length, conv)

;

strcpy (final_string, " ADF : " >

;

string_gen(flnal_string, adf_XO, adf_YO, size,
Slength, conv)

;

p = insert (p, length, conv)

;

strcpy (final_string, "TEMP:");
string_gen(final_string, temp_XO,

temp_YO, size, Slength, conv) ;

p insert <p, length, conv)

;

strcpy (final_string, " BAROMETER : " >

;

string_gen (final_string, barometer_XO,
barometer_YO, size, Slength, conv) ;

p insert (p, length, conv)

;

/* PUT UP REAL TIME CLOCK INFORMATION */

strcpy (final_string, "TIME: ")

;

stringjen<£inal_string, time_XO,
time_YO, size, Slength, conv) ;

p = insert (p, length, conv);

149

strcpy (final_string, "EDT")

;

string_gen (final_string, time_edt_XO,
time_edt_YO, size, Slength, conv) ;

p = insert <p, length, conv)

;

strcpy <final_string, "ZULU")

;

string_gen (final_string, time_zulu_XO,
time_zulu_YO, size, Slength, conv)

;

p = insert (p, length, conv)

;

strcpy (final_string, "SINCE L/0");
string_gen (final_string, time_since_lo_XO,

time_since_lo_YO, size, Slength, conv) ;

p = insert <p, length, conv);

/» PUT UP STATIC INFORMATION FOR CLIMB
INDICATOR »/

/* climb indicator lettering */

strcpy (final_string, "C">;
string_gen(final_string, C_XO, C_YO, size, Slength,

conv)

;

p insert (p, length, conv)

;

strcpy (final_string, "L" >

;

string_gen(final_string, L_XO, L_YO, size, Slength,
conv)

;

p = insert (p, length, conv)

;

strcpy (final_string, "I»>;
string^gen(final_string, I_XO, I_YO, size, Slength,

conv)

;

p = insert (p, length, conv)

;

strcpy (final_string, "M");
string_gen(final_string, M_XO, M_YO, size, Slength,

conv)

;

p = insert <p, length, conv)

;

strcpy (final_string, "B");
string_gen(final_string, B_XO, B_YO, size, Slength,

conv)

;

p = insert (p, length, conv)

;

/» climb indicator arc »/

arc_circ(climb_arc_XO, climb_arc_YO, -20. 0, 20. 0,
1000, Slength, conv) ;

p = insert (p, length, conv)

;

150

/« climb indicator center lines »/

line(climb_centerlinel_XO, climb_centerlinel_YO,
climb_centerlinel_Xl,climb_centerlinel_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

line(climb_centerline2_X0, climb_centerline2_Y0,
climb_centerline2_Xl,climb_centerline2_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

line(climb_centerline3_X0, climb_centerline3_Y0,
climb_centerline3_Xl,climb_centerline3_Yl,
Slength, conv)

;

p = insert (p, length, conv);

line(climb_centerline4_X0, climb_centerline4_Y0,
climb_centerline4_Xl,climb_centerline4_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

line (climb_centerline5_X0, climb_centerline5_Y0,
cliinb_centerline5_Xl,climb_centerline5_Yl,
Slength, conv)

;

p = insert <p, length, conv)

;

/* box climb indicator lettering */

climb_box(c-limb_arc_XO, climb_arc_YO, Slength, conv);
p = insert (p, length, conv)

;

/* climb indicator arc hash marks */

clim_hsh(climb_arc_XO, climb_arc_YO, -20. 0, 20. 0,
1000, Slength, conv)

;

p = insert (p, length, conv)

;

/« COMMAND LINE «/

line (command_line_X0, command_line_Y0,
command_line_Xl, command_line_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

SCREEN [p*t] 0x8700
SCREENCp-n-] = 0xC700
SCREEN [pi-*] = 0x0000
SCREEN [p-n-] = OxSFFF

151

SCREEN [p++] = OxCEOO;
SCREEN [p+t] = OxOOOO;
SCREEN Cp*+] = 0x8FFF;
SCREEN [p++] = OxFFFF;

error = 1;
while (error 1= 0)

error = SEND_SCREEN <)

;

/* end of dat_pg_static */

152

/*
*

»

*

*

SOURCE FILE: dat_pg_d.

c

FUNCTION: dat_pg_dynamic(

)

DESCRIPTION:
*

»

*

*

*

*

*

»

«

»

»

*

*

*

*

»

*

*

* DOCUMENTATION
FILES:

This function generates all the
dynamic data for the DATA PAGE. It
retrieves raw data from the data
package and makes necessary conver-
sions. Presently it is displaying
the following:

1) real time clock
2) plane heading
3) present altitude
4) rate of climb and climb arrow
5) airspeed
6) adf frequency
7) com frequencies
8) nav frequencies
9) timer and time_out functions

10) alarm conditions

None.

ARGUMENTS: clock_pkg : pointer to clock package
alarm_pkg : pointer to alarm package

*

*

RETURN: None.

* FUNCTIONS
* CALLED: GET_DATA_PACKAGE(

)

* TOGGLE_ALARM SWITCH

(

* UPDATE_SCREEN(

)

» insert <

)

» string_jgen()

* time_string_gen(

)

* get_heading(

)

clim arrow (

)

* box()

* zero_pad(

)

* timer(

)

153

airspeed (

)

altitude;

)

climb rate(

)

AUTHOR: CHUCK ROBERTSON

* DATE CREATED: 01FebS7 Version 1.0

» REVISIONS: None.

#include "data_str. h"
include "datpg_xy. h"

#include<stdlib. h>
#lnclude<string. h>
#include<math. h>
#include<stdio. h>

void dat_pg_dynamic(clock_pkg, alarm_pkg>

CLOCK_PKG «clock_pkg;
ALARM_PKG »alarm_pkg;

unsigned short convC300];
int p;

int length;
int i;
int vert_speed;
int plane_heading_deg;
int times;
int error;

int page_number i;

char final_string[20]

;

char cat_stringC5]

;

double size;
double climb_degrees;

int insert ()

;

/» conversion array */
/* conversion array

index */
/» insertion length «/
/* loop counter */
/* rate of climb »/
/» plane heading */
/* request counter */
/» masm return error

code «/
/» page being

displayed */

/* conversion string
arrays */

/» character size »/
/* angle of climb

arrow »/

154

void string_gen<
)

;

void time_string_gen(
)

;

void get_headlng()

;

void clim_arrow(
)

;

j

void box(
)

;

void zero_pad();
void timer ()

;

void airspeed ()

;

void altitude(
>

;

void climb_rate()

;

times = 0;
error = 1;
while (error 1= 0)

<

times**;
error = GET_DATA_PACKAGE ();
)

/* if (times 1= 1)
printfCCK DP times = %d\n", times) ; */

p=0;
SCREENCp**] = 0xC700;
SCREENCp**] = 0x7818; /, set llne Bize „/

size = 1.5;

/* CONVERT TIME TO CHAR STRING »/

time_string_gen(flnal_string)

;

string_gen(£inal_string, time_edt_Xl, time_edt_Yl, size,
Slength, conv)

;

p = insert
(p, length, conv)

;

/* PUT UP HEADING »/

get_heading (&plane_heading_deg
)

;

zero_pad((double) (plane_heading_deg) , 100.0,5,
"int",final_string)

;

string_gen(final_string, heading_Xl, heading_Yl, size,
Slength, conv)

;

p = insert (p, length, conv)

;

/» PUT UP ASSIGNED ALTITUDE »/

zero_pad((double) (clock_pkg->assigned_altitude), 1000. 0,
6, "int",final_string)

;

155

if <alarm_pkg->assigned_altitude_enable_flag DISABLED)
stringjen(flnal_string, assigned_Xl, assigned_Yl,

size, Slength, conv)

;

else
{

strcat(final_string, " ALM");
string_gen(final_string, assigned_Xl, assigned_Yl,

size, Slength, conv) ;

)

p = insert (p, length, conv)

;

/* PUT UP ALTITUDE »/

altitude (clock_pkg, alarm_pkg, altitude_Xl, altitude_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

/* PUT UP MDA/DH »/

zerojpad((double) (clock_pkg->mda_dh>, 1000. 0, 6, "int",
final_string>

;

if (alarmjjkg->mda_dh_enable_flag == DISABLED)
string_gen(final_string, mda_dh_Xl, mda_dh_Yl, size,

Slength, conv)

;

else
(

strcat(final_string, " ALM");
string_gen(final_string, mda_dh_Xl, mda_dh_Yl, size,

Slength, conv)

;

p = insert (p, length, conv)

;

/* PUT UP CLIMB VALUES «/

climb_rate(clock_pkg, alarm_pkg, vert_speed_XO,
vert_speed_YO, Svert_speed,
Slength, conv)

;

p = insert (p, length, conv);

box(vert_speed_XO, vert_speed_YO, size, length-2,
Slength, conv)

;

p = insert (p, length, conv)

;

/* calculate climb arrow */
climb_degrees (double) (vert_speed / 100.0);
clim_arrow(climb_arc_XO, climb_arc_YO, climb degrees

1000, Slength, conv);

15S

p = insert (p, length, conv)

;

/» PUT UP AIRSPEED »/

airspeed (page_number, clock_pkg, alarm_pkg,
airspeed_CAS_Xl,airspeed_CAS_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

/* PUT UP ADF */

zero_pad< clock_jpkg->adf_freq, 100. 0, 6, "int",
final_string) ;

string_gen(final_string, adf_Xl, adf_Yl, size, fclength,
conv)

;

p = insert (p, length, conv)

;

/» PUT UP C0M1 */

zero_pad(clock_pkg->coml_freq, 100. 0, 6, "double",
final_string)

;

string_gen(final_string, coml_Xl, coml_Yl, size, aiength,
conv)

;

p = insert (p, length, conv);

/* PUT UP COM2 */

zero_pad(clock_pkg->com2_freq, 100. 0, 6, "double",
final_string)

;

string_gen(final_string, com2_Xl, com2_Yl, size, Slength,
conv)

}

p = insert (p, length, conv) ;

/* PUT UP V0R1 «/

zero_pad(clock_pkg->vorl_freq, 100. 0, 6, "double",
final_string)

;

string_gen(final_string, navl_Xl, navl_Yl, size, Slength,
conv)

;

p = insert (p, length, conv)

;

/« PUT UP V0R2 */

zero_pad < clockjkg->vor2_£req, 100. 0, 6, "double",
final_string)

;

string_gen(final_string, nav2_Xl, nav2_Yl, size, &length,
conv)

;

p = insert (p, length, conv)

;

/* PUT UP TIMER */

157

timer <page_number, clock_pkg, alarm_jpkg, filength, conv)

;

p = insert (p, length, conv)

;

SCREEN Cp++] = OxSEOO;
SCREENCp + i-] = OxFFFF;

times = 0;
error = 1;
while (error 1= 0)

(

times**;
error = SEND_SCREEN();
}

/» if(times 1= 1)
printfCCK US times = Zd\n", times)

;

*/

) /* end of dat_pg_dynamic */

158

*

* SOURCE FILE: nav_pg_s. c
»

FUNCTION: nav_pg_statlc<

)

DESCRIPTION: This routine generates the static dats
for the NAV PAGE. It is only called
once when the SYSTEM SWITCH is turned
on.

DOCUMENTATION
FILES: None.

ARGUMENTS: None.

» RETURN: None.

*

*

*

»

*

*

*

*

»

FUNCTIONS
CALLED: UPDATE_SCREEN(

)

strcpy (

)

string_gen(

)

insert (

)

- box(

)

line<>
arc_circ(

)

*

*

«

AUTHOR: CHUCK ROBERTSON

*

»

DATE CREATED: 15Jan87 Ve:Version 1.0

* REVISIONS: None

""* »»*#«»... ...,,»....»„..,. .»,.,.»,,/
#include<stdlib. h>
#include<string. h>
#include<stdio. h>
include "navpg_xy. h"

include "data_str. h"

159

void nav_pg_static(

)

<

unsigned short conv[300];
unsigned short address_ptr;
unsigned short line_char;
unsigned short internal_jmp;
int XO, YO;
int p;

int length;
int i;
int total_sent;

int error;
char final_string[30];
char cat_stringC10]

;

double size;

int insert();
void string gen() ;

void box()

;

void linet) ;

void arc_circ();
void plane <)

;

/* conversion array »/
/* address pointer */
/* line characteristic »/
/* HP internal jump */
/* plot coordinates */
/» conversion array

index »/
/* insertion length */
/* loop counter */
/» total words sent to

vector memory »/
/* masm return error «/
/* string arrays */

/* character size */

address_ptr = 0xC300;

line_char = 0x7818;
size =1.5;

/» point at 0x0300 word in
vector memory */

/* set line characteristics */
/* set character size */

p=0;
SCREENCp+t] = address_ptr;
SCREEN[p++: = line_char;

/« PUT UP AIRSPEED »/

strcpy (final_string, "AIRSPD: ")

;

string_gen(final_string, airspeed_X0, airspeed_Y0,
size, fclength, conv) ;

p insert (p, length, conv)

;

/* PUT UP 6R0UNDSPEED «/

strcpy (final_string, "GNDSPD:");
string_gen(final_string, gndspeed_X0, gndspeed_Y0,

size, Slength, conv)

;

p insert (p, length, conv)

;

/» PUT UP TRACK */

160

strcpy(final_string, "TRK: ")

;

string_gen(final_string, track_XO, track_YO,
size, Slength, conv)

;

p = insert (p, length, conv)

;

/» PUT UP ALTITUDE »/

Btrcpy(final_string, "ALT:")

;

string_gen(final_string, altitude_XO, altitude_YO,
size, Slength, conv)

;

p insert (p, length, conv)

;

/« PUT UP DME */

strcpy(final_string, "DME: ");
string_gen (final_string, dme_XO, dme_Y0, size,

Slength, conv)

;

p = insert (p, length, conv)

;

box(dme_XO, dme_YO, size, length-2, Slength, conv) ;

p = insert (p, length, conv)

;

/» PUT UP PLANE »/

plane (plane_XO, plane_YO, Slength, conv)

;

p = insert (p, length, conv);

/* PUT UP STATIC ARC OF COMPASS */

arc_circ < compass_arc_XO, compass_arc_YO,
compass_arc_init_angle,
compass_arc_end_angle,
compass_arc_radius, Slength, conv

)

;

p = insert (p, length, conv)

;

/» PUT UP HEADING BOX AND POINTER »/

box(heading_box_XO, heading_box_YO, size,
heading_box_no_char, Slength, conv)

;

p = insert(p, length, conv)

;

line (heading_ptr_linel_XO, heading_ptr_linel_YO,
heading_ptr_linel_Xl,heading_ptr_linel_Yl,
Slength, conv)

;

p = insert (p, length, conv);

line (headingjptr_line2_X0,heading_ptr_line2_Y0,
heading_jptr_line2_Xl, heading_ptr_line2_Yl'
Slength, conv)

;

p = insert (p, length, conv)

;

161

SCREEN[p++] = 0x8900;
SCREEN tp++] = 0xC900;
SCREEN [p++] = 0x0000;
SCREEN [p++] = OxBFFF;
SCREEN Cp++] = OxFFFF;

error = 1

;

while (error 1= 0)
error = SEND_SCREEN ()

;

/* end of nav_pg_etatic »/

162

/*

SOURCE FILE: nav_pg_d. c

* FUNCTION: nav_pg_dynamlc(

)

»

»

»

*

»

»

*

»

«

»

»

*

»

*

»

DESCRIPTION: This function generates all the
dynamic data for the NAV PAGE. It
retrieves raw data from the data
package and makes necessary
conversions. Presently it is
displaying the following:

1

)

airspeed
2) ground speed
3) ground track
4) dme
5) plane heading
6) compass
7) vortac's
S) ndb's
9) alarm conditions

10) altitude

DOCUMENTATION
FILES:

ARGUMENTS:

None.

clock_pkg
alarm_pkg

pointer to clock package
pointer to alarm package

*

*

RETURN: None.

»

» FUNCTIONS
* CALLED: GET_DATA_PACKAGE (

)

* TOGGLE_ALARM SWITCH ()
» UPDATE_SCREEN (

)

» insert (

)

« string_gen<

)

« get_heading(

)

* clim_arrow<

)

* box()

* zero_pad()

* vortacl

)

» ndb()

163

linet)

compass (

)

heading_and_bearing<

)

airspeed (

)

altitude(

)

dme<)

get_ndb_plot_angle(

)

timer (

)

AUTHOR: CHUCK ROBERTSON

DATE CREATED: 09Feb87 Version 1.

REVISIONS: None.

««*«*«*****«**»***»«»**«***»**«•*«**»*»«•»***»**•«****•/
include "data_str.
include "navpg_xy.
#include<stdlib. h>
#include<string. h>
#include<math. h>
#include<stdio. h>

void nav_pg_dynamic (clock_pkg, alarm_pkg

)

CLOCK_PKG *clock_pkg;
ALARH_PKG »alarm_pkg;

unsigned short conv[300];
int p;

int length;
int i;
int plane_heading_deg;
int times;
int radix;
int int_dme;
int X, Y;
int error;
int page_number 2;

char final_stringC20]

;

/* conversion array */
/» conversion array

index */
/» insertion length »/
/» loop counter */
/* plane heading */
/* request counter »/
/» conversion radix */
/* integer dme value */
/» plot coordinates */
/* masm error return »/
/» page being

displayed »/

/* conversion string
arrays »/

164

char cat_string[20]

;

int insert (>

;

void string_gen()

;

void box()

;

void get_heading()

;

void vortac<)

;

void ndb()

;

void line() ;

void compass ()

;

void heading_and_bearing() ;

void zero_pad<)

;

void airspeed () ;

void altitude;);
void dme()

;

void get_ndb_plot_angle()

;

void timer ()

;

/»
/*

/*
/»

/*

/»

double size;

double real_delta_x;
double real_delta_y;

double plane_delta_x;
double plane_delta_y

;

double theta_rad;

double theta_deg;

double screen_scale;
double PI;
double DEGREE_TO_RAD;

double vor_theta_rad;

double vor_theta_deg;

double radius;
double real_dme;
double vor_distance_scale;

double ndb_theta_deg; /*

double ndb_theta_rad; /*

/* character size »/

converted delta x and */
delta y relative to
VOR */

converted delta x and */
delta y relative to
plane */

calculation angle
degrees »/
calculation angle
radians */

/* vor plot angle
radians »/

in

/* vor plot angle
degrees */

in

/* plot radius */
/* real dme value *,'

/» scale for vor
distance «/

ndb plot angle in
degrees */
ndb plot angle in
radians */

165

times 0;
error = 1

;

while (error != 0)
{

times**;
error = GET_DATA_PACKAGE<);

}

/» if (times != 1)
printfCNV DP times = Zd\n", times) ; */

screen_scale = 9.5/12.5;
PI = 3. 14159265;
DEGREE_TO_RAD = (2 * PI / 360.0);
size 1.5;

p=0;
SCREENCp-n-] = 0XC900;
SCREEN[p++] = 0x7818; /* set line size */

/* PUT UP AIRSPEED */

airspeed (page_number, clock_pkg, alarm_pkg,
airspeed_Xl, airspeed_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

/» PUT UP GROUNDSPEED »/

/» yet to be implemented »/

/« PUT UP TRACK »/

/* yet to be implemented «/

/» PUT UP ALTITUDE »/

altitude <clock_pkg, alarm_pkg, altitude_Xl, altitude_Yl,
Slength, conv)

;

p = insert <p, length, conv)

;

/* PUT UP DME »/

dme(clock_pkg, alarm_pkg, dme_Xl, dme_Yl, Slength, conv) ;

p = insert (p, length, conv) ;

/» PUT UP COMPASS AND HEADING */

get_heading < £plane_heading_deg
)

;

166

zero_pad ((double)
(plane_heading_deg) , 100. 0, 6,

"int", final_string>

;

string_gen(final_string, heading_X0, heading_Y0, size,
Slength, conv)

;

p = insert (p, length, conv)

;

compass (compass_arc_X0, compass_arc_Y0, plane_heading_deg,
compass_arc_radius, filength, conv) ;

p = insert (p, length, conv)

;

/» PUT UP VORTAC »/

/* calculate real dme value */

real_dme = (double) < (data_pkg. DME - 2.0) * 0.207);

/* plot vortac if plane is within 20 miles */

if(real_dme <= 30.0)
{

/* calculate delta x and y relative to vor */

real_delta_x = (double)
((data_pkg. DELTA_X - 126.0)

* 0.392);
real_delta_y = (double)

((datajpkg. DELTA_Y - 126.0)
* 0.415);

/« calculate delta x and y relative to plane »/

plane_delta_x = - (real_delta_x)

;

plane_delta_y - (real_delta_y)

;

/» CALCULATE POSITION OF VOR RELATIVE TO PLANE */

if((plane_delta_y != 0.0)
&& <plane_delta_x i= 0. 0))

(

/* calculate vor angle relative to plane
position */

theta_rad = atan2(plane_delta_y,
plane_delta_x)

;

/* add in the planes heading «/

vor_theta_rad = theta_rad
(plane_heading_deg *

167

DEGREE_TO_RAD)

;

vor_theta_deg = vor_theta_rad /

DEGREE_TO_RAD;

if (vor_theta_deg >= 360.0)
vor_theta_deg = vor_theta_deg - 360.0;

}

rim
vor_theta_deg = 0.0;

/» calculate new vor_theta_rad */

vor_theta_rad = vor_theta_deg * DEGREE_T0_RAD;

/* calculate plot radius */

if (real_dme < 0.0)
radius - 0.0;

else
radius = 406.2 * loglO(real_dme)

;

/* calculate vortac plot coordinates »/

X (int) (radius * cos(vor_theta_rad)
* screen_scale)

;

Y = (int) (radius * sin(vor_theta_rad))

;

/* plot vortac */

vortac (X + plane_X0, Y * plane_Y0, filength, conv) ;

p insert (p, length, conv)

;

/* put up vortac line »/

line(plane_X0, plane_Y0, plane_X0 * X,
plane_Y0 Y, Slength, conv)

;

p insert (p, length, conv)

;

/* put up bearing and heading if radius
> 400 »/

if (radius >= 400.0)
{

/* put vortac heading and bearing */

heading_and_bearing
(
plane_X0, plane_Y0,
plane_heading_deg.

168

vor_theta_deg,
radius, Slength, conv)

;

p insert (p, length, conv)

;

}

)

/» PUT UP NDB »/

get_ndb_plot_angle (Sndb_theta_deg >

;

ndb_theta_rad = ndb_theta_deg » DEGREE_TO_RAD;

radius = 700.0;

/» calculate ndb plot coordinates */

X (int) (radius « cos(ndb_theta_rad) * screen_scale)

;

Y = (int) (radius » sin(ndb_theta_rad))

;

/« plot ndb */

ndb(X plane_X0, Y * plane_Y0, Slength, conv) ;

p insert (p, length, conv)

;

/» put up ndb line »/

line(plane_X0, plane_Y0, plane_X0 X, plane_Y0 Y,
Slength, conv) ;

p insert (p, length, conv)

;

/* put up ndb heading and bearing */

heading_and_bearing(plane_XO, plane_Y0, plane_heading_deg,
ndb_theta_deg, radius, Slength, conv) ;

p = insert (p, length, conv)

;

/« CALL TIMER */

timer (page_number, clock_pkg, alarm_pkg, Slength, conv)

;

p = insert (p, length, conv)

;

SCREEN tp++] = 0x8E00;
SCREEN [p+»] = OxFFFF;

times = 0;
error = 1

;

while (error 1= 0)
{

169

times++

;

error = SEND_SCREEN();

>

/* if (times 1= 1)
printf("NV US times = #/.d\n", times) ; «/

> /* end of nav_pg_dynamic */

170

*

* SOURCE FILE: ils_pg_s. c

* FUNCTION: ils_pg_static(

)

» DESCRIPTION:

»

«

*

»

« DOCUMENTATION
* FILES:

This routine generates the static
data for the ILS PAGE. It is only
called once when the SYSTEM SWITCH
is turned on.

None.

ARGUMENTS: None.

RETURN: None.

FUNCTIONS
CALLED: UPDATE_SCREEN(

)

stringjenC)

insert (

)

arc_circ (

)

line!

)

AUTHOR: CHUCK ROBERTSON

» DATE CREATED:
»

*

* REVISIONS:
«

16Feb87

None.

Version 1.0

#include<stdlib. h>
#include<string. h>
#include<stdio. h>
include "llspg_xy. h"
include "data_str. h"

void ils_pg_static(

)

171

unsigned short conv [300 3;
unsigned short address_ptr;
unsigned short line_char;
int p;

int length;
int i;
int total_sent;

int error;
char final_stringC30]

;

char cat_string[10]

;

double size;

void string gent)

;

int insert < >

;

void box <
>

;

void arc_circ();
void line!)

;

/» conversion array */
/* address pointer */
/* line characteristic »/
/» conversion array

index */
/» insertion length */
/» loop counter */
/» total words sent to

vector memory */
/» masm error return */
/» string arrays */

/» character size */

size = 1.5;
address_ptr = 0xC50O;

line_char = 0x7818;

/» set character size */
/* point at 0x500 word in

vector memory */
/* set line characteristics »/

p=0;
SCREEN IP**]
SCREEN Cp*-]

address_ptr

;

line_char

;

/» PUT UP ALTITUDE */

strcpy (final_string, "ALT: ");
string_gen < final_string, altitude_X0, altitude_Y0,

size, Slength, conv)

;

p = insert(p, length, conv)

;

box(altitude_X0, altitude_Y0, size, length-2,
^length, conv)

;

p = insert (p, length, conv)

;

/* PUT UP DECISION HEIGHT */

strcpy (final_string, "DH: ")

;

string_gen(final_string, mda_dh_X0, mda_dh_Y0, size,
filength, conv)

;

p = insert (p, length, conv) ;

/* PUT UP DME */

strcpy <final_string, "DME: ")

;

172

string_gen(final_string, dme_XO, dme_YO, size,
Slength, conv)

;

p = insert (p, length, conv)

;

/» PUT UP STATIC ARC OF COMPASS »/

arc_circ (compass_arc_XO, compass_arc_YO,
compass_arc_init_angle,
compass_arc_end_angle,
compass_arc_radius, Slength, conv) ;

p = insert (p, length, conv)

;

/* PUT UP HEADING BOX AND POINTER »/

box(heading_box_XO, heading_box_YO, size,
heading_box_no_char, filength, conv) ;

p = insert (p, length, conv)

;

line(heading_ptr_linel_XO, heading_ptr_linel_YO,
heading_ptr_linel_Xl, heading_ptr_linel_Yl,
filength, conv)

;

p = insert (p, length, conv)

;

line(heading_ptr_line2_X0, heading_ptr_line2_Y0,
heading_ptr_line2_Xl, heading_ptr_line2_Yl,
filength, conv)

;

p = insert (p, length, conv)

;

SCREEN [p-n-] = OxSCOO;
SCREEN [pt*] = OxCCOO;
SCREEN Cp+*] = OxOOOO;
SCREEN [p-n-3 = OxSFFF;
SCREEN tp-n-] = OxFFFF;

error 1;
while (error != 0)

error = SEND_SCREEN ()

;

/* end of ils_pg_static */

173

*

* SOURCE FILE: ils_pg_d. c
*

*

« FUNCTION: ils_pg_dynamic(

)

DESCRIPTION: This function generates all the
dynamic data for the ILS PAGE. It
retrieves raw data from the data
package and makes necessary
conversions. Presently it is
displaying the following:

1) altitude
2) decision height
3) plane heading
4) dme
5) lis cross hairs
6) runway
7) alarm conditions

DOCUMENTATION
FILES: None.

« ARGUMENTS:
*

»

clock_pkg : pointer to clock package
alarm_pkg : pointer to alarm package

RETURN: None.

FUNCTIONS
CALLED: GET_DATA_PACKAGE<

)

TOGGLE_ALARM_SWITCH(

)

UPDATE_SCREEN<

)

insert (

)

string_gen(

)

get_heading(

)

box(>

zero_pad(

)

line<

)

runway (

)

altitude(

)

dme()

zero_pad(

)

ils_compass(

)

174

AUTHOR:

DATE CREATED:

airspeed (

)

timer(

)

CHUCK ROBERTSON

16Feb87 Version 1.0

REVISIONS: None.

include "data_str. h"
include "ilspg_xy. h"
#include<stdlib. h>
#include<string. h>
#include<math. h>
#include<stdio. h>

void ils_pg_dynamic (clock_pkg, alarm_pkg

)

CL0CK_PKG »clock_pkg;
ALARM_PKG *alarm_pkg;

/* conversion array */
/» request times */
/* array index »/
/* insertion length */
/* counter »/
/* conversion »/
/* masm error return */
/» page being displayed »/

/* plane heading »/
/* glideslope plot

coord */
/* course_deviation

coord »/
/* runway heading »/

unsigned short convC300]j
int times;
int p;
int length;
int i;

int radix;
int error;
int page_number = 3;

int plane_heading_deg

;

int glideslope;

int course_deviation;

int runway_hdg_deg

;

int insert ()

;

void string_gen()

;

void runway ()

;

void box ()

;

void line<);
void get_heading()

;

void altitude ()

;

175

void dme(>

;

void zerojpadt >

;

void ils_compass(
)

;

void airspeed () ;

void timer ()

;

int lower_X_bound

;

int upper_X_bound

;

int lower_Y_bound

;

int upper_Y bound;
int middle_X;

int middle_Y;
int lower_pegout_bound

;

int upper_pegout_bound

;

int left_pegout_bound

;

int right_pegout_bound

;

unsigned char peg_left;
unsigned char P©9_up;
unsigned char peg_right;
unsigned char peg_down;

/* plot boundries «/

/* cross hair
coordinates »/

/* pegout bounds */

/* sensitivity bounds »/

double delta_x;
double delta_y;

double real_dme;
double MIN_runway_scale;
double MAX_runway_scale;
double MAXjplot_dme;
double delta_runway_scale;
double runway_scale;
double crab_angle_deg;

char final_string[20];

char cat_stringC20]

;

double size;

times 0;
error = 1

;

while (error !'

{

0)

/» plot divisions »/

/» real dme value */
/» minimum runway scale */
/* maximum runway scale */
/* maximum plot dme «/
/* scale multiplier */
/» runway scale »/
/« crab angle of runway */

/» conversion string
arrays »/

/» character size »/

times**;
error = GET_DATA_PACKAGE();

/» if (times != 1)
prlntfCILS DP '/.d\n", time i); »/

176

size = 1.5;
radix = 10;
runway_hdg_deg = 280;
MIN_runvay_scale = 1.0;
MAX_runway_scale = 5.0;
MAX_plot_dme = 15.0;
delta_runvay_scale = < MAX_runvay_scale -

MIN_runway_scale) /

MAX_plot_dme

;

p=0;
SCREEN [p»*l = OxCCOO;
SCREENCp*-] = 0x7818; /« set line size »/

/» CHECK AIRSPEED */

airspeed
< page_number, clock_pkg, alarm_pkg,
airspeed_Xl, airspeed_Yl,
& length, conv)

;

p = insert (p, length, conv)

;

/» PUT UP ALTITUDE »/

altitude <clock_pkg, alarmjpkg, altitude_Xl, altitude_Yl,
Slength, conv)

;

p = insert (p, length, conv)

;

/» PUT UP DECISION HEIGHT »/

zero_pad((double) (clock_pkg->mda_dh), 1000. 0, 6, "int",
final_string)

;

stringjen(final_string, mda_dh_Xl, mda_dh_Yl, size,
Slength, conv)

;

p = insert (p, length, conv)

;

/» PUT UP COMPASS AND HEADING »/

get_heading (£plane_heading_deg
)

;

zero_pad ((double) (plane_heading_deg
) , 100. 0, 6,

"int", final_string)

;

string_gen(final_string, heading_XO, heading_YO, size,
Slength, conv)

;

p = insert (p, length, conv)

;

ils_compass(conipa8s_arc_X0, compass_arc_YO,
plane_heading_deg, compass_arc_radius,
Slength, conv)

;

p = insert (p, length, conv)

;

177

/* PUT UP DME */

dme<clock_pkg, alarm_pkg, dme_Xl, dmejfl, Slength, conv) ;

p = insert (p, length, conv);

real_dme = (double) ((data_pkg. DME - 2.0) » 0.207);

if(real_dme < 0.0)
real_dme = - real_dme;

/« PUT UP CDI */

/* strcpy(final_string, "CDI: ")

;

itoa(data_pkg. COURSE_DEVIATION, cat_string, radix)

;

strcat(final_string, cat_string)

;

stringjen(final_string, 1500, 1850, size, filength, conv)

;

p = insert <p, length, conv) ; »/

/* PUT UP GLDSLP */

/* strcpy(final_string, "GLDSLP: ")

;

itoa(data_pkg. GLIDESLOPE, cat_string, radix)

;

strcat(final_string, cat_string)

;

string_gen(final_string, 1500, 1750, size, Slength, conv)

;

p = insert (p, length, conv); */

/* IF PLANE IS CLOSE ENOUGH PLOT CROSSHAIRS »/

if(real_dme <= 20.0)
<

/* CALCULATE RUNWAY SCALE »/

runway_scale = MAX_runway_scale -

real_dme * delta_runway_scale;

/* CALCULATE BOUNDRIES FOR RUNWAY PLOT */

lower_X_bound = (int)(75 * runway scale);
upper_X_bound = (int)(2048 - (75 »

runway_scale)
)

;

middle_X = tint) (lower_X_bound +

(upper_X_bound -

lower_X_bound) / 2.0);

lower_Y_bound = (int)(50 * runway scale);
upper_Y_bound = (int)(1850 -

-

(150 * runway_scale));middle_Y = (int > (lower_Y_bound *

(upper_Y_bound -

178

lower_Y_bound) / 2.0);

/* PUT UP INITIAL INDICATOR CROSSHAIRS »/

if(real_dme > MAX_plot dme)
{

line(middle_X, lover_Y_bound, middle_X,
upper_Y_bound, Slength, conv) ;

p = insert (p, length, conv);

line(lover_X_bound, middle_Y, upper_X_bound,
middle_Y, Slength, conv)

;

p = insert (p, length, conv)

;

)

/* IF PLANE IS CLOSE ENOUGH PLOT RUNWAY */

if(real_dme <= MAXjlot dme)
{

~

/» ADD IN SENSITIVITY */

if (real_dme >= 8.0)
{

peg_left = peg_up = 50;
peg_right = peg_down = 205;

else if(real_dme >= 7.0)
{

peg_left = peg_up = 52;
peg_right = peg down = 202;

}

else if (real_dme >= 6.0)
{

peg_left = peg_up = 62;
peg_right = peg_down = 191;

else if(real_dme >= 5.0)

peg_left = peg_up = 75;
peg_right = peg_down = 181;

else if (real_dme >= 4.0)
{

peg_left peg_up = 81;
peg_rlght = peg_down = 174;

else if(real_dme >= 3.0)

179

peg_left = peg_up = 87;
peg_right = peg_down = 165;

else if(real_dme >= 2.0)

peg_left peg_up = 92;
peg_rlght = peg_down = 158;

else if(real_dme >= 1.0)

peg_left = peg_up = 106;
peg_right = peg_down 147;

else if(real_dme >= 0.0)

peg_left = peg_up = 117;
peg_right = peg_down = 135;

if (datajpkg. C0URSE_DEVIATI0N < peg_left

)

data_jpkg. C0URSE_DEVIATI0N = peg_left;

If (data_pkg.COURSE_DEVIATION > peg_right)
datajpkg. C0URSE_DEVIATI0N = peg_right;

if (data_pkg. GLIDESLOPE < peg_up)
data_pkg. GLIDESLOPE = peg_up;

if <data_pkg. GLIDESLOPE > peg_down)
data_pkg. GLIDESLOPE = peg_down;

/» CALCULATE COORDINATES FOR RUNWAY */

delta_x = (double)

(

(upper_X_bound -

lower_X_bound) /

(peg_right - peg_left))

;

delta_y = (double)

(

(upper_Y_bound -

lower_Y_bound > /

(peg_down - peg_up));

course_deviation

= lower_X_bound +

(int)
< (data_pkg. COURSE_DEVIATION -

180

peg_left> * delta_x);

glideslope

= upper_Y_bound -

tint)
< (datajpkg. GLIDESLOPE - peg_up>
« delta_y>;

/» PUT UP PEG-OUT BOUNDARIES */

lower_jpegout_bound = < int > < lower_Y_bound
2 * delta_y>;

upper_pegout_bound = (int) (upper_Y_bound -

2 « delta_y>;

left_pegout_bound = (int) < lower_X_bound
2 * delta_x>;

right_pegout_bound = < int > <upper_X_bound -

2 * delta_x);

line (left_jpegout_bound, lower.jpegoutjbound,
left_pegout_bound, upper_pegout_bound,
Slength, conv)

;

p = insert <p, length, conv)

;

line (left_pegout_bound, upper_pegout_bound,
right_pegout_bound, upper_pegout_bound,
Slength, conv)

;

p = insert <p, length, conv)

;

line (right_pegout_bound, upper_jpegout_bound,
right_pegout_bound, lower_pegout_bound,
Slength, conv)

;

p insert (p, length, conv)

;

line (right_jpegout_bound, lower_pegout_bound,
left_pegout_bound, lower_pegout_bound,
Slength, conv)

;

p = insert
(p, length, conv)

;

/» PUT UP APPROACH CROSSHAIRS »/

line(middle_X, lower_pegout_bound,
middle_X, upper_pegout_bound,
Slength, conv)

;

p = insert
(p, length, conv)

;

181

line(left_pegout_bound, middle_Y,
right_pegout_bound, middle_Y,
filength, conv)

;

p = insert (p, length, conv) ;

/« CALCULATE CRAB ANGLE */

crab_angle_deg = -(double)

(

(plane_heading_deg + 360)
- (runway_hdg_deg
*/. 360))

;

if (crab_angle_deg <= 360.0)
crab_angle_deg = crab_angle_deg 360.0;

if (crab_angle_deg > 20.0)
crab_angle_deg = 20.0;

if (crab_angle_deg < -20.0)
crab_angle_deg = -20.0;

/» PLOT RUNWAY */

runway < course_devlation, glideslope,
crab_angle_deg, runway_scale, Slength,
conv)

;

p insert (p, length, conv)

;

)

)

/* CHECK TIMER */

timer (page_number, clock_jpkg, alarm_pkg, £length, conv):
p = insert (p, length, conv);

SCREEN [p*f] = OxSEOO;
SCREEN [p+*] = OxFFFF;

times = 0;
error = 1;
while (error 1= 0)

<

times**;
error = SEND_SCREEN();

/ if (times 1= l)
printfCILS US times = y.d\n\ times) ; »/

182

> /* end of ils_pg_dynamic »/

183

APPENDIX D (CONT.

>

GENERAL-PURPOSE TOOLS

184

I

insert.

c

» SOURCE FILE:
*

* FUNCTION:

«

* DESCRIPTION:
*

*

*

»

*

* DOCUMENTATION
» FILES:
*

* ARGUMENTS:
*

*

*

*

*

» RETURN:
»

«

* FUNCTIONS
* CALLED

:

*

*

» AUTHOR:

* DATE CREATED:
»

insert!

)

This function inserts the conversion
array into the screen array. The
length of the conversion array is
passed to the routine.

None.

P : index for the SCREEN array
length : length of the conversion

array
conv

: pointer to the conversion
array

P : index for the SCREEN array

None.

CHUCK ROBERTSON

22Jan87 Version 1.0

None.* REVISIONS:
»

»

insert
(p, length, conv

)

unsigned short p;
unsigned short length;
unsigned short oonv[];

(

int i; /* loop counter */

185

extern unsigned short SCREEN []; /. screen data array ./

for(i=0;i < length »!)
SCREENCp++] = convti];

return (p);

) /* end of insert */

186

/*

SOURCE FILE: line.

c

* FUNCTION: line<

)

DESCRIPTION: This program generates the HP code to
put up a line between two points on
vector graphics display.

DOCUMENTATION
FILES: None.

* ARGUMENTS: XO, YO : beginning coordinates
* for the line
*

»
XI, Yl : ending coordinates

for the line

*
length_ptr

: pointer to the length of
convC] array

*

£
conv : pointer to converion

*
array

*

*
RETURN: None.

*

* FUNCTIONS
* CALLED: None.

AUTHOR:

» DATE CREATED:
*

*

* REVISIONS:

CHUCK ROBERTSON

22Jan87 Version 1.0

None.

••••••••••••••••••••••••••#llM # « #»H-M„M<ww„ -t)|#|(t||M(|/

void lineCXO, YO, XI, Yl, length_ptr, conv)

unsigned short XO, YO;
unsigned short XI, Yl;
unsigned short *length_ptr;
unsigned short convC];

187

convCO] = 0x0000 I XO;
convCl] = 0x1000 I YO;
convC2] = 0x0800 I XI;
conv[3] 0x1800 I Yl;

»length_ptr = 4;

) /» end of line */

/» plot
/* plot
/* plot
/* plot

x off */
y off «/
x on */
y on »/

188

/•HIHHIIHIHIHHIIIHHH,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* SOURCE FILE: arc.ciro.c

* FUNCTION: arcd_clrc(

)

« DESCRIPTION:

« DOCUMENTATION
* FILES:

This routine generates the HP code to
put up an arc from to 360 degrees
with plot origin at center of arc.

None.

* ARGUMENTS:
*

»

*

*

»

*

»

*

*

*

« RETURN

:

*

»

« FUNCTIONS
« CALLED:
*

*

* AUTHOR:

» DATE CREATED:

x_center

y_center

start_angle_deg
end_angle_deg
radius
length_ptr

conv

x plot coordinate
for arc center
y plot coordinate
for arc center
initial angle
final angle
radius of arc
pointer to length of
convC] array
pointer to
conversion array

• None.

None.

CHUCK ROBERTSON

25Jan87 Version 1.0

REVISIONS: None.

#include<math. h>
#include<stdio. h>

»*»******»****»*»***»»*»»»»»»„»»»*»,,,,„„„„,

void arc_circ(x_center. y_center, start_angle_deg,

189

end_angle_deg, radius, length_ptr, conv)

unsigned short convC];
unsigned short *length_ptr;
int x_center, y_center;
int radius;
double start_angle_deg;
double end_angle_deg;

{

int X, Y;

int final_delta_cnt;
int delta_count;
int i;
int index;

double PI;
double DEGREE_TO_RAD;
double start_angle_rad;

double end_angle_rad;
double delta_theta_deg;

double delta_theta_rad;

double theta;
double total_angle;
double screen_scale;

/* plot coordinate
variables */

/* iteration number */
/» loop counter */
/* loop counter */
/» conversion index »/

/* beginning angle in
radians */

/* ending angle in radians */
/» subinterval of total angle

in degrees »/
/» subinterval of total angle

in radians */
/* calculation angle «/
/* total arc angle */
/* screen scale for X

direction */

PI - 3. 14159265;
screen_scale = 9.5/12.5;
DEGREE_TO_RAD = (2 * PI) / 360.0;
index = 0;

/* convert beginning and ending angles to radians */

start_angle_rad = start_angle_deg * DEGREE_T0_RAD;
end_angle_rad = end_angle_deg » DEGREE_T0_RAD

;

/» determine angle increment based on radius »/

if(radius <= 100)
delta_theta_deg = 12.0;

else if ((radius > 100) &£ (radius <= 200))
delta_theta_deg = 11.25;

else if ((radius > 200) Sfi (radius <= 300))
delta_theta_deg = 10.0;

else if ((radius > 300) £& (radius <= 400))

190

delta_theta_deg = 9.0;
else if ((radius > 400) ££, (radius <= 500))

delta_theta_deg = 8.0;
else if ((radius > 500) &£ (radius <= 600))

delta_theta_deg = 7.2;
else if ((radius > 600) &£ (radius <= 700))

delta_theta_deg = 6.0;
else if ((radius > 800) &£ (radius <= 900))

delta_theta_deg = 5. 0;
else if ((radius > 900) S.S. (radius <= 1000))

delta_theta_deg 4.0;
else if ((radius > 1000) S.S. (radius <= 1200))

delta_theta_deg = 3.0;
else if ((radius > 1200) £& (radius <= 1400))

delta_theta_deg = 2.0;
else if ((radius > 1400) && (radius <= 2000))

delta_theta_deg = 1.0;
else printf ("INVALID RADIUS INPUTED\n");

/» convert to radians »/

delta_theta_rad = delta_theta_deg * DEGREE_T0_RAD;

/* initialize calculation angle */

theta = start_angle_rad;

/* calculate total arc angle */

total_angle = end_angle_deg - start_angle_deg;

/» calculate iteration # «/

final_delta_cnt = (int) < total_angle/delta_theta_deg
)

;

/* calculate Initial coordinates */

X = (int) (radius » cos (theta) » screen_scale)

;

Y = (int) (radius * sin(theta));

convCindex~] = 0x0000 I (X - x_center); /» plot x

convti„dex~] = 0x1000 I (Y - y_center>; /. p"t y
*'

off »/

/* calculate rest of coordinates «/

for (delta count = 1; delta_count <= final delta cnt
; delta_count *) — —

191

{

theta = theta + delta_theta_rad;

X = (int) (radius » cos (theta) « screen_scale)

i

Y (int) (radius « sin(theta));

convC index >+] = 0x0000 I (X + x_center);
convtindex't] = 0x1800 I (Y * y_center);

)

•lengthjptr = index;

) /» end arc_circ */

192

str_gen. cSOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

* ARGUMENTS:

* RETURN:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

string_gen(

)

This routine generates the HP code to
put a string at a certain location on
the vector graphics display.

None.

XO, YO

length_ptr

size

conv

string

None.

coordinates for the
string
pointer to the length of
convE] array
size of the character to
be generated
pointer to converion
array
pointer to string array

None.

CHUCK ROBERTSON

22Jan87 Version 1.0

None.

«»•»»»»»•»»»•»»«•••«•«••«.#•»»«,«»,»„,,»„,„„»„»„„,„„,

#include<string. h>
#include<stdio. h>

void string_gen(string, XO, YO, size, length_ptr, conv)

193

unsigned short XO, YO;
unsigned short »lengthjptr;
unsigned short convllj
double size;
char string!];

int *! /» loop counter */

/* convert coordinates to hp code »/

convCO] = 0x0000 I X0; /» plot x off */
convtl] = 0x1000 I Y0; /* plot y off «/

/« convert size to hp code »/

if (size == 1.0)
conv[2] = 0x4100;

else if (size == 1.5)
convC2] = 0x4900;

else if (size 2.0)
convC2] = 0x5100;

else if (size == 2. 5)
convC2] = 0x5900;

else printff- INVALID SIZE INPUTEDNn");

/* find string length */

»length_ptr = strlen < string)

;

/* add 2 to length pointer for X0 and Y0 code »/

*length_ptr »lengthjptr + 2;

/» convert string to hp code »/

conv[2] = convC2]
I stringCO];

for(i=3 ; i < »length_ptr ; ±**)
convCi] = stringCi-2]

I 0x4000;

/» end of string_gen */

194

» SOURCE FILE: box.

c

* FUNCTION: box()

» DESCRIPTION: This function generates the code to
put up a box on the vector graphics
display around a given word at a
given location.

» DOCUMENTATION
* FILES: None.

* ARGUMENTS: XO, YO

size
no_char

length_ptr

conv

plot coordinates for
plane
size of the characters
number of characters to
be boxed
pointer to length of
convC] array
pointer to conversion
array

* RETURN: None.

FUNCTIONS
CALLED: None.

AUTHOR:

DATE CREATED;

REVISIONS:

CHUCK ROBERTSON

25Jan87

None.

Version 1.0

#include<stdio. h>
«»<•««•»«»*•»«»«««»»»«»««»«»«»««„«„.»„„„„„/

void boxCXO, YO, size, no_char, length_ptr, conv)

195

unsigned short convf];
unsigned short *length_ptr

;

unsigned short XO, YO;
unsigned short no_char;
double size;

I int X, Y;
int width;
int height;

/* coordinate variables »/
/* character width «/
/* character height */

iftsize == 1.0)
< width = 36;
height = 36; }

else iftsize == 1.5)
< width = 54;
height = 54; >

else if (size == 2.0)
{ width = 72;
height = 72;)

else if (size == 2.5)
(width = 90;
height =90;)

else printf ("invalid size inputed\n");

/* move to initial coordinates and generate box
coordinates

X = XO - 10;
Y = Y0 - 10;

convCO] = 0x0000 I X; /. plot x off «/
convCl] = 0x1000 I Y; /« plot y off »/

X = X + 20 * no_char * width;
conv[2] = 0x0000 I X;
convC3] = 0x1800 I Y;

Y = Y + 20 height;
convC4] = 0x0000 I X;
convCS] = 0x1800 I Y;

X = X - 20 - no_char * width;
convt6] = 0x0000 I X;
conv[7] = 0x1800 I Y;

Y = Y - 20 - height;
convCS] = 0x0000 I X;
conv[9] = 0x1800 I Y;

*length_ptr = 10;

*/

196

) /* end of box */

197

/*
«

* SOURCE FILE! zero_pad.

c

FUNCTION: zero_pad(

)

DESCRIPTION: This function zero pads a given
integer or double given the number to
be padded, the pad limit, the
precision, and type of number to be
padded.

DOCUMENTATION
FILES: None.

ARGUMENTS:

RETURN:

pad_value
pad_limit
precision
type_string

pad_string

None.

value to be padded
zero padding limit
precision desired
type of number to be
padded
pointer to conversion
array

FUNCTIONS
CALLED: strcpy <

)

strcmp(

)

strcat (

)

itoa(

)

gcvt ()

prlntf (

)

AUTHOR: Chuck Robertson

* DATE CREATED:

REVISIONS:

25Feb87

None.

Version 1.0

no***************** »««««»»»»«»«»««»»»««»««»«»«»«,,„,,»„„„»„„,,,

198

include <stdlib. h>
include <string. h>
include <stdio. h>

void zerojad
(pad_value, pad_limit, precision, type_string,

pad_string)

char pad_string[20 3;
double pad_value;
double pad_litnit;
int precision;
char type_stringU;

{

char cat_stringtl9];
int radix = 10;

/» start pad_string with EOL for strcat.() to detect »/

pad_stringC0] = '\0';

/* take care of negative case */

if(pad_value < 0. 0)
<

strcpy
(pad_string, " - "

) j

pad_value = pad_value » -1.0;

/» determine if padding is necessary »/

if< <(pad_limit / 10.0) <= pad_value) £&
(pad_value < pad_limit))

strcpy (pad_string, "0");
else if((<pad_li mit / 100.0) <= pad_value) &&

(pad_value < (pad_limit / 10.0)))

strcpy (pad_string, "00");
else if(((pad_limit / 1000.0) <= pad_value) ££

(pad_value < (pad_limit / 100.0)))strcpy <pad_etring, "000");

if(<pad_value == 0.0) && (pad_limit >= 1000.0))strcpy (pad_string, "000");
else if

((pad_value == 0.0) ££ <pad_limit >= 100.0))strcpy (pad_string, "00");
else if

((pad_value == 0.0) ££ (pad limit >= 10.0))strcpy (pad_string, "0">;

/« convert pad_value to a character string »/

199

if(strcmp< type_string, "int") 0)
itoa((int) (pad_value>, cat_string, radix)

;

else if(strcmp(type_string, "double" > == 0)
gcvt

(pad_yalue, precision, cat_string)

;

else
printf ("ILLEGAL TYPE INPUTED IN ZERO PAD\n")

;

/* append pad_value to pad_string */

strcat(pad_string, cat_string)

;

> /* end of zero_pad »/

200

/»»•»*»»•»••»•»•»«•»»»«»••««..#„,««»„,„*„«„»,„„„„,„

* SOURCE FILE: altitude.

c

* FUNCTION: altitude*

)

* DESCRIPTION:
*

»

*

DOCUMENTATION
FILES:

This routine retrieves the altitude
value from the data package and
converts it into feet. It then
converts this value into a zero-
padded plot string.

None.

* ARGUMENTS:

*

*

*

*

*

*

»

*

* RETURN:

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

clock_pkg

alarm_pkg

XO, YO
length_ptr

altitude conv

None.

zero_pad(

)

string_gen(

)

CHUCK ROBERTSON

pointer to clock
package
pointer to alarm
package
plot coordinates
pointer to length of
conversion array
pointer to conversion
array

#inelude <stdlib. h>

23Mar87 Version 1.0

04Apr87 Version 1.

1

Added alarm capability.

201

include <string. h>
include <stdio. h>
include "data_str. h" /» data package structure

declaration. */

void altitude* clock_pkg, alarmjpkg, XO, YO, length_ptr,
altitude_conv)

CLOCK_PKG *clock_pkg;
ALARM_PKG *alarm_pkg;
int XO, YO;
int *length_ptr;
unsigned short altitude_conv[

]

;

(

unsigned short string_conv[30]

;

int altitude;
int string_length;
int index =0;
int i;
char final_stringC203;
double sizel_5 = 1.5;

void string_gen(
)

;

void zero_pad<)

;

altitude = (int >< (datajpkg. ALTITUDE - 15) * 29.7);

if(altitude < 0) -

altitude 0;

zero_pad((double) (altitude), 1000.0, 6, "int",
final_string)

;

string_gen(final_string, X0, YO, sizel_5, Sstring length,
string_conv);

for(l=0;i<string_length;i-n-)
altitude_conv[index i] = string_convti]

;

index = index + string_length;

/* CHECK MDA_DH ALARM CONDITION »/

/» IF ALTITUDE IS APPROACHING MDA_DH SOUND ALARM ./

if ((alarm_pkg->mda_dh_alarm_flag == ALARM_0FF)
SS (altitude <= (clock_pkg->mda_dh 50))

fi£ (alarm_pkg->mda_dh_enable_flag == ENABLED))

202

<

alarm_pkg->mda_dh_alarm_flag = ALARMJDN;

if (alarm_pkg->alarm_status_flag == ALARM_0FF>

TQGGLE_ALARM_SWITCH(
)

;

alarm_pkg->alarm_etatue_flag = ALARM_0N;

)

if (<alarm_pkg->mda_dh_alarm_flag == ALARM_ON)
Sfi (altitude > <clock_pkg->mda_dh 50))
a& <alarm_pkg->mda_dh_enable_flag ENABLED))

alarmjkg->mda_dh_alarm_flag = ALARM_0FF;

if ((alarmj>kg->alarm_status_flag == ALARM_0N) S.S.

<alarm_pkg->assigned_altitude alarm flag ==
ALARM_0FF) ~

SS <alarm_pkg->airspeed_alarm_flag == ALARM_0FF)
as (alarmj>kg->time_out_alarm_flag == ALARM_0FF>)

TOGGLE_ALARM_SWITCH(
)

j

alarm_pkg->alarm_status_flag = ALARM_0FF;

)

/* IF ALARM IS ON DISPLAY MDA/DH APPROACHING MESSAGE */

if ((alarm_pkg->mda_dh_alarm_flag == ALARM_ON)
&£ <alarm_pkg->mda_dh_enable_flag == ENABLED))

strcpy <final_string, "»>MDA/DH<<<") ;

string_gen(final_string, G80, 80,
sizel_5, £string_length, string_conv)

;

for (i=0; i<etring_length ; i + +

)

altitude_conv[index 1] = string_conv[i] ,-

)

index = index + string_length;

/* CHECK ASSIGNED ALTITUDE ALARM CONDITION »/

'"
SOUND

TITUDE IS EXCEEDING ASSIGNED ALTITUDE LIMIT

if(<alarm_pkg->assigned_altitude_alarm flag ==
ALARM_OFF) — 3

&£ !((altitude <= (clock_pkg->aSsigned_altitude *

203

100))
&& (altitude >= (clock_pkg->assigned altitude -

100)) >

&& (alarm_jpkg->assigned_altitude enable flaa = =
ENABLED))

~~

{

alarm_pkg->assigned_altitude_alarm_flag = ALARM_0N;

if (alarm_pkg->alarm_status_flag == ALARMJDFF)

T0GGLE_ALARM_SWITCH(
)

;

alarm_pkg->alarm_status_flag = ALARMJDN;

)

if((alarm_pkg->assigned_altitude alarm flaa ==
ALARMJDN) ~

££ ((altitude <= (clock_pkg->assigned altitude *
100)) -

&& (altitude >= (clock_pkg->assigned altitude -

100)))

~

&£ (alarm_jpkg->asslgned_altitude enable flaa = =
ENABLED))

- _ u

(

alarmjpkg->assigned_altitude_alarm_flag = ALARMJDFF;

if ((alarm_pkg->alarm_statue_flag == ALARM_0N> &&
(alarm_pkg->mda_dh_alarm_flag == ALARMJDFF)
&S <alarm_pkg->airepeed_alarm_flag == ALARM_0FF)
Sfi <alarm_pkg->time_out_alarm_flag == ALARM_0FF)

)

T0GGLE_ALARM_SWITCH(
)

;

alarmj)kg->alarm_status_flag = ALARMJDFF;

>

/» IF ALARM IS ON DISPLAY ASSIGNED ALTITUDE MESSAGE »/

if((alarm_pkg->assigned_altitude_alarm_flag == ALARM ON)SS (alarmj)kg->assigned_altitude enable flaa = =
ENABLED)

)

— — a

{

strcpy(final_string, ">>ASSIGNED<<") ;

string_gen(final_string, 680, 10,
sizel_5, &string_length, string_conv)

;

for (i=0; i<string_length; i++

)

altitude_conv[index + iJ = string_convCi]

;

index = index string_length;

204

*length_ptr = index;

> /* end altitude »/

205

*

» SOURCE FILE:

it***

dme. c

FUNCTION: duel)

DESCRIPTION:

DOCUMENTATION
FILES:

This routine retrieves the dme value
from the data package and converts it
into nautical miles. It then converts
this value into a zero-padded plot
string.

None.

* ARGUMENTS:
*

«

»

»

*

*

»

«

«

*

* RETURN:
*

clock_pkg

alarm_pkg

XO, YO
length_ptr

dme conv

None.

pointer to clock
package
pointer to alarm
package
plot coordinates
pointer to length of
conversion array
pointer to conversion
array

FUNCTIONS
CALLED

:

AUTHOR:

zero_pad<

)

string_gen(

)

CHUCK ROBERTSON

DATE CREATED: 23Mar87 Version 1.

REVISIONS: None.

define ALARM_OFF
define ALARM ON 1

206

include <stdlib. h>
include <strlng. h>
include <stdio. h>
include "data_str. h" /* data package structure

declaration. »/

extern int TOGGLE_ALARM_SWITCH<);

void dme(clock_pkg, alarm_pkg, XO, YO, length_ptr, dme_conv)

CLOCK_PKG *clock_pkg;
ALARM_PKG *alarm_pkg;
int XO, YO;
int *length_ptr;
unsigned short dme_conv[];

(

int dme;
int length;
char final_stringC20]

;

double size l.S;

void string_gen(>

;

void zero_pad();

dme = (int) (<data_pkg. DME - 2.0) « 0.207);

zero_pad((double) (dme), 10. 0, 6, "int", final_string>

;

string^gen(final_string, X0, Y0, size, filength, dme_conv) ;

*length_ptr = length;

) /* end dme «/

207

/* «**»***»»**«»««*»»».»«..»»«»»»«»»»,» #•»«»«««»„«„«„„„„„,

*

*

SOURCE FILE: airspeed.

c

*

*

*

FUNCTION: airspeed (

)

*

* DESCRIPTION: This routine retrieves the airspeed
value from the data package and

* converts it into knots. It then
» converts this value into a zero-
*

*
padded plot string.

*

» DOCUMENTATION
» FILES: None.

*

*

*

«

•

*

»

ARGUMENTS: page_number : page being displayed
clock_pkg : pointer to clock

package
alarm_pkg : pointer to alarm

package
airspeed_XO : plot coord.

* alrspeed_YO : plot coord.

ft

length_ptr s pointer to length of

»
conversion array

airspeed_conv : pointer to conversion

«
array

»

«

RETURN: None.

R

* FUNCTIONS
* CALLED: zero_pad(

)

string_gen(

)

*

*
strcpy (

)

*

»

»

AUTHOR: CHUCK ROBERTSON

*

»

DATE CREATED: 23Mar87 Version 1.0

«

* REVISIONS: 04ADr87 V«•c?H nn 1 1

Added alarm capability.

208

*

•••••••••••••••••••«••••••••«••»,#v,»«a»avttvvtt««.»#«#»»M#yinclude <stdlib. h>
include <string. h>
include <stdio. h>
include "data_str. h" /» data package structure

declaration. */

void airspeed <page_number, clock_pkg, alarm_pkg,
airspeed_XO, airspeed_YO,
length_ptr, alrspeed_conv)

int page_number;
CLOCK_PKG »clock_pkg;
ALARM_PKG »alarm_pkg;
int airspeed_XO, airspeed_Y0;
int *length_ptr;
unsigned short airspeed_conv[

]

;

(

unsigned short string_conv:30]

;

int airspeed;
int string_length;
int index = 0;
int i;
char final_string [20]

;

double sizel_5 = 1.5;

void string_gen()-;

void zero_pad();

airspeed = (int >((data_jpkg. AIRSPEED t 60) » 0.8427);

if (airspeed <= 51)
airspeed 0;

/» DISPLAY AIRSPEED ON DATA PAGE AND NAV PAGE */

if (page_number != 3)
(

zerojpad ((double) (airspeed
) , 100. 0, 6, " int "

,

final_string)

;

string_gen(final_string, airspeed_XO, airspeed_YO,
sizel_5, £strlng_length, string_conv)

;

for <i=0;i<string_length;!)
airspeed_conv[index i] = string_convti]

;

index = index string_length;

209

}

/* IF AIRSPEED IS AT STALL SPEED SOUND ALARM »/

if ((alarm_pkg->airspeed_alarm_flag == ALARM OFF)
£& (airspeed < 70)

)

<

alarm_pkg->alrspeed_alarm_flag = ALARM_ON;

if <alarm_pkg->alarm_status_flag == ALARM_OFF>

TOGGLE_ALARM_SWITCH(
)

;

alarm_jpkg->alarm_status_flag = ALARM_ON;

)

if ((alarm_jpkg->airspeed_alarm_flag == ALARM ON)
&£ (airspeed > 75))

(

alarm_pkg->alrspeed_alarm_flag = ALARMJDFF;

if (<alarm_pkg->alarm_status_flag == ALARM_ON) &&
(alarmjpkg->assigned_altitude alarm flaa ==
ALARMJDFF) ~ -

£& (alarm_jpkg->mda_dh_alarm_flag == ALARM_OFF)
£& (alarm_pkg->time_out_alarm_flag == ALARM_OFF))

TOGGLE_ALARM_SWITCH<
)

;

alarmjpkg->alarm_status_flag = ALARMJDFF;

>

/« IF ALARM IS ON DISPLAY IMPENDING STALL MESSAGE */

if (alarm_jpkg->airspeed_alarm_flag == ALARM_ON)

strcpy(final_string, ">>>STALL«<") ;

string_gen(final_string, 1365, 80,
sizel-5 > fistring_length, string_conv)

;

for (i=0; i<string_length ;!

)

airspeed_conv[index i] = string_conv[i]

;

>

index = index string_length;

• lengthjtr = index;

> /* end airspeed */

210

/on.....,,,,,.... .««..,.„».».. .««».»..„....,„
« SOURCE FILE: arrow.

c

*

*

* FUNCTION: arrow ()

» DESCRIPTION:

DOCUMENTATION
FILES:

This routine generates the HP code to
put up the head of an arrow for a
given radius, location, angle, and
direction. The direction determines
whether or not the arrow head points
"to" or "from" the plot coordinates.

None.

« ARGUMENTS:

«

»

»

»

«

»

*

»

»

* RETURN:

x_center
y_center
angle_deg

radius
dir_string
length_ptr

None.

x plot coordinate
y plot coordinate
plot angle in
degrees
length of arrow
direction string
pointer to length of
conv[] array
pointer to
conversion array

FUNCTIONS
CALLED: None.

AUTHOR:

DATE CREATED:

REVISIONS:

CHUCK ROBERTSON

15Feb87 Version 1.0

None.

ft******************
#include<math. h>
#include<string. h>

" >>"»<«>l»H»lltO««««»ll«M/

211

#include<stdlo. h>

void arrow (x_center,y_center,angle_deg, radius, dir string,
length_ptr,conv>

unsigned short convC];
unsigned short »length_ptr;
int x_center, y_center;
double radius;
double angle_deg;
char dir_stringU;

< int x, y;
int arrov_head_end_X;
int arrow_head_end_Y

;

int arrow_head_bgn_X;
int arrow_head_bgn_Y;
int disp;
double PI;
double angle_rad;
double screen_scale;

/» plot coordinates */
/» arrow head end coord »/

/» arrow head base coord */

/» plot displacement */

/» plot angle in radians »/

PI = 3. 14159265;
screen_scale = 9.5/12.5;

/* convert angle to radians »/

angle_rad = angle_deg » (2 » PI) / 360.0;

/* figure displacement for arrow direction */

iff strcmp(dir_string, "to") ==)

disp = -50;
else ifC strcmp(dir_string, "from") ==

)

disp = 50;
else

printf ("illegal arrow direction inputed\n">;

/* calculate coordinates »/

arrow_head_end_X = (int) (radius » cos(angle_rad)
» screen_scale>

;

arrow_head_end_Y = (int) (radius » sin(angle_rad)
)

;

convCO] = 0x0000 I (arrow_head_end_X * x center);convtl] = 0x1000 I (arrow_head_end_Y * ylcenter),'

arrow_head_bgn_X = (int)((radius disp)
* cos(angle_rad)

212

» screen_scale>

;

arrov_head_bgn_Y = (int)((radius disp)
» sin(angle_rad>

)

;

y = (int) (20 » coe(angle_rad> >;
x = (int) (-20 » sin(angle_rad) * screen_scale)

;

convC2] = 0x0000 I (x_center arrow_head_bgn_X x>-
conv[3] = 0x1800 I <y_center arrow_head_bgn_Y • y);

conv[4: = 0x0000 I (arrov_head_end_X x_center);
conv[5] = 0x1000 I (arrov_head_end_Y y_center);

convt6] = 0x0000 I (x_center arrow_head_bgn X - x>-convC7] = 0x1800 I (y_center arrow_head_bgn_Y - y)|

*length_ptr = 8;

) /* end of arrow »/

213

heading.

c

* SOURCE FILE:
*

«

» FUNCTION: get_heading<

)

* DESCRIPTION:
*

*

*

*

*

*

* DOCUMENTATION
* FILES:

This routine gets the raw heading from
the data package and uses a lookup
table along with interpolation to
convert the raw heading into the
actual plane heading.

None.

* ARGUMENTS:
*

*

*

» RETURN

:

»

*

* FUNCTIONS
* CALLED:

plane_heading_deg_ptr : pointer to the
heading variable in calling
routine

None.

None.

* AUTHOR:
*

CHUCK ROBERTSON

16Feb87 Version 1.0

None.

* DATE CREATED:

«

* REVISIONS:
*

*

include "data_str. h"
#include<stdlib. h>

typedef struct { double a_to_d;
double value; } CONVERSION;

/* lookup table for heading conversion »/

CONVERSION headingCIS] = {

214

(0.0,99.0),
(6.0,90.0),
(30.0,60.0),
(50.0,30.0),
(73.0,0.0),
(94.0, 330.0),
(115.0,300.0),
(137.0,270.0),
(158.0,240.0),
(180.0,210.0),
(201.0, 180.0),
(223.0, 150.0),
(245.0, 120.0),
(251.0, 110.0),
(255.0, 100.0)

>;

void get_heading
(plane_heading_deg_ptr

)

lnt *plane_heading_deg_ptr;

(

int i; /* loop counter */
double raw_heading;

/* GET RAW HEADING FROM A/D AND CONVERT
TO DEGREES USING LOOKUP TABLE «/

rav_heading = (double) <data_pkg. COMPASS)

;

if((raw_heading > 73.0) && <rav_heading <= 94.0))
headingC43 . value - 360.0;

else
headingC4). value = 0.0;

ford = 0; i < 14; i")
if((raw_heading >= heading C i]. a_to_d) &&

(raw_heading <= headingCi l].a_to_d) >

{

/* INTERPOLATE */
*plane_heading_deg_ptr

= (int)
((raw_heading - headingCi] . a_to_d) /
<headingCi*l). a_to_d -

headingCi). a_to_d) *

(headingCi+1). value -

heading CD. value)

headingCi). value)

;

break;

215

)

> /* end of get_heading »/

216

*

» SOURCE FILE: timer.

c

FUNCTION: timer (

)

» DESCRIPTION: This function implements the TIMER and
» TIME_OUT portion of the DATA PAGE. The
* function keeps track of the timer
* value and sounds an alarm when the
* time-out is reached.

DOCUMENTATION
FILES: None.

ARGUMENTS: page_number: page being displayed

RETURN:

clock_pkg
alarm_pkg
length_ptr

timer conv

None.

pointer to clock package
pointer to alarm package
point to length of conv[]
array
pointer to conversion
array

FUNCTIONS
CALLED:

AUTHOR:

string_gen(

)

zero_pad(

)

Chuck Robertson

DATE CREATED:

REVISIONS:

26Feb87 Version 1.

04Apr87 Version 1.1
Added alarm capability.

include <stdlib. h>
include <string. h>
include <stdio. h>

****#*»»«•***»»«»*•***»***»»«»*«***«•»*/

217

include "data_str. h" /« data package structure
declaration. */

include "datpg_xy. h"

void timer (page_number, clock_pkg, alarm_pkg, length_ptr,
timer_conv)

CLOCK_PKG *clock_pkg;
ALARM_PKG «alarm_pkg;
unsigned short timer_conv[:

;

int *length_ptr;
int page_nutnber;

{

static int real_time_start_sec;
static int total_time_out_sec;

unsigned short string_conv[303

;

int real_time_present_sec;
int total_timer_present_sec;
int string_length;
int i;
int index 0;

double sizel_5 = 1.5;

char final_stringC20J, cat_stringC5]

;

void string_gen()';

void zero_pad(
)

;

/» SET TIMER «/

if (clock_pkg->timer_operation_flag == SET_TIMER)

/* turn off timer «/
clock_pkg->timer_status_flag = TIMER_0FF;

/* clear operation flag »/
clock_pkg->tlmer_operation_flag = NULL_TIMER;

if <alarm_pkg->time_out_alarm_flag == ALARMJDN)

alarm^pkg->time_out_alarm_flag = ALARM_0FF;

if ((alarmjpkg->alarm_status flag ==
ALARM_0N> ££
(alarm_pkg->assigned_altitude_alarm_flag

218

== ALARMJDFF)
£& (alarm_pkg->mda_dh_alarm flag ==

ALARMJDFF

)

&£ <alarm_pkg->airspeed_alarm flag ==
ALARMJDFF)

)

{

TOGGLE_ALARM_SWITCH<
)

;

alarmjkg->alarm_status_flag =

ALARMJDFF;

)

)

/» DETERMINE RESET CONDITION »/

If (clock_Jpkg->timer_operation_flag == RESETJTIMER)

clock_pkg->tlmer_min = 0;
clock_pkg->timer_sec = 0;

clock_pkg->timer_status_flag = TIMERJDFF;

clock_pkg->timer_operation_flag = NULLJTIMER;

if (alarm_pkg->tlme_out_alarm_flag == ALARMJDN)

alarmjkg->time_out_alarm_flag = ALARMJDFF;

if ((alarra_pkg->alarm_status flag ==
ALARMJDN) &&
(alarm_pkg->assigned_altitude alarm flaa
== ALARMJDFF)

~

£& (alarm_jpkg->mda_dh_alarm flag = =

ALARMJDFF

)

££ <alarm_pkg->airspeed_alarm flag ==
ALARMJDFF)

)

{

TOGGLE_ALARM_SWITCH<
)

;

alarm_pkg->alarm_status_flag =

ALARMJDFF;
}

)

>

/* START CLOCK »/

if <clock_pkg->tlmer_operation_flag == STARTJTIMER)

total_time_out_sec = <(60 *

clock_pkg->time_out_min)

219

clock_pkg->time_out_sec)

;

real_time_start_sec = (int)
((3600 * data_pkg. HOURS)
(60 * data_pkg. MINUTES)
datajkg. SECONDS)

;

clock_pkg->timer_status_flag = TIMER_ON;

clock_jpkg->timer_operation_flag = NULLJTIMER;

if (alarmjjkg->tlme_out_alarm_flag == ALARM_ON)

alarm_pkg->time_out_alarm_flag = ALARM_OFF;

If (<alarm_pkg->alarm_statua flag ==
ALARM_ON> ££

(alarm_pkg->assigned_altltude alarm flaa== ALARM_OFF) ~~ _ u

fi£ < alarm_jpkg->mda_dh_alarm flag = =
ALARM_0FF

)

SS (alarm_jpkg->airspeed alarm flag = =
ALARM_0FF)>

-
{

T0G6LE_ALARM_SWITCH<
)

;

alarmjkg->alarm_status_flag
ALARM_0FF;

)

>

/» CALCULATE TIMER VALUE AND DISPLAY */

if (clock_pkg->timer_status_flag == TIMER_ON)

real_tlme_present_sec = (int)
((3600 * data_pkg. HOURS)
(60 * data_pkg. MINUTES)
data_pkg. SECONDS)

;

if(real_time_jpresent_sec < real_time_start sec)
real_time_present_seo = real_time_present_sec

(24 » 3600
)

|

total_timer_jpresent_Sec = real_time_present_sec -

real_time_start_sec;

/* convert present timer value into minutes andsec
*/

220

clock_pkg->timer_sec = total_timer_present sec
% 60;

clock_pkg->timer_min = < (total_timer_present_sec -

clock_pkg->timer_sec

)

/ 60);

/* check for time_out alarm »/

if <<total_timer_present_sec >= total_time_out_sec>
S.S. <alarmjpkg->time_out_alarm flag = =

ALARM_0FF)

)

{

alarmjkg->time_out_alarm_flag = ALARMJDN;

if <alarm_pkg->alarm_status flag ==
ALARM_0FF

)

{

TOGGLE_ALARM_SWITCH<
)

;

alarm_pkg->alarm_statue_flag = ALARMJDN;

)

/* is timer done ? */

if (total_timer_present_sec == 3600)
clock_pkg->timer_status_flag TIMERJDFF;

)

/* IF ALARM IS ON DISPLAY TIME-OUT MESSAGE */

if (alarm_pkg->time_out_alarm_flag == ALARMJDN)

strcpy <final_string, ">>TIME-0UT<<"
>

;

string_gen(final_string, 1365, 10,
sizel_5, &string_length, string_conv)

;

for(i=0;i<string_length;i+*)
timer_convC index 13 = string_convCi]

;

)

index = index string_length;

/* DISPLAY TIMER AND TIME-OUT VALUES IF PAGE
BEING DISPLAYED IS THE DATA PAGE »/

if (page_number == 1)
<

/» DISPLAY TIMER VALUE */

221

zero_pad
(

< double
) (clockjpkg- >tin.er_min

) , 10. 0, 6,
"int", final_string>

;

strcat (final_string, " : "
) ;

zerojpadl (double > <clock_pkg->timer_sec>, 10. 0, 6,
"int", cat_strlng) ;

strcat < final_string, cat_strlng) ;

string_gen<final_string, timer_Xl, timer_Yl, sizel_5,
&string_length, string_conv)

;

for (i=0;l<string_length ;!»>
timer_convC index i] = string_convCi]

;

index = index + string_length;

/» DISPLAY TIME-OUT VALUE */

zerojpadt (double) (clock_jpkg->time_out min), 10. 0. 6.
"int",final_string>;

strcat < final_string, " : ")

;

zero_jpad < (double) (clock_pkg->time out sec > , 10. 0, 6."int",cat_string>; ~
strcat (final_string, cat_string)

;

string^gen(final_string, time_out_Xl, time_out_Yl,
<*izel_5, &string_length, string_conv)

;

for(i=0;i<string_length;i++)
timer_conv[index + i: = string_conv[i]

;

index = index string_length;

/* send back length of conversion array */

*length_ptr = index;

/* end of timer */

222

APPENDIX D (CONT.

)

PAGE-SPECIFIC TOOLS

223

/»*

SOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

RETURN:

time_jgen. c

time_strlng_jgen(>

Generates the string depicting the
time as the values of hours, minutes,
and seconds of DATA_PKG show. Spaces
and zeros are inserted in the
appropriate spots so that the length
of the final string is always
constant.

None.

None.

FUNCTIONS
CALLED:

char »

pointer to the string
named time_string.

None.

* AUTHOR: Dave Gruenbacher

*

» DATE CREATED: 07Feb87 Version 1.0

M

» REVISIONS: None.
*

include <string. h>
include <stdio. h>
include "data_str.h" /. data package structure

declaration. »/

time_string_gen (time_string

)

char time_stringC9]

;

224

char temp_string[3];
char »strcat<), «itoa();
int radix = 10;

/* start time_string with EQL for strcatO to
detect. „,

time_stringtO] = '\0';

/» convert data_pkg. HOURS to a character
string. »/

itoa(data_pkg. HOURS, temp_string, radix)

;

/» if data_pkg. HOURS is less then 10, then insert »/
/* a blank where the tens digit would be */
if <data_pkg. HOURS < 10)

strcat (time_string, " «
)

;

/* append hours and a colon to time_string. */
strcat (time_string, temp_string)

;

strcat (time_string, " :
")

;

/» if data_pkg. MINUTES is less then 10, insert */
/» a zero where the tens digit would be. */
if (data_jpkg. MINUTES <10)

strcat (time_string, "0");

/« convert data_pkg. MINUTES to a character
string. „

.

itoa(data_pkg. MINUTES, temp_string, radix)

;

/» append minutes and a colon to time_string. »/
strcat (time_string, temp_string

)

;

strcat < time_string, " : "
) ;

/« if datajpkg. SECONDS is less then 10, insert a »/
/* zero where the tens digit would be. »/
if (data_pkg. SECONDS < 10)

strcat (time_string, "0");

/« convert datajpkg. SECONDS to a character string. »/itoa (data_pkg. SECONDS, temp_string, radix)

;

/* append seconds and a colon to time_string »/strcat (time_string, temp_string
)

;

return"™
P°inter t0 time_string to calling routine. ./

) /» time_string_gen */

225

I

* SOURCE FILE: dim box. c

* FUNCTION: clim_box(

>

* DESCRIPTION:
*

«

» DOCUMENTATION
» FILES:

This program generates the HP code to
put up the climb indicator box for the
DATA PAGE on the vector graphics
display.

None.

» ARGUMENTS:

« RETURN:

XO, YO

length_ptr

conv

None.

plot coordinates for the
box
pointer to the length of
convC] array
pointer to converion
array

*

*

«

»

»

*

»

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

REVISIONS:

None.

CHUCK ROBERTSON

27Jan87

None.

Version 1.

void climb_box(XO, YO, length_ptr, conv)

unsigned short XO, YO;
unsigned short *length_ptr

;

unsigned short convCJ;

int i; /* loop counter */

226

int X, Y; /« plot coordinate variables */

/» move to initial coordinates and generate
box coordinates »/

X - XO;
Y = YO;

convtOJ = 0x0000 I X; /* plot x off */
convCl] = 0x1000 I Y; /» plot y off */

X = X - 60;
Y = Y 315;
convC23 = 0x0000 I X;
convC3] = 0x1800 I Y;

X = X - 80;
conv[4] = 0x0000 I X;
convCS] = 0x1800 I Y;

Y = Y - 630;
convC6] = 0x0000 I X;
conv[7] = 0x1800 I Y;

X = X + 80;
convCS] = 0x0000 I X;
conv[9] = 0x1800 I Y;

X = X 60;
Y = Y + 315;
convtlO] = 0x0000 I X;
convCll] = 0x1800 I Y;

*length_ptr = 12;

/* end of clim_box »/

227

»

*

*

*

*

*

*

*

*

*

*

»

*

*

*

*

«

*

*

*

*

»*»»«««***»*****«*»»»«»«»«»»»»»„», »»»«».»»«»»»«»»»,»»

SOURCE FILE I

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

clim_hsh. c

clim_hsh(

)

This routine generates the HP code to
put up the hash marks of the climb
indicator of the DATA PAGE.

None.

* RETURN:

x_center

y_center

start_angle_deg
end_angle_deg
radius
length_ptr

conv

None.

x plot coordinate
for hash arc center
y plot coordinate
for hash arc center
initial hash angle
final hash angle
radius of hash arc
pointer to length of
conv[] array
pointer to
conversion array

FUNCTIONS
CALLED

:

None

» AUTHOR:
*

CHUCK ROBERTSON

* DATE CREATED: 25JanS7 Version 1.0

* REVISIONS: None.

#include<math. h>

void clim_hsh(x_center, y_center, start_angle_deg,
end_angle_deg, radius, length_ptr, conv)

228

unsigned short convC];
unsigned short »length_ptr;
int x_center, y_center;
int radius;
double start_angle_deg;
double end_angle_deg;

(

int X,Y;

int final_delta_cnt

;

int delta count;
int i;
int index;

double PI;
double DEGREE_TO_RAD;
double start_angle_rad;

double end_angle_rad;

double delta_theta_deg;

double delta_theta_rad;

double theta;
double total_angle;
double screen_scale;

/* plot coordinate
variables */

/» iteration number */
/» loop counter */
/« loop counter »/
/» conversion index »/

/* beginning angle in
radians */

/» ending angle in
radians */

/» subinterval of total
angle in degrees */

/» subinterval of total
angle in radians */

/» calculation angle */
/» total arc angle »/
/« screen scale for X

direction »/

PI = 3. 14159265;
screen_scale 9.5/12.5;
DEGREE_TO_RAD = (2 » PI) / 360.0;
index = 0;

/* convert beginning and ending angles to radians »/

start_angle_rad start_angle_deg * DEGREE_T0_RAD;
end_angle_rad = end_angle_deg * DEGREE_T0_RAD;

/» initialize calculation angle */

theta = start_angle_rad;

/* calculate total arc angle */

total_angle = end_angle_deg - start_angle_deg;

/» calculate subinterval »/

229

delta_theta_deg = total_angle/4. 0;
delta_theta_rad = delta_theta_deg * DEGREE_T0_RAD;

final_delta_cnt = 4; /* iteration # »/

/» calculate coordinates »/

for(delta_count = 0; delta_count <= final_delta_cnt

;

delta_count++

)

(

if (delta_count 1= 2)
{

X = (int) < (radius - 23) * cos (theta) »

screen_scale >

;

Y = (int) ((radius - 23) * sin(theta));

convC index*] = 0x0000 I (X x_center)j
convt index] = 0x1000 I (Y y_center);

X = (int) < (radius +23) « cos(theta) »

screen_scale)

;

Y = (int) ((radius 23) * sin(theta));

convC index*] = 0x0000 I (X x_center)j
convtindextt] = 0x1800 I (Y y center):

)

theta = theta delta_theta_rad;

)

*length_ptr = index;

> /» end of dim hsh »/

230

/ft**
*

* SOURCE FILE: clim_aro. c
*

FUNCTION: dim arrow ()

» DESCRIPTION:
*

*

*

»

»

This routine generates the HP code to
put up the climb arrow for the rate of
climb indicator on the DATA PAGE. It
makes the calculation for a given
location, radius, and angle.

* DOCUMENTATION
* FILES: None.

» ARGUMENTS: x_center : x plot coordinate
» for arrow
* y_center : y plot coordinate
* for arrow
* angle_deg : plot angle in
» degrees
* radius : length of arrow
« length_ptr : pointer to length of
* convt] array
» conv : pointer to
* conversion array

*

*

RETURN: None.

*

FUNCTIONS
ff

»

CALLED

:

None.

*

AUTHOR: CHUCK ROBERTSiDN

» DATE CREATED: 02Feb87 Version 1.

REVISIONS: None.

#include<math. h>
•»*****«*••*•****«*•*«•*•»*•«*»*»«««*«*««/

231

void clim_arrow(x_center, y_center, angle_deg, radius,
length_ptr, conv)

unsigned short convC];
unsigned short *length_ptr;
int x_center, y_center;
int radius;
double angle_deg;

« int x, y; /» plot coordinates «/
int arrow_head_end_X; /» arrow head end coord */
int arrow_head_end_Y;
int arrow_head_bgn_X; /. arrow head base coord »/
int arrow_head_bgn_Y;
double PI;
double angle_rad; /» pJ.ot angle in radians ./double screen_scale;

PI = 3.14159265;
screen_scale = 9.5/12.5;

/» convert angle to radians »/

angle_rad = angle_deg » (2 * PI) / 360.0;

/» calculate coordinates »/

convCO] = 0x0000 I x_center; /* plot x off */
convCl] = 0x1000 I y_center; /* plot y off »/

arrow_head_end_X = (int) (radius » cos(angle_rad>
» screen_scale)

;

arrow_head_end_Y = (int) (radius * sin(angle_rad)
)

;

conv[2] = 0x0000 I (arrow_head_end_X x center)-
conv[3] = 0x1800 I (arrow_head_end_Y y_center);

arrow_head_bgn_X = (int)((radius - 50) *

cos(angle_rad) «

screen_scale)

;

arrow_head_bgn_Y = (int)((radius - 50) »

sin(angle_rad)
)

;

y = (int) (20 » cos(angle_rad)
)

;

x = (int) (-20 « sin(angle_rad) * screen_scale)

;

convC4] = 0x0000 I (x_center * arrow_head bgn X x>-convCS] = 0x1800 I (y_center arrow_head3>gnlY y)|

convC6] = 0x0000 I (arrow_head_end_X - x_center);

232

convC7] 0x1000 I < arrov_head_end_Y y_center);

convCS] = 0x0000 I (x_center * arrow_head_bgn_X - x);
conv[9] = 0x1800 I (y_center arrow_head_bgn_Y - y);

*length_ptr = 10;

) /» end of dim arrow */

233

/•»im»in»»«»»«»«««»)n«»»«iit»»»»ini«»«««««»«»»«»*««i»«»«ii»»»

SOURCE FILE: climrate.

c

FUNCTION: climb rate!

)

DESCRIPTION: This routine retrieves the vertical
speed value from the data package and
converts it into feet/minute. It
then converts this value into a zero-
padded plot string.

H DOCUMENTATION
*

*

FILES: None.

1 ARGUMENTS: clock_pkg : pointer to clock
N package
* alarm_pkg : pointer to alarm
» package
» XO, YO : plot coordinates
» vert_speed : pointer to
» climb_rate
» length_ptr : pointer to length of
* conversion array
» climb_rate_conv : pointer to
*

«
conversion array

»

*

*

RETURN: None.

*

FUNCTIONS
* CALLED: zero pad<)

string_gen<

)

AUTHOR: CHUCK ROBERTSON

DATE CREATED: 23Mar87 Version 1.

REVISIONS: HApr87
Added call to climb_fliter <

)

Dave Gruenbacher

234

include <stdlib. h>
include <etring. h>
include <stdio. h>
include "data_str. h" /» data package structure

declaration. */

void climb_rate(clock_pkg, alarm_pkg, XO, YO, vert_speed,
length_jptr, climb_rate_conv)

CLOCK_PKG *clock_pkg;
ALARM_PKG *alarm_pkg;
int XO, YO;
int «length_ptr;
int *vert_speed;
unsigned short climb_rate_convC 1 ;

I

int climb_rate;
int length;
int radix = 10;
char final_string[20]

;

double size = 1.5;
float climb_filter(

)

;

void strlng_gen<)

;

if (datajkg. VERT_SPEED <= 115)
data_pkg. VERT_SPEED = data_pkg. VERT_SPEED * 16;

data_pkg. VERT_SPEED = (unsigned char)
(climb_filter(data_pkg. VERT_SPEED)

)

;

climb_rate = < int) < <data_pkg. VERT_SPEED - 136.0)
« 20.3);

itoa(climb_rate, final_string, radix)

;

string^gen(final_strlng, XO, YO, size, Slength,
climb_rate_conv) ;

»vert_speed = climb_rate;
»length_ptr length;

) /» end climb rate */

235

» SOURCE FILE: plane.

c

» FUNCTION: plane(

)

* DESCRIPTION:

DOCUMENTATION
FILES:

This function generates the code to
put up a plane on the vector graphics
display at a given location.

None.

* ARGUMENTS: XO, YO

length_ptr

conv

plot coordinates for
plane
pointer to length of
conv C 3 array
pointer to conversion
array

* RETURN: None.

FUNCTIONS
CALLED: None.

* AUTHOR: CHUCK ROBERTSON

* DATE CREATED:

» REVISIONS:

15Jan87 Version 1.0

None.

••••••••«••••••••••••••••„..„„„„„„„„„„.„„„„,
void plane (XO, YO, length_ptr, conv)

unsigned short conv[];
unsigned short *length_ptr;
unsigned short XO, YO;

f int X, Y; /» coordinate variables */

236

/» draw fusilage «/
X = XO;
Y = YO - 140;
convCO] = 0x0000 I X;
convCl] = 0x1000 I Y;

X = X - 20

j

Y = Y f 180;
conv[2] = 0x0000 I X;
convC3J = 0x1800 I Y;

X = X 20;
Y = Y 20;
conv[4] = 0x0000 I X;
convCS] = 0x1800 I Y;

X = X 20;
Y = Y - 20;
conv[6] = 0x0000 I X;
conv[7] = 0x1800 I Y;

X = X - 20;
Y = Y - 180;
convCS] = 0x0000 I X;
convC9] = 0x1800 I Y;

/» draw wing */
X = X0 - 100;
Y = YO - 20;
convCIO] = 0x0000 I X;
convtll] = 0x1000 I Y;

Y = Y + 40;
conv[12] = 0x0000 I X;
conv[13] = 0x1800 I Y;

X = X 200;
convC14] = 0x0000 I X;
conv[15] = 0x1800 I Y;

Y = Y - 40;
convCIS] = 0x0000 I X;
convC17] = 0x1800 I Y;

X = X - 200;
convCIS] = 0x0000 I X;
conv[19] = 0x1800 I Y;

/» draw aeleron */
X = XO - 30;

237

Y = YO - 120;
convC20] = 0x0000 X;
convC213 = 0x1000 Y;

Y = Y 20
conv[22] 0x0000 X;
conv[23] 0x1800 Y;

X = X * 60
convC24] = 0x0000 X;
conv[25] oxiaoo Y;

Y = Y - 20 :

conv[26J 0x0000 X;
conv[27] = 0x1800 Y;

X = X - 60
conv[28] = 0x0000 X;
convC29] = 0x1800 Y;

*length_ptr = 30;

>/» end plane »/

238

/«»*****«»*«»»»»»»*»**»»»*»««««»«»»»»»»»»,,»»»»»»«»,,,,,,„„„„,,„„

SOURCE FILE:

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILES:

» ARGUMENTS:

RETURN:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

waypoint.

c

waypoint <)

This function generates the code to
put up a waypoint on the vector
graphics display at a given location.

None.

XO, YO

lengthjptr

conv

None.

plot coordinates for
plane
pointer to length of
conv[] array
pointer to conversion
array

None.

CHUCK ROBERTSON

25Jan87 Version 1.0

None.

void waypoint(X0, YO, length_ptr, conv)

unsigned short convt];
unsigned short »length_ptr;
unsigned short X0.Y0;

{ unsigned short X, Y; /* coordinate variables »/

239

double screen_scale = 9.5/12.5; /» scale screen «/

XO - (unsigned short) (13 » screen_scale)

;

YO + 13;
convCO] = 0x0000
convCl] 0x1000

X = X (unsigned
Y = Y 37;
convC23 0x0000
conv[3] = OxlSOO

X = X (unsigned
Y = Y - 37;
convC4] = 0x0000
conv[5] = 0x1800

X X (unsigned
convC6] 0x0000
convC73 = 0x1800

X = X - (unsigned
Y = Y - 19;
conv[8] = 0x0000
convC9] = 0x1800

X;
Y;

short) (13 » screen_scale)

;

X;
Y;

short) (13 * screen_scale)

;

X;
Y;

short) (38 » screen_scale)

;

X;

Y;

short) (27 » screen_scale) ;

X;
Y;

X = X (unsigned short) (14 « screen_scale)

;

Y = Y - 40;
convCIO] = 0x0000 I X;
convCll] = 0x1800 I Y;

X = X - (unsigned short) (38 » screen_scale)

;

Y = Y 27;
convC121 = 0x0000 I X;
conv[13] = 0x1800 I Y;

X = X - (unsigned short) (38 » screen_scale)

;

Y = Y - 27;
conv[14] = 0x0000 I X;
convtl5] = 0x1800 I Y;

X = X (unsigned short) (14 * screen_scale)

;

Y = Y 40;
convC16) = 0x0000 I X;
convC173 = 0x1800 I Y;

X = X - (unsigned short) (27 « screen_scale)

;

Y = Y * 19;
conv[183 = 0x0000 I X;
convC19] = 0x1800 I Y;

240

X = X (unsigned short) (38 » screen_scale)

;

conv£20] = 0x0000 I X;
conv[21] = 0x1800 I Y;

*length_ptr = 22;

) /» end waypoint */

241

/*»«***«***«*•*«*»*•«*«**********««*»«***«»»***«******»*****

SOURCE FILE:

FUNCTION:

vortac.

c

vortac (

)

DESCRIPTION: This function generates the code to
put up a vortac on the vector
graphics display at a given location.

DOCUMENTATION
FILES: None.

ARGUMENTS: XO, YO

length_ptr

plot coordinates for
plane
pointer to length of
convt] array
pointer to conversion
array

RETURN: None.

FUNCTIONS
CALLED: None.

AUTHOR: CHUCK ROBERTSON

DATE CREATED: 25Jan87 Version 1.0

« REVISIONS: None.

void vortac (XO, YO, length_ptr, conv)

unsigned short convt]

j

unsigned short »length_ptr;
unsigned short XO, YO;

< unsigned short X, Y; /» coordinates variable

242

double screen_scale = 9.5/12.5; /» scale screen »/

X XO - (unsigned short) (25 » screen_scale)

;

Y = YO t 40;
convCO] = 0x0000 I X;
convtl] = 0x1000 I Y;

X = X (unsigned short) (50 * screen_scale)

;

conv[2] = 0x0000 I X;
convC3] = 0x1800 I Y;

X = X * (unsigned short) (30 » screen_scale)

;

Y = Y - 40;
convC4] = 0x0000 I X;
convtS] = 0x1800 I Y;

X = X - (unsigned short) (30 * screen_scale)

;

Y = Y - 40;
convCS] = 0x0000 I X;
convC71 = 0x1800 I Y;

X = X - (unsigned short) (50 » screen_scale)

;

convCS] = 0x0000 I X;
convC9] = 0x1800 I Y;

X = X - (unsigned short) (30 * screen_scale>

;

Y = Y + 40;
convCIO] = 0x0000 I X;
convCll] = 0x1800 I Y;

X = X (unsigned short) (30 * screen_scale)

;

Y = Y 40;
convC12] = 0x0000 I X;
convC13] = 0x1800 I Y;

Y = Y 30;
convC14] = 0x0000 I X;
convCIS] = 0x1800 I Y;

X = X (unsigned short) (50 » screen_scale)

;

convCIS] = 0x0000 I X;
conv[17] = 0x1800 I Y;

Y = Y - 30;
convCIS] = 0x0000 I X;
convC19] = 0x1800 I Y;

/* fill in »/
Y = Y 6;
conv[20] = 0x0000 I X;

243

conv[21] = 0x1000 I Y;

X = X - (unsigned short) (50 » screen_scale)

;

conv[22] = 0x0000 I X;
convC23J = 0x1800 I Y;

Y = Y 6;
conv[24] = 0x0000 I X;
convC251 = 0x1000 I Y;

X = X (unsigned short) (50 * screen_scale)

;

convC26] = 0x0000 I X;
convC27] = 0x1800 I Y;

Y = Y 6;
convC28] = 0x0000 I X;
convC29] = 0x1000 I Y;

X = X - (unsigned short) (50 * screen_scale>

;

conv[30] = 0x0000 I X;
convC31] = 0x1800 I Y;

Y = Y * 6;
convC32] = 0x0000 I X;
conv[33] = 0x1000 I Y;

X X (unsigned short) (50 » screen_scale)

;

conv[34] = 0x0000 I X;
conv[35] = 0x1800 I Y;

Y = Y * 6;
convC36] = 0x0000 I X;
conv[37] = 0x1000 I Y;

X = X - (unsigned short) (50 * screen_scale)

;

convC38] = 0x0000 I X;
convC39] = 0x1800 I Y;

/* bottom right knob */
X = X0 * (unsigned short) (25 * screen scale);
Y = Y0 - 40;
conv[40] = 0x0000 I X;
convC41] = 0x1000 I Y;

X = X (unsigned short) (24 * screen scale);
Y = Y - 18;
convC42] = 0x0000 I X;
convC43] = 0x1800 I Y;

X = X + (unsigned short) (30 * screen_scale)

;

244

Y = Y 40;
conv[44] = 0x0000 I X;
convC45] = 0x1800 I Y;

X • X - (unsigned short) (24 * screen_scale)

;

Y = Y 18;
conv[46] = 0x0000 I X;
conv[471 = 0x1800 I Y;

/* fill in «/

X = X + (unsigned short) (4 « screen_scale)

;

Y = Y - 3;
convC48] = 0x0000 I X;
conv[49] = 0x1000 I Y;

X X - (unsigned short) (30 * screen_scale)

;

Y = Y - 40;
convC50] = 0x0000 I X;
conv[51] = 0x1800 I Y;

X X (unsigned short) (4 » screen_scale) ;

Y = Y - 3;
conv[521 = 0x0000 I X;
convC53] = 0x1000 I Y;

X = X • (unsigned short) (30 * screen_scale) ;

Y = Y 40;
convC54] = 0x0000 I X;
convC553 = 0x1800 I Y;

X = X (unsigned short) (4 » screen_scale)

;

Y = Y - 3;
convC56] = 0x0000 I X;
conv[57] = 0x1000 I Y;

X = X - (unsigned short) (30 » screen_scale)

;

Y = Y - 40;
convC58] = 0x0000 I X;
conv[59] = 0x1800 I Y;

X = X (unsigned short) (4 » screen_scale)

;

Y = Y - 3;
conv[60] = 0x0000 I X;
conv[61] = 0x1000 I Y;

X = X > (unsigned short) (30 » screen_scale)

;

Y = Y 40;
convC62] = 0x0000 I X;
conv[63] = 0x1800 I Y;

245

X = X (unsigned short) (4 * screen scale);
Y = Y - 3;
convC64] = 0x0000 I X;
convC65] = 0x1000 I Y;

X = X - (unsigned short) (30 * screen_scale)

;

Y = Y - 40;
convC66] = 0x0000 I X;
convC67] = 0x1800 I Y;

X = X (unsigned short) (4 * screen_scale
)

;

Y = Y - 3;
convC68] = 0x0000 I X;
convC693 = 0x1000 I Y;

X X + (unsigned short) (30 « screen_scale)

;

Y = Y - 40;
conv[703 = 0x0000 I X;
convC71] = 0x1800 I Y;

/* bottom left knob */
X = X0 - (unsigned short) (55 * screen_scale) ;

Y = Y0;
conv[72] = 0x0000 I X;
convC73] = 0x1000 I Y;

X = X - (unsigned short) (24 » screen scale);
Y = Y - 18;
conv[74] = 0x0000 I X;
conv[75J = 0x1800 I Y;

X = X (unsigned short) (30 » screen_scale)

;

Y = Y - 40;
convC76] = 0x0000 I X;
convC77] = 0x1800 I Y;

X = X * (unsigned short) (24 » screen_scale)

;

Y = Y * 18;
convC78] = 0x0000 I X;
conv[79] = 0x1800 I Y;

/* fill in */
X X - (unsigned short) (4 » screen scale);
Y = Y - 3;
convCSO] 0x0000 I X;
convCSl] 0x1000 I Y;

X = X - (unsigned short) (30 * screen scale);
Y = Y 40;
conv[82] = 0x0000 I X;

246

conv[83] = 0x1800 I Y;

X = X - (unsigned short) (4 * screen_scale)

;

Y = Y - 3;
convt84] = 0x0000 I X;
conv[85] = 0x1000 I Y;

X = X (unsigned short) (30 * ecreen_scale)

;

Y = Y - 40;
conv[86] = 0x0000 I X;
convC87] = OxlSOO I Y;

X = X - (unsigned short) (4 * screen_scale)

;

Y = Y - 3;
conv[88] = 0x0000 I X;
convt89] = 0x1000 I Y;

X = X - (unsigned short) (30 * screen_scale)

;

Y = Y * 40;
conv[90] = 0x0000 I X;
convC91] = 0x1800 I Y;

X X - (unsigned short) (4 * screen_scale)

;

Y = Y - 3;
conv[92] = 0x0000 I X;
convC93] = 0x1000 I Y;

X = X (unsigned short) (30 * screen_scale)

;

Y = Y - 40;
convt94] = 0x0000 I X;
convC95] = 0x1800 I Y;

X = X - (unsigned short) (4 * screen_scale)

;

Y = Y - 3;
conv[96] = 0x0000 I X;
convC97] = 0x1000 I Y;

X = X - (unsigned short) (30 * screen_scale)

;

Y = Y * 40;
convC98] = 0x0000 I X;
convC99] = 0x1800 I Y;

X = X - (unsigned short) (4 » screen_scale)

;

Y = Y - 3;
convClOOl = 0x0000 I X;
convClOl] = 0x1000 I Y;

X = X + (unsigned short) (30 » screen_scale) ;

Y = Y - 40;
convC102] = 0x0000 I X;

247

conv[103) = 0x1800 I Y;

*length_ptr = 104;

)/* end vortac */

248

» SOURCE FILE: ndb.

c

FUNCTION: ndb()

DESCRIPTION: This routine generates the HP code to
put up a ndb at a given location on
the vector graphics display.

DOCUMENTATION
FILES: None.

ARGUMENTS:

RETURN:

XO, YO
length_ptr

None.

plot coordinates
pointer to length of
convC] array
pointer to
conversion array

FUNCTIONS
CALLED: arc circ(

)

AUTHOR: CHUCK ROBERTSON

DATE CREATED: 30Jan87 Version 1.0

REVISIONS: None.

void ndb(X0, YO, length_ptr, conv)

unsigned short conv[];
unsigned short »length_ptr;
int XO, YO;

{ unsigned short i; /# loop counter */
unsigned short arc_circ_conv[100] ; /» conversion

array «/

249

unsigned short arc_circ_length; /» insertion
length »/

double start_ang, end_ang;
int radiusl, radius2, radius3;
int total_length; /* total insertion

length
void arc_circ();

total_length = 0;
start_ang = 0.0;
end_ang 360.0;
radiusl 25;
radius2 = 50;
radius3 = 75;

arc_circ<X0, Y0, start_ang, end_ang, radiusl,
&arc_circ_length, arc_circ_conv)

;

for (i=0; i<arc_circ_length; i.**)

convttotal_length i] = arc_circ_conv[i]

;

total_length = total_length arc_circ_length;

arc_circ(X0, Y0, start_ang, end_ang, radius2,
&arc_circ_length, arc_circ_conv)

;

for (i=0;i<arc_circ_length;i++)
conv[total_length i] = arc_circ_conv[i]

;

total_length = total_length * arc_circ_length;

arc_circ(X0, Y0, start_ang, end_ang, radius3,
£arc_circ_length, arc_clrc_conv)

;

for (i=0; i<arc_circ_length

(

i**)

convttotal_length + i] = arc_circ_conv[i]

;

total_length = total_length t arc_circ_length;

*length_ptr = total_length;

) /» end of ndb */

250

ft

» SOURCE FILE: compass.

c

« FUNCTION: compass (

)

DESCRIPTION: This routine generates the HP code to
put up the hash marks and appropriate
markings for a compass showing 90
degrees at a given radius for a given
heading.

DOCUMENTATION
FILES: None.

ARGUMENTS:

RETURN:

x_center

y_center

heading_deg
radius
length_ptr

compass_conv

None.

x plot coordinate
for compass center
y plot coordinate
for compass center
heading in degrees
radius of compass
pointer to length of
convt] array
pointer to
conversion array

FUNCTIONS
CALLED: None.

« AUTHOR:
»

* DATE CREATED:

CHUCK ROBERTSON

04FebS7 Version 1.0

REVISIONS: None.

»K«»***ft«**»*««ft*ft
#include<math. h>
#include<string. h>
#include<stdlib. h>

»»««*»»*«*«*««»«»**«*»*»»*»«»«•»»»»««»**»/

251

void compass (x_center, y_center, heading_deg, radius,
length_ptr, compass_conv

)

unsigned short compass_convt]

;

unsigned short *length_ptr;
int x_center, y_center;
int radius;
int heading_deg;

< int X, Y; /» plot coordinates */
int i; /* loop counter */
int length; /* insertion length */
int heading_upper_bound; /* heading bounds »/
int heading_lower_bound;
int degrees_off_center; /* degrees off center

from nearest tick
mark */

int nearest_tick; /» nearest tick to
heading #/

int upper_tick, lower_tlck; /« max and min tick
values */

int tick_value; /» value of tick mark »/
int num_iterations; /» nun of loop

iterations »/
int count; /» loop counter */
int index; /* conversion array

index »/
int disp; /* displacement for

display »/
int str_length; /» string insertion

length */
int tick_value_XO; /» tick value plot

int tick_value_YO;
coord »/

double PI;
double delta_theta_deg; /« angle increment

degrees */
double delta_theta_rad; /» angle increment

radians */
double theta_rad, theta_deg; /« calculation angle »/
double screen_scale;
double DEGREE_TO_RAD;
double start_angle_rad; /« first calculation

angle */
double start_angle_deg;
double size; /» character size */

char hdg_stringC3]

;

252

unsigned short string_conv[40)

;

void string_gen()

;

PI = 3. 14159265;
delta_theta_deg = 5.0;
DEGREE_T0_RAD = (2 * PI / 360.0);
screen_scale 9.5/12.5;
size = 1.0;
length 0;

/« calculate upper and lower bounds of heading »/

heading_upper_bound = (heading_deg 45) X 360;
heading_lower_bound (heading_deg * 315) X 360;

/» calculate degrees off center of closest tick mark
from heading »/

degrees_off_center = heading_deg X 5;

/« calculate what tick is nearest heading »/

nearest_tick = heading_deg - degrees_off_center

;

/* calculate upper and lower ticks »/

upper_tick = (nearest_tick 45) X 360;
lower_tick = (nearest_tick 315) X 360;

/» get lower_tick within range */

if (lower_tick < heading_lower_bound)
lower_tick = (lower_tick * 5) X 360;

/* calculate start plot angle for lower_tick */

if (lower_tick < heading_lower_bound)
start_angle_deg = (double) (135. -

<(lower_tlck 360) -

heading_lower_bound)
)

;

else
start_angle_deg (double) < 135. -

(lower_tick -

heading_lower_bound)
)

;

/» convert angles to radians */

delta_theta_rad = delta_theta_deg » DEGREE_T0_RAD;
start_angle_rad start_angle_deg » DEGREE_T0_RAD;

253

/» INITIALIZE CALCULATION ANGLE, TICK_VALUE, AND
INDEX »/

theta_rad = start_angle_rad;
tick_value lower_tick;
index 0;

/« CALCULATE # OF ITERATIONS »/

if ((heading_upper_bound X 5) == 0)
num_iterations = 19;

else
num_iterations = 18;

/» CALCULATE COORDINATES AND CHARACTERS FOR HP CODE */

for(count 0; count < num_iterations; count**)
<

X = <int)(radius * cos< theta_rad) * screen_scale)

;

Y = (int) (radius » sin(theta_rad))

;

compass_conv[index**] = 0x0000 I (X x_center);
compass_conv[index**] = 0x1000 I <Y * y_center);

if <(tick_value X 10) == 0)
disp 100;

else
disp 50;

X = (int)((radius - disp) * cos(theta_rad)
» screen_scale) ;

Y = (int) ((radius - disp) * sin(theta_rad>)

;

compass_conv[index*»] = 0x0000 I (X x_center);
compass_conv: index**] = 0x1800 I (Y * y_center);

theta_rad = theta_rad - delta_theta_rad;

if ((tick_value X 90) == 0)
(

switch (tick_value)
{

case 0:
strcpy (hdg_string, "N")

;

break

;

case 90:
strcpy (hdg_string, "E");
break;

case 180:
strcpy (hdg_string, "S")

;

254

break;
case 270:

strcpy (hdg_string, "W"
)

j

break;
default:

break;
>

str_length 1;
>

else if (<tlck_value X 10) 0)
{

itoa(tick_value, hdg_string, 10)

;

str_length = strlen(hdg_string)

;

)

/» CALCULATE COORDINATES FOR TICK_VALUE */

switch <str_length)
{

case 1

:

disp 18;
break;

case 2:
disp 36;
break;

case 3:
disp = 54;
break;

>

tick_value_XO = X x_center - disp;
tick_value_YO = Y + y_center - 50;

if ((tick_value 7. 10) == 0)
f

string^gen < hdg_string, tick_value_XO,
tick_value_YO, size, Slength,
string_conv)

;

for<i=0;i<length;i+-O
compass_conv[index i] = string_conv[i]

;

index = index length;
}

tick_value = (tick_value * 5) '/. 360;

)

»length_ptr = index;

255

)/» end of compass «/

256

» SOURCE FILE:

«*»**»»»»»*»##«*««#««,»*«»*»»»»»»»»»»»»»

hdg_brg. c

FUNCTION: heading_and_bearing(

)

DESCRIPTION: This routine generates the HP code to
put up the heading and bearing of an
ndb or vortac. It calculates the
appropriate value and plots it with a
corresponding arrow Indicating a
heading "to" or a bearing "from" an
ndb or vortac.

DOCUMENTATION
FILES: None.

ARGUMENTS: plane_XO
plane_YO
plane_heading_deg
theta_deg

radius
length_ptr

hdg_brg_conv

X plot coord.
Y plot coord,
plane heading
plot angle in
degrees
plot radius
pointer to
length of
conv[] array
pointer to
conversion
array

RETURN: None.

FUNCTIONS
CALLED: insert (

)

string_gen(

)

line(

>

arrow (

)

AUTHOR: CHUCK ROBERTSON

DATE CREATED: 23Feb87 Version 1.0

257

REVISIONS: None.

#include<stdllb. h>
#include<string. h>
#include<math. h>
#include<stdio. h>

void heading_and_bearing(plane_XO, plane_YO,
plane_headlng_deg, theta_deg,
radius, length_ptr, hdg_brg_conv)

int plane_XO, plane_YO;
int plane_heading_deg;
double theta_deg;
double radius;
unsigned short hdg_brg_conv[]

;

unsigned short *length_ptr;

(

unsigned short convCSO];
int length;
int i;
int index;
int radix;

int insert () ;

int string^genl)

;

int line<);
int arrow () ;

/» conversion array »/
/« insertion length */
/» loop counter »/
/« array index »/
/» conversion radix */

char final_string[203;
char cat_string[5]

;

/» conversion strings »/

double size;
double theta_rad;

double screen_scale;
double PI;
double DEGREE_TO_RAD;

/* character size */
/» conversion angle in

radians */
/* screen scale »/

int heading_deg;
int hdg_X, hdg_Y;

int
int

hdg_label_X;
hdg_label_Y;

/» heading in degrees */
/* heading plot coord »/
/« relative to plane «/
/» heading plot coord */

double hdg_label_theta; /» final heading plot
angle »/

258

double hdg_label_phi;

double hdg_label_radlus;
double hdg_delta_X;

double hdg_delta_Y;

double hdg_delta_X_sqrd;
double hdg_delta_Y_sqrd;

int
int

int
int

bearing_deg;
brg_X, brg_Y;

brg_label_X;
brg_label_Y;

/» intermediate hdg plot
angle »/

/* hdg plot radius »/
/* hdg intermed x plot

value «/
/* hdg intermed y plot

value */

/* bearing in degrees */
/» bearing plot coord »/
/» relative to plane «/
/* bearing plot coord «/

/» final bearing plot
angle */

/* intermediate brg plot
angle »,

/* brg plot radius */
/* brg intermed x plot

value «/
/* brg intermed y plot

value

double brg_label_theta;

double brg_label_phi;

double brg_label_radius;
double brg_delta_X;

double brg_delta_Y;

double brg_delta_X_sqrd;
double brg_delta_Y_sqrd;

screen_scale = 9.5/12.5;
PI 3. 14159265;
DEGREE_TO_RAD = (2 * PI / 360.0);

index = 0;
size = 1.0;
radix = 10;

/* convert plot angle to radians »/

theta_rad = theta_deg * DEGREE_T0_RAD;

/» calculate heading to ndb or vortac «/

heading_deg = (int) (plane_heading_deg * 360
* (90 - theta_deg));

if (heading_deg >= 360)
heading_deg = headlng_deg •/. 360;

/* calculate bearing from a ndb or vortac »/

»/

259

bearing_deg = (heading_deg - 180) 360;

if (bearing_deg >= 360)
bearing_deg = bearing_deg X 360;

/» assign delta_y constants */

hdg_delta_Y = 50.0;
brg_delta_Y = 50.0;

/» calculate delta_x values »/

hdg_delta_X = 2.0 / 3.0 » radius;

brg_delta_X = 1.0 / 3.0 * radius;

/» calculate heading and bearing phi angle */

hdg_label_phi = atan2(hdg_delta_Y,
hdg_delta_X>;

brg_label_phi = atan2<brg_delta_Y,
brg_delta_X) ;

/» calculate radii to plot heading and bearing */

hdg_delta_X_sqrd = pov(hdg_delta_X, 2.0);
hdg_delta_Y_sqrd = pow(hdg_delta_Y, 2.0);

hdg_label_radius = sqrt <hdg_delta_X_sqrd
hdg_delta_Y_sqrd)

;

brg_delta_X_sqrd = pow(brg_delta_X, 2.0);
brg_delta_Y_sqrd = pow(brg_delta_Y, 2.0);

brg_label_radius = sqrt (brg_delta_X_sqrd
* brg_delta_Y_sqrd)

;

/» figure out which side of radius to plot heading
and bearing »/

if ((theta_deg <= 0. 0) II <theta_deg >= 180.0))
(hdg_label_theta = theta_rad

hdg_label_phi

;

brg_label_theta = theta_rad
brg_label_phi;

else
(hdg_label_theta = theta_rad -

hdg_label_phi;

260

brg_label_theta = theta_rad -

brg_label_jphi;

/* calculate heading plot coordinates »/

hdg_label_X = (int > (hdg_label_radius *

cos<hdg_label_theta) »

screen_scale)

;

hdg_label_Y = (int) (hdg_label_radius »

sin(hdg_label_theta)
)

;

hdg_X = hdg_label_X plane_XO;
hdg_Y = hdg_label_Y plane_YO;

/» plot heading »/

itoa(heading_deg, final_string, radix)

;

string_gen(final_string, hdg_X, hdg_Y, size, filength, conv)

;

for(i=0;i<length;ii-t)
hdg_brg_conv[index + i] conv [13;

index = index + length;

arrow(plane XO, plane_YO, theta_deg, hdg delta X, -to",Slength, conv)

;

—

for (i=0; Klength; i-n-

)

hdg_brg_conv[index + i] = convCi];

index = index length;

/* calculate bearing plot coordinates »/

brg_label_X = (int > (brg_label_radius »

cos(brg_label_theta) »

screen_scale)

;

brg_label_Y = (int) (brg_label_radius *

sin (brg_label_theta))

;

brg_X = brg_label_X > plane_XO;
brg_Y = brg_label_Y plane_YO;

/* plot bearing */

itoa(bearing_deg, final_string, radix)

;

string_gen(final_string, brg_X, brg_Y, size, &length, conv)
,

261

for < i=0 ; Klength ; i •

)

hdg_brg_conv[index + i] = convti];

index = index length;

arrow (plane_XO, plane_YO, theta_deg, brg_delta_X, "from",
Slength, conv)

;

for(i=0;i<length;i+*)
hdg_brg_conv[index i] = convCi];

index = index length;

*length_ptr index;

) /* end of heading_and_bearing »/

262

ndb_angl. cSOURCE FILE:

FUNCTION: get_ndb_plat_angle(

)

DESCRIPTION:

DOCUMENTATION
FILES:

This routine gets the raw adf from the
data package and uses a lookup table
along with interpolation to convert
the raw adf into the ndb plot angle.

None.

ARGUMENTS: ndb_theta_deg_ptr : pointer to the
plot angle
variable in
calling routine

RETURN: None.

FUNCTIONS
CALLED: None.

AUTHOR: CHUCK ROBERTSON

DATE CREATED:

REVISIONS:

23Mar87

None.

Version 1.

#include "data_str. h"
#include<stdlib. h>

typedef struct { double a_to_d;
double value;) CONVERSION;

/* lookup table for raw adf value conversion */

CONVERSION adf C 18] = {

263

<0. 0, iS4. 0>,
(3.0, 180.0),
(19.0, 170.0),
<25. 0, 150.0),
(47.0, 120.0),
(68.0,90.0),
(89.0,60.0),
(110.0,30.0),
(131. 0,0.0),
(154.0,330.0),
(176.0,300.0),
(199.0,270.0),
(221.0,240.0),
(243.0,210.0),
(250.0,200.0),
(254.0, 190.0),
{255.0, 185.0)

>;

void get_ndb_plot_angle (ndb_theta_deg_ptr

)

double *ndb_theta_deg_ptr;

{

int i; /* loop counter «/
double raw_adf;

/* GET RAW ADF READING FROM A/D AND FIND PLOT ANGLE OF
NDB IN DEGREES USING LOOKUP TABLE »/

raw_adf = (double) (data_pkg. ADF)

;

lf((rav_adf > 131.0) && (rav_adf <= 154.0))
adfCS). value = 360.0;

else
adfCS). value = 0.0;

ford = 0; 1 < 17; i-n-)

if(<rav_adf >= adf CD. a_to_d) &&
(raw_adf <= adfCi l).a_to_d))

{

/* INTERPOLATE */
»ndb_theta_deg_ptr

(double) ((rav_adf - adf t i]. a_to_d) /

(adf Ci*D.a_to_d -

adf CD. a_to_d> »

(adf Ci+1]! value -

adf CD. value)
adf CD. value) ;

264

break;
}

> /* end of get_ndb_plot_angle */

265

»

* SOURCE FILE: runway.

c

* FUNCTION: runway <

)

« DESCRIPTION: This function calculates the HP code
to generate the runway for a given
location, angle, and scale. It is
drawn using vanishing point
techniques.

DOCUMENTATION
FILES: None.

» ARGUMENTS:

» RETURN:

rho_deg
x_center, y_center
scale
length_ptr

None.

centerline angle
plot coordinates
runway scale
pointer to length
of convt] array
pointer to
conversion array

FUNCTIONS
CALLED: None.

« AUTHOR: CHUCK ROBERTSON

« DATE CREATED:
»

»

* REVISIONS:

18Feb87

None.

Version 1.

#include<stdlib. h>
#include<math. h>

void runway (x_center, y_center, rho_deg, scale, length_ptr,
runway_conv)

266

int x_center, y_center;
unsigned short runway_conv[]

;

unsigned short »length_ptr;
double rho_deg;
double scale;

(

int index;

int delta_x, delta_y;

int base_middle_X;
int base_middle_Y;

int end_runway_radius;

/» conversion array
index */

/» delta values for
plot »/

/» coord of middle of »/
/* base of runway »/

/* radius to runway
end */

int
int

end_middle_X;
end_middle_Y;

/» coord of middle of */
/* end of runway »/

int
int
int
int
int
int
int
int

base_left_X;
base_left_Y;
base_right_X

;

base_right_Y;
end_left_X;
end_left_Y;
end_right_X;
end_right_Y;

/* corner coordinates */
/» of runway »/

int base_centerline_radius; /» radii to base and */
int end_centerline_radius; /» end of runway */

/» centerline »/

int base_centerline_X;
int base_centerllne_Y;
int end_centerline_X;
int end_centerline_Y;
int touchdown_line_left_X;
int touchdown_line_left_Y;
int touchdown_line_right_X;
int touchdown_line_right_Y;

/» centerline »/
/* coordinates */

/* touchdown line */
/* coordinates »/

double rho_rad;
double phi_deg;
double phi_rad;
double screen_scale;
double PI;
double DEGREE_TO_RAD;

/» crab angle in radians »/
/* plot angle in degrees »/
/* plot angle in radians »/

2S7

index = 0;
end_runvay_radius = (int)(200 » scale);
base_centerline_radius = (int)(30 » scale);
end_centerline_radius = (int)(190 * scale);
screen_scale = 9.5/12.5;
PI = 3. 14159265;
DEGREE_T0_RAD = (2 » PI / 360.0);

/« CONVERT RHO TO RADIANS »/

rho_rad = rho_deg * DEGREE_TO_RAD;

/* CALCULATE MIDDLE OF BASE «/

delta_x = (int)((-50 * scale) « tan < rho_rad

)

» screen_scale)

;

delta_y = (int)(-50 » scale);

base_middle_X = x_center * delta_x;
base_middle_Y y_center delta_y;

/* CALCULATE PHI */

phi_deg 90.0 - rho_deg;

phl_rad = phi_deg » DEGREE_TO_RAD;

/» CALCULATE MIDDLE END OF RUNWAY «/

delta_x = (int > (end_runvay_radius « cos<phi_rad)
* screen_scale)

;

delta_y = (int) (end_runway_radius * sin(phi_rad))

;

end_middle_X = base_middle_X delta_x;
end_middle_Y base_middle_Y delta_y;

/» CALCULATE FOUR CORNERS OF RUNWAY »/

base_left_X = base_middle_X -

(int) (50 * scale » screen_scale)

;

base_left_Y = base_middle_Y;

base_right_X = base_middle_X *

(int) (50 * scale » screen_scale)

;

base_right_Y = base_middle_Y;

end_left_X = end_middle_X -

(int) (30 » scale * screen_scale)

;

end_left_Y = end_middle_Y;

268

end_right_X end_middle_X *

(int)(30 * scale * screen_scale)

;

end_right_Y = end_middle_Y;

/* CALCULATE RUNWAY CENTERLINE POINTS »/

delta_x (int) (base_centerline_radius »

cos(phi_rad) * screen_scale)

;

delta_y < int > (base_centerline_radius * sin(phi_rad)
)

;

base_centerline_X = base_middle_X * delta_x;
base_centerline_Y = base_middle_Y t delta_y;

delta_x = (int) (end_centerline_radius »

cos(phi_rad) * screen_scale)

;

delta_y = (int) (end_centerline_radius » sin(phl_rad))

j

end_centerline_X = base_middle_X delta_x;
end_centerline_Y = base_middle_Y delta_y;

/* CALCULATE TOUCHDOWN LINE POINTS */

touchdown_line_left_X x_center -

< int) (20 » scale
* screen_scale)

;

touchdown_llne_left_Y = y_center;

touchdown_line_right_X x_center
(int) (20 » scale

* screen_scale)

;

touchdown_line_right_Y = y_center;

/* CONVERT TO HP CODE »/

/* plot runway outline »/
runway_oonv [index*] = 0x0000
runway_conv[index*+] = 0x1000

runway_conv[index**] 0x0000
runway_conv[index+*] 0x1800

runway_conv [index*

]

runway_conv [index*

]

0x0000
0x1800

runway_convt index**

]

0x0000
runway_convCindex**

]

0x1800

runway_conv C index* *

]

= 0x0000
runway_conv[index**] = 0x1800

base_left_X;
base_left_Y;

end_left_X;
end_le£t_Y;

end_right_X;
end_right_Y;

base_right_X

;

base_right_Y

;

base_left_X;
base_left_Y;

269

/» plot centerline «/
runvay_conv[index~] = 0x0000 I base_centerline X-
runvay_conv[index**] = 0x1000 I base^enter-line^i

runvay_conv[index**] = 0x0000 I end_centerline X-
runvay_conv[index**] = OxlQOO I end_centerline~Y;

/» plot touchdown line */
runvay_conv[index+] = 0x0000
runvay_conv[index*+] = 0x1000

runway_conv[index**: = 0x0000
runvay_conv[index**: = 0x1800

»length_ptr = index;

touchdown_line_left_X;
touchdovn_line_left_Y;

touchdown_line_right_X;
touchdown_line_right_Y;

> /* end of runway »/

270

*

» SOURCE FILE: ils_cmps. c

FUNCTION: ils_compass(

)

* DESCRIPTION: This routine generates the HP code to
* put up the hash marks and appropriate
* markings for a compass showing 20
* degrees at a given radius for a given
* heading.

*

*

«

DOCUMENTATION
FILES: None.

»

» ARGUMENTS: x_center

* y_center

»

»

»

heading_deg
radius
length_ptr

RETURN:

compass_conv

None.

: x plot coordinate
for compass center

: y plot coordinate
for compass center

: heading in degrees
: radius of compass
: pointer to length of
conv[] array

: pointer to
conversion array

FUNCTIONS
CALLED: None.

AUTHOR: CHUCK ROBERTSON

DATE CREATED: 30Mar87 Version 1.0

REVISIONS: None.

#include<math. h>
#include<string. h>
#include<stdlib. h>

271

void ils_compass(x_center (y_center,
length_ptr, compass

unsigned short compass_conv[]

;

unsigned short »length_ptr;
int x_center, y_center

;

int radius;
int heading_deg;

heading_deg, radius,
conv)

{ int X, Y;
int i(
int length;
int heading_upper_bound

;

int heading_lower_bound;
int tick_value;
int num_iteratlons

;

int count;
int index;

int disp;

int str_length;

int tick_value_XO

;

int tick_value_YO;

/« plot coordinates »/
/» loop counter »/
/» insertion length */
/* heading bounds */

/« value of tick mark */
/* num of loop

iterations */
/* loop counter »/
/» conversion array

index */
/* displacement for

display */
/* string insertion

length »/
/» tick value plot

coord »/

double PI;
double delta_theta_deg;

double delta_theta_rad;

double theta_rad, theta_deg;
double screen_scale;
double DEGREE_TO_RAD;
double start_angle_rad;

double start_angle_deg;
double size;

char hdg_string[3]

;

unsigned short string_convC40]

;

void string_gen();

PI = 3. 14159265;
delta_theta_deg 1.0;

/* angle increment
degrees */

/» angle increment
radians */

/* calculation angle */

/* first calculation
angle «/

/* character size */

272

DEGREE_TO_RAD = (2 * PI / 360.0);
screen_scale = 9.5/12.5;
size = 1. 0;
length = 0;

/* calculate upper and lower bounds of heading ./

heading_upper_bound = (heading_deg 10) •/. 360-
heading_lower_bound = (heading_deg 350) 7. 360;

etart_angle_deg = 100.0;

/» convert angles to radians »/

delta_theta_rad = delta_theta_deg » DEGREE_T0 RAD-start_angle_rad = start_angle_deg * DEGREE_T0_RAd|

/« INITIALIZE CALCULATION ANGLE, TICK VALUE. INDEX
AND # OF ITERATIONS */

theta_rad = start_angle_rad;
tick_value = heading_lower_bound;
index = 0;
num_iterations = 21;

'* CALCULATE COORDINATES AND CHARACTERS FOR HP CODE »/

for (count = 0; count < nutn_iterations; count**)

v
=

<f
nt> (radius * cos(theta_rad) screen scale);

X = (int) (radius » sin(theta_rad)
)

;

compass_conv[index**] = 0x0000 I (X * x_center>-
compass_conv[index**] = 0x1000 I (Y * y_center),'

if (<tick_value X 5) == 0)
disp = 100;

else
disp = 50;

X = (int) ((radius - disp) » cost theta_rad)
* screen_scale)

;

Y = (int) ((radius - disp) * sin< theta_rad)
)

;

compass_convCindex**] = 0x0000 I (X * x center) •

compass_convClndex**] = 0x1600 I <Y * y"center)

J

theta_rad = theta_rad - delta_theta_rad;

if ((tick_value 7. 90) == 0)

273

<

switch (tick_value)
<

case 0:
strcpy (hdg_string, "N">;
break;

case 90:
strcpy (hdg_string, "E");
break;

case 180:
strcpy (hdg_strlng, "S") ;

break;
case 270:

strcpy (hdg_string, "W">;
break;

default

:

break;
>

str_length = 1;
)

else if ((tick_value V. 10) == 0)
{

itoa(tick_value, hdg_string, 10);
str_length = strlen(hdg_string)

;

)

/» CALCULATE COORDINATES FOR TICK_VALUE »/

switch (str_length)
{

case 1

:

disp = 18;
break;

case 2:
disp 36;
break;

case 3:
disp = 54;
break;

>

tick_value_XO = X x_center - disp;
tick_value_YO = Y y_center - 50;

if (<tick_value •/. 10) == 0)
(

string_gen(hdg_string, tick_value_XO,
tick_value_YO, size, Slength,
string_conv)

;

274

for < i =0 ; i < length ; i> >

compass_conv[index 1] = string_conv[i]

;

index index length;
>

tick_value = (tick_value 1) % 360;

>

*length_ptr = index;

> /» end ils_compass »/

275

APPENDIX D (CONT.

)

HOST PROGRAM INCLUDE FILES

276

/»****»**#********#**»»)(»»»»**«»»*»»»»»»»»»»»«»»»»»«»«»»»»»»

SOURCE FILE: data str.

h

FUNCTION: None.

DESCRIPTION: This is a file to be included in any
function that needs to access a member
of the data package. All the pieces of
the data package are stored in the
structure data_pkg. Individual members
are accessed by using the following
name: data_pkg. ALTITUDE etc.

DOCUMENTATION
FILES: None.

ARGUMENTS: None.

RETURN: None.

FUNCTIONS
CALLED: None

AUTHOR:

DATE CREATED:

REVISIONS:

Dave Gruenbacher & Chuck Robertson

22Jan87 Version 1.0

* 13Apr87 Version 1.

1

* Added conditional statements.
* Dave Gruenabcher
*

typedef struct (

unsigned char BANK
unsigned char PITCH
unsigned char VERT_SPEED
unsigned char DELTA X

277

unsigned char DELTA_Y
unsigned char MANIFOLD_PRESSURE ;

unsigned char COURSE_DEVIATION
;

unsigned char GLIDESLOPE
unsigned char ALTITUDE
unsigned char AIRSPEED
unsigned char COMPASS
unsigned char ADF
unsigned char DME
unsigned char POWER
unsigned char RPM
unsigned char SPARE
unsigned char BINARY_INPUTS

;

unsigned char LAST_KEY
unsigned char MONTH
unsigned char DAY
unsigned char DATE
unsigned char HOURS

;

unsigned char MINUTES
unsigned char SECONDS

> DATA_PKG;

typedef struct {

int timer_min;
int timer_sec;
int time_out_tnin;
int time_put_sec;
int math_operation_flag;
int timer_operation_flag;
int timer_status_flag;
double adf_freq;
double coml_freq;
double com2_freq;
double vorl_freq;
double vor2_freq;
int assigned_altitude;
int mda_dh;
int estimated_wind;

) CLOCK_PKG;

typedef struct (

int
int
int
int
int
int
int

airspeed_alarm_flag;
assigned_altitude_alarm_flag

;

mda_dh_alarm_flag

;

assigned_altitude_enable_flag

;

mda_dh_enable_flag

;

time_put_alarm_flag;
alarm_status_flag;

> ALARM PKG;

278

ifdef ehsi_main
DATA_PKG data_pkg = {0>;
unsigned short SCREENC 1000] = <OxFFFF>-
else '

extern DATA_PKG data_pkg;
extern unsigned short SCREENU;
extern int GET_DATA_PACKAGE<

)

;

extern int SEND_SCREEN(
>

;

extern int RETRIEVE_SCREEN<
>

;

extern int TOGGLE_ALARM SWITCH!);endif

define
define
define
define
define
define

NULL TIMER
START_TIMER
RESETJTIMER
SET TIMER
TIMER OFF
TIMER_ON

1

2
3

1

define
define

ALARMJDFF
ALARM_ON 1

define
define

DISABLED
ENABLED 1

279

/ft*****************)!***********************))****************

SOURCE FILE: datpg_xy. c

FUNCTION: None

DESCRIPTION: This file is to be included with the
any file dealing with the DATA PAGE
that needs to display something on the
vector graphics display. It contains
coordinates for plotting the various
items on the DATA PAGE.

» DOCUMENTATION
* FILES: None.
*

*

» ARGUMENTS: None.
*

»

» RETURN: None.

* FUNCTIONS
« CALLED: None.

»

* AUTHOR: CHUCK R

»

DATE CREATED: 01Febfi7 Version 1.0

REVISIONS: None.

#define coll 10
#define col2 1100

#define heading_X0 coll
define heading_YO 1980
fdefine heading_Xl coll (10 » 54)
#define heading_Yl 1980

#define airspeed_CAS_X0 coll
#define airspeed_CAS_Y0 1890

280

define airspeed_CAS_Xl coll (10 * 54)
define airspeed_CAS_Yl 1890

define airspeed_TAS_XO coll
define airspeed_TAS_YO 1800
define airspeed_TAS_Xl
define airspeed_TAS_Yl

define gndspeed_XO coll
define gndspeed_YO 1710
define gndspeed_Xl
define gndspeed_Yl

define assigned_XO coll
define assigned_Y0 1530
define assigned_Xl coll (10 * 54)
define assigned_Yl 1530

define altitude_X0 coll
define altitude_Y0 1440
define altitude_Xl coll t (10 * 54)
define altitude Yl 1440

define mda_dh_X0 coll
define mda_dh_Y0 1350
define mda_dh_Xl coll (8
define mda_dh Yl 1350

54)

define timer_X0 coll
define timer_Y0 1170
define timer_Xl coll + (7
define timer Yl 1170

* 54)

define time_put_X0 coll
define time_out_Y0 1080
define time_out_Xl coll
define time out Yl 1080

(9 54)

define coml_X0 coll
define coml_Y0 900
define coml_Xl coll (6
define coml_Yl 900

» 54)

define com2_X0 coll
define com2_Y0 810
define com2_Xl coll
define com2 Yl 810

(6 » 54)

define navl_X0 coll
define navl Y0 720

281

define navl_Xl coll
define navl Yl 720

(6 « 54)

define nav2_X0 coll
define nav2_Y0 S30
define nav2_Xl coll
define nav2 Yl 630

(6 * 54)

define rnav_wpl_XO coll
define rnav_wpl_YO 450
define rnav_wpl_Xl
define rnav_wpl_Yl

define rnav_vp2_X0 coll
define rnav_vp2_Y0 360
define rnav_wp2_Xl
define rnav_vp2_Yl

define adf_X0 col2
define adf_Y0 450
define adf_Xl col2 * (5 » 54)
define adf_Yl 450

define temp_X0 coll
define temp_Y0 180
define temp_Xl
define temp_Yl

define time_X0 col2
define time_Y0 900

define time_edt_X0 time_X0
define time_edt_YO time_Y0 - 90
define time_edt_Xl time_X0 (10 •

define time_edt_Yl time_Y0 - 90

define time_zulu_XO time_X0
define time_zulu_YO tlme_Y0 - ISO
define time_zulu_Xl time_X0 (10
define time_zulu_Yl time YO - 180

52)

54)

define time_since_lo_XO time_X0
define tlme_since_lo_YO time_Y0 - 270
define time_since_lo_Xl time_X0 (10
define time_Bince_lo_Yl time_Y0 - 270

define barometer_XO col2
define barometer_YO 180
define barometer_Xl
define barometer Yl

» 54)

282

define since_lo_XO coll
define since_lo_YO 630
define since_lo_Xl
define since_lo_Yl

/* coordinates for "CLIMB" */
#define climb_arc_X0 col2 100
#define climb_arc_Y0 1440 27

#define vert_speed_X0 climb_arc_X0
#define vert_speed_Y0 climb_arc_Y0 t 270 27

define C_X0 climb_arc_X0 - 100
#define C_Y0 climb arc Y0 180 27

#define L_X0 climb_arc_X0 - 100
#define L_Y0 climb_arc_Y0 +90 - 27

define I_X0 climb_arc_X0 - 100
#define I_Y0 climb_arc_Y0 - 27

define M_X0 climb_arc_X0 - 100
define M_Y0 climb_arc_Y0 - 90 - 27

define B_X0 climb_arc_X0 - 100
define B_Y0 climb_arc_Y0 - 180 - 27

define climb_centerlinel_X0 climb_arc_X0 - 47
define climb_centerlinel_Y0 climb_arc_Y0
define climb_centerlinel_Xl climb_arc_X0 47
define climb_centerlinel_Yl clitnb_arc_Y0

define climb_centerline2_X0 climb_arc_X0 - 47 190
define climb_centerline2_Y0 climb_arc_Y0
define climb_centerline2_Xl clirob_arc_X0 » 47 » 190
define climb_centerline2_Yl climb arc Y0

define climb_centerline3_X0 climb_arc_X0
define climb_centerline3_Y0 climb_arc_Y0
define climb_centerline3_Xl climb_arc_X0
define climb_centerline3_Yl climb_arc_Y0

47

47

190

190

define climb_centerline4_X0 climb_arc_X0 - 47 3 * 190
define climb_centerline4_Y0 climb_arc_Y0
define climb_centerline4_Xl climb_arc_X0 47 * 3 * 190
define climb_centerline4_Yl climb_arc_Y0

define climb_centerline5_X0 climb_arc_X0 - 47 4 * 190
define climb_centerline5_Y0 climb_arc_Y0
define climb_centerline5_Xl climb_arc_X0 47 + 4 » 190

283

define climb_centerline5_Yl cllmb_arc_YO

/* end of coordinates for "CLIMB" */

#define aidspeed_bar_XO 900
define aidspeed_bar_YO 1800

define binary_ip_X0 col2
define binary_ip_Y0 300

define command_line_X0 10
define command_line_Y0 160
define command_line_Xl 2038
define command_line_Yl 160

define command_X0 10
define command Y0 10

284

*

* SOURCE FILE: navpg_xy. c

FUNCTION: None.

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

This file is to be included with the
any file dealing with the NAV PAGE
that needs to display something on
the vector graphics display. It
contains coordinates for plotting the
various items on the NAV PAGE.

None.

None.

RETURN:

FUNCTIONS
CALLED:

None.

None

AUTHOR: CHUCK ROBERTSON

DATE CREATED:

REVISIONS:

05Apr87 Version 1.0

None.

define airspeed_XO
#define alrspeed_YO
define airspeed_Xl
define airspeed_Yl

10
1950
10 (7 * 54)
1950

define gndspeed_X0 10
define gndspeed_YO 1850
define gndspeed_Xl
define gndspeed_Yl

285

define track_XO 1600
#define track_YO 1950
define track_Xl
define track_Yl

define altitude_XO 1600
define altitude_YO 1850
define altltude_Xl 1600 + (4 » 54)
define altitude_Yl 1S50

define dme_X0 10
define dme_Y0 1750
define dme_Xl 10 + (5 » 54)
define dme_Yl 1750

define plane_X0 1048
define plane_Y0 855

define compasa_arc_XO 1048
define compass_arc_YO 10
define compass_arc_init_angle 45.
define compass_arc_end_angle 135.
define compass_arc_radius 1860

/» HEADING, HEADING BOX, AND POINTER «/

define heading_XO 967
define heading_YO 1980

define heading_box_X0 heading_XO
define heading_box_YO heading_YO
define heading_box_no_char 3

define heading_ptr_linel_XO heading_XO - 10define heading_ptr_linel_YO heading_Y0 - 10
define headingj>tr_linel_Xl compass_arc_XO
define headingj>tr_linel_Yl compass_arc_YO * \

compass_arc_radius

define heading_ptr_line2_X0 (heading_XO
<heading_box_no_char » 54)
10)

define heading_ptr_line2_Y0 heading_YO - 10define headlng_ptr_line2_Xl compass_arc_XO
define heading_ptr_line2_Yl compass_arc_YO \

compass_arc_radius

define command_line_XO 10
define command_line_YO 160
define command_line_Xl 2038

286

#define command_line_Yl 160

#deflne command_X0 10
#define command Y0 10

287

/•»«•«««»«»«»««»»»»«».»>.«»»«#«»»«•<»<»«»•»»«•»»« »***«***««»

SOURCE FILE:

FUNCTION:

ilspg_xy. c

None.

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

This file is to be included with the
any file dealing with the ILS PAGE
that needs to display something on the
vector graphics display. It contains
coordinates for plotting the various
items on the ILS PAGE.

None.

None.

RETURN: None.

FUNCTIONS
CALLED: None.

AUTHOR: CHUCK ROBERTSON

« DATE CREATED: 05Apr87 Version 1.0

REVISIONS: None.

define airspeed_Xl
#deflne airspeed_Yl

•«*•*•*«•»*»»«»»»«•«»»*«•««««««/

#define altitude_XO 10
define altitude_YO 1950
define altitude_Xl 10
define altitude_Yl 1950

define mda_dh_X0 10
define mda dh YO 1850

(5 * 54)

288

define mda_dh_Xl 10 (4 » 54)
define mda dh Yl 1850

define dme_X0 1600
define dme_Y0 1950
define dme_Xl 1600 (5
define dme Yl 1950

* 54)

define compass_arc_X0 1048
define compass_arc_Y0 10
define compass_arc_init_angle 80.
define compass_arc_end_angle 100.
define compass_arc_radius 1860

/» HEADING, HEADING BOX, AND POINTER «/

define heading_XO 967
define heading_YO 1980

define heading_box_XO heading_XO
define heading_box_YO heading_YO
define heading_box_no_char 3

define heading_ptr_linel_XO heading_XO - 10
define heading_ptr_linel_YO heading_YO - 10
define heading_ptr_linel_Xl compass_arc_XO
define heading_ptr_linel_Yl compass_arc_YO \

compass_arc_radius

define heading_ptr_line2_X0 heading_XO \

< heading_box_no_char
define heading_ptr_line2_Y0 heading_YO - 10
define heading_ptr_line2_Xl compass_arc_XO
define headingjptr_line2_Yl compase_arc_YO \

compass_arc_radius

define command_line_XO 10
define command_line_YO 160
define command_line_Xl 2038
define command_line_Yl 160

define cotnmand_XO 10
define command YO 10

* 54) 10

289

GLOSSARY

ADF - Automatic Direction Finder. Used for finding thedirection of a NDB which is transmitting the set ADF
frequency. Usually shown as an angle relative to theplanes heading.

B.aring - The horizontal direction from a point measuredclockwise from some reference point, usually magneticnorth, through 360 degrees.

DACI - Data Acquisition and Communications Interface Theinterface unit, which ties the EHSI system together andcommunicates with the host computer.

DH - Decision Height. Height at which a decision must bemade, during an ILS approach, to either continue theapproach or to execute a missed approach.

DME - Distance Measuring Equipment. Equipment used tomeasure, in nautical miles, the slant range distance ofan aircraft from the DME navigation aid.

Glid.Blop. - Descent profile determined for verticalguidance during an approach.

Ground«p««d - The speed of the airplane relative to thesurface of the earth.

H.ading - The horizontal direction to a point measured

nnrth
W

!k ?"o«S"'
reference !**«*. usually magneticnorth, through 360 degrees.

IFR - Instrument Flight Rule. Rules which apply when flyingan aircraft under instrument conditions.

ILS - Instrument Landing System. System used when landing
=?o„ ? ?,

Under IFR conditlo"s > Contains a glide-slope, localizer, and markers. B

L°C
'ouidL^ l^

=omponent °f a" ILS, which provides courseguidance to the runway.

"DA
des-n^T ^^ Altitude

- Lowest altitude to which

t St=Wl"th°rized on final approach in execution ofa standard instrument approach procedure where no elec-tronic glideslope is provided.

290

GLOSSARY

NDB - Non-directional Beacon. A radio beacon transmitting
non-directional signals. Direction to or from found
using ADF equipment.

Track - The actual flight path of an aircraft over the
surface of the earth.

VORTAC - VHR Omnidirectional Range Tactical Air Navigation.
A navigational aid providing VOR azimuth, TACAN azimuth,
and TACAN DME equipment at one location.

Waypoint - A predetermined geographical position used for
route progress that is defined relative to a VORTAC.

291

GRAPHICAL PAGE DEVELOPMENT OF AN

ELECTRONIC HORIZONTAL SITUATION INDICATOR

by

CHARLES A. ROBERTSON

B. S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

ABSTRACT

A brief introduction to an Electronic Horizontal

Situation Indicator (EHSI) is given. Development of the

graphical pages of the EHSI is discussed. An overview of the

development system used is given. The controlling routine

of the EHSI is discussed along with graphical routines used

to generate the various pages of the EHSI. Suggestions are

made for improving the EHSI Development System. Future

recommendations for further development of the EHSI pages

are given.

