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DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR

EQUATIONS WITH MONOTONE OPERATORS

N. S. HOANG AND A. G. RAMM

Abstract. A version of the Dynamical Systems Method (DSM) for solving
ill-posed nonlinear equations with monotone operators in a Hilbert space is

studied in this paper. An a posteriori stopping rule, based on a discrepancy-
type principle is proposed and justified mathematically. The results of two
numerical experiments are presented. They show that the proposed version
of DSM is numerically efficient. The numerical experiments consist of solving
nonlinear integral equations.

Keywords. Dynamical systems method (DSM), nonlinear operator equa-
tions, monotone operators, discrepancy principle.

1. Introduction

In this paper we study a Dynamical Systems Method (DSM) for solving the
equation

(1.1) F (u) = f,

where F is a nonlinear twice Fréchet differentiable monotone operator in a real
Hilbert space H , and equation (1.1) is assumed solvable. Monotonicity means that

(1.2) 〈F (u) − F (v), u− v〉 ≥ 0, ∀u, v ∈ H.

Here, 〈·, ·〉. denotes the inner product in H . It is known (see, e.g., [8]), that the
set N := {u : F (u) = f} is closed and convex if F is monotone and continuous. A
closed and convex set in a Hilbert space has a unique minimal-norm element. This
element in N we denote y, F (y) = f . We assume that

(1.3) sup
‖u−u0‖≤R

‖F (j)(u)‖ ≤Mj(u0, R), 0 ≤ j ≤ 2,

where u0 ∈ H is an element of H , R > 0 is arbitrary, and f = F (y) is not known
but fδ, the noisy data, are known and ‖fδ − f‖ ≤ δ. If F ′(u) is not boundedly
invertible then solving for u given noisy data fδ is often (but not always) an ill-
posed problem. When F is a linear bounded operator many methods for stable
solution of (1.1) were proposed (see [4]–[8] and references therein). However, when
F is nonlinear then the theory is less complete.

DSM for solving equation (1.1) was extensively studied in [8]–[15]. In [8] the
following version of the DSM for solving equation (1.1) was studied:

(1.4) u̇δ = −
(

F ′(uδ) + a(t)I
)−1(

F (uδ) + a(t)uδ − fδ

)

, uδ(0) = u0.
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2 N. S. HOANG AND A. G. RAMM

Here F is a monotone operator, and a(t) > 0 is a continuous function, defined for
all t ≥ 0, strictly monotonically decaying, limt→∞ a(t) = 0. These assumptions on
a(t) hold throughout the paper and are not repeated. Additional assumptions on
a(t) will appear later. Convergence of the above DSM was proved in [8] for any
initial value u0 with an a priori choice of stopping time tδ, provided that a(t) is
suitably chosen.

The theory of monotone operators is presented in many books, e.g., in [1], [7],
[16]. Most of the results of the theory of monotone operators, used in this paper,
can be found in [8]. In [6] methods for solving nonlinear equations in a finite-
dimensional space are discussed.

In this paper we propose and justify a stopping rule based on a discrepancy
principle (DP) for the DSM (1.4). The main result of this paper is Theorem 3.1
in which a DP is formulated, the existence of the stopping time tδ is proved, and
the convergence of the DSM with the proposed DP is justified under some natural
assumptions apparently for the first time for a wide class of nonlinear equations
with monotone operators.

These results are new from the theoretical point of view and very useful pratically.
The auxiliary results in our paper are also new and can be used in other problems
of numerical analysis. These auxiliary results are formulated in Lemmas 2.2–2.4,
2.7, 2.10, 2.11, and in Remarks. In particular, in Remark 3.3 we emphasize that
the trajectory of the solution stays in a ball of a fixed radius R for all t ≥ 0.

In Section 4 the results of two numerical experiments are presented. In the second
experiment we demonstrate numerically that our method for solving equation (1.1)
can be used even for wider class of equations than the basic Theorem 3.1 guarantees.

2. Auxiliary results

Let us consider the following equation

(2.1) F (Vδ,a) + aVδ,a − fδ = 0, a > 0,

where a = const. It is known (see, e.g., [8]) that equation (2.1) with monotone
continuous operator F has a unique solution for any fδ ∈ H .

Let us recall the following result from [8, p.112]:

Lemma 2.1. Assume that equation (1.1) is solvable, y is its minimal-norm solu-

tion, and assumptions (1.2) and (1.3) hold. Then

lim
a→0

‖V0,a − y‖ = 0,

where V0,a solves (2.1) with δ = 0.

Lemma 2.2. If (1.2) holds and F is continuous, then ‖Vδ,a‖ = O( 1
a
) as a → ∞,

and

(2.2) lim
a→∞

‖F (Vδ,a) − fδ‖ = ‖F (0) − fδ‖.

Proof. Rewrite (2.1) as

F (Vδ,a) − F (0) + aVδ,a + F (0) − fδ = 0.

Multiply this equation by Vδ,a, use inequality 〈F (Vδ,a) − F (0), Vδ,a − 0〉 ≥ 0 from
(1.2) and get:

a‖Vδ,a‖2 ≤ 〈aVδ,a + F (Vδ,a) − F (0), Vδ,a〉 = 〈fδ − F (0), Vδ,a〉 ≤ ‖fδ − F (0)‖‖Vδ,a‖.
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Therefore, ‖Vδ,a‖ = O( 1
a
). This and the continuity of F imply (2.2). �

Let a = a(t), 0 < a(t) ց 0, and assume a ∈ C1[0,∞). Then the solution
Vδ(t) := Vδ,a(t) of (2.1) is a function of t. From the triangle inequality one gets:

‖F (Vδ(0)) − fδ‖ ≥ ‖F (0) − fδ‖ − ‖F (Vδ(0)) − F (0)‖.
From Lemma 2.2 it follows that for large a(0) one has:

‖F (Vδ(0)) − F (0)‖ ≤M1‖Vδ(0)‖ = O

(

1

a(0)

)

.

Therefore, if ‖F (0) − fδ‖ > Cδ, then ‖F (Vδ(0)) − fδ‖ ≥ (C − ǫ)δ, where ǫ > 0 is
sufficiently small, for sufficiently large a(0) > 0.

Below the words decreasing and increasing mean strictly decreasing and strictly
increasing.

Lemma 2.3. Assume ‖F (0) − fδ‖ > 0. Let 0 < a(t) ց 0, and F be monotone.

Denote

φ(t) := ‖F (Vδ(t)) − fδ‖, ψ(t) := ‖Vδ(t)‖,
where Vδ(t) solves (2.1) with a = a(t). Then φ(t) is decreasing, and ψ(t) is increas-

ing.

Proof. Since ‖F (0) − fδ‖ > 0, it follows that ψ(t) 6= 0, ∀t ≥ 0. Note that φ(t) =
a(t)‖Vδ(t)‖. One has

0 ≤ 〈F (Vδ(t1)) − F (Vδ(t2)), Vδ(t1) − Vδ(t2)〉
= 〈−a(t1)Vδ(t1) + a(t2)Vδ(t2), Vδ(t1) − Vδ(t2)〉
= (a(t1) + a(t2))〈Vδ(t1), Vδ(t2)〉 − a(t1)‖Vδ(t1)‖2 − a(t2)‖Vδ(t2)‖2.

(2.3)

Thus,

0 ≤ (a(t1) + a(t2))〈Vδ(t1), Vδ(t2)〉 − a(t1)‖Vδ(t1)‖2 − a(t2)‖Vδ(t2)‖2

≤ (a(t1) + a(t2))‖Vδ(t1)‖‖Vδ(t2)‖ − a(t1)‖Vδ(t1)‖2 − a(t2)‖Vδ(t2)‖2

= (a(t1)‖Vδ(t1)‖ − a(t2)‖Vδ(t2)‖)(‖Vδ(t2)‖ − ‖Vδ(t1)‖)
= (φ(t1) − φ(t2))(ψ(t2) − ψ(t1)).

(2.4)

If ψ(t2) > ψ(t1) then (2.4) implies φ(t1) ≥ φ(t2), so

a(t1)ψ(t1) ≥ a(t2)ψ(t2) > a(t2)ψ(t1).

Thus, if ψ(t2) > ψ(t1) then a(t2) < a(t1) and, therefore, t2 > t1, because a(t) is
decreasing.

Similarly, if ψ(t2) < ψ(t1) then φ(t1) < φ(t2). This implies a(t2) > a(t1), so
t2 < t1.

If ψ(t2) = ψ(t1) then (2.3) implies

‖Vδ(t1)‖2 ≤ 〈Vδ(t1), Vδ(t2)〉 ≤ ‖Vδ(t1)‖‖Vδ(t2)‖ = ‖Vδ(t1)‖2.

This implies Vδ(t1) = Vδ(t2), and then a(t1) = a(t2). Hence, t1 = t2, because a(t)
is decreasing.

Therefore φ(t) is decreasing and ψ(t) is increasing. �

Lemma 2.4. Suppose that ‖F (0)−fδ‖ > Cδ, C > 1, and a(0) is sufficiently large.

Then, there exists a unique t1 > 0 such that ‖F (Vδ(t1)) − fδ‖ = Cδ.
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Proof. The uniqueness of t1 follows from Lemma 2.3. We have F (y) = f , and

0 =〈F (Vδ) + aVδ − fδ, F (Vδ) − fδ〉
=‖F (Vδ) − fδ‖2 + a〈Vδ − y, F (Vδ) − fδ〉 + a〈y, F (Vδ) − fδ〉
=‖F (Vδ) − fδ‖2 + a〈Vδ − y, F (Vδ) − F (y)〉 + a〈Vδ − y, f − fδ〉

+ a〈y, F (Vδ) − fδ〉
≥‖F (Vδ) − fδ‖2 + a〈Vδ − y, f − fδ〉 + a〈y, F (Vδ) − fδ〉.

Here the inequality 〈Vδ − y, F (Vδ) − F (y)〉 ≥ 0 was used. Therefore

‖F (Vδ) − fδ‖2 ≤ −a〈Vδ − y, f − fδ〉 − a〈y, F (Vδ) − fδ〉
≤ a‖Vδ − y‖‖f − fδ‖ + a‖y‖‖F (Vδ) − fδ‖
≤ aδ‖Vδ − y‖ + a‖y‖‖F (Vδ) − fδ‖.

(2.5)

On the other hand, we have

0 = 〈F (Vδ) − F (y) + aVδ + f − fδ, Vδ − y〉
= 〈F (Vδ) − F (y), Vδ − y〉 + a‖Vδ − y‖2 + a〈y, Vδ − y〉 + 〈f − fδ, Vδ − y〉
≥ a‖Vδ − y‖2 + a〈y, Vδ − y〉 + 〈f − fδ, Vδ − y〉,

where the inequality 〈Vδ − y, F (Vδ) − F (y)〉 ≥ 0 was used. Therefore,

a‖Vδ − y‖2 ≤ a‖y‖‖Vδ − y‖ + δ‖Vδ − y‖.
This implies

(2.6) a‖Vδ − y‖ ≤ a‖y‖ + δ.

From (2.5) and (2.6), and an elementary inequality ab ≤ ǫa2 + b2

4ǫ
, ∀ǫ > 0, one gets:

‖F (Vδ) − fδ‖2 ≤ δ2 + a‖y‖δ + a‖y‖‖F (Vδ) − fδ‖

≤ δ2 + a‖y‖δ + ǫ‖F (Vδ) − fδ‖2 +
1

4ǫ
a2‖y‖2,

(2.7)

where ǫ > 0 is fixed, independent of t, and can be chosen arbitrary small. Let
t→ ∞ and a = a(t) ց 0. Then (2.7) implies lim supt→∞(1− ǫ)‖F (Vδ)− fδ‖2 ≤ δ2.
This, the continuity of F , the continuity of Vδ(t) on [0,∞), and the assumption
‖F (0) − fδ‖ > Cδ, where C > 1, imply that equation ‖F (Vδ(t)) − fδ‖ = Cδ must
have a solution t1 > 0. �

Remark 2.5. Let V := Vδ(t)|δ=0, so F (V ) + a(t)V − f = 0. Let y be the minimal-
norm solution to F (u) = f . We claim that

(2.8) ‖Vδ − V ‖ ≤ δ

a
.

Indeed, from (2.1) one gets

F (Vδ) − F (V ) + a(Vδ − V ) = f − fδ.

Multiply this equality by (Vδ − V ) and use (1.2) to obtain

δ‖Vδ − V ‖ ≥ 〈f − fδ, Vδ − V 〉
= 〈F (Vδ) − F (V ) + a(Vδ − V ), Vδ − V 〉
≥ a‖Vδ − V ‖2.

This implies (2.8).
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Similarly, from the equation

F (V ) + aV − F (y) = 0,

one can derive that

(2.9) ‖V ‖ ≤ ‖y‖.
From (2.8) and (2.9), one gets the following estimate:

(2.10) ‖Vδ‖ ≤ ‖V ‖ +
δ

a
≤ ‖y‖ +

δ

a
.

Let us recall the following lemma, which is basic in our proofs.

Lemma 2.6 ([8], p. 97). Let α(t), β(t), γ(t) be continuous nonnegative functions

on [τ0,∞), τ0 ≥ 0 is a fixed number. If there exists a function µ := µ(t),

µ ∈ C1[τ0,∞), µ(t) > 0, lim
t→∞

µ(t) = ∞,

such that

0 ≤ α(t) ≤ µ(t)

2

[

γ − µ̇(t)

µ(t)

]

, u̇ :=
du

dt
,(2.11)

β(t) ≤ 1

2µ(t)

[

γ − µ̇(t)

µ(t)

]

,(2.12)

µ(τ0)g(τ0) < 1,(2.13)

and g(t) ≥ 0 satisfies the inequality

(2.14) ġ(t) ≤ −γ(t)g(t) + α(t)g2(t) + β(t), t ≥ τ0,

then

(2.15) 0 ≤ g(t) <
1

µ(t)
→ 0, as t → ∞.

If inequalities (2.11)–(2.13) hold on an interval [τ0, T ), then, g(t), the solution to

inequality (2.14), exists on this interval and inequality (2.15) holds on [τ0, T ).

Lemma 2.7. Suppose M1, c0, and c1 are positive constants and 0 6= y ∈ H. Then

there exist λ > 0 and a function a(t) ∈ C1[0,∞), 0 < a(t) ց 0, such that the

following conditions hold

M1

‖y‖ ≤ λ,(2.16)

c0

a(t)
≤ λ

2a(t)

[

1 − |ȧ(t)|
a(t)

]

,(2.17)

c1
|ȧ(t)|
a(t)

≤ a(t)

2λ

[

1 − |ȧ(t)|
a(t)

]

,(2.18)

‖F (0) − fδ‖ ≤ a2(0)

λ
.(2.19)

Proof. Take

(2.20) a(t) =
d

(c+ t)b
, 0 < b ≤ 1, c ≥ max

(

2b, 1
)

.
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Note that |ȧ| = −ȧ. We have

(2.21)
|ȧ(t)|
a(t)

=
b

c+ t
≤ b

c
≤ 1

2
, ∀t ≥ 0.

Hence,

(2.22)
1

2
≤ 1 − |ȧ(t)|

a(t)
, ∀t ≥ 0.

Take

(2.23) λ ≥ M1

‖y‖ .

Then (2.16) is satisfied.
Choose d such that

(2.24) d ≥ max

(

√

c2bλ‖F (0) − fδ‖, 4bλc1
)

.

From equality (2.20) and inequality (2.24) one gets

(2.25)
|ȧ(t)|
a2(t)

=
b

d(c+ t)1−b
≤ b

d
≤ 1

4λc1
, ∀t ≥ 0.

This and inequality (2.21) imply inequality (2.18). It follows from inequality (2.24)
that

(2.26) ‖F (0) − fδ‖ ≤ d2

c2bλ
=
a2(0)

λ
.

Thus, inequality (2.19) is satisfied.
Choose κ ≥ 1 such that

(2.27) κ > max

(

4c0
λ
, 1

)

.

Define

(2.28) ν(t) := κa(t), λκ := κλ.

Note that inequalities (2.16), (2.18), (2.19) and (2.21) still hold for a(t) = ν(t) and
λ = λκ.

Using the inequalities (2.27) and c ≥ 1 and the definition (2.28), one obtains

(2.29)
c0

ν(t)
≤ λκ

4ν(t)
≤ λκ

2ν(t)

[

1 − |ν̇|
ν

]

.

Thus, one can replace the function a(t) by ν(t) = κa(t) and λ by λ = λκ to satisfy
inequalities (2.16)–(2.19). �

Remark 2.8. In the proof of Lemma 2.7 a(0) and λ can be chosen so that a(0)
λ

is uniformly bounded as δ → 0 regardless of the rate of growth of the constant
M1 = M1(R) from formula (1.3) when R → ∞, i.e., regardless of the strength of
the nonlinearity F (u).

Indeed, to satisfy (2.23) one can choose λ = M1

‖y‖ . To satisfy (2.24) one can choose

d = max

(

√

c2bλ‖fδ − F (0)‖, 4bλc1
)

≤ max

(

√

c2bλ(‖f − F (0)‖ + 1), 4bλc1

)

,



DSM FOR SOLVING NOE WITH MONOTONE OPERATORS 7

where we have assumed without loss of generality that 0 < δ < 1. With this choice

of d and λ, the ratio a(0)
λ

is bounded uniformly with respect to δ ∈ (0, 1) and does
not depend on R.

Indeed, with the above choice one has a(0)
λ

= d
cbλ

≤ c̃(1 +
√
λ−1) ≤ c̃, where

c̃ > 0 is a constant independent of δ, and one can assume that λ ≥ 1 without loss
of generality.

This Remark is used in Remark 3.3, where we prove that the trajectory of uδ(t),
defined by (3.1), stays in a ball B(u0, R) for all 0 ≤ t ≤ tδ, where the number tδ
is defined by formula (3.3) (see below), and R > 0 is sufficiently large. An upper
bound on R is given in Remark 3.3.

Remark 2.9. It is easy to choose u0 ∈ H such that

(2.30) g0 := ‖u0 − Vδ(0)‖ ≤ ‖F (0) − fδ‖
a(0)

.

Indeed, if, for example, u0 = 0, then by Lemmas 2.2 and 2.3 one gets

g0 = ‖Vδ(0)‖ =
a(0)‖Vδ(0)‖

a(0)
≤ ‖F (0) − fδ‖

a(0)
.

If (2.19) and (2.30) hold then g0 ≤ a(0)
λ
. Inequality (2.30) also holds if ||u0−Vδ(0)||

is sufficiently small.

Lemma 2.10. Let p, b and c be positive constants. Then

(2.31)

(

p− b

c

)
∫ t

0

eps

(s+ c)b
ds <

ept

(c+ t)b
, ∀c, b > 0, t > 0.

Proof. One has

d

dt

(

ept

(c+ t)b

)

=
pept

(c+ t)b
− bept

(c+ t)b+1

≥
(

p− b

c

)

ept

(c+ t)b
, t ≥ 0.

Therefore,
(

p− b

c

)
∫ t

0

eps

(s+ c)b
ds ≤

∫ t

0

d

ds

eps

(c+ s)b
ds

≤ ept

(c+ t)b
− 1

cb
≤ ept

(c+ t)b
.

Lemma 2.10 is proved. �

Lemma 2.11. Let a(t) = d
(c+t)b where d, c, b > 0, c ≥ 6b. One has

(2.32) e−
t

2

∫ t

0

e
s

2 |ȧ(s)|‖Vδ(s)‖ds ≤
1

2
a(t)‖Vδ(t)‖, t ≥ 0.

Proof. Let p = 1
2 in Lemma 2.10. Then

(2.33)

(

1

2
− b

c

)
∫ t

0

e
s

2

(s+ c)b
ds <

e
t

2

(c+ t)b
, ∀c, b ≥ 0.
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Since c ≥ 6b or 3b
c
≤ 1

2 , one has

1

2
− b

c
≥ 2b

c
≥ 2b

c+ s
, s ≥ 0.

This implies

(2.34) a(s)

(

1

2
− b

c

)

=
d

(c+ s)b

(

1

2
− b

c

)

≥ 2db

(c+ s)b+1
= 2|ȧ(s)|, s ≥ 0.

Multiplying (2.34) by e
s

2 ‖Vδ(s)‖, integrating from 0 to t, using inequality (2.33)
and the fact that ‖Vδ(s)‖ is nondecreasing, one gets

e
t

2 a(t)‖Vδ(t)‖ >
∫ t

0

e
s

2 ‖Vδ(t)‖a(s)
(

1

2
− b

c

)

ds ≥ 2

∫ t

0

e
s

2 |ȧ(s)|‖Vδ(s)‖ds, t ≥ 0.

This implies inequality (2.32). Lemma 2.11 is proved. �

3. Main result

Denote

A := F ′(uδ(t)), Aa := A+ aI,

where I is the identity operator, and uδ(t) solves the following Cauchy problem:

(3.1) u̇δ = −A−1
a(t)[F (uδ) + a(t)uδ − fδ], uδ(0) = u0.

We assume below that ||F (u0)− fδ|| > C1δ
ζ , where C1 > 1 and ζ ∈ (0, 1] are some

constants. We also assume without loss of generality that δ ∈ (0, 1).
Assume that equation F (u) = f has a solution, possibly nonunique, and y is

the minimal norm solution to this equation. Let f be unknown but fδ be given,
‖fδ − f‖ ≤ δ.

Theorem 3.1. Assume a(t) = d
(c+t)b , where b ∈ (0, 1], c, d > 0 are constants,

c > 6b, and d is sufficiently large so that conditions (2.17)–(2.19) hold. As-

sume that F : H → H is a monotone operator, twice Fréchet differentiable,

supu∈B(u0,R) ‖F (j)(u)‖ ≤ Mj(u0, R), 0 ≤ j ≤ 2, B(u0, R) := {u : ‖u − u0‖ ≤ R},
u0 is an element of H, satisfying inequality (2.30) and

(3.2) ‖F (u0) + a(0)u0 − fδ‖ ≤ 1

4
a(0)‖Vδ(0)‖,

where Vδ(t) := Vδ,a(t) solves (2.1) with a = a(t). Then the solution uδ(t) to problem

(3.1) exists on an interval [0, Tδ], limδ→0 Tδ = ∞, and there exists a unique tδ,

tδ ∈ (0, Tδ) such that limδ→0 tδ = ∞ and

(3.3) ‖F (uδ(tδ)) − fδ‖ = C1δ
ζ , ‖F (uδ(t) − fδ‖ > C1δ

ζ , ∀t ∈ [0, tδ),

where C1 > 1 and 0 < ζ ≤ 1. If ζ ∈ (0, 1) and tδ satisfies (3.3), then

(3.4) lim
δ→0

‖uδ(tδ) − y‖ = 0.

Remark 3.2. One can choose u0 satisfying inequalities (2.30) and (3.2) (see also
(3.34) below). Indeed, if u0 is a sufficiently close approximation to Vδ(0) the solution
to equation (2.1) then inequalities (2.30) and (3.2) are satisfied. Note that inequality
(3.2) is a sufficient condition for (3.35) to hold. In our proof inequality (3.35) is
used at t = tδ. The stopping time tδ is often sufficiently large for the quantity

e−
tδ
2 h0 to be small. In this case inequality (3.35) with t = tδ is satisfied for a wide
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range of u0. For example, in our numerical experiment in Section 4 the method
converged rapidly when u0 = 0.

Condition c > 6b is used in the proof of Lemma 2.11.

Proof of Theorem 3.1. Denote

(3.5) C :=
C1 + 1

2
.

Let
w := uδ − Vδ, g(t) := ‖w‖.

One has

(3.6) ẇ = −V̇δ −A−1
a(t)

[

F (uδ) − F (Vδ) + a(t)w
]

.

We use Taylor’s formula and get:

(3.7) F (uδ) − F (Vδ) + aw = Aaw +K, ‖K‖ ≤ M2

2
‖w‖2,

where K := F (uδ) − F (Vδ) −Aw, and M2 is the constant from the estimate (1.3).
Multiplying (3.6) by w and using (3.7) one gets

(3.8) gġ ≤ −g2 +
M2

2
‖A−1

a(t)‖g3 + ‖V̇δ‖g.
Let t0 be such that

(3.9)
δ

a(t0)
=

1

C − 1
‖y‖, C > 1.

This t0 exists and is unique since a(t) > 0 monotonically decays to 0 as t→ ∞.
Since a(t) > 0 monotonically decays, one has:

(3.10)
δ

a(t)
≤ 1

C − 1
‖y‖, 0 ≤ t ≤ t0.

By Lemma 2.4, there exists t1 such that

(3.11) ‖F (Vδ(t1)) − fδ‖ = Cδ, F (Vδ(t1)) + a(t1)Vδ(t1) − fδ = 0.

We claim that t1 ∈ [0, t0].
Indeed, from (2.1) and (2.10) one gets

Cδ = a(t1)‖Vδ(t1)‖ ≤ a(t1)

(

‖y‖ +
δ

a(t1)

)

= a(t1)‖y‖ + δ, C > 1,

so

δ ≤ a(t1)‖y‖
C − 1

.

Thus,
δ

a(t1)
≤ ‖y‖
C − 1

=
δ

a(t0)
.

Since a(t) ց 0, one has t1 ≤ t0.
Differentiating both sides of (2.1) with respect to t, one obtains

Aa(t)V̇δ = −ȧVδ.

This implies
(3.12)

‖V̇δ‖ ≤ |ȧ|‖A−1
a(t)Vδ‖ ≤ |ȧ|

a
‖Vδ‖ ≤ |ȧ|

a

(

‖y‖ +
δ

a

)

≤ |ȧ|
a
‖y‖

(

1 +
1

C − 1

)

, ∀t ≤ t0.
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Since g ≥ 0, inequalities (3.8) and (3.12) imply

(3.13) ġ ≤ −g(t) +
c0

a(t)
g2 +

|ȧ|
a(t)

c1, c0 =
M2

2
, c1 = ‖y‖

(

1 +
1

C − 1

)

.

Here we have used the estimate:

‖A−1
a ‖ ≤ 1

a
,

and the relations

Aa := F ′(u) + aI, F ′(u) := A ≥ 0.

Inequality (3.13) is of the type (2.14) with

γ(t) = 1, α(t) =
c0

a(t)
, β(t) = c1

|ȧ|
a(t)

.

Let us check assumptions (2.11)–(2.13). Take

µ(t) =
λ

a(t)
,

where λ = const > 0 and satisfies conditions (2.11)–(2.13) in Lemma 2.7. Since u0

satisfies inequality (2.30), one gets g(0) ≤ a(0)
λ

, by Remark 2.9. This, inequalities
(2.11)–(2.13), and Lemma 2.6 yield

(3.14) g(t) <
a(t)

λ
, ∀t ≤ t0, g(t) := ‖uδ(t) − Vδ(t)‖.

Therefore,

‖F (uδ(t)) − fδ‖ ≤‖F (uδ(t)) − F (Vδ(t))‖ + ‖F (Vδ(t)) − fδ‖
≤M1g(t) + ‖F (Vδ(t)) − fδ‖

≤M1a(t)

λ
+ ‖F (Vδ(t)) − fδ‖, ∀t ≤ t0.

(3.15)

It is proved in Section 2, Lemma 2.3, that ‖F (Vδ(t)) − fδ‖ is decreasing. Since
t1 ≤ t0 , one gets

(3.16) ‖F (Vδ(t0)) − fδ‖ ≤ ‖F (Vδ(t1)) − fδ‖ = Cδ.

This, inequality (3.15), the inequality M1

λ
≤ ‖y‖ (see (2.23)), the relation (3.9), and

the definition C1 = 2C − 1 (see (3.5)), imply

‖F (uδ(t0)) − fδ‖ ≤M1a(t0)

λ
+ Cδ

≤M1δ(C − 1)

λ‖y‖ + Cδ ≤ (2C − 1)δ = C1δ.

(3.17)

Thus, if

‖F (uδ(0)) − fδ‖ > C1δ
γ , 0 < γ ≤ 1,

then, by the continuity of the function t → ‖F (uδ(t)) − fδ‖ on [0,∞), there exists
tδ ∈ (0, t0) such that

(3.18) ‖F (uδ(tδ)) − fδ‖ = C1δ
γ

for any given γ ∈ (0, 1], and any fixed C1 > 1.
Let us prove (3.4).
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From (3.15) with t = tδ, and from (2.10), one gets

C1δ
ζ ≤M1

a(tδ)

λ
+ a(tδ)‖Vδ(tδ)‖

≤M1
a(tδ)

λ
+ ‖y‖a(tδ) + δ.

Thus, for sufficiently small δ, one gets

C̃δζ ≤ a(tδ)

(

M1

λ
+ ‖y‖

)

, C̃ > 0,

where C̃ < C1 is a constant. Therefore,

(3.19) lim
δ→0

δ

a(tδ)
≤ lim

δ→0

δ1−ζ

C̃

(

M1

λ
+ ‖y‖

)

= 0, 0 < ζ < 1.

We claim that

(3.20) lim
δ→0

tδ = ∞.

Let us prove (3.20). Using (3.1), one obtains:

d

dt

(

F (uδ) + auδ − fδ

)

= Aau̇δ + ȧuδ = −
(

F (uδ) + auδ − fδ

)

+ ȧuδ.

This and (2.1) imply:

(3.21)
d

dt

[

F (uδ) − F (Vδ) + a(uδ − Vδ)
]

= −
[

F (uδ) − F (Vδ) + a(uδ − Vδ)
]

+ ȧuδ.

Denote

v := v(t) := F (uδ(t)) − F (Vδ(t)) + a(t)(uδ(t) − Vδ(t)), h := h(t) := ‖v‖.
Multiplying (3.21) by v, one obtains

hḣ = −h2 + 〈v, ȧ(uδ − Vδ)〉 + ȧ〈v, Vδ〉
≤ −h2 + h|ȧ|‖uδ − Vδ‖ + |ȧ|h‖Vδ‖, h ≥ 0.

(3.22)

Thus,

(3.23) ḣ ≤ −h+ |ȧ|‖uδ − Vδ‖ + |ȧ|‖Vδ‖.
Since 〈F (uδ) − F (Vδ), uδ − Vδ〉 ≥ 0, one obtains from two equations

〈v, uδ − Vδ〉 = 〈F (uδ) − F (Vδ) + a(t)(uδ − Vδ), uδ − Vδ〉,
and

〈v, F (uδ) − F (Vδ)〉 = ‖F (uδ) − F (Vδ)‖2 + a(t)〈uδ − Vδ, F (uδ) − F (Vδ)〉,
the following two inequalities:

(3.24) a‖uδ − Vδ‖2 ≤ 〈v, uδ − Vδ〉 ≤ ‖uδ − Vδ‖h,
and

(3.25) ‖F (uδ) − F (Vδ)‖2 ≤ 〈v, F (uδ) − F (Vδ)〉 ≤ h‖F (uδ) − F (Vδ)‖.
Inequalities (3.24) and (3.25) imply:

(3.26) a‖uδ − Vδ‖ ≤ h, ‖F (uδ) − F (Vδ)‖ ≤ h.
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Inequalities (3.23) and (3.26) imply

(3.27) ḣ ≤ −h
(

1 − |ȧ|
a

)

+ |ȧ|‖Vδ‖.

Since 1 − |ȧ|
a

≥ 1
2 because c ≥ 2b, inequality (3.27) holds if

(3.28) ḣ ≤ −1

2
h+ |ȧ|‖Vδ‖.

Inequality (3.28) implies:

(3.29) h(t) ≤ h(0)e−
t

2 + e−
t

2

∫ t

0

e
s

2 |ȧ|‖Vδ‖ds.

From (3.29) and (3.26), one gets

(3.30) ‖F (uδ(t)) − F (Vδ(t))‖ ≤ h(0)e−
t

2 + e−
t

2

∫ t

0

e
s

2 |ȧ|‖Vδ‖ds.

Therefore,

‖F (uδ(t)) − fδ‖ ≥ ‖F (Vδ(t)) − fδ‖ − ‖F (Vδ(t)) − F (uδ(t))‖

≥ a(t)‖Vδ(t)‖ − h(0)e−
t

2 − e−
t

2

∫ t

0

e
s

2 |ȧ|‖Vδ‖ds.
(3.31)

From the results in Section 2 (see Lemma 2.11), it follows that there exists an a(t)
such that

(3.32)
1

2
a(t)‖Vδ(t)‖ ≥ e−

t

2

∫ t

0

e
s

2 |ȧ|‖Vδ(s)‖ds.

For example, one can choose

(3.33) a(t) =
d

(c+ t)b
, 6b < c,

where d, c, b > 0. Moreover, one can always choose u0 such that

(3.34) h(0) = ‖F (u0) + a(0)u0 − fδ‖ ≤ 1

4
a(0)‖Vδ(0)‖,

because the equation F (u0) + a(0)u0 − fδ = 0 is solvable. If (3.34) holds, then

h(0)e−
t

2 ≤ 1

4
a(0)‖Vδ(0)‖e− t

2 , t ≥ 0.

If 2b < c, then (3.33) implies

e−
t

2 a(0) ≤ a(t).

Therefore,

(3.35) e−
t

2h(0) ≤ 1

4
a(t)‖Vδ(0)‖ ≤ 1

4
a(t)‖Vδ(t)‖, t ≥ 0,

where we have used the inequality ‖Vδ(t)‖ ≤ ‖Vδ(t
′)‖ for t < t′, established in

Lemma 2.3 in Section 2. From (3.18) and (3.31)–(3.35), one gets

C1δ
ζ = ‖F (uδ(tδ)) − fδ‖ ≥ 1

4
a(tδ)‖Vδ(tδ)‖.

Thus,

lim
δ→0

a(tδ)‖Vδ(tδ)‖ ≤ lim
δ→0

4C1δ
ζ = 0.
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Since ‖Vδ(t)‖ increases (see Lemma 2.3), the above formula implies limδ→0 a(tδ) =
0. Since 0 < a(t) ց 0, it follows that limδ→0 tδ = ∞, i.e., (3.20) holds.

It is now easy to finish the proof of the Theorem 3.1.
From the triangle inequality and inequalities (3.14) and (2.8) one obtains

‖uδ(tδ) − y‖ ≤ ‖uδ(tδ) − Vδ(tδ)‖ + ‖V (tδ) − Vδ(tδ)‖ + ‖V (tδ) − y‖

≤ a(tδ)

λ
+

δ

a(tδ)
+ ‖V (tδ) − y‖.(3.36)

Note that V (tδ) = V0,a(tδ) (see equation (2.1)). From (3.19), (3.20), inequality
(3.36) and Lemma 2.1, one obtains (3.4). Theorem 3.1 is proved. �

Remark 3.3. The trajectory uδ(t) remains in the ball B(u0, R) := {u : ‖u− u0‖ <
R} for all t ≤ tδ, where R does not depend on δ as δ → 0. Indeed, estimates (3.14),
(2.10) and (3.10) imply:

‖uδ(t) − u0‖ ≤ ‖uδ(t) − Vδ(t)‖ + ‖Vδ(t)‖ + ‖u0‖

≤ a(0)

λ
+
C‖y‖
C − 1

+ ‖u0‖ := R, ∀t ≤ tδ.
(3.37)

Here we have used the fact that tδ < t0 (see the proof of Theorem 3.1). Since one

can choose a(t) and λ so that a(0)
λ

is uniformly bounded as δ → 0 and regardless of
the growth of M1 (see Remark 2.8) one concludes that R can be chosen independent
of δ and M1.

4. Numerical experiments

4.1. An experiment with an operator defined on H = L2[0, 1]. Let us do a
numerical experiment solving nonlinear equation (1.1) with

(4.1) F (u) := B(u) +
(

arctan(u)
)3

:=

∫ 1

0

e−|x−y|u(y)dy +
(

arctan(u)
)3
.

Since the function u→ arctan3 u is increasing on R, one has

(4.2) 〈
(

arctan(u)
)3 −

(

arctan(v)
)3
, u− v〉 ≥ 0, ∀u, v ∈ H.

Moreover,

(4.3) e−|x| =
1

π

∫ ∞

−∞

eiλx

1 + λ2
dλ.

Therefore, 〈B(u − v), u− v〉 ≥ 0, so

(4.4) 〈F (u − v), u− v〉 ≥ 0, ∀u, v ∈ H.

Thus, F is a monotone operator. Note that

〈
(

arctan(u)
)3 −

(

arctan(v)
)3
, u− v〉 = 0 iff u = v a.e..

Therefore, the operator F , defined in (4.1), is injective and equation (1.1), with
this F , has at most one solution.

The Fréchet derivative of F is:

(4.5) F ′(u)w =
3
(

arctan(u)
)2

1 + u2
w +

∫ 1

0

e−|x−y|w(y)dy.
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If u(x) vanishes on a set of positive Lebesgue’s measure, then F ′(u) is not boundedly
invertible. If u ∈ C[0, 1] vanishes even at one point x0, then F ′(u) is not boundedly
invertible in H .

In numerical implementation of the DSM, one often discretizes the Cauchy prob-
lem (3.1) and gets a system of ordinary differential equations (ODEs). Then, one
can use numerical methods for solving ODEs to solve the system of ordinary differ-
ential equations obtained from discretization. There are many numerical methods
for solving ODEs (see, e.g., [2]).

In practice one does not have to compute uδ(tδ) exactly but can use an ap-
proximation to uδ(tδ) as a stable solution to equation (1.1). To calculate such an
approximation, one can use, for example, the following iterative scheme

un+1 = un − (F ′(un) + anI)
−1(F (un) + anun − fδ),

u0 = 0,
(4.6)

and stop iterations at n := nδ such that the following inequality holds
(4.7)

‖F (unδ
) − fδ‖ < Cδγ , ‖F (un) − fδ‖ ≥ Cδγ , n < nδ, C > 1, γ ∈ (0, 1).

The existence of the stopping time nδ is proved in [3, p. 733] and the choice u0 = 0
is also justified in this paper. Iterative scheme (4.6) and stopping rule (4.7) are
used in the numerical experiments. We proved in [3, p. 733] that unδ

converges to
u∗, a solution of (1.1). Since F is injective as discussed above, we conclude that unδ

converges to the unique solution of equation (1.1) as δ tends to 0. The accuracy and
stability are the key issues in solving the Cauchy problem. The iterative scheme
(4.6) can be considered formally as the explicit Euler’s method with the stepsize
h = 1 (see, e.g., [2]). There might be other iterative schemes which are more
efficient than scheme (4.6), but this scheme is simple and easy to implement.

Integrals of the form
∫ 1

0
e−|x−y|h(y)dy in (4.1) and (4.5) are computed by using

the trapezoidal rule. The noisy function used in the test is

fδ(x) = f(x) + κfnoise(x), κ > 0.

The noise level δ and the relative noise level are defined by the formulas:

δ = κ‖fnoise‖, δrel :=
δ

‖f‖ .

In the test κ is computed in such a way that the relative noise level δrel equals to
some desired value, i.e.,

κ =
δ

‖fnoise‖
=

δrel‖f‖
‖fnoise‖

.

We have used the relative noise level as an input parameter in the test.
In all the figures the x-variable runs through the interval [0, 1], and the graphs

represent the numerical solutions uDSM(x) and the exact solution uexact(x).
In the test we took h = 1, C = 1.01, and γ = 0.99. The exact solution in test is

(4.8) ue(x) =

{

0 if 1
3 ≤ x ≤ 2

3 ,

1 if otherwise,

here x ∈ [0, 1], and the right-hand side is f = F (ue). As mentioned above, F ′(u) is
not boundedly invertible in any neighborhood of ue.

It is proved in [3] that one can take an = d
1+n

, and d is sufficiently large. However,
in practice, if we choose d too large, then the method will use too many iterations
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before reaching the stopping time nδ in (4.7). This means that the computation
time will be large in this case. Since

‖F (Vδ) − fδ‖ = a(t)‖Vδ‖,
and ‖Vδ(tδ) − uδ(tδ)‖ = O(a(tδ)), we have

Cδγ = ‖F (uδ(tδ)) − fδ‖ ≤ a(tδ)‖Vδ‖ +O(a(tδ)),

and we choose

d = C0δ
γ , C0 > 0.

In the experiments our method works well with C0 ∈ [7, 10]. In numerical experi-
ments, we found out that the method diverged for smaller C0. In the test we chose

an by the formula an := C0
δ0.99

n+1 . The number of nodal points, used in computing

integrals in (4.1) and (4.5), was N = 100. The accuracy of the solutions obtained
in the tests with N = 30 and N = 50 was slightly less accurate than the one for
N = 100.

Numerical results for various values of δrel are presented in Table 1. In this
experiment, the noise function fnoise is a vector with random entries normally
distributed, with mean value 0 and variance 1. Table 1 shows that the iterative
scheme yields good numerical results.

Table 1. Results when C0 = 7, N = 100 and u = ue.

δrel 0.02 0.01 0.005 0.003 0.001

Number of iterations 57 57 58 58 59

‖uDSM−uexact‖
‖uexact‖

0.1437 0.1217 0.0829 0.0746 0.0544

Figure 1 presents the numerical results when N = 100 and C0 = 7 with δrel =
0.01 and δrel = 0.005. The numbers of iterations for δ = 0.01 and δ = 0.005 were
57 and 58, respectively.
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Figure 1. Plots solutions obtained by the DSM when N = 100,
δrel = 0.01 (left) and δrel = 0.005 (right).
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Figure 2 presents the numerical results when N = 100 and C0 = 7 with δ = 0.003
and δ = 0.001. In these cases, it took 58 and 59 iterations to get the numerical
solutions for δrel = 0.003 and δrel = 0.001, respectively.
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Figure 2. Plots solutions obtained by the DSM when N = 100,
δrel = 0.003 (left) and δrel = 0.001 (right).

We also carried out numerical experiments with u(x) ≡ 1, x ∈ [0, 1], as the exact
solution. Note that F ′(u) is boundedly invertible at this exact solution. However, in
any arbitrary small (in L2 norm) neighborhood of this solution, there are infinitely
many elements u at which F ′(u) is not boundedly invertible, because, as we have
pointed out earlier, F ′(u) is not boundedly invertible if u(x) is continuous and
vanishes at some point x ∈ [0, 1]. In this case one cannot use usual methods
like Newton’s method or Newton-Kantorovich method. Numerical results for this
experiment are presented in Table 2.

Table 2. Results when C0 = 4, N = 50 and u(x) ≡ 1, x ∈ [0, 1].

δrel 0.05 0.03 0.02 0.01 0.003 0.001

Number of iterations 28 29 28 29 29 29

‖uDSM−uexact‖
‖uexact‖

0.0770 0.0411 0.0314 0.0146 0.0046 0.0015

From Table 2 one concludes that the method works well in this experiment.

4.2. An experiment with an operator defined on a dense subset of H =
L2[0, 1]. Our second numerical experiment with the equation F (u) = f deals with
the operator F which is not defined on all of H = L2[0, 1] but on a dense subset
D = C[0, 1] of H :

(4.9) F (u) := B(u) + u3 :=

∫ 1

0

e−|x−y|u(y)dy + u3.

Therefore the assumptions of our Theorem 3.1 are not satisfied. Our goal is to
show by this numerical example, that numerically our method may work for an
even wider class of problems than that covered by Theorem 3.1.
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The operator B is compact in H = L2[0, 1]. The operator u 7−→ u3 is defined on
a dense subset D of of L2[0, 1], for example, on D := C[0, 1]. If u, v ∈ D, then

(4.10) 〈u3 − v3, u− v〉 =

∫ 1

0

(u3 − v3)(u− v)dx ≥ 0.

This and the inequality 〈B(u− v), u − v〉 ≥ 0, followed from equality (4.3), imply

〈F (u − v), u− v〉 ≥ 0, ∀u, v ∈ D.

Note that the equal sign of inequality (4.10) happens iff u = v a.e. in Lebesgue
measure. Thus, F is injective. Therefore, the element unδ

obtained from iterative
scheme (4.6) and stopping rule (4.7) converges to the exact solution ue as δ goes to
0.

Note that D does not contain subsets, open in H = L2[0, 1], i.e., it does not
contain interior points of H . This is a reflection of the fact that the operator
G(u) = u3 is unbounded on any open subset of H . For example, in any ball
‖u‖ ≤ C, C = const > 0, where ‖u‖ := ‖u‖L2[0,1], there is an element u such

that ‖u3‖ = ∞. As such an element one can take, for example, u(x) = c1x
−b,

1
3 < b < 1

2 . Here c1 > 0 is a constant chosen so that ‖u‖ ≤ C. The operator
u 7−→ F (u) = G(u) +B(u) is maximal monotone on DF := {u : u ∈ H, F (u) ∈ H}
(see [1, p.102]), so that equation (2.1) is uniquely solvable for any fδ ∈ H .

The Fréchet derivative of F is:

(4.11) F ′(u)w = 3u2w +

∫ 1

0

e−|x−y|w(y)dy.

If u(x) vanishes on a set of positive Lebesgue’s measure, then F ′(u) is obviously
not boundedly invertible. If u ∈ C[0, 1] vanishes even at one point x0, then F ′(u)
is not boundedly invertible in H .

We also use the iterative scheme (4.6) with the stopping rule (4.7).
We use the same exact solution ue as in (4.8). The right-hand side f is computed

by f = F (ue). Note that F ′ is not boundedly invertible in any neighborhood of ue.
In experiments we found that our method works well with C0 ∈ [1, 4]. Indeed, in

the test we chose an by the formula an := C0
δ0.9

n+6 . The number of node points used

in computing integrals in (4.1) and (4.5) was N = 30. In the test, the accuracy of
the solutions obtained when N = 30, N = 50 were slightly less accurate than the
one when N = 100.

Numerical results for various values of δrel are presented in Table 3. In this
experiment, the noise function fnoise is a vector with random entries normally
distributed of mean 0 and variance 1. Table 3 shows that the iterative scheme
yields good numerical results.

Table 3. Results when C0 = 2 and N = 100.

δrel 0.02 0.01 0.005 0.003 0.001

Number of iterations 16 17 17 17 18

‖uDSM−uexact‖
‖uexact‖

0.1387 0.1281 0.0966 0.0784 0.0626

Figure 3 presents the numerical results when fnoise(x) = sin(3πx) for δrel = 0.02
and δrel = 0.01. The number of iterations when C0 = 2 for δrel = 0.02 and
δrel = 0.01 were 16 and 17, respectively.
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Figure 3. Plots solutions obtained by the DSM with fnoise(x) =
sin(3πx) when N = 100, δrel = 0.02 (left) and δrel = 0.01 (right).

Figure 4 presents the numerical results when fnoise(x) = sin(3πx) with δrel =
0.003 and δrel = 0.001. We also used C0 = 2. In these cases, it took 17 and
18 iterations to give the numerical solutions for δrel = 0.003 and δrel = 0.001,
respectively.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

δ
rel

=0.001, N=100

 

 

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

δ
rel

=0.003, N=100

 

 
u

exact

u
DSM

u
exact

u
DSM

Figure 4. Plots solutions obtained by the DSM with fnoise(x) =
sin(3πx) whenN = 100, δrel = 0.003 (left) and δrel = 0.001 (right).

We have included the results of the numerical experiments with u(x) ≡ 1, x ∈
[0, 1], as the exact solution. The operator F ′(u) is boundedly invertible in L2([0, 1])
at this exact solution. However, in any arbitrary small L2-neighborhood of this
solution, there are infinitely many elements u at which F ′(u) is not boundedly
invertible as was mentioned above. Therefore even in this case one cannot use
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usual methods like Newton’s method or Newton-Kantorovich method. Numerical
results for this experiment are presented in Table 4.

Table 4. Results when C0 = 1, N = 30 and u(x) = 1, x ∈ [0, 1].

δrel 0.05 0.03 0.02 0.01 0.003 0.001

Number of iterations 7 8 8 9 10 10

‖uDSM−uexact‖
‖uexact‖

0.0436 0.0245 0.0172 0.0092 0.0026 0.0009

From the numerical experiments we can conclude that the method works well in
this experiment. Note that the function F used in this experiment is not defined
on the whole space H = L2[0, 1] but defined on a dense subset D = C[0, 1] of H .
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