FHYSIOLOGIGLI DFFECIS OF VARIGILON IN LEVELS OF RESPIRED CARBON DIOXIDE AND OXYGEN IN THE CHICKEN

PAULA JEAN RAY

B. A., Kansas State University, 1962

A LASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

LISTER OF SCIENCE

Department of Physiology

KANSAS STATE UNIVERSITY
 inanhatten, Kansas

1966

> Approved by:

LD
Document
InTRODUCTION 1
LTTLRARUE REVLE:V. 2
Arterial Elood Gas tiensions 2
Respiratory and Circulatory Effects 3
Lítlitils And ilthods. 5.
Experimental Laterials and Arrengerent 6
Surgical and Experimental Procedure 14
ReSUITS A. DISCUSSION 17
Effect of Variation in Respiratory PCO_{2} with Constant PO_{2} on Arterial PCO_{2}, PO_{2}, end pH. 17
iffect of Variation in Respiratory PO2 with Constant PCO2 on arterial $\mathrm{P}_{2}, \mathrm{P}_{\mathrm{CO}_{2}}$, and pH 29
Effect of Variation in Garbon Diozide Tensions on BIood Fressure, Heart Rete, Respiratory Period, Respiratory Anulitude, and Tracheal Pressure 35
SULBARY. 46
AGOMOMNDGEZNSS 48
REFRENCLS 49

The fielc of respiratory physiology is slowly yielding its secrets. a α vancemente boing made in the study of the effect of $\mathrm{pH}, \mathrm{PCO}_{2}$, and PO_{2} interaction on respiration, in the study of peripheral chemoreceptor functions, and in the study of the mechanical properties of the lung are making possible a. clearer understanding of respiratory function.

Of the peripheral chemoreceptors which have been isolated, the carotid boay has been studied in the roost detail (Jools and Neil, 1963; Corroe, 1964). Whether or not the peripheral chemoreceptors all function in the same way and whether or not there is interaction of responses to $\mathrm{pH}, \mathrm{PCO}_{2}$, and PO_{2} within a given peripheral chemoreceptor, or possibly even between the various peaipheral chemoreceptors, has yet to be determined.

In studying the respiratory response to the stirnulation of a single, isolated charcreceptor it is necessary to control the blood gas tensions reaching all other chemoreceptors. In genoral, arterial blood gas tensions are very nearly the same as alveolar gas tonsions. Thus, by controlling the gas tensions at the exchange surfaces of the lung, it is possible to produce desired tonsions of these gases in the blood.

Although respiratory and circulatory responses to variations in oxygen and carbon dioxide levels have been studied in man, only isolated observations have beon mede for the chicken. Phis paper presents a method by which arterial $\mathrm{F}_{\mathrm{CO}_{2}}$ and $\mathrm{P}_{\mathrm{O}_{2}}$ can be predicted, within a given range, for the chicken when the gas mixture being given through the unidirectionsl respirator is known. In conjunction with the determination of arterial blood gas tensions and $p H$, a study of the respiratory and circulatory responses to variations in respiratory gas tensions in the chicken has also been made.

LTTERATURE REVIET

In studies of peripheral chemoreceptors, some attention has been given to the control of arterial blood gas levels. MacLeod and Scott (1964) simply estimated arterial oxygen tension from alveolar oxygen tension in the study of the carotid body. Duke ot aI. (1963) bubbled 5 percent CO_{2} in oxygen through the blood of the "restricted" systemic circulation in order to keep it constant in their study of the effects of stimulation of the pulmonary body. Daly et al. (1965) used mechanical oxygenation of the blood while studying the aortic body.

The study of respiratory physiology in the chicken and the experimental control of blood gas levels has been aided by the development of a unidirectional respirator (Burger and Lorenz, 1960). Using this respirator a gas mixture can be introduced through a tracheal cannula, forced through the lungs and into the air sacs, and allowed to exit via an opening produced surgically through the midventral abdominal wall and the abdominal air sacs. The unidirectional respirator was modified (Fedde and Burger, 1962) to allow the gas to be heated and humidified, thus preventing lowering of the body temperature and dehydration of the pulmonary tissue. Use of this respirator allows open thoracic surgery in the chicken under conditions which provide a responsive experimental subject for many hours.

Arterial Blood Gas Tensions

Control of arterial blood gas tensions should be possible using the unidirectional respirator. Arterial gas tensions have been found to be quite close to alveolar gas tensions. In man (normal) an alveolar PO_{2} of 97.4 mm Hg corresponds to an arterial $\mathrm{P}_{\mathrm{O}_{2}}$ of 97.1 mm Hg , according to the
results of Commoe and Dripps (1947). During normal respiration the anount of oxycen in the inspired air is diluted by the CO_{2} and vater vapor in tio lungs, so that the alveoler air has a lower oxycen tension than inspired air. With the use of the unidirectional respirator, the dilution process should be virtually eliminated and the arterial gas levels should be under more exact experimentel control; thus, e certain raxture of geses introciuced through the respirator should correspond to certair arterial gas tensions, winich can be dotermined and controlled.

The oxygen dissociation curves, which have been determined for the chicken, provide infor..ation which holps in the interpretation of blood ges ten: sions (Christensen and Dill, 1935). Morgan and Chichester (1935), in their deternination of oxygen dissociation curves for the chicken, found that blood take:. from a resting chicken had an arterial P_{2} of 90 mmg and $\mathrm{P}_{\mathrm{CO}_{2}}$ of 34 mm Hg at a temperature of $40.0^{\circ} \mathrm{C}$. In general, these dissociation curves show that chicken blood has less affinity for oxygen than the blood of man.

Respiratory and Circulatory Iffects

Studies of respirstory and circulatory responses to variations in oxygen ami carbon dioxide tensions in resyired gases have provided some interesting results from mamals, especielly man. In a review, of the circulatory effects of hypoxia, Korner (1959) points out that there is an increased heart rate and cardiac output and that peripheral vasoconstriction occurs. Some investigators have not found an increase in cardiac output during hypoxia (Glick et al. 1964). Thilenius et al. (1964), in support of active vasoconstriction of the pulmonary vessels during hypoxia, found that $6-15 \% \mathrm{O}_{2}$ produced an incroase in pulmonary artery pressure and cardiac out put and a decrease in left atrial pressure. From these values the pulmonary vascular resistance was
calculated and found to increase.
In a study of effects of increasing the CO_{2} in inspired gas, Schneider and Truesdel (1922) found that increases in blood pressure, heart rate, and respiratory minute volume occurred in man. In a review article on the control of respiration, Kellogg (1964) states that Pflïger, in 1868 , did the first experimental work to show that hypercapnia and hypoxia stimulate breathing. Kellogg shows that for man, increasing CO_{2} increases respiratory minute volume, tidal volume, and rate, and decreasing O_{2} increases ventilation (liter/min.). He points out that the ventilatory responses to O_{2} and CO_{2} do not appear to be simply additive. Increasing the CO_{2} increases the response to hypoxia, and decreasing the O_{2} increases the response to hypercapnia. According to Kellogg, the response for an increase in H^{+}appears to be additive to the response for an increase in carbon dioxide, as Gray (1950) originally proposed. However, Hamilton (1964) (using a high constant PO_{2}) found that CO_{2} and H^{+}interact negatively with an increase in one producing a decrease in response to the other.

Little is known concerning the effects of such gaseous changes for the chicken. Hiestand and Randall (1942) have shown that 10 per cent CO_{2} in an unanesthetized chicken will increase the respiratory amplitude. Van watre (1957) ventilated chickens by introducing respiratory geses through a needle inserted into the posterior thoracic air sac. He found that a rather large flow of gas would inhibit respiration, but that increasing the amount of N_{2} or CO_{2} would overcome the inhibition. Increasing the CO_{2} increased the depth of respiration, although the rate of respiration did not appear to change.

The experimert tas divided into two studies. Ten adult Sirgle Comb Wite Leghorn tisles were used in the first study, while fourteen Hy-Line ${ }^{1}$ males wore used in the second study. Each stucy was further divided into two parts. In Study I, Part A, the oxygen in the dry gas mixture of the "inspired" giss was held constant at 18%, while the carbon dioxide was varied from 20-0-20\%。 In Part B, the carbon dioxide was held constant at 5%, while the oxygen was varied from $4-94 \%$. In Study II, Fart A, the oxygen was held constant at 20% of the dr_{r} gas mixture, while carbon dioxide was vi ied from $12-2-12 / 2$ in Part B, carbon dioxide was held constant at 5%, while the oxygen varied from $50-6 \%$ in two trials (1 and 2).

There were a few differences in experimental design between Study I and Study II. In Study I, Part fi, carbon dioxide levels in the respiratory gas raneed iron very low (0%) to rether high (20%) . The higher carbon dioxido levels (above 2%) and the low carbon dioxide levels (oelow 2%) were not used in study II, mainly because of possible deleterious effects on the bird of higher levels of CC_{2} and because the pCO_{2} electrode responis logarithmically anu, hence, cannot accurately be used to measure these low levels. The 50% to 94% mixtures of oxygen were not used in Study II, Part B, because little change in any parmeter causured (except arterial $\mathrm{F}_{\mathrm{O}_{2}}$) occurred at these levels. In Study II, the bird first received $50 \% \mathrm{O}_{2}$; then the O_{2} was gradually reduced. to the lower levels. In Study I, Part B, the oxygen mixtures were initially dropped to $4 \% \mathrm{O}_{2}$ and gradually raised in steps to $94 \% \mathrm{O}_{2}$.
$I_{\text {Cooribes and Sons Hatchery, Sedgewick, Kansas. }}$

An Offner Type S Dynograph ${ }^{2}$ was used for the simultaneous recording of arterial blood pH, arterial blood $\mathrm{P}_{\mathrm{O}_{2}}$, arterial blood $\mathrm{P}_{\mathrm{CO}_{2}}$, arteriel blood pressure, tracheal pressure, and sternel movements. Body temperature was monitored throughout the experiment using a read-out thermometer ${ }^{3}$ with a rectel thermistor ${ }^{4}$, which was inserted four inches into the rectum.

Experimental Materials and Arrangement

The unidirectionel respirator. The unidirectional respirator and other parts of the experimentel arrangement are presented diagrammatically in Fig. 1. The unidirectional artificial respirator, as described by Burger and Lorenz (1960) and Fedde and Burger (1962), is divided into the flowneter section and the heater-humidifier section. Four floating-ball flometers ${ }^{5}$ were used for regulating and measuring the flow of air, oxygen, nitrogen, and carbon dioxide. Although calibration curves were provided by the manufacturers of the flowmeters, determination of these curves vas repeated for the specific gases used over the required range of flowmeter settings. This was done in the following manner. At each floweter setting, a soap bubble was introduced into the flow of gas passing from the flowmeters into a graduated glass tube. The gas flow carried the bubble through the graduated glass tube (10 ml .), and the movement of the bubble was timed to obtain the flow (ml./min.). A larger tube (200 ml .) was used for the faster flows at higher settings of the flowmeters, since the rapid flow in the small tube was too fast for accurate timing. The tube was

[^0]

Pig. 1. Bxperimental arrangement for the simultaneous recording of arterial blood pH , arterial blood P_{2}, arterial blood PCO_{2}, arterial blood pressure, tracheal pressure and sternal movements during alterations in respiratory $\mathrm{P}_{\mathrm{O}_{2}}$ and $\mathrm{P}_{\mathrm{CO}_{2}}$.
rinsed with water periodically to prevent drying and breaking of soap bubbles. The new calibration curves showed some slight differences in gas flow over the range used when compared with the original calibration curves (Fig.2).

The gas heater-humidifier section (Fig. I) of the unidirectional respirator consisted of a large, stoppered, glass tube which contained a fine spray of warm water. The water was obtained from a constant temperature water bath ($\left.\pm 0.5^{\circ} \mathrm{C}.\right)$ and was continuously recirculated. Air, or oxygen-nitrogen mixture, from the flowmeters was introduced into the heater-humidifier through a tube which reached elmost down to the water level. The gases then passed up through the spray of water to the outlet tube, which passed down and out of the heater-humidifier. Since carbon dioxide is very soluble in water, it was added to the gas mixture as the mixture passed from the heater-humidifier before reaching the tracheal cannula. The temperature of the gas mixture, as it passed into the trachea, was held at $42^{\circ}-44^{\circ}$ C. by controlling the temperature of the water bath. This procedure helped to maintain the body temperature of the bird at about $40^{\circ} \mathrm{C}$. The heater-humidifier thus provided saturation of the gases with water vapor and reduced loss of moisture and heat from the lungs. The gases were thus considered to have been warmed and humidified to within the normel limits for gases in the lungs. Gross examination of the lungs after an experiment showed them to be normal in color and density.

The $\mathrm{DO}_{2}, \mathrm{DCO}_{2}$, and pH electrodes. For measurement of arterial $\mathrm{P}_{\mathrm{O}_{2}}, \mathrm{P}_{\mathrm{CO}}$, and pH the Beckman modular cuvette with electrodes ${ }^{6}$ was used. This device provided a continuous extracorporeal blood gas sensing system. The electrodes vere the oxygen macro electrode, the Severinghaus pCO_{2} electrode, the silversilver chloride micro blood pH electrode, and the fiber junction reference

[^1]

Fig. 2. Comparison of flowmeter calibration curves using the soap bubble technique with manufacturer's calibration curves. New curve \qquad ; from manufacturer's curve... .
electrode.
Since the values measured with the electrodes vary with the temperature, it was necessary to control accurately the temperature in the cuvette. A custor-made water bath incorporating a temperature controller, ${ }^{7}$ an immersible thermistor, ${ }^{8}$ a heater ${ }^{9}$ (200 watts), and a vertical imnersion recirculating pumplo was used with the modular cuvette to hold the temperature of the water circulating through the cuvette at $40.00^{\circ} \pm 0.07^{\circ} \mathrm{C}$. Severinghaus (1964) has provided correction factors for the effect on $\mathrm{P}_{\mathrm{O}_{2}}$ of variation of temperature and pH in human blood. However, these factors are not applicable for the chicken, since the blood pH and the oxygen dissociation curves for the chicken are different from those of man.

The pO_{2} and pCO_{2} electrodes were also used as a means of determining the accuracy of the oxygen and carbon dioxide tensions in the gas mixture at the various flowmeter settings which were presented to the birds. The expected oxygen tensions for the gas mixtures at body temperature and atmospheric pressure saturated with water vapor (BTPS) were calculated for the various gas percentages according to the equation: $\mathrm{PO}_{2}=$ per cent oxygen (barometric pressure - vater vapor pressure at $40^{\circ} \mathrm{C}$.). For example, at 10 per cent oxygen, $\mathrm{P}_{\mathrm{O}_{2}}=.10(727.9 \mathrm{~mm} \mathrm{Hg}-54.9 \mathrm{~mm} \mathrm{Hg})=67.3 \mathrm{~mm} \mathrm{Hg}$. The expected tensions were compared with those obtained when the gas mixtures produced by given settings of the flowmeters were measured with the electrodes. A comparison

[^2]of the values for P_{2} is presented in Fig. 3. There was close agreement between expected and measured values, although measured values were slightly lower at the upper oxygen tensions. Figure 4 shows the close agreement between the expected and measured values of $\mathrm{P}_{\mathrm{CO}_{2}}$. In general, the comparisons indicated that, at a desired flowmeter setting, the bird was receiving close to the expected gas tension.

Calibration of the oxygen and carbon dioxide electrodes required the use of calibrating gases. 11 Certified analysis of these gases showed purity to be $5.031 \% \mathrm{CO}_{2}$ and $12.26 \% \mathrm{CO}_{2}$. Nitrogen (99.999%) was used for zero oxygen. Air was used as a standard for 20.9 per cent oxygen. In initial experiments, the calibrating gases were passed quite slowly and intermittently through the cuvette in order to minimize cooling and drying of the electrodes. In later experiments the calibrating gases were first bubbled through varm water in a test tube in order to help warm and humidify the gas before it raached the electrodes. This procedure increased the repeatability of the calibrations. The pH electrode was calibrated using buffers with values of $6.84,7.38$, and 7.84 at $40^{\circ} \mathrm{C} .{ }^{12}$

Statham pressure transducers ${ }^{13}$ were used to sense blood pressure and trachesl pressure. A mercury manometer was used for calibration of the blood pressure transducer and a water manometer was used for calibration of the tracheal pressure transducer. Tracheal pressure was not measured in the first
${ }^{11}$ Air Products of Vinnesota, Inc., P.O. Box 176, Shakopee, Winnesota. 12\%Spinco Division, Beckman Instruments, Inc., Stanford Industrial Park, Palo Alto, California.

13
Statham Laboratories, Inc., Hato Rey Industrial Subdivision, Hato Rey, Puerto Rico. Blood pressure transducer (Model P23Gb), tracheal pressure transducer (Nodel F23AA).

Fig. 3. Comparison of expected PO_{2} in the gas mixtures from the flowmeters with the PO_{2} obtained when the gas mixtures were analyzed with the pO_{2} electrode. Both descending and ascending changes were made in the gas mixtures. The obtained PO_{2} was slightly lower than expected at the higher tensions. At the average barometric pressure during the study $13.7 \mathrm{mmg}=2 \% \mathrm{O}_{2}$ 。

Fig. 4. Comparison of expected PCO_{2} in the gas mixtures from the flowmeters with the PCO_{2} obtained when the gas mixtures were analyzed with the pCO_{2} electrode. Both descending and ascending changes were made in the gas mixtures. At the average barometric pressure during the study 13.7 mm $\mathrm{Hg}=2 \% \mathrm{CO} 2$ 。
study; but it was included in the second to obtain an indication of any change in the resistance to air flow presented by the lungs. Tracheal pressure was taken a few centimeters from the tracheal cannula (Fig. 1).

Respiratory movements were measured with a strain gauge device, which was attached near the caudal tip of the sternal carina (Fedde et al., 1963). Respiratory amplitude and period (seconds/respiratory cycle) were measured.

Surgical and Experimental Procedure

The birds were restrained in dorsal recumbency and a polyethylene cannula (PE 90, 10 cm . in length) was placed in the left cutaneous ulnar vein for the administration of anesthetic and heparin. Pentobarbital sodium ($65 \mathrm{mg} . / \mathrm{ml}$.) was infused slowly to effect. Absence of a response to a pinch on the rostral edge of the comb indicated deep anesthesia (Fedde et al., 1963). Usually 1.0 to 1.5 ml . of anesthetic were required. Additional 0.1 ml . doses were given as needed throughout the experiment to maintain a light surgical anesthetic level. Cannulae for blood pressure measurement (PE $160,27 \mathrm{~cm}$. in length) and for provision of a flow of arterial blood (PE $160,20 \mathrm{~cm}$.) to the extracorporeal blood gas sensing system were placed in the left and right ischiatic arteries respectively.

Blood was returned to the bird from the extracorporeal blood gas sensing system by inserting a cannula (PE $120,32 \mathrm{~cm}$.) into the right cutaneous ulnar vein. A one-piece, glass bubble trap (Fig. 1) was inserted in the path of the cannula a few centimeters from the bird. The bubble trap was essentially a perpendicular extension from a small glass tube (through which the blood flowed) forming a bulb which had an opening at the top into which was inserted a small serum bottle stopper. A small air bubble could be injected into the three-way stopcock between the cuvette and the return cannula in order to
measure the flow of blood. When the bubble reached the trap, it rose into the bulb and thus did not enter the vascular system of the bird. The trapped air could occasionally be removed from the bulb by a syringe and needle inserted through the rubber serum bottle stopper in the bubble trap. The movement of the air bubble along the marked longth of the cannula was timed in order to provide an indication of the rate of flow of the blood through the cuvette. Satisfactory flows were on the order of $0.15 \mathrm{ml} . / \mathrm{sec}$. At this flow rate, it required less than four seconds for blood to reach the sensing device from the bird.

With the cannulae in place, preparation was made for the flow of the gases through tine bird. A skin incision (5 cm . in length) was made midventrally in the proximal half of the neck. IWo layers of connective tissue were transected and the trachea (on the right side of the neck) was isolated in preparation for later tracheotomy. A midventral abdominal incision was made from the caudal tip of the sternal carina to within 1 cm . of the cloacal orifice, and the abdominal air sacs were ruptured. The tracheotomy was then completed, and a mixture of air and 5% carbon dioxide from the unidirectional respirator was introduced through the tracheal cannula. The gas mixture passed through the lungs, into the air sacs, and out to the atmosphere through the openings in the air sacs and the abdominal wall. The cranial and caudal thoracic air sacs were then ruptured using an alligator biopsy forceps. The cervical air sacs had been ruptured during the installation of the tracheal cannula. Thus, gas could pass over almost all of the respiratory gas exchange surface. In the interest of economy, a gas mixture of air and 5 per cent
carbon dioxide was used until the beginning of the experimental series at which time oxygen and nitrogen were substituted for air. it all times, a total flow of $4000 \mathrm{ml} . / \mathrm{min}$. of gas was given to the bird. Four to six per cent carbon dioxide had been found to give normal respiratory movements for the anesthetized chicken under unidirectional, artificial respiration (Fedde et 01. , 1963). This level of carbon dioxide prevents the drastic changes in acid-base belance which would occur if only air were used. Heparin sodium ${ }^{14}$ (initial dose of 200 units) was infused slowly over a 10 minute period with additional 10 unit doses given during the experiment about every 30 minutes. The heparin was used in order to prevent clotting in the cannulae and, especially, to prevent clotting in the modular cuvette.

The flowmeters were then set to give the desired flows of the gases. For each change in the gas mixture, a time of at least three to five minutes was allowed for the change in the recorded value of the arterial gas tensions to stabilize before any readings were taken. For example, with a change from $7 \% \mathrm{CO}_{2}+20 \% \mathrm{O}_{2}+73 \% \mathrm{~N}_{2}$ to $8 \% \mathrm{CO}_{2}+20 \% 0 \hat{2}+72 \% \mathrm{~N}_{2}$, readings for recorded values were taken after the change in the recorded arterial $P_{\mathrm{CO}_{2}}$ had leveled off. A continuous record was taken.

The measured values for each of the parameters (except for sternal movements and heart rate) were transformed from millimeters of recorder pen deflection to the appropriate units using the calibration curves which had been obtained. For every change in respired gas tension, the mean of each parameter (blood pressure, heart rate, arterial $\mathrm{P}_{\mathrm{CO}_{2}}$, etc.) was found over all birds. In a few cases not all parameters could be recorded. The standard errors of the means were calculated.

Tables 1 through 5 present the numerical results of Study I nnd Study II. The results are graohically summarized in Figs. 5 through 16. The figures for each part are divided into a graph correlating changes in resniratory gas tensions with blood $\mathrm{PO}_{2}, \mathrm{PCO}_{2}$, and pH and a graph correlating changes in these gas tensions with blood pressure, heart rate, respiratory movements, and, in Study II, tracheal pressure. The resniratory gas tensions used are based upon the average barometric pressure for Study I and the average barometric pressure for Study II.

Effect of Variation in Resniratory PCO_{2} with Constant PO_{2} on Arterial $\mathrm{PCO}_{2}, \mathrm{PO}_{2}$, and pH

The changes found in arterial $\mathrm{PCO}_{2}, \mathrm{PO}_{2}$, and nH with variation of respiratory carbon dioxide tension are show in Fig. 5 for Study I and in Fig. 6 for Study II. The arterial PCO_{2} was found to be in close agreement with the PCO_{2} of the resoired gas PCO_{2}, exceot for a slight difference at the low carbon dioxide tensions. Figure 7 nrovides a more direct comparison of the PCO_{2} values. The differences at the low carbon dioxide tensions were from a fem mm . Hg in Study II to about 10 mm . Hg in Study I. The main differences in Study I started at about $10 \% \mathrm{CO}_{2}$ (descending) to about $5 \% \mathrm{CO}_{2}$ (ascending), with the largest differences at the low carbon dioxide tensions.

There are several possible explanations for this difference. First, the PCO_{2} electrode response is logarithmic and not as ranid at the low tension of carbon dioxide. Due to the slow resnonse of this electrode (1-2 minutes) a long time may be required for an accurate reading, especially below about 2%.
Table 1．Experimental values for variation in carbon dioxide in Study I ．

		$\left\|\begin{array}{c} \omega_{\infty} \\ \stackrel{n}{n} \\ \stackrel{n}{5} \end{array}\right\|$	$+$
		$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline 0 \\ \cdots \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	
			 $+1$ 우욱
	咢		$+1$
	$\overbrace{0}^{0}$	$\begin{aligned} & \text { 華 } \\ & \text { a } \end{aligned}$	
	O_{0}	$\begin{aligned} & \text { 洓 } \\ & \text { 昌 } \end{aligned}$	
	$\begin{aligned} & \text { On } \\ & 0 \\ & 0 \end{aligned}$		

Table 1. (cont.)

Changes in $\mathrm{CO}_{2} 3$		Changes in parameters (mean \pm S.E.)							
$\% \mathrm{CO}_{2}$	$\begin{gathered} \text { Ave. } \mathrm{PCO}_{2} \\ \text { whal } \end{gathered}$	${ }^{\mathrm{P}} \mathrm{CO}_{2}$	${ }^{P} \mathrm{O}_{2}$	pH	Sys. Blood Pressure	Dias. Blood Fressure	Heart Rate	Resp. leriod	Resp. Amplitude
		man Hg	mm Hg		ma Hg	mmHg	beat s/rain	cycles/sec	units ${ }^{2}$
8	54.6	54.1 ± 3.0	112.1 ± 12.1	$7.46 \pm .04$	131.6 ± 6.6	86.6 ± 7.2	316.8 ± 14.7	$2.3 \pm .2$	$4.3 \pm .5$
9	61.4	$59.4-3.4$	112.011 .9	7.42 -.00	$135.3-8.5$	86.46	319.011 .3	2.2 . 2	4.9 . 5
10	68.2	66.74 .1	112.211 .5	7.40 .04	136.36 .3	87.515	314.411 .8	2.4 .3	5.5 . 4
11	75.0	72.14 .6	114.011 .6	7.36 .00	138.86 .7	92.26 .2	316.711 .4	2.3 .2	5.9 . 5
12	81.9	80.42 .9	116.111 .7	7.36 .00	138.96 .3	93.86 .5	314.610 .8	$2.3 \cdot 2$	6.3 .5
13	88.7	87.52 .7	115.011 .9	7.28 .00	$143.5 \quad 7.1$	97.06 .8	311.011 .1	2.4	6.7 . 6
14	95.5	96.02 .5	116.611 .9	7.24 .00	$141.5 \quad 7.2$	96.67	319.0 9.5	2.5 . 3	6.9 -7
15	102.3	103.32 .9	118.112 .2	7.21 .00	147.078	100.013 .8	325.8 8.5	2.4 .0	$7.0 \quad 6$
16	109.2	110.03 .7	117.412 .6	7.20 .01	149.28 .7	103.689 .9	331.39 .3	2.4 2.4 2.3	7.15
17	116.0	117.73 .1	119.712 .6	7.17 . 02	$152.0 \quad 9.9$	105.810 .5	$\begin{array}{ll}322.0 & 7.9 \\ 321.0 & 6.8\end{array}$	$\begin{array}{lll}2.4 & .3 \\ 2.4 & .3\end{array}$	$\begin{array}{ll}7.2 & .7 \\ 7.3 & .3\end{array}$
18	123.1	128.83 .2	121.812 .5	7.12 .01	151.610 .0	108.610 .5	321.06	2.4	
19	129.6	135.42 .5	123.412 .2	7.10 .00	155.410 .5	112.611 .2	$\begin{array}{ll}320.7 & 6.8 \\ 318.7 & 6.4\end{array}$		$\begin{array}{ll} 7.4 & .6 \\ 7.1 & .6 \end{array}$
20	136.4	142.33 .3	127.412 .6	7.09 . 01	158.312 .1	111.911 .6	318.76 .4	2.4 . 3	7.1 . 6

I-Based on average barometric pressure of 737.1 mm Hg .
${ }^{2}$ unit $=5 \mathrm{~nm}$ pen deflection
${ }^{3}$ Changes in respiratory carbon dioxide with constant oxyeen.
Table 2. Experimental values for variation of oxygen in Study I.

Table 3．Experimental values for variation of carbon dioxide in Study II．

	式荀	$\begin{aligned} & \text { O} \\ & \stackrel{4}{4} \\ & \text { ㅌ } \end{aligned}$	
		$\begin{aligned} & م_{n} \\ & \stackrel{\rightharpoonup}{u} \\ & \underline{5} \end{aligned}$	
	．	$\begin{aligned} & 0 \\ & \stackrel{0}{\infty} \\ & \mathbf{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\begin{aligned} & 40 \\ & 3 \\ & 3 \end{aligned}$	
		$\begin{aligned} & \text { 涪 } \\ & \text { 品 } \end{aligned}$	 ＋
	梁		
	\％	$\begin{aligned} & \text { y } \\ & \text { 2 } \\ & \text { a } \end{aligned}$	
	－	$\begin{aligned} & \text { 品 } \\ & \text { B } \end{aligned}$	
$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
$\left\|\begin{array}{l} 0_{0}^{0} \\ 0_{0}^{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & x \end{aligned}$		

Table 4. Experimental values for variation of oxygen in Study II. (Trial 1).

$\% \mathrm{O}_{2}$ Changes ${ }^{3}$		Changes in parameters (mean \pm S.E.)								
$\%_{1} \mathrm{O}_{2}$	$\begin{aligned} & \text { Ave, } \\ & \mathrm{P}_{\mathrm{O}_{2}} \\ & \text { nung } \end{aligned}$	${ }^{\mathrm{P}} \mathrm{CO}_{2}$	${ }^{P} \mathrm{O}_{2}$	pH	Sys. Blood Fressure	Dies. Blood Pressure	Heart Rate	Resp. F'eriod	Resp. Amplitude	Tracheal Fressure
		mm Hig	ram Hg		mm Hg	mm Hg	beats/rin	cycles/sec	units ${ }^{2}$	cm $\mathrm{H}_{2} \mathrm{O}$
50	336.8	36.9 ± 3.0	234.3 ± 8.7	$7.38 \pm .00$	160.5 ± 8.5	116.2 ± 5.7	242.5 ± 16.4	5.4 ± 1.1	$1.0 \pm .3$	79.9 ± 10.2
46	309.9	35.02 .7	$217.7^{-8.0}$	7.39-. 04	$164.3{ }^{-1} 8$	$118.4^{-} 5.8$	237.3 13.2	4.91 .1	1.1-. 3	$82.7^{-10.0}$
42	282.9	33.52 .9	196.98 .6	7.35 .04	163.28 .6	$118.5 \quad 5.5$	237.817 .3	5.41 .6	1.2 .3	79.69 .9
38	256.0	33.02 .9	$174.8 \quad 7.8$	7.40 .04	$163.9 \quad 8.0$	$119.0 \quad 5.4$	238.417 .4	5.20 .9	1.2 .3	82.13 .6
34	229.0	32.73 .1	162.813 .7	7.40 .04	164.89 .9	$119.5 \quad 5.3$	243.418 .4	6.51 .0	1.3 . 3	79.411 .3
30	202.1	32.72 .8	$134.9 \quad 5.4$	7.38 .04	165.47 .8	$120.3 \quad 5.6$	243.217 .3	5.51 .9	1.5 .3	82.65 .4
28	108.6	32.72 .9	119.714 .2	7.38 .04	166.8 8.4	$121.5 \quad 5.5$	248.217 .3	$\begin{array}{ll}5.2 & .7\end{array}$	1.7 . 3	80.013 .5
26	175.1	33.02 .8	112.54 .3	7.37 .04	167.47 .6	$120.8 \quad 5.0$	248.718 .5	5.2 . 7	2.0 .4	78.79 .0
24	161.7	32.63 .5	105.25 .1	7.36 .04	166.58 .6	$120.5 \quad 5.7$	249.119 .6	$\begin{array}{lll}5.0 & .7\end{array}$	1.9 .4	81.211 .6
22	148.2	32.82 .7	98.84 .1	7.36 .04	164.38 .4	119.15 .9	249.019 .5	$\begin{array}{llll}5.0 & .7\end{array}$	2.0 .4	78.010 .0
20	134.7	33.72 .7	$92.5 \quad 2.3$	7.35 .04	160.28 .4	$115.6 \quad 5.4$	250.720 .3	4.6 . 7	2.1 .4	70.011 .1
18	121.2	33.02 .6	83.92 .1	7.36 .04	163.67 .6	118.95 .5	255.418 .3	4.7 . 5	1.9 .4	79.412 .8
16	107.8	34.23 .0	$76.7 \quad 2.2$	7.36 .04	162.78 .0	$117.0 \quad 5.2$	259.016 .4	$4.3 \quad .5$	2.1 . 3	76.37 .1
14	94.3	33.72 .6	67.415 .7	7.36 .04	161.97 .8	117.9	262.916 .5	4.1 . 4	2.2 .3	78.515 .0
12	80.8	32.82 .3	56.92 .4	7.37 .04	161.68 .3	$117.5 \quad 5.6$	273.24 .4	4.0 .1	2.3 . 3	75.010 .3
10	. 67.4	34.02 .5	$41.5 \quad 2.9$	7.36 .04	$155.0 \quad 7.2$	107.511 .3	288.813 .4	3.2 .4	2.7 . 3	71.19 .5
8	53.9	34.62 .7	36.22 .7	7.35 .05	$150.2 \quad 7.6$	100.35 .1	306.410 .9	2.9 .6	2.7 . 4	71.111 .8
6	40.4	37.37 .0	31.34 .3	7.38 .06	150.011 .3	$94.5 \quad 5.0$	310.78 .0	2.3 . 2	3.3 . 3	65.613 .8

[^3]

$\therefore \mathrm{O}_{2}$ Changes 3				Changes in parameters (mean \pm S.E.)						
$\because \mathrm{O}_{2}$	$\begin{aligned} & \text { Ave. } 1 \\ & \mathrm{PO} 0_{2} \\ & \operatorname{mang} \end{aligned}$	${ }^{P} \mathrm{CO}_{2}$	P_{2}	pH	Sys. Blood Pressure	Dias. Blood Pressure	Heart. Rate	Resp. Feriod	Resp. Amplitude	Tracheal Pressure
		mag Hg	num Hg		ma Hg	rm Hg	beats/min	cycles/sec	units ${ }^{2}$	$\mathrm{cm} \mathrm{H} \mathrm{C}^{\mathrm{O}}$
50	336.8	34.8 ± 2.0	221.6 ± 7.2	$7.36 \pm .03$	161.2 ± 7.2	116.1 ± 3.9	239.2 ± 13.7	$5.1 \pm .6$	$1.4 \pm .8$	68.1 ± 8.4
46	309.9	34.41 .9	202.6 9.0	7.39 -03	$161.6^{-} 6.7$	117.53 .1	240.613 .9	5.3 - 6	$1.5{ }^{-} .9$	73.08 .1
42	282.9	$\begin{array}{lll}34.8 & 1.8\end{array}$	182.1 7.9	7.38 .03	161.86 .6	115.23 .2	241.514 .2	5.1 .4	1.6 .9	70.988 .0
38	256.0	34.1 2.1	162.58 .6	7.37 .03	759.46 .2	116.43 .5	245.515 .6	4.9 .5	$1.6 \quad .9$	71.39 .2
34	229.0	33.01 .8	139.76 .8	7.39 .03	166.74 .1	118.52 .6	245.817 .2	4.5 .4	1.81 .2	70.78 .4
30	202.1	32.31 .6	129.95 .4	7.39 .03	159.96 .4	115.33 .9	246.817 .1	4.5 .4	1.91 .0	67.28 .0
28	108.6	34.11 .7	116.95 .3	7.39 .03	161.46 .4	115.74 .2	251.016 .6	4.6 .6	$2.0 \quad .9$	67.08 .0
26	175.1	34.91 .7	110.14 .6	7.39 .03	157.26 .2	112.84 .6	255.917 .4	4.4 .4	1.8 . 8	65.28 .1
2\%	161.7	34.92 .0	105.44 .1	7.39 .03	$161.7 \quad 7.7$	114.93 .9	261.517.6	4.2 .4	2.01 .0	61.38 .2
22	148.2	34.01 .7	¢5.9 3.9	7.39 .03	154.46 .3	112.15 .7	257.615 .5	4.6 .4	2.0 . 8	71.788
20	134.7	$34.6 \quad 2.0$	87.43 .6	7.39 .03	155.88 .2	110.44 .9	258.728 .0	4.7 . 5	2.2 .9	76.49 .5
18	121.2	34.611 .8	78.92 .9	7.39 .03	152.47 .8	107.94 .6	267.617 .2	4.8 .6	2.41 .0	69.49 .0
16	107.8	$35.5 \quad 2.0$	71.72 .5	7.39 .03	751.27 .0	106.04 .0	269.317 .9	4.0 . 4	2.41 .0	65.59 .1
14	94.3	35.01 .7	65.02 .8	7.38 .03	2.53.6 7.3	106.04 .2	268.117 .0	4.0 .4	2.61 .1	$62.8 \quad 8.9$
12	80.8	33.51 .7	59.91 .9	7.38 .03	147.16 .6	102.84 .3	282.213 .8	3.5 . 3	2.6 . 8	75.112 .4
10	67.4	33.91 .6	43.21 .8	7.37 .03	149.16 .8	98.34 .6	293.216 .8	3.1 . 4	3.01 .2	$70.3 \quad 8.3$
8	53.9	$\begin{array}{lll}35.6 & 1.6\end{array}$	33.71 .7	7.33 .03	123.47 .1	96.63 .4	314.918 .9	2.4 . 2	3.41 .9	76.312 .7
6	40.4	$\begin{array}{lll}34.1 & 3.2\end{array}$	27.61 .5	7.34 .02	$157.8 \quad 9.0$	105.75 .6	305.327 .6	1.8 . 2	4.21 .1	$71.8 \quad 6.7$
4	26.5	34.518 .2	18.01 .1	7.30 .06	225.715 .1	124.67 .7	207.012 .0	2.4 . 4	5.22 .8	55.715 .0
Based on average barometric pressure of 728.5 mm Hg . 21 unit $=5 \mathrm{~mm}$ pen deflection										

Fig. 5. Study I, Part A. Effect of variation in respired P_{CO} on arterial $\mathrm{PCO}_{2}, \mathrm{PO}_{2}$, and pH . Although the PO 2 of the gas mixture was constant, at $18 \% \mathrm{O}_{2}$ ($121 \mathrm{~mm} \mathrm{Hg} \mathrm{P} \mathrm{P}_{2}$), the arterial P_{2} was found to decrease as PCO_{2} decreased. .

Fig. 7. Comparison of PCO_{2} in gas mixtures with obtained arterial PCO_{2}. The arterial PCO_{2} was greater than the gas mixture PCO_{2} - 6 the lower carbon dioxide tensions. The difference was greater in Study I than in Study II.

Therefore, a lower $\mathrm{PCO}_{\mathrm{CO}}$ reading might have been obtained if a longer time had been allowed before taking the reading. Second, the bird is producing a certain amount of CO_{2} as a result of metabolic processes. This endogenous carbon dioxide may account for part of the difference between the PCO of the gas raixture and the arterial ${ }^{2} \mathrm{CO}_{2}$. However, it would also be expocted that endogenous carbon dioxide would give an increased arteriel PCO_{2} at higher gas mixture $\mathrm{P}_{\mathrm{CO}}^{2}$ levels. But, since the $\mathrm{P}_{\mathrm{CO}_{2}}$ electrode responds logarithmicelly and the pen deflection is much less for a unit PCO_{2} at higher levels, the small difference between gas mixture PCO_{2} and arterial PCO_{2} probably can not be detectod.

There is a third possible explanation for the difference between arterikl $P_{\mathrm{CO}_{2}}$ and gas mixture $\mathrm{P}_{\mathrm{CO}_{2}}$ at low levels being greater in Study I than in Study II. This stoms frore the fact that the initial carbon dioxide tensions in the experiment were higher in Study I (20%) than in Study II (12%). Thus, there could be a greater amourt of combined carbon dioxide in the blood due to buffering of the initial high levels, which would bo released at the lower carbon dioxide tensions. That the amount of combined cerion dioxide was higher in Study I than in Study II can be determined from the experimental pH determinetions. The pH is related to the ratic of combined CO_{2} to free CO_{2} in the plasma by the equation: $p H=p K^{\prime}+\log \frac{\text { combined_CO2 }}{\text { free } \mathrm{CO}_{2}}$ Helbacka et al^{2} (1964) have determined the relationship of PK ' to pH in the chicken. The pK increases as the pH decreases. The ratio of combined to free CO_{2} for selected percentages of carbon dioxide is compared for Study I and Study II in Table 6 .

Table 6. Ratio of combined CO_{2} to free CO_{2} with variation in $\mathrm{P}_{\mathrm{CO}_{2}}$ compared for Study I and Study II. Values for pK'from Helbacka et $\underline{\text { gl. }}$, (1964).

	Study I			Study II					
$\begin{aligned} & \text { Per Cent } \\ & \mathrm{CO}_{2} \\ & \hline \end{aligned}$	Diff. ${ }^{1}$	$\left\lvert\, \begin{gathered} \text { Average } \\ \mathrm{pH} \end{gathered}\right.$	pK^{\prime}	$\frac{\text { combined } \mathrm{CO}_{2}}{\text { free } \mathrm{CO}_{2}}$	$\left\|\begin{array}{l} \text { Per Cent } \\ \mathrm{CO}_{2} \end{array}\right\|$	Diff. ${ }^{1}$	$\begin{gathered} \text { Average } \\ \mathrm{pH} \end{gathered}$	PK'	$\frac{\text { comb. } \mathrm{CO}_{2}}{\text { froe } \mathrm{CO} 2}$
12	3.1	7.28	6.10	15:1	12	0.4	7.26	6.10	15:1
6	20.4	7.45	6.09	20:1	6	4.1	7.39	6.09	18:1
2	13.8	7.68	6.08	40:1	2	4.8	7.58	6.08	30:1

From this table it can be seen thet the emount of combined CO_{2} to be eliminated at low carbon dioxide levels was greater in Study I than in Study II. Thus, the arterial $\mathrm{P}_{\mathrm{CO}_{2}}$ at Low carbon dioxide levels seems to have been influenced by the previous experimental conditions.

The changes which occurred in pH with variation in $\mathrm{P}_{\mathrm{CO}_{2}}$ also tend to show that there may have been more combined CO_{2} involved in Study I than in Study II. The pH values were generally higher in Study I when compared with those in Study II. In general, both studies shomed a decrease in values for pH with increased respiratory $\mathrm{P}_{\mathrm{CO}_{2}}$. The average of pH values obtained at levels of $5 \% \mathrm{CO}_{2}$ with $18-20 \% \mathrm{O}_{2}$ was 7.46 , when corabining both studies.

Although the $\mathrm{P}_{\mathrm{O}_{2}}$ of the gas mixture was held constant during the changes in $\mathrm{P}_{\mathrm{CO}_{2}}$, the arterial $\mathrm{P}_{\mathrm{O}_{2}}$ showed definite variation (Figs. 5 and 6). The arterial P_{2} decreased as the arterial P_{CO} decreased. The arterial $\mathrm{P}_{\mathrm{O}_{2}}$ decreased from about $130 \mathrm{~mm} . \mathrm{Hg}$ at $20 \% \mathrm{CO}_{2}\left(136 \mathrm{~mm} \cdot \mathrm{Hg} \cdot \mathrm{P}_{\mathrm{CO}_{2}}\right.$) to $120 \mathrm{~mm} \cdot \mathrm{Hg}$ at $12 \% \mathrm{CO}_{2}$ ($82 \mathrm{~mm} . \mathrm{Hg} \mathrm{P}_{\mathrm{CO}_{2}}$) and to 85 mm . Fg at $0 \% \mathrm{CO}_{2}$ in Study I. In Study II the range was from about $90 \mathrm{~mm} . \mathrm{Hg} \mathrm{P}_{2}$ at $12 \% \mathrm{CO}_{2}\left(81 \mathrm{~mm} . \mathrm{Hg} \mathrm{P}_{\mathrm{CO}_{2}}\right)$ to 77
man. Hg at $2 \% \mathrm{CO}_{2}\left(13 \mathrm{~mm} \cdot \mathrm{Hg} \mathrm{P}_{\mathrm{CO}_{2}}\right)$. The arterial $P_{\mathrm{O}_{2}}$ during variation in $P_{\mathrm{CO}_{2}}$ was generally higher in Study I than in Study II. The occurrence of changes in $\mathrm{P}_{\mathrm{O}_{2}}$ during variation in $\mathrm{P}_{\mathrm{CO}_{2}}$ will be discussed in connection with tracheol pressure changes.

Effect of Variation in Respiratory P_{2} with Constant $\mathrm{P}_{\mathrm{CO}_{2}}$ on Arterial $\mathrm{P}_{2}, \mathrm{P}_{\mathrm{CC}_{2}}$, and pH

The effect of variation in oxygen tension of the respiratory gas mixture on arterial $\mathrm{P}_{\mathrm{CO}_{2}}, \mathrm{P}_{\mathrm{O}_{2}}$, and pH is shown in Figs. 8,9 , and 10. The variability of arterial $\mathrm{P}_{\mathrm{O}_{2}}$ tended to increase with the increase in $\mathrm{P}_{\mathrm{O}_{2}}$.

Although arterial P_{2} increased with the increase in respiratory oxygen tensions, the divergence between the two is notable. The upper pert of Fis. 11 presents a direct comparision of the $\mathrm{P}_{\mathrm{O}_{2}}$ of the gas mixture and the obtained. arterial $P_{\mathrm{O}_{2}}$. The average $P_{\mathrm{O}_{2}}$ of the ges mixtures for Study I and Study II are slightly different due to the difforent average barometric pressures, 737.1 mm . Hg and 728.5 mm . Hg respectively. The difference botween the $\mathrm{P}_{\mathrm{O}_{2}}$ of the gas mixture and the arterial blood increases as the P_{2} is increased. Lit $50 \% \mathrm{O}_{2}$ the difference was about 100 mm . Hg. At low oxygen tensions the difference was smaller. In Study II the arterial $P_{O_{2}}$ was lower than expected at the lov oxygen tensions; while in Study I the arterial P_{2} was higher than expected. The arterial values for $\mathrm{P}_{\mathrm{O}_{2}}$ in Study I were comparatively higher than in Study II, expecielly at levels below $30 \% \mathrm{O}_{2}$.

The lower part of Fig. 11 shows directly the differences between $\mathrm{P}_{\mathrm{O}_{2}}$ in the gas mixture and the arterial P_{2}. The differences are expressed as the gas mixture $\mathrm{P}_{\mathrm{O}_{2}}$ - arterial blood P_{2}. Thus, a negative value was obtained for the arterial $\mathrm{P}_{\mathrm{O}_{2}}$ values below 18% in Study I. The theoretical difference curve

Fig. 8. Study I, Part B. Effect of variation in respired PO_{2} on arterial $\mathrm{PO}_{2}, \mathrm{PCO}_{2}$, and pH . Constant PCO_{2} in gas mixture $=34 \mathrm{~mm} \mathrm{Hg} . \mathrm{P}_{2}$ was increased from low values to high values.

Fig. 9. Study II, Part B (Trial 1). Effect of variation in respired P_{2} on arterial $\mathrm{PO}, \mathrm{PCO}_{2}$, and pH . Constant P_{2} in gas mixture $=33 \mathrm{~mm} \mathrm{Hg}, \mathrm{P}_{2}$ was lowered from high levels to low levels.

Fig. 10. Study II, Part B (Trial 2). Effect of variation in respired PO_{2} on arterial $\mathrm{PO}_{2}, \mathrm{PCO}_{2}$, and pH . Constant PCO_{2} in gas mixture $=33 \mathrm{ming}, \mathrm{P}_{2}$ was lowered from high levels to low levels.

Fig. 1l. Comparison of $\mathrm{P}_{\mathrm{O}_{2}}$ in gas mixture and in arterial blood and their differences with per cent O_{2} in gas mixture. Upper part: Comparison of the respiratory and the artetial P_{2} with the per cent O_{2} in the gas mixture. Lower part: Comperison of differences between gas rixture and arterial P_{2} with per cent O_{2} in gas mixture. See text for full explanation for theoretical curve.
is adapted from Rahn and Fahri (1964). This curve represents the swa of the effects of the three factors, which have been used by investigators in explaining the differences foujd between arterial $P_{\mathrm{O}_{2}}$ and alveolar $\mathrm{P}_{\mathrm{O}_{2}}$. They are (2) the diffusion factor, (2) the ventilation-perfusion factor, and (3) the venous adnixture factor. Differences due to the diffusion and ventilationperfusion factor are usually not large except in disease. The venous admixture factor; however, theoretically increases with increasing $\mathrm{P}_{\mathrm{O}_{2}}$. The addition of a small quantity of venous blood from the bronchial circulation and from shuts within the lung to the oxygenated blood in the pulmonary voin has a groater effect in reducing P_{02} at the higher oxyeen tensions due to the flat shapo of the oxyhemoglobin dissociation curve at these higher oxygen tensions (Rossier ett 0l., 1960). The air capillary $\mathrm{P}_{\mathrm{O}_{2}}$ - arterial $\mathrm{P}_{\mathrm{O}_{2}}$ differences in Stuay I and Study II at tiee higher oxygen tensions wore even greater than might be expected from this theoretical curve and appear to be only partly explained by these factors (Fig. II), assuming that they may be applied to the chicken. It is possible that the nucleated red blood cells of the chicken utilize. enough oxygen to decrease the arterial oxygen tension soruewhat. However, a more plausible explanation for the difference in oxygen tensions involves the measurement of the oxygen tension with the P_{2} electrode. Very recent work by Dr. Richard Boster in this laboratory (unpublished data) shows that the electrodes do not produce the same magnitude of current chenge and hence the same magnitude of recorder pen deflection when calibrated with gases at a given tension as when calibrated with liquids equilibrated with gases at this tension. The equilibrated liquid will yield about $20-25 \%$ less electrode response then the gas at high gas P_{2} values $(500-550 \mathrm{~mm} . \mathrm{Hg})$. If the venous admixture factor and the electrode calibration factor are taken into account,
the neasured arterial $\mathrm{F}_{\mathrm{O}_{2}}$ is very comparable to the $\mathrm{P}_{\mathrm{C}_{2}}$ in the respiratory gas. The respiratory carbon dioxide tensions were kent constant during variation in oxygen tensions. In general, there tended to be little change in arterial oH and in arterial PCO_{2} with changes in oxygen tonsion (Figs. 8, 9, and 10\%\% The arterial PCO_{2} was slightly reducod at tho begiming in Study I (Fig.0) with the initially low $\mathrm{P}_{\mathrm{C}_{2}}$. This lowering of $\mathrm{P}_{\mathrm{CO}_{2}}$ was not noticed in Stuay II, where the low $\mathrm{P}_{\mathrm{O}_{2}}$ levels were approached gradually. The valuos for pif and PCO_{2} in Study I vere slightly higher than in Study II. Also the PCO_{2} of the arterial blood in Study I (Fig. 8) was about 10 mm . Hg higher than in the gas mixture. Arterial $P_{C O 2}$ was quite close to the $P_{\mathrm{CO}_{2}}$ of the gas mixture in Study II (Fig. 9 and 10). A possible explanation for the higher pH and $\mathrm{P}_{\mathrm{CO}_{2}}$ in Study I may be beccuse the combined carbon dioxide was higher in Study I at the lower carbon dioxide levels. The study of variation in $\mathrm{P}_{\mathrm{CO}_{2}}$ (Fig.5) preceded the study of variation in $P_{\mathrm{O}_{2}}$ in the experimentel procedure. The higher pHI values obtained in the later oxygen studies indicate that there was still excess conioined CO_{2}. In the presence of normal carbon dioxide tensions in the lungs, the excess combined CO would be released and then the arterial $P_{\mathrm{CO}_{2}}$ would be higher than expected.

Effect of Variation in Carbon Dioxide Tensions on Blood Pressure, Heart Rate, Respiratory Poriod, Respiratory Amplitude, and Pracheal Pressure

Blood Pressure and Heart Rate. Blood pressure and heart rate decreased with decreasing carbon dioxide tensions (Figs. 12 and 13). This decrease was more apparent in Study I (Fig. 12), in which the respired carbon dioxide was decreased to 0%. The greatest change in blocd pressure occurred at about the same carbon dioxide tensions at which respiratory movements ceased.

$\begin{array}{llllllllllllllllllllll}\text { Per Cent CO2 } & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 3 & 4 & 5 & 6 & 7 & 3 & 9 & 10 & 11 & 12\end{array}$ RESPIRATORY CARBON DIOXIDE
Fig. 13. Study II, Part A. Effect of variation in respired PCO_{2} on blood pressure, tracheal pressure, heart rate, respiratory period, and respiratory amplitude.

Heart rate was gererally higher during changes in $\mathrm{P}_{\mathrm{CO}_{2}}$ in Study I than in Study II (Figs. 12 and 13). This higher heart rate micht possibly have been due to the higher concentration of cerbor dioxide, since carbon dioxide seoms to have a stimulating effect on the hoart (Dukes, 1555). Heart rate also tended to be higher after respiratory movements were resuried than before they ceased.

Variation in oxygen tensions did not produce any appreciable charges in blood pressure and heart rate except at low oxygen tensions (Figs. 14, 15, and 16). In Study I (Fig. 14), there was a slight increase in heart rate during hypoxic conditions; while in Study II (Figs. 15 and 16), the heart rate showed a definite increase, starting at about $14 \% \mathrm{O}_{2}$, to around 50 beats/min at $8 \% \mathrm{O}_{2}$. Heart rate in the mamrnel is also generally found to increase during hypoxic conditions (Korner, 1959).

Blood pressure during hypoxia tended to decrease and show an increased
 the local effect of hypoxia on isolated vessels is vasodilation. While an increase in only heart rate or an increase in only cardiac out put would tead to increase blood pressure, a decrease in peripheral resistance would tend to decrease blood pressure and an increase in viscosity (which may occur during low oxygen or high carbon dioxide) will tend to produce dilation of vessels (Best and Taylor, 1961). It would appear that the decrease in blood pressure which occurred during hypoxia indicates the presence of periphoral vasodilation.

The average blood pressure of the birds was lower in Study I than in Study II during the variation in oxygen tension (Figs. 14, 15, and 16). This may have been due to vasodilation produced by the initial hypoxia in Study I.

Fig. 14. Study I, Part B. Effect of variation in respired PO2 on blood pressure, heart rate, respiratory amplitude, and respiratory period.

Fige 15. Study II, Part B (Trial 1). Effect of variation in respired PO2 on blood pressure, tracheal pressure, heart rate, respiratory period, and respiratory amplitude.

Fige 16. Study II, Part B (Trial 2). Effect of variation in respired PO_{2} on blood pressure, tracheal pressure, heart rate, respiratory period, and respiratory amplitude.

Respiratory period and Respiratory dinplitude. As carbon dioxide tensions decreased in Study I and Study II, the respiratory period (seconds/respiration) increased and the respiratory amplitude decreased (Figs. 12 and 13). Respiratory moverents usuelly ceased at around $4 \% \mathrm{CO}_{2}$. A few birds showed slight respiratory movements at lower percentages of CO_{2}, which accounts for the fact that these averages are not quite zero. Respiratory amplitude was measured in terms of men of pen deflection with the recorder at a constant gain setting. Zero drift occurred between experiments so that direct comparisons between birds could be made. The magnitude of the pen deflection was a direct reflection of the magnitude of sternal movements. The data were transformed for presentation in the Figures so that 5 mm . pen deflection is equal to 1 unit. The respiratory amplitude increased with increasing carbon dioxide levels (Fig. 12 and 13). It has been shown for mammals that there is an increased ventilatory response to carbon dioxide up to levels of 12%. Above these levels, the respiratory response decreases and carbon dioxide tends to act more and more as an anesthetic (Dripps and Comroe, 1947). A decrease in respiratory response to carbon dioxide levels above 12% was not found to occur in the chicken. Respiratory amplitude tended to level off at about $14 \% \mathrm{CO}_{2}$. Purthermore, changes in tension at the higher levels of carbon dioxide tended to result in an excitatory motor response in the chicken even though the level of anesthesia was adequate at the lower CO_{2} levels. These data indicate that these high levels of CO_{2} do not produce as much centrol depression in the chicken as in manuals. The leveling off of respiratory amplitude at these high CO_{2} levels may indicate that the bird was simply not physically capable of breathing any deeper and that maximum respiratory movements were produced by levels of about 14% respired CO_{2}.
is PCO_{2} was increased, there was little change in respiratory period except at low carbon dioxide tensions (Figs. 12 and 13). The respiratory period was greatly lengthened before respiratory movements ceased at low CO_{2} tensions, with the respiratory period (sec./cycle) approaching infinity. The respiratory period tended to level off at about $5 \% \mathrm{CO}_{2}$ in Study I and about 7% in Study II. Thus, the higher levels of respired CO_{2} did not act to decrease respiratory period or conversely to increase respiratory rate.
ifith decreasing oxygen tensions during Study II, the respiratory amplitude gradually increased and the respiratory period gradually decreased (Figs. 15 and 16). During oxygen changes in Study I, respiratory amplitude showed little change, but respiratory period was slightly decreased during hypoxic conditions (Fig. 14). However, the respiratory amplitude was higher in Study I than in Study II. Since increases in respired $\mathrm{P}_{\mathrm{CO}_{2}}$ act primarily to increase respiratory amplitude and since the concentration of carbon dioxide was higher during the variation of oxygen in Study I than in Study II, the generally higher amplitude in Study I may have been due to the elevated amount of carbon dioxide present.

Tracheal Pressure. Tracheal pressure, measured in Study II, showed an increase at low carbon dioxide levels (Fig. 13). The greatest change in tracheal pressure occurred when respired carbon dioxide was below 8%.

Unfortunately a simple measurement of tracheal pressure does not differentiate between the possible causes of changes in this variable. An increase in tracheal pressure could be due to bronchoconstriction or due to changes in pulmonary vasculature. Other investigators have found that the increase in tracheal pressure is produced by changes in the air passageways in the lung. An increase in airway resistance was found in the dog (anesthetized with pentobarbital) under conditions of decreased carbon dioxide levels in the
blood (Severinghaus et al., 1961). This effect was reversed with $6 \% \mathrm{CO}_{2}$, isoproterenol, or $100 \% \mathrm{~N}_{2}$. It has been reported that inhalation of 10-12\% O_{2} or 5 to $8 \% \mathrm{CO}_{2}$, or stimulation of the carotid body with $2-10 \mu \mathrm{mg}$. of nicotine will increase total lung resistance under chlorelose-urethane anesthesia (Nadel and "iddecombe, 1961). Forester (1964) has found that an increase in alveolar $\mathrm{P}_{\mathrm{CO}_{2}}$ increases the ease with which carbon monoxide reaches the red blood cell in the lung. This indicates an increase in diffusion of oxygen from alveoli to red blood cell under the influence of high PCO_{2}.

Although the respiratory movements of the birds could not alter the cuantity of ges which passed through the lungs under these artificial ventilation conditions, an increase in tracheal pressure could indicate a reduction in flow past the gas exchange surfaces of the lungs. The parabronchi have an abundence of smooth muscle cells which surround them in a unicue network. A. slight contraction of these muscle cells would decrease the gas flow through the parabronchi and hence over the gas exchange surfaces and would act to. shunt the gas through the direct bronchial pathways to the air sacs. Such a shunt would have the effect of diminishing the exchange, especially oxygen, between gases and blood. Such an explanation also seems supported by the reduced arterial $\mathrm{P}_{\mathrm{O}_{2}}$ which occurred during increased tracheal pressure at low respired carbon dioxide levels (Figs. 5 and 6).

No significant change in tracheal pressure was found with the variation of oxygen tension (Figs. 15 and 16). The tracheal pressure means were, however, more erratic when below $22 \% \mathrm{O}_{2}$. There was little change in tracheal pressure at higher oxygen tensions. Some birds tended, however, to show definite gradual decreases in tracheal pressure with hypoxia.

Control of variation in tracheal pressure probably is necessary in the control of blood gas levels. It appears that further evaluation of the influence of gas tensions on airway resistance will require consideration of at least three factors. First, changes in tracheal pressure do occur with changes in carbon dioxide and possibly may be influenced by low levels of respired oxygen. Each of these gases should be studied over a range of tensions. According to our results, the $5-8 \% \mathrm{CO}_{2}$ level, which was used by Nadel and Widdecorabe (1961), is in a region in which the tracheal pressure is changing. It may be that there is a threshold in the effect of carbon dioxide on tracheal pressure. Second, the duration of hypoxia may be a factor influencing tracheal pressure. Some variation has been noted in experimental responses of tracheal pressure to hypoxia. In the present experiment the oxygen level in the respired gas was reduced to 4% (not reported on the graphs) in two birds with a concomitant marked drop in a tracheal pressure occurring. It may be that prolonging hypoxia produces a drop in tracheal pressure. Third, the type of anesthetic used may be important. Tracheal pressure responses to hypoxia have been obtained with chloralose or chloralose-urethan rather than with barbiturates (Widdec ombe, 1963).

A method has been studied by which the arterial blood gas tensions in the chicken can be controlled with the use of the unidirectional ertificial respirator. Bimultaneous determinations have been made for the areericl H_{2}, artorisl FCO_{2}, arterial pH , blood pressure, heart rate, tracheal pressure, respiratory period, and respiratory amplitude which correspond to given respiratory gas mixtures. The respiratory gas mixtures ranged in steps (I) from $20-0-20 \%$ CO_{2} and irom $4-94 \% \mathrm{O}_{2}$ in Study I and (2) from $12-2-12 \% \mathrm{CO}_{2}$ and from $50-6 \% \mathrm{O}_{2}$ in Study II.

The arterial carbon dioxide tensions tended to coincido with the respiratory ges mixture tensions except at low levels of carbon dioxide. This difference may have been due to a build-up of combined carbon dioxide from the preceding exposure to high CO_{2} or from metabolically produced carbon dioxide., The aiflerence between the arterial oxygen tension and the respiratory oxygen tensiont tended to increase with increasing $\mathrm{P}_{\mathrm{O}_{2}}$. This difference seemed to be due mainly to the increased effect of venous admixture at high oxygen levels and to the use of gases rather than liquids for calibrating the oxygen electrode.

Leasurements of respiratory movements indicated that the respiratory response does not decrease at high levels of carbon dioxide in the chicken. The increase ir tracheal pressure, which occurred at low carbon dioxide levels, may be associated with the decreased arterial oxygen tensions which occur at low carbon dioxide levels. An increase in heart rate and a decrease in blood pressure were found to occur at the lower levels of oxygen.

With the use of liquids rather than gases for oxygen electrode calioretions and taking possible effects of combined carbon dioxide and venous
admixture into consideration, unidirectional respiration does make possible the control of arterial blood gas tensions in the chicken.

I wish to thank Dr. W. R. Fedde, Department of Physiology, Kansas State University, for his careful and patient assistance during the preparation of this thesis.

I would like to thank Wr. Orlan Youngren, Laboratory Technologist, Depertment of Poultry Science, University of Linnesota, for his assistance in obtaining the data for Study I.

I am also indebted to Dr. Richard Boster, Department of Physiology, Kansas State University, for testing the use of liquid versus gas calibrations for the oxygen electrode.

REFERENCES

Best, C. A. and N. B. Taylor. The physiolopical hasis of medical oractice. Baltimore: Williams and Wilkins, 1961.

Burger, R. B. and F. W. Iorenz. Artificial resniration in birds by unidirectional air flow. Poultry Sci. 39: 236-237, 1960.

Carrier, O. Jr., J. R. Walker, and A. C. Guyton. The role of oxrgen in nutoregulation of blood blow in isolated vessels. Am. J. Physiol. 206: 951-954, 1964.

Christensen, E. and D. B. Dill. Cxypen dissociation curves of bird blood. J. Biol. Chem. 109: LW 3-448, 1935.

Comroe, J. H., Jr. The neripheral chemorecentors. In Handbook of physiolory, Se c. 3, Vol. 1, Fenn, W. O. and H. Rehn, ed. Fashington, D. C.: American Physiolorical Society, 1964, pp. 507-534.

Daly, N. de Burch, Julie L. Hazzledine, and A. Hove. Reflex respiratory and perioheral vascular responses to stimulation of the isolated Derfused aortic arch chemorecentors of the dog. J. Physiol. 177: 300-322, 1955.

Dripps, R. D. and J. Y. Comroe, Jr. The effect of high and low oxygen concentrations on resoiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals. Am. J. Physiol. 149: 277-291, 1947.

Duke, Helen N., J. H. Green, P. F. Heffron, and V. W. J. Stubbens. Pulmonary chemoreceptors. Quart. Journ. Exper. Physiol. 48: 164-175, 1953.

Dukes, H. H. The physiology of domestic animals. 7th ed. Ithaca, New York: Comstock Publishing Associates, 1955.

Fedde, M. R. and R. E. Burger. A gas heating and humidifying accessory for the unidirectional resoirator. Poultry Sci. 41: 679, 1962.

Fedde, M. R., R. E. Burger, and R. I. Kitchell. The effect of anesthesia and age on respiration folloring bilateral, cervical vagotomy in the forl. Poultry Sci. L2: 1212-1223, 1963.

Forester, R. E. Diffusion of gases. In Handbook of physiology, Sec. 3, Vol. 1, Fenn, M. O. and H. Rahn, ed. Washington, D. C.: American Physiological Society, 19611, 30. 839-872.

Glick, G., W. H. Plauth Jr., and E. Braunwald. Circulatory resnonse to hypoxia in mesthetized dogs with and without cardiac denervation. Am. J. Physiol. 207: 753-758, 1954.

Gray, J. S. Pulmonary ventilation and its physiological regulation. Springfield: Bannerstonehouse, 1950.

Hanilton, R. W., Jr. Carbon dioxicie, oxygen, and acidity: The interaction and indesendent effects on breathing of these factors in arterial blood. Ph. D. Thesis, Univ. of $2 i n n ., S t$. Paul, Vinnesota, 1964.

Hiiestand, 7. A: and C. W. Randall. Species differentiation in the respiration of birds following carbon dioxide administration and the location of inhibitory receptors in the upper respiratory tract. J. Cell. and Comp. Physiol. 17: 333-310, 1941.

Joels, N. and E. Neil. Excitation mechanism of the carotid body. Brit. Ned. Bul1. 19: 21-24, 1963.

Kellogg, R. H. Central chemical requlation of resoiration. In Handbook of Dhysiology, Sec. 3, Vol. 1, Fenn, W. O. and H. Rohn, ed. Washineton, D. C.: American Physiological Society, 1964, pp. 507-534.

Korner, P. I. Circulatory adantations in hypoxia. Physiol. Rev. 39: 687$730,1959$.

Liac Leod, R. D. M. and I. J. Scott. The heart rate resoonses to carotid body chemorecentor stimulation in the cat. J. Physiol. 175: 193-202, 1964.

Morgan, V. E. and E. F. Chichester. Properties of blood of the domestic foml. J. Biol. Chem. 110: 285-289, 1935.

Nadel, J. A. and J. G. Widdecombe . Nervous control of the trachea and lower aimrays in doss. Fed. Proc. 20: 429, 1951.

Rahn, H. and L. E. Parhi. Ventilation, periusion, and gas exchange - the $\mathrm{V}_{\mathrm{A}} /$ \& concent. In Handhook of physiology, Sec. 3, Vol. I, Fenn, T. 0. and I. Rahn, ed. Mashinoton, D. C.: American Physiological Society, 1964, pp. 735-766.

Rossier, P. H., A. A. Buhlmann, and K. Wiesinger. Resoiration: Physiologic principles and their clinical apolications. Luchsinger, P. C. and K. M. Ploser, ed. and trans. St. Iouis: C. V. Nosby, 1960.

Schneider, 5. C. and Dorothy Truesdel. The effects on the circulation and respiration of an increase in the carbon dioxide content of the blood in man. An. J. Physiol. 63: 155-175, 1922.

Severinghaus, J. W., E. W. Swenson, T. N. Finley, M. T. Lategola, and J. Williams. Unilateral hyoventilation produced in dogs by occluding one pulmonary artery. J. appl. Physiol. 16: 53-60, 2961.

Severinghaus, J. W. Oxyhemorlobin dissociation curve correction for temperature and oH variation in human blood. J. appl. Physiol. 12: Li55, 1961.

Thilenius, O. G., P. B. Hoffer, R. S. Fitzgerald, and J. F. Perkins, Jr. Resnonse of pulmonary circulation of resting, unanesthetized dogs to acute hypoxia. Ar. J. Physiol. 206: R67-874, 1964.

Van Natre, N. S. Avian external respiratory mechanisms. Ph. D. Thesis, Univ. of Calif., Davis, California, 1957.

Widdecombe, J. G. Reculation of tracheobronchial smooth muscle. Physiol. Rev. 43: 1-37, 1963.

A method for the experimental control of changes in blood gas tensions in vivo has made possible the study of chemoreceptor responses over a range of blood gas tensions and the study of possible interaction of responses of the different chemoreceptors. The unidirectional respirator can be used in the chicken to produce desired changes in blood gas tensions. This study has been made to determine the relationship between arterial blood gas tensions and respiratory gas tensions when these tensions were widely varied. In conjunction with the continuous measurement of arterial $\mathrm{P}_{2}, \mathrm{PCO}_{2}$, and pH , blood pressure, heart rate, tracheal pressure, respiratory period (inverse of rate), and respiratory anplitude were also measured on adult male chickens.

Study I included the simultaneous measurement of each of the above parameters except tracheal pressure under conditions in which the gas mixtures (BTPS) used with the unidirectional respirator were varied (1) from $20 \% \mathrm{CO}_{2}$ down to $0 \% \mathrm{CO}_{2}$ and back up to $20 \% \mathrm{CO}_{2}$, while holding oxygen at 18% and (2) from $4 \% \mathrm{O}_{2}$ up to $94 \% 02$, while holding carbon dioxide at 5%. Study II included measurement of the same parameters, with the addition of tracheal pressure. The gas mixtures in Study II were varied (1) from $12 \% \mathrm{CO}_{2}$ dowm to $2 \% \mathrm{CO}_{2}$ and back up to $12 \% \mathrm{CO}_{2}$ and (2) from $50 \% \mathrm{O}_{2}$ down to $6 \% \mathrm{O}_{2}$ (two trials on each bird).

The Beckman modular cuvette, containing electrodes sensitive to $P_{\mathrm{CO}_{2}}$, PO_{2}, and pH , wae used to make continuous measurements of these variables. Analyzed gases containing various percentages of O_{2} and CO_{2} were used to calibrate the PO2 and PCO2 electrodes. Appropriate transducers were used for the measurement of the other parameters. An Offner Type S multichannel pen recorder was used for simultaneous recording of the paramoters. Constant
temperature water baths were used with the modular cuvette ind for warming and humidifying the gas mixturos in the unidirectional respirator. Body temperature was also monitored.

The results of the experiment showed close agreement between the $\mathrm{P}_{\mathrm{CO}}^{2}$ of of the respiratory gas mixture and the arterial P_{2}, except at low tensions of respired PCO_{2}. The difference found in carbon dioxide tensions at 1 ow CO_{2} may have been due to a build-up of combined CO_{2}, from preceding exposure of the blood to high PCO2 - Also, since endogenous CQ2 is continuously produced, a small amount of carbon dioxide tension would be expected even at low respiratory values of PCO_{2}.

The agfeement between the $P_{\mathrm{O}_{2}}$ of the respiratory gas mixture and the arterial P_{2} was less exact. As the $\mathrm{P}_{\mathrm{O}_{2}}$ was increased, the difference between the respired gas tension and arterial $\mathrm{P}_{\mathrm{O}_{2}}$ increased. This difference could be explaincd by several factors, including venous adraxture, use of gases rather than liquids for electrode calibrations, and ventilation-perfusion differences.

Findings from measurement of other parameters include lower blood pressure and higher tracheal pressure at low respired $\mathrm{P}_{\mathrm{CO}_{2}}$, and little variation of these parameters with changes of respired oxygen escept at low O_{2} tensions where there was an increase in heart rate and decrease in blood pressure. Alteration of respired carbon dioxide seemed to have little effect on respiratory period, but respiratory amplitude increased with increasing $\mathrm{P}_{\mathrm{CO}_{2}}$. Decreasing the oxygen tension increased amplitude and decreased period. Respiratory movements usually ceased winen the respired CO_{2} went below 4%.

The unidirectional respirator can be used to control blood gas tensions if the factors which cause differences between respiratory gas tensions and arterial blood gas tensions are taken into consideration.

[^0]: 2 Offner Division of Beckman Instruments, Inc., 3900 River Road, Schiller Park, Illinois.
 $3_{\text {Yellow Springs }}$ Instrument Co., Yellow Springs, Ohio (Kodel 43). ${ }^{4}$ Yellow Springs Instrument Co., Yellow Springs, Ohio (Kodel 401). ${ }^{5}$ Precision Laboratory Instruments, Cole-Parmer Instrument and Equipment Co., 7330 North Clark Street, Chicago 26, Illinois.

[^1]: 6 Spinco Division, Beckman Instruments, Inc., Stanford Industrial Park, Palo Alto, California.

[^2]: Yellow Springs Instrument Co., Ince, Yellow Springs, Ohio (Wodel 71). Yellow Springs Instrument Co., Inc., Yellow Springs, Ohio (Number 403). Aloe Scientific, St. Louis, Wissouri. Aloe Scientific, St. Louis, Missouri.

[^3]: Based on average barometric pressure of 728.5 mra Hg . 1 unit $=5 \mathrm{~mm}$ pen deflection

 Changes in respiratory oxygen with constant carbon dioxide.

