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Abstract Due to the increasing use of insect cell based expression systems in research 

and industrial recombinant protein production, the development of efficient and 

reproducible production processes remains a challenging task. In this context, the 

application of online monitoring techniques is intended to ensure high and reproducible 

product qualities already during the early phases of process development. In the following 

chapter, the most common transient and stable insect cell based expression systems are 

briefly introduced. Novel applications of insect cell based expression systems for the 

production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using 

the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for 

insect cell culture monitoring in disposable and common bioreactor systems are outlined 

with respect to optical and capacitive sensor concepts. Since scale-up of production 

processes is one of the most critical steps in process development, a conclusive overview 

is given about scale up aspects for industrial insect cell culture processes.  
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1 Introduction 

Over the last decades, insect cells were more and more established for 

recombinant protein production. Insect expression systems were thereby used for 

both, basic research and large-scale commercial applications. One key factor for 

their popularity is their ability to produce large quantities of posttranslational 

modified eukaryotic proteins in a relatively short time period. A relatively new 

field of application is the production of insect derived antimicrobial peptides/ 

proteins (AMPs), which are intended as novel therapeutics in medical 

applications. Further, the handling of insect cells is quite easy compared to 

mammalian cells which also produce functional posttranslational modified 

recombinant proteins. This means that insect cells grow in suspension at 28°C, are 

tolerant to osmolality and no carbon dioxide is needed for their cultivation [1]. 

The simplicity of insect cell cultivation makes them very attractive for 

recombinant protein production.  

To exploit the maximum potential of insect cell cultivation, the production 

process has to be well controlled and monitored. With regard to PAT for 

pharmaceutical processes it became more and more important to ensure product 

quality by design and during the entire process. In this context, many online tools 

have been investigated. Some of them are still routinely used in industrial 

processes. Beyond the standard parameters temperature, pH and oxygen, the key 

parameters which have to be monitored are the viable insect cell biomass, the 

metabolic activity and product quantity.  

Scale up of well-established processes to industrial scales is the final challenge for 

the production of recombinant proteins in insect cells. Therefore the specific 

cultivation parameters should be kept constant. Geometric similarity of the 

cultivation vessels in small and large scale eases the scale up procedure. 

Nowadays simulation tools as CFD help a lot in the understanding and scale up of 

processes even at different cultivation setups in small and large scales. Scale up of 

insect cell production is relatively rewarding since insect cells usually grow in 

suspension. The main point in scale up is to guarantee homogeneity to ensure 

sufficient access to nutrients. In the following chapter the main insect cell 

expression systems are introduced. Issues related to the application of insect cell 

expression systems for the production of G. mellonella derived gloverin, as an 

example for insect derived AMPs, are discussed. Modern online monitoring tools 
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are presented and valued for their application in insect cell processes. Finally, 

scale up considerations for BEVS based production systems are reflected. 

2 Recombinant Protein Production in Insect Cells 

The possibilities to produce recombinant proteins in insect cells are manifold. A 

multiplicity of expression systems, cell lines and vectors are available. 

Nevertheless the majority in industrial production uses the baculovirus expression 

system with great success. Recently stable expression systems became prominent 

for insect cells as well. Compared to mammalian cells or bacteria, the insect cells 

combine the advantages of relatively short production times and the ability to 

produce complex post-translational modified proteins. 

2.1 Common Insect Cell Lines for Recombinant Protein Production 

Insect cell culture began with the establishment of an insect cell line from the 

pupal ovarian tissue of the moth Antheraea eucalypti in 1962 [2]. In the 

meanwhile over 500 insect cell lines from several species and tissue sources have 

been established. These cells are widely used in research. However, the number of 

cell lines used and engineered for recombinant protein production in routine 

industrial processes is relatively low [3]. In the following, only the most common 

insect cell lines utilized for recombinant protein production are introduced. 

2.1.1 Spodoptera frugiperda Derived Cells 

Sf9 and Sf21 cell lines are traditional cell lines originally isolated from the pupal 

ovarian tissue of the fall armyworm, Spodoptera frugiperda [4,5]. The Sf9 cell 

line is thereby a clonal isolate of IPLBSF21-AE (Sf21 cells) [4]. Both cell lines 

are spherical with some granular appearance, whereas Sf9 cells are more regular 

in size. Reported doubling times for Sf21 and Sf9 cells vary between 26 to 30h 

and 24 to 31h, respectively [6]. Both cells grow well in monolayer and suspension 

and are adaptable to serum- and protein-free medium. They are both suitable for 

viral transfection, resulting in high virus stocks and expression of recombinant 

proteins. In some cases Sf21 cells may express more protein than Sf9 cells [7]. 

Functionality of proteins is often dependent on the right glycosylation pattern. 

Glycosylation in insect cells is different and less complex compared to 

mammalian cells. In general N-glycans of insect cell proteins mainly contain high 
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mannose or trimannose structures which are truncated and unsialylated (Fig. 1). 

This pauci-mannose-type is very ordinary for invertebrates. In contrast O-linked 

glycosylation of insects is similar to mammalian cells [8].  

 

 

Fig. 1 Major differences between human, mammalian and insect glycosylation pattern. 

 

To guarantee full functionality of recombinant insect-produced proteins, a special 

cell line was developed (SfSWT-1). These cells are transgenic Sf9 cells that have 

been engineered to produce recombinant proteins with terminally sialylated N-

glycans like those found in mammalian systems [9]. Their doubling time and 

growth characteristics are identical to Sf9 cells except for the fact that serum is 

required for cell cultivation.  

2.1.2 Drosophila melanogaster Derived Cells 

The most common used Drosophila melanogaster cell line is the Schneider 2 cell 

line, usually abbreviated as S2 cells. These cells have been derived from a 

primary culture of late stage (20-24h) Drosophila melanogaster embryos [10]. 

The cell phenotype has many characteristics of cells from a macrophage-like 

linage. The cells are spherical in shape and possess a granular cytoplasm. Similar 

to the Spodoptera frugiperda derived cell lines, S2 cells can grow as loose, semi-

adherent monolayer in tissue flasks or suspension culture in dynamic systems, 

with doubling times around 24h. Optimum temperature is 28°C and CO2 is not 

required for pH regulation during cultivation. Cultivation in serum-free and even 

protein-free medium is possible for these cells. Beside S2 cells, other Drosophila 

melanogaster cell lines such as S3 cells and a few derivatives of the Kc cell line 

were used for recombinant protein production [11]. 
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2.1.3 Other Cells 

The High Five or Tn5B1-4 cell line has been established from the ovarian cells of 

the cabbage looper, Trichoplusia ni [12]. A characteristic of this cell line is a 

population doubling time of less than 24h. The cells grow in adherent culture, but 

form irregular monolayers. Suspension culture and serum-free cultivation is 

possible. Compared to Sf9 cells, High five cells provide 5-10 fold higher secreted 

recombinant protein expression [13]. However, this high productivity may be 

more evident in low passage cells [12]. 

2.2 Expression Systems for Insect Cells 

Insect cells can express recombinant proteins via transient and stable expression. 

In the case of insect cells, transient expression mostly means lytic expression 

where cells were infected with a lytic recombinant virus carrying the gene of 

interest. Stable expression in insect cells is similar to the stable expression in 

mammalian cells, with an insertion of the expression vector followed by a 

selection and screening of high producer clones. The following section focuses on 

the introduction of the most prominent insect cell expression systems. 

2.2.1 Baculovirus Expression Vector System (BEVS) 

Many types of viruses can infect insect cells. The most common ones belong to 

the family of Baculoviridae. The BEVS used today are based on the Autographa 

californica multiple nucleopolyhedrovirus (AcMNPV) which mainly infects 

Lepidoptera derived insect cells. Therefore, this type of virus is mainly used in 

combination with Sf- or Hi-5 cells. The expression of recombinant proteins in the 

BEVS is under control of a very late viral promoter, often the strong polyhedrin 

promoter [14] or the p10 promoter [15]. The p10 promoter has been shown to be 

activated earlier in the infection time course than the polyhedrin promoter, which 

results in an earlier initiation of the expression of some recombinant proteins. 

Several systems use the BEVS in order to express the foreign gene under control 

of an immediate-early promoter (IE), which is active in uninfected cells as well as 

infected cells during the early infection phase. These systems have shown to be 

superior for the expression of eukaryotic secretory glycoproteins with high 

activity [16]. 
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An elegant way to create recombinant Baculoviruses (BV’s) is the bacmid 

technology. A bacmid is a shuttle vector between Escherichia coli and BV’s. It 

replicates in E. coli and generates the recombinant viral DNA via site-specific 

transposition. After that, insect cells are transfected by the bacmid in order to 

produce the recombinant BV’s [17]. The advantage of this method is the short 

development time necessary to generate the recombinant viruses. In addition, 

helper viruses are not required. BV’s are not harmful to humans and due to the 

late expression also cytotoxic proteins can be produced. Disadvantages of the 

BEVS are the lysis of cells following infection as well as the proteolysis of 

recombinant proteins. Furthermore, the infection is an extra process step which 

often results in difficulties in reproducibility and process stability dependent on 

the quality of the virus stock. The heterogeneity of the infection affects the 

glycosylation pattern as well. Perfusion mode can be hardly performed with this 

system [18].  

2.2.2 Stable Expression System 

Virus infected cells have a finite life span. Therefore, untreated cells need to be 

infected in order to produce a fresh batch of recombinant protein. To overcome 

this limitation, non-lytic expression systems have been developed for insect cells 

as well. The stable expression system of insect cells is similar to that of 

mammalian cells. An expression vector carrying the gene of interest is stable 

integrated in the insect genome. The expression and secretion of the recombinant 

proteins requires no lysis of the cells. Traditionally, S2 cells were used with this 

type of expression system, but also for Sf- and Hi-5 cells stable expression 

systems are available. A wide variety of vectors allows the expression of 

recombinant proteins in S2 cells. For induced expression, a vector with the 

metallothionein promoter is used. Thereby the expression of the recombinant 

protein is induced with copper sulfate [19]. Constitutive expression of 

recombinant proteins in S2 cells is often from the actin 5 promoter[20]. More 

global stable expression systems for insect cells use the baculovirus-derived 

immediate-early OpIE promoters. These promoters originally derived from the 

Baculovirus Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) 

allow constitutive recombinant protein expression in a variety of cells types. 

These include Sf9, Sf21, Hi-5, S2, Kc and Lymantria dispar as well as mosquito 
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cell lines. Both OpIE promoters (OpIE1 and OpIE2) provide relatively high levels 

of recombinant protein expression. Nevertheless, the OpIE2 promoter has been 

shown to be up to 10-fold stronger than the OpIE1 promoter[21]. 

The stable expression system has several advantages. It allows a homogenous 

glycolysation profile of the recombinant protein and guarantees a higher 

reproducibility and process stability. Almost every cultivation mode can be used 

for protein production with this expression system. Due to the missing cell lysis 

during recombinant protein production, the contamination with host cell proteins 

is very low. This is superior for protein purification and avoids proteolysis of the 

target protein. The main disadvantage of this system is its time intensity compared 

to the BEVS, since the establishment of stable cell lines is a time consuming 

venture [18]. 

2.3 Comparison of the BEVS with Stable Insect Expression Systems 

Several studies compared the BEVS with stable insect expression systems. 

Expression of two different proteins (extracellular vascular cell adhesion protein 

[VCAM], trans-membrane dopamine D4 receptor) was compared with the 

Baculovirus/Sf9 system and stable transfected Drosophila S2 cells. VCAM was 

produced in both systems in similar amounts and appeared identical within the 

framework of the performed analytics. D4 was also expressed similarly in both 

systems [22]. The expression of several antibody fragments was evaluated in the 

BEVS and in stable transfected S2 cells. Reported maximum concentrations of the 

recombinant antibody fragments were 9 mg/L in the BEVS and 0.4 mg/L in S2 

cells [23]. Production of recombinant human IL-7 in the BEVS and stable 

transfected Sf cells revealed in 10 times higher expression levels for the BEVS 

[24]. Up to now the investigations on recombinant protein production do not show 

BEVS being superior to the stable insect expression systems. It strongly depends 

on the protein which is intended to be produced. For the choice of the best 

expression system not only the quantity of the recombinant protein is crucial, but 

also its activity which results from the right post-translational modifications. 
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2.4 Application of Insect Cell Based Expression Systems for the 

Production of Insect Derived Antimicrobial Peptides/Proteins (AMPs) 

The use of insect cell based expression systems for the production of recombinant 

insect derived peptides/proteins is a relatively new field and emerged more and 

more as an attractive alternative to other commonly utilized expression systems. 

Especially for the production of insect derived proteins with a potential 

antimicrobial or antifungal activity, the insect cell based production systems can 

be a promising tool in order to provide satisfactory product yields and the specific 

glycosylation patterns. The increasing demand for new AMPs is even more 

emphasized due to the increasing number of human pathogens showing resistance 

against available antibiotics. AMPs as novel anti-infective therapeutics could be 

an alternative to fight multiresistant bacteria strains. The lepidopteran model host 

G. mellonella has recently been reported as an attractive source for various AMPs 

such as gloverin, cecropin or the insect metalloproteinase inhibitor (IMPI) [25]. 

Gloverins are glycine-rich and heat stable basic proteins which primarily exhibit 

activity against gram-negative bacteria such as E. coli. [26-29]. However, also 

activity against gram-positive bacteria or fungi has been reported in the literature 

[30,31]. The BEVS based expression of a G. mellonella derived gloverin, which 

has been fused to a green fluorescent protein for better protein detection (GmGlv-

GFP), represents a good example on how the protein itself might influence the 

production process. Figure 2 depicts an exemplary production of GmGlv-GFP in a 

3 L stirred tank bioreactor. Once the uninfected Sf21 insect cell culture has been 

diluted to approximately 3	ൈ	106 cells mL-1 at 48 h cultivation time and 

simultaneously infected with the recombinant baculovirus at a multiplicity of 

infection (MOI) of 0.1, the cell density and permittivity based biomass (see 

chapter 3.8: dielectric spectroscopy) revealed the typical time course of a 

secondary infection dependent kinetic. The strong increase in biomass signal 

within the first 24 h post infection includes the typical swelling of Sf cells 

following baculovirus infection as well as cell growth.  
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Fig. 2 Exemplary production process for GmGlv-GFP in a 3 L bioreactor system using 

the BEVS with Sf21 insect cells, TOI ~ ૜ ൈ ૚૙૟ cells mL-1, MOI = 0.1, cultivation 

temperature: 28 °C, dissolved oxygen concentration (dO2): 40 % of air saturation, utilized 

medium: Sf-900 II SFM, the biomass signal is based on permittivity measurements via 

dielectric spectroscopy (see chapter 3.8), viable cell densities were determined via trypan 

blue exclusion method 

 

After approximately 72 h cultivation time the biomass signal and cell density 

decreased as a result of cell lysis. A comparison of the cell death kinetic during 

GmGlv-GFP production with the time course of cell death during expression of 

only GFP reveals a much faster dying of the cells for the GmGlv-GFP production 

process (Fig 3). For both baculovirus based production processes the same cell 

system (Sf21), the same virus (AcMNPV) as well as the same 3 L bioreactor 

system have been utilized.  
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Fig. 3 Time courses for the standardized viable cell densities of BEVS based production 

processes for GmGlv-GFP and GFP in a 3 L bioreactor system, insect cell system: Sf21, 

baculovirus vector: AcMNPV, MOI = 0.1, TOI = ૚ െ ૜ ൈ ૚૙૟ cells mL-1, dissolved 

oxygen concentration (dO2): 40 % of air saturation, utilized medium: Sf-900 II SFM, 

viable cell densities were determined via trypan blue exclusion method  

 

Obviously the baculovirus induced GmGlv-GFP production in Sf21 insect cells 

leads to distinctive cell stress, which finally results in a faster dying of the culture. 

Moreover, Moreno-Habel et al. [32] recently found that Menduca sexta derived 

gloverin (MsGlv) leads to inactivation of budded baculoviruses (AcMNPV) by 

disrupting the viral envelop. An inactivation of budded baculoviruses affects 

infection kinetics and could lead to falsified infection doses as well as increased 

process variability. This finally can affect product titers. Typical product 

concentrations observed for GmGlv-GFP produced in the BEVS range from 5 to 

20 mg/L, which is quite low when compared to the theoretical productivity of the 

system. Gloverin as example shows that the production of insect derived 

molecules in insect cells can be very challenging. On the one side the production 

of these molecules in insect cells is a logical consequence as it is very likely to 

produce an active molecule with 100% correct folding and modifications. On the 

other side it is possible that the recombinant molecule influences the production 

system either in a positive or, as observed for gloverin, in a negative manner. In 

this special case it has to be evaluated if gloverin only influences the baculovirus 
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and sufficient product yields can be reached with the Drosophila S2 System 

which works independent from viruses. 

3 Online Monitoring 

Modern bioprocesses demand for high efficiency, productivity and reproducibility 

in order to reduce costs and to ensure a satisfactory final product quality already 

during the ongoing production process. For that purpose, the Food and Drug 

Administration (FDA) launched the process analytical technology (PAT) initiative 

which is intended to achieve these goals by implementing modern process 

monitoring tools for critical process parameters during all stages of the production 

processes. Particularly in cell culture processes, small changes of critical 

parameters such as temperature, hydrodynamic conditions, pH, nutrient supply or 

dissolved oxygen concentration can lead to alternations in cell metabolism and 

finally influence product yield and quality [33]. Moreover, from the industrial 

point of view low process efficiencies and productivities can even result in 

unprofitability of processes [34]. Biopharmaceutical manufacturing processes still 

suffer from performances far below their theoretical potential since improvement 

is a time and cost consuming venture once the existing process has been approved 

by the regulatory authorities. Thus, real-time process monitoring of critical 

process parameters can allow for product definition already during the 

manufacturing process in order to avoid losses of production batches due to 

quality issues [35,36]. Additionally, there is a growing need for bioprocess 

monitoring in disposable bioreactors which has been driven by the increasing 

demand for single use technologies in the biopharmaceutical industry [37]. Up to 

now, the connectivity of PAT-devices to disposable bioreactors is one of the 

major drawbacks [38].  

In modern bioprocesses, monitoring of various parameters such as temperature, 

pH or dissolved oxygen concentration via common electrodes is already well 

established. However, there is still a strong demand for monitoring various other 

parameters of interest e.g. medium components, product concentration as well as 

cell density and viability, which allow a deeper understanding and insight into 

manufacturing processes [39]. Despite the increasing demand for a high and 

consistent product quality in the biopharmaceutical industry and the high potential 

for process improvement, available in situ monitoring techniques have been rarely 
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established for insect cell culture processes. Due to the similarity of insect cell 

systems to other eukaryotic production systems, this contribution also includes 

application examples for various other animal as well as mammalian cell culture 

processes. Related in situ sensor concepts for the most common optical and 

capacitive monitoring techniques are introduced as well as their potential in 

monitoring cell culture processes and, if applicable, insect cell processes. 

3.1 In Situ Analysis and its Requirements 

Bioprocesses are usually sampled in order to gain information about parameters 

that may have a significant impact on culture performance. This finally facilitates 

a fundamental understanding and allows for process control in order to reach 

effective processing [38]. For instance, the concentrations of key substrates and, 

with respect to BV infected insect cell cultures, the time of infection (TOI) and 

time of harvest (TOH) are well known to influence product yield [40]. Gaining 

information about these parameters usually requires sampling from the bioreactor 

for offline analysis. However, major drawbacks of this approach are the time 

delay between sampling and analysis as well as the risk of contaminations [39]. In 

order to avoid these concerns, an in situ monitoring system can be applied to 

facilitate real time measurement directly in the bioreactor or in a bypass [41]. 

Bypass configurations are particularly applied in systems where, for instance, gas 

bubbles in the bioreactor would interfere the measurement signal [38]. However, 

for bypass-measurements it needs to be considered that within the bypass changes 

in state of the medium e.g. temperature, dissolved oxygen concentration, can 

cause falsified results when compared to measurements performed directly in the 

bioreactor [34]. Another possibility is to utilize the sensors externally (ex situ). In 

this case, a sterile sample removal system forwards the medium directly to the 

sensor (on line) [38,42]. Since in situ sensors are placed directly in the sterile 

environment of the bioreactor, they have to fulfill special requirements. In situ 

sensors need to be autoclavable and should provide a stable and reliable signal 

over an extended period of time. This is especially the case when in situ sensors 

are applied for cell culture monitoring purposes since these processes are usually 

conducted over several days. A calibration previously performed has to be stable 

even after a sterilization cycle. Alternatively, there should be an option to 

calibrate the sensor after sterilization without sacrificing sterility of the system 
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[38]. Moreover, disposable in situ sensors for single-use applications have to 

fulfill additional requirements. These sensors should be cheap enough to ensure 

economic efficiency, however, a long life time is not necessary. Technologies that 

could be mentioned in this context are semiconductor devices such as pH-ion-

sensitive field-effect transistors (IS-FETs). These devices, for instance, can be 

installed directly into the cultivation medium to facilitate pH, temperature and 

dissolved oxygen analysis. Alternatively, it is possible to use non-disposable 

optical sensors in combination with transparent observation windows. So far, 

continuous sterile sampling devices for single-use applications which facilitate on 

line analysis via ex situ measurements are not commercially available [42]. 

Generally, the choice of which process analytical technology is necessary to 

monitor and control the bioprocess is also dependent on the employed biological 

system. While prokaryotic systems provide a fast increase in cell density, which 

comes along with a fast metabolic activity, eukaryotic systems only exhibit slower 

growth rates and, consequently, a slower metabolic activity. Therefore, eukaryotic 

cultures require a lower recording frequency and analysis time for the sensor 

signal compared to prokaryotic systems [38,34].  

3.2 Infrared Spectroscopy 

Spectroscopic methods such as the near infrared (NIR) spectroscopy and mid 

infrared (MIR) spectroscopy offer the advantage of monitoring various critical 

process parameters simultaneously. The function principle is based on the 

absorbance of energy and the resulting molecular vibrations and rotations once the 

related molecules have been excited at specific wavelengths. This energy 

absorption is finally identified and provides information about the molecules of 

interest [43]. The spectral signatures of organic molecules are thereby classified 

into three categories based on specific spectroscopic wave number ranges: far 

infrared (10-200 cm-1), MIR (200-4000 cm-1), and NIR (4000-13000 cm-1). 

Compared to the NIR signal, the MIR signal provides more defined peaks in the 

absorption spectra which facilitates a better assignment of molecules [39]. 

Especially the “fingerprint region” (500-1500 cm-1) in the MIR spectra allows for 

very specific identification of organic molecules since this region exhibits the 

most specific absorption patterns [38]. However, the applicability of this 

technique is limited due to the strong infrared absorption of water below wave 
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numbers of 4000 cm-1. NIR spectroscopy has been reported to be a suitable tool 

for monitoring of substrates and products in biotechnology [38,44]. Hydrogen 

bonds which exhibit distinctive stretch vibrations between 3600 and 2400 cm-1 

allow for the detection of molecules that contain hydrogen bound to a heteroatom. 

Further potential analytes are proteins with their N-H bonds as well as O-H bonds 

of alcohols and C-H bonds of aliphates and aromates [39]. The possibility of 

utilizing IR spectroscopy for in situ applications in bioprocess monitoring was 

facilitated by the development of attenuated total reflectance (ATR) probes. A 

description of the measuring principle of ATR-IR spectroscopy is given by  

Lindner et al. [42]. Despite the fact that ATR-IR probes are commercially 

available, an application of the ATR-IR technology to disposable reactor systems 

remains a cost intensive venture since the expensive ATR crystals would have to 

be replaced after each cultivation process [42]. Furthermore, signal interpretation 

of multidimensional IR spectroscopic data is not straightforward and requires 

chemometric techniques. These techniques usually include data reduction via 

principal component analysis (PCA) as well as the development of calibration 

models via multivariate regression methods such as principal component 

regression (PCR) or partial least square regression (PLS). Also artificial neural 

networks (ANN) can be applied, especially when the correlation between the 

spectral data and target variables exhibit distinctive non linearity [36].Various 

authors utilized IR spectroscopic techniques in cell culture applications. The most 

applications of NIR and MIR spectroscopy have been performed to monitor 

glucose, lactate as well as glutamine and ammonia in Chinese hamster ovary 

(CHO) cell culture processes [45-47]. Beside glucose, lactate and ammonia, 

Henriques et al. [48] also employed NIR spectroscopy to determine cell density in 

mammalian cell culture processes for monoclonal antibody production. Sellick et 

al. [49] simultaneously predicted glucose, lactate as well as monoclonal antibody 

concentrations in supernatants of CHO and murine myeloma (NS0) cell cultures 

via fourier-transform (FT)-MIR spectroscopy. An application of NIR 

spectroscopy for in situ monitoring of glucose and lactate during bioreactor 

cultures of adherent Vero cells attached to microcarriers is reported by Petiot et al. 

[50]. Only Riley et al. [51] applied off-line NIR spectroscopy to monitor the 

glucose and glutamine concentrations during growth of Sf-9 insect cells cultivated 

in Sf-900 II serum-free media. Despite the complexity of the culture media, 
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glutamine and glucose concentrations could be predicted with standard errors of 

0.51 and 1.46 mM, respectively, indicating the feasibility of IR-spectroscopic 

techniques in monitoring insect cell culture processes. 

 

 

Fig. 4 Electromagnetic wavelength spectrum and the corresponding wave length ranges 

for various optical and spectroscopic sensor techniques (Beutel et al. [38]; with kind 

permission from Springer Science and Business Media) 

3.3 Fluorometry 

Direct measurement of fluorescence in an in situ application represents a 

promising tool for bioprocess optimization since various biologically active 

substances such as amino acids, enzymes, cofactors and vitamins exhibit 

fluorescent activity when excited at specific wave lengths. First applications of 

fluorometry for monitoring purposes was limited to only one pair of excitation 

and emission wavelength, and thus, to a single fluorophore [36]. In these 

applications, the nicotinamide adenine dinucleotide NADH and its phosphorylated 

form NADPH has been the fluorophore of choice since the intracellular NAD(P)H 

concentrations could be utilized to estimate biomass concentrations [52]. 

However, major drawbacks of this technology are the dependency of the 

fluorescence signal to environmental conditions such as pH or temperature as well 

as the possibility for overlapping signals caused by the presence of other medium 
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components fluorescing at the same wavelengths as the component of interest 

[53,34,36]. Further concerns that have been described to decrease fluorescence 

yield are inner filter effects, cascade effects and quenching phenomena [54,55,36]. 

Therefore, multivariate chemometric techniques are necessary to enable reliable 

data interpretation. In contrast to the single wavelength fluorometers, 2D 

fluorometers allow the detection of multiple fluorophores at once. The principle is 

based on the application of various excitation and emission wavelengths resulting 

in a complete fluorescence spectrum [38,36,34]. However, fluorometry has only 

scarcely been applied in monitoring eukaryotic cell culture processes. A possible 

reason might be the complexity of the culture media. In mammalian culture 

media, for instance, various fluorescent amino acids need to be provided since 

mammalian cells are not capable of synthesizing these amino acids on their own 

[56]. Once these amino acids are incorporated into recombinant or cellular 

proteins, their fluorescent properties might change. For instance, electrostatic 

interactions of tryptophan with neighbored charged amino acid residues of e.g. 

glutamate, lysine or aspartate, can lead to a significant shift in the emission 

wavelength of tryptophan [57]. This and other phenomena, such as quenching 

effects, make direct correlations between the growth of mammalian cells and 

fluorescence signals a difficult task [36]. Anders et al. [58] utilized in situ 

fluorometry to measure the NAD(P)H dependent culture fluorescence in 

uninfected and infected Sf-9 insect cell cultures . The fluorescence signal 

correlated well with the total cell density. A decrease in the fluorescence signal 

could be detected as a result of the decrease in viable cell density due to nutrient 

depletion. Comparable experimental results were obtained in serum containing 

Grace and TC – 100 insect cell medium as well as serum free Ex – Cell 401. In 

mammalian myeloma NSO cell culture, Hisinger et al. [59] demonstrated the use 

of 2D fluorescence spectroscopy for monitoring the GFP concentration during a 

GFP production process. Teixeira et al. [56,60] applied traditional 2D 

fluorescence spectroscopy as well as synchronous fluorescence spectroscopy for 

monitoring the production of recombinant glycoprotein IgG1-IL2 and monoclonal 

antibody IgG4 in Baby Hamster Kidney (BHK) and CHO cell culture processes, 

respectively. Besides product formation, they also demonstrated the suitability of 

these techniques for monitoring viable cell densities. Especially the synchronous 

fluorescence spectroscopy provides the potential for bioprocess monitoring in a 
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real-time context since this technique exhibits improved peak resolution and 

recording speed [60].  

3.4 Raman Spectroscopy 

The principle of Raman spectroscopy is based on shifted wavelength scattering of 

molecules due to inelastic collisions of photons with the molecules once excited 

with monochromatic light. Bioprocess applications of Raman spectroscopy are 

feasible since adjustable lasers are available. The technique can be applied for 

multi-analyte measurements as well as differentiated measurements of certain 

compounds [61]. Resulting molecular fingerprints are well defined with high 

chemical specificity even in aqueous systems [62]. Despite these advantageous, 

Raman spectroscopy has not been extensively utilized for in situ applications in 

cell culture processes, which might be related to the difficulties arising with the 

use of this technique. One of the main problems is the considerable fluorescence 

activity of several biological molecules that might overlay the Raman scattering 

bonds [60,61,63]. This is even more a problem when the fluorescent compounds 

cannot be eliminated, as is the case for culture broths.  A common approach to 

overcome this issue is the use of wavelengths outside the excitation range of the 

fluorescing molecules. Another problem arising from the use of charge-coupled 

device (CCD) detectors, which might exhibit pixel-to-pixel sensitivity, is the 

appearance of stable variations. Magnitudes of these variations can even exceed 

magnitudes of the measured signals [38]. Especially in bioprocess applications, 

bubbles from aeration and biomass can cause light scattering which results in 

signal attenuation. In this case, internal referencing can be utilized for correction 

purposes [61]. The high potential of using Raman spectroscopy in monitoring of 

cell culture processes was successfully demonstrated by Abu-Absi et al. [62]. In 

this work, Raman spectroscopy was employed to monitor glucose, glutamine, 

glutamate, lactate, ammonium, as well as the viable and total cell density in 500 L 

CHO cell culture processes. Chemometric techniques have been applied to the 

training datasets in order to obtain the required calibration models. Especially the 

possibility of monitoring the cell viability, which can be calculated from the 

predicted viable and total cell densities, represents an additional advantage.  
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3.5 Optical Chemosensors for O2, pH and CO2 Determination 

The application of optical chemosensors (optodes) facilitates measurements of 

parameters not accessible via direct measurements. Measuring principles of these 

sensors are based on indicators with optical properties such as photoluminescence, 

reflection and absorption. Available concepts are suitable for common bioreactors 

as well as disposable systems. The externally placed optical detector unit can be 

interfaced to the transducer via optical fibers [42]. O2, CO2 and pH can be 

measured in a non-invasive manner from outside the bioreactor via transparent 

observation window. Expendable sensor patches, containing the immobilized 

indicator, are thereby placed inside the bioreactors. Alternatively, invasive 

measurements are possible via probes immersed in the culture broth and equipped 

with an optical window and indicator spot at the tip. This set up allows the 

application of optodes even in stainless steel bioreactors without optical windows. 

Compared to the classical electrodes, optical chemosensors represent a promising 

alternative for conventional bioreactors as well as disposable systems and can 

easily be implemented in cell culture processes. For instance, optical oxygen 

sensors have been successfully applied for oxygen monitoring in human 

mesenchymal stem cell cultures in fixed bed bioreactor systems [64-69]. 

3.5.1 Optical O2 Sensors 

Optical oxygen sensors are based on fluorescence quenching by molecular oxygen 

[70,71]. After excitation with light e.g. by a light emitting diode (LED), the 

lifetime and intensity of a fluorescence signal is proportional to the oxygen 

concentration present around the dye. Emitted fluorescence light is transmitted via 

the optical fiber and segregated from the reflected excitation light by a dichroic 

mirror. Subsequent fluorescence detection is achieved by a photodiode or 

photomultiplier. Optical oxygen sensors are autoclavable without loss of 

sensitivity [42]. Compared to conventional Clark electrodes, commercially 

available O2 optodes (e.g. available at PreSens, Regensburg, Germany / Ocean 

Optics Inc., Dunedin, FL, USA) are calibration-free and do not require 

polarization time or replacement of the electrolyte solution prior to use. A major 

drawback that needs to be mentioned is the limitation of long-term stability 

caused by photobleaching [42]. Therefore, the sensor patches need to be replaced 

on a regular basis.  
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3.5.2 Optical CO2 Sensors 

CO2 sensors have been based on potentiometric function principles such as the 

Severinghouse electrodes [72]. These sensors are equipped with a pH and a 

reference electrode surrounded by a hydrophobic CO2 permeable membrane. The 

electrodes are thereby placed within a carbonate buffer. When CO2 concentration 

outside the permeable membrane increases, CO2 molecules diffuse into the 

carbonate buffer and change the pH value, which finally can be described by the 

Henderson-Hasselbalch equation. Fiber-optic CO2 optodes are based on a similar 

pH-sensing system, where the electrodes are replaced by a pH-sensitive dye [73]. 

Compared to these classical CO2 optodes, the development of solid type optical 

CO2 sensors, with ion-pairs directly immobilized in the membrane, resulted in 

faster response times as well as a reduced sensitivity to ionic strength [74]. 

Determination of CO2 via optical sensors can either be based on absorbance or 

fluorescence. Intensity based quantification methods have been the preferred ones 

since problems associated with the short life time of the fluorescence signal 

increased the need for sophisticated instrumentation. A method to overcome this 

drawback is based on the conversion of the intensity signal or the luminescence 

decay time of a pH-sensitive dye into a long-lifetime signal via resonance energy 

transfer (RET) [73].  

3.5.3 Optical pH Sensors 

Measurements of the pH via optical sensors can either be based on absorbance or 

fluorescence indicator dyes [75]. Today, pH can be measured in a range between 

pH 1 – 11 [76]. Also the cross-sensitivity to ionic strength for fluorescence based 

pH sensors, which has been reported as one of the drawbacks [77], could be 

reduced by the use of esterified fluorescein derivatives [78]. Covalently bound 

fluorescent dyes are suitable to decrease the loss of sensitivity due to elution of 

the dye or temperature treatment during autoclaving [79].  
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Fig. 5 Working principle of optical pH and pO2 chemosensors (Glindkamp et al. [80]; 

with kind permission from Springer Science and Business Media) 

 

3.6 In Situ Microscopy 

In situ microscopy (ISM) is a promising tool for bioprocess monitoring in cell 

culture applications since the technology offers real time information about 

various parameters such as cell concentration, cell size distribution or cell 

morphology. The probe is thereby directly immersed in the culture broth. Images 

taken by the CCD-camera are analyzed by sophisticated image analysis 

algorithms. Generally, in situ microscopes can be subdivided into two different 

groups, the incident light microscopes with an optically defined analysis zone and 

the transmitted light microscopes containing an optically or mechanically defined 

analysis zone [81,82]. However, in the studies published so far only the 

transmitted light in situ microscopes have been applied for cell culture monitoring 

purposes. A transmitted light in situ microscope that meets the demands for 

industrial applications was described by Frerichs and Jöris in 2002 [83,84]. 
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Fig. 6 Construction scheme of an in situ microscope developed by Frerichs and Joeris 

(Höpfner et al. [81]; with kind permission from Springer Science and Business Media) 

 

In order to allow the adaption to changing process conditions, this microscope 

contains a mechanical defined variable-volume flow-through sampling zone. The 

sampling volume can be adjusted by a sampling zone tube which is connected to a 

movable slide. Beside the sampling zone tube, the microscope also contains two 

additional tubes, an outer probe tube as well as an inner objective tube. Proper 

focusing of the image is facilitated by the inner objective tube mounted to a 

second movable slide. Both slides are connected to a U-shaped profile and can be 

controlled by two separate stepper motors or micrometer screws. Illumination of 

the sampling zone via LED provides sufficient light for the visualization of cells 

by the CCD-camera. Since the reactor segment of the microscope can be separated 

from the optical segment, the sensor can be sterilized in the autoclave. The 

microscope has been employed for the monitoring of CHO and BHK cell cultures 

as well as adherent mouse fibroblast cells (NIH-3T3) on microcarriers [83-

85,81,86]. In order to recognize cells attached to the surface of microcarriers, the 

optical density of the microcarriers turned out to be an important parameter. 

Cytodex 1 microcarriers were found to be suitable for microscopic cell 

observations and image analysis due to the low optical density of the polydextrin 

matrix. Especially the reported change in the greyscale distribution between 

microcarriers without cells and overgrown with cells was assumed to be 

applicable for an estimation of cell densities [85]. In this context, Rudolph et al. 
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[86] demonstrated the suitability of different greyscale distributions in order to 

determine the planting efficiency and level of colonization during cultivation of 

NIH-3T3 cells on Cytodex 1 microcarriers.  

The application of a transmitted light in situ microscope with optically defined 

sampling zone utilized to monitor BALB/c hybridoma cells was presented by 

Guez et al. [87]. The microscope described in this study is based on a pulsed 

illumination of the sampling zone via LED, which is synchronized with the image 

generation of the CCD-camera. This setup facilitates image generation of moving 

cells without motion blur. The LED is thereby mounted to an outer tube angularly 

to an optical quartz window. In order to facilitate proper focusing, the microscope 

contains a movable inner tube equipped with a 40 x magnification objective. 

Since the microscope does not enclose a defined sample volume mechanically, 

information about the cell concentration is derived from a virtually defined 

volume (depth from focus – procedure [88]).  

 

 

Fig. 7 Construction scheme of a transmitted light in situ microscope equipped with an 

optically defined sampling zone (Höpfner et al. [81]; with kind permission from Springer 

Science and Business Media) 

 

Beside information regarding cell density, cell size distribution and cell 

morphology, the development of an in situ dark field microscope also facilitates 

measurement of the cell viability. The dark field microscope developed by Wei et 

al. [89,90] is based on the transmitted light in situ microscope described by 

Frerichs and Jöris in 2002 [83,84]. For the purpose of dark field microscopy, the 

illumination of the original microscope has been modified. The original condenser 
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was replaced by a dark field condenser. The application of Support Vector 

Machine (SVM) classifiers, which have been trained by a dataset of images with 

either living or dead cells, facilitates an automated determination of cell densities 

and viabilities. So far, the technology was only applied for fermentations of 

Saccharomyces cerevisiae, but also represents a promising method in cell culture 

applications. Another important point is the applicability of in situ microscopy in 

disposable systems. Up to know the use of  ISM in disposable systems is not 

examined, but different approaches are already envisioned in the literature [42].  

3.7 Focused Beam Reflectance Measurement (FBRM) 

The FBRM technology as an in situ monitoring tool for cell culture processes 

offers the potential to gain real-time information about various important process 

variables such as cell density, cell size distribution as well as cell morphology. 

Inside the FBRM system, a laser light generated by a laser diode is passed to the 

probe assembly via fiber optics. The probe, which can be immersed in the culture 

broth, contains optical components that transfer the incoming laser light to an 

eccentrically rotating lens. The rotating lens finally facilitates a constant circular 

movement of the laser beam (2 m/s) as well as a focusing of the laser light to a 

small spot. As the laser beam intersects particles passing through the measurement 

zone, light is backscattered towards the probe. The backscattered light is then 

collected by the optics and forwarded to a photo diode, where the optical signal 

gets detected [91].  

 

 

Fig. 8 Layout of a FBRM probe (with kind permission from Mettler - Toledo) 
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The duration of reflection multiplied by the rotation velocity of the laser beam 

finally results in a chord length, which considerably depends on the particle size 

as well as the particle shape. Compared to the rotation velocity of the laser, the 

velocity of the particles passing through the measurement zone can be neglected. 

The measurement range is 1 – 1000 µm and the measured particles are sorted into 

different channels according to measured chord lengths, resulting in a 

characteristic chord length distribution. Thus, the technique does not deliver the 

particle size distribution directly. Empirical or theoretical methods are applicable 

in order to determine the particle sizes from the chord length data [92-94]. 

Although the probe has already been utilized for offline characterization of 

microbial [95-98] and plant cell systems [99-101], applications in cell culture 

processes are not yet reported. The latest version of the G400 FBRM system 

distributed by Mettler-Toledo is fully autoclavable and therefore allows the 

integration of this technology even in cell culture processes. As indicated in figure 

9, the system provides reliable information regarding the exponential growth of 

Drosophila S2 insect cells cultivated in a sparged and agitated 1L bioreactor 

system. Air bubbles generated by the O-shaped sparger did not interfere with the 

FBRM cell counts. The measured amount of cell counts per second in the chord 

length range of 10-50 µm exhibited a linear correlation with the offline total cell 

densities and reflected the exponential growth of the cells. Further research needs 

to be done in order to examine whether this technology can be utilized to follow 

the changing mean cell diameter after baculoviral infection of insect cells as 

observed for the Spodoptera frugiperda derived cell lines Sf9 and Sf21. In this 

case, the change in mean cell diameter would result in a corresponding variation 

of the mean chord length. As a result, the mean chord length signal could be 

utilized to evaluate a successful infection of the cells. 
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Fig. 9 A) Standardized FBRM counts in the range of 10-50 µm and the corresponding 

standardized offline cell density for a Drosophila S2 insect cell culture process; B) Linear 

correlation between the FBRM counts (10-50 µm) and the offline total cell density for a 

Drosophila S2 insect cell culture process  

 

3.8 Dielectric Spectroscopy 

The so called dielectric or impedance spectroscopy sensors belong to the group of 

capacitance and conductivity sensors. The technology is based on the passive 
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dielectric properties of e.g. cells in a conducting medium. Beside the surrounding 

culture medium, the cytoplasm of the cells also contains conductive solutes such 

as salts and nutrients. Due to the dielectric properties of the lipid – based cell 

membrane, electrically charged ions accumulate at these cell membranes when an 

alternating electric field is applied to the cell suspension. In this case, the cell 

membranes act as small capacitors leading to a buildup of electrical charge 

(polarization). The measured overall capacitance is thereby dependent on the 

applied frequency of the alternating electric field, which is usually in the range 

between 0.1 and 10 MHz, as well as the cell size and cell concentration. At low 

electric field frequencies the ions have sufficient time to reach and polarize the 

cell membranes leading to a high overall capacitance of the cell suspension. With 

increasing excitation frequencies the polarization and thus the capacitance of the 

cell membranes decreases. In this case, the ions do not have enough time to move 

and accumulate at the cell membranes before the electric field changes direction. 

The observed drop in the measured capacitance from low to high frequencies 

exhibits a sigmoid shape which is also known as the β-dispersion spectrum [102]. 

As indicated in figure 10, the β-dispersion contains the critical frequency fC which 

represents the working point for impedance sensors in the frequency range 

mentioned above. Since the polarization is dependent on the ability of the cell 

membranes to stop ion movement, only cells with intact cell membranes are 

involved in the buildup of the capacitance signal. Thus, dead or leaking cells are 

not captured by this technology [103]. Additionally, the capacitance signal is 

reported to be insensitive to gas bubbles and microcarriers facilitating the 

monitoring of cell culture processes in common sparged as well as fixed bed 

bioreactors [102,104,105]. However, very high volume fractions of non-biomass 

materials close to the sensor may influence the capacitance signal since the 

polarizable cells are replaced by non-polarizable materials [102].  
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Fig. 10 A) β-dispersion spectra for increasing cell densities with the capacitance ΔC,  

critical frequency fc, and medium capacitance Cm; B) β-dispersion spectra for changing 

cell sizes, the indicated variation in the critical frequency fc is valid for a constant 

biovolume (Cannizzaro et al. [106]; with kind permission from John Wiley and Sons) 

 

The increasing demand for disposable cultivation systems emphasized the 

development of compatible sensors. Today, several solutions for the application of 

dielectric spectroscopy in single use bioreactors are available from the 

manufacturers (Aber Instruments, Aberystwyth, UK and Fogale nanotech, Nimes, 

France) [107,42].  

Dielectric spectroscopy offers a great potential in monitoring insect cell culture 

processes, especially the baculovirus related production processes, since the arrest 

of cell growth after infection as well as the swelling and lysis of infected cells can 

be monitored in real-time. The first online monitoring of infected and uninfected 

Sf9 insect cell cultures using dielectric spectroscopy was reported by Zeiser et al. 

[108]. The obtained results for uninfected insect cells indicated a linear correlation 

between the relative permittivity and the viable cell density during growth. After 

synchronous infection with a recombinant baculovirus encoding for β-

galactosidase (MOI = 10), which resulted in an arrest of cell growth, the 

permittivity signal further increased as a result of the increasing cell size. Finally, 

the signal coincided well with the decrease in cell viability and size during cell 

lysis in the late infection phase. In order to enhance the β-galactosidase yield, the 

same work group focused on infection and feeding strategies and demonstrated 

the use of dielectric spectroscopy for monitoring high cell density cultivations of 

High-5 [109] as well as Sf9 insect cells [109,110]. In either case, physiological 
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parameters correlated well with the impedance signal. An observed peak in the 

CO2 evolution rate during Sf9 cultivation could be related to a temporary plateau 

in the relative permittivity signal, reflecting the onset of the release of virus 

particles into the culture broth. However, this signal plateau has not been detected 

in the case of lower MOI infections of 0.001. In this case, the missing 

simultaneous cessation of cell growth resulted in a delay of the CO2 evolution 

rates [109]. Furthermore, the results indicated that further optimization and 

automation of the fed batch processes potentially could be based on the 

permittivity signal [110]. Negrete et al. [111] employed dielectric spectroscopy in 

order to analyze and characterize the production of recombinant adeno-associated 

vectors (rAAV) in a 40 L tank using the baculovirus expression vector system 

with Sf9 insect cells. The permittivity signal allowed a determination of the 

infection time since the viable cell density and growth rate of non-infected cells 

could be monitored in real-time. Moreover, the increase in cell diameter could be 

correlated to the yield of rAAV as well as the optimum harvest time (TOH). 

Ansorge et al. [112] monitored infected Sf9 cell cultures and found a good 

correlation between the permittivity signal and the viable biovolume (determined 

by Vi – CELL®) as well as the total biovolume (determined by CASY® 1). After 

infection, the characteristic (critical) frequency fC was observed to change 

according to the changing cell diameter. However, impact of the cell membrane 

properties on fC could not be excluded. Besides the monitoring of insect cell 

cultures, dielectric spectroscopy has been extensively utilized to monitor 

mammalian cell cultures such as hybridoma, CHO, Vero or HeLA cultures.  

These applications have already been reviewed by other authors [113,107]. 
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Tab. 1 Summarized applications of monitoring techniques in insect cell cultures  

Cell line Technology Application Reference 

Sf9 NIR Spectroscopy Monitoring of glucose and 
glutamine in insect cell culture 
samples (offline) 
 

[51] 

Sf9 Fluorometry In situ monitoring of NAD(P)H 
dependent culture fluorescence in 
infected and uninfected cultures; 
correlation with cell density 

[58] 

Sf9 Dielectric Spectroscopy In situ monitoring of infected and 
uninfected cultures; correlation 
with viable cell density during 
growth; signal increase due to 
increasing cell size after infection 
 

[108] 

Sf9; 
High-5 

Dielectric Spectroscopy In situ monitoring of high cell 
density cultivations up to 50 x 106 
cells/mL; detection of virus release 
after simultaneous infection 

[109] 

Sf9 Dielectric Spectroscopy In situ monitoring of fed-batch 
processes for β – galactosidase 
production; increase in permittivity 
after infection at 14 x 106 cells/mL 
could be attributed to cell size 
increase 
 

[110] 

Sf9 Dielectric Spectroscopy Characterization of a rAAV 
production process in a 40L large-
scale vessel; permittivity signal 
allowed a determination of the 
infection and harvest time  
 

[111] 

Sf9 Dielectric Spectroscopy In situ monitoring of cell cultures 
during growth; change in critical 
frequency fc following infection 
was assumed due to changes in cell 
size and membrane properties   

[112] 
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4 Scale Up of Industrial Insect Cell Culture 

Processes 

4.1 The Baculovirus Expression Vector System for Commercial 

Vaccine Production 

The Baculovirus Expression Vector System (BEVS) is nowadays considered an 

established and matured manufacturing technology for the commercial production 

of a wide array of recombinant proteins in an industrial scale, e.g. of virus like 

particles (VLP) for vaccines [114]. As of mid-2012, a total of five human or 

veterinary vaccine products based on the BEVS system have been approved. 

Examples include GSK’s CERVARIX® (Human Papillomavirus) and Boehringer 

Ingelheim’s CircoFLEX® (Porcine Circovirus Type 2). Several other products are 

already in development and BEVS-based vaccines are considered for more and 

more diseases, including for the field of emerging diseases. Recent literature 

provides a good overview over the current state of commercial production 

utilizing the BEVS [114,115]. 

4.2 Process Scale-Up and Implications for Processes Utilizing the 

Baculovirus Expression Vector System 

The BEVS production system requires the growth of an insect cell line, preferably 

in suspension culture, and its infection with a specific recombinant BV carrying 

the genetic information for the protein of interest. The infection can either be 

carried out subsequently to cell growth or simultaneously with cell planting into a 

vessel. For the commercial vaccine production it is crucial to establish an 

efficient, cost-effective and robust large-scale process to manufacture the required 

quantities of the protein of interest [115]. Taking the process developed initially in 

the milliliter or liter scale and scaling it up to industrial production volumes of 

hundreds or thousands of liters is a challenging procedure. Maintaining the 

productivity of the small scale process as well as critical process and product 

quality attributes are the essential goals of the scale up procedure [116-118]. 

A well developed, optimized and characterized small scale process is essential for 

a successful scale up [119]. Implementation of strategies like Quality by Design 

(QbD) or Process Analytical Technology (PAT) and the utilization of high 

throughput systems help to achieve these goals by increasing the process 
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understanding, monitoring and control. The use of suspension insect cell lines 

readily facilitates the possibility of large scale processes as required for the 

commercial production of vaccine proteins and it is probably safe to assume that 

most commercial BEVS processes are performed in stirred tank reactors (STR). 

Biological process parameters of importance in the BEVS system are generally 

considered to include cell density at infection, multiplicity of infection, time of 

infection and physiological state and age of the cells at the time of infection [115]. 

But engineering parameters like agitation rate (mixing and shear), dissolved 

oxygen concentration or pH are also considered to be of significant importance for 

the process. 

 

Cell culture condition, and therefore eventually the cells physiological state, 

affects and determines product quantity as well as quality. Scale up of suspension 

culture systems like the BEVS and its related equipment is performed based on 

well understood principles of scaling relevant parameters. Often it is based on 

geometric similarity of the small and large scale vessels [120]. In such a case, one 

or more specific parameters are then kept constant from the small to the large 

scale. Literature provides a good overview about the potential criteria for scale up 

[116]. They include, but are not limited to, power input, impeller tip speed or 

shear rate, Reynolds Number Re, oxygen transfer coefficient, gas flow rate per 

unit volume, mixing time and similar. It should be noted that because some of 

these criteria are partially associated with each other, keeping one of them 

constant can result in a change of the other parameters during scale up, in turn 

causing a change in the physical environment the cells experience [121]. 

Nevertheless, geometric similarity is often not given, for example when 

transferring or scaling up an established process into production facilities where 

equipment is already installed or if equipment is designed as multi-purpose 

equipment. Also, single use systems may not always be of the same geometry as 

the small scale or the stainless steel STR currently used. In such a case the process 

and its control need to be modified accordingly. In any case, the equipment used 

obviously needs to meet the current regulatory as well as process specific 

requirements. More recently, the application of Computational Fluid Dynamics 

(CFD) has also become more popular in the field of bioprocess scale up [116]. 
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Volumetric scalability is considered as one of the key benefits of the BEVS 

systems, indicating the relative ease with such a system can be scaled up to 

commercial scales [122,123]. Several key aspects need to be considered when 

scaling up a BEVS based process from the laboratory to large scale. Generally 

speaking, system heterogeneity increases with increasing scale, which has some 

important implications for the scale up procedure. Sufficient mixing via impellers 

has to be ensured at the large scale to allow sufficient mass transfer and to avoid 

major nutrient, oxygen or pH concentration gradients in the culture. Impeller 

agitation related shear stress has long been thought to be a major issue for (not 

only) insect cell cultures, but nowadays is not considered a major issue anymore. 

The use of multiple and supposedly shear sensitive impellers as well as medium 

additives like Pluronic F68 further helps to reduce the impact of this type of 

physical damage [118,124]. Similarly nowadays it should not be a problem 

anymore to achieve the required oxygen transfer rates to supply the insect culture 

with sufficient oxygen. But even while the oxygen demand of insect cell cultures 

is relatively low compared to aerobic bacterial processes, surface aeration is 

generally not sufficient at the large scale and sparging of air or oxygen is therefore 

usually required [124,125]. This leads to the problems of bubble induced cell 

damage as well as potential foaming issues which require the selection of the 

correct sparger type as well as gas composition and flow rates. Bubble size is also 

an important parameter to consider. Smaller bubbles, for example generated by 

sintered spargers, can cause more cell damage in insect cell cultures than large 

bubbles [125,124]. Bubble size also affects CO2 removal from the culture which 

can be considered another significant parameter to evaluate during scale up of a 

BEVS process [126]. Overall, an acceptable equilibrium between the parameters 

in question has to be found for the specific process and equipment used (see 

Figure 11). 

 



34 

 

Fig. 11 Large scale cell culture process constraints (Marks [125]; with kind permission 

from Springer Science and Business Media) 

 

4.3 Single-Use Systems in Baculovirus Expression Vector System 

Processes 

In recent years single use systems like the Single-Use Bioreactor (HyClone) or 

WAVE® (GE Healthcare) have been become more and more utilized in the 

biotech industry in general but also in BEVS processes [127,128]. Main 

advantages of single use systems are their reduction in cross contamination 

potential as well as cleaning costs, increase of flexibility and decrease of the 

turnaround time. Main disadvantages on the other hand are the risk of leachables 

or extractables, sometimes insufficient material strength and difficulty of 

handling, pressure as well as temperature limitations, increased costs of waste 

disposal and scale limitations [115,129]. Regardless of the specific system 

employed, the basic principles for scale up and transfer of a BEVS process into 

such a system are the same as for the standard stainless steel stirred tank 

equipment. 
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5 Conclusions 

For the production of biologically active recombinant proteins the insect cell 

expression system is considered to be a suitable alternative to bacterial or 

mammalian cells. Compared to bacterial fermentations recombinant protein 

production in insect cells produce fully post-translational modified proteins. This 

is also possible with mammalian cells but is much faster and easier to implement 

with insect cells.BV expression vectors are commonly used in combination with 

lepidopteran species such as Spodoptera frugiperda (Sf9 and its parental line 

Sf21). However, infection of Sf9 cells by the baculovirus leads to cell lysis and a 

consequent dying of the culture. Here, the use of stably transfected Drosophila 

melanogaster S2 cells can be a promising alternative. In contrast to the BV 

induced protein production in Sf9 cells, S2 cells are not lysed during cultivation 

facilitating even continuous process modes and protein production at high cell 

densities. Comparisons of the BEVS with the stable S2 expression system 

regarding protein yields clearly indicate that neither of the systems can be 

assumed superior. The amount of protein produced in both systems as well as 

process performance strongly depends on the properties of the protein itself. This 

has been further demonstrated using the example of a production process for 

GmGlv-GFP. In order to choose the right expression system, not only protein 

yields should be considered but also the quality of the proteins resulting from 

post-translational modifications.  

In situ technologies suitable to provide real-time information regarding nutrient 

consumption, product and metabolite formation, cell morphology, cell size, cell 

density and even cell viability, result in a deeper understanding of cell culture 

processes and allow the early detection of potentially unfavorable changes during 

production processes that might have a negative impact on product formation and 

quality. Hence, in situ monitoring contributes to meet the “quality by design” 

(QbD) requirements imposed by the FDA, resulting in a high and consistent 

product quality in the biopharmaceutical industry. Moreover, in situ monitoring 

reduces the risk for contaminations caused by common sampling procedures and 

represents an ideal tool for process control and automation. Despite the increasing 

demand for monitoring techniques in disposable systems, commercially available 

solutions which facilitate the connection of optical in situ sensors to disposable 

reactors are still rare. However, various methods are already described in the 
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literature. Monitoring techniques such as the dielectric spectroscopy, in situ 

microscopy or FBRM are suitable to provide information on cell responses after 

viral infection making these technologies interesting for the optimization of 

baculovirus related production systems. In this context, interrelations of critical 

process parameters such as the MOI, TOI and TOH can be evaluated. The high 

potential of optical monitoring techniques to determine nutrient and metabolite 

concentrations for optimization purposes in cell culture processes have not been 

fully exhausted yet. However, due to the fast developments in the area of in situ 

online monitoring systems driven by the PAT initiative and the increasing 

demands for high quality biopharmaceuticals, further applications of these 

technologies can be expected in the near future.  

Also in industrial large scale processes, online monitoring techniques are intended 

to implement QbD strategies by increasing the process understanding and control. 

The use of suspension insect cell lines enables production processes in common 

stirred tank reactors. This is beneficial from the industrial point of view since 

stirred tank reactors can be used as multi-purpose equipment. However, in order 

to transfer small scale insect cell production processes into production scale, 

various aspects need to be considered. These aspects include biological 

parameters as well as engineering parameters. Geometric similarity is often not 

given especially when equipment is already installed and used as multi-purpose 

equipment. Moreover, disposable systems may differ significantly from small 

scale production vessels. In order to maintain culture performance, the process 

and the belonging process control needs to be modified in a way that regulatory as 

well as process specific requirements are considered. Finally, these goals can only 

be achieved by finding a compromise that ensures satisfactory yields of high 

quality products as well as the implementation of equipment specific 

requirements.  

Up to now process optimization and process understanding for insect cell based 

processes is still immature. Some process engineering principles can be adopted 

from bacterial and mammalian fermentations which particularly are intensively 

investigated since decades. Nevertheless, the biological reaction of the insect cells 

to process changes cannot be simulated but can only be experimentally 

determined. Same is true for online monitoring of insect cells where mammalian 

cell processes can only give suggestions. The transferability of the online 
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monitoring technology to insect cell processes still needs intensive research. 

Summarizing, insect cell processes still provide room for improvement to further 

increase the maximum yields of active recombinant proteins. 
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