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Abstract

There has been a continuing interest among statisticians in the problem of regression models
wherein the independent variables are measured with error and there is considerable liter-
ature on the subject. In the following report, we discuss the errors-in-variables regression
model: y; = By + iz + Bozi + €, Xi = x; + wi, Z; = z; + v; with i.4.d. errors (€, u;, v;), for
1 =1,2,...,n and find the least square estimators for the parameters of interest. Both weak
and strong consistency for the least square estimators BO, Bl, and S35 of the unknown param-
eters [y, b1, and [y are obtained. Moreover, under regularity conditions, the asymptotic

normalities of the estimators are reported.
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Chapter 1
INTRODUCTION

The relationship between a random scalar y and x is often investigated through the classical
linear regression model, ¥y = [y + f1x + €, where [y, 51 are unknown parameters, and e
accounts for the uncontrollable errors with Ee = 0, Fe? = 0. However, in the real appli-
cation, sometimes = cannot be observed directly. As an example, consider the relationship
between the yield of corn and available nitrogen in the soil. Assume that the above classi-
cal linear regression model is an adequate approximation to the relationship between yield
and nitrogen. The coefficient [3; is the amount that yield is increased when soil nitrogen
increases one unit. To estimate the available soil nitrogen, it is necessary to sample the soil
of the experimental plot and to perform a laboratory analysis on the selected sample. As a
result of the sampling and of the laboratory analysis, we do not observe x but observe an
estimate of x. Therefore, we represent the observed nitrogen by a surrogate X of x which is
available and relates to x in an additive way, X = z 4 u, where u is the measurement error
introduced by sampling and laboratory analysis, and independent of . Then we have the
linear errors-in-variables model: y = By + f1x +¢€, X = x+ u where € and u are independent
with Be = Bu =0, Fe? = 02, and Eu® = o2.

One may think it would be simpler to directly regress ¥ on X without considering the
measurement error, but theoretical argument show that if measurement error does present
in the predictor X, the resulting least square estimator will be biased. The claim is also

supported by the following simulation study. Suppose x ~ N(0,1),u ~ N(0,1) and € ~



N(0,1). We generated n random numbers from these distribution, and select 5y = 1 and
B1 = 2 to find observations on y = [y + f1x + €, and X = x + u. In the simulation, we
choose n = 100, 200, 300, 400 and 500. For each scenario, we calculate the least square of
estimator (LSE) of 5 by regressing y directly on X, and the bias-corrected estimator of f;
by taking the measurement error into account. The least square estimator of ; has the
form of S,x/Sxx, and the bias-corrected estimator of 8; has the form of S,x/(Sxx — 1),
where S, x is the sample covariance between the observations on y and X, and Sxx is the
sample variance of the observations on X. We repeat each setup 500 times, and the mean

square errors (MSE) of the estimator are reported in the following table:

n | MSE-LSE | MSE-Bias Corrected
100 | 0.9811421 0.25507402
200 | 1.0104561 0.08794780
300 | 1.0031359 0.05439582
400 | 0.9980504 0.03900376
500 | 0.9991646 0.02875133

Comparing the two sets of MSE values, it is clear that the MSE values of the least square
estimator of f; are all larger than the MSE values of the bias-corrected estimator of (,
and the MSE of the bias-corrected estimator of [, decreases when n increases. Thus, the
bias-corrected estimator is more efficient than the least square estimator in the mean square
of error sense.

Due to its important role in practical application, the estimation of the regression pa-
rameters [y, 51, and the variances of ¢ and u of the linear errors-in-variables model has
been a long lasting research topics in statistical study, and still received attentions from
researchers even for today. For a comprehensive introduction to the estimation problems
in the errors-in-variables model, see Fuller (1987). Cui (1997) proved asymptotic normality
of some M-estimates in the errors-in-variables model; Liu and Chen (2005) discussed the
consistency of least square estimators for the linear errors-in-variables regression model and
concluded that both weak and strong consistency are equivalent. They also proved that

the following condition is sufficient and necessary for Bl being a strong and weak consistent



estimate of fi:

where S, = > (z; — Z,)?. Recently, Miao et al. (2011) proposed some more precise
consistency and asymptotic normality results for the least square estimators of Bo and Bl
when the contaminated predictor x is one-dimensional and nonrandom.

In the previous corn yield example, we also know that, in addition to the nitrogen,
there are many other factors can affect the yield of corn. Therefore, simple linear errors-
in-variables model might not fit the data very well. To build a better model, one may
incorporate other variables into the model. Let z denotes the true amount of precipitation
received by the corn, so in addition to the variable x, the nitrogen content, we can add z
to construct a multiple linear regression model. The true value of z is a random in nature
due to the fact that the precipitation is greatly affected by the temperature, air pressure,
and many other uncontrollable factors. Like nitrogen content, the precipitation z is hard
to measure, instead, an estimate Z can be made through some special instrument from
the weather station. Z and z can be modeled as Z = z + v, where v accounts for the
measurement, error. Therefore, it might be more proper to consider the following linear

errors-in-variables model:

y= 0o+ b+ Baz + €,
X =z+u, (1.1)
Z =z+w,

the predictor x is assumed to be fixed, while z is random. Both z and z are one-dimensional
predictors, and cannot be observed directly. Surrogates X and Z of x and z are available,
and they are related in additive manner described in (1.1). The error terms €, u, v and

the random predictor z are assumed to be independent with Fe = EFu = Ev = 0 and

2
z

Ez = p,. Moreover, Ee* = 0%, Eu* = 0%, Ev? = 02 and Var(z) = 0?2 are all positive and
finite. Assuming that x and z are one-dimensional can greatly simplify the notation in the
following argument, the results obtained in this report surely can be easily extended to the

multidimensional case.



Suppose a sample of size n, (y;, Xy, Z;), ¢ = 1,2,...,n is obtained from model (1.1).
Then

v = Bo+ Bi(Xs —w) + Bo(Zi —vi) + &

= Bo+ BiXi + BoZ; + € — Prui — Bavy, 1=1,2,..n

this is a multiple linear regression model of y; on X; and Z; if we treat ¢; — Biu; — [Bov; as
the error terms. Without further emphasis, we always assume that ¢;, i = 1,2,...,n are
independent and identically distributed, same understanding applies for u;, and v;. It is

easy to show that the least square estimators of 3y, (51, and (B, are given by

: L (% - X2~ 2P
A Z?:l (XZ - X,)? Z?:l Z; — Zn (yl - fgn

where ¥,, X,, and Z, are the sample means of v;’s, X;’s, Z;’s, respectively. In the errors-in-
variables model with only random predictors, the least square estimator is not consistent.
Similar phenomenon happens in the errors-in-variables model (1.1). To correct the bias, we
modify the least square estimator B;" as follows
5 (X XS (2~ Z) (i~ ) ]
Doima(Zi = Zn)? = nop] 30, (X — Xa)? = [0 (Xs = Xo)(Zs — Z0)?

S (X~ X)(Z— ) S (X~ K)o — )
[Z?:l(zi — Zn)? — noi] Z?:1(Xi - Xn)? - [Z?:l(Xi — Xo)(Zi — Z,))?

The estimator defined above is an unbiased estimator of the regression coefficient S5 which is
called bias-corrected estimator. In the sequel, we always use Bg to denote the bias-corrected

estimator of (5. In the definition of B(’)", the estimator of 35 should be replaced by the bias-
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corrected estimator defined above, so we have Bo = UYn — Ban — BQZn which is corrected for
attenuation. Hence, the LS estimators in this report means BO, /5’1, and Bg.

The objective of this report is to obtain both weak and strong consistency for the least
square estimators /5’0, Bl, and Bg for the parameters of interest. In addition, under regularity

conditions, we get the asymptotic normality of the estimators.



Chapter 2
MAIN RESULTS AND PROOFS

Throughout this chapter, we shall use —, 5 and 4o represent the convergence almost
surely, convergence in probability and convergence in distribution, respectively. Section
2.1 shows that BO, Bl and Bg are all convergent almost surely; the results for convergence
in probability are reported in Section 2.2; and finally, the asymptotic normality of these

estimators will be discussed in Section 2.3.

2.1 Convergence almost surely

Let X,, be a sequence of random variables and X be a random variable. We say that X,
converges almost surely to X or X, =% X, if P{lim,_ . X, = X} = 1. The following

theorems state the almost sure convergence of f;s.

Theorem 2.1.1. Assume that in model (1.1),

pVv4

Elal <oo, Elwff <oco, Elnf" <oo, Elznl’ <o (2.1)

forp>2 and
lim S, /n* %P = oco. (2.2)

n—oo

Then /Syn=P(By — B1) =5 0.

Remark 2.1.1. In particular, if p = 2, under the same assumption of Theorem 2.1.1, we

have n='2\/S, () — B1) £ 0. This result is also obtained in Liu and Chen (2005).
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Theorem 2.1.2. In addition to the assumptions in Theorem 2.1.1, suppose that
nl/2

1-2

ay =
then an(Bg — By) 250

Theorem 2.1.3. Suppose all the assumptions in Theorem 2.1.1 and Theorem 2.1.2 hold.

If we further assume that

|Zn| = O(1), (2.4)

then an(Bo — Bo) 220

To facilitate the proofs of the theorems above, we will derive some new expressions for
Bl — B, Bg — P, and Bo — Bo. For Bl — [1, a simple algebra leads to
Bl B = Z?:1(Zi - Zn)2 Z?ZI(X" — Xn)(yz - y_n) _
2im1(Zi = Z)? 301 (Xi = X)) = [0 (X — X)(Zs — Z0)]

MEEA ICARSA) YL A AT A
X~ X~ [N~ X = 2T

n)
(

B - X
T4 L) *
By (Zi = Z,)P 3 (X = Xa)? = B (X - X)(Z jZ)P
S (Zi = Z,)2 30 (X — X0)? = [0, (X — X)(Z Zy)]?
From (1.1), we have
Yi — o — (Xi — X0)B1 = (yi — XiB1) — (Y — Xu1)
= Bo(Zi = Zn) + (€ — &) — Bu(wi — Un) — Ba(vi — Uy)
= Bo(z — Zp) + (& — &) — Br(wi — 1Uyp),
thus, one can rewrite
B — P = 1_ BBn2, (2.5)

B, = o Z?:1($i — jN)( — Zn) B Zl 1($z - fn)(_uz - ﬂn) + B Z?:l(ui — ﬂn)(zi — Zn)
' (X = X
_ﬁl Z?:l (wi — ﬁn>2 - Z?:l(xz Tn)(€i — €,) — Z?:l (w; — un) (€& — €,)
>y (X = X5)? ’

7




Z?:1(Xz - 7n)(Zz Zn) n n
By = Z?_1< - )_(n)Q ?zl(Zz _ Zn)Q [52 - (Zz Zn) - 51 ZZl(zz — z,n)(uZ Un)
+02 ) (0= 0)(z = 20) = fi Z(vi — B (s — ) + 3 (2 — Za) (6 — )
ICERICERIF
B,s = [ZZL—1<X15 Xn)(Zz — Zn>]2

For 35 — B35, we can show that it equals

_ Z?:l (Xi — Xn)2 Z?:£<Zi — Zn)(Yi — yn)
Do (Zi = Zn)? = nod] 300 (X — Xa)? = [0 (X0 — X
Z?:l(Xi - Xn)(Zz — Zn) Z (X X )( Yi yn
D2 (Zi = Z0)* = no] 30, (X = Xa)? = 2L, (X — Xa)(Zi —
Bo i (Zi = Za)* 30 (X = Xo)? = B[ (X — X )(Zz Zn)
Do (Zi = Zn)? = nod] 300 (X — Xa)? = [0 (X —
Ban 3 iy (Xi — Xa)®0)

S 2P ol S (K- X (S (K~ X~ Za)P

From (1.1), we have  yi—Un—(Zi—Zy) B2 = B1(Xi—Xn)+(€;—&n) — Br (wi — U ) — Bo(v; —

Therefore, we can rewrite By — (32 as

S (X — X020 (Z — Z,)[Bo( X — X)) + (€ — &) — Br(us — Un) — Bo(v; — Uy

Un)-

)]

[Z?:l(%l - Zn)2 - no?| Zf:‘l:l(Xii_ Xn)Q - [2}11 (Xi — Xn)(ZZ - Zn)]Q
_Z?:l(Xi - Xn)(Zz — Zn) Z?:l (Xz - Xn)[BQ(Xz - Xn) (Ei — En) — 61(% — an)]

_|._
D2t (Zi = Z0)* = no] 301 (X = Xa)? = 20, (X = Xa)(Zi = Z0)P?
2 (Xi = Xa)(Zi = Z0) 30, (Ko = X)) [Ba(i = 0n)] = Ban 351, (X — X0y
Do (Zi = Zn)? —nod] 301, (Ko — X0)? — 2L (X = Xo)(Zi — Zo))2

Some rearrangements finally lead to




65 = LA(Zi= Zo)lei = )/ S (4~ Z)! o
1= [T (X~ X,)(Z = Z)P) S (K= X P (2~ 27 = o
) B (i = )i — )] Sy (2 — Za)? —
T (X~ X (Z— 2P S (X — XSG — 2, — o
B (%= 2w = ) —no?)) S (Zi— 2, — o
T (K~ X (Z— ZF) S (%~ X[ 2~ 2, —
) SCEALATA ML AN
=[S0~ X = P Sl X~ XIS~ 2 =]
L = XS (Z = 2 — nod]
N B 0 (X = )2~ 2,) S, (Xs = Ko — )
1= (X —Xn)l(Zz' — Z,)) 20 (X — X220 (Zi — Zn)? — o
S (X - X )P (Z— Za) o]
N B S0 (X, — Ka)(Z = Z) S0 (Ko — Ko (01— 5,)
T[S0~ X~ (X~ XIS~ 4 ot
X = X (Ze— 2 — ol
For the sake of brevity, denote C,1, Cy2, Cp3, Chs, Cps, Cpg, and C,7 as follows
>oic1(Zi — Zy) (e — &)
O = 2o
Cy= 512_ (Zi _?n)(ui_an)
" 2?71<Zi Zn)?* —no} ’
Cy = Bald iy (Zi — Zn)fvz ) — nag]
" ZZL (Zi = Zn)? — no}
SO BEEE AL Abo e SP AL
" i (Xi = X2 (Zi — Zo)? —noy]
Co= B3 i (X = Xo)(Zi = Z0) 300, (X — Xon) (ui — i)
" > (X = X230 (Zi = Z,)? — no
Co = B iy (Xi = Xo)(Zi — Z) 2 (Xi — X)) (vi — )
" Yo (Xi = X5)? [Z 1(Zi = Z3)? = nal]
S v T 7S A
Y (X = X (Z = Z0)? = no?]
Then we have
A Cpi — Cro — Crz — Coy + Crs + Chg
Bo — P2 = .- : (2.6)

9



Finally, for By — Bo, we can show that
Bo — o = (B — Bl)Xn + (B2 — BZ)Zn + € — Brn — Paly. (2.7)
To prove the theorems above, we also need two lemmas, which are stated in the following.

Lemma 2.1.1. (Miao et al. (2011)) Suppose that {K;,i = 1,2,...} is a sequence of i.i.d.
random variables with EK,; = 0 and E |K1[" < 0o, (p > 2) and {a;jn,i =1,...,n,n=1,...}
is a sequence of non-random weighted coefficients with > .

1 n a.s.
n /p Zi:l ai,nKi — 0.

=1 for alln > 1. Then

ZI’LTL

Lemma 2.1.2. (Durrett (2005)) Let {T;,i = 1,2, ...} be i.i.d. random variables with ET| =
0 and ET? = 0? < oo and Let M,, = Ty + Ty + ... + T,,. Then M, /(n'/?(logn)/?+7) 2% 0

for any v > 0.

Now, we can prove Theorem 2.1.1.

Proof of Theorem 2.1.1: From condition (2.1) and the strong law of large numbers,

we have
1~ as, 1~ as,
o 'E_l Zi — Mz, o 'E_l Zy —
1 — _ as. I as,
ﬁl§:1(zi—zn )2 — o2 2% o2 5;21 v; =50,

1 — _ 1
- Zi— Z,)? 5 - Sz )2 e 2
nZ( D B R

=1

—Z W(Z; — Zy) 25 Cov(u, Z) = 0,

RS : _\ as.

- (u; — Uy)(2; — 2n) — Cov(u, z) =0, (2.8)
i=1

- (v; — Up)(2; — Z) —> Cov(v, z) =0,
i=1

— Y (v; — 0y)(u; — up,) —> Cov(v,u) =0,

n <

10



l g (zi — Zn)(€6; — €) i Cov(z,€e) =0,
n 4
— 5 (v; — ) (€; — &,) —> Cov(v,€) =0,
n

i=1

by the independence of €, u, v and z. Some of the above results will be used in the proof of
Theorem 2.1.2 and 2.1.3. In addition, by (2.1), (2.2), the strong law of large numbers, and

: 2 2 2 2
the finiteness of o7, 0, o and o7, we get

1 o 1 = n 2 as,
o < - 2
/_Snnl/p z_;(uz Un) =~ S nl/P Zuz /—S nl/P ZU

n

1 1 a.s.
e (Zz — Zn)z S 22 — 0,
w/Snnl/p ; w/ nl/p Z w/ nl/p zzl (2 9)

1 o 1 =, n 1 5 as.
L < - A Y g RN
NER L ;@Z )" S e V/San/p Z“’ N ZUZ 0
1 2: ~ 2 2: 2 _ 2: 2 sy
V/Spnl/p (=&)< o= nl/P nl/P

which yield

1
— Up) (€ — &,)| < W ; [(uz —

1 n
FeoY

1 _
< s 2 (-

n

1O _ _
‘W 2 (= ) = 5

! - 1
'W ;(uz — Up)(V; — V)| < N ; [(Uz —

Furthermore, 7 (X; — X,,)? has the following decomposition, Y i (X; — X,,)? =
S (i — Tn)? + 2300 (v — Tn)(us — @) + iy (u; — @y,)?, from Cauchy-Schwarz in-

equality, we can show that

11
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In the above argument, we used the condition (2.2) and the first equation of (2.9). Hence,

we have
IS - \2 as
5 D (X - X)L (2.11)
i=1
This fact will be used frequently in the subsequent proofs.

Finally, let us denote a;, = (2;— %) /\/ Yoy (@i — Tn)? K; = (Z;— EZ). Then (a;,,1 <

i <n,n>1)and (K;,7 > 1) satisfy the assumptions of Lemma 2.1.1 with p = 2. Therefore,

we get

) = }(Zi —BZ) “%0. (2.12)

el

Similarly, we have

’I’L

—1 - T ) a.s.
N ;(:ci — Ty) (2 — = 1/p Z [\/Zz X )2} (z; — Ez) =0,

n

2} (u; — Eu) =% 0,

1
s S w3
S,nt/ — / [\/Z (2.13)

zlm’l_ n)

n

—1 7 _ L (‘CE% — fn) v — Ev a.s.
\/S_nnl/l’ ;(l‘z - In)(vz - EU) — nl/p ; [\/Z;n:l(xz — i’n)Z]( i E ) — 07

L S (o LSS
W;(xi_xn>(€i_E€) 1/p2 [\/Zz o5 }(ei—Ee) — 0.

Now, we can start to prove /S, By,1/n'/? 2% 0, first note that

12



@B _ Bnl/\/S_nnl/p
ni/p oM 1/S,
T B2 i (= T) (20 — Z) — B 200 (s — @) (i — )]
St 2oin (X = X)?

. T B2 20 (Wi — ) (2 = Zn) — B1 200, (0 — )7

St 2o (X = X)?
oo i (%0 — Zn) (& — &) + 200 (ws — ) (& — )]

Sgl Z?:l (X, - Xn)2
m[ﬁb Yo (wi—T,)(zi — Ez4+ Ez — z,) — b1 > iy (i — Tn) (u; — Eu+ Eu — 4]

+

St 3o (Xi = X,)?

N T B2 20 (Wi — ) (i — Zn) —h D i (Ui — )]

Spty i (Xi = X)?
Taor i (T = T) (6 — Be + Ee — &) + 3011 (ui — ) (6 — &)

Sty i (X = Xn)z
Te e iy (@i — T) (2 — Bz) = B1 300 (w0 — @) (i — Bu)]
St 3 oiea (X — Xn)z

. T B2 2o (Wi — ) (2 — Zn)_— B> (ui — 1y,

Syt (X = Xn)?
T i (T — Ta) (6 — Be) + 3001 (wi — ) (6 — &)

St 3 i (X — Xn)Q ‘

_I_

+

Then from the first equation in (2.9), the first, second equations in (2.10), (2.11), the first,

second, and fourth equations in (2.13), we have

VSi o, as

In order to prove /S, Bz /n'/? =% 0, let us prove Y »_ (Xi— X,.)(Zi— Z,) //Sun'/P =%

0 first, since

Z?:l(Xi B Xn)(Zl B Zn) - 2?21 (371 — Ty +Uu; — an)(zi — Zn +v; — ﬂn)

V/S,nt/p V/S,nt/p

13



n n

1

RVER Z(ml = ) (2 = Z) + Sl Z(aﬁl — Z) (vi — Ty)

n n

+\/S_1nl/p Z(ul — Un) (2 — Zn) + m Z(Uz — Uy ) (v; — V)

Therefore, from the second, third equations in (2.10), the first, third equations in (2.13),

one can obtain
- Xl B Xn ZZ - Zn a.s
NEna

Similarly we have
2?21 (X — X”)(el — &) N 0, Z?:l (Xi — Xn)(”z — V) sy 0,
\/S,nt/p /S nl/p
(X — X ; — U a.s
Zima (X = Xo)(wi 2 ) s (2.16)
vV Synt/p

Which will be used in the proof of Theorem 2.1.2.

At present, let us show that /S, B2/ n'/? 2% 0. A tedious and routing calculation leads

to

VS VS S(Xi = X (Zi - Zy) "
Wan - nl/p Z;z:l(Xi_Xn)zz (Z Z [522

n n n

B>z = ) (i — ) + B D (05— Ta) (2 — Za) = Br (05 — Ta) (i — Tin)

=1 1=1 =1

+ Z(Zz — Zn) (€ — €n) + 2:(11Z — 7;) (€& — En)}

J_n Y X = X)Zi=Z,) ¥ 2
nl/p Z; (X X) Z; (Z Z)z izl<zi_zn>

n

VS SL(Xi= X(Zi— ) o
W ST X — X ST - 2o 2 T )

VO S (X=X Zi—Za) N~ )
nl/p Z’?_ (X; — X )2 Zf}_l(zi — Zn)Q ;(% — Up)(2i — Zn)

n

VSn (X — X)) (Zi — Zy) 5 Ve —
nl/p Zl: (X X ) 2121(21' _ Zn)z ;( ( n)( i n)

14
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+ _
_ g, X4 - Z) 1 Ay(E &)
2 V/.S,nt/p SIS (X — X,)? % S (Zi — Z,)?
—b ZZL:I(XI' _ X")(Zl -7 n) 1 % Zi:l (2 — Zn)(u_z — Un)
V/S,nt/p SIS (X=X )E 1S (Zi- Z,)
+02 Lin (X~ Xn)lZi = Z) 1 i i (Vi = ) (2 — Zn)
V/S,nt/p SN (X=X LS (Zi— Z,)
- XX~ Xo)lZi = Z,) L a2 (= o) (s — 1)
1 \/S_nnl/p S;l Z?:1<Xi — n)2 1 ZZL 1(Z 7 )2

S (Xi = Xo)(Zi — Zn) 1  wim (i ) (6 &)
VERL St (X — Xn)? 711 S (Zi = Z,)?

S (Xi = Xo)(Zi — Zn) 1 2 (v = ) (e — &)
V/Spnt/p Syt Z?:l(Xi - Xn)2 % Z?=1<Zi - Zn)2

So that, from the fifth, sixth, eighth, ninth, tenth, eleventh, twelfth, equations of (2.8),

(2.11) and (2.15), we can get the desired result
LEN) (2.17)

Finally, because

AT - 2,
_ [zz;m —0)(Zi—Z) | S = 0)(Zi— Zo) | VL (= 3’
\/ﬁ\/zzlzl(x% - jn)Q \/_\/Zz 1 mt ) \/Zizl Xi — Xn)2

1

ATLG-

15



D N S (e w)(Z— Z)
[f ZWZ“@—%)?)(Z R AN s S =T

\/Zzlxl Tp)? 1
LK - X,) RVED DAL

o) ! ,
[f ZQZZ T e e

1
X 7
\/Sﬁl Zi:l (Xi — X,)? \/% Yo (Z — Z,)?

then from the condition (2.2), the fifth, seventh equations in (2.8), (2.11) and (2.12), we can
show that
Bps 2% 0. (2.18)

Combining (2.5), (2.14), (2.17) and (2.18), we can obtain that

vV Sn ~ . ﬁBnl ﬁBnQ a.s. 0
i 1= ) = S T 0.
This completes the proof of Theorem 2.1.1. O

Remark: Theorem 2.1.1 shows that the almost sure convergence rate is the same as the one
in the fixed design errors-in-variables model discussed in Miao et al. (2011). So adding a
random component z to the fixed design errors-in-variables model does not affect the almost

sure convergence rate of (3. [ |

Proof of Theorem 2.1.2: Let T; = Ze;, M,, = > | T;, then T}, = 1,2,...,n and

M, satisty the assumptions of Lemma 2.1.2. Therefore we have

" Z (2 Mn a.s
Lim it — %0,
nz(logn)zt  nz(logn)zt
From the condition (2.3), we get
& Mn a.s

2%0. (2.19)




Similarly, we can show that

Qn . Z:'Lzl €; a.s. an - | < Z?:l V4 a5
n= | nz(logn)z ™ L n & | 7 In2(logn)zt 7
I Yor Ziti | as Uy — Yo %0 as.
=N Zuug| < N DL ;
noa n2(logn)z™ ns n2(logn)2™

n n
LI P P D S L () (2.20)
n = n2(logn)zt?

n L VAR
In [(v; — B,)? — 02]| < 21:1[1(“@ Un)ﬂ o] as. 0.
n ‘= nz(logn)z

Here and now, we can start to prove a,Cp — 0, note that

2 i1 (Zs
2 i (Zi =

From the second, third equations in (2.8), (2.19) and the first equation in (2.20), we have

) € — ) _ % Z?:l ZiE’i - Znangn
W2 —nod 230 (Zi = Za)? ol

(%

-7
anCnl = Qp Z

anCn1 —= 0. (2.21)

For C,,, since

an N 1Zul Z T,
S (Zi = Z,)? = o2

Then from the second, third equations in (2.8), the third and fifth equations in (2.20), we

= b

an0n2 = Blan

get
anChy 225 0. (2.22)

For C,3, simple calculation shows that a,C,3 equals

0 (2= Z) (i — ) — o)
E?:1(Zi — Zp)? —no?

S D i ZiVi = Znntn + 5 300, (v — 0n)? — 0]
%Z?ﬂ(zi — Zy)? — o}

Therefore, from the first, third equations in (2.8), the second, fourth, sixth equations in

Baan = [

(2.20), we obtain that
anChpz 225 0. (2.23)
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Note that |a,Cps| can be written as

a Z?:l(Xi — Xn)(%z — Zn) Z?:l(Xi_ Xn)(ei B gn)
YL - X2 (Z - Z,)? — no?)]
>

(X - Xo)(Zi = Zy) 2 i (Xi — X)) (e — &) 1
Zn (X' - X )2 2 (Zi = Z,)? = o
o [ 2im (X~ X.) D (Xi = Xo) (e — &)
B \/_np i= 1 n)2 Snn%
1

%Z?:l(zi - Zn)2 - 012; ‘

X VS —
‘ \/Zz‘:1(Xi - Xn)2
By the third equation in (2.8), (2.11), (2.15) and the first equation in (2.16), we get

anCha —2 0. (2.24)

For a,C,s5, as

> iy (Xi = Xo)(Zi = Z,) 307 (Xi — Xo) (ui — )

A =T TR~ X (2~ 2o — o]
_ s, e 3 (Xo = Xo)(Zi = Z) 200, (X — X)) (wi — @y) 1
Zn (X‘ X ) IS (2= Z,)? = o2
< | g, Zim X = %) ‘ S = K)o )
- \/_np \/Zz 1 X,)? S,n»

VSu 1

¢211X X2 | > (Zi = Z,)? = a2|

Thus, noting the third equation in (2.8), (2.11), (2.15) and the third equation in (2.16), we

have

anChs =2 0. (2.25)

To show that a,C,s —= 0, first we have

o, D06 = X)(Z = 2) S0, (6 = X))
YL = X)X (2 — Z,)? = no?
— 18, c% Z:’L:l(Xi - Xn)(Zz - Zn) Z_?:ﬂXi - Xn)(vz — Up) 1 _
Z?:l(Xi - Xn)2 % Z?:l(Zi - Zn)2 - 03

18



Z?:l(Xi — Xn)(Zi B Zn)
V!
VS,
\/Zz 1X X) nZZ 1<Z_Zn)2_‘712;

then by the third equation in (2.8), (2.11), (2.15) and second equation in (2.16), we have

VS,
\/Z?:1(Xi - Xn)Z
1

<

o

Z?:l(Xi - Xn)(vz — Up)

9

anChg ~=5 0. (2.26)

Finally, let’s prove Cn7 =2 0. Because

> iy (X = Xo)(Zi — Zn)

Vo = X VIS — 2o — o)
_ > i (T — T+ ui — un)sz — Zy) 1
VIVEL (X - X)? LS (- 2,2 - o

[Z?I(xi —5)(Zi= Z) | Y = 0)(Z — Z)
Vi (@ — T)? Vi i (i — )
% \/Zyzl(x’t — Tn)? 1

VELX = X0 L5 (- Z,)2 - o

= [\/_Z< ) )2~ BEZ+ EZ - Z,)

xz—xn)Q
121 L (ug — 1) (Z; \/ZZL (i — Tn)? 1
n Vi (@i — Zn) /” Vi (X = X,) \/ S (Zi— Z,)% — o2

S%L Zn XN)Q \/% Z?:1(Zi - Zn)2 — o2

So that, from (2.2), the third, seventh equations in (2.8), (2.11), and (2.12), we obtain that

Cpr 250. (2.27)
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Consequently, combining (2.6), (2.21) to (2.27), we have the desired result a, (32— 02) <=
0. This completes the proof of Theorem 2.1.2. 0

Remark: If we focus on the convergence rate a, in the Theorem 2.1.2, we can tell that if

p = 2,3, then a, = n'~?/? otherwise a, = n'/?/(logn)/**". [

Proof of Theorem 2.1.3: By the condition (2.4) and the Theorem 2.1.1, we have

A Tpynt/P

Ay Tpynt/P n A n A
\/S_n (ﬁ(51—51)>‘ = \/S_n <:z/5_i’(ﬁl_ﬁl))‘
— 0(1) ’(%(ﬁl - Bl)) @3, (2.28)

In addition, we have

an(BO - BO) = an(ﬁl - Bl)Xn + an(ﬁZ - B2)Zn + angn - anﬁlan - anﬁﬂjn
= an(ﬁl - Bl)in + an(ﬁl - Bl)an + an(ﬁZ - 32)271 + a'n(BQ - 32)@71

+an€n - Blanan - ﬁZan@n

n_n l/p \/S_n A l/p \/S_n A n i
= = a6+ e (L= )2 >

VEORVES —
+an (B2 — /5’2)]271 + [an (B2 — 32)]% + % Z € — ﬁla—n ;uz — ﬁg% Zvi.

n
- n -
i=1 i=1

Accordingly, from the condition (2.2), the first, fourth equations in (2.8), the first, second,
fifth equations of (2.20), (2.28), the Theorem 2.1.1 and 2.1.2, we can show that

an(Bo — Bo) =2 0.
This completes the proof of Theorem 2.1.3. 0

Remark: Theorem 2.1.3 reveals that the almost sure convergence rate is different with the
one in the fixed design errors-in-variables model discussed in Miao et al. (2011). However,
if we pay attention to the convergence rate a, in the Theorem 2.1.3, the assumption (2.4)
that a, needs to be satisfied is the same as the one in the fixed design errors-in-variables

model in Miao et al. (2011). |
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2.2 Convergence in probability

Let X,, be a sequence of random variables and let X be a random variable. We say that
X, converges in probability to X, X,, —— X, if for every e > 0, P{|X,—X|>¢€} — 0 as

n — o0o. The following theorems state the convergence in probability of Bis.

Theorem 2.2.1. Under the model (1.1), assume that

E’€1|p<OO, E|U1‘p<OO, E‘U1|p<OO, E’Z1|p<OO (p22)7

and
S, b, b,
Jim % =0, lim i =0, lim "t =0 (229)

Then, by (B, — 1) == 0.

Theorem 2.2.2. Assume that in (1.1),

pVv4
1]

Ele)f <oo, Elu)f <oo, Elv <oo, FElxnP<oo (p>2),

and
n b
lim S _ oo, lim = =0. (2.30)
n—oo N n—oo 1

Then by (Bs — B2) -2 0.

Theorem 2.2.3. Under the assumptions of Theorem 2.2.1 and Theorem 2.2.2, suppose that

bnZr, nb, Ty,
— 0 d
, an S

— 0, (2.31)

then by (By — Bo) — 0.

Proof of Theorem 2.2.1: From the assumption in Theorem 2.2.1, and the weak law

of large numbers, we have the following equations
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1 1 <& »
- i —> 29 Z —> 2 - i — O,
INNZ 2 o li(u 0)? s o
n — ¢ n n — ? n (3
1 < _ n ,
—Z Zi— Lp)" — 05, —Zp)° — o,
1< )
- (u WZ; — Z,) — Cov(u, Z) =0,
n
=1
1< B o
= > (i —un)(z — 2,) — Cov(u,z) =0, (2.32)
n
i=1
1 B o
— (v; — ) (2 — Z,) — Cov(v, z) =0,
n
i=1
1 < B o
- (Ui - Un)(ul — un) — COV(U, u) =0,
n
=1
1< _ o,
— Y (21— Zn)(6 — €) — Cov(z,€) =0,
n
=1
1< B o
- (v; — V) (€ — €,) — Cov(v,€) =0,
n
i=1
1< B o,
- (Uz - Un)(Gz - En) — Cov(u, e) =0
n

i=1
by the independence of €,u,v and z. Some of the above results will be used in the proof

of Theorem 2.2.2, 2.2.3 and asymptotic normality. Besides, by the third equation in (2.29),

2

the weak law of large numbers, and the finiteness of 02, 02, 02 and o2, we can show that

n

Z( — Up) SSZ —_— —Zu—>0

=1

Z(U ZQ - —Zv 250,

S [y

(2.33)
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Sn =1 Sn =1 Sn =1
by T (1
—nz_l(Ez—En) SS_n;Ei:S_n E;GZ—W,
which yield also
bn _ bn _ 2 _ N2
T Z(uZ Un) (€ — €,)| < 2—2 [(u; — p)* + (& — &)%) = 0,
=1 =1
b—nzn:(u—u)(z—z) <b—n Y [(w; — @n)* + (2 — 2,)°] =0 (2.34)
Sn - i n n)| = 9 n e i n i n )
b—"i(u Up)(v; — Ty) . Y [(wi — @n)? + (v — 0,)*] 0
Sn — 7 n (2 n — 2Sn — (2 n (2 n

Furthermore, noting the proof of the (2.11) in Theorem 2.1.1. Here, we used the first

equation in (2.29), and the fifth equation in (2.32). Hence, we have

1 & _
- d (XX, L (2.35)
"oi=1

This fact is very important in the proof of the convergence in probability and asymptotic
normality.

In addition, by using the Markov’s inequality, from the second equation in (2.29), so
that Var((bn/Sn) Yo (@ —fn)zZ) (bQ/SQ)Var<Z (2 xn)zz> = (b2/S,)Var(z;) — 0,

which implies

5 Z )z == 0. (2.36)
Similarly we can show that
by by
S_ (l’l — fn)ul i) O, S_ ’Uz —> O
"t "=t (2.37)

5—"2 e 25 0, \/51/5_ > @ =22 2 0.
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To prove b, B, — 0, first note that

bnBn1/Sn
1/Sn,
2B Yo (2 — Tn) (20 — Zn) — B 2oy (i — Tn) (ui — W)
St i (X — Xn)?
[Bo S0 (s — ) (20 — Z0) — B Doy (us — )]
Sﬁl Z?:l(Xi - Xn)Q
%[Z?:l(xi — Tn)(€ — &) + 2?21(%' — Uy ) (€ — €,)]
Sﬁl Z?:l (Xi - Xn)Q
& (B2 200 (i — @)z — By 2oy (i — Ta)ui + B 307 (ui — ) (2 — Zn)]
Sty (X — X,)?
B 280> (i — 1n)? = D0 (0 — Tn )& — 2o (U5 — U ) (€5 — )]
Sgl Z?:l(Xi - Xn)z '

annl -

bn
Sn
+

+

Then from the first equation in (2.33), the first, second equations in (2.34), (2.35), (2.58),

the first, third equations in (2.37), we have

bpBni — 0. (2.38)

In order to prove b,Bns — 0, let us prove b, Yo (X — X)) (Zi — Z,)/Sn 5 0 first.

Since we have

bn iy (Xi = Xo)(Zi = Z)
Sn
bn 22;1 (xz — Tp + Ui — ﬁn)(zi — Zp t+ U — @n)

S
bn _ b _ ,
= S_ Z(xl - .CEn)(Zl - Zn) + S_ Z(xz - xn)(”z - Un)
" i=1 n

i=1

S = ) (5 52— )0~ )

n “ S, 4
i=1 i=1
So that from the the second, third equations in (2.34), (2.58), and the second equation in

(2.37), one can obtain

b, S0 (Xi — X)) (Z — Z
n i ( - MZi—2Z4) v, (2.39)
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Now, let us show the main proof. A boring calculation results in

bn Bn2

b, i (Xi = Xo)(Zi ~ Z,) [522< —E2) =B (2 Za) (0 — )

Zi:l(Xi B Xn)QZ (Z Z n)? i1 i1
+Bo Z(vi — )z — Z0) — B Z(vi — ) (u; — )

—l—Z(zi—z i — En +Z v; — U;) 1—@)}
=1

@anz?:%;fgiggfz( S
ﬂ“wx?szﬁgﬁ&%”wﬁ?“”m@—%
‘@“zg%ﬁﬁ5%§ﬁ5%2>i%”wmw_%)
+by Z)? (X — z)gj(}%)znv g(zi — %) (€ — &)

Z?: (XZ n)<Zz - Zn) -
+by, s il_ XS (Zo = 2 ;(v, — ) (€ — &)
ﬂ bn Z?:l(Xi B Xn)(ZZ — _n) 1 - 2?:1(21' B Zﬂ)2
? Sh, Syt Z:L:l (Xi — X n)? 711 Z?:l(Zi - Zn)2
—/B b” Z?:I(XZ B Xn)(Zl - Zn) 1 % Z?:l(zi - 271)(“/1 — &n)
! Sh, Syt Z?:l(Xi - XH)Q % Z?:l(zi - Zn)2
_|_6 bn Z?:l (Xl B Xn)(ZZ _ Zn) 1 % Z?:l (Ui - @n)<zz — En)
? Sh, Syt 2?21 (Xi — Xn>2 % Z?:l(zi - Zn)2
-8 by Z?:I(XZ — Xn)(z’t - Zn) 1 % Z?zl(vi - En)(uz — ﬂn)
! Sh, Syt Z?:1(Xi - Xn)z % E?=1(Zi - Zn)2
Sh, Syt Z?:1(Xi - Xn)z % Z?=1(Zi - Zn)2
p By (X = Xa)(Zi = Z) 1 LS (6 - 06— )
Sn S ! Zz 1( Xn) %Z?:l(zi - Zn)z '

Therefore, from the sixth, seventh, ninth, tenth, eleventh, twelfth, thirteenth equations in
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(2.32), (2.35), and (2.39), we can obtain that
b Bz = 0.

Finally, as we have

Z?:l(ui - ﬁn)( i

— Zy)

\/Zz (5 —

Tn)?

Jﬁm;;xmi e

\/ﬁ\/ZL (i —

Tn)?

1 Z?:l(ui — Up

\/Zz (T — @)? 1

YLK - X \/2“2 Z,)?
5 i (W

[\/_Z<\/Zzlxz n)>(Zi>+” Vi

WZ; — Z,)
Zn)?2/n
Zn)

1 1

[frz N

VSIS (X XaP ViYL (Zi-2

9
n)?

\/Zi:1 Xi - Xn)Q

(2.40)

thus from the first equation in (2.29), the sixth, eighth equations in (2.32), (2.35), and the

fourth equation in (2.37), one can get

B,z — 0.

Combining (2.5), (2.38), (2.40), and (2.41), we can get the fancy result

annl - annQ p

bn(Bl - 51) =

This completes the proof of Theorem 2.2.1.

1_Bn3

— 0.

(2.41)

O

Remark: Theorem 2.2.1 shows that the rate of convergence in probability is the same as the

one in the fixed design errors-in-variables model discussed in Miao et al. (2011). So adding
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a random component z to the fixed design errors-in-variables model does not affect the rate

of convergence in probability of B [ |

Proof of Theorem 2.2.2: Using the Markov’s inequality again, from the second equa-
tion in (2.30), we have Var((b,/n) >, Zie;) = (b2 /n*)Var(3 1, Z€;)
= (b2 /n)Var(Zye;) — 0, which implies

by —
=N Zieg 0. (2.42)
n
i=1
Identically, we have

by by
—HZGZ'L)O, —nZZl'LLZi)O,
n i=1 n =1

bn = p bn . p
— E U — 0, —_— E Vi — 0.
n 4 n <

=1 =1

Next, because E |v;[""* < oo, E((b,/n) Y1 [Zivi—0?]) = 0, and Var ((b,/n) S, [ Zivi—
o2]) = (b2 /n*)Var( Y1, [Ziv; — 02]) = (b2 /n)Var(Zyv;) — 0, which imply

(2.43)

b n
=N [Zwi — 03] 0. (2.44)
n

=1

Moreover, as we have

n

Voo >oi (@i — T0) 2 by _ by 1
Var( N > = nSnVar(;(xi —Tn)7Z;) = NG X %Var(Zl) — 0,

which implies
Vo i@ = )% v (2.45)
VS

Similarly we get

V0. 3 (i = Tn)e p o VO (@i = F)w p o VO 3 (@ — T)vi p
N — 0, NN — 0, NG — 0(2.46)

Finally, note that

\/Ezﬁfl uzZz bn - bn
i= — A L
S ) nSnVar(ZZ:;uZ i) Tn X

Var( Var(u; Z1) — 0,

s
Sn

5=
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which implies
DY SEZEE N (2.47)
VSpv/n

Immediately, we can show that

\/EZ?:IUZ’QLQ
N

Vb Do wi P40,
VSav/n

To prove b, C1 L, 0, as

Ciy = by izt Zi = Z)le = &) S Ziei = 2ty Yl

" Y%= Z,)? = noy w2 Zi = Zn)? = 03

Thus from the second, fourth equations in (2.32), (2.42), and the first equation in (2.43),

Vo 3o 2.0
VSn/n ’

Vb 2oi i P40,
VS

bn T'Lf iV
\/_Z’L—l w;v L> 07

VS (2.48)

YYELINY
ERD

we have

b Cr1 —2 0. (2.49)

For 5, because we have

Z?:l(ZZ - _ﬁ)(ul )
Z? 1(Z Zn)? — o3

an?IZUZ Zﬁzz lu’t
IZZ 1(Z Z) _0-12) .

So that from the second, fourth equations in (2.32), the second, third equations in (2.43),

annQ = ﬁlbn

:ﬁl

one can obtain

b Chy — 0. (2.50)

For C,3, simple calculation shows that b,C),3 equals

p i (Zi = Z0) (v — v) — o] Yz — o)) - Z #Z

ﬁ2 n Z?:l(ZZ _ Zn)2 _ TLO'% 1 Zz 1( Zn)

Therefore, from the second, fourth equations in (2.32), the fourth equation in (2.43), and

/BTL

(2.44), we can show that
b,Chy — 0. (2.51)
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In order to prove b,Ci4 2, 0, note that

Z?:l (X; — Xn)(Zz - Zn) Z?:l (Xi — XN)(EZ — &)
Y (Xi = X230 (2 — Z,)? — no)]
Z?:l(X' B Xn)(Zz - Zn) Z?:l (XZ - Xn)(ez - gn) 1
Z?:I(Xi - Xn)2 % Z?:l(zi - Zn)2 - ‘73
Vo 30 (X = Xo)(Zi — Zn) VS V0, 30 (X — X)) (66 — &)
\/S_”\/ﬁ \/Z:Lzl(XZ - XH)Q \/S_”\/ﬁ
X V5 L
VX - %R A (Zi 2, o

_ [mzzf:xxi—w Z0) | Vb i (n — 1) (Z ~ Z,)

bn

bn
mn

VSuv/n VS
% Vo 200 (i — @) (€5 — &) 4 Voo Do (up — 1) (€6 — &)
VSuv/n VSuv/n
X \/S_n 1
VI (X = X2 5 XiZi = Z,)* — o} _
_ Vb 3o (2 — T0)(Z:) n Vo >t wiZi — ZoN by > w VS
VS VS |VEL X - X,
[W 2@ = E)(6) | Vo e~ i/B S |

VSuv/n VSuy/n
X \/S_n 1
\/2?21()(1' — Xn)? % Z:’L:l(zi - Zn)2 - 03.

Accordingly, by the second, third, fourth equations in (2.32), (2.35), and (2.45), the first

equation in (2.46), (2.47), the first, fourth, sixth equations in (2.48), we have
b Chry = 0. (2.52)

For b,,C,,5, since we have

Bib, S (X — X )(Zi — Z ) o (X — Xo) (u; — Ty,)

> (X X)) 2oiei(Zi = Z,)? — nal]
b”Z (Xi = Xo)(Zi = Zn) 00 (X — X)) (ws — ) 1
Zi:l(Xi Xn) %Z?:1(Zi_zn)2_ag
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\/EZ?:1(XZ‘ — Xn)(Zi B Zn) \/S_n \/b_Z? 1(X — Xn)(uz — an)
VS Vo (Xi = X,)? VS
V'S, 1
ALK - X LS (Zi— 2= o
Tp)

= 5

3 \/—nziz1(xz ( Zn) + \/EZ?:l(uz - ﬂanz - Zn)
1 VS/n VS /n
% \/EZ?:l(% n)( Uj ) \/_ZZ 1(“1 7n)(uz - ﬂn)
ERG VSuv/n
X VS 1
\/Zyzl (Xi — Xn)z % Z?:l(Zi - Zn)2 — o2
:&wmwwmm fZMZZfZM]
VS VS VoL (X - X,
% \/EZ?zl(zz — Zn) (u;) 4 \/EZ?:l u; — Uny/by D iy Ui
VSuv/n ERD
X VS 1
VU (X = X2 i (Zi = Za)? — o}

Hence, by the second, third, fourth equations in (2.32), (2.35), and (2.45), the second

+

equation in (2.46), (2.47), the second, fourth equations in (2.48), we get
b, Chrs — 0. (2.53)

To show that b, C6 SN 0, first we have

Z (X — X n)(Zi — Zn) Z?:l (Xi — Xn)(”% — Up)

S X - XIS (4 2o~ o]
— 3 % Z?:l(Xi - Xn)(Zz - Zn) ng (Xz - Xn)(vz - @n) 1 _
’ > i (X = X5)? 23 (Zi = Zn)? = o2

Vo 3y (Xi = Xo)(Zi = Z,) VS, Vo 351 (Xi — Xo) (v — On)
\/S_n\/ﬁ \/Z?:l(Xz - Xn)2 \/S_n\/ﬁ
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_ [\/EZ ><Z Z0) | n i (= 1)(Z = 2) /S,
n \/S_”\/ﬁ \/Z?ZI(XZ o Xn)2
\/EZZ 1 x% xn)( i — Un) \/_Zz L (w = ,) (v — )
Jn NESD
1
¢z X)L (Zi - Z,) - o?
_ [fzz o= 2)(Z) | VB uili — Zu/B S ] VS,
VS VS VEL(Xi - X2
VB = 2w | VB S et — /B S v
\/S_n\/ﬁ NESD
1

%Zizl Xi — X2 IN (2 - Z,)2 - o

then, by the second, third, fourth equations in (2.32), (2.35), and (2.45), the third equation

n (2.46), (2.47), the third, fourth, fifth equations in (2.48), we obtain

by Crg — 0. (2.54)

Finally, let us prove C,; — 0. Note that it is very similarly as to prove B,; —— 0,

S (X = %)%= Z)
VEL K - X VT - ) - ne]
Sy (s = o+ i — 0) (7 = ) 1

— \/_\/Zz 1 (X; — X n)? \/%Zz'n:l(Zi_Zn)z—Ug
F? @ =2 (Zi = Zn) | (= 0)(Zi = Z)
Vi3 (i — Zn)? VYo (T — Tn)?
% \/Zizl xi - xn>2 1
VELE SR\ oSz 2 - o
W \g 1ZLWZ*MZ—Z)
L/‘Z(\/Zz (i — 7p)? ) + \/Z:Z [z —,)%/n

\/Z’L (i — Tn)? 1
vy X'V/ZHZ Z,)? — o2
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_ i — Tn) L wim(ui — )(Zi — Z,)
- [\/_Z(\/Zl (@7 — Tn)? >ZZ+ \V/Sn/n

>< .
VO (X = X JLS (20— Z,)2 - o7

Consequently, from the first equation in (2.30), the fourth, eighth equations in (2.32), (2.35),

and the fourth equation in (2.37), we have
Cor =5 0. (2.55)
Combining (2.6), (2.49) to (2.55), we have the wistful outcome

annl - annQ - bnc11713 _Cann4 + ann5 + annG L> 0.
- Un7

bn(32 - 32) =
This completes the proof of Theorem 2.2.2. O

Proof of Theorem 2.2.3: First, because we have Var((b,/n) >_i_, €)
= (b2 /n*)Var(>_! | &) = (b2 /n)Var(e;) — 0, which implies

bn - p
bpé, = — i — 0. 2.56
€ " E_ € (2.56)
Similarly we have

nvn——2v1—>0 nun——z u; 25 0. (2.57)

In order to prove bn(Bl — B1)Zn — 0, if we note the formula (2.5), it is the same as to
show that b, B,1Z,, — b, BpaTn/1 — Bps 24 0. Because we already know that B,z 250 by
the (2.41), so we need to prove b, B,1%,, 5 0 and b, Bp2Z, — 0 respectively.

First, similarly as to prove (2.33), by the second equation in (2.31), we get

=1 i=1
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which yield also

bnl’n _ _ bnjn — 2 —

5 ;(u ) (e — )| < 25, 2 [(w; — ) + (& — &)%) == 0,

D S )~ 20| < S [ )+ (2 2] 5 0

U; Un )\ %5 Zn > U; Unp, Zi Zn )

Sn z:l 28n Z:1

bnin = bnin - 2 2 p

< > (ui = 1) (0 — B,)| < 75 [(w; — ,)? + (v; — 0,)*] =0
=1 noi=1

Moreover, by using the Markov’s inequality, from the first equation in (2.31), so that

Var((bnin/Sn) z;;l(xi—gzn)zi) (272 /SQ)Var<Z?:1(xi—§;n)zi) (0272 /S, Var(z1) —

0, which implies

bn n —
Sm Z(xz — Tp)2i 250.
noo=1
Similarly we can show that
bnTn ) P bnZn ) p
5 (x; — Zp)u; — 0, 5 (x; — Zp)v; — 0, Z )€ — 0.
"oi=1 "oi=1 i=1

Now, if we come back to the proof of (2.38) and (2.40), we can easily show that
by BuiZy, —— 0 and by, Ba@, — 0.
In a word, we obtain

ba(B1 — B1)Z, — 0. (2.58)

Then we have

bn(Bo — Bo)
= bo(Br — B1) X + bn(Ba — B2) Zy + bpén — bpBriiy — by Botin
= bo(Br — 1) (@n + Tn) + bn(Bs — B2) Zn 4 bpén — by ity — bnfBaby
= bu(B1 — B1)Tn + bu(B1 — B1)Tn + (o — B2) Zn + bunn — Prbuiin — Babnn.

Therefore, noting the second, third equations in (2.32), (2.56), all equations in (2.57), (2.58)

and the Theorem 2.2.1 and 2.2.2, one can show that

bn(BO - ﬁ(]) —0
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This completes the proof of Theorem 2.2.3. O

Remark: Theorem 2.2.3 shows that the result of convergence in probability is different
with the one in the fixed design errors-in-variables model discussed in Miao et al. (2011).
However, if we focus to the convergence rate b,, in the Theorem 2.2.3, the first equation in
the assumption (2.31) that b, needs to be satisfied is the same as the one talked in the fixed
design errors-in-variables model in Miao et al. (2011) while the second one in (2.31) is very

similar. [ |

2.3 Asymptotic normality

Let X, be a sequence of random variables and let X be a random variable. Let Fx,
and Fx be, respectively, the cdfs of X,, and X. Let C(Fy) denote the set of all points
where Fx is continuous. We say that X,, converges in distribution to X, X, Pyoxif
lim, o Fx, () = Fx(x), for all z € C(Fx). The following theorems state the asymptotic

normality of Bis.
Theorem 2.3.1. Under the model (1.1), assume that

Eel < oo, Euj<oo, FEvi<oo, FEz <o,

and
. n.o . |$Z — fn| B
iy R L (259)
Then
vVSh .
s — (Br = Br) = N(0,1),
\/VW[El — Bruy — (Ba — i—zz”)m +57 (21 — )]

Bioio}

(21 — ,uz)] =02 + o2 + P

where Var[el — Brug — (B2 — %—g%)vl + B;gﬁ
zZ z
Theorem 2.3.2. Assume that in model (1.1), suppose

Ee} < o0, Eul <oo, Ez <oo, Evl< oo,
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and

) n
lim

=0. 2.60
no0 /S, (2.60)

Then

Var{(Zy — p.)(e1 — Prug — Bavy)] )

4
0

VB - ) =5 N (o,

Theorem 2.3.3. Under the assumption of Theorem 2.3.1, suppose that
—2
nx;

Sn

0, (2.61)

then

V(o — o) = N (0, ),
where py = —(Z1 — ) (€1 — Brug — Pavr) 1z — 52012;/% + (61 = Prug — 527)1)03-

First and foremost, we need to recall a necessary and sufficient condition for central limit

theorem of partial sums of i.i.d. random variables by Gnedenko and Kolmogorov (1954).

Lemma 2.3.1. Gnedenko and Kolmogorov (1954) [Theorem 2, pp.128 in Gnedenko and
Kolmogorov (1954)] Let {kn, 1 < k <mn,n > 1} be an infinite array of row wise independent
random variables. In order that for some suitably chosen constants A,, the distributions of
the sums

N = gl,n + ...+ gn,n - An;

converge as n — oo to the normal law N(0,1), and the summands &,,(1 < k < n) be

infinitesimal, i.e., the requirement that for any A > 0 as n — oo

supr<k<nP(|€kn] > A) = 0,

it 1s necessary and sufficient that the conditions

> " P(I&knl > N) = 0, (2.62)
k=1

and
n

S <E<5§7n1{|£k,n] < A}) _ (Egk,n1{\§k,ny < )\}>2> S, (2.63)

k=1
be satisfied for every A >0 , as n — oo.
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To simplify the proofs of the theorems above, we will again derive some new expressions

for Bl — b1, Bg — (o, and Bg — By. For Bl — B, a simple operation results in

B — B
Yy (Z— 2SI (X Xl el — Z) + (6 — &)
> i (Zi )Z? (Xi )2—[2" (X = X)) (Zi = Z,

oy < LT (X Ko Bals— ) + Bl — 1))
S (Zi— ) oy (Xi — X — [y (X — Xo)(Z: — Z,)P
S KT 2 IS e ) e ) 4 (e )}
Sz~ 2P (X = X2~ [ (Xe — X)(Zi — Z,)P?
T (X = K% = Z) (S (2 = 2,)[ il — ) + Bales = 7))
S~ 2P S (X~ X0~ [ (X~ X)(Z— Z,)P

_ XiaZi = 25 (X = X6 — En) = Bi(us — tin) — Ba(vi — Tn)]}
Z?:1(Zi iZn)2 Z?:}(Xi - Xn>2 - LZ?zl(X - Xn)( i
i (X = X)) (Zi = Zo) {22111 (Zi — Z0) (65 — &) — Ba(us — n) — Ba(vi — 0]}

Z?:l(zi - Zn)2 Z?:l (Xz - Xn)2 - [Z?:l(Xz - Xn (Zz' - Zn)P ,

thus, one can rewrite

N
|
o

1

3 — == Dn _Dn PE——
61 51 ( 1 2)1_Dn3

S (X — X6 — @) — Bi(us — n) — Balvr — ) + (Zs — Zn) 252
Z?:l (Xi - Xn)2 7

_ i )( — Z,)

Dn2 R \/—Zz 1( )
= s in(Zi Z)(e — &) — Bi(u; — i) — Bo(vi — 9,)] 520
xﬁ{ IS (Zi— Z,)? - }
D, = (X = X2 — Z,))?

Z:Lzl (XZ - Xn)Q Z?:l (Zi - Zn)2
Proof of Theorem 2.3.1: By the assumption in Theorem 2.3.1, and the weak law of

large numbers, we have
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- Z(Zi — Zn)[(e: — &) — Bu(u; — ) — Bo(v; — 0y)] == — ooy, (2.65)
=2 Z,)* 5 o3

n <
=1

Moreover, by the first equation in (2.59), and the weak law of large numbers we have

,\/Ls_i(zi—zn Zz 250,
no=1

(2.66)

1
NI

\/—HZ S\/—nz \/—nz \/—nze 0,

which yield also

%S_n > (o~ e~ @)

\/_Z BRIEEvD
1

\/_nz1 ‘5”>§2¢s—n2

In addition, let us define ¢; = ¢ — fiu; — (Ba — 520 ) v; + %—Zg(zz — p.), so that, ¢; =
zZ
2 2
€1 — Prug — (P — —ngv)vl - —ng“ (21 — p.). Besides, let

T; — Ty
gi,n
\/S Varle; — frug — (Ba — ’320 ) + & ”(21 )]
Bao) Bao)
X |:5i — Bru; — (B2 — % Jvi + ;g (zi — NZ)]
= Mc.
S, Var((y)

then it is enough to check the conditions (2.62) and (2.63) in Lemma 2.3.1 by using the
assumption

lim max |1:Z _ $n| =0.

n—oo1<i<n /S,
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We have

n

iE(ﬁi,n1{|£k,n| > A}) SZMEQEI{IQI 5 M ShVar(G) }%07
k=1

Sy Var((y

1 maxlgign |ZL‘Z — i’nl

which implies, by the fact that >°" | B =1,

n

Z <E<§Z,n1{|§k,n| < A}) - (E€k7n1{|§k,n| _ )\}>2>

k=1

=SB, - Y B(ga 6] = ) - Y B(Gnlgnl = 4)) - L
=1 k=1 k=1

Furthermore, for any A > 0, we get

- ~ EE 1 [€en| > A}
D P&l = M) < i o — 0.
k=1

k=1

Hence we have
i=1

Also, since

Var<2?1\§%?/g”)zi> — n;n\/ar<i2n;(xi —5)Z:) = %Var(Zl) 0,

which implies

Therefore, one can show that

\/S—nZ?:l(Xi - X)(Z; — Z,,)

_ SLK - X)Z—Z) S
R S (X = X,
Z?ﬂ (xz — fn)(Zz B Zn) 21‘1 (u, - ﬂn)(Zz B Zn) 1

(2.68)
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Thus, from the first equation in (2.59), the eighth equation in (2.32), (2.35), and the above

result, we obtain

\/_"EWZZ I(X)(ZX )Z n) vy (2.69)

Finally, it is very important that by the Central Limit Theorem, we have the following

outcomes
\/ﬁe Zn:(Zi — p)? = U%) = N<0’Var(zl - MZ)’
LSz ) =5 v (0, var(2)),
; u ) ( a4 ) (2.70)

%Z(Gz — Biu; — 52%‘)) i> N<07V3T(€1 — Bius — 52711)>7

32— e = B — Baw) + Ba02) <5 N (0, Varl(Zs — ) = s — o))

=1

To prove v/S, Dp1/+/Var((y) N N(0,1), first note that

Var(G)

Vs S X)) [(6 =) = Bilu— ) = Balvi = ) + (Z - 2,) 2
Var(¢;) Do (X — X)?

1 A X)) [(6 - @) = Al — ) — Balv = B) + (Z— Z) %]
Var(G,) S T (X X

1 1 & _ _ 1
B Var(¢y) [\/S_n ;(ul Smlam el VS, z—21<u

1

1< 2 1

1
V TL Z }S IZZ 1(X X )
So that, from the equation (2.35), the first equation in (2.66), all equations in (2.67), and

(2.68), we have
VS,

—Var(cl)Dnl 45 N(0,1). (2.71)
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In order to prove /S, Dpa/+/Var(¢) 50, let us consider

% Z?:I(Zi - Zn)[(ei — &) — Br(u; — ty) — Ba(v; — 0y)] 52012}
Vi IS (Zi— Z,)? 2 J

first.

Since we have

; > Zi = Zy)? o
L " Zz_Zn € €n) — luz_ﬂn_ 2(V; — Up
(ATl Tl ) A ) = ol )
Z
Isrz=zy
_ % Z?:l(zi - Zn)[(ez En) - B (uz - ﬂn) - 52(%‘ - @n)] 1
N U% % Z?:l(Zi - Zn)2

0z
(gn - 611_% - 527771)(% Z?:l Zz - Nz))
o7

_\/ﬁ<(Zn — 1) 2oima (e — Pruws — 52%’)]) N \/ﬁ((Zn — 112) (€ — Bitin — ﬁQ'l_}n)>.

—|—\/ﬁ< i=1\4i _
(

2 2
Oz Oz

Consequently, by the second equation in (2.32), all equations in (2.65), all equations in

(2.70) and the Slutsky’s Theorem, we get

LY (Zi = Zo)(e — &) — Br(uy — i) — Ba(vi — Up)] N Bao? }
%Z:’L:I(Zi — Zy)? U% ’
which converges to a Normal Distribution, and so by the (2.69), we have the result

VS,
Var((y)

i

Dyy 2 0. (2.72)
As we have proven before, by the equation (2.41), we have

Dy3 = Bps == 0. (2.73)
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Combining (2.64), (2.71) to (2.73), we obtain

VS VS VS 1 d
=|——Dy - ———D,s | ——— — N(0,1).
Var((’l)w 1= A) Var(Gy) - J/Var(G) ) 1= Dus (0.1)
This completes the proof of Theorem 2.3.1. O

For Bg — [, easy calculation show that it equals

i (X = X230 (Zi — Z0)[Ba(X; — Xn) + (6 = &) = Pi(ui — @) = Ba(vi — )]
Dima(Zi = Z0)? = nof] 30 (X = Xa)? = [0, (X = Xo)(Zs — Z)P?
> iy (Xi = Xo)(Zi — Z,) 371 (X — X)) [Ba(Xi — Xo) + (e — En)]
D21 (Zi = Zn)? = o] 30, (X = X)? = [0, (X = X)) (Z;
2oy (X = Xo)(Zi = Zn) 3y (X = X)) [Br (ui — @) + (i — Un)]
Do (Zi = Z0)? = no2) 300 (X — Xo)? = [, (Xa — X)) (Zi — Z,,))?
Pan Z?:l (Xi — Xn)Q ;
Do (Zi = Z0)* —nog] 3200 (X — X)? — D0, (Xa — Xa)(Z
(A — Xn)2 Z?:l(Zi - Z}L)[(Q €n) — Br(ui — un)]
Dot (Zi = Z0)? = o] 3o (X — X0)? = D20, (X — X0)(Zi —
Z?:1<Xi - n) Z?:l(Z Zn) B2 (vi — 0n)] — Ban Zz (Xi = Xn)f”?;
( 2—no?] Y (X = Xo)? = [ (Xi = X)) (Zi — 2,
(X = Xo)(Zi = Z0) 3000 (X — X6 — ) — Bu(ui — ) — Ba(vi — 0n)]
Do (Zi = Z)? = no?] 30 (X — Xo)? = oy (X = Xo)(Zi = Z,))2

Accordingly, we can make some realignment and denote E,;, E,» and E,3 in the following

_ 2ina(Zi = Zn)l(ei — &) — Bi(us — ) — Ba(vi — 0a)] + Banory

B S (Z — 2 — o] ’

B, — > it (Xi = Xo)(Zi — Z,) 377, (Xi — Xo)[(6 — &) — Bu(ui — ) — Bo(vi — )]
! o0 (Zi— Z,)? = no?] 3 (X — X,)2 ’

B _ S0 (X = X)(Zi = Za)P?

Z?:l(Xi - Xn)z[Z?:l(Zi - Zn)2 - nag]'

Then we have
1

1—FE,.;3
Proof of Theorem 2.3.2: From the Markov’s inequality, we have E ((ZZ Sz —
) (Zi=Z0) [nVV/5,) ) = 0and Var (S0 (i=20)(Zi— Za) [0V V/S,) ) = (1/v/m)Vax(Z3) =

0, which imply

BQ - BQ - (Enl - En2) (274)

Z?:l(xin;f\n/)SLZi — 7n) 2.0, (2.75)
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Similarly we have

Yo (i —T) (6 — &) Yo (i —Tp) (v — Ty)  p
n'/4y/S,
Do (@i = Tn)(w — Un) p
T 25 0. (2.76)

To prove /nE,; - N(O, (Var[(Zy — p.)(e1 — Brug — ﬁwl)]/aﬁ)), as we have

\/ﬁEnl
VI (Zi = s+ pe = Z)(60 = &) = Ba(ui — @) — Ba(vi = 0)] + Bano?
[Zi:l(Zi - Zn) — noy]
% Z?:l(Zz’ — pz) (€ — Brug — Pavg) + ﬁ2012;
- \/ﬁ( % Z?:I(Zi - Zn)2 — o} >

(En — Bty — 5277%)(% Z?:l Zi — Mz)
il e (Zi— 2, = )

(Zn — 112) [ 2o 1( — Biu; — Bovy)]
ez )

(S G )

Then from the second, fourth equations in (2.32), the first, second, third equations in (2.65),

second, third, fourth equations in (2.70), we obtain

N o _4, N( Var((Zy — pi.) (€1 — Bruy — 52?)1)]) (2.77)

4
0,

In order to prove \/nE, NN 0, first let us consider

> (Xi = Xo)(Zi — Za) 351, (Xi — Xo) (6 — &)
Doii(Zi = Za)? = nod] L, (X = Xn)?

Note that

Vi Xo)(Zi = Zn) 31 (Xi = Xn)(€i =€)

o = 2ol S (e Ko
i (X = Xo)(Zi — Zn) 300 (X — X)) (6 — €n) 1
\/ﬁSn Sv?l Z?:l (X, - Xn)z
1
X _
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[Z?l(% — ) (Zi — Zn) + Z?:l (ui — ) (Z; — Zn)} [271(% — Tn) (€ — &)
ni//s, nl/4/s, ni//s,
D i (Ui — ) (& — En)} 1 1
n/4/S, St i (X = X0)? £ 30 (Zi = Z0)* — 0}
[Z?:l (@ — %) (Zi — Zy) n o i (Wi — W) (Zi = Zn )] [Zizl(% — Zn) (€6 — €)
nl/4/S, nt/4\/S,/n nl/4\/S,
%ZLN&—%MQ—%q 1 1
SN HER Koo » NGO AERD SN A AP
By the fourth, eighth, fourteenth equations in (2.32), (2.35), (2.60), (2.75) and the first

+

+

equation in (2.76), one can get
\/EZ?zl(Xz‘ — Xn)(Zi - Zn) Z?:l(Xi — Xn)(fi - gn) P
- = 3 = =—> — 0.
[Zi:l(Zi — Zn)? — no?l E’i:l (Xi — X»)
Second let us consider
Z?:1(Xi - X )(Z Z )Zz 1(X - Xn)gvz' - Q_Jn)‘
[Z?ﬂ(z@‘ - Zn) - ”‘72] Zz 1(X - Xn)?

Similarly we have

Vi (X = Xo)(Zi = Z0) 307 (X — X)) (03 — )

ST~ 2= o S (e Ko
_ Z? (Xi = Xo)(Zi — Zn) 21:1()(1' — Xo)(vi — V) 1 _
VnS, St 2 (Xi — Xn)?
1

%Z:’L:l(zi - Zn>2 _fg

_ [Z?—l(% — T )(Zi = Zn) | 2w — ) (Zi — Zi )} [Z?—l(«fi — Tn) (Vi — Un)
W, W,

2 i (i — ) (vi — Un)} 1 1
WS, SN (- X P IS (7 Zaf = o

[Z?_l(:pi — Tn)(Zi — Zn) + %27:1(% — U )(Zi — Zy, )} [Zz 1($z Tn) (Vi — Uy)
nl/4\/S, n'/4\/S, /n

%z%wrwmm—%q L 1
nt/4/S/n St 2 (Xi — X)Qizz (Zi = 2,)? = o}

So that noting the fourth, eighth, fourteenth equations in (2.32), (2.35), (2.60), (2.75) and

_I_

+

the second equation in (2.76), we can show that

VA (X = X)) (Zi = Za) S0 (X = X)) (v = B)
S 2 ol o (- X
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Finally let us consider

Z?:l(Xi — Xn)(Z_z — Zn) Z?:l (Xz — Xn)(_uz - ﬂn)
Do (Zi = Zn)? —nod] 300, (X — X))

We have

Vi (Xi = Xo)(Zi = Z) 307, (Ko — Xo) (i — i)
D2im1(Zi = Zn)? = nal] 30, (X = X,)?
Doy (X = Xo)(Zi = Z,) D00 (Xa = X)) (ui — 1y) 1
VS, Sty (Xi — X,)?

1
IS4 - o *
[Z?—l(mi — 2)(Zi — Zn) n D (Wi — ) (Z; — Zn)} [Z?—l(‘ri — &) (u; — Uy)
nl/4/3, nl/4/s,
Z?:l(ui - Un)Q} 1 1
ni/4\/S, St 3 i (X — X,)? % > i (Zi =
[Zyl(l‘i — Zn)(Zi — Z) n =iy (g — ) (Z; — Zn)] Do (@i — 2) (u — )
nl/1,/3, nV/4/S, In
% D i (Ui — Un)2} 1 1
nV/A/Sy/n LSTUNTE (X = X0)? 1 200 (Z = Z)? — 02

Therefore, from the fourth, eighth, fourteenth equations in (2.32), (2.35), (2.60), (2.75) and

+

+

the third equation in (2.76), we obtain

\/EZ?:I(Xi — Xn)(Zi — Zn) Z?ZI(XZ- — 771)(uz _ an) ,
S Z- 2y —nl L (G- X

In all, we have

VAL (X = X (2= 2) S0 (X = K)o = )
> i1 (Zs - Zn)? — ?‘73] > i (X - n)?

VY (X = Xo)(Zi — Za) 350, (X — Xo) (e — &) o
S Z 2. X

\/ﬁzzlzl(iﬁ — X)(Zi = Zn) 3oy (Xi — Xan)

= = —0
> i1 (Zi = Z,)* = no?] Y (X — X)?
Hence, from all equations in (2.78), we get
VnE,; 0. (2.79)
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Similarly as we have proven before, noting the equation (2.55), we know that
Ep3 = Chi 25 0. (2.80)

Combining the equations (2.74), (2.77), (2.79), (2.80), we can have the desired result

that
1 Var Z U v
\/_(52 ) (\/_Enl _ \/_En2> - i> ]\7(07 [( 1= )( - — Bruy — B 1)])
This completes the proof of Theorem 2.3.2. ]

Last, for BO — Po, a simple calculation leads to
BO - ﬁO = (61 - Bl)Xn + (52 - 32)271 + En - ﬁlan - ﬁQq_}n-

Thus we have

V(o — Bo)
. \/ﬁXn ar VS, A n(Bs — BZ. —
= T V. (Q)—ar@l)(@ B1) + V(B2 — Ba)(Zy — p12)

+V/n(By = Pa) =+ V(€ — Brll, — Bo).

Further more, we can define

_ VX ar —\/_
F, = NeH Var(¢1) Var(G)

Fo = Vn(B— B2)(Zn — ILz).
Fuy = V(B — sz + V(& — Bily — BaTy)
N e 1_E Era = Bty | e, — Brttn — fan)

o ,qun ,qunl + (gn - Blan - 5277n) - En?)(gn - ﬂlﬂn - /8277n)

B \/ﬁ[ 1— B ]

. NzEnl + (en ﬂlun BQUn) /lz n2 ( ﬂlun ﬁQ@n)
= \/_[ 1 — B, }7“/_[ 1— B, }

(B — B)-

Then we have

Vi(Bo = Bo) = Fut + Fuz + Fus. (2.81)
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Proof of Theorem 2.3.3: Let us define p; = —(Z; — ) (€; — Brus — Bovi) by — P20 g1, +
(€; — Biu; — PBav;)o?, then by the Central Limit Theory, we have

ﬁ(% > (e = fruy — ﬁzvi)> = N (0, Var(er = frur = Byv1))- (2:82)
=1

and

\/ﬁ(% Z pi) —5 N (0, Var(py)). (2.83)

Let us consider —v/nu, E,1 + /n(€, — b1, — [aby,) first. Because we have

_ (% 22 _; MZ) <€:(;iﬁ—lu§,;fivgguz - ﬁm%ﬂz) ¢ R i — )
_ ﬁ@ > [(Z _; uz) (e:(;iﬁ_lu;—)fiu;)fz + 520—3uz])
_ \/ﬁ(% S (2 — ) (e~ ?;:{ fzzv)_uz—)fz_azén + (e — B — 52%)(73])
(e Blufi zﬁ<)z( e azz ]

So that from the fourth equation in (2.32), (2.82) and (2.83), we get

Var(p;

_\/ﬁ(% Z?:I(Z /’Lz)(EZ Bluz ﬁgvz)uz + ﬁgO‘ Lz

1 =3 (Zi— Z,)?2 — o2 >+\/_(en—ﬁlﬂn—526n) LN N(O,

4
(2.84)
Then we have

—Vnp.En + (&, — B, — B20y)

_ LS (Zi— =) (e — Brug — Bavy) + a0
= —\/ﬁ< 1 lz? 1(2‘_271)2_03 >,Uz

ﬁlun /BQUTL)<1 Z? 1 Zz - ,uz)>
- Zz 1 Z Z ) _012) e

(e
( [ D i (6 — Bru; — 52%’)])
(¢

§

_|_

z

IZZ_ Zi— Zn)* -

1 Z Z %“)n 622,0”))#2 + \/ﬁ(gn - ﬁlﬂn - 52@71)-
1= 1 g%
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From the second, fourth equations in (2.32), the first, second, third equations in (2.65), the
second, third equations in (2.70), (2.84), we have

- \/ﬁ,qunl + \/ﬁ(gn - Blﬂn - ﬁﬂ_}n) i> N(Oa Va;(éfﬁ) (285)

In addition, by the first, second, third equations in (2.65), (2.79), (2.80), and (2.85), we

get

N(O, V%(f”)) (2.86)

Fs -
Besides, noting the condition (2.61), and Theorem 2.3.1, one can obtain

Ey 0. (2.87)
Furthermore, from the second equation in (2.32), and Theorem 2.3.2, we get

Fo 25 0. (2.88)

So finally, by (2.81), (2.86) to (2.88), we can show that

~ Var
V(o — Bo) —% N(O, 0(4'01))-
This completes the proof of Theorem 2.3.3. 0

Remark: Theorem 2.3.3 says that the asymptotic normality is different with the one in the
fixed design errors-in-variables model discussed in Miao et al. (2011). But we can see that

the assumption (2.61) is the same as the one mentioned in Miao et al. (2011). |
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Chapter 3
FURTHER WORK

For a class of errors-in-variables model in which both random and fixed predictor present, we
investigated the large sample properties of the biased corrected estimators for the regression
coefficients. Under some regularity conditions, we proved the weak and strong consistency
and obtained the asymptotic normality results for the proposed estimators.

In addition to the consistency and the asymptotic normality, the iterated logarithm
law, the moderate deviation, and the large deviation principle for the estimator are also
important and interesting research topics in probability and statistics theory. For classical
linear regression model, these topics have already been thoroughly studied, see Ibragimov
and Has'miniskii (1979), Ibragimov and Radavicius (1981), Gao (2001) and the references
therein. Relatively few research are done for errors-in-variables linear regression model, the
research is even more scarce when both fixed and random predictors present.

Recently, Miao and Yang (2011) and Miao (2010) studied the iterated logarithm law, and
large deviation principle in the linear errors-in-variable models when only fixed predictor
presents. There is no discussion on the moderate deviation principle. Also, when discussing
large deviation principle, the authors assume that the error term e and the measurement
error u follow normal distributions. As the continuation of the current report and our future
research, we will focus on the following topics in the linear errors-in-variables models when

both fixed and random predictor present:
e Develop the iterated logarithm law for the estimators BO, Bl and 32 defined in Chapter
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1, and the compare the result with the ones obtained in Miao and Yang (2011).

e Develop the moderate, large deviation principles for BO, Bl and Bg defined in Chapter

1, and make some comparisons with the results obtained in Miao (2010).

e The normality assumptions imposed in Miao (2010) rarely hold in real applications,
we will investigate the possibility of removing the normality conditions from the large

deviation principles.
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