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Abstract

With the intensification of communication in information systems, interest in security has

increased. The notion of noninterference is typically used as a baseline security policy to for-

malize confidentiality of secret information manipulated by a program. This notion, based on

ideas from classical information theory, has first been introduced by Goguen and Meseguer

(1982) as the absence of strong dependency (Cohen, 1977).

“information is transmitted from a source to a destination only when variety in the

source can be conveyed to the destination” Cohen (1977)

Building on the notion proposed by Goguen and Meseguer, a program is typically said to be

noninterfering if the values of its public outputs do not depend on the values of its secret inputs.

If that is not the case then there exist illegal information flows that allow an attacker, having

knowledge about the source code of the program, to deduce information about the secret inputs

from the public outputs of the execution.

In contrast to the vast majority of previous work on noninterference which are based on

static analyses (especially type systems), this PhD thesis report considers dynamic monitor-

ing of noninterference. A monitor enforcing noninterference is more complex than standard

execution monitors.

“the information carried by a particular message depends on the set it comes from.

The information conveyed is not an intrinsic property of the individual message.”

Ashby (1956).

The work presented in this report is based on the combination of dynamic and static informa-

tion flow analyses. The practicality of such an approach is demonstrated by the development

of a monitor for concurrent programs including synchronization commands. This report also

elaborates on the soundness with regard to noninterference and precision of such approaches.
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Chapter 1

Introduction

Julius Caesar’s cipher (Kahn, 1996) is one of the earliest recorded mechanisms for the protection of secret

information. Early mechanisms were mainly interested in ensuring the confidentiality of data while it is

transferred. Their goal is to prevent an enemy, or attacker, to learn anything useful even if he acquires the

protected data. Such mechanisms are based on cryptographic techniques (Menezes et al., 1996).

With the spread of information systems in the middle of the last century, secret data were confronted by

a new threat. Information systems store more and more secret, or private, data. As before, the confidentiality

of those data can be impaired while they are transmitted from one system to another. This is still mainly

dealt with using cryptographic techniques. However, with information systems, an attacker can additionally

attempt to gain knowledge about secret data by extracting them completely or partially from the system.

Therefore, ensuring the confidentiality of secret data stored in and manipulated by information systems has

always been a subject of interest and research.

There are two main approaches for the attacker. He might tamper with the authentication mechanism.

If it succeeds, the attacker may be able to access the information system with the identity and permissions

of someone having access to secret data. The other approach consists of deducing information about the

secrets from the observable outputs of a system executing a precise process, malicious or not. Of course,

any secret information in a system could be encrypted to prevent processes from leaking useful information.

However, for efficiency reasons, this is not what is done. Moreover, secret information may be required by

some processes. This information must then be provided unencrypted to those processes. This document is

interested in thwarting the second approach, i.e. information leakage. Different techniques exist to prevent

information leakage. Among them, the principal two are access control (Denning, 1982, Chapter 4) and, to

a lesser degree, information flow control (Denning, 1982, Chapter 5).

Access Control is the most widely used technique to enforce confidentiality. It is also the first technique

to have been developed. It relies on the assumption that a process can not leak information about data it does

not have access to. Therefore, the main idea is to restrict access of processes to the smallest number of data

needed for their fulfillment. This is an instance of the least privilege design principle (Saltzer and Schroeder,

1975).

1
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There exist many different access control policies. The most well known and used type of access control

policy is the Discretionary Access Control (DAC) (Brand, 1985; National Security Agency, 1995b, Chapter

2). In a DAC policy, access rights of every principal (process or user) on every piece of data (or object)

are explicitly stated. Bell and LaPadula’s security model (1973b) implements DAC security policy using a

matrix. Each cell of the matrix explicitly states the access rights of a principal, associated with the row of the

cell, on an object, associated with the column of the cell. In a DAC policy, it is often the case that the owner

of an object — in the majority of cases, the principal who created it — is the entity in charge of deciding

what are the access rights of other principals on that object. Mandatory Access Control (MAC) (Brand,

1985; National Security Agency, 1995a, Chapter 3) is the other widely used type of access control policy.

In a MAC policy, a security level is associated to every principal and every piece of data. The security level

associated to a principal is often called a security clearance. The level of data is often called a security

classification. The decision of allowing a user to access an object in a given mode is taken by comparing the

security clearance of the principal with the security classification of the object. In the majority of cases, the

security levels are ordered (frequently forming a lattice). In that case, a principal is usually allowed to read

an object only if its security level is higher than the object’s one (called the no read-up rule), and allowed to

modify an object only if its level is lower than the object’s one (called the no write-down rule). In a MAC

policy, security levels of newly created data are usually automatically assigned by the Trusted Computing

Base (TCB) (Saltzer and Schroeder, 1975). Finally, another example of access control policy is the so called

Chinese Wall (Brewer and Nash, 1989). With such a policy, the rights of a principal depend on data this

principal has already accessed. The main goal of this policy is to prevent a principal to carry information

from one set of data to another one which must be kept ignorant of the content of the first set.

Access control is quite efficient at enforcing the least privilege design principle. However, this is some-

times insufficient because, once the access has been granted, there is no more real control of the dissemina-

tion of data. A process may need to access confidential data in order to fulfill its goal. An owner may agree

to allow this process to access confidential data for the fulfillment of the process purpose. However, it is

likely that the owner does not want the process to spread the information it has been given access to. Un-

fortunately, this spreading of information often can not be practically and efficiently enforced using access

control. For example, a tax computation service needs access to the financial information of the client. It

also needs access to the service provider server, for example, to send a bill if the service cost is on a per use

basis or simply to download the latest updates. Then what are the customer’s guarantees that its financial

data are not unduly sent to the service provider? To enforce such a policy, it is required to enforce some

sort of information flow control. Additionally, many end-users do not have a sufficient knowledge of their

personal information system to set it up adequately to protect their confidential data (Good and Krekelberg,

2003; Leyden, 2006; McCue, 2006; Page, 2007; Ranger, 2007). This is another reason why user-centric

end-to-end information flow control mechanisms are of high interest.
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1.1 Information Flow Control

The goal of information flow control is to ensure the sole existence of safe, or secure, information flows in

a process, or more generally in an information system. Lampson (1973) defines three different categories

of channels which can be used by unsafe information flows. The first one is the category of legitimate

channels. Such channels are based on mechanisms intended for information transfer which are needed for

the legitimate operation of the information system. For example, a web browser needs to have access to

the Internet. However, an information flow control mechanism must prevent the web browser to create an

undesired flow from confidential data on the computer to a particular web site. The second category concerns

storage channels. Such channels make use of mechanisms which are not primarily intended to transfer data,

but to store it. The information is first transferred from the source of the flow to a storage location and then,

later, from the storage location to the destination of the flow. Such channels are used to attempt to fool the

information flow control mechanism by delaying in time and space the realization of the undesired flow.

The last category of channels contains the so called covert channels. Such channels use mechanisms which

are not intended for the manipulation (transfer, computation or storage) of information. They are based

on the encoding and transfer of information from the source of the flow into the side effects of legitimate

mechanisms. Information contained in those side effects are then decoded and transferred to the destination

of the flow. For example, such channels can use locks, intended for preventing race conditions, or even the

computation time of a given process. It is in general impossible to construct an information flow control

mechanism which is both sound and complete (Denning, 1982; Jones and Lipton, 1975, Sect. 5.2.1). The

channels which must be overseen by an information flow control mechanism, and the constraints which

must be put on them, depend on the desired equilibrium between the confidentiality of secret data and the

efficiency and capabilities of the information system. There exist different properties defining different levels

of secure information flows.

In 1973, Lampson introduced the notion of confinement. It is a general notion which states that a process

or information system does not unduly leak confidential data. Lampson (1973) states that a process can be

confined only if it is not able to maintain secret information longer than its own execution. Such processes

are called memoryless (Fenton, 1974b; Gat and Saal, 1976). Additionally, it is required to call only secure

programs or confined ones. Lipner (1975) explores the available techniques which can be used to confine a

process.

Bell and LaPadula (1973b) defined a secure information flow property that they named the ?-property.

It requires that every object a given principal (user or process) can read has a lower or equivalent security

level than any object the same principal can write into. It is obvious to see that this property effectively

prevents any unsafe flows through legitimate or storage channels. It can be enforced using access control

mechanisms without too much difficulty. However it is also a very restrictive property. In order to enforce

this property, a web browser, which requires “write” access to the Internet to send its requests, should be

allowed access only to data with the lowest level of security. It may thus be denied access to a bookmarks

file or even to a preferences, or settings, file.

3



C 1 INTRODUCTION

Cohen (1977) introduces the notion of strong dependency. It borrows from classical information theory

(Ashby, 1956) the idea that there exist an information flow from input i to output o in a process P whenever

variety in i is conveyed to o by the execution of P.

“information is transmitted from a source to a destination only when variety in the source can

be conveyed to the destination” Cohen (1977, Sect.1)

In other words, for deterministic processes, o is strongly dependent on i if and only if there exist at least two

executions of P whose inputs differ only in i and whose outputs differ in o. Goguen and Meseguer (1982)

define their notion of noninterference as the absence of strong dependencies. They first define it as follows:

“one group of users, using a certain set of commands, is noninterfering with another group of

users if what the first group does with those commands has no effect on what the second group

of users can see.” Goguen and Meseguer (1982)

It states that the effects observable by the second group are not strongly dependent on the actions of the first

group. This definition is refined more formally as follows:

“commands in [the set] A, issued by users in G, are noninterfering with users in G’ provided

that any sequence of commands to the system, given by any users, produces the same effect

for users in G’ as the corresponding sequence with all commands in A by users in G deleted;”

Goguen and Meseguer (1984)

Those definitions are more suited for information systems in which actions are generated in an unpredictable

way and where it is the actions of a group which must be kept secret rather than data. When the secrets are

data manipulated by a process, which follows a partially predictable sequence of actions, the notion of

noninterference is usually stated as follows. A process, P, is said to be noninterfering if the values of its

public (or low) outputs do not depend on the values of its secret (or high) inputs. Formally, noninterference

of P is expressed as follows: given any two initial input states σ1 and σ2 that are indistinguishable with

respect to low inputs, the executions of P started in states σ1 and σ2 are low-indistinguishable; i.e. there is

no observable difference in the public outputs. In the simplest form of the low-indistinguishable definition,

public outputs include only the final values of low variables. In a more general setting, the definition may

additionally involve intentional aspects such as power consumption, computation times, etc. Some variants

of the notion of noninterference have been proposed. For example, Giacobazzi and Mastroeni (2004) define

a notion of abstract noninterference. It states that there is no strong dependency between some properties of

the secret inputs and some properties of the public outputs; for example, their parity or sign. The properties

on outputs are those that the attacker can distinguish. The properties on inputs are those that must be kept

secret.

The work presented in this document is interested in the notion of noninterference of programs. The

attacker model for noninterference analysis of programs is quite standard. The attacker is considered to have

access to the program source code and to the values of public inputs and public outputs. Noninterference

analyses must prevent the attacker to deduce any piece of information about the secret inputs of a given

program by observing one or more of its executions. There have been lots of developments in the domain of
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static analyses of programs for noninterference (Sabelfeld and Myers, 2003). Some of them are reviewed in

Section 2.1.

1.2 Thesis: Dynamic Information Flow Analyses Are Worthwhile

The interest for the control of information flows in processes appeared in the early 70’s (Lampson, 1973;

Lipner, 1975). At that time, some dynamic analyses for information flow were developed (Fenton, 1974b).

The majority of them are described at the machine level. However, those efforts have not been pushed

further, maybe because the level of confidentiality investigated was too strong and therefore the machines

developed too restrictive. In the 80’s (McHugh and Good, 1985), 90’s (Volpano et al., 1996), and early

2000’s decade (Barthe et al., 2007; Sabelfeld and Myers, 2003), efforts have been put on the development

of static analyses for information flow control. Even if the problem of information flows in processes is

difficult, those analyses achieve a good level of precision and their respective soundness is strongly proved.

The middle of the 2000’s decade has seen the resurgence of development of dynamic analyses for informa-

tion flow (Vachharajani et al., 2004). Those analyses deal with quite expressive languages. However, as

emphasized in Section 2.2, they lack formal proofs of their soundness. Such proofs are the strength of static

information flow analyses. They are what allow a user to confidently run an analyzed program.

Static analyses are well fitted for information systems that are administered strongly. Programs to be

installed on the system can be analyzed by the administration staff before being deployed on the system.

However, with the fast spreading of information systems in our society, more and more users own small

information systems which store personal data, execute programs coming from different sources and whose

sole administrator is the user itself. For example, cell phones are such devices. Lots of them store the owner

directory and calendar. There are even some developments to incorporate some credit card functionalities

to such devices. Those same devices execute programs, such as games or communication softwares, which

are downloaded from sources that the user does not fully trust. Thus comes the worry for users that the

downloaded programs may leak some confidential information. It would be comforting for users to know

that the executions of such programs are monitored by a mechanism that the user can safely trust.

This document defends the thesis that it is possible to develop and prove the soundness of precise dy-

namic information flow analyses for expressive languages. It presents and proves the soundness of two

dynamic analyses having different levels of precision for a core language. It extends one of those works to

a more expressive language, a concurrent language including synchronization commands. The remainder

of this chapter gives an overview of the advantages, drawbacks and difficulties of dynamic information flow

analyses.

1.2.1 Advantages of Dynamic Analyses

There are some advantages to using dynamic information flow analyses rather than static ones. First of all,

dynamic analyses are more user-centric with regard to flow policy definitions than static analyses. End-users

may have different definitions of what must be considered secret. Some may consider secret the content of

their address book whereas others do not. They may also have different and changing requirements with
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regard to what can be done with secret data. Some end-users may consider that secret data must note be

displayed on the screen of their mobile phone whenever they are in a crowd, where people may “have a

look”. Static analyses are usually run at compile time once and for all. With a static analysis, the potential

flow policies to be respected must therefore be known and verified at compile time. However, it is not

realistic to statically verify all potential flow policies. Some flexibility can be obtained by developing static

analysis techniques for run-time security checks (Banerjee and Naumann, 2005; Tse and Zdancewic, 2007)

and declassification (Matos and Boudol, 2007; Sabelfeld and Sands, 2007). On the other hand, dynamic

analyses are run with every execution. Therefore, the ability for end-users to modify the flow policy before

every run of a program comes for free with dynamic analyses.

Moreover static analyses concern a given program and thus all its executions. Therefore, if a single

execution of a program leaks confidential information then the program is rejected, and thus all of its execu-

tions. A dynamic analysis, on the other hand, verifies a property for a single execution, independently of the

behavior of other executions with regard to this property. Therefore, with a dynamic analysis, it is possible

to run some safe executions of a program even if one of its executions can not be proved to respect the flow

policy.

Finally, as a dynamic analysis verifies a given property during an execution, it can gain a more precise

knowledge of the control flow of a program than a static analysis would. As an example, let us consider the

following program where h is the only secret input and l the only other input (a public one).

1 i f ( t e s t 1 ( l ) ) then tmp := h e l s e sk ip end;
2 i f ( t e s t 2 ( l ) ) then x := tmp e l s e sk ip end;
3 output x

Without information on test1 and test2 (and often, even with), a static analysis would conclude that this

program is unsafe because the secret input information could be carried to x through tmp and then to the

output. However, if test1 and test2 are such that no value of l makes both predicates true, then any execution

of the program is perfectly safe. In that case, the monitoring mechanism would allow any execution of this

program. The reason is that, l being a public input, only executions following the same path as the current

execution are taken care of by the monitoring mechanism. So, for such configurations where the branching

conditions are not influenced by the secret inputs, a monitoring mechanism is at least as precise as any static

analysis — and often more precise.

1.2.2 Drawbacks of Dynamic Analyses

Of course, there are some drawbacks to using dynamic analyses rather than static ones. The first obvious

one is the decrease in execution speed. A static analysis is run once and for all. Dynamic analyses must be

run for every execution. It is then a burden for every execution.

Additionally, the information flow monitor modifies the original semantics of the program. The effects

of a program once monitored may not be the same as the intended one. However, this is a required behavior

for monitors. The behavior of a program leaking confidential data must be altered by the monitor. Otherwise,

the monitor would not do its job.
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The difficulty to report security violations (Denning, 1982, Sect. 5.3.1) is a similar problem. A static

analysis can return a complete report of the security violations to the authority executing the analysis. A dy-

namic analysis is not always able to report those violations. As it is applied at run time, reporting violations

may by itself create an insecure information flow (Le Guernic and Jensen, 2005).

Finally, dynamic information flow analyses add new protection requirements. The monitoring mecha-

nism itself must be protected from tampering by an attacker. A well crafted Trojan horse may be designed

to modify some values on which relies the information flow monitor. Only the Trusted Computing Base

(TCB) must be allowed to set and modify data used by the protection mechanism.

1.2.3 Difficulties of Dynamic Analyses

Monitoring information flow is more complex than monitoring standard properties (e.g. division by zero).

Monitors which see executions as a sequence of executed actions, like standard execution monitors (Schneider,

2000), are not sufficient to enforce strong information flow properties. This particular point is supported by

works of McLean and Schneider. McLean (1994) proved that information flow policies equivalent to non-

interference are not trace properties.

“The fact that possibilistic properties [, among which is noninterference,] are no properties

of traces follows immediately from the fact that they are not preserved by trace subsetting.”

McLean (1994, Sect. 2.1)

Schneider (2000) concluded that execution monitors are limited to the enforcement of trace properties.

“In Alpern and Schneider [1985] and the literature on linear-time concurrent program verifica-

tion, a set of executions is called a property if set membership is determined by each element

alone and not by other members of the set. Using that terminology, we conclude [. . . ] that a

security policy must be a property in order for that policy to have an enforcement mechanism

in [the class of Execution Monitors].” Schneider (2000, Sect. 2)

In order to enforce strong constraints on the information flow (like noninterference), the monitoring mecha-

nism must be aware of the commands that are not evaluated by a given execution (Vachharajani et al., 2004,

Sect. 4.2.2). An information theoretic viewpoint why this is the case is given by Ashby.

“the information carried by a particular message depends on the set it comes from. The infor-

mation conveyed is not an intrinsic property of the individual message.” Ashby (1956, § 7/5

page 124).

For example, executions of the following programs, (a) and (b), in an initial state where h is false are

equivalent concerning executed commands.

(a) if h then x :=1 else skip end; output x

(b) if h then skip else skip end; output x
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In contrast, (b) is obviously a noninterfering program, while (a) is not. The execution of (a), with a low-

equivalent initial state where h is true and x is 0, does not give the same final value for the low output x.

Therefore, a monitor for information flow must take into account not only the current state of the program

but also the execution paths not taken during execution.

Additionally, it is not sufficient for a noninterference monitor to efficiently track information flows.

It must also adequately correct unsafe information flows. As explained in Section 2.2.4, lots of previous

works on dynamic analysis of information flow lack an appropriate correction of unsafe information flows.

Le Guernic and Jensen (2005) emphasize the fact that an inadequate correction mechanism can lead to the

creation of a new covert channel. This channel can then be used by an attacker to gain information about

some confidential data.

1.2.4 Organization of the Dissertation

The remainder of this document is organized as follows. Chapter 2 starts by reviewing some static analyses

of information flow, thus giving an overview of the accomplishments in the domain of static analyses for

noninterference-like properties. The chapter follows by giving a progress report of the accomplishment in

the domain of dynamic information flow analyses. In conclusion, it discusses the main weaknesses of pre-

vious work on dynamic information flow analyses compared to static information flow analyses. The main

flaw of the majority of previous accomplishments is the absence of formal proofs that the developed analysis

is not only able to detect “bad flows” but also to monitor noninterference. In other words, they lack demon-

stration that the proposed mechanisms are well fitted for the dynamic correction of “bad flows”. Chapter 3,

whose content as been published previously (Le Guernic et al., 2006a), gives the formal definition of an

automaton-based noninterference monitor able to dynamically correct flows from secret data to public out-

puts. It deals with a simple sequential language which is the core of any imperative language. A formal proof

is given which states that any execution monitored by this mechanism is noninterfering. It is also proved

that the monitoring mechanism is transparent for any program well-typed under a type system similar to the

one of Volpano et al. (1996). Chapter 4, whose content as been published previously (Le Guernic, 2007a),

demonstrates that the approach followed in Chapter 3 can be extended to more complex languages. This

chapter extends the work of Chapter 3 to concurrent programs. The language also incorporates an expressive

synchronization command. As in Chapter 3, soundness with regard to noninterference and transparency for

a defined set of programs are proved. Chapter 5 comes back to the sequential language of Chapter 3. It

presents a noninterference mechanism which takes into consideration more information about the context

of the execution. It is then possible to increase the precision of the information flow analysis. As in the

two previous chapters, soundness with regard to noninterference is proved. In addition, it is proved that the

proposed dynamic analysis is more precise than the analysis of Chapter 3 (this analysis being already more

precise than the type system of Volpano et al. (1996)). Chapter 6 concludes this dissertation.
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Chapter 2

Confidentiality as Secure Information Flow

Following Denning’s work (1976; 1977) on the certification of programs for secure information flows, a

considerable number of secure information flow analyses have been developed. The majority of them, but

not all, attempts to prove that a given software respects the program property of noninterference (Goguen

and Meseguer, 1982). Many of those analyses, as the historical one by Volpano, Smith, and Irvine (1996),

are based on a type system. Section 2.1 gives an overview of the achievements in the field of static analyses

for secure information flow. For a wider insight on the subject, the reader is referred to the noteworthy

survey by Sabelfeld and Myers (2003). On the other hand, Section 2.2 reviews the chief, at least to the

author’s knowledge, dynamic analyses for secure information flow. This type of analyses, which have been

sporadically developed since the early work of Weissman (1969), attempts to enforce an execution property

similar to noninterference by means of monitoring.

2.1 Static Information Flow Analyses

Starting with Bell and LaPadula (1973a,b), the research domain of static analyses for confidentiality has

been greatly influenced by the work of Goguen and Meseguer (1982) defining the notion of noninterference

and of Volpano et al. (1996) proposing a type system for which well typed programs respect the non-

interference property. Therefore, a lot of research on static analyses for secure information flow address

the problem of noninterference using type systems. This approach is studied in Section 2.1.1. However,

as concisely summarized by Section 2.1.2, other techniques have also been used, for example abstract in-

terpretation or constraint based analyses. As usual when attacking a new research field or applying a new

technique to a field, early analyses have often been applied to simple programming languages. Yet, as shown

by Section 2.1.4, the languages addressed by those analyses have since been extended to include modern

features. Some of them can be qualified as “real world” languages. Not only the languages have been ex-

tended, as shown by Section 2.1.3, the property checked itself has been augmented in order, for example,

to be termination-aware or to deal with nondeterminism. Despite the advantages inherent to static analyses,

those analyses for confidentiality suffer from a main drawback intrinsic to their compile-time nature. Static

analyses for secure information flow can not be practically applied by end-users, thus removing from their

hand the total control over the security policy to be respected. In order to circumvent this problem, some

9



C 2 CONFIDENTIALITY AS SECURE INFORMATION FLOW

static analyses taking into account dynamic information flow tests have been developed (Section 2.1.5).

Section 2.1.6 concludes the review of static analyses for confidentiality.

2.1.1 Type-based Analyses

The work of Volpano, Smith, and Irvine in 1996 launched an interest in type systems (Pierce, 2002; Schmidt,

1994) for examining information flows. A type system for information flow is a set of rules which are used to

check if a typing environment (γ) is compatible with a given program. A typing environment is a mapping

from variable identifier to security type. Security types comes from a lattice (L,≤) of security levels (L)

including a bottom element (⊥ or L) and a top element (> or H). The rules of a sound type system for secure

information flow are such that: if γ is compatible with the program P and γ(x) < γ(y) then the final value of x

after execution of P is not influenced by the initial value of y. Therefore, a program P, whose input variables

i1 .. in have security levels L(i1) ..L(in) and output variables o1 .. om have security levels L(o1) ..L(om), is

considered safe if there exists a compatible typing environment γ such that, for every input ik, γik = L(ik)

and, for every output ok, γok = L(ok). Type systems are intrinsically flow-insensitive as the security level

associated to variables by γ are constant and not mutable as the values are. Additionally, a type system does

not “compute” the security level associated to variables which are neither input nor output. Therefore, in

order to automatically analyze programs having such variables type-based noninterference analyses must

also include an inference mechanism able to “compute” a compatible security level for those variables.

Volpano et al. (1996) propose a type-base noninterference analysis for a deterministic sequential lan-

guage. The grammar of this language is given in Figure 2.1 where x stands for variable identifiers, e stands

for expressions without side effects and S stands for statements (a program being a statement). Their type

system is proved to be sound with regard to the simplest definition of noninterference.

S ::= x := e

| skip
| S ; S

| if e then S else S end
| while e do S done

Figure 2.1: Grammar of the language of (Volpano et al., 1996)

A type system for noninterference equivalent to the one in (Volpano et al., 1996) is given in Figure 2.2.

The definition of typing environments (γ) is extended in order to also associate a security level to any

expression e. The definition of “compatibility” is accordingly extended so that a typing environment γ is

compatible with a program if it respects the conditions stated previously and additionally is such that γe is

greater or equal to the least upper bound (t) of the security levels of the free variables in e. It is obvious

that the different values assigned to the program counter when executing a software influence the outputs as

those are dependent on the control flow. In order to take into account this influence, the program counter
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(pc) can be seen as a variable which is reassigned at the beginning of every conditional and whose value is

used in any assignment. The typing environment also associates a security level to pc which is used in the

typing rules. Finally, the typing environment γ[x 7→ l] is equal to γ except for x which is associated the

security level l.

(γ(e) t γ(pc)) ≤ γ(x)
γ ` x := e

(T-ASSIGN)

γ ` skip (T-SKIP)

γ ` S 1 γ ` S 2

γ ` S 1 ; S 2
(T-SEQ)

γ[pc 7→ (γ(pc) t γ(e))] ` S 1 γ[pc 7→ (γ(pc) t γ(e))] ` S 2

γ ` if e then S 1 else S 2 end (T-IF)

γ[pc 7→ (γ(pc) t γ(e))] ` S
γ ` while e do S done (T-WHILE)

Figure 2.2: A type system equivalent to the one of (Volpano et al., 1996)

Consider the typing judgment (T-SKIP). The statement skip has no impact on the information flows of

a program, at least when dealing with a definition which is not timing aware. As expected, (T-SKIP) states

that any typing environment is compatible with the program skip. Similarly, the rule (T-SEQ) is easily

understood. A typing environment is compatible with the program S 1 ; S 2 if it is compatible with the

program S 1 and the program S 2. The typing judgment (T-IF) may be more difficult to understand. It states

that a branching statement, whose condition is e, is compatible a typing environment γ if all branches are

compatible with a typing environment where the program counter as a security level at least as high as the

expression e (because e influences the control-flow under which those branches are executed) and as high as

the security level associated to the program counter by γ (because previous control-flow is still active for the

execution of the branches). The rule (T-WHILE) works similarly. Finally, (T-ASSIGN) states that assigning

the value of an expression e to a variable x is compatible with the typing environment γ if the security level

of x is at least as high as the one of e (this part take care of direct flows) and as high as the security level of

the program counter, and hence as high as the information carried by the control-flow (this part take care of

indirect flows, sometimes called implicit flows (Sabelfeld and Myers, 2003)).

Many other works involve type systems and secure information flow. To name a few, Heintze

and Riecke (1998) developed a type system for a calculus, SLam, based on the λ-calculus (Barendregt,
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1984). Pottier and Conchon (2000) describe a systematic way of producing a sound type system usable

for noninterference checking without investing too much effort. As an example, they start from a lambda-

calculus possessing a sound type system and extend it with labels. They prove that, in the operational

semantics they build for this language, labels track adequately the information flows. Extending slightly

the original types, they then prove, using the original soundness proof of the type system and a translation

mechanism to the original language, that the information flows created by the evaluation of a labeled lambda-

term is given by the type of the translated lambda-term. Finally, Abadi, Banerjee, Heintze, and Riecke (1999)

noticed that a number of static analyses are based on a notion of dependency, for example secure information

flow of course but also binding-time analysis, call tracking, and program slicing. Based on this observation,

they propose a framework for type-based dependency analysis called Dependency Core Calculus (DCC).

To demonstrate the validity of their framework, they translate into DCC some type calculi, including some

involved with secure information flow.

2.1.2 Static Analyses Using Other Mechanisms

Not all static analyses for secure information flow are expressed as a type system. For example, the technique

used in the early work of Denning in 1976, even if highly similar to type systems, is not defined as such.

In this work, Denning describes informally a mechanism in which variables and program statements have

a security level. Those levels are ordered and form a security lattice. Denning gives a set of rules relating

program structures and the appropriate security level of the program entity involved in those structures. She

suggests to either statically assign a security level to variables and statements and then use the rules to check

that those levels are appropriate, or assign security levels only to input variables and use directly the rules to

compute appropriate security levels for the other program entity. This mechanism, presented in (Denning,

1976), is formalized in (Denning and Denning, 1977) as a “certification semantics”.

Using flow logic (Nielson and Nielson, 1998), Clark et al. (2002) give a set of acceptability rules. Using

those rules, it is possible to determine if R̂ is an acceptable result of an information flow analysis of a given

statement S . If the acceptability rules apply “R̂ |= S ” then R̂ is an over-approximation of the dependencies

which may be created by the execution of S . The acceptability rules are not an analysis; however, Clark

et al. prove the existence of a fix-point. It is then possible to use the rule as a static information flow analyses

by fix-point computation. Other more standard and well studied formalisms have since been applied to the

field of static secure information flow analysis.

Constructing static analyses for noninterference using abstract interpretation. Abstract interpretation

(Cousot, 1996; Cousot and Cousot, 1977; Jones and Nielson, 1995) is a technique to derive a static analysis,

sound by construction, from an instrumented semantics. For secure information flow, the semantics instru-

mentation consists usually in adding a label to values which reflects the set of inputs which have influenced

the labeled value. The “sound by construction” feature of analyses derived by abstract interpretation is ap-

pealing. However, it remains that the soundness of the analysis relies on the soundness of the instrumented

semantics. It is then still required to prove that the security labels computed by the instrumented semantics
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are sound. When it is not the case, for example in the work of Ørbæk (1995) (cf. Section 2.2.2), there is no

more soundness guarantee for the derived analysis.

Mizuno and Schmidt (1992) present and prove the correctness of a “security flow control” algorithm for

message based, modular systems. The compile-time analysis algorithm is an abstract interpretation of the

denotational semantics (Schmidt, 1986; Stoy, 1977) of the language. The aim of the analysis is to accept

programs for which no execution would create an information flow from a high level data to a low level

one. They first develop a full path semantics (C f ull). This semantics evaluates in the same time the value

of variables and their security level (for those with a dynamic security level). The evaluation generates

equations and inequations of security levels which must be satisfiable for the program to be accepted. Then,

they stage the semantics C f ull and obtain two independent semantics: one for the evaluation of variables

values (Cexec), and one which approximates the security levels (Cabs). They prove that Cabs gives a safe

approximation of the results returned by C f ull.

Ørbæk (1995) provides two analyses, one of which is based on abstract interpretation, for the secure

information flow problem of integrity (dual of confidentiality). Despite a mistake in its instrumented seman-

tics (exposed on page 26), the proposed analyses are believed to be sound. Giacobazzi and Mastroeni (2004)

use abstract interpretation to check or deduce information flow at a finer level. For example, that the parity

of high input values will not interfere with the sign of any low output value. Using their technique, they

are able to determine the most concrete (most precise) attacker for which a given program is secure or how

much information flows from secret inputs to public outputs.

Constraint based static analyses are used for secure information flows verification. This type of anal-

yses (Aiken, 1999; Nielson et al., 2005, Chapter 3) work in two steps:

1. first generate a set of constraints that must be true in order for a given program to respect a given prop-

erty, or at least state some constraints that must be respected by any execution of the given program

(using, for example, Hoare logic (Hoare, 1969));

2. then solve those constraints using theorem provers (Coq; PVS), model checkers (Bogor; Clarke et al.,

2000) or dedicated constraint solving techniques.

Usually, for secure information flow analyses, the constraint solving problem concerns the assignment of

security labels to variables such that at any execution step information flows to variables having a security

level higher than or equal to the one of the origin of the flow. Another approach (Barthe et al., 2004), which

does not use security labels, attempts to directly prove that, for any pair of executions, the values of public

outputs are the same if the values of public inputs are also the same.

Guttman et al. (2005) want to verify that some particular information flows between specific endpoints

go through trusted programs in a particular order. Those constraints are expressed using linear temporal

logic (Kröger, 1987; Pnueli, 1977). Guttman et al. use model checking on an abstract model of the ac-

cess control mechanism of SELinux (National Security Agency, 2007) to verify that a given configuration

enforces the desired constraints on the information flows. Combining the type based approach with either
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theorem provers or model checkers, Terauchi and Aiken (2005) develop an analysis for termination insensi-

tive noninterference. They first rephrase this property as, what they call, a 2-safety problem. Such problems

can be disproved by exhibiting only two executions for which a given property does not hold; whereas

the original definition of noninterference is stated over all possible executions of a program. Then, after

applying type based techniques to gain in precision, they use a theorem prover or a model checker on a self-

composition (Barthe et al., 2004) of the original program. Naumann (2006) extends the approach to deal

with heap objects and automatize some of the validation steps when using self-composition. Following a

slightly different approach and using abstract interpretation techniques, Jacobs, Pieters, and Warnier (2005)

combine a theorem prover (PVS) and some rewriting rules, derived from an abstract labeling function, to

prove automatically if a program ensures confidentiality.

2.1.3 Extending the Secure Information Flow Property

Early work on secure information flow, such as (Volpano et al., 1996), used mainly a simple definition

of this property for a sequential deterministic language. Such definitions are sometimes, depending on

the observational capacity of the attacker, insufficient to certify that a given program respects a desired

level of confidentiality. For that reason, some efforts have been put on extending the secure information

flow property, and develop dedicated analyses, to take into consideration different qualities which may be

required for the certification of some programs.

One of those qualities is termination sensitivity. Termination insensitive properties take into considera-

tion only terminating executions. Therefore, termination insensitive definitions of secure information flow

may be insufficient, depending on the level of confidentiality desired, to certify a program which is not guar-

anteed to terminate in any case. In order to answer this problem, some work involves a termination sensitive

definition of secure information flow. For example, Volpano and Smith (1997a) describe a type system for

an imperative language which prevents covert flows through the termination behavior of the program. The

conclusion of their work is that guards of statements which can influence the termination behavior of a pro-

gram (like loop statements) must depend on public data only in order for a program to be well typed; and

then have secure information flows with regard to termination.

Another desirable feature for the definition of secure information flow is nondeterminism of the language

on which the property applies. Early definitions of secure information flow (aka noninterference) are based

on the assumption that the language is deterministic. It assumes that if the origin of an information flow has

a constant value over some executions then the destination of this flow will have a constant value over those

executions. This is not anymore the case with nondeterministic languages. Therefore, definitions of secure

information flow which do not take into consideration nondeterminism have a high probability of rejecting

a program which is perfectly safe but make use of nondeterministic features of the program. This concern

gave raise to possibilistic noninterference. Regular noninterference requires that two executions started with

the same public inputs have the exact same public outputs; whereas possibilistic noninterference requires

that two executions started with the same public inputs can possibly have the same public outputs. Banâtre

et al. (1994) propose a dependency analysis for a language incorporating a nondeterministic choice operator.

Instead of using levels associated with variables and compute the final levels of outputs depending on the
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fixed levels of inputs, they determine at any step of the computation the initial values of which variables

may influence the current value of every variable. It is then easy, knowing the security levels of inputs and

outputs, to determine if the value of a public output can possibly be influenced by the value of a secret input.

Joshi and Leino (2000) propose, for a nondeterministic language, a secure information flow approach based

on a semantics characterization. Their definition is based on the semantics of two programs. The first one

corresponds to the sequence composed of the program analyzed followed by an “havoc on h” function which

discards (or resets) the values of secret variables. The second program is the sequence of the same “havoc

on h” function followed by the first program. If both programs have the same semantics then the program

analyzed (which is contained in the two programs compared) is secure with regard to confidentiality. As a

final example, Sabelfeld and Sands (2001) give, for sequential nondeterministic programs, an extensional

semantics-based formal specification of secure information flow constructed upon partial equivalence rela-

tions (Hunt and Sands, 1991).

Threads are also a feature which is not well handled by early definitions and analyses of secure infor-

mation flow. The problem is that two independently-secure programs may not be secure anymore once run

in parallel if they share some resources. Those resources can be, for example, shared variables or files on

a hard drive. “Thread-unaware” analyses can not be used independently on both programs because there

is no guarantee that shared resources will receive the same security levels during both analyses. Smith and

Volpano adapted in 1998 their type system to a multi-threaded language. The schedulers taken into consid-

eration are purely nondeterministic. Similarly, Boudol and Castellani (2001, 2002) develop a type system

for multi-threaded programs and observe that any loop statement, whose guard is secret, must be followed

by assignments to public variables only for the whole program to be considered secure.

Nondeterminism, either from a language construct or thread scheduling, creates a new type of covert

flow. If possibilistic noninterference ensures that two executions started with the same public inputs can

possibly have the same public outputs, it does not ensure that those outputs have the same occurrence prob-

ability in both executions. Therefore, by executing multiple times the same program which is possibilistic

noninterfering, an attacker could potentially deduce the value of the secret inputs depending on the proba-

bility of the different possible public outputs. To deal with probabilistic attacks, the notion of probabilistic

noninterference has been defined. It states that any possible public output has the same occurrence proba-

bility in any execution having the same public input. Volpano and Smith (1999) give a probabilistic nonin-

terference type system for multi-threaded programs run with a probabilistic scheduler. They show that, to

ensure probabilistic noninterference on a simple concurrent language, it is sufficient to force any conditional

with secret guard to be evaluated atomically. Still using partial equivalence relations, Sabelfeld and Sands

(2000) propose a scheduler-independent definition of probabilistic noninterference and use probabilistic-

bisimulation-like relations to prove probabilistic noninterference.

Computation duration can also be a “vector” of insecure information flows. Take, for example, a pro-

gram which branches on a secret value. If this secret value is true then the program does a simple compu-

tation. If the secret value is false then the program does a highly time-consuming computation. An attacker

which is able to evaluate how long the computation lasted is then able to determine the value of the secret. In

order to prevent such covert flows, the analysis used to certify a program must be timing-aware. Agat (2000)
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proposes an analysis, under the form of an instrumented type system, which is able to close some timing

covert channels. His analysis is in fact a program transformation which succeeds only if the transformed

program is “secure” with regard to a timing aware definition of secure information flow. In 2005, Hedin and

Sands give a timing-aware end-to-end secure information flow analysis which is parametrized over the time

model of the language and the algorithm used to check low-observational equivalence. The language, on

which this analysis applies, is a subset of the Java bytecode which integrates objects and arrays but excludes

exceptions and jsr/ret instructions.

The majority of analyses presented above analyze a program, multi-threaded or not, as a whole. That

is as a complete unit in which every piece works together in order to fulfill a precise goal, and with no

interaction with any other entity. In modern computing however the majority of programs are evaluated on

a “computing base” running other, supposedly unrelated, programs as well. Some programs may even be

distributed over many “computing bases”. This gives rise to concerns about the observable impact a program

may have on its environment (like owning the lock of a file), the level of secrecy of communication channels

between the different parts of a program, or even the level of trust a data manipulated by a distributed

program may have on the different “computing bases” running the program. Attempts to answer some of

those concerns produced analyses for distributed programs and system wide analyses. Zdancewic, Zheng,

Nystrom, and Myers attack in 2001 the problem of program distribution in the presence of mutual distrust

of the “computing bases”. The goal of this work is to develop an architecture which allows partitioning a

program on different machines such that the secrets of any principal are preserved, except in case of failure of

a machine trusted by the principal. Working on system wide analyses, Mantel and Sabelfeld (2001) propose

a bisimulation-based timing-aware notion of security. This notion comes with a trace-based framework

which integrates local computation security as well as security of their communications.

2.1.4 Extending the Language

Initial developments of new analyses for secure information flow usually take into consideration a core

calculus. Its language is often limited to a simple sequential imperative language including conditionals,

loops, and assignments. After an initial validation of the new techniques used in the analysis, it is frequent to

see the development of works attempting to apply similar techniques to more and more expressive languages.

The first development, when the core calculus is not functional in essence, is the integration of proce-

dures and functions. The inclusion of such structures requires the analysis to incorporate a notion of mod-

ularity or polymorphism (Cardelli and Wegner, 1985). Indeed, an efficient analysis can not assign, to data

manipulated by a function, a fixed security level valid for every call site. Volpano and Smith (1997b) extend

their type system of 1996 to first-order procedures. This is done using let-polymorphism (Milner, 1978).

Heintze and Riecke (1998) develop a functional language, called SLam calculus, which supports functions

as first-order values. They prove the soundness of the type system of SLam with regard to noninterference.

References, or mutable states, are also a feature which is problematic for information flow analyses.

Indeed, with such a feature, the information contained in a container, or variable, can be modified without

this container to be explicitly used. It makes it more difficult to associate a valid security level to variables.
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Crary, Kliger, and Pfenning (2005) propose a security-oriented type system for a higher-order language with

mutable state. They deal with mutation explicitly via the notion of impurity.

The two previous extensions are integrated in the notion of objects. This feature also adds the problem

of dynamic call binding. It is more difficult to deduce at compile time which method will be evaluated by a

given call, and then to track the information flows induced by this call. Barthe and Serpette (1999) develop

and prove the correctness of an information flow analysis for an object calculus (Abadi and Cardelli, 1996,

Chapter 8). Their analysis, which is purely syntactic, is based on a type system. Later, Banerjee and

Naumann (2002) propose a type system guaranteeing secure information flow for a complete language

similar to Java. In this work, a security level is associated to classes. Additionally, the type of a method

reflects the impact of the method on the heap, from a security point of view.

Tracking the information flows in a program including exceptions is really difficult because it modifies

the normal control flow of the program. However, there still exist some attempts at analyzing information

flows in the presence of exceptions. Volpano and Smith (1997a) propose a simple security-oriented type

system dealing with exceptions. However, this type system may be too restrictive. Myers (1999a) and

Pottier and Simonet (2002b) propose more precise analyses, one of which is for an imperative language and

the other one for a functional language.

The majority of static program analyses for secure information flow deal with a high level language. It is

interesting to have such analyses for lower level languages (Barthe and Rezk, 2005). That way it is possible

to certify a program without having access to the source code. The analysis of Hedin and Sands (2005) take

into consideration a subset of Java bytecode. Dealing with all of Java bytecode, Genaim and Spoto (2005)

propose a compositional information flow analysis. It encodes those flows using boolean functions. Barthe

et al. (2006) connect, in a systematic way, works at source code level and bytecode level.

There also exist some real world languages. Jif (Myers et al., 2001) is an implementation of the real

world language called JFlow (Myers, 1999a,b). This language is an extension of Java (Gosling et al., 2005).

It enables the programmer to add information flow annotations which are statically checked. Those an-

notations are based on the decentralized label model of Myers and Liskov (1997, 1998). In this model,

variables receive a label which describes allowed information flows among the principals of the program.

Some dynamic tests are possible. This allows more flexibility when statically checking noninterference by

a given program. After statically checking the annotations using a type system, the Jif compiler returns a

standard Java program integrating the remaining dynamic tests. This program can then be compiled with

a regular Java compiler. However, Myers (1999b) does not give a formal proof of correctness. Pottier and

Simonet (2002a) discovered a couple of flaws in his type system. Yet, Jif has been used by others to develop

secure prototypes of common softwares. For instance, Eswaran, Ongtang, and Hadka (2006a) implemented

a secure web browser (Eswaran et al., 2006b) and McDaniel, Hicks, King, and Ahmadizadeh (2006a) built a

secure email system called JPmail. However, in the opinion of Hicks, Ahmadizadeh, and McDaniel (2006a),

developing applications in Jif is quite complex. They try to simplify it by proposing a policy store and a

policy manager (Hicks et al., 2006b). They even develop an IDE for Jif called Jifclipse (McDaniel et al.,

2006b).
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Whereas JFlow is an imperative language, FlowCaml (Simonet, 2003a,b,c,d) is an extension of a func-

tional language called Objective Caml (Leroy et al., 2004). It includes a constraint-based type system (and

an inference engine) working with security labeled types (Pottier and Simonet, 2003a,b; Simonet, 2002a,b).

This type system ensures noninterference for any well-typed program. There also exists an interpreter for

FlowCaml. This interpreter dynamically types data, commands and functions which are successively eval-

uated. However, it types commands the same way the static analysis does, and thus, does not take into

account any dynamic information. Therefore, it can not be called a dynamic analysis. For example, the

interpreter merges the types of both branches of an if-statement, even if the value of the condition is known.

In the following session:

1 # l e t x1 : ! a l i c e i n t = 42;;

2 v a l x1 : ! a l i c e i n t

3 # l e t x2 : !bob i n t = 11;;

4 v a l x2 : !bob i n t

5 # l e t c = true;;

6 v a l c : ’a b o o l

7 # i f c then x1 e l s e x2;;

8 -: [> !bob, ! a l i c e ] i n t

the interpreter gives to the if-statement a security level which is an upper bound of the security levels alice

and bob (c is considered to be public). However, as c is true, the commands evaluates to x1 and so is only

required to have a security level which is higher or equal to the security level alice.

2.1.5 Static Analyses Using Dynamic Tests

As stated by Vachharajani et al. (2004), the main drawback of static analyses, is that the specification of

the security policy is not in the hand of the end user. A program is analyzed for a fixed security policy.

If the security levels of the inputs and outputs are modified then the analysis must be run again. In order

to circumvent this drawback, some static analyses have been developed to take into account some dynamic

security tests. One branch of a conditional whose condition is a security test is then analyzed assuming the

condition is true. The other branch is analyzed assuming the same condition is false.

Static Analyses Using General Purpose Security Tests

Stack inspection (Fournet and Gordon, 2002) is an access control mechanism of Java (Gong et al., 1997,

2003) and the .NET Common Language Runtime (Gough, 2001). This mechanism associates permissions

to pieces of code. A method which owns a given permission can enable this particular permission. Enabled

permissions can be checked at run time using the method checkPermission whose argument is a permis-

sion. This method returns true if and only if the permission given as argument is owned by the method m

who called checkPermission and: this method m has enabled this permission, or the same permission

check run by the caller of m would return true.
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The static analysis developed by Banerjee and Naumann (2003, 2005) uses this access control mecha-

nism as a dynamic security test. The language taken into account is a class-based object-oriented language

integrating stack inspection, of course, and the main features of such languages, as dynamic binding and

dynamically allocated mutable objects. The analysis is based on a type system. A method without any call

to checkPermission has exactly one type. But methods with such calls have multiple types which depend

on the permissions which must be enabled to execute some pieces of the method. When typing a caller

method m which owns the set of permissions P, the types taken into consideration for methods called in m

are those which require only permissions in P. They prove that well typed programs are secure with regard

to information flows. A modular type inference mechanism for this type system has been proposed by Sun,

Banerjee, and Naumann (2004). This work investigates and makes sense of a particular design pattern as-

sociated with an access control mechanism whose general impact on the security of programs is not easily

understood.

Banerjee and Naumann (2004) have also adapted their previous work to the access control mechanism

called history-based access control (Abadi and Fournet, 2003). The analysis is once again a type system

ensuring noninterference of well typed programs. Similar to stack inspection, history-based access con-

trol allows to dynamically check that some permissions are enabled. However, stack inspection computes

enabled permissions from the call chain (or call stack). Whereas, history-based access control computes

enabled permissions from the call history, i.e. from all the methods which have previously been called

either they have already returned or not. A permission is enabled if and only if the permission is owned

by the currently executed method and, this method has enabled this permission or the same permission is

enabled for the most recently called method. This access control mechanism is more secure with regard to

confidentiality than stack inspection because it is more restrictive. However, it is itself a covert channel for

information leakage. Therefore, the analysis must account for the access control mechanism itself, which is

done by their type system.

Static Analyses Using Special Purpose Security Tests

The decentralized label model (Myers and Liskov, 1997, 1998), and therefore JFlow (Myers, 1999a) which

is based on this model, also includes some dynamic features. This model associates a label to every variable.

A label is composed of a set of atomic flow policies. Such a policy is a pair. The first element is the identifier

of the principal who owns and states the policy. It is called the owner of the policy. The second element is

a set composed of the identifiers of the principals which are allowed, by the owner of the policy, to read the

data protected by this policy. This is the reader set of the atomic flow policy. From now on, the principal

identifiers will simply be called principals (context will tell if we are talking about principals or principal

identifiers). The readers designated by a given label l are those belonging to the intersection of the reader

sets of all the atomic policies of l. In this model, principals are partially ordered, thus forming a principal

hierarchy. If P1 is higher than P2 in the lattice, it is said that P1 “acts for” P2. P1 is then allowed to do

whatever P2 is allowed. Principals who are effectively allowed to read a data whose label is l are those which

can act for a reader designated by the label l. It is assumed that every principal can act for itself.
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The first dynamic feature of the decentralized label model concerns labels. Variables can be of type

label. Values of this type can be used as near first-class values or as a label for other values. However,

variables of type label are immutable after initialization. They are thus only partially dynamic; yet, they

allow some run time flexibility. For example, when using a file as input, it is possible to compute at run

time the label given to the file descriptor by looking at the permissions registered by the operating system

for the given file. However, the analysis is run at compile time and thus has no information on the label

of the file descriptor. It is then likely that the analysis will not be able to certify the program. In order to

give more information to the analysis, the programmer has to include some dynamic label tests under the

form of “label cases” similar to the usual switch command. Such dynamic tests compare the label of the

variable tested with a list of labels. To each label corresponds a statement. The statement which is executed

is the one associated to the first label of a higher level than the one of the variable tested. Zheng and Myers

(2004) develop a type system for a functional language having a similar feature. It is proved that well typed

programs are noninterfering.

The other type of dynamic tests concerns the principal hierarchy. The language incorporates an “acts-

for” conditional. The test of such a conditional enables the programmer to verify if one principal is allowed

to act for another before executing a piece of code. This allows programs to be analyzed at compile time

even if the complete run time principal hierarchy is not fully known. Tse and Zdancewic (2007) formalize

this type of dynamic test for a λ-calculus. They develop and prove the soundness, with regard to noninter-

ference, of a type system for their language. Hicks, Tse, Hicks, and Zdancewic (2005) propose a notion

of noninterference between updates. This notion accounts for the modification of the principal hierarchy

during the execution of a program. They also provide an analysis, based on a type system, which take into

account this notion. The language, in which programs are written, allows tests of this principals hierarchy.

2.1.6 Conclusion

As seen in the current section, there have been lots of static analyses proposed for secure information flow.

They cover a large spectrum of secure information flow properties going from the original termination

insensitive definitions to, for example, timing aware analyses or system wide analyses. Expressiveness of

the languages analyzed has also increased a lot since the early work of (Volpano et al., 1996).

One critique which could be made against those static analyses is that the majority of them are not flow

sensitive. It implies a loss of precision. However, flow sensitivity could be quite easily added by transform-

ing the analyzed programs into a Static Single Assignment form (SSA) (Cytron et al., 1991) prior to the

static analysis. It works well for sequential programs, but it may not be really efficient for concurrent ones.

A solution for concurrent programs may be to “sequentialize” them before applying the transformation to

SSA form. However, type checking loses its appealing feature of modularity when applying this technique.

The types given to the variables of a thread depend on other threads. If a single thread is modified then

the whole program must be analyzed again. Moreover, the types computed are valid for a single thread

interleaving, corresponding to the “sequentialization”.

Another drawback inherent to static analyses, but which some analyses attempt to answer, is that they

are not user-centric (Vachharajani et al., 2004). It means that they do not always allow policy modifications
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by end users. The run-time environment is not taken into account. However, as shown in Section 2.1.5,

there are already ongoing works to solve this problem. Nonetheless, it remains that those analyses are run

at compile time and thus out of reach of the majority of end-users. End-users still have to trust the origins

or certifying entities of all the programs they use.

Finally, static analyses certify programs, in other words all of their executions. Therefore, the security

level given to a variable must be valid for any possible execution of the program. For example, after ex-

ecuting the statement “ if c then z :=x else z := y end”, the security level of z must reflect potential

flows from c, x and y. z will then have a security level which is the least upper bound of those of c, x and

y. However, for a precise execution and in addition to the flow from c, there is either a flow from x to z or

from y to z; but not both in the same time. Therefore, if the security levels of x and y are quite far from

each other in the security lattice, then it will drastically increase the security level of the data contained in z

above what is strictly needed. Declassification (Sabelfeld and Sands, 2007) may be used to circumvent this

problem. However it is not clear if it would be really practical. Another solution is to refine the notion of

secure information flow to the level of executions and develop dynamic execution analyses instead of static

program analyses.

2.2 Dynamic Information Flow Analyses

In parallel to static program analyses, dynamic execution analyses have been developed. However, less work

in the domain of dynamic analyses has been done. Still, some promising dynamic analyses, or monitors,

have been proposed. They are described either at the binary code (or machine) level, at the source code (or

program) level and at the event (or system) level.

2.2.1 Analyses Described at the Binary Code Level

Describing a dynamic analysis at the binary level has a major advantage. It can be applied to any program

without requiring the source code of the program. This explains the high interest for such analysis which

are supported either by a hardware extension (Brown and Knight, 2001; Crandall and Chong, 2004; Suh

et al., 2004), by a binary instrumentation (Newsome and Song, 2005; Qin et al., 2006) or by a mix of both

(Vachharajani et al., 2004). Those analyses associate a security level, sometimes called data mark, to every

storage location of the machine. Storage locations designate, for example, the registers, the program counter

or every memory word.

The main drawback of description at this level is the difficulty to deal with implicit indirect flows (i.e.

information flows created by pieces of code which are not executed). Therefore, several papers restrict

themselves to tracking direct flows and, to some extent, explicit indirect flows (Crandall and Chong, 2004;

Newsome and Song, 2005; Qin et al., 2006; Suh et al., 2004). This type of analysis is sometimes called

taint analysis. It looks at the problem of security under the aspect of integrity and does not take care of

information flowing indirectly through branching statements containing different assignments. Its aim is

usually to prevent an attacker to gain control of a system by giving spurious inputs to a program which may

be buggy but is not malicious. It is used to prevent attacks based, for example, on buffer overflow or format
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string vulnerabilities as those used by some worms or Trojan horses. Even if those analyses have some

practical use, they are not fit to deal with confidentiality seen as secure information flow.

Yet, some binary code level dynamic analyses take into consideration implicit indirect flows (Brown and

Knight, 2001; Fenton, 1974b; Saal and Gat, 1978; Vachharajani et al., 2004). Fenton (1974a,b) describes

the addition of data marks to the abstract computer model of Minsky (1967). Data marks are fixed, except

for the program counter’s data mark which is computed dynamically. This means that storage locations can

either contain only secret information or only public information. This feature increases the requirements

on the size of the machine because, for example, it must contain a set of registers specifically dedicated to

contain secret information and another distinct set of registers for public information. It also requires the

existence of a distinct program (using different storage locations) for every possible configuration of security

levels of inputs. Finally, it also requires the programmer or compiler to be aware of the security level of data

manipulated at any time in order to be able to use storage locations with compatible data marks. Fenton

(1974b) shows that, assuming public registers are accessible only at the end of the computation, its abstract

machine is secure with the fixed data marks, but would not be with variable ones. Saal and Gat (1978)

and Brown and Knight (2001) describe, without formally proving something similar to noninterference, an

abstract machine in which some storage locations have a fixed data mark and others have a dynamically

computed one.

The basic ideas behind the three works (Brown and Knight, 2001; Fenton, 1974b; Saal and Gat, 1978)

are the same. When storing a value v to a fixed data mark storage location f l, the machine checks that the

data mark of f l is higher or equal to the least upper bound of the data mark of v and the one of the program

counter. If it is not the case then the storage operation is ignored, i.e. as if the operation was NOP. When

storing a value v to a dynamic data mark storage location dl, the machine updates the data mark of dl to

the least upper bound of the data mark of v and the one of the program counter. With just this mechanism,

the program counter’s data mark will monotonically increase at each conditional jump operation. It will

then end up with the highest possible data mark, and the machine will not be able to compute anything

useful. In order to allow the machine to safely decrease the data mark of the program counter and come

back to a previous level, it is possible to push a pair, composed of the program counter’s data mark and a

return address, into a stack. Then, it is possible to pop this pair from the stack and set the program counter’s

data mark and value to those in the pair previously pushed into the stack. This feature allows a program

to execute a procedure, whose behavior depends on a secret value, and still assign values to low level data

mark locations after returning from the procedure call.

The machines of Fenton (1974b), Saal and Gat (1978) and Brown and Knight (2001) do not seem to

take into consideration implicit indirect flows. So, how can they be secure from a point of view similar to

noninterference? An implicit indirect flow from o to d exists whenever an assignment to d is not executed

because of the value of o. As any flow, it causes insecurity whenever o has a higher level than d and d

does not influence the low-observational behavior of the program the same way depending on the fact that

the previous assignment has been executed or not. With the machines described previously, this type of

flows does not exist on fixed data mark when o has a higher level than d because in that case, even if the

assignment is executed, the value of d is not modified. So, the machine of Fenton (1974b), contrary to
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what Venkatakrishnan et al. (2006) state, securely handles implicit indirect flows. Problems arise when the

destination of the flow has a dynamic data mark. It is then impossible to take into consideration the implicit

indirect flow to increase d’s data mark to a level at least as high as the one of o because the machine does

not see the operation causing this flow. To solve this problem, Saal and Gat (1978) propose to push into the

stack the values and data marks of every dynamic data mark storage location whenever the program counter

is pushed into the stack. Whenever the program counter is popped out of the stack, the values and data

marks of every dynamic data mark storage location are reset to their values at the time the program counter

was popped. Therefore, assignments, which have been executed or could have been executed since the last

program counter push, do not have anymore influence on the dynamic data mark storage locations. It is then

perfectly safe with regard to implicit indirect flows. However, this requires any useful output of a procedure

to be stored in a fixed data mark storage location. This prevents easy reuse of procedures. It seems that in

the work of Brown and Knight (2001) push and pop operations are not global over all dynamic data mark

storage locations. It is possible to push and pop any dynamic data mark storage locations independently

from others. This prevents a safe handling of implicit indirect flows. The following example emphasizes

this problem. x is a dynamic data mark storage location. h is a fixed data mark storage location containing

a secret, so its data mark is high. pc is the program counter. It is equal to the number of the line which is

currently executed. After the execution of a line, pc is incremented by 1 and the line corresponding to the

new value of pc is executed next. PUSH pushes its parameters into the stack. Its first parameter is a dynamic

data mark storage location. POP pops a pair (reg, val) from the stack and sets reg to the value val. The data

mark of reg is the least upper bound of the one of val and the one of the program counter when the pair was

pushed into the stack. OUTPUT prints on the screen the value of its parameter if its data mark is low and

the data mark of the program counter is high. Otherwise, it does not print the value. This behavior is the

one expected for an output statement which is not allowed to display a secret value on a public output (the

screen).

1 PUSH(’pc’, pc + 3)

2 i f h then pc := pc + 1

3 x := 1

4 POP()

5 OUTPUT(x)

If h is false, then the value of pc at the end of the execution of line 2 is equal to 2. Therefore, the next line

executed is the line number 3 and the assignment to x is executed. As the program counter’s data is high

after executing the conditional, x’s data mark is then high after executing the assignment. Then, line 4 is

executed and the program’s data mark is reset to low. Still, the output statement will print nothing because

x’s data mark is high. However, if h is true then the value of pc at the end of the execution of line 2 is equal to

3. Therefore, the next line executed is the line number 4 and the assignment to x is not executed. Therefore,

when executing the output statement, x’s data mark is still low and its value is printed on the screen. This

simple example shows that it is possible to code a program whose low-observational behavior is influenced

by a secret value when executed on the machine of Brown and Knight (2001).
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Following a similar approach, McCamant and Ernst (2007) propose a quantitative dynamic information

flow analysis for sequential programs. This analysis computes “an upper bound of the number of bits of

information about the secret inputs present in the program’s output”. The definition of the number of bits

leaked, based on the notion of entropy, is counter-intuitive in my opinion. It is nearer from an average

number of bits leaked by any execution than an upper bound of the number of bits of secret information

leaked by the analyzed execution. For example, let us study an execution of the following program. This

program has one secret input (h) and one public input (l), each one coded on n bits. b is a temporary boolean

coded on a single bit. and, or and not are the logical operations on single bit. For any variable v, vi is the ith

bit of the variable v.

1 i := 0; b := true;

2 whi le i < n do
3 b = b and (( l i and hi) o r n o t ( l i o r hi));

4 i ++;

5 done;
6 output b

For any execution of this program, the dynamic analysis of McCamant and Ernst computes an upper bound

of 1 bit of information leaked. However, for any execution where h is equal to l, it is possible to deduce

directly the precise value of the secret input h. Therefore, from such a single execution, an attacker learns

the precise value of n bits of secret information; not only 1. In the same time, this first attempt at quantitative

dynamic information flow analysis does not handle precisely implicit flows. Any program branching on a

secret value is considered interfering, unless the branching statement occurred in an enclosure region. This

construct (enclosure region) is similar to the stacking mechanism used by Saal and Gat (1978) and Brown

and Knight (2001) in order to protect some computations on secret data. Variable values are saved when

entering an enclosure region and restored when exiting this region except for designated variables. The

values of those designated variables are considered secret when exiting the enclosure area. The static nature

of this mechanism prevents a precise dynamic tracking of information flows. Even if this work is a promising

first attempt at quantitative information flow testing, it can not be used as a noninterference monitor. The

reason is that it does not prevent “bad” information flows. It just notifies the user of an approximation of the

amount of information that has been leaked during the execution.

Vachharajani, Bridges, Chang, Rangan, Ottoni, Blome, Reis, Vachharajani, and August (2004) propose

a mix of hardware extension and binary instrumentation. They propose an architectural framework, called

RIFLE, to enforce confidentiality. As in previous work (Brown and Knight, 2001; Fenton, 1974b; Saal and

Gat, 1978), the machine described extends every storage location, general purpose registers and memory

words, with a data mark. Special purpose registers, now called data mark registers, containing data mark

values are also added in order to be able to manipulate those data marks. The machine executes programs

written in a special purpose instruction set. Compared to standard instruction sets, instructions are syn-

tactically extended with the addition of a label. A label is a list of data mark registers. The semantics of

instructions with regard to the values of general purpose registers and memory words is the same as with

standard instruction sets. Additionally, the semantics of instructions is extended to update data marks in
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accordance with direct flows1 and a given set of data marks. The semantics of an instruction modifying the

value of the storage location dl with a value computed from the storage locations oli states that the new data

mark of dl is the least upper bound of the data marks of oli and data marks contained into the label of the

instruction. A special instruction is also added. This instruction stores into a data mark register the least

upper bound of the data marks contained in some other data mark registers. The original binary code is

instrumented by a binary translation. It replaces the standard instructions by their counterpart in the special

purpose instruction set described above. It also encodes any indirect flows using the label of instructions. For

every instruction ib influencing the control flow of the program, the data mark of the register conditioning

the behavior of ib is stored in a data mark register rm. This data mark is added to the label of every instruc-

tion which is control dependent on ib. This instrumentation takes care of explicit indirect flows. In order to

take into account implicit indirect flows, the data mark register rb is added to the label of every instruction

which potentially uses a value defined in an instruction control dependent on ib. When an “insecure” output

is detected, the machine terminates the execution of the program (Vachharajani et al., 2004, Sect. 4.1). A

formal definition of “secure program”, equivalent to noninterference, is given. However, Vachharajani et al.

(2004) admit to fail to give a formal proof that an instrumented program running on their machine is always

secure. Besides, as is explained in Section 2.2.4, the way the machine deals with insecure outputs create a

new covert channel which is not taken into account by their framework. Therefore, RIFLE does not enforce

their definition of secure programs.

2.2.2 Analyses Described at the Source Code Level

Describing a dynamic information flow, or dependency, analysis at the source code level is usually easier

than describing it at the binary level. This is due to the fact that the control flow of the program is usually

easier to understand at the source code level. However, as for dynamic analyses described at the binary level,

there are few dynamic information flow analyses described at the source code level.

The majority of dynamic information flow analyses deal with a notion weaker than noninterference.

Some of them deal with the notion of taint, which has been described in Section 2.2.1. For example, the

language Perl includes a special mode called “Perl Taint Mode” (Birznieks, 1998; Wall et al., 2000). In

this mode, the direct information flows originating with user inputs are tracked. It is done in order to

prevent the execution of “bad” commands. However, this analysis does not take any indirect flows into

consideration. Extending standard taint analyses, Xu, Bhatkar, and Sekar (2006) propose a taint analysis for

C. Their analysis takes into account direct flows, as any taint analysis, but also some explicit indirect flows.

However, because they claim it is not necessary for the type of attacks they want to prevent, their dynamic

analysis does not take into consideration all explicit indirect flows or any implicit indirect flow. Recently,

Lam and Chiueh (2006) proposed a framework for dynamic taint analyses which, however, does not take

any type of indirect flow into consideration. The notion of need is similar to the notion of taint. A need

analysis determines what parts of a “program” are needed, or required, to “evaluate” this program. For a

1Vachharajani et al. (2004) do not use the same naming conventions for flows. Flows, called explicit flows in their paper, are
called direct flows in this document. Flows, called implicit flows in their paper, are called indirect flows in this document. This type
of flows is partitioned into explicit indirect flows and implicit indirect flows in this document.
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λ-term tλ, a need analysis determines which sub-terms of tλ are needed in order to be able to evaluate tλ to

normal form. Gandhe, Venkatesh, and Sanyal (1995) and Abadi, Lampson, and Lévy (1996) propose two

dynamic need analyses based on labeled λ-calculi. However, such analyses do not have to track implicit

indirect flows. Therefore, the dynamic analyses described at the source code level presented thus far are not

powerful enough to be used for checking properties similar to noninterference.

Some instrumented semantics, used as the bases for the development of static analyses, are good candi-

dates as dynamic information flow analyses. For example, Ørbæk (1995) gives an instrumented semantics

of a first order language with pointers before extracting from it two static trust analyses. The notion of

trust is equivalent to a stronger notion of taint. It aims at determining which output values can be trusted

to be exact even if some input values are not trusted to be exact. The instrumented semantics is a stan-

dard semantics with the addition of label to values. The evaluation rules are accordingly modified in order

for the labels to reflect the trustworthiness of their associated value. The instrumented denotational se-

mantics can be seen as a dynamic analysis of trust. Ørbæk proves the correctness of its static analyses

with regard to the labels computed by the instrumented semantics. However, he does not prove that the

labels are correctly computed. His dynamic analysis takes into account explicit indirect flows, but not im-

plicit indirect flows. In my opinion, a dynamic trust analysis should consider implicit indirect flows and

be equivalent to a dynamic noninterference analysis. This opinion is motivated by the following program

example: “x := 0; while b do x :=1; b :=!b done”. Consider an execution for which b is false, but

is not trusted. The final value of x is 0. The instrumented semantics considers the final value of x as trusted.

The fact that the value of b is not trusted means that its exact value may be different. In other words, it is

possible that for this precise execution the value of b should have been different. Therefore, the exact value

of b is maybe true and, consequently, the exact final value of x may be 1. Hence, when the value of b is

false and is not trusted, the final value of x should not be trusted either. However, for any implicit indirect

flow in an execution, there exists at least one execution for which this flow is an explicit indirect flow. And

static analyses results must be valid for any possible executions of the analyzed program. Therefore, as the

instrumented semantics takes into consideration explicit indirect flows, it is believed that the static analyses

extracted from this semantics are correct.

Other approaches rely only on a program transformation. They will add variables in the program whose

values reflect the security level of data contained in the original variables. Tests over those added variables

are also inserted in order to dynamically enforce noninterference. It is then sufficient to prove that any trans-

formed program is a noninterfering program to safely run the transformed version on any trusted machine.

Venkatakrishnan, Xu, DuVarney, and Sekar (2006) propose such a transformation for a simple deterministic

procedural language. As lots of dynamic analyses, it does not address information flow leaks resulting from

timing, storage and termination channels. The transformation returns a program in which every original

variables is associated a boolean variable which reflects its level of security. Each time an original variable

is assigned the value of an expression e, its associated boolean variable is assigned a value reflecting the

security level of the expression e and of the current program counter. The transformation takes in param-

eter a static analysis of defined variables. This analysis is used to insert assignments to the added boolean

variables which reflect the effects of implicit indirect flows. The transformation also takes as parameter a
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security policy. It is used to determine at which program points dynamic tests must be inserted in order to

enforce noninterference. The correction mechanism chosen is to stop the execution as soon as an output of

a secret data on a public channel is detected. A security policy, defined as a typing environment, specifies

which variables are considered as high inputs, low inputs or low outputs. Therefore, Venkatakrishnan et al.’s

transformation is not user centric with regard to policy definition; i.e. the user can not decide at run time

which inputs contain secret values and which outputs are publicly observable. With regard to theoretical

results, they provide a semantics preservation theorem. However, this theorem is not really powerful as a

monitor which would halt any execution does respect this theorem. Basically, the semantics preservation

theorem states that a transformed program has the same semantics as the original one unless the monitor

decides to modify its semantics. They also claim to prove that their transformation ensures confidentiality

of secure data. However, their main theorem proves that their transformation conservatively tracks all types

of information flows, but not that any execution of a transformed program respects their definition of non-

interference. Therefore, their transformation can safely be used at compile time to test the noninterfering

behavior of a program, but not at run time to enforce noninterference. Moreover, their transformation does

not approximate information flows with the same precision in a branch which is executed and in a branch

which is not executed. As explained by Le Guernic and Jensen (2005), this is a required feature in order to

avoid creating a new covert channel and be able to dynamically enforce noninterference. This is also one of

the main points of Chapter 5. As an example, consider the following program where h is a secret input, l is a

public input, x is neither an input nor an output, and output writes its parameter on a public output channel:

1 x := l ;

2 i f h then
3 i f false then
4 x := x

5 e l s e sk ip end;
6 e l s e sk ip end;
7 output x

This program is obviously noninterfering. Venkatakrishnan et al. (2006) allows and even encourages op-

timizations of the static analysis given as parameter to the transformation in order to increase the overall

precision of their dynamic analysis. The only constraint put on the analysis is that it must return a “con-

servative upper bound” of “all the variables that get assigned” in the piece of code analyzed. However, if

the static analysis takes into account some simple information about dead code, then their transformation

considers the final output as safe if h is false and unsafe if h is true. Therefore, their transformation will

prevent the flow in the final output if and only if h is true. This behavior, outputting the value of x or doing

something else, is publicly observable. Hence, their dynamic analysis transforms a noninterfering program

into an interfering one. They later discuss possible optimizations. At least one of those optimizations (the

usage optimization of the static analysis for branching statements) further increases the difference in the

treatment of executed and non-executed branches. In fact, as explained in Section 2.2.4, because the dy-

namic correction mechanism chosen is unbalanced in the analysis of non-executed branches, correcting the

aforementioned error is not sufficient to be able to enforce noninterference.
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Similarly, Masri, Podgurski, and Leon (2005; 2004) present a dynamic information flow analysis for

structured or unstructured programs. Their algorithm achieves a good level of precision for a quite complete

language. However, their work focuses on dynamic slicing rather than on noninterference monitoring. It

does not study deeply the dynamic correction of “bad” flows and lacks formal statements and proofs of the

correctness of the correction mechanism. It suffers from misconception similar to those of the transformation

of Venkatakrishnan et al. (2006). For example, the dynamic correction mechanism proposed is to stop the

execution as soon as a potential flow from a secret data to a public sink is detected. Once again, as explained

in Section 2.2.4, this is not an acceptable dynamic correction mechanism with regard to the analysis used for

non-executed branches. It also claims to deal with multi-threaded languages, however it is unable to handle

attacks similar the one exposed in Figure 4.6.

More recently, Shroff, Smith, and Thober (2007) proposed an interesting approach to handle implicit

indirect flows (indirect flows whose assignments which create them are not executed, as opposed to explicit

indirect flows). It relies on the simple idea that an implicit indirect flow can exist in an execution if and only

if there exists another execution for which this indirect flow is explicit. Therefore, the proposed dynamic

information flow analysis track direct flows and collects explicit indirect flows dynamically. The information

collected about indirect flows is transferred from one execution to another using a cache mechanism. After

an undetermined number of executions, the analysis will know about all indirect flows in the program and

thus will then be sound with regard to the detection of all information flows. Using this approach they

are able to handle a language including alias and method calls. However, as this fully dynamic analysis

is not sound from the beginning it can not be used to enforce confidentiality, even if it can be used to

detect “unsafe” information flows in a way similar to intrusion detection. Moreover, it is undecidable in

general to know when enough executions have been run for the dynamic analysis to be sound with regard

to noninterference detection. For example, it can be proved by reducing the Post Correspondence Problem

(PCP) (Hopcroft et al., 2001; Post, 1946) to a noninterference analysis problem using the following program

(the reduction algorithm).

1 i f t e s t P c p S o l u t i o n (pcp , s o l u t i o n )

2 then x := s o l u t i o n e l s e sk ip ;
3 output x

In this program, pcp is an instance of PCP considered either as a public information. solution is a sequence

of integers considered as a secret information. testPcpSolution is a function which returns true if and only

if solution is a solution to the PCP instance pcp.

To circumvent this drawback, Shroff, Smith, and Thober propose to execute their dynamic analysis with

a prior knowledge of all the indirect flows which is obtained by static analysis of the program. In such a

case, handling alias and method calls becomes harder and the analysis has to be more conservative to remain

sound. Moreover, as indirect flows are mainly handled in a static manner and only direct flows composed

only of direct sub-flows are really handled dynamically, their analysis is not as flow-sensitive and path-

sensitive as could be expected from its dynamic nature. For example, their analyses are unable to detect that

any execution of the following program, where h is the only secret input, are noninterfering whenever the

public input l is false.

28



D I F A 2.2

1 i f h then x := 1 e l s e sk ip end;
2 i f l then sk ip e l s e x := 0 end;
3 output x

1 i f h then
2 i f l then x := 1 e l s e sk ip
3 e l s e sk ip end;
4 output x

Additionally, alias being difficult to handle, their analysis must be quite conservative and is therefore not

flow-sensitive for alias. It is, for example, unable to detect that the following program is perfectly safe. This

program uses the standard notation for pointer instead of “deref” which is the notation used in their analysis.

1 i f h then *x := 1 e l s e sk ip end;
2 *x := 0;

3 output *x

Nevertheless, their proposed approach to handle indirect flows is interesting. It remains to improve the static

analysis collecting indirect information flows and the way this information is used by the dynamic part of

the analysis in order to benefit from the run-time nature of the overall analysis.

2.2.3 Analyses Described at the Event Level

At a higher level, some dynamic analyses of event or action sequences attempt to prevent information to flow

to an unauthorized user in a large system serving multiple users. They analyze the sequence of events gen-

erated by the actions of the different users acting in parallel in the system under supervision. Those analyses

are in charge of controlling user actions and prevent those actions that may break the secure information flow

policies. Such analyses do not study program code, either source or binary. Those dynamic analyses take

as inputs sequences of events carrying information at different security levels. The monitoring mechanism

based on those analyses attempts to prevent occurrences of actions carrying information at a given security

level to be observable at a lower security level. Those analyses have an interest by themselves. However, the

security level associated to events is approximated by an external entity outside of the scope of the dynamic

events analysis. Therefore by letting the event security levels be set by a dynamic program analysis and the

interactions of those events be monitored by a dynamic event analysis, it is possible to completely monitor

the information flows in a system executing different programs for different users.

One of the foundational dynamic information flow analysis of event sequences is due to Bell and La-

Padula (1973a,b). They describe a mathematical model of computer system to study confidentiality when

users — or subjects — read from and write to shared objects. The model includes a function giving security

level to subjects and objects, a matrix of allowed accesses (given by a controller) and a relation showing the

access really granted. Bell and LaPadula define what it means for a system to be secure in their model and

what are the constraints on the system for it to be secure. They show that a system is secure with regard to
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confidentiality if it satisfies a given property called the ?-property. A system satisfies the ?-property if, for

any subject, all the objects that it can write in have a higher level than the objects that it can read from. In

other words, the security level of the information carried by a write action from a given user is approximated

as the least upper bound of the security levels of objects that this user can read from. Then Bell and LaPadula

establish some operation rules which answer to the access requests from the users depending on the state of

the system and are ?-property preserving. It ends by giving some hints on a possible implementation of the

model.

Earlier, Weissman (1969) describes a security control mechanism which dynamically computes the se-

curity level of newly created files. In this mechanism, a security level history is associated to each job

running on the computer. This level monotonically increases as the job opens existing files. However, it is

bound by the security level of the job itself. The security level history is used when labeling newly created

files. In this mechanism, the security level of the information output by a given job is approximated as the

least upper bound of the security level of previously accessed files. Extending this approach, Woodward

(1987) presents its floating labels method. This method deals with the problem of over-classification of data

in computer systems implementing the MAC security model. To improve on this problem, objects receive

two types of security levels. One is the upper bound of the security level this object is allowed to contain.

The other one is the security level of what it really contains. This latter level is dynamically computed

using a mechanism similar to the security level history. Later, Haldar, Chandra, and Franz (2005) follow an

approach similar to security level history to implement a system that adds dynamic computation of MAC

levels of objects — individual units of run-time data storage — to an existing JVM. Whenever an object

o1 gets some information from another object o2, its MAC level is increased so that it is at least as high as

the MAC level of the object o2. In his thesis, Rotenberg (1973) describes the hardware and software of the

Privacy Restriction Processor, a machine similar to Weissman’s work.

Nagatou and Watanabe (2006) propose a monitoring mechanism to detect and prevent unauthorized

information flows through covert channels in a system serving multiple principals. For example, they try

to prevent a principal to transmit sensitive data to a lower security level principal p2 by deleting files for

which p2 has read access. The inputs to the monitoring mechanism are events. An event reflects an action

that a principal is attempting. Each event is associated a security level which reflects the security level

of the information carried by the action. It seems that the security level of an action is approximated by

the clearance level of the user generating the action. A better precision could be achieved by a dynamic

information flow analysis of the processes run by users. The definition of noninterference used is similar to

Goguen and Meseguer’s one. An action of security level l is noninterfering if and only if the system would

have reacted the same way if all the previous actions whose security level is higher than l had not been

executed. The monitoring mechanism is based on an emulator for every security level l which emulates the

state of the system if only the actions of a security level lower or equal to l had been executed. An action of

security level l is authorized if the system and the emulator for the level l react the same way to the action.

As Vachharajani et al., Masri et al. and Venkatakrishnan et al., Nagatou and Watanabe makes the same

erroneous assumption about dynamic correction of bad flows. As they assume the bandwidth of a covert

channel to be narrow, they decide to simply terminate the receiver process of an unauthorized information
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flow. This process is the one generating the unauthorized action. However, this is a misleading assumption.

If information flow from A to B is allowed but not the reverse, B can still send a secret integer value to A.

For example, they can do so by applying the following protocol. A sequentially sends integers to B, starting

at 0 and increasing the value by 1 each time. Once B receives an integer equal to the secret, it sends to

A an acknowledgment. As the message sent by B to A depends on the secret, the monitor will then stop

A. However, it is too late because A knows that the last value sent was the good one. In fact, with this

protocol, the acknowledgment is sent using a covert channel which is not monitored. This covert channel is

the behavior of the monitor itself.

2.2.4 Conclusion

There is less development of dynamic analyses for secure information flow than static ones. However, there

are still some interesting proposals. They show that it is feasible to take into account implicit indirect flows

in a dynamic analysis. In the majority of cases, this is done by incorporating the results of a simple static

analysis either applied at run time or at compile time. It is then possible to dynamically track the information

flows with a good level of precision. Compared to static analyses, it is easier with dynamic analyses to let

the end-user decide the information flow policies to be enforced (Vachharajani et al., 2004). The information

collected at run time enables the dynamic analyses to increase their precision (Masri et al., 2004). It is also

possible with dynamic analyses to safely execute some noninterfering executions of a program which can

not be proved to be noninterfering (Venkatakrishnan et al., 2006).

However, the majority of works on monitoring of program information flows fail to prove that they

actually enforce an information flow property similar to noninterference. In fact, except for the noticeable

exceptions of works by Fenton (1974b) and Shroff et al. (2007), the majority of them fail to achieve their

goal. The reasons are common erroneous assumptions:

• that the only difficulty in information flow monitoring is the detection of the information flows,

• that an execution which is noninterfering in a standard environment is also noninterfering in the pres-

ence of any information flow monitoring mechanism,

• that the dynamic correction mechanism chosen has no impact on the information flows.

There are two important things to keep in mind when developing a secure information flow monitor.

First, the precision of the dynamic analysis must be the same for any execution whose public inputs are

the same. The correction of unauthorized flows has a publicly observable impact on the behavior of the

program. Therefore, if the precision of the analysis is not the same for any execution whose public inputs

are the same then the publicly observable behavior of the monitor is influenced by the secret inputs of the

program. The second thing to keep in mind is that, when the control flow has been influenced by a secret

input, the correction mechanism must have the same publicly observable behavior for an unauthorized flow

which is executed than for an unauthorized flow which is not executed.

This last point is an error committed by the majority of works which use program interruption as dynamic

correction mechanism of unauthorized flows, as the works by Masri et al. (2004); Vachharajani et al. (2004)
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and Venkatakrishnan et al. (2006). The following program is a typical example for which such monitors are

unable to enforce noninterference. In this example, h is a secret input, l is a public input and output outputs

its parameter to a public channel.

1 i f h then
2 output h

3 e l s e sk ip end;
4 output l

With a monitor which terminates a program just before the execution of a command which creates an unau-

thorized flow, this program does nothing if h is true and outputs the value of l if h is false. Therefore, the

publicly observable behavior of a monitored execution of this program depends on the value of its secret

input. This demonstrates that such monitors are unable to enforce a property similar to noninterference. To

do so, it should terminate the program even if h is false, or ignore the output statement of h even if h is true.

Dynamic information flow analyses are a promising and interesting approach to the enforcement of

confidentiality. This approach has its own advantages compared to static analyses. However, lots of pre-

vious information flow monitors fall short to achieve their goals. This demonstrates that it is a task more

complicated than it seems at first. This is further emphasized by the fact that the peer-reviewed paper of

Venkatakrishnan et al. (2006)fails to achieve its goals that it claims to prove. In order to be trusted by end-

users and be able to compete with strongly proved static analyses, the development of secure information

flow monitors must be backed up by a strong proof that the mechanism indeed enforces secure information

flows. The remainder of this thesis proposes three monitors which differ in their precision or in the lan-

guage features taken into consideration. All the monitors are proved to accurately enforce a given secure

information flow property.
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Chapter 3

Noninterference Monitoring

In contrast to static checking of noninterference, this chapter considers dynamic, au-

tomaton-based, monitoring of noninterference for a single execution of a sequential

program. The monitoring mechanism is based on a combination of dynamic and static

analyses. During program execution, abstractions of program events are sent to the

automaton, which uses the abstractions to track information flows and to control the

execution by forbidding or editing dangerous actions. The mechanism proposed is

proved to be sound, any monitored execution is noninterfering; and to preserve some

safe executions, including all executions of well typed programs (in the security type

system of Volpano, Smith and Irvine).

The content of this chapter has been published in (Le Guernic et al., 2006a,b).

3.1 Introduction

The work presented in this chapter aims at protecting the values of secret data manipulated by programs

from being revealed by the publicly observable behavior of those programs. We study a simple imperative

sequential language with loops and outputs. The work proposed in this chapter can be extended to more

complex languages: the main requirement is to have a precise enough knowledge of the control flow graph

of the program. Chapter 4 extends it to a concurrent setting.

Before defining the monitoring mechanism and stating some of its properties, we present the language

studied and outline the approach used.

3.1.1 The Language: Syntax and Semantics

The grammar of the studied language is given in Figure 3.1. X is the domain of variables and x stands for any

element of this domain. The only constraints put on expressions (e) are that their evaluation must terminate,

be deterministic and without side effects. Statements (S ) are either sequences (S ; S ), conditionals and

33



C 3 NONINTERFERENCE MONITORING

while loops (B), or atomic actions (A). The output statement, “output e”, is a generic statement used to

represent any kind of public (or low) output, e.g., the action of printing the value of expression e on the

terminal, producing a sound, or laying out a new window on the desktop. Only public outputs (i.e. outputs

that are visible by standard users) are coded with the output statement; secret outputs are simply ignored. For

example, sending a message m on a public network is represented by “output m”, but sending an encrypted

message n on a public network is abstracted by “output c”, where c is a constant which emphasizes the

fact that the content of an encrypted message cannot be revealed. Finally, sending a message on a private

network, to which standard users do not have access, does not appear in the code of the programs studied.

A ::= x := e

| skip
| output e

B ::= if e then S else S end
| while e do S done

S ::= S ; S | B | A

Figure 3.1: Grammar of the language

For simplicity reasons, non-terminating executions are not in the scope of this work. Chapter 4 extends

the work presented here by taking into account non-termination, among other features. This limitation

allows the use of big-step operational semantics (also called natural semantics (Kahn, 1987)). This choice

simplifies the proofs of the main theorems. The standard semantics of the language (Figure 3.2) is described

using evaluation rules, written:

σ ` S
o
=⇒ σ′

This reads as follows: statement S executed in state σ yields state σ′ and output sequence o. Let D be the

semantic domain of values. The domain of program states (X→ D) is extended to expressions, so that σ(e)

is the value of the expression e in state σ. An output sequence is a word inD?. It is either an empty sequence

(written ε), a single value (for example, σ(e)) or the concatenation of two other sequences (written o1 o2).

3.1.2 The Monitoring Principles

Noninterference formalizes that there is no information flow from secret (or high) inputs to public (or low)

outputs. For a given program P, let S(P) ⊆ X be the set of variables whose initial values are the secret

inputs. The only public output is the output sequence resulting from the execution. Contrary to the majority

of works on noninterference, the values of the variables in the program state are never directly accessible

(even at the end of the execution). Consequently, the values of the variables in the program state are never

considered public outputs. We made this choice in order to map more closely the real behavior of an
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σ ` x := e
ε
=⇒ σ[x 7→ σ(e)] (EO-ASSIGN)

σ ` output e
σ(e)
===⇒ σ (EO-OUTPUT)

σ ` skip
ε
=⇒ σ (EO-SKIP)

σ ` S h oh

==⇒ σ′ σ′ ` S t ot

=⇒ σ′′

σ ` S h ; S t oh ot

====⇒ σ′′
(EO-SEQ)

σ(e) = v σ ` S v o
=⇒ σ′

σ ` if e then S true else S false end
o
=⇒ σ′

(EO-IF)

σ(e) = true

σ ` S l ; while e do S l done
o
=⇒ σ′

σ ` while e do S l done
o
=⇒ σ′

(EO-WHILEtrue)

σ(e) = false

σ ` while e do S l done
ε
=⇒ σ

(EO-WHILEfalse)

Figure 3.2: Standard semantics outputting the values of low-outputs

information system. It is rarely the case that the program states are observable by the low level users of an

information system. Those users rather have access to the public outputs of the information system. All,

and only, the values which should be visible to low users must be displayed using an output statement at

the position inside the program where they are visible. At any point of the program where a value should

be accessible by low users, an output statement for this value must be inserted. If the desired behavior is

that low users have access to the values of low variables at the end of the execution, the value of those low

variables must be output at the end of the program. This approach is equivalent to having a single public

variable whose value is always accessible to low level users, not just at the end of the program. Every output

statement would then correspond to an assignment to this public variable.

The main monitoring mechanism principle is based on information transmission notions of classical

information theory (Ashby, 1956). Cohen states it as follows:

“information can be transmitted from a to b over execution of H [(a sequence of actions)] if,

by suitably varying the initial value of a (exploring the variety in a), the resulting value in b

after H’s execution will also vary (showing that the variety is conveyed to b).” (Cohen, 1977,

Sect. 3).

Hence, for preventing information flows from secret inputs to public outputs, the monitoring mechanism

must ensure that variety — which can be seen as the property of variability or mutability — of the initial

values of the variables in the set S(P) is not conveyed to the output sequence. This means that:

35



C 3 NONINTERFERENCE MONITORING

the monitoring mechanism, which works on a single execution, must ensure that even if the

initial values of the variables belonging to S(P) were different, the output sequence would be

identical.

Hence, it will enforce that variety in S(P) is not conveyed to the output sequence.

The monitoring automaton has two jobs. The first is to track “variety,” that is, to track entities (program

variables, program counter, . . . ) having different values when the initial values of variables in S(P) are

different. Its second job is to prevent conveying of variety to the output sequence, that is, to ensure that the

output sequence would be identical for any execution having the same public inputs (the initial values of the

variables not in S(P)). To complete the first job, the states of the monitoring automaton are pairs. The first

element of this pair is a set of variables. At any step of the computation, it contains all the variables that have

“variety” (i.e., have a different value if the initial values of the variables belonging to S(P) are different).

The second element of the pair is a word in {>,⊥}? which tracks “variety” in the context of the execution

(the value of the program counter). It can be seen as a stack. At the beginning of every conditional, the

automaton pushes into the stack an element which reflects the “variety” in the expression of the conditional.

At the end of every branching statement, the automaton pops one element from the stack. The second job

(avoiding transfer of variety to the output sequence) is accomplished by authorizing, denying, or editing

output statements depending on the current state of the monitoring automaton.

A common limitation. Note that the automaton does not hold information about actual values of the

variables — it merely knows whether a variable may or may not have “variety”. This feature prevents the

automaton from detecting some “safe” executions. For example, consider the following program with two

inputs, h (secret) and l (public).

1 x := l ;

2 i f h

3 then x := 1

4 e l s e x := x / 2

5 end;
6 output x

Executions for which l is 2 are safe: whatever value h holds, any such execution outputs 1. However, these

executions will be rejected by the automaton since it does not track the concrete values of variables. The

variety in h is not conveyed to the output sequence, and there is no flow from h to the output. To discover

this fact, however, the automaton requires information about the real values of variables. This is not the case

with the work proposed here, as well as in the majority of works on noninterference. Therefore, the above

example is out of reach of the proposed monitoring mechanism.

An uncommon benefit. The following is an example of program which the monitor can handle more

precisely than static analyses. As above, the program has only two inputs, h (secret) and l (public), and

publicly outputs the value of x at the end of the execution.
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1 i f l

2 then x := 1

3 e l s e x := h

4 end;
5 output x

This program has some unsafe executions, those for which l is false, and some safe executions, those

for which l is true. For unsafe executions, the monitoring mechanism presented in this chapter does not

modify the values of the variables. At the end of any unsafe execution x is equal to h. So, it leaves the

internal state of the program (the mapping form variables to values) as it should be. However, it outputs a

default value instead of the value of x. In that manner, it prevents unsafe executions to reveal private data.

On safe executions of this program, the monitor does not alter the behavior of the program (i.e. output 1).

Thus, it leaves the safe executions unaltered.

Section 3.4.1 exhibits the potential of this monitoring mechanism. In order to formally demonstrate it,

the next section gives a formal definition of the monitoring automaton and of the monitoring semantics.

3.2 Definition of the Monitoring Mechanism

The monitoring mechanism is divided into two main elements. The first is an automaton similar to edit

automata (Ligatti et al., 2005). Inputs to the automaton are abstractions of the actions accomplished during

an execution. The automaton tracks information flow and authorizes, forbids or edits the actions of the

monitored execution to enforce noninterference. The second element of the monitoring mechanism is a

semantics of monitored executions that merges together the behavior of the monitoring automaton and that

of the standard output semantics in Figure 3.2. This section first describes the monitoring automaton and

then the semantics of monitored executions.

3.2.1 The Automaton

The transition function of the automaton used to monitor an execution is independent of the program mon-

itored. However, the set of states of the automaton, as well as its starting state, depends on the program

monitored.

Let A? be the set of all strings over the alphabet A. For any program P, whose variables belong to X and

the set of secret input variables is S(P) (S(P) ⊆ X), the automaton enforcing noninterference is the tuple

A(P) = (Q,Φ,Ψ, δ, q0) where:

• Q is a set of states (Q ⊂ 2X × {>,⊥}?),

• Φ is the input alphabet, constituted of abstractions of a subset of program events, specified below,

• Ψ is the output alphabet, constituted of execution controlling commands, specified below,

• δ is a transition function (Q × Φ) −→ (Ψ × Q),
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• q0, an element of Q, is the start state (q0 = (S(P), ε)).

Automaton states. An automaton state is a pair (V,w). V ⊆ X contains all the variables whose current

value may have been influenced by the initial values of the variables in S(P); w, which belongs to {>,⊥}?,

can be seen as a stack that tracks variety in the context of the execution. In our approach, the context consists

only in the program counter’s value. If > occurs in w, then the statement executed belongs to a conditional

whose test may have been influenced by the initial values of S(P). Hence the statement may not have been

executed for a different choice of initial values of S(P).

For any given program, the number of states of this automaton is finite. As the number of variables

used by a given program is finite, V is a finite set. Assuming that there are a bounded number of function

calls, the length of w can be bounded. The maximum length of this word is equal to the maximum depth of

conditionals. For example, with a program having no functions and a single conditional, the second element

of a state is a word whose maximum length is 1. Hence, for any program P with a bounded number of

function calls, the number of states ofA(P) is finite.

Automaton inputs. The input alphabet of the automaton (Φ) consists of abstractions of events that occur

during an execution. The input alphabet is composed of the following:

“branch e” is generated each time a branching statement has to be evaluated. e is the expression which

(or whose value) determines the branch which is executed. For example, before the evaluation of

the statement “if x > 10 then S 1 else S 2 end”, the input branch x > 10 is sent to the monitoring

automaton.

“exit” is generated each time a branching statement has been evaluated. For example, after the evaluation

of the statement “if x > 10 then S 1 else S 2 end”, the input exit is sent to the monitoring automaton.

“not S ” is generated each time a piece of code, S , is not evaluated. It is sent just after the execution of the

piece of code which has been executed instead of S . For example, the statement “if x then S 1 else S 2 end”,

with x being true, generates the automaton input not S 2 just after the execution of S 1.

“A” is any atomic action of the language (assignment, skip or output statement). Any such action is sent

to the automaton for validation before its execution. The automaton will either allow or deny — i.e.

skip — the execution of the action, or ask for another action to be executed instead of A.

For simplicity, we assume that the input events are generated dynamically by the interpreter that implements

the monitoring semantics. However, in order to improve efficiency, a compiler can easily embed such events

into a program’s compiled code. Every conditional is preceded by a “branch e” event and followed by an

“exit” event. Every branch of a conditional is followed by a “not S ” event for every other branch S of the

conditional. In fact, as the automaton applies a static analysis on S , the compiler would rather include an

event incorporating the result of the static analysis on S . The execution of every action (assignment, skip or

output statement) is conditioned by the answer of the security automaton.
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Automaton outputs. Outputs are sent back from the automaton to the monitoring semantics in order to

control the execution. The output alphabet (Ψ) is composed of the following:

“ACK” is used as answer for any input which is not an atomic action of the language. The automaton

acknowledges the reception of information useful for tracking potential information flows but which

does not require an intervention of the automaton.

“OK” is used whenever the monitoring automaton authorizes the execution of an atomic action.

“NO” is used whenever the monitoring automaton forbids the execution of an atomic action.

“A” is any atomic action of the language. This is the answer of the monitoring automaton whenever another

action, A, has to be executed instead of the current one.

Automaton transitions. Figure 3.3 specifies the transition function of the automaton. A transition is

written:

(q, φ)
ψ
−→ q′

It reads as follows: in the state q, on reception of the input φ, the automaton moves to state q′ and outputs ψ.

LetV(e) be the set of variables occurring in e. For example,V(x + y) returns the set {x, y}. Let modified(S )

be the set of all variables whose value may be modified by an execution of S . This function is used in order

to take into account the implicit indirect flows created when a branch is not executed. A formal definition of

this function follows:

modified(x := e) = {x}

modified(output e) = modified(skip) = ∅

modified(S 1 ; S 2) = modified(S 1) ∪modified(S 2)

modified(if e then S 1 else S 2 end) = modified(S 1) ∪modified(S 2)

modified(while e do S done) = modified(S )

Figure 3.3 shows that the automaton forbids (NO) or edits (output θ) only executions of output state-

ments. For other inputs, it merely tracks, in the set V , the variables that may contain secret information

(have variety), and it tracks, in w, the variety of the branching conditions.

Inputs “branch e” are generated at entry point of conditionals. On reception of such inputs in state

(V ,w), the automaton checks if the value of the branching condition (e) might be influenced by the initial

values of S(P). To do so, it computes the intersection of the variables appearing in e with the set V . If the

intersection is not empty, then the value of e may be influenced by the initial values of S(P). If this is the

case then the automaton pushes > at the end of w; otherwise it pushes ⊥. In either case, the automaton

acknowledges the reception of the input by outputting ACK.

Whenever execution exits a branch — which is a component of a conditional c — the input “exit” is

sent to the automaton. The last letter of w is then removed. As any such input matches a previous input

“branch e” — generated by the same conditional c — which adds a letter to the end of w, the effect of

“exit” is to restore the context to its state before the conditional was processed.

39



C 3 NONINTERFERENCE MONITORING

((V
,w

),
b
r
a
n
c
h

e)
AC

K
−−−−→

(V
,w
>

)
iff
V

(e)
∩

V
,
∅

(T-B
R

A
N

C
H

-high)

((V
,w

),
b
r
a
n
c
h

e)
AC

K
−−−−→

(V
,w
⊥

)
iff
V

(e)
∩

V
=
∅

(T-B
R

A
N

C
H

-low
)

((V
,w

a),
e
x
i
t)

AC
K

−−−−→
(V
,w

)
(T-E

X
IT

)

((V
,w

),
n
o
t

S
)

AC
K

−−−−→
(V
∪

m
odified(S

),w
)

iff
w
<
{⊥
} ?

(T-N
O

T-high)

((V
,w

),
n
o
t

S
)

AC
K

−−−−→
(V
,w

)
iff

w
∈
{⊥
} ?

(T-N
O

T-low
)

((V
,w

),
skip)

O
K
−−→

(V
,w

)
(T-SK

IP)

((V
,w

),
x

:=
e)

O
K
−−→

(V
∪
{x
},w

)
iff

w
<
{⊥
} ?

or
V

(e)
∩

V
,
∅

(T-A
SSIG

N
-sec)

((V
,w

),
x

:=
e)

O
K
−−→

(V
\
{x
},w

)
iff

w
∈
{⊥
} ?

and
V

(e)
∩

V
=
∅

(T-A
SSIG

N
-pub)

((V
,w

),
outpute)

O
K
−−→

(V
,w

)
iff

w
∈
{⊥
} ?

and
V

(e)
∩

V
=
∅

(T-PR
IN

T-ok)

((V
,w

),
outpute)

output
θ

−−−−−−→
(V
,w

)
iff

w
∈
{⊥
} ?

and
V

(e)
∩

V
,
∅

(T-PR
IN

T-def)

((V
,w

),
outpute)

N
O
−−→

(V
,w

)
iff

w
<
{⊥
} ?

(T-PR
IN

T-no)

Figure
3.3:Transition

function
ofm

onitoring
autom

ata

40



D   M M 3.2

Inputs “not S ” are generated at exit point of conditionals. It means that, due to the value of a previous

branching condition, statement S has not been executed. This detects implicit indirect flows. On input

“not S ” in state (V ,w), the automaton verifies whether S may have been executed with differing values for

S(P). This is the case if the context of execution carries variety (i.e. if w does not belong to {⊥}?). Let

(V ′,w′) be the new state of the automaton. If the context carries variety then V ′ is the union of V with the

set of variables whose values may be modified by an execution of S . Otherwise, nothing is done.

Atomic actions (assignment, skip or output) are sent to the automaton for validation before their exe-

cution. The atomic action skip is considered safe because the noninterference definition considered in this

work is not time sensitive. Hence the automaton always authorizes its execution by outputting OK.

When executing an assignment (x := e), two types of flows are created. The first is a direct flow from e

to x. The second flow is an explicit indirect flow from the context of execution (i.e., the program counter)

to x. For example, the execution of the assignment in “if b then x := y else skip end” creates such a flow

from b to x. Both forms of flows are always created when an assignment is executed. What is important

is to check if secret information is carried by one of the flows (i.e., if variety in S(P) is conveyed by one

of the flows). Hence, on input x := e, the automaton checks if the value of the origin of one of those two

flows is influenced by the initial values of S(P). For instance, if b is true in “if b then x := y else skip end”,

y is the origin of a direct flow to x and b is the origin of an explicit indirect flow to x. The origin of the

explicit indirect flow is influenced by S(P) only if w contains >, meaning that the value of the condition of

a previous (but still active) conditional was potentially influenced by the initial values of S(P). The origin

of the direct flow is influenced by S(P) only if V(e) and V are not disjoint. If the value of e is influenced

by the initial values of S(P) then at least one of the variables appearing in e has been influenced by S(P).

Such variables are members of V . Let (V ′,w′) be the new automaton state after the transition. If the origin

of either the direct flow or the explicit indirect flow is influenced by the initial values of S(P), then x (the

variable modified) is added to V: V ′ = V ∪ {x}. On the other hand, if none of the origins are influenced

by the initial values of S(P), then x receives a new value which is not influenced by S(P). In that case, V ′

equals V \ {x}. This makes the mechanism flow-sensitive.

The rules for the automata input, “output e,” prevent bad flows through two different channels. The first

one is the actual content of what is output. In a public context, (w ∈ {⊥}?), if the program tries to output a

secret (i.e., the intersection of V and the variables in e is not empty), then the value of the output is replaced

by a default value θ. This value can be a message informing the user that, for security reasons, the output

has been denied. To do so, the automaton outputs a new output statement to execute in place of the current

one. The second channel is the behavior of the program itself. This channel exists because, depending on

the path followed, some outputs may or may not be executed. Hence, if the automaton detects that this

output may not be executed with different values for S(P) (the context carries variety) then any output must

be forbidden; and the automaton outputs NO.

3.2.2 The Semantics

The automaton alone does not enforce noninterference. It needs to receive inputs which abstract the events

occurring during the execution. The outputs of the automaton must also be taken into consideration to
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control the execution of the program in order to enforce noninterference. The semantics linking the standard

output semantics in Figure 3.2 with the monitoring automaton is given in Figure 3.4.

This semantics is described using evaluation rules written:

(q, σ) 
 S
o
=⇒ (q′, σ′)

This reads: statement S executed in automaton state q and program state σ yields automaton state q′,

program state σ′, and output sequence o. There are three rules for atomic actions: skip, x := e and output e.

There is one rule for each possible automaton answer to the action executed. Either the automaton authorizes

the execution (OK), denies the execution (NO), or replaces the action by another one. The rules use the

standard semantics (Figure 3.2) when an action must be executed. In the case where the execution is denied,

the evaluation omits the current action (as if the action was ”skip”). For the case where, on reception of

input A, the monitoring automaton returns A′, the monitoring semantics executes A′ instead of A. Note from

Figure 3.3, that A′ can only be the action that outputs the default value (output θ).
For conditionals, the evaluation begins by sending to the automaton the input “branch e” where e is

the test of the conditional. Then, the branch designated by e is executed (in the case of a while statement

whose test is false, the branch executed is “skip”). The execution follows by sending the automaton input

“not S ” where S is the branch not executed (in case of a while statement whose test is true, what happens

is equivalent to sending the automaton input “not skip”). Finally, the input “exit” is sent to the automaton

and the execution proceeds as usual. In the case of a while statement with a condition equals to true, the

execution proceeds by executing the while statement once again.

3.3 Example of monitored execution

Table 3.1 is an example of monitored execution. The monitored program is given in column “Program P”.

It has only two inputs: h, a private (or high) input, and l, a public (or low) input. The execution monitored is

the one for which h equals true and l equals 22. S(P), the set of secret inputs of P, is {h}. So the initial state

of the automaton is ({h}, ε). Column “input” contains the inputs which are sent to the automaton. The two

following columns contain the result of the automaton transition function: “output” contains the output sent

back to the semantics, and “new state” shows the new internal state of the automaton after the transition.

Finally, the last column shows the actions which are really fulfilled by the monitored execution.

In this example, there are only two alterations of the execution (on lines 5 and 8). The first occurs

when the program attempts to output a value influenced by S(P) – output y. At this point of the execution,

the value contained in y has been influenced by the initial values of the variables belonging to S(P). This is

known because y belongs to the first element of the automaton state before execution of line 5. Consequently,

the automaton disallows the output of this value. However, the fact of outputting something in itself is safe

because the context of execution (the program counter) has not been influenced by S(P) (the second element

of the automaton state belongs to {⊥}?). Hence, the automaton replaces the current action by an output

action whose value is a default one (therefore not influenced by S(P)). This value lets the user know that an

output action has been denied for security reasons.
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(q, A)
OK
−−→ q′ σ ` A

o
=⇒ σ′

(q, σ) 
 A
o
=⇒ (q′, σ′)

(EM(s)-OK)

(q, A)
A′
−−→ q′ σ ` A′

o
=⇒ σ′

(q, σ) 
 A
o
=⇒ (q′, σ′)

(EM(s)-EDIT)

(q, A)
NO
−−→ q

(q, σ) 
 A
ε
=⇒ (q, σ)

(EM(s)-NO)

(q, σ) 
 S 1
o1
==⇒ (q1, σ1) (q1, σ1) 
 S 2

o2
==⇒ (q2, σ2)

(q, σ) 
 S 1 ; S 2
o1 o2
====⇒ (q2, σ2)

(EM(s)-SEQ)

σ(e) = v (q, branch e)
ACK
−−−−→ q1

(q1, σ) 
 S v
o
=⇒ (q2, σ1)

(q2, not S ¬v)
ACK
−−−−→ q3 (q3, exit)

ACK
−−−−→ q4

(q, σ) 
 if e then S true else S false end
o
=⇒ (q4, σ1)

(EM(s)-IF)

σ(e) = true (q, branch e)
ACK
−−−−→ q1

(q1, σ) 
 S
ol
=⇒ (q2, σ1) (q2, exit)

ACK
−−−−→ q3

(q3, σ1) 
 while e do S done
ow
==⇒ (q4, σ2)

(q, σ) 
 while e do S done
ol ow
====⇒ (q4, σ2)

(EM(s)-WHILEtrue)

σ(e) = false (q, branch e)
ACK
−−−−→ q1

(q1, not S )
ACK
−−−−→ q2 (q2, exit)

ACK
−−−−→ q3

(q, σ) 
 while e do S done
ε
=⇒ (q3, σ)

(EM(s)-WHILE f alse)

Figure 3.4: Semantics of monitored executions

On line 8, the program tries to output something while the current context of execution has been influ-

enced by S(P). Hence, if the output occurs, the sequence generated by the execution is influenced by some

secret values. Therefore the automaton denies any output; it does not even give another action to execute in

place of the current one. The semantics does as if the action was “skip”.

Static analyses reject the whole program. Notice that some executions of this program are interfering.

Therefore, any sound static analysis for noninterference rejects this program. Users have then the choice to
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Program Automaton: Actions
P input output new state executed

1 x := l + 3; x := l + 3 OK ({h} , ε) x := l + 3
2 if (x > 10) then branch x > 10 ACK ({h} , ⊥)
3 y := h; y := h OK ({h,y} , ⊥) y := h
4 output x; output x OK ({h,y} , ⊥) output x
5 output y; output y output θ ({h,y} , ⊥) output θ

6 if (h) then branch h ACK ({h,y} , ⊥>)
7 z := 0; z := 0 OK ({h,y,z} , ⊥>) z := 0
8 output x output x NO ({h,y,z} , ⊥>)
9 else x := 1 not x := 1 ACK ({h,y,z,x} , ⊥>)

10 end exit ACK ({h,y,z,x} , ⊥)
11 else skip not skip ACK ({h,y,z,x} , ⊥)
12 end exit ACK ({h,y,z,x} , ε)

Table 3.1: Example of the automaton evolution during an execution.

throw away the program or run it without any guarantees regarding the security of their private data — more

accurately, with a hint that the confidentiality of their private data will not be respected.

Using the monitoring mechanism proposed in this chapter, the user can run the program safely, with

regard to the confidentiality of its private data. Section 3.4.1 proves that the confidentiality of its private data

will be respected by any monitored executions. The user will obtain a normal output whenever l is lower or

equal to 7 and, in other cases, a degraded but safe output.

3.4 Properties of the Monitoring Mechanism

The preceding sections gave a formal definition of the monitoring mechanism and an example of its behavior.

We now consider the “efficiency” of the monitoring mechanism with regard to the standard notions of

soundness and completeness — or transparency, for monitors.

A first theorem proves that any monitored execution is a noninterfering execution. This proves the

soundness of the monitoring mechanism.

The problem of noninterference is undecidable. It is then impossible to achieve completeness. However,

a second theorem proves that the monitor is transparent — does not alter observable behavior — for a

non-trivial set of executions.

Complete proofs of these theorems can be found in Appendix A.

3.4.1 Soundness

The soundness property of the monitoring mechanism is based on the notion of noninterference between the

secret inputs and the output sequence of an execution. An execution is considered safe — knowing that the

program’s source is public — if and only if it does not convey the variety in its secret inputs to the output

sequence, that is, if the secret inputs have no influence on the execution’s outputs.
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Definition 3.4.1 (Output of a monitored execution: [[P]]σ).
For all programs P, with set of secret inputs S(P), and value store σ, [[P]]σ is the output sequence obtained

via the monitored execution of P in the initial state ((S(P), ε), σ). This definition is formally stated as follows:

[[P]]σ = o if and only if ∃ q′, σ′ : ((S(P), ε), σ) 
 P
o
=⇒ (q′, σ′)

Let X
= be the equivalence relation between value stores defined as follows: σ1

X
= σ2 if and only if σ1 and

σ2 are indistinguishable for X, i.e., σ1 and σ2 associate the same value to every variable in X. Let Xc be the

complement of set X in X (Xc ∪ X = X ∧ Xc ∩ X = ∅). The following theorem states that every monitored

execution is safe, i.e. it is noninterfering.

Theorem 3.4.1 (Soundness: monitored executions are noninterfering).
For all programs P, whose set of secret inputs is S(P), and value stores σ1 and σ2,

( σ1
S(P)c

= σ2 ∧ [[P]]σi defined for i ∈ {1, 2} ) ⇒ [[P]]σ1 = [[P]]σ2

Proof sketch. The proof — which follows directly from lemma A.1.6 on page 134 — goes by induction

on the derivation tree of [[P]]σ1. It relies on the fact that, after any “step” in the evaluation of [[P]]σ1 and

“equivalent step” in the evaluation of [[P]]σ2, the automaton states of both executions are equal and the value

stores are indistinguishable for the complement of the first element of the automaton states.

3.4.2 Partial Transparency

Transparency is a common notion in the domain of monitoring. A transparent monitor is one that has no

observable effect from the user’s point of view. Using the monitor presented in this chapter, any terminating

monitored execution is non-interfering. However, to achieve this goal, the monitor sometimes modifies the

output sequence of the execution. The sequence of outputs resulting from the execution of program P with

initial state σ might differ according to the semantics used, the standard one (Figure 3.2) or the monitoring

semantics (Figure 3.4). Theorem 3.4.2 defines a subset of the set of noninterfering executions on which the

monitoring mechanism has no impact. It shows that the mechanism proposed in this chapter preserves the

output sequence of any execution of a program which is well typed under a security type system similar to

the one of Volpano et al. (1996). In other words, the monitor is transparent for any program which is well

typed under the type system of Volpano et al. (1996).

Figure 3.5 shows the security type system. It is the same one as that of Volpano et al. (1996) except for

a small modification of the typing environment and the addition of a rule for output statements (which are

not in the language of (Volpano et al., 1996)). The typing environment, γ, prescribes types for identifiers

and is extended to handle expressions. γ(e) is the type of the expression e in the typing environment γ. The

lattice of types used has only two elements and is defined using the reflexive relation ≤ (L ≤ H). L is the

type for public data and H the type for private data. A program P is well typed if it can be typed under a

typing environment γ in which every secret input is typed secret (i.e. ∀x ∈ S(P), γ(x) = H).
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γ(e) = τ′ τ′ ≤ τ

γ ` e : τ
(T-EXP)

γ(x) = τ′ γ ` e : τ′ τ ≤ τ′

γ ` x := e : τ cmd
(T-ASSIGN)

γ ` skip : τ cmd
(T-SKIP)

γ ` e : L
γ ` output e : L cmd

(T-PRINT)

γ ` S 1 : τ cmd γ ` S 2 : τ cmd
γ ` S 1 ; S 2 : τ cmd

(T-SEQ)

γ ` e : τ′ γ ` S 1 : τ′ cmd γ ` S 2 : τ′ cmd τ ≤ τ′

γ ` if e then S 1 else S 2 end : τ cmd
(T-IF)

γ ` e : τ′ γ ` S : τ′ cmd τ ≤ τ′

γ ` while e do S done : τ cmd
(T-WHILE)

Figure 3.5: The type system used for comparison

The problem of noninterference is neither dynamically nor statically decidable. Consequently, the mon-

itoring mechanism proposed in this chapter is not complete or transparent. However, Theorem 3.4.2 states

that the monitoring mechanism does not alter executions of well typed programs. To show that the inclusion

is strict, consider the following program: x := h; x :=0; output x. h is the only secret input. Every

execution is noninterfering. But as the type system is flow insensitive, this program is ill-typed. However,

the monitoring mechanism does not interfere with the outputs of this program while still guaranteeing that

any monitored execution is noninterfering.

Theorem 3.4.2 (Pseudo-transparency: monitoring preserves type-safe programs).
For all programs P with secret inputs S(P), typing environments γ with variables belonging to S(P) typed

secret, types τ, and value stores σ and σ′,

γ ` P : τ cmd

σ ` P
o
=⇒ σ′

 ⇒ [[P]]σ = o

46



C 3.5

Proof sketch. The proof — which follows directly from lemma A.2.5 — goes by induction on the derivation

tree of the unmonitored evaluation of P. It relies on the fact that the unmonitored evaluation of any well typed

command is matched by an equivalent monitored evaluation.

3.5 Conclusion

This chapter addresses the security problem of confidentiality from the point of view of noninterference. It

presents a monitoring mechanism enforcing noninterference of any execution. This monitoring mechanism

is based on a semantics that communicates with a security automaton. During the execution, the semantics

generates automaton inputs abstracting the events that occur. The automaton tracks the flows of information

between the secret inputs and the current value of the program’s variables. It also validates the execution of

atomic actions (mainly outputs) to ensure confidentiality of the secret inputs.

Because the proposed monitoring mechanism enforces noninterference, it significantly differs from stan-

dard monitors (Schneider, 2000; Viswanathan, 2000). Usually, monitors are only aware of statements which

are really executed. With the mechanism proposed, when exiting a conditional, the branch which has not

been executed is analyzed. This takes into account implicit indirect flows between the test of a conditional

and those variables whose values would be modified by the execution of the branch which is not executed.

As noticed — but not elaborated on — by Vachharajani et al. (Vachharajani et al., 2004, Sect. 4.2.2), this

feature is required in order to enforce noninterference.

Section 3.4.1 shows that any monitored execution is noninterfering. Thus a user having access to the

low outputs of a monitored execution is unable to deduce anything about the values of the secret inputs. In

addition, the monitoring mechanism is proved not to alter executions of a program which is well typed under

a type system similar to the one of Volpano, Smith and Irvine (Volpano et al., 1996).

Chapter 4 addresses the extension of the monitoring mechanism to a concurrent setting that includes a

synchronization command. The goal is to achieve more precision than a type system equivalent to, e.g., the

concurrent one due to Smith and Volpano (Smith and Volpano, 1998).
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Chapter 4

Noninterference Monitoring of Concurrent
Programs

Chapter 3 presented an automaton-based noninterference monitoring mechanism for

sequential programs. The current chapter extends this work to a concurrent setting.

Monitored programs consist of a set of threads running in parallel. Such threads run

programs similar to those of Chapter 3 with the inclusion of a synchronization com-

mand. The monitoring mechanism is still based on a security automaton and on a

combination of dynamic and static analyses. As in Chapter 3, the monitoring seman-

tics sends abstractions of program events to the automaton, which uses the abstractions

to track information flows and to control the execution by forbidding or editing dan-

gerous actions. All monitored executions are proved to be noninterfering (soundness)

and executions of programs that are well typed in a security type system similar to the

one of Smith and Volpano (1998) are proved to be unaltered by the monitor (partial

transparency).

The content of this chapter has been published in (Le Guernic, 2007a,b).

4.1 Introduction

Similar to Chapter 3, the monitoring mechanism presented in this chapter aims at protecting the confiden-

tiality of private data manipulated by any program. As previously, the notion of confidentiality is based on

the property of noninterference between the values of private inputs and the sequence output by the pro-

gram during its execution. Whereas the previous chapter deals with deterministic sequential programs, the

monitor presented in this chapter deals with nondeterminism and concurrency. Programs, in this chapter,

are pools of sequential programs described using a language equivalent to the one of Chapter 3 except for

the addition of a synchronization command similar to the one used in (O’Hearn, 2004). The other main
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difference lies in the semantics used: Chapter 3 uses a big-step (or natural (Kahn, 1987)) semantics, and

therefore it takes into account only terminating executions. Use of a big-step semantics is inconvenient

when dealing with thread interleaving and nontermination. Hence, this chapter uses a small-step semantics.

This modification allows the work presented in this chapter to additionally take into account nonterminating

executions.

Trying to enforce dynamically the confidentiality of private data when dealing with concurrency and

synchronization is very difficult. Synchronization commands may prevent some output sequences to oc-

cur. Therefore, as demonstrated by the example 4.5 on page 58, when the execution of a synchronization

command is conditioned by a private data, the value of this private data is revealed whenever the program

outputs a sequence which can not occur if the synchronization command is executed. More insidious, a

valid mechanism for sequential programs protecting private data stored in variables may not be usable in

a concurrent setting; even if it is still efficient at its work with concurrent programs. When handled inac-

curately, the mechanism protecting private data stored in global variables can create a new covert channel

revealing the value of other private data. An attacker making use of this subtlety is given in Figure 4.6(b)

on page 59. Nondeterminism in thread interleaving also brings its share of difficulties. In Chapter 3, pro-

grams were deterministic and therefore always output the same sequence of public values if executed with

the same inputs. This is not the case in the multi-threaded setting. This has an impact on the definition

of noninterference which must be used. The reason is that even noninterfering programs do not output the

same sequence whenever they are executed with the same public inputs. Hence, the monitor will not ensure

that any execution started with the same public inputs generates the same public output sequence. Instead, it

ensures that, for any execution started with the same public inputs, there exists a thread interleaving which

generates a public output sequence, or a prefix of it, equal to the sequence of public outputs generated so far

by the currently monitored execution. Therefore an attacker can not deduce any information about private

input. This is due to the fact that, with the scheduler used for a monitored execution, an attacker does not

know which precise thread interleaving has been used.

This chapter follows a presentation similar to Chapter 3. It starts by presenting the language used: its

syntax (Section 4.1.1) and semantics (Section 4.1.2). It also introduces, in Section 4.1.3, the principles used

by the monitoring mechanism presented in this chapter. Section 4.2 defines formally the security automa-

ton which is at the heart of the monitoring mechanism. The following section characterizes the monitoring

semantics which links the monitoring automaton previously presented with the standard semantics given in

Section 4.1.2. Then, comes an example in Section 4.4, which examines the evolution of the monitoring au-

tomaton during an execution. Finally, before concluding in Section 4.6, two main properties of the monitor,

soundness and partial transparency, are proved in Section 4.5.

4.1.1 The Language: Syntax

A concurrent program is a pool of threads (Θ). Before execution, each thread contains a sequential program.

Such a pool is formally defined as a partial function from integers to sequential programs: Θ(i) is the ith

sequential program of the pool. The grammar of the sequential programs is given in Figure 4.1. In order

to gain simplicity while describing the semantics, the grammar is split into four different blocks. In this
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grammar, 〈ident〉 stands for a variable name (or identifier). As in any programming language, variables have

an associated value which can be updated by an assignment. In the concurrent setting, each variable has also

an associated unique lock. Variable locks can be acquired and then released by threads. Whenever a thread

has acquired a lock but not released it yet, this thread is said to own this lock. A given lock can be owned

by at most one thread at any time. 〈expr〉 is an expression of values and variable names. The expressions

taken into consideration in this language are such that their evaluation always terminates, is deterministic

– their evaluation in a given program state always result in the same value — and is free of side effects —

their evaluation has no influence on the program state.

〈action〉 ::= 〈ident〉 := 〈expr〉

| output 〈expr〉

| skip
〈control〉 ::= if 〈expr〉 then 〈prog〉 else 〈prog〉 end

| while 〈expr〉 do 〈prog〉 done
| with 〈ident-set〉 when 〈expr〉 do 〈prog〉 done

〈com〉 ::= 〈action〉 | 〈control〉

〈prog〉 ::= 〈prog〉 ; 〈prog〉 | 〈com〉

Figure 4.1: Grammar of the language for sequential programs in the concurrent setting

A sequential program (〈prog〉) is either a sequence of sequential programs or a command (〈com〉). Ac-

tions (〈action〉) and control commands (〈control〉) are the only two types of commands. An action is either

an assignment of the value of an expression (〈expr〉) to a variable (〈ident〉), an output of the value of an ex-

pression, or a skip (which does nothing). A control command is either a conditional executing one program

— out of two — depending on the value of an expression, a loop executing a program as long as the value of a

given expression remains true, or a synchronization command (with 〈ident-set〉when 〈expr〉 do 〈prog〉 done).

This command is executed only if no other thread owns one of the locks of the given set of variables

(〈ident-set〉) and the value of the expression (〈expr〉) is true. Otherwise, the thread executing this synchro-

nization command is blocked. Once the command is executed, it is replaced by the program it encompasses

(〈prog〉) and its thread acquires the locks of 〈ident-set〉.

The syntax and semantics of the synchronization command comes from previous works by Hoare (1972)

and Brookes (2004). It has been chosen for its ability to encode easily lots of different synchronization

constructions. It allows the monitoring mechanism to deal with only one synchronization construction while

keeping the language expressive with regard to synchronization. Figure 4.2 shows how to encode Java’s

“synchronized” command and standard semaphores using the synchronization command in this chapter.

The synchronization command complicates the work of the monitor. As Figure 4.2 indicates, it is not

infrequent for the expression in a synchronization command to be simply the constant “true”. In such cases,

the monitor can deal with synchronization commands more accurately. This explains why the special case,
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synchronized(x){P} ≡ with x when true do P done
P(s) ≡ with s when s > 0 do s := s − 1 done
V(s) ≡ with s when true do s := s + 1 done

Figure 4.2: Encoding of different synchronization commands

where the expression is the constant “true”, is taken into account in the monitoring mechanism exposed in

this chapter (cf the definition of stoppable(with x̄ when e do S done) on page 63).

4.1.2 The Language: Standard Semantics

During the execution, a thread does not necessarily contain a sequential program (〈prog〉) as defined in

Figure 4.1. In fact, a thread under execution contains an execution statement (〈exec-stat〉), which is either

empty (∅), a usual sequential program (〈prog〉), an execution statement followed by a sequential program

(〈exec-stat〉 ; 〈prog〉), or a locked statement, written �〈ident-set〉[〈exec-stat〉] and carrying additional infor-

mation about the locks owned by this particular thread. The grammar of execution statements is given in

Figure 4.3 and is based on the grammar of sequential programs (Figure 4.1). A locked statement (�x̄[P])

〈exec-stat〉 ::= ∅

| 〈prog〉

| 〈exec-stat〉 ; 〈prog〉

| �〈ident-set〉[〈exec-stat〉]

Figure 4.3: Grammar of sequential programs under execution

is obtained after the execution of a synchronization command (with x̄ when e do P done). When a thread

Θ(i) executes a synchronization command, it acquires the locks of the variables given in parameter (x̄). This

information is registered in the program state to forbid other threads from acquiring those locks as long as

the thread Θ(i) has not released them. However, the thread Θ(i) is still allowed to execute synchronization

commands on those locks — i.e. acquire again the same locks. The information needed to allow a thread

to acquire again the same lock is not registered in the program state. The locks a given thread is allowed

to acquire again are registered in its sequential program itself by the substitution of the synchronization

command just evaluated by a locked statement. This locked statement contains the variables whose locks

have just been acquired and the program to be executed while holding those locks.

A statement under execution (an execution statement) is a set — potentially empty — of nested locked

statements followed by a usual sequential program. For this reason, we see that the language generated by

the BNF rules of Figure 4.3 for execution statements (〈exec-stat〉) is, with n ≥ 0:(
� 〈ident-set〉[

)n (
〈prog〉 + ∅

)︸                 ︷︷                 ︸
NESP

( (
; 〈prog〉

)?
]

)n (
; 〈prog〉

)?
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NESP is the position in the execution statement where the next step of execution of the thread will take

place.

Concurrent program semantics. A concurrent program under execution is a pool of execution state-

ments. One step of execution of a concurrent program consists of one execution step for one of the execution

statements of the thread pool. There is no constraint on which thread has to be evaluated. The scheduler

used for the thread interleaving is a nondeterministic one. After each step of execution, the next thread to

execute is nondeterministically selected among those which can take an execution step.

Let ς and ς′ denote execution states, and S ′ı denote an execution statement. The semantics of unmoni-

tored executions of concurrent programs (pool of threads) is given by the following rule:

ı ∈ dom(Θ) 〈| ς ` Θ(ı) |〉
o
−→O 〈| ς

′ ` S ′ı |〉

〈| ς ` Θ |〉
o
−→O 〈| ς

′ ` Θ[ı 7→ S ′ı ] |〉
(EO-CONCUR)

As explained above, to take one execution step of a thread pool Θ in state ς, the scheduler selects nonde-

terministically a thread ı whose execution statement (Θ(ı)) can take one execution step. One execution step

of this execution statement, in state ς, yields execution statement S ′ı , execution state ς′ and output sequence

o. Therefore, one execution step of the thread pool Θ can, if ı is selected by the scheduler, yield the output

sequence o, execution state ς′ and the thread pool in which the ıth thread’s statement is S ′ı and the other

execution statements are the same as in Θ.

Execution statement semantics. The semantics of concurrent programs is based on the semantics of

execution statements which is described in Figure 4.4. This latter semantics is based on rules written in the

format:

〈| ς ` S |〉
o
−→O 〈| ς

′ ` S ′ |〉

The rules mean that, in the execution state ς, statement S evaluates to statement S ′ yielding state ς′ and

output sequence o. Let X be the domain of variable identifiers and D be the semantic domain of values.

An execution state ς is a pair (σ, λ) composed of a value store σ (X → D) and a lock set λ (2X). σ maps

variable identifiers to their respective current value. The definition of value stores is extended to expressions,

so that σ(e) is the value of the expression e in a program state whose value store is σ. λ is a set of variable

identifiers. It corresponds to the set of variables whose lock is currently owned by a thread. An output

sequence is a word in D?. It is either an empty sequence (written ε), a single value (for example, σ(e)) or

the concatenation of two other sequences (written o1 o2).

As shown by the rule (EO-WITH), if the prerequisites allow it, the execution of a synchronization com-

mand yields an execution statement, �x̄[P], where x̄ is a set of variable identifiers. This rule states that if the

conditions hold, a synchronization command is replaced by the program P it includes. The current thread

will now own the locks of the variables belonging to x̄.

Example of thread pool execution. Let Θ be the thread pool described in Table 4.1 on page 54. With any

initial execution state (σ, λ), where λ is empty, any of Θ’s threads can take one execution step.
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〈| (σ, λ) ` x := e |〉
ε
−→O 〈| (σ[x 7→ σ(e)], λ) ` ∅ |〉 (EO-ASSIGN)

〈| (σ, λ) ` output e |〉
σ(e)
−−−→O 〈| (σ, λ) ` ∅ |〉 (EO-OUTPUT)

〈| ς ` skip |〉
ε
−→O 〈| ς ` ∅ |〉 (EO-SKIP)

σ(e) = v
〈| (σ, λ) ` if e then S true else S false end |〉

ε
−→O 〈| (σ, λ) ` S v |〉

(EO-IF)

σ(e) = true

〈| (σ, λ) ` while e do S l done |〉
ε
−→O 〈| (σ, λ) ` S l ; while e do S l done |〉

(EO-WHILEtrue)

σ(e) = false

〈| (σ, λ) ` while e do S l done |〉
ε
−→O 〈| (σ, λ) ` ∅ |〉

(EO-WHILEfalse)

x̄ ∩ λ = ∅ σ(e) = true

〈| (σ, λ) ` with x̄ when e do S s done |〉
ε
−→O 〈| (σ, λ ∪ x̄) ` �x̄[S s] |〉

(EO-WITH)

〈| ς ` S h |〉
o
−→O 〈| ς

′ ` ∅ |〉

〈| ς ` S h ; S t |〉
o
−→O 〈| ς

′ ` S t |〉
(EO-SEQaction)

〈| ς ` S h |〉
o
−→O 〈| ς

′ ` S h′ |〉 S h′ , ∅

〈| ς ` S h ; S t |〉
o
−→O 〈| ς

′ ` S h′ ; S t |〉
(EO-SEQbranch)

〈| (σ, λ − x̄) ` S s |〉
o
−→O 〈| (σ

′, λ′) ` ∅ |〉
〈| (σ, λ) ` �x̄[S s] |〉

o
−→O 〈| (σ

′, λ′) ` ∅ |〉
(EO-LOCKEDaction)

〈| (σ, λ − x̄) ` S s |〉
o
−→O 〈| (σ

′, λ′) ` S s′ |〉 S s′ , ∅

〈| (σ, λ) ` �x̄[S s] |〉
o
−→O 〈| (σ

′, λ′ ∪ x̄) ` �x̄[S s′ ] |〉
(EO-LOCKEDseq)

Figure 4.4: Output semantics of sequential programs in the concurrent setting

53



C 4 NONINTERFERENCE MONITORING OF CONCURRENT PROGRAMS

Thread Execution statement

1 with x, y when true do x := x + 1 ; y := y + 1 done

2 with x, y when true do x := 2 × x ; y := 2 × y done

3 if b then x := 0 ; y := 0 else skip end ; output x ; output y

Table 4.1: Thread pool execution (initial thread pool)

Assuming the scheduler selects the first thread, one execution step of Θ yields the thread pool Θ1 (de-

scribed in Table 4.2). The new execution state is (σ1, λ1) where σ = σ1 and λ1 = {x, y}. As at least one of x

and y belongs to λ1, the second thread can not take an execution step. Therefore, there can be no concurrent

access of the two first threads on the pair (x, y). For the next step, the scheduler can select only the first or

third thread.

Thread Execution statement

1 �x, y[x := x + 1 ; y := y + 1]

2 with x, y when true do x := 2 × x ; y := 2 × y done

3 if b then x := 0 ; y := 0 else skip end ; output x ; output y

Table 4.2: Thread pool execution (after the execution sequence [1])

Assuming the execution take one step in thread 3 (with σ(b) = true) and then one other step in thread 1,

the new thread pool is Θ3 (described in Table 4.3). The new execution state is (σ3, λ3) where σ3 = σ1[x 7→

σ1(x) + 1] and λ3 = λ1. As at least one of x and y belongs to λ1, the second thread can not take an execution

step. However, the third thread can take an execution step, and then modify the pair (x, y) concurrently with

the first thread.

Thread Execution statement

1 �x, y[y := y + 1]

2 with x, y when true do x := 2 × x ; y := 2 × y done

3 x := 0 ; y := 0 ; output x ; output y

Table 4.3: Thread pool execution (after the execution sequence [1, 3, 1])

4.1.3 Monitoring Principles

The mechanism developed in this chapter is a monitor aiming at enforcing the confidentiality of private

data manipulated by any concurrent program. In order to achieve this goal, the monitoring mechanism is

designed to enforce a stronger property based on the notion of noninterference. The informal definition

of this notion (Goguen and Meseguer, 1982) states that a program is “safe” if its private inputs have no
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influence on the observable behavior of the program. This definition is stated at the level of the whole

program (or at the level of all its executions as a whole). On the other hand, a monitor acts at the level of

one execution and not of all executions of a program. Consequently, it is necessary to refine the notion of

noninterference in order for it to be applicable to a single execution.

The remainder of the current section starts by giving some definitions which are then used to define

formally the notion of noninterference for executions. Subsequently, it provides a short description of the

way the monitor works. Finally, by commenting upon two examples of concurrent programs, it illustrates

some of the difficulties of monitoring noninterference and the solutions adopted.

An initialized program is a program whose inputs are set. More formally, as described by Defini-

tion 4.1.1, an initialized program is a pair composed of a program, P, and a program state, X. The set

of program states includes the set of execution states defined on page 52 and the set of monitored execution

states defined on page 67. By extension, an initialization of a program P is an initialized program whose

first element is P. The execution of an initialized program (P, X) is the execution of P with the initial state

X. With a deterministic semantics, the output sequence generated by the execution of an initialized program

is unique. Generally, in a concurrent setting, this is not the case: the output sequence generated during the

execution of an initialized program depends on the nondeterministic thread interleaving. In this chapter, the

observable behavior of an execution is the output sequence generated. By extension, the observable behav-

ior of an initialized program in a deterministic setting is the output sequence generated by its execution.

However, in a nondeterministic concurrent setting, the output sequence generated by the execution of an ini-

tialized program depends on the thread interleaving which occurred during the execution. The definition of

the observable behavior of an initialized program in a nondeterministic setting must then take into account

all those possible output sequences. Additionally, as it is also desired to take into account non-terminating

executions, our definition of observable behavior must also take into consideration the observable behavior

of an initialized program at any step of its execution, not only the final one. Definition 4.1.2 states that

the observable behavior of an initialized concurrent program (Θ, X) is the set of all prefixes of any output

sequence which can be obtained by an execution of Θ in the initial state X.

Definition 4.1.1 (Initialized program).
An initialized program is a pair (P, X) composed of a program, P, and a program state, X.

Definition 4.1.2 (Observable behavior: O[[Θ]]sX).
Let→s denote a small-step semantics. For all concurrent programs Θ and program states X, the observable

behavior with the semantics→s of the initialized program (Θ, X), written O[[Θ]]sX, is the set:

{ o | ∃ X′,Θ′ : 〈| X ` Θ |〉
o
−→

?

s 〈| X
′ ` Θ′ |〉 }

What is a noninterfering concurrent execution? In order to prove the monitor’s soundness with regard

to noninterference in section 4.5.1, it is required first to define precisely “noninterference” in our concurrent

setting. A program P is said to be noninterfering if and only if its private inputs have no influence on the

observable behavior of the program. Noninterference for a program P is usually characterized as follows:
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the observable behaviors of any two initializations of P, which differ only in the values of private inputs, are

the same.

The monitoring mechanism does not determine if a program is or is not noninterfering, but rather if a

precise execution is or is not noninterfering. It then has to determine if, by looking at the current output

sequence, it is possible to differentiate the initialized program executed from initializations of the same pro-

gram with the same public inputs but potentially different private inputs. This is possible only if the output

sequence, the observable behavior, of the current execution — which follows a precise thread interleaving

— of the program P can not be produced, for any thread interleaving, from another initial state X2 having the

same public inputs; in other words, only if there exists an initial state X2, having the same public inputs as the

initial state of the current execution, such that the output sequence of the current execution does not belong

to the observable behavior of the initialization with X2 of the same program (O[[Θ]]sX2). Definition 4.1.4

characterizes a noninterfering execution as an execution whose output sequence belongs to the observable

behavior of any initialization of the same program with an initial state low equivalent (Definition 4.1.3) to

the initial state of the current execution.

Definition 4.1.3 (Low Equivalent States).
Two states X1, respectively X2, containing the value stores σ1, respectively σ2, are low equivalent with

regards to a set of variables V, written X1
V
= X2, if and only if the value of any variable belonging to V is

the same in σ1 and σ2:

X1
V
= X2 ⇐⇒ ∀x ∈ V : σ1(x) = σ2(x)

Definition 4.1.4 (Noninterfering Execution).
Let Vc be the complement of V in the set X and →s denote a small-step semantics. For all concurrent

programs Θ, program states X1 and output sequences o, an execution with the semantics→s of the initialized

program (Θ, X1) generating the output sequence o is noninterfering, written ni(Θ, s, X1, o), if and only if:

∀X2 : X1
S(Θ)c

= X2 ⇒ o ∈ O[[Θ]]sX2

Notice that the scheduler used for the thread interleaving is nondeterministic. The attacker cannot as-

sume any knowledge prior to the execution about the precise thread interleaving; as it could do with a

Round-Robin scheduler. After each step of execution, the next thread to execute is nondeterministically se-

lected among those which can take an execution step. Such a scheduler avoids timing covert channels which

are based on the hypothesis that the attacker is able to guess accurately in which order the scheduler will

execute the different threads. When dealing with schedulers which are deterministic, the solutions proposed

in (Russo et al., 2006) are applicable.

The notion of noninterference used in this chapter relates to the notion of possibilistic noninterference

(Sutherland, 1986) and not the notion of probabilistic noninterference (Volpano and Smith, 1999). Relating

to static analyses, a program is noninterfering if and only if all its executions are noninterfering. Compared

to Chapter 3, the definition of noninterference used in this chapter takes into consideration nontermination,

which is not the case of the work presented in the preceding chapter. Let P be the following program where

h is a secret input: while h do skip done ; output 0. From the point of view of Chapter 3, every terminating
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execution of P is safe as any such execution outputs the same sequence. However, using Definition 4.1.4, any

terminating execution of P is considered interfering as any such executions outputs 0 and only executions

for which h is false do the same.

How does the monitor enforce noninterference? As in Chapter 3, the monitoring mechanism is sepa-

rated into two parts. The first element, described in Section 4.3, is a special semantics which delegates the

main job to a security automaton described in Section 4.2. The purpose of the special semantics is to select

and abstract the important events, with regard to noninterference, which occur during the execution. The

abstractions of those events are then sent to the security automaton. For each input received, the automaton

sends back to the semantics an output. Depending on those outputs received, the special semantics modifies

the normal execution of the program. The security automaton is in charge of keeping track of the variables

whose value carries variety — i.e. their value is influenced by the values of the private inputs — and keeping

track of variety in the context of execution — i.e. the program counter — of each thread independently.

With regard to synchronization commands, the solution adopted follows the standard solution found in

the literature (Sabelfeld, 2001). Synchronizations inside the branch of a conditional whose branching con-

dition is influenced by the private inputs are forbidden. However, it is impossible to stop the execution when

encountering a synchronization command inside a conditional whose branching condition carries variety.

Doing so would create a new covert channel leaking information to low-level users if a public output was

supposed to occur later in the execution. One solution would consist in ignoring synchronization commands

in a context carrying variety. The drawback of this solution is to suppress synchronizations that the program-

mer deemed it wise to include. The solution adopted in the monitor presented in this chapter is to force any

synchronization to occur outside any conditional whose branching expression carries variety. Whenever the

monitoring mechanism has to evaluate a conditional whose test is influenced by the secret inputs, it executes

the locking part of any synchronization command appearing in any branch of the conditional.

The monitoring mechanism by the example. As with the monitor described in Chapter 3, the security

automaton is unaware of the precise values of variables. Consequently, it sometimes concludes that variety is

carried to a variable when it is not the case. A typical example is when a variable is assigned the same value

in all branches of a conditional whose condition carries variety. In such a case, the value of the assigned

variable is always the same at the end of the conditional. However, capturing this particular situation is

outside the scope of the proposed monitor and of the majority of works on noninterference.

Synchronization commands are interference prone. Figure 4.5 contains the code of a concurrent

program. It is composed of two threads, has a single private input (h) and uses an internal variable v which

is never output. The first thread (Figure 4.5(a)) takes the lock of the variable v and then outputs “a” followed

by “b” before releasing the lock. The second thread (Figure 4.5(b)) outputs “c”; then, if the private input h

is true, it tries to acquire the lock of v and then releases it; finally, it outputs “d”. What can be deduced by a

low-level user if it sees the output sequence “a c d b”? From the code of thread Θ(1), it is possible to deduce

that the first thread owns the lock of v at least from the time the program outputs “a” until it outputs “b”.
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1 with v when true do
2 output "a";
3 ...
4 output "b"
5 done

(a) Thread Θ(1)

1 output "c";
2 i f h
3 then
4 with v when true do
5 ...
6 done
7 e l s e sk ip
8 end;
9 output "d"

(b) Thread Θ(2)

Figure 4.5: Example of interference due to a lock

Consequently, as “c” and “d” are output between “a” and “b”, thread Θ(2) has evaluated every command

between the two outputs of “c” and “d” without needing to acquire the lock of v. It is then easy, by looking at

the code of Θ(2), to deduce that the private input h is false. The “bad” flow from h to the output sequence

is due to the synchronization commands on v.

For some output sequences, as “a c d b”, it is possible to deduce that the synchronization command in

Θ(2) has not been executed, which in turn allows to deduce the value of h. It is worthwhile to notice that not

evaluating the synchronization command in Θ(2) — i.e. h is false— leads to a “bad” flow, but that this is

not the case for the evaluation of the synchronization command in Θ(2) — i.e. h is true. If h is true, it is

impossible to deduce it from the output sequence. Indeed, whatever output sequence is generated when h is

true, there exists a thread interleaving when h is false generating the same output sequence.

To prevent the “bad” flow presented above, it is not a good idea to simply stop the execution whenever a

synchronization command has to be executed inside a conditional whose condition carries variety. In the ex-

ample presented, the synchronization command in Θ(2) is not executed. Stopping the program each time the

program has to evaluate a conditional whose condition carries variety and which contains a synchronization

command is not appealing either. And, it does not seem wise to ignore any synchronization command inside

a conditional whose condition carries variety. There may be a good reason for having one synchronization

command in the previous example, avoiding a concurrent write access to the variable v for example. The

solution adopted by the monitoring mechanism presented in this chapter consists in acquiring all the locks

of any synchronization command appearing in any branch of a conditional whose condition carries variety

before evaluating such a conditional. This mechanism prevents the program from outputting “a c d b” even

if h is false.

Be cagey with newsmongers. Figure 4.6(a) contains the code of a Very Important Program (VIP)

which has a single private input (h) and is run concurrently with the program in Figure 4.6(b). This latter

program is a newsmonger which outputs indefinitely and as fast as it can some of the variables manipulated

by the VIP (x and y). By itself, the VIP is not leaking any secret information, the main reason being

that it does not output anything. This program only sets x to 0, then y to 0 and finally resets both to 1.
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However, depending on the value of its private input, it resets first x or y to 1. The interference comes

1 x := 0; y := 0;
2 i f h then
3 x := 1; y := 1
4 e l s e
5 y := 1; x := 1
6 end;

(a) VIP

1 whi le true do
2 output x;
3 output y;
4 done

(b) Newsmonger

Figure 4.6: Example of interference due to concurrent access

from the newsmonger. If the newsmonger is lucky enough, and the VIP unlucky enough, the scheduler

will let the newsmonger take at least two steps, so outputting x and y, while the VIP is in the middle of

resetting those variables to 1. It is then easy, depending on which one of x and y has been reset to 1 first, to

deduce the value of the private input h. The newsmonger is able to steal the value of the private input of an

unmonitored execution of the VIP. Less intuitively, it is also possible, if the scheduler gives a high priority

to the newsmonger, to deduce the value of h if the execution is supervised by a monitor which takes into

account indirect flows created by an assignment only when this assignment is evaluated. The reason is that,

in between the two assignments resetting x and y to 1, those two variables do not have the same security

level. Consequently, such a “bad” monitor does not act the same way for the commands “output x” and

“output y” if only one of x and y has been reset to 1.

The monitoring mechanism proposed in this chapter takes into account an indirect flow as soon as the

conditional which is the source of this flow is executed. For any execution of the VIP, this means that x

and y get a high security level at the same time — when the conditional branching on h is first evaluated.

Therefore, the monitor has the same behavior for the two commands “output x” and “output y” — output

a default value instead of the value of x or y. The newsmonger is then unable to steal the VIP’s secret.

The remainder of the chapter is organized as follows. Section 4.4 describes precisely the behavior of

the monitoring mechanism on an example. Before that, the next two sections give a formal definition of the

monitoring mechanism: first of the security automaton used, and then of the special semantics communicat-

ing with this automaton.

4.2 The Monitoring Automaton

This section describes the security automaton used in the monitoring mechanism. It is in charge of tracking

the information flows and controlling the execution in order to enforce noninterference. The semantics

described in section 4.3 sends abstractions of the execution events to this automaton. In turn, the monitoring

automaton sends back directions to the semantics to control the execution, thus enforcing noninterference.
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Notations. For any set S, let 2S be the power set of S. For any set A, let A? be the set of all strings over the

alphabet A. For any sequential program P whose variables belongs to X, let the set of private input variables

be S(P) (S(P) ⊆ X).

The monitoring automaton is formally defined using multisets (Blizard, 1988; Syropoulos, 2001). A

multiset, sometimes called a bag, is a pair (A,m) where A, called underlying set of elements, is a set and

m (A → N) maps elements from A to their number of occurrences, called multiplicity. For example, if

A = {a, b, c}, m(a) = 2, m(b) = 0 and m(c) = 1 then (A,m) defines the multiset {a, a, c}. In the following,

if m (M → N) denotes a multiset — which is known from the context — then it is the multiset (M,m).

Consequently, m must be total over the underlying set of elements of the multiset. However, for simplicity,

even if x does not belongs to the domain of the underlying function m, written dom(m), m(x) is considered

to be defined and equal to 0. The empty multiset, written ∅, is the multiset whose underlying function has

an empty domain.

Operations on multisets are defined as follows. For any multisets m, n and f :

m ⊆ n iff ∀x : m(x) ≤ n(x)

m = n iff ∀x : m(x) = n(x)

(m ] n) = f iff ∀x : f (x) = m(x) + n(x)

(m ∪ n) = f iff ∀x : f (x) = max(m(x), n(x))

(m ∩ n) = f iff ∀x : f (x) = min(m(x), n(x))

(m \ n) = f iff ∀x : f (x) = max(0,m(x) − n(x))

If one of those operations involve a multiset and a set S, this set is considered as the multiset whose under-

lying set of elements is S and whose elements have a multiplicity of 1.

Formal definition of the monitoring automaton for sequential programs. The preceding sections pre-

sented the monitoring mechanism as if it is using a single monitoring automaton. However, the monitoring

automaton for a concurrent program is defined by first defining monitoring automata for sequential pro-

grams. A concurrent program is a pool of threads, each of which contains a single sequential program. Each

time the “automaton” of the concurrent program Θ receives an input φ, generated by an evaluation step in

a sequential program Θ(i), a state for the monitoring automaton of Θ(i) is extracted from the state of the

monitoring automaton of Θ. Then, the monitoring automaton for sequential programs takes a transition on

input φ generating output ψ. Finally, the state of the monitoring automaton of Θ is updated using the new

state returned by the transition of the monitoring automaton for sequential programs and the output ψ is sent

back to the monitoring semantics.

For any program P, let X be the set of variables of P. The automaton enforcing noninterference for the

sequential program P is the tupleA(P) = (Q,Φ,Ψ, δ, q0) where:

• Q is a set of states (Q = 2X × (X→ N) × 2X × {>,⊥}?);

• Φ is the input alphabet, constituted of abstractions of a subset of program events, specified below;
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• Ψ is the output alphabet, constituted of execution controlling commands, specified below;

• δ is a transition function (Q × Φ) −→ (Ψ × Q);

• q0, an element of Q, is the start state (q0 = (S(P), ∅, ∅, ε)).

The automaton states. An automaton state is a quadruple (V,W, L,w) composed of two sets (V and

L) of variables belonging to X, a multiset (W) of variables belonging to X and a word (w) belonging to a

language whose alphabet is {>,⊥}. At any step of the execution, V contains all the variables which may

carry variety — i.e. whose values may have been influenced by the initial values of the secret input variables

(S(P)). L contains the variables whose lock may be owned by a thread at an “equivalent” step of an execution

of the same program started with the same public inputs but potentially different private inputs. L is the part

of the automaton state which protects secret data against attacks similar to the one described in the example

about synchronization commands on page 57. W contains at least once each variable which is assigned

in a branch of a still active conditional whose condition carries variety. For example, at any step of the

execution of line 3 or 5 of the program in Figure 4.6(a), W contains x and y. W is the part of the automaton

state which protects secret data against attacks similar to the one described in the newsmonger’s example

on page 58. w, called a branching context, tracks variety in the context of the execution with regard to

previous branching commands. The context consists in the level of variety the conditions of the previous,

but still active, branching commands. If w contains >, then the statement executed was initially a branch of

a conditional whose test may have been influenced by the initial values of S(P). Hence this statement may

not be executed with a different choice of initial values for the private input variables (S(P)).

Automaton inputs. The input alphabet of the automaton (Φ) contains abstractions of the events, in-

teresting for noninterference monitoring, that can occur during an execution. The alphabet Φ consists of the

following:

“branch(λ, e, Pe, Pu)” is generated each time a conditional is evaluated. λ is the set of variables whose

lock is currently owned by some thread, e is the expression whose value determines the branch

which is executed, Pe is the branch which will be executed, and Pu is the branch which will not

be executed. For example, with ((σ, λ), q) being the monitored execution state, before evaluation of

“if x > 10 then S 1 else S 2 end”, the input “branch(λ, x > 10, S 1, S 2)” is sent to the monitoring

automaton if x is greater than 10.

“merge(Pe, Pu)” is generated each time a conditional has been fully evaluated. Pe is the branch which

has been executed, and Pu is the branch which has not been executed. After evaluation of “if x >

10 then S 1 else S 2 end”, for example, the input “merge(S 1, S 2)” is sent to the monitoring automaton.

“sync(x̄, e)” is generated before any synchronization command. For example, before evaluation of “with x, b when b do S s done”,

the input “sync({x, b}, b)” is generated.

any atomic action of the language (assignment, skip or output statement). Any action which has to be

evaluated is first sent to the automaton for validation before its execution.
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Automaton outputs. The automaton outputs control the behavior of the monitoring semantics. They

are sent back from the automaton to the monitoring semantics in order to control the execution. The output

alphabet (Ψ) is composed of the following:

“OK” is used whenever the monitoring automaton allows an execution step that it could have altered or

denied.

“NO” is used whenever the monitoring automaton forbids the execution of an action. This action is simply

skipped by the monitored execution.

any atomic action of the language. This is the answer of the monitoring automaton whenever another action

than the current one has to be executed.

Compared to Chapter 3, the output “ACK” has disappeared. The reason is that the automaton can block

the execution on any non-action commands. In Chapter 3, some inputs do not require intervention of the

automaton on the execution. Their only goal is to help the automaton track useful information. There is not

anymore such automaton inputs for this chapter.

Automaton transitions. Figure 4.7 specifies the transition function of the automaton. A transition

rule is written:

(q, φ)
ψ
−→ q′

It reads as follows: in the state q, on reception of the input φ, the automaton moves to state q′ and outputs

ψ. Let FV(e) be the set of variables occurring in e. For example, FV(x + y) returns the set {x, y}.

Let modified(S ) be the set of all variables whose value may be modified by an execution of S . This

function is used in order to take into account the implicit indirect flows created when a conditional whose

condition carries variety is evaluated. The formal definition of this function follows:

modified(x := e) = {x}

modified(output e) = ∅

modified(skip) = ∅

modified(S 1 ; S 2) = modified(S 1) ∪modified(S 2)

modified(if e then S 1 else S 2 end) = modified(S 1) ∪modified(S 2)

modified(while e do S done) = modified(S )

modified(with x̄ when e do S done) = modified(S )

Let NLocks(S ) be the set of all variables whose lock may required in order to execute S . This function

is used by the monitoring automaton in order to “virtually” acquire all the locks which may be needed for

the complete evaluation of a conditional whose condition carries variety. Those locks are not acquired by

the current thread. They will be only when their corresponding synchronization command will be executed.

However, the monitoring automaton registers them in its state. Before allowing the evaluation of a condi-

tional whose condition carries variety, the automaton checks that there is no needed lock which is already

registered in the automaton state for another thread. This is done in order to make sure that the evaluation of
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the branch designated by the condition — which carries variety — can not be stopped because of a needed

lock which would be owned by another thread. The formal definition of NLocks(S ) follows:

NLocks(x := e) = ∅

NLocks(output e) = ∅

NLocks(skip) = ∅

NLocks(S 1 ; S 2) = NLocks(S 1) ∪ NLocks(S 2)

NLocks(if e then S 1 else S 2 end) = NLocks(S 1) ∪ NLocks(S 2)

NLocks(while e do S done) = NLocks(S )

NLocks(with x̄ when e do S done) = x̄ ∪ NLocks(S )

Finally, let stoppable(S ) be true if the execution of S may be “stopped”: either by looping, thus prevent-

ing the execution of the remaining of the thread, or waiting on the expression of a synchronization command

to become true. This function is used by the automaton when finishing the complete evaluation of some con-

ditionals whose condition carries variety. This is done in order to prevent an attacker to learn some secret

information by observing from the source code that, in under some conditions, one of the branches of a

conditional, whose condition carries variety, can not terminate. stoppable(S ) is formally defined as follows,

where trueand falseare constants and not values:

stoppable(x := e) iff f alse

stoppable(output e) iff f alse

stoppable(skip) iff f alse

stoppable(S 1 ; S 2) iff stoppable(S 1) ∨ stoppable(S 2)

stoppable(if e then S 1 else S 2 end) iff stoppable(S 1) ∨ stoppable(S 2)

stoppable(while e do S done) iff e , false

stoppable(with x̄ when e do S done) iff e , true ∨ stoppable(S )

It would be possible to increase the precision of this analysis for loop and synchronization statements by

trying to evaluate their expressions rather than simply compare them with the trueand falseconstants.

This could be done using techniques similar to those presented in Chapter 5. However, this would increase

the cost and complexity of the overall dynamic analysis. The remainder of this chapter will proceed with

this purely syntactic analysis.

Figure 4.7 shows that the automaton forbids (NO) or edits (output θ) only executions of output state-

ments. For other inputs, it either allows the evaluation of the statement — a transition exists for the current

input in the current state — or forces the monitoring semantics to take an execution step for another thread

— there is no transition for the current input in the current state. Whenever a transition occurs, the automa-

ton tracks, in the set V , the variables that may contain secret information — have variety. Additionally,

it registers, in W, the variables whose variety may evolve differently due to a conditional whose condition

carries variety, It also tracks, in L, the variables whose lock status may carry variety. Finally, it tracks, in w,

the variety of the branching conditions.
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ṽ,W
]
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Inputs “branch(λ, e, Pe, Pu)” are generated at entry points of conditionals. On reception of such inputs

in state ((V,W, L,w)), if the conditional to be evaluated belongs to a branch of a conditional whose condition

carries variety (w does not belongs to {⊥}?), the automaton simply pushes ⊥ to the end of w. Otherwise, the

automaton checks if the branching condition (e) carries variety, i.e. if its value might be influenced by the

initial values of S(P). To do so, it computes the intersection of the variables appearing in e with the set V . If

the intersection is empty, then the condition of the branching statement does not carry variety. In that case,

the automaton simply pushes ⊥ at the end of w. If the intersection is not empty, then the value of e may be

influenced by the initial values of S(P). If this is the case then the automaton checks if the execution can

proceed without being stopped by a lock that it can not acquire. To do so, it verifies that there is no needed

lock which is already owned by another thread or has already been booked previously for the execution of

a conditional of another thread (l̃ ∩ (λ ∪ L) = ∅). If all needed locks are available, the automaton pushes >

to the end of w, registers the needed locks in the new automaton state and deals with indirect flows. This

is done by adding all variables which may be assigned to in one of the branches of the conditional into the

set of variables potentially carrying variety (V) and into the multiset of variables whose order of assignment

may carry variety (W).

Whenever execution exits a branch — which is a member of a conditional c — the input “merge(Pe, Pu)”

is sent to the automaton. On reception of such input, the automaton checks if other private inputs may have

induced the execution of the conditional to be stopped. This is the case if the condition of the conditional c

carries variety — w ends with >— and the function stoppable() concludes that at least one of the branches

of c can get stuck. If that is not the case, the automaton allows the evaluation step and the last letter of w

is removed. As any such input matches a previous input “branch(λ, e, Pe, Pu)” — generated by the same

conditional c — which adds a letter to the end of w, the effect of “merge(Pe, Pu)” restores the context to its

state before the conditional was processed. Additionally, if c is the first conditional whose condition carries

variety in this sequential program, the variables added into the multiset W for protection while executing c

are removed from the multiset.

Before executing any synchronization command, the monitoring semantics sends to the automaton an

input of type “sync(x̄, e)”. The automaton allows the evaluation step only if the expression in the synchro-

nization command does not carry variety and either the needed locks are not reserved (x̄ ∩ L = ∅) or the

automaton has already booked those locks for the current thread — this is the case if the synchronization

command belongs to a conditional whose test carries variety.

Atomic actions (assignment, skip or output) are sent to the automaton for validation before their exe-

cution. The atomic action skip is considered safe because the noninterference definition considered in this

work is not time sensitive. Hence the automaton always authorizes its execution by outputting OK.

When executing an assignment (x := e), two types of flows are created. The first is a direct flow from

e to x. The second flow is an explicit indirect flow from the context of execution to x. For example, the

execution of the assignment in “if b then x := y else skip end” creates such a flow from b to x. Both forms

of flows are always created when an assignment is executed. Explicit indirect flows are indirect flows and

so are already taken care for by the processing of inputs of type “branch(λ, e, Pe, Pu)”. Therefore, on such

input, the automaton deals only with direct flows. Hence, on input x := e, the automaton checks if the value
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of e carries variety. This is the case only if FV(e) and V are not disjoint. If the value of e is influenced

by the initial values of S(P) then at least one of the variables appearing in e has been influenced by S(P).

Such variables are members of V . Let (V ′,W′, L′,w′) be the new automaton state after the transition. If the

origin of the direct flow is influenced by the initial values of S(P), then x (the variable modified) is added

to V: V ′ = V ∪ {x}. Otherwise x receives a new value which is not influenced by S(P). In that case, V ′

equals V \ {x}. This makes the mechanism flow-sensitive. Other parts of the automaton state do not change:

W′ = W, L′ = L and w′ = w. There is an exception to this rule. If there exists an indirect flow from the

condition carrying variety of a still active conditional then the variable assigned to must not be removed from

the set of variables carrying variety. If such an indirect flow exists then the assigned variable is still under

the protection acquired when the corresponding “branch(λ, e, Pe, Pu)” input has been processed (x ∈ W).

In that case, the variable is left in the set V .

The rules for the automata input, “output e,” prevent bad flows through two different channels. The

first channel is the actual content of what is output. In a public context, (w ∈ {⊥}?), if the program tries to

output a secret (i.e., the intersection of V and the variables in e is not empty), then the value of the output

is replaced by a default value. This value can be a message informing the user that, for security reasons,

the output has been denied. To do so, the automaton outputs a new output statement to execute in place of

the current one. The second channel is the generation of an output by itself. This channel exists because,

depending on the path followed, some outputs may or may not be executed. Hence, if the automaton detects

that this output may not be executed with different values for S(P) (the context carries variety) then any

output must be forbidden; and the automaton outputs NO.

The automaton states for concurrent programs. As explained above, the monitoring automaton for

a concurrent program is based on the monitoring automata for the sequential programs within it. Monitoring

automaton states for concurrent programs are similar to the automata states for sequential programs. An

automaton state is a quadruple (Q = (V,W, L,w)) which belongs to the following set:

2X × (X→ N) × 2X × (N→ {>,⊥}?)

V , W and L are directly inherited from automata states for sequential programs. w is a function mapping

thread identifiers to their respective branching context (as defined for sequential programs).

The functions used to extract, respectively update, the automaton state for a given thread from, respec-

tively into, the automaton state of the concurrent program are defined below.

extractStates((V,W, L,w), ı) = (V,W, L,w(ı)) (4.1)

updateStates((V,W, L,w), ı, (V ′,W′, L′,w′)) = (V ′,W′, L′,w[ı 7→ w′]) (4.2)

The current section defines formally the monitoring automata. Among other things, it defines an input

alphabet and an output alphabet which serve to communicate with the monitoring semantics. This semantics,

described in the next section, is in charge of the concrete evaluation of the concurrent program under the

supervision of the monitoring automaton.
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4.3 The Monitoring Semantics

During a monitored execution, a thread contains a monitored statement (〈monit-stat〉) which is similar to the

execution statements described in Figure 4.3. The addition of branched statements (⊗(〈prog〉, 〈prog〉)[〈monit-stat〉])

is the only difference. The statement ⊗(Pe, Pa)[S ] states that statement S is a partial execution of Pe — i.e.,

S is the result of the application of some execution steps to Pe — and that Pe is the executed branch of a

conditional whose unexecuted branch is Pa. The rule (EM(s)-IF) of Figure 4.9 gives a good intuition of the

meaning of this statement. The grammar of monitored statements is given in Figure 4.8 and is based on the

grammar of sequential programs (Figure 4.1).

〈monit-stat〉 ::= ∅

| 〈prog〉

| 〈monit-stat〉 ; 〈prog〉

| �〈ident-set〉[〈monit-stat〉]

| ⊗(〈prog〉, 〈prog〉)[〈monit-stat〉]

Figure 4.8: Grammar of sequential programs under monitored execution

A statement under execution (an execution statement) is a set — potentially empty — of interwoven

locked statements followed by a usual sequential program. For this reason, we see that the language gener-

ated by the BNF rules of Figure 4.3 for execution statements (〈exec-stat〉) is, with n ≥ 0:

A statement under monitored execution is a set — potentially empty — of interwoven locked statements

and branched statements followed by a usual sequential program. For this reason, we see that the language

generated by the BNF rules of Figure 4.8 for monitored statements is, with n ≥ 0:(
� 〈ident-set〉[ + ⊗ (〈prog〉, 〈prog〉)[

)n (
〈prog〉 + ∅

)︸                 ︷︷                 ︸
NESP

( (
; 〈prog〉

)?
]
)n (

; 〈prog〉
)?

NESP is the position in the monitored statement where the next step of execution of the thread will take

place.

Thread semantics. The monitoring semantics of concurrent programs is based on the semantics of moni-

tored statements which is described in Figure 4.9. This semantics is based on rules written in the format,

〈| ζ 
 S |〉
o
−→M(s) 〈| ζ

′ 
 S ′ |〉

The previous rule reads as follows: in monitored execution state ζ, monitored statement S evaluates to S ′

yielding state ζ′ and output sequence o. A monitored execution state ζ is a pair (ς, q) composed of an

execution state (ς) of the standard semantics and a monitoring automaton state (q).
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Executions of monitored statements interact with the security automaton by sending it an input and

receiving back an output. For simplicity, we assume that the automaton inputs are generated dynamically

by the interpreter that implements the semantics in Figure 4.9 (But a compiler can easily embed such events

into a program’s compiled code). In the rules of the semantics, this is done using automaton transitions

written:

(q, φ)
ψ
−→ q′

This transition states that, in state q, if the automaton receives the input φ then it yields output ψ and the new

automaton state is q′. The semantics of monitored statements also uses the semantics of execution statements

— the standard semantics — for the evaluation of actions (assignments, outputs, or skip statements). Those

semantics can be distinguished by their name appearing on the bottom right of the arrow.

There are three rules for atomic actions: skip, x := e and output e. There is one rule for each possible

automaton answer to the action executed. Either the automaton authorizes the execution (OK), denies the

execution (NO), or replaces the action by another one. The rules use the standard semantics (Figure 4.4)

when an action must be executed. In the case where the execution is denied, the evaluation omits the current

action (as if the action was ”skip”). For the case where, on reception of input A, the monitoring automaton

returns A′, the monitoring semantics executes A′ instead of A. Note from Figure 4.7, that A′ can only be the

action that outputs the default value (output θ).
For conditionals, the automaton receives first the input “branch(λ, e, Pe, Pu)” where λ is the set of

variables whose lock is currently owned by a thread, e is the test of the conditional, Pe is the “branch”

which will be executed and Pu is the “branch” which will not be executed. After the evaluation step, the

monitored execution state is updated with the automaton state returned by the monitoring automaton and the

conditional evaluated is replaced by the branch to execute.

A synchronization command “with x̄ when e do Ps done” can be evaluated only if the needed locks x̄

are not currently owned by another thread, the condition e is true, and the monitoring automaton allows the

evaluation on reception of the input “sync(x̄, e)”. After the evaluation step, the needed locks are added to

the set of locks currently owned by a thread, the automaton state is updated, and the command is replaced

by a locked statement indicating that the locks x̄ are owned by the current thread for the evaluation of the

program Ps.

Evaluating a branched statement (⊗(Pe, Pu)[S b]) is equivalent to evaluating the enclosed statement (S b)

as long as this statement is not completely evaluated. If the evaluation of S b is completed then the input

“merge(Pe, Pu)” is sent to the automaton and the evaluation of the thread can proceed only if the automaton

allows it.

In order to take one evaluation step of a locked statement (�x̄[S s]), the set of locks x̄ is temporarily

removed from the set of owned locks in the execution state. Then, one evaluation step is taken for S s and the

locks x̄ are put back in the set of owned locks in the execution state if the evaluation of S s is not completed.

Concurrent program semantics. As explained in Section 4.2, the automaton states for monitoring the

execution of a single thread are different from the states for monitoring concurrent programs. The descrip-

tion of automaton states for monitoring concurrent programs is given in Section 4.2. Let Q stand for the
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(q, A)
OK
−−→ q′ 〈| ς ` A |〉

o
−→s 〈| ς

′ ` ∅ |〉

〈| (ς, q) 
 A |〉
o
−→M(s) 〈| (ς

′, q′) 
 ∅ |〉
(EM(s)-OK)

(q, A)
A′
−→ q′ 〈| ς ` A′ |〉

o
−→s 〈| ς

′ ` ∅ |〉

〈| (ς, q) 
 A |〉
o
−→M(s) 〈| (ς

′, q′) 
 ∅ |〉
(EM(s)-EDIT)

(q, A)
NO
−−→ q′

〈| (ς, q) 
 A |〉
ε
−→M(s) 〈| (ς, q

′) 
 ∅ |〉
(EM(s)-NO)

σ(e) = v (q, branch(λ, e, Pv, P¬v))
OK
−−→ q′

〈| ((σ, λ), q) 
 if e then Ptrue else Pfalse end |〉
ε
−→M(s) 〈| ((σ, λ), q′) 
 ⊗(Pv, P¬v)[Pv] |〉

(EM(s)-IF)

Ptrue = Pl ; while e do Pl done Pfalse = skip
σ(e) = v (q, branch(λ, e, Pv, P¬v))

OK
−−→ q′

〈| ((σ, λ), q) 
 while e do Pl done |〉
ε
−→M(s) 〈| ((σ, λ), q′) 
 ⊗(Pv, P¬v)[Pv] |〉

(EM(s)-WHILE)

x̄ ∩ λ = ∅ σ(e) = true (q, sync(x̄, e))
OK
−−→ q′

〈| ((σ, λ), q) 
 with x̄ when e do Ps done |〉
ε
−→M(s) 〈| ((σ, λ ∪ x̄), q′) 
 �x̄[Ps] |〉

(EM(s)-WITH)

〈| ζ 
 ∅ ; S t |〉
ε
−→M(s) 〈| ζ 
 S t |〉

(EM(s)-SEQexit)

〈| ζ 
 S h |〉
o
−→M(s) 〈| ζ

′ 
 S h′ |〉

〈| ζ 
 S h ; S t |〉
o
−→M(s) 〈| ζ

′ 
 S h′ ; S t |〉
(EM(s)-SEQstep)

(q, merge(Pe, Pu))
OK
−−→ q′

〈| (ς, q) 
 ⊗(Pe, Pu)[∅] |〉
ε
−→M(s) 〈| (ς, q

′) 
 ∅ |〉
(EM(s)-BRANCHexit)

〈| ζ 
 S b |〉
o
−→M(s) 〈| ζ

′ 
 S b′ |〉

〈| ζ 
 ⊗(Pe, Pu)[S b] |〉
o
−→M(s) 〈| ζ

′ 
 ⊗(Pe, Pu)[S b′ ] |〉
(EM(s)-BRANCHstep)

〈| ((σ, λ), q) 
 �x̄[∅] |〉
ε
−→M(s) 〈| ((σ, λ \ x̄), q) 
 ∅ |〉

(EM(s)-LOCKEDexit)

〈| ((σ, λ \ x̄), q) 
 S s |〉
o
−→M(s) 〈| ((σ

′, λ′), q′) 
 S s′ |〉

〈| ((σ, λ), q) 
 �x̄[S s] |〉
o
−→M(s) 〈| ((σ

′, λ′ ∪ x̄), q′) 
 �x̄[S s′ ] |〉
(EM(s)-LOCKEDstep)

Figure 4.9: Semantics combining the standard semantics and the monitoring automaton
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state of the security automaton for concurrent programs. The monitoring semantics uses two functions for

converting between automaton states for threads and automaton states for concurrent programs. Those func-

tions are described in Section 4.2. Succinctly, extractState(Q, ı) is the automaton state for monitoring the ıth

thread of the concurrent program whose automaton state is Q. updateStates(Q, ı, q) is an automaton state for

concurrent program equivalent to Q except for the ıth thread. Information concerning this thread has been

updated using the information contained in the automaton state for thread monitoring q. The semantics of

monitored executions of concurrent programs is given by the following rule:

ı ∈ dom(Θ)

〈| (ς, extractState(Q, ı)) 
 Θ(ı) |〉
o
−→M(s) 〈| (ς

′, q) 
 S ′ı |〉

〈| (ς, Q) 
 Θ |〉
o
−→M(s) 〈| (ς

′, updateStates(Q, ı, q)) 
 Θ[ı 7→ S ′ı ] |〉

(EM(s)-CONCUR)

To take one execution step of a thread pool Θ in monitored execution state (ς , Q), the scheduler selects

nondeterministically a thread ı whose monitored statement, Θ(ı)), can take one execution step. The au-

tomaton state for the execution of Θ(ı), extractState(Q, ı), is extracted from the automaton state of Θ, Q.

One monitored execution step of this monitored statement, in execution state ς, yields monitored state-

ment S ′ı , execution state ς′, automaton state q, and output sequence o. The new automaton state of Θ,

updateStates(Q, ı, q), is constructed from the previous automaton state of Θ, Q, and the new automaton state

of Θ(ı), q. Consequently, one execution step of the thread pool Θ can, if ı is selected by the scheduler, yield

the output sequence o, monitored execution state (ς′, updateStates(Q, ı, q)), and the thread pool in which the

ıth thread’s statement is S ′ı and the other monitored statements are the same as in Θ.

Initial state of a monitored concurrent execution. There is a unique initial state for monitoring the

execution of a given concurrent program with a given initial value store. Definition 4.3.1 states that the

initial state of the monitored execution of a concurrent program is the monitoring execution state whose

initial value store is the given one, set of owned lock is empty and automaton state designates the value of

the private inputs as the only elements carrying variety.

Definition 4.3.1 (Initial State of Monitored Executions).
For all concurrent programs Θ and value stores σ, let ζI

Θ,σ
be the initial state of the monitored execution of

Θ with initial value store σ. ζI
Θ,σ

is equal to ((σ, ∅), (S(Θ), ∅, ∅, {i 7→ ε | i ∈ dom(Θ)})).

4.4 Example of monitored execution

Figure 4.10 is an example of a concurrent program having two threads. Figure 4.10(a) contains the code of

the sequential program of the first thread and Figure 4.10(b) contains the code of the second thread. This

program has only one private input (h) and no public input. It uses three internal variables (v, b and x).

Both threads attempt to write in the variable v. Both assignments to v are protected by a synchronization on

the lock of v. Additionally, before assigning a value to v, the second thread waits for b to be true. After

assigning a value to v, the second thread outputs twice the value of x. The first thread, depending on the

value of the private input h, either assigns a value to x and outputs “a”, or assigns a value to v. The last

command evaluated by the first thread resets the value of x to 0.
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1 i f h then
2 x := 1;
3 output "a"
4 e l s e
5 with v when true do
6 v := v - 1;
7 done
8 end;
9 x := 0

(a) Thread Θ(1)

1 with v when b do
2 v := v + 1;
3 done;
4 output x;
5 output x

(b) Thread Θ(2)

Figure 4.10: Another concurrent program

Table 4.4 shows the evolution of the monitoring automaton for an execution of the program of Fig-

ure 4.10. This execution starts in an initial state where the private input h is true. As the program has only

one private input (h) and two threads, the initial state of the monitoring automaton is the following one:

({h}, ∅, ∅, [1 7→ ε, 2 7→ ε])

The execution’s steps are numbered on the left. The first column of the table shows the value of the program

counters of the two threads. “ı B ” and “ı I ” indicates that the program counter of the ıth thread maps to

the line . 0 is used for  when the execution of the thread is completed. I is used to designate the thread

which will be evaluated at this execution step. The following column contains the event abstractions which

are sent by the semantics to the automaton. In this column, Pt stands for the lines 2 to 3 of the first thread

and P f stands for the lines 5 to 7 of the first thread. Then comes the answer of the automaton telling the

semantics what action to take. The 4th column gives the new state of the automaton following the transition

triggered by the automaton input that is shown on the same line. The automaton state before the transition

is the one of the preceding line. Finally, the last column lists the actions which are actually evaluated by the

monitored execution of the program.

Program Automaton: Actions
counters input output new state executed

1 1 B 1 2 I 1 sync({v}, b) OK ({h} , ∅ , ∅ , [1>ε, 2>ε])
2 1 B 1 2 I 2 v := v + 1 OK ({h} , ∅ , ∅ , [1>ε, 2>ε]) v := v + 1
3 1 I 1 2 B 4 branch(∅, h, Pt, P f ) OK ({h, x, v}, {x, v}, {v}, [1>>, 2>ε])
4 1 B 2 2 I 4 output x output θ ({h, x, v}, {x, v}, {v}, [1>>, 2>ε]) output θ
5 1 I 2 2 B 5 x := 1 OK ({h, x, v}, {x, v}, {v}, [1>>, 2>ε]) x := 1
6 1 I 3 2 B 5 output ”a” NO ({h, x, v}, {x, v}, {v}, [1>>, 2>ε])
7 1 I 8 2 B 5 merge(Pt, P f ) OK ({h, x, v}, ∅ , ∅ , [1>ε, 2>ε])
8 1 I 9 2 B 5 x := 0 OK ({h, v} , ∅ , ∅ , [1>ε, 2>ε]) x := 0
9 1 B 0 2 I 5 output x OK ({h, v} , ∅ , ∅ , [1>ε, 2>ε]) output x

Table 4.4: Example of the automaton evolution during an execution.
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At the execution step 2, the only thread which can be executed is the second one. The reason is that

at the preceding step, the second thread took the lock of v. The first command to be executed by the first

thread is a conditional containing a synchronization command on v. Therefore, to execute the first thread,

the monitor requires this thread to be able to acquire the lock of v. This is impossible as this lock is owned

by the second thread. Hence, even if the branch to be executed is not the one containing the synchronization

command, the program can not evaluate the conditional of the first thread. An example that justifies this rule

has been given on page 57.

Execution step 3 evaluates the conditional of the first thread. This conditional, whose condition carries

variety, contains an assignment to x in one branch and an assignment to v in the other one. In order to

prevent an attack similar to the one exposed on page 58, the monitor considers those variables (x and v)

as carrying variety straight away, even if there respective assignments have not been evaluated yet. This is

done by adding the variables to the first element of the new automaton state. A clever newsmonger may

try to dupe the monitor into believing that those variables do not carry variety anymore by resetting their

value. To prevent it, the monitor also registers that those variables carry variety because of the processing of

a conditional. This is done by adding them into the multiset which is the second element of the new state.

Variables x and v will appear at least once in this multiset as long as the processing of the conditional which

added them into it is not over. Furthermore, as stated in the explanation of step 2, the first thread acquires

the lock of v because the conditional processed at this step is conditioned by an expression carrying variety

and contains a synchronization command on v in one of its branches. Finally, the monitor registers the new

context of execution — reflecting the fact that the branch that will be executed depend on an expression

carrying variety — by adding > to the word associated with the identifier of the first thread in the forth

element of the new state.

In step 4 of the execution, the second thread attempts to output the value of x. This variable belongs

to the first element of the automaton state before the transition. This means that the value of x may carry

variety. Therefore, the monitor replaces the value of x by a default value. It allows the user to know that

an output as been prevented for security reasons. Five steps later, at step 9, the second thread tries again to

output the value of x. However, in the meanwhile, the first thread has reset the value of x to a new value.

Doing so, it removed the variety in this variable. This is reflected by the fact that x does not belong anymore

to the first element of the automaton state. Therefore, the monitoring automaton lets the output occur.

In step 6 of the execution, the first thread attempts to output a constant while still in one of the branch

of a conditional whose condition carried variety. This is an unsafe behavior that the monitor forbids. Con-

sequently, the execution simply skips this command.

This section shows an example execution for which the monitoring mechanism is able to ensure the con-

fidentiality of private inputs. The next section proves this fact for any monitored execution. In steps 4 and 6

of the example execution, the monitor alters the standard behavior of the program. Section 4.5.2 studies the

impact of the monitor on a given category of programs.
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4.5 Properties of the Monitoring Mechanism

This section collates the monitor’s characteristics to the standard properties of soundness with regards to

noninterference and, specific to monitors, transparency with regards to the output sequence generated. A

monitor is transparent with regard to a program behavior if, for any execution, this behavior is the same

whether the execution is monitored or not. Section 4.5.1 proves the soundness of the monitoring mecha-

nism with regard to the notion of noninterference. However, as the noninterference problem is statically

undecidable, it is of course impossible for the monitor to be complete without running all the executions

starting with the same public inputs as the execution currently monitored. As well, it is impossible to have

a sound and transparent monitor for noninterference, as with an interfering execution the monitor can be

either transparent or sound but not both. However, section 4.5.2 still proves that the monitor is transparent

for a nontrivial set of executions.

4.5.1 Soundness

The monitoring mechanism is proved to be sound with regard to the noninterference property for executions.

This means that, for any output sequences generated during the monitored execution of any program Θ

started in the initial state ζI
Θ,σ

and value stores σ′ low equivalent to σ, there exists a thread interleaving

such that during the monitored execution of Θ started in the initial state ζI
Θ,σ′

the same output sequence is

generated. This property is formally stated by theorem 4.5.1.

Theorem 4.5.1 (Monitored Executions are Noninterfering).
For all programs Θ, value stores σ, any monitored execution of Θ started in the initial state ζI

Θ,σ
is nonin-

terfering. This is formally stated as follows:

∀Θ,∀σ ∈ (X→ D) : o ∈ O[[Θ]]M(O)ζ
I
Θ,σ ⇒ ni(Θ,M(O), ζIΘ,σ, o)

Proof sketch. The proof — which follows directly from lemma B.2.8 — goes by induction on the derivation

tree of the current execution (ec). First, it relies on the fact that, because of the monitoring mechanism, for

any evaluation started with the same public inputs there exists an execution (e2) having a thread interleaving

“similar” to the one of the current execution. Additionally, it is demonstrated that, if a thread of e2 follows

a path in its sequential program different from the path followed by the equivalent thread in ec, nothing will

be output by those threads until they reach an “equivalent state”. It is then possible to show that ec and e2

have the same output sequence.

4.5.2 Partial Transparency

A common property stated for monitors is transparency. A transparent monitor is one that does not alter

the behavior of the monitored program. An interfering execution has, with regard to confidentiality, a

faulty observable behavior. Therefore, a sound monitor enforcing noninterference has to alter the observable

behavior of such an execution. Consequently, it is impossible for a sound monitor enforcing noninterference

to also be transparent. However, for a precise set of programs, it is possible to prove that the monitoring
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mechanism presented in this chapter achieves transparency — i.e. it does not alter the observable behavior

of any execution of those programs. This set of programs is the set of all programs which are well-typed

under a type system similar to the one of Smith and Volpano (Smith and Volpano, 1998).

This type system is described in Figure 4.11. The language used in this chapter includes two structures

which do not appear in the language used in (Smith and Volpano, 1998). The two typing rules added for

those structures are the only salient differences with the type system of Smith and Volpano (Smith and

Volpano, 1998). The lattice of types used has only two elements and is defined using the reflexive relation ≤

(L ≤ H). L is the type for public data and H the type for private data. The typing environment, γ, prescribes

types for identifiers and is extended to handle expressions. γ(e) is the type of the expression e in the typing

environment γ. It is equal to the least upper bound of the types of the free variables appearing in e, or L if

there is no free variable in e. It is formally defined as follows:

γ(e) =
⊔

x∈FV(e)

γ(x)

For any sequential program P, if “γ ` P : τ cmd” for some τ and γ in which every secret input is typed secret

— i.e. ∀x ∈ S(P), γ(x) = H — then P is said to be well-typed under the typing environment γ. For any

concurrent program Θ, if all its threads contain a program well-typed under the same typing environment γ,

then Θ is said to be well-typed under this typing environment γ. This is written “γ ` Θ”.

Theorem 4.5.2 states that the monitoring mechanism does not alter executions of well-typed programs.

In other words, the monitoring mechanism is transparent for any well-typed program. To understand that

the monitor is transparent, and still sound, for a bigger set of programs, consider the concurrent program

composed only of this sequential program : x := h; x :=0; output x. h is the only secret input. Every

execution is noninterfering. But as the type system is flow insensitive, this program is ill-typed. However,

the monitoring mechanism does not interfere with the outputs of this program while still guaranteeing that

any monitored execution is noninterfering.

Theorem 4.5.2 (Partial Transparency: monitoring preserves type-safe programs).
For all programs Θ with secret inputs S(Θ), typing environments γ with variables belonging to S(Θ) typed

secret, and value stores σ, if Θ is well-typed under γ then any monitored execution of Θ started in the initial

state ζI
Θ,σ

outputs a sequence which belongs to the observable behavior of the unmonitored execution of Θ

started in the initial state (σ, ∅). This is formally stated as follows:

γ ` Θ ⇒ O[[Θ]]M(O)ζ
I
Θ,σ = O[[Θ]]O(σ, ∅)

Proof sketch. The proof follows directly from lemmas B.3.2 and B.3.3 by induction on the length of the

derivation of the executions.
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γ(e) = τ′ τ′ ≤ τ

γ ` e : τ
(T-EXP)

γ(x) = τ′ γ ` e : τ′ τ ≤ τ′

γ ` x := e : τ cmd
(T-ASSIGN)

τ ≤ H
γ ` skip : τ cmd

(T-SKIP)

γ ` e : L
γ ` output e : L cmd

(T-OUTPUT)

γ ` S 1 : τ cmd γ ` S 2 : τ cmd
γ ` S 1 ; S 2 : τ cmd

(T-SEQ)

γ ` e : τ′ γ ` S 1 : τ′ cmd γ ` S 2 : τ′ cmd τ ≤ τ′

γ ` if e then S 1 else S 2 end : τ cmd
(T-IF)

γ ` e : L γ ` S : L cmd
γ ` while e do S done : L cmd

(T-WHILE)

γ ` e : L γ ` S : L cmd
γ ` with x̄ when e do S done : L cmd

(T-SYNC)

Figure 4.11: The type system used for comparison

4.6 Conclusion

This chapter addresses the problem of respecting the secret data confidentiality by concurrent programs.

The problem is formalized using the noninterference property which states that a program is safe if and only

if the publicly observable program’s behavior is not influenced by the values of its private inputs.

This problem is usually addressed using static analyses. To the author’s knowledge, the solution pro-

posed in this chapter is the only dynamic analysis enforcing noninterference in a concurrent setting. It

consists in a monitoring mechanism enforcing the respect of the confidentiality of secret inputs. It is defined

as a special semantics communicating with a security automaton. The role of the semantics is to send ab-

stractions of the events occurring during the execution to the automaton. Then, it executes the program in

accordance to the answers sent back by the automaton. This latter tracks the information flows and controls

— allows, modifies or denies — the execution of output statements and synchronization commands.

As the proposed mechanism deals with noninterference, which is not a property of an execution trace,

it significantly differs from usual monitors. The dynamic analysis proposed is required to take into account

the contents of branches which are not executed. Additionally, due to the fact that the monitor enforces

noninterference on the fly, it is also required to change the position of synchronization commands while still

enforcing the thread interleaving constraints induced by the original position of those commands.

75



C 4 NONINTERFERENCE MONITORING OF CONCURRENT PROGRAMS

Section 4.5 not only proves that this monitoring mechanism is sound, in the sense that it enforces nonin-

terference for any execution, but also that it is transparent for any program well-typed under a type system

similar to the one of Smith and Volpano (Smith and Volpano, 1998).

The next chapter will demonstrate that it is possible to be more precise by benefiting even more of

the dynamic nature of the analysis. In a dynamic information flow analysis, implicit information flows are

detected using a static analysis on the unexecuted branches of conditionals (either at compile time or at run

time). In chapter 3 and 4, this static analysis does not take into account the program state at the time the

static analysis is run. This is due to the fact that the information flow detection mechanism is handled by

a security automaton separated from the monitoring semantics. Next chapter merges the information flow

detection mechanism into the monitoring semantics and uses a context sensitive static analysis for implicit

indirect flows. This feature allows for a greater precision in the detection of implicit and explicit indirect

flows.
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Chapter 5

More Context Means More Precision

This chapter proposes a noninterference monitor for sequential programs. This moni-

tor enforces the absence of information flows between the secret inputs and the public

outputs of a program. This implies a sound detection of information flows and a sound

correction of forbidden flows during the execution. The monitor relies on a dynamic

information flow analysis. For unexecuted pieces of code, this dynamic analysis uses

any context sensitive static information flow analysis which respects a given set of

three hypotheses. The soundness of the overall monitoring mechanism with regard to

noninterference enforcement is proved, as well as its higher precision than the mecha-

nism proposed in Chapter 3. Finally, the chapter proposes some extensions in order to

take into account procedures and records.

The content of this chapter has not been published yet.

5.1 Introduction

This chapter presents a secure information flow monitoring mechanism for sequential programs. In Chap-

ters 3 and 4, the monitoring mechanism is implemented by a security automaton. This automaton, analyzing

the information flows during the execution, is separated from the semantics actually executing the monitored

program. The automaton and the semantics communicate during the execution in order to enforce the con-

fidentiality of secret data manipulated. However, the automaton and the semantics have their own distinct

states. The security automaton is unaware of the content of the current program state, and thus of the precise

values of the variables. This approach has the advantage of clearly distinguishing the features which are part

of the dynamic information flow analysis from those which are part of the program computation. However,

this approach also has an impact on the achievable precision of the information flow analysis.

In the program of Figure 5.1, h is the only private input and l is the only public input. This program

initializes the value of the internal variable x to 0; then, depending on the values of the inputs h and l, it

77



C 5 MORE CONTEXT MEANS MORE PRECISION

sets x to 1; and finally, it outputs the value of x. This program is obviously interfering: if l is true, then it

1 x := 0; y := 1;
2 i f h then
3 sk ip
4 e l s e
5 i f l then x := y e l s e sk ip end
6 end;
7 output x

Figure 5.1: Example of a program where context sensitivity is important.

outputs 0 if h is true and 1 otherwise. However, executions where l is false are noninterfering; the program

always outputs 0. The monitoring mechanisms presented in Chapters 3 and 4 are unable to achieve a level

of precision which allows to detect that executions where l is false are noninterfering. This is because

the static analyses used to analyze unexecuted branches of conditionals whose test carries variety are not

context sensitive. When h is true, the program “ if l then x :=y else skip end” is statically analyzed to

determine possible implicit indirect flows. In chapters 3 and 4, this analysis is done without any knowledge

about the value of the input l. Therefore, the static analysis must take into consideration that x may be

assigned in an execution where h has a different (false) value and l has the same value (even if the current

value of l is false). Moreover, the dynamic analysis must compute the same information flows whatever the

value of private inputs in order to prevent the creation of a new covert channel by the correction mechanism

(Section 2.1.6). Therefore, even if h is false, and then line 5 is executed, the monitoring semantics can not

use its knowledge of the value of l to prevent the analysis of a branch which can in no way be executed by

any execution started with the same public inputs.

This chapter presents a monitoring mechanism able to accurately deal with the above example. To do so,

implicit indirect flows are taken into account by the dynamic analysis using the results of context-sensitive

static analyses of unexecuted pieces of code. The context sensitivity of the static analysis allows it to avoid

analyzing pieces of code which will never be executed in any context low-equivalent to the current one —

i.e. contexts in which public data have the same values as in the current context. For example, a context-

sensitive analysis of the 5th line of Figure 5.1 in a context where l is false, and considered public data, does

not analyze the then-branch of the conditional.

The dynamic information flow analysis described in this chapter is not limited to the use of a sole

context-sensitive static analysis. A whole series of context-sensitive static analyses, characterized by a set

of axioms, can be used in combination with the dynamic analysis to accurately track information flows.

Those axioms emphasize the two main requirements for a noninterference monitor to accurately detect

information flows and safely enforce noninterference.

Section 5.1.1 describes the syntax and semantics of the sequential imperative language studied. Sec-

tion 5.1.2 formally defines the execution property enforced by the monitor and introduces the monitoring

principles, which are then formalized in Section 5.2. Before stating and proving the main properties of
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the monitoring mechanism in Section 5.4, an example of monitored execution is detailed in Section 5.3.

Preceding the conclusion in Section 5.6, an extension to the studied language is presented in Section 5.5.

5.1.1 The Language: Syntax & Standard Semantics

The language used to describe programs studied in this chapter is similar to the one of Chapter 3. It is

an imperative language for sequential programs. This chapter focuses on the increase of precision in the

dynamic information flow analysis and not on the correction mechanism.

For simplicity, the language does not include an output statement. Therefore, the notion of noninterfer-

ing execution used in this chapter (Definition 5.1.1) is not a relation between public inputs and an output

sequence. The notion of noninterfering execution is defined as a relation between the public inputs of the

program and the values, at the end of the execution, of a set of variables which are considered observable

once the program has been executed. This definition is closer from the classical noninterference definition

than those used in Chapters 3 and 4. It is still possible to simulate output statements by replacing them

by assignments to fresh variables. The correction mechanism of previous chapters is still applicable in this

setting — i.e. denying any assignment to those fresh variables when the context of execution (program

counter) carries variety and replacing the values assigned by a default one when those values carry variety.

Syntax of the Language

The grammar of the language studied is given in Figure 5.2. In this grammar, 〈ident〉 stands for a variable

identifier. 〈expr〉 is an expression of values and variable identifiers. Expressions in this language are de-

terministic – their evaluation in a given program state always results in the same value — and are free of

side effects — their evaluation has no influence on the program state. Additionally, their evaluation in any

program state always terminates.

〈prog〉 ::= skip
| 〈ident〉 := 〈expr〉

| 〈prog〉 ; 〈prog〉

| if 〈expr〉 then 〈prog〉 else 〈prog〉 end
| while 〈expr〉 do 〈prog〉 done

Figure 5.2: Grammar of the language

A program expressed with this language is either a skip statement (skip) which has no effect, an assign-

ment of the value of an expression to a variable (〈ident〉 := 〈expr〉), a sequence of programs (〈prog〉 ; 〈prog〉),

a conditional executing one program — out of two — depending on the value of a given expression

(if 〈expr〉 then 〈prog〉 else 〈prog〉 end), or a loop executing repetitively a given program as long as a given

expression is true (while 〈expr〉 do 〈prog〉 done).
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Standard Semantics of the language

The standard semantics of the language is given in Figure 5.3. The evaluation symbol (⇓) is given a subscript

letter in order to distinguish between the standard semantics (S) and the monitoring one (M). The standard

semantics is based on rules written in the format:

σ ` P ⇓S σ′

Those rules mean that, with the initial program state σ, the evaluation of the program P yields the final

program state σ′. Let X be the domain of variable identifiers and D be the semantic domain of values.

A program state is a value store σ (X → D) mapping variable identifiers to their respective value. The

definition of value stores is extended to expressions, so that σ(e) is the value of the expression e in the

program state σ.

σ ` skip ⇓S σ
(ES-SKIP)

σ ` x := e ⇓S σ[x 7→ σ(e)]
(ES-ASSIGN)

σ ` Ph ⇓S σh σh ` Pt ⇓S σt

σ ` Ph ; Pt ⇓S σt (ES-SEQUENCE)

σ(e) = v σ ` Pv ⇓S σ′

σ ` if e then Ptrue else Pfalse end ⇓S σ′
(ES-IF)

σ(e) = true σ ` Pl ; while e do Pl done ⇓S σ′

σ ` while e do Pl done ⇓S σ′
(ES-WHILEtrue)

σ(e) = false

σ ` while e do Pl done ⇓S σ
(ES-WHILEfalse)

Figure 5.3: Rules of the standard semantics

5.1.2 Monitoring Principles

The remainder of the current section gives some formal definitions which are used to formalize the execution

property enforced by the monitoring mechanism. Subsequently, it introduces succinctly the mechanisms

used by the monitoring semantics in order to enforce secure information flows.
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A “safe” execution is a noninterfering execution. Unlike languages of Chapters 3 and 4, the language

studied in this chapter does not include an output statement. Therefore, in this chapter, noninterference is

not defined as the absence of strong dependencies (Cohen, 1977) between the secret (or private) inputs and

a sequence of outputs, as done in the two previous chapters. Rather, as commonly done, noninterference is

defined as the absence of strong dependencies between the secret inputs of an execution and the final values

of some variables which are considered to be publicly observable at the end of the execution.

For every execution of a given program P, two sets of variable identifiers are defined. The set of variables

corresponding to the secret inputs of the program is designated by S(P). The set of variables whose final

value are publicly observable at the end of the execution is designated by O(P). No requirements are put on

S(P) and O(P) other than requiring them to be subsets of X. A variable x is even allowed to belong to both

sets. In such a case, in order to be noninterfering, the program P would be required to, at least, reset the

value of x. For example, a variable can belong to both sets if, at the beginning of the execution, the variable

is used as a container for a secret data, and later is used to store other data which are not considered secret.

In the following definitions, we consider that a program state may contain more than just a value store

— e.g. program states of the semantics given in Figure 5.4 also contain a “tag store”. This is the reason why

a distinction is done between program states, whose generic notation used is X, and value stores (σ). Fol-

lowing Definition 4.1.3, two program states X1, respectively X2, containing the value stores σ1, respectively

σ2, are low equivalent with regards to a set of variables V , written X1
V
= X2, if and only if the value of any

variable belonging to V is the same in σ1 and σ2.

Definition 5.1.1 (Noninterfering Execution).
Let ⇓s denote a big-step semantics. Let S(P)c be the complement of S(P) in the set X. For all programs P,

program states X1 and X′1, an execution with the semantics ⇓s of the program P in the initial state X1 and

yielding the final state X′1 is noninterfering, written ni(P, s, X1), if and only if, for every program states X2

and X′2 such that the execution with the semantics ⇓s of the program P in the initial state X2 yields the final

state X′2:

X1
S(P)c

= X2 ⇒ X′1
O(P)
= X′2

The monitoring mechanism is based on a flow and context sensitive static analysis. As with the

automaton-based noninterference monitors of Chapters 3 and 4, the monitoring semantics treats directly

the direct and explicit indirect flows. For implicit indirect flows, a static analysis is run on the unexecuted

branch of every conditional whose test carries variety — i.e. is influenced by the secret inputs of the pro-

gram.

The static analysis is context sensitive. An unexecuted branch P is analyzed in the context of the program

state at the time the test of the conditional, to which P belongs, has been evaluated. The static analysis is

then aware of the exact value of the variables which do not carry variety. During the analysis, the context

is modified to reflect loss of knowledge — i.e. the exact value of variables at the different program points.

The static analysis does not compute the values of variables. Therefore, when analyzing an assignment to

a variable x, the context of the static analysis is modified to reflect the fact that the static analysis does not

anymore have knowledge of the precise value of the variable x. When analyzing a conditional whose test
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value can be computed using the current context, only the branch designated by the test is analyzed. As the

value of any variable which does not carry variety depends only on the public inputs, branches which are not

designated by the test value would never be executed by any execution started with the same public inputs as

the monitored execution. As the static analysis detects implicit indirect flows more accurately than context

insensitive analyses, explicit indirect flows can also be treated more accurately. Recall from Section 2.2.4

that implicit indirect flows and explicit indirect flows must be treated with the same precision in order to

prevent the creation of a new covert channel (Le Guernic and Jensen, 2005).

For the example on page 78, if h is true then “ if l then x :=y else skip end” is analyzed using as

context the program state before the evaluation of line 2. As l is a public input, it does not carry variety

and the static analysis can take into consideration its value in the provided context. If l is true then the

static analysis would analyze the assignment and conclude that there is an implicit indirect flow from h to x.

Otherwise, the static analysis would only analyze the statement “skip”. It would then accurately conclude

that there is no “bad” flows in an execution where l is false.

This paragraph proposes a simple correction mechanism. As this chapter focuses on the increase of

precision of the dynamic analysis, the proposed correction mechanism is kept as simple as possible. The

notion of noninterfering execution used relates the initial and final value stores. Therefore, for simplicity, the

proposed correction mechanism is applied on the final value store just before terminating the execution. It

consists in resetting the final value of any observable variable — i.e. belonging to O(P) — which may carry

variety. Theorem 5.4.2 ensures that applying this correction mechanism with the dynamic noninterference

analysis of this chapter does not create any new covert channel.

The remain of this chapter focuses on the dynamic noninterference analysis computing which variables

may carry variety at the end of the execution. The combination of this dynamic analysis and of the standard

semantics of the language is “abusively” called monitoring semantics even if it does not include the correc-

tion mechanism proposed above. However, the correction mechanism of a noninterference monitor is quite

independent from the dynamic noninterference analysis used as long as a theorem similar to Theorem 5.4.2

holds when the correction mechanism is applied. The next section formalizes the mechanisms presented

above. It starts by presenting the monitoring semantics making use of static information flow analyses.

Then, it describes which static analyses can be used in combination with this monitoring semantics.

5.2 The Monitoring Semantics

In previous chapters, the dynamic information flow analysis is defined independently of the monitoring

semantics. Therefore, the static analysis used by the dynamic analysis on unexecuted branches can not be

sensitive to the context of the monitoring semantics (which is inaccessible to the dynamic analysis). In this

chapter, the dynamic information flow and the monitoring semantics are intrinsically linked. This allows the

analysis of unexecuted branches with a static analysis sensitive to the context of execution. The dynamic

information flow analysis and the monitoring semantics are defined together in Figure 5.4.
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In previous chapters, information flows are tracked using a set of variables. At any execution step, this

set contains the variables that may carry variety — i.e. whose value may be influenced by the secret inputs of

the program. In this chapter, information flows are tracked using tags. At any execution step, every variable

has a tag which reflects the fact that this variable may carry variety or not.

5.2.1 A semantics Making Use of a Context-sensitive Static Analysis

Let X be the domain of variable identifiers, D be the semantic domain of values, and T be the domain of

tags. In the remainder of this chapter, T is equal to {>,⊥}. Those tags form a lattice such that ⊥ @ >. > is

the tag associated to variables that may carry variety. ⊥ is the tag associated to variables that definitely do

not carry variety.

The monitoring semantics described in Figure 5.4 is based on rules written in the format:

ζ, tpc ` P ⇓M ζ′

This reads as follows: in the monitoring execution state ζ, with a program counter tag equal to tpc, program

P yields the monitoring execution state ζ′. The program counter tag (tpc) is a tag which reflects the security

level of the information carried by the control flow. A monitoring execution state ζ is a pair (σ, ρ) composed

of a value store σ and a tag store ρ. A value store (X → D) maps variable identifiers to values. A tag store

(X → T) maps variable identifiers to tags. The definitions of value store and tag store are extended to

expressions. σ(e) is the value of the expression e in a program state whose value store is σ. Similarly, ρ(e)

is the tag of the expression e in a program state whose tag store is ρ. ρ(e) is formally defined as follows,

with FV(e) being the set of free variables appearing in the expression e:

ρ(e) =
⊔

x∈FV(e)

ρ(x)

The least upper bound operator (t) is also extended in order to apply to functions — i.e. relations (sets of

pairs) which do not contain two pairs having the same first element. The least upper bound (lub) of two

functions is the function: whose domain is the union of the domains of the two parameter functions, whose

range is the union of the ranges of the two parameter functions, and which associates, to any element x of its

domain, the lub of the elements associated to x by the two parameter functions. Its formal definition follows.

f t g =

 (x, y)

∣∣∣∣∣∣∣∣∣∣ x ∈ (dom( f ) ∪ dom(g)) ∧ y =


f (x) t g(x) iff x ∈ dom( f ) ∩ dom(g)

f (x) iff x ∈ dom( f ) \ dom(g)

g(x) iff x ∈ dom(g) \ dom( f )


The semantic rules make use of static analyses results. In Figure 5.4, application of a static information

flow analysis to the piece of code P in the context ζ is written: [[ζ ` P]]]G . The analysis of a program

P in a monitoring execution state ζ must return a pair (D,X). D, which belongs to P(X → X), is an

over-approximation of the dependencies between the initial and final values of the variables created by an

execution of P in the context ζ. D(x), which is equal to {y | (x, y) ∈ D}, is the set of variables whose initial
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value may influence the final value of x after execution of P in the context ζ. X, which belongs to P(X), is an

over-approximation of the set of variables which are potentially updated in an execution of P in the context

ζ. This static information flow analysis can be any such analysis that satisfies a set of formal constraints

which are stated below.

For example, let P5 be the 5th line of the program in Figure 5.1. (∅, ∅) is a valid result of the static

analysis of P5 in a context where l is false and does not carry variety. However, it is not a valid result in

a context where l is true or may carry variety. In such a context, ({(x, y), (x, l)}, {x}) is a valid result of the

static analysis of P5.

The monitoring semantic rules are given in Figure 5.4. As can be expected, the execution of a skip
statement yields a final state equal to the initial state. The monitored execution of the assignment of the

value of the expression e to the variable x yields a monitored execution state (σ′, ρ′). The final value store

(σ′) is equal to the initial value store (σ) except for the variable x. The final value store maps the variable x

to the value of the expression e evaluated with the initial value store (σ(e)). Similarly, the final tag store (ρ′)

is equal to the initial tag store (ρ) except for the variable x. The tag of x after the execution of the assignment

is the least upper bound of the program counter tag (tpc) and the tag of the expression computed using the

initial tag store (ρ(e)). ρ(e) represent the level of the information flowing into x through direct flows. tpc

represent the level of the information flowing into x through explicit indirect flows.

The monitored execution of a conditional whose test expression does not carry variety (ρ(e) = ⊥) follows

the same scheme as with a standard semantics. For a conditional whose test expression e carries variety, the

branch (Pv) designated by the value of e is executed and the other one (P¬v) is analyzed. The final value

store is the one returned by the execution of Pv. The final tag store (ρ′) is the least upper bound of the tag

store returned by the execution of Pv and two new tag stores (ρ¬v and ρe) generated from the result of the

analysis of P¬v ((D,X)). By definition, ρ t ρ′ is equal to λx.ρ(x) t ρ′(x). The first new tag store (ρ¬v) is

computed from the dependencies (D), were P¬v executed, between the final value of variables in P¬v and

their initial values. In ρ¬v, the tag of a variable x is the least upper bound of the initial tags (ρ(y)) of the

variables whose initial value may influence the final value of x in an execution of P¬v. The other new tag

store (ρe) reflects the implicit indirect flows between the value of the test of the conditional and the variables

(X) which may be updated in an execution of P¬v. In ρe, the tag of a variable x is equal to the initial tag of

the test expression of the conditional (ρ(e)) if and only if x belongs to X; otherwise, its tag is ⊥.

Which static information flow analyses can be used?

The static analysis used to determine the information flows in unexecuted branches is not formally defined.

In fact, the dynamic analysis can use any static information flow analysis which complies with the three

following hypotheses and returns a pair, whose first element is a relation between variables — i.e. a set of

pairs of variables — and second element is a set of variables.

The first hypothesis ensures a valid detection of information flows. Hypothesis 5.2.1 simply requires

the static analysis used to be a sound information flow analysis. More precisely, it requires that the second
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ζ, tpc ` skip ⇓M ζ
(EM-SKIP)

(σ, ρ), tpc ` x := e ⇓M (σ[x 7→ σ(e)], ρ[x 7→ ρ(e) t tpc])
(EM-ASSIGN)

ζ, tpc ` Ph ⇓M ζh ζh, tpc ` Pt ⇓M ζ t

ζ, tpc ` Ph ; Pt ⇓M ζ t (EM-SEQUENCE)

ρ(e) = ⊥ σ(e) = v (σ, ρ), tpc t ρ(e) ` Pv ⇓M ζ′

(σ, ρ), tpc ` if e then Ptrue else Pfalse end ⇓M ζ′
(EM-IF⊥)

ρ(e) = > σ(e) = v
(σ, ρ), tpc t ρ(e) ` Pv ⇓M (σv, ρv) [[(σ, ρ) ` P¬v]]]G = (D,X)

ρ¬v = λx.
⊔

y∈D(x) ρ(y) ρe = (X × {ρ(e)}) ∪ ((X − X) × {⊥})
(σ, ρ), tpc ` if e then Ptrue else Pfalse end ⇓M (σv, ρv t ρ¬v t ρe)

(EM-IF>)

ρ(e) = ⊥ σ(e) = false

(σ, ρ), tpc ` while e do Pl done ⇓M (σ, ρ)
(EM-WHILEskip)

ρ(e) = ⊥ σ(e) = true
(σ, ρ), tpc t ρ(e) ` Pl ; while e do Pl done ⇓M ζ′

(σ, ρ), tpc ` while e do Pl done ⇓M ζ′
(EM-WHILEtrue⊥)

ρ(e) = > σ(e) = true
(σ, ρ), tpc t ρ(e) ` Pl ; while e do Pl done ⇓M (σ′, ρ′)

(σ, ρ), tpc ` while e do Pl done ⇓M (σ′, ρ t ρ′)
(EM-WHILEtrue>)

ρ(e) = > σ(e) = false

[[(σ, ρ) ` Pl ; while e do Pl done]]]G = (D,X)
ρl = λx.

⊔
y∈D(x) ρ(y) ρe = (X × {ρ(e)}) ∪ ((X − X) × {⊥})

(σ, ρ), tpc ` while e do Pl done ⇓M (σ, ρ t ρl t ρe)

(EM-WHILE f alse>)

Figure 5.4: Rules of the monitoring semantics
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element of the static analysis result (X) contains all the variables which may be updated by an execution of

the analyzed program with the same public values as those used for the analysis. This is a straightforward

requirement as the result of the static analysis is used to take into account implicit indirect flows.

For example, in a context where l is true or may carry variety (ρ(l) = >), Hypothesis 5.2.1 requires that

x must belong to the second element (X) of the result of any analysis of P5 (the 5th line of the program in

Figure 5.1).

Hypothesis 5.2.1 (Correctness of the static analysis for information flow detection).
For all monitoring execution states (σ, ρ), (σi, ρi) and (σo, ρo), program counter tags tpc, programs P, and

analysis results (D,X) such that:

1. ∀x : (ρ(x) = ⊥)⇒ σi(x) = σ(x),

2. (σi, ρi), tpc ` P ⇓M (σo, ρo) ,

the following holds:

[[(σ, ρ) ` P]]]G = (D,X) ⇒ ∀x < X. σo(x) = σi(x)

The second and third hypotheses allow a “safe” correction mechanism. They ensure that a simple

“bug-free” correction mechanism based on the results of the overall dynamic analysis, as the one proposed

on page 82, does not create any new covert channel. Hypothesis 5.2.2 requires the static information flow

analysis to be as precise as the dynamic information flow analysis when the program counter carries variety.

This is required in order to be able to correct “bad” flows. If this hypothesis does not hold then it may

be possible for the attacker to deduce from the behavior of the correction mechanism which branch of

a conditional whose test carries variety has been analyzed and whose branch has been executed. This

information would allow the attacker to deduce the value of the test of the conditional.

Hypothesis 5.2.2 (Correctness of the static analysis for information flow correction).
For all monitoring execution states (σ, ρ) and (σ′, ρ′), programs P, and analysis results (D,X) such that:

1. (σ, ρ), > ` P ⇓M (σ′, ρ′) ,

2. [[(σ, ρ) ` P]]]G = (D,X),

the following holds:

ρ′ =
(
λx.

⊔
y∈D(x)

ρ(y)
)
t

(
(X × {>}) ∪ (Xc × {⊥})

)
The last hypothesis (Hypothesis 5.2.3) requires the result of the static analysis to be determined solely

by the value of public data. This hypothesis is needed for a similar reason than for the second hypothesis.

In order to prevent the correction mechanism to be used as a covert channel, the result of the static analysis

must be independent from the value of secret data.

For example, Hypothesis 5.2.3 requires that the result of the analysis of the 5th line of the program in

Figure 5.1 must depend only on the values of variables l, x and y; and not on the value of variable h.
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Hypothesis 5.2.3 (Static analysis is deterministic with regard to public data).
For all monitoring execution states (σ, ρ) and (σ′, ρ′), and programs P such that:

1. ρ = ρ′,

2. ∀x : (ρ(x) v ⊥)⇒ σ(x) = σ′(x),

the following holds:

[[(σ, ρ) ` P]]]G = [[(σ′, ρ′) ` P]]]G

The fact that the static analysis is deterministic with regard to public data is not strictly required. The least

requirement is that the set of potential results must be determined by the value of public data. For simplicity,

this hypothesis also requires the analysis to be deterministic with regard to public data.

5.2.2 A Finer Characterization of Usable Static Analyses

The above hypotheses define which static information flow analyses are usable, i.e. which static analyses

can be used with the monitoring semantics given in Figure 5.4. However, Hypotheses5.2.1 and 5.2.2 are

stated using the monitoring semantics itself. This make it more difficult to prove that a given static analysis

satisfies those hypotheses.

Figure 5.5 defines a set of acceptability rules. The result (D,X) of a static information flow analysis

of a given program (P) in a given context — i.e. monitoring execution state — (ζ) is acceptable for the

monitoring semantics only if the result satisfies those rules. This is written in the format:

(D,X) |= (ζ ` P)

In the definitions of those rules, Id denotes the identity relation. ◦ is the operation of composition of

relations. It belongs to (P(B×C)×P(A×B))→ P(A×C) with A, B and C being sets. Its formal definition

follows.

(S ◦ R) =
⋃

(a,b)∈R

{(a, c) | (b, c) ∈ S }

As used in the acceptability rules, A, B and C are equal to the set of variable identifiers X. {[S true, S false]}tv
returns either the set S true, the set S false or the union of both depending on the value of the tag t and the

value v. Its formal definition follows.

{[S true, S false]}tv =

 S true ∪ S false iff t = >

S v iff t = ⊥

Using the acceptability rules of Figure 5.5, it is possible to characterize some static information flow

analyses which are usable with the monitoring semantics without referring to the monitoring semantics

itself. It is also possible to generate a usable static information flow analysis by fix-point computation on

the acceptability rules; in fact, only on the rule for loop statements. However, those acceptability rules do

not define a most precise usable static analysis.
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(D,X) |= ( (σ, ρ) ` skip )

iff D = Id ∧ X = ∅

(D,X) |= ( (σ, ρ) ` x := e )

iff D = Id[x 7→ FV(e)] ∧ X = {x}

(D,X) |=
(

(σ, ρ) ` Ph ; Pt
)

iff there exist (Dh,Xh) and (Dt,Xt) such that:
(Dh,Xh) |= ((σ, ρ) ` Ph)
let ρ′ = ρ t ((Xh × >) ∪ ((Xh)c

× ⊥)) in (Dt,Xt) |= ((σ, ρ′) ` Pt)
D = Dh ◦Dt ∧ X = Xh ∪ Xt

(D,X) |=
(

(σ, ρ) ` if e then Ptrue else Pfalse end
)

iff there exist (Dtrue,Xtrue) and (Dfalse,Xfalse) such that:
(Dtrue,Xtrue) |= ((σ, ρ) ` Ptrue)
(Dfalse,Xfalse) |= ((σ, ρ) ` Pfalse)
D = {[Dtrue,Dfalse]}ρ(e)

σ(e) ∪ ({[Xtrue,Xfalse]}ρ(e)
σ(e) × FV(e))

X = {[Xtrue,Xfalse]}ρ(e)
σ(e)

(D,X) |=
(

(σ, ρ) ` while e do Pl done
)

iff there exists (Dl,Xl) such that:
let ρ′ = ρ t ((Xl × >) ∪ ((Xl)c

× ⊥)) in (Dl,Xl) |= ((σ, ρ′) ` Pl)
D = {[Dl ◦ (D ∪ Id),Id]}ρ(e)

σ(e) ∧ X = {[Xl, ∅]}ρ(e)
σ(e)

Figure 5.5: Acceptability rules for usable static information flow analysis results

As stated by Theorem 5.2.1, any acceptable static information flow analysis result satisfies Hypothe-

sis 5.2.1.

Theorem 5.2.1 (Acceptability rules imply detection abilities).
For all monitoring execution states ζ, programs P, and analysis result (D,X) such that (D,X) |= (ζ ` P), the

Hypothesis 5.2.1 holds.

Proof. The theorem follows directly from Lemma C.1.1.

Theorem 5.2.2 states that any acceptable static information flow analysis result, which satisfies Hypoth-

esis 5.2.4, satisfies Hypothesis 5.2.2. Hypothesis 5.2.4 requires the dependencies between initial and final

values computed by the analysis to be coherent with the set of potentially updated variables also computed
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by the analysis. The final value of a variable which may not be updated by a program is required to depend

only on its own initial value. Hypothesis 5.2.4 holds if, but not only if, D is the smallest fixed point obtained

from the acceptability rules of Figure 5.5.

Hypothesis 5.2.4 (Static analysis results are coherent).
For all monitoring execution states (σ, ρ), programs P, and analysis result (D,X):

[[ζ ` P]]]G = (D,X) ⇒ ∀x ∈ Xc. D(x) = {x}

Theorem 5.2.2 (Acceptability rules imply correction abilities).
For all monitoring execution states (σ, ρ), programs P, and analysis result (D,X) if (D,X) |= (ζ ` P) and the

Hypothesis 5.2.4 holds then the Hypothesis 5.2.2 holds.

Proof. The theorem follows directly from Lemma C.1.4.

Therefore, a static information flow analysis, which satisfies Hypotheses 5.2.3 and 5.2.4 and whose

results are acceptable ([[ζ ` P]]]G |= (ζ ` P)), is usable by the monitoring semantics — i.e. it satisfies

Hypotheses 5.2.1, 5.2.2 and 5.2.3.

Theorem 5.2.3 (Existence of a compliant static analysis). There exists a static analysis [[]]]G such that,

for all commands C, value stores σ, and tag stores ρ, there exists an analysis result (D,X) such that [[σ, ρ `

C]]]G = (D,X) and Hypotheses 5.2.3 and 5.2.4 hold.

Proof. The theorem follows directly from the constructive proof of Lemma C.3.2.

5.3 Example of Monitored Execution

Figure 5.6 contains an adaptation of the motivating example given in Section 5.1. In this program (P),

variables h and l contain the program inputs at the beginning of the execution. h contains the only secret

input (S(P) = {h}); l contains a public input. The only publicly observable behavior of the program is the

value of the variable x at the end of the computation (O(P) = {x}). The final value of x is 1 if h is false and

l is true. Otherwise, the final value of x is 0. This program is obviously interfering as, if the final value of

1 x := 0;
2 i f h then
3 sk ip
4 e l s e
5 i f l then x := 1 e l s e sk ip end
6 end

Figure 5.6: The motivating program of the Introduction.

x is 1, it is possible to deduce that the secret input h is true. However, any execution where l is false sets

the final value of x to 0. Therefore, any execution where l is false is noninterfering.
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As stated in the introduction (Section 5.1), none of the monitoring mechanisms of Chapters 3 and 4 are

able to detect that executions where l is false are noninterfering. The monitor proposed in this chapter is

able to detect it. This section presents the behavior of the semantics presented in Figure 5.4 on executions

of the program in Figure 5.6.

5.3.1 What happens when variable h is true?

Figure 5.7 presents the evaluation tree for executions where h is true. Such executions start by set-

ting the value of x to 0. Then, as h is true, the then-branch (skip) is executed and the else-branch

(if l then x := 1 else skip end) is analyzed. In Figure 5.7, the result of the static analysis of the else-branch

is represented by the wild card R.

ζ1, ⊥ ` x := 0 ⇓M ζ2

ζ2, > ` skip ⇓M ζ2 [[ζ2 ` P
]]]]G = R

ζ2, ⊥ ` if h then skip else P] end ⇓M ζ3

ζ1, ⊥ ` x := 0 ; if h then skip else P] end ⇓M ζ3

Figure 5.7: Evaluation tree of the program in Figure 5.6 for h = true.

And variable l is true? Table 5.1 shows the values of the wild cards used in Figure 5.7 (ζ1, ζ2, ζ3, P] and

R) for an execution where the initial value of h is true, the initial value of l is true and the initial value of

x is 3.

Wild Card Means Value
ζ1 (σ1, ρ1) ( [h 7→ true, l 7→ true, x 7→ 3], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
ζ2 (σ2, ρ2) ( [h 7→ true, l 7→ true, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
P] if l then x := 1 else skip end
R (Dl,Xl) (Id[x 7→ {l}], {x})
ζ3 (σ3, ρ3) ( [h 7→ true, l 7→ true, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ >] )

Table 5.1: Value of the wild cards of Figure 5.7 for l = true.

In the context of executions where the initial value of h is true and the initial value of l is true, R

is the result of the analysis of if l then x := 1 else skip end in the context (σ2, ρ2) knowing that σ2(l) is

true and ρ2(l) is ⊥. R stands for (Dl,Xl). This analysis result, which is equal to (Id[x 7→ {l}], {x}) in our

example, satisfies Hypotheses 5.2.1 and 5.2.2. Therefore, under the assumption that the static analysis used

to compute this result satisfies Hypothesis 5.2.3, the result (Dl,Xl) can be used by the dynamic analysis to

monitor the information flows. For the purpose of this example, (Dl,Xl) has been computed by manually

solving the constraints implied by the acceptability rules of Figure 5.5. Using (Dl,Xl) with the rule (EM-

IF>), it comes out that ρ3(x) = ρ2(x) t ρ2(l) t >.

And variable l is false? Table 5.2 shows the values of the wild cards used in Figure 5.7 for an execution

where the initial value of h is true, the initial value of l is false and the initial value of x is 3.
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Wild Card Means Value
ζ1 (σ1, ρ1) ( [h 7→ true, l 7→ false, x 7→ 3], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
ζ2 (σ2, ρ2) ( [h 7→ true, l 7→ false, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
P] if l then x := 1 else skip end
R (D¬l,X¬l) (Id, ∅)
ζ3 (σ3, ρ3) ( [h 7→ true, l 7→ false, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )

Table 5.2: Value of the wild cards of Figure 5.7 for l = false.

In the context of executions where the initial value of h is true and the initial value of l is false, R

is the result of the analysis of if l then x := 1 else skip end in the context (σ2, ρ2) knowing that σ2(l) is

false and ρ2(l) is ⊥. R stands for (D¬l,X¬l). In our example, this analysis result is equal to (Id, ∅). Using

(D¬l,X¬l) with the rule (EM-IF>), it comes out that ρ3(x) = ρ2(x) t ρ2(x) t ⊥.

5.3.2 What happens when variable h is false?

Figures 5.8 and 5.9 present the evaluation trees for executions where h is false. Such executions start

by setting the value of x to 0. Then, as h is false, the then-branch (skip) is analyzed and the else-branch

(if l then x := 1 else skip end) is executed. The analysis of the then-branch yields an analysis result, (Id, ∅),

emphasizing the fact that there is no information flow created by a potential execution of the then-branch

in a context similar to the current execution. Therefore, the tag store after the execution of the conditional

branching on the variable h (ρ4) is equal to the least upper bound of the tag store after the execution of the

else-branch (ρ3) and the tag store before the execution of the conditional (ρ2): ∀x. ρ4(x) = ρ2(x) t ρ3(x).

And variable l is true? Figure 5.8 presents the evaluation tree for executions where h is false and l is

true. Table 5.3 shows the values of the wild cards used in Figure 5.8 for an execution where the initial

value of h is false, the initial value of l is true and the initial value of x is 3.

ζ1, ⊥ ` x := 0 ⇓M ζ2

ζ2, > ` x := 1 ⇓M ζ3

ζ2, > ` P’ ⇓M ζ3 [[ζ2 ` skip]]]G = (Id, ∅)
ζ2, ⊥ ` if h then skip else P’ end ⇓M ζ4

ζ1, ⊥ ` x := 0 ; if h then skip else P’ end ⇓M ζ4

Figure 5.8: Evaluation tree of the program in Figure 5.6 for h = false ∧ l = true.

Wild Card Means Value
ζ1 (σ1, ρ1) ( [h 7→ false, l 7→ true, x 7→ 3], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
ζ2 (σ2, ρ2) ( [h 7→ false, l 7→ true, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
P’ if l then x := 1 else skip end
ζ3 (σ3, ρ3) ( [h 7→ false, l 7→ true, x 7→ 1], [h 7→ >, l 7→ ⊥, x 7→ >] )
ζ4 (σ4, ρ4) ( [h 7→ false, l 7→ true, x 7→ 1], [h 7→ >, l 7→ ⊥, x 7→ >] )

Table 5.3: Value of the wild cards of Figure 5.8.
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In a context where the initial value of h is false and the initial value of l is true, the conditional

branching on variable l is evaluated with a program counter carrying variety (its tag is >) and yields the

assignment “x := 1”. This assignment is also evaluated with a program counter tag equal to >. Therefore,

after the execution of the assignment, variable x is also considered to carry variety (ρ3(x) = >).

And variable l is false? Figure 5.9 presents the evaluation tree for executions where h is false and l is

false. Table 5.4 shows the values of the wild cards used in Figure 5.9 for an execution where the initial

value of h is false, the initial value of l is false and the initial value of x is 3.

ζ1, ⊥ ` x := 0 ⇓M ζ2

ζ2, > ` skip ⇓M ζ3

ζ2, > ` P’ ⇓M ζ3 [[ζ2 ` skip]]]G = (Id, ∅)
ζ2, ⊥ ` if h then skip else P’ end ⇓M ζ4

ζ1, ⊥ ` x := 0 ; if h then skip else P’ end ⇓M ζ4

Figure 5.9: Evaluation tree of the program in Figure 5.6 for h = false ∧ l = false.

Wild Card Means Value
ζ1 (σ1, ρ1) ( [h 7→ false, l 7→ false, x 7→ 3], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
ζ2 (σ2, ρ2) ( [h 7→ false, l 7→ false, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
P’ if l then x := 1 else skip end
ζ3 (σ3, ρ3) ( [h 7→ false, l 7→ false, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )
ζ4 (σ4, ρ4) ( [h 7→ false, l 7→ false, x 7→ 0], [h 7→ >, l 7→ ⊥, x 7→ ⊥] )

Table 5.4: Value of the wild cards of Figure 5.9.

In a context where the initial value of h is false and the initial value of l is false, the conditional

branching on variable l is evaluated with a program counter carrying variety (its tag is >) and yields the

statement “skip”. The unexecuted branch of this conditional (“x := 1”) is not analyzed. The reason is that

its test (l) does not carry variety. Therefore, the test of the conditional has the same value for any execution

started with the same public inputs. Hence, the assignment contained in the unexecuted branch is never

executed by any initially low equivalent executions. Consequently, the monitored execution state after the

execution of the conditional branching on l (ζ3) is equal to the monitored execution state before the execution

of this conditional (ζ2).

5.3.3 Conclusion

Table 5.5 summarizes the possible final values (σ f (x)) and tags (ρ f (x)) of the variable x depending on the

initial values of the inputs h (σi(h)) and l (σi(l)). As can be seen in this table, if l is false then the final

value of x is always 0 independently from the initial value of h. Therefore, whenever l is false, there is no

flow from h to x. This is well detected by the dynamic analysis which sets the final tag of x to ⊥ whenever

l is false. On the other side, if l is true then the final value of x depends on the initial value of h. This is

well detected by the dynamic analysis which sets the final tag of x to > whenever l is true. Additionally,
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σi(l) σi(h) σ f (x) ρ f (x)
true true 0 >

true false 1 >

false true 0 ⊥

false false 0 ⊥

Table 5.5: Final values and tags of x depending on the initial values of l and h.

the dynamic analysis behaves securely as it does not create any new covert channel. Indeed, the final tag

associated to the variable x never depends on the initial value of the only secret input h.

5.4 Properties of the Dynamic Analysis

Section 5.2 formally defined the dynamic information flow analysis proposed in this chapter. The soundness

of this dynamic analysis for the detection of information flows and as the basis of an information flow

correction mechanism, in order to enforce the notion of noninterfering execution given in Definition 5.1.1,

is proved in Section 5.4.1. Section 5.3 demonstrated on an example that the dynamic analysis proposed

in this chapter is sometimes more precise than the dynamic analysis proposed in Chapter 3, and also more

precise than the majority of information flow analyses. Section 5.4.2 proves that the dynamic analysis

developed in this chapter is always at least as precise as the dynamic information flow analysis of Chapter 3.

5.4.1 Soundness

The dynamic noninterference analysis is proved to be a sound noninterfering execution detection analysis

(Theorem 5.4.1). It is also proved to be sound with regard to serving as the basis of an information flow

correction mechanism (Theorem 5.4.2). This means that, using a monitoring mechanism constructed from

this dynamic noninterference analysis and the correction mechanism proposed on page 82, at the end of any

two monitored executions of a given program P started with the same public inputs (variables which do not

belong to S(P)), the final values of observable outputs (variables which belong to O(P)) are the same for

both executions.

Theorem 5.4.1 proves that the proposed dynamic analysis is sound with regard to information flow

detection. Any variable, whose tag at the end of the execution is ⊥, has the same final value for any

execution started with the same public inputs.

Theorem 5.4.1 (Sound Detection).
Assume that the monitoring semantics ⇓M uses a static information flow analysis ([[]]]G) for which Hypothe-

ses 5.2.1, 5.2.2 and 5.2.3 hold. For all programs P, monitoring execution states (σ1, ρ1), (σ′1, ρ
′
1), (σ2, ρ2)

and (σ′2, ρ
′
2) such that:

• (σ1, ρ1), ⊥ ` P ⇓M (σ′1, ρ
′
1) ,

• (σ2, ρ2), ⊥ ` P ⇓M (σ′2, ρ
′
2) ,
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• ∀x < S(P). σ1(x) = σ2(x),

• ∀x ∈ S(P). ρ1(x) = >

the following holds:

∀x. (ρ′1(x) = ⊥) ⇒ (σ′1(x) = σ′2(x))

Proof. Follows directly from Lemma C.2.3.

Variables whose final tags are not ⊥ may have different final values for two initially low equivalent

executions. Therefore, the monitoring mechanism must modify the final value of any variable belonging

to O(P) and whose final tag is not ⊥. However, as emphasized in previous chapters and by Le Guernic

and Jensen (2005), if the correction of “bad” information flows is done without enough care, the correction

mechanism itself can become a new covert channel carrying secret information. Theorem 5.4.2 proves that

any variable belonging to O(P) and whose final tag is not ⊥ can safely be reset to a default value because the

final tag of a variable does not depend on the secret inputs of the program.

Theorem 5.4.2 (Sound Basis of Correction).
Assume that the monitoring semantics ⇓M uses a static information flow analysis ([[]]]G) for which Hypothe-

ses 5.2.1, 5.2.2 and 5.2.3 hold. For all programs P, monitoring execution states (σ1, ρ1), (σ′1, ρ
′
1), (σ2, ρ2)

and (σ′2, ρ
′
2) such that:

• (σ1, ρ1), ⊥ ` P ⇓M (σ′1, ρ
′
1) ,

• (σ2, ρ2), ⊥ ` P ⇓M (σ′2, ρ
′
2) ,

• ∀x < S(P). σ1(x) = σ2(x),

• ∀x ∈ S(P). ρ1(x) = >

• ρ1 = ρ2

the following holds: ρ′1 = ρ′2.

Proof. Follows directly from Lemma C.2.5.

5.4.2 Precision

The remainder of this section compares the precision of the dynamic information flow analysis proposed in

this chapter with the precision of the monitoring mechanism proposed in Chapter 3. Theorem 5.4.2 proves

that a correction mechanism can be based on the tags computed by the dynamic analysis without creating

new covert channels. As neither of the dynamic analyses of Chapter 3 and 5 modifies the internal state of

the program (the value store), the correction mechanism of Chapter 3 can be used in combination with the

dynamic analysis proposed in this chapter. However, as this chapter does not formally specifies a correction

mechanism, only the precision of the dynamic information flow analyses of Chapter 3 and 5 are compared.
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Theorem 5.4.3 states that, for any program P without output statements, if an execution monitored by

the mechanism of Chapter 3 terminates concluding that variables not belonging to V ′ do not contain secret

information, then an execution started with the same inputs and monitored by the dynamic analysis of

this chapter does also terminates and concludes that variables not belonging to V ′ do not contain secret

information.

Theorem 5.4.3 (Improved Precision).
Assume that the monitoring semantics ⇓M uses a static information flow analysis ([[]]]G) which is acceptable

and for which Hypotheses 5.2.3 and 5.2.4 hold. For all programs P, whose set of secret inputs is S(P), value

stores σ and σ′, monitoring automaton states (V ′,w′), and tag stores ρ and ρ′ such that:

• ((S(P), ε), σ) 
 P
ε
=⇒ ((V ′,w′), σ′) ,

• ∀x < S(P), ρ(x) = ⊥,

the following holds:

• (σ, ρ), ⊥ ` P ⇓M (σ′, ρ′) ,

• ∀x < V ′, ρ(x) = ⊥.

Proof. Follows directly from Lemma C.3.5.

5.5 Adding Procedures and Records to the Monitoring Semantics

Previous sections presented a semantics-based dynamic information flow analysis for a core language in-

cluding assignments, conditionals and loops. Its soundness and level of precision are stated in Section 5.4.2

and proved in Appendix C. The current sections explores some potential extensions to the language sup-

ported. Section 5.5.1 proposes an extension to the analysis in order to take into account procedure calls.

Section 5.5.2 modifies the notion of values, tags, value stores and tag stores in order to incorporate records.

The correction of those extensions have not been formally proved. However, during their development, it

has been taken into account that all the lemmas of Appendix C should still hold with those extensions.

5.5.1 Procedures

Figure 5.10(a) describes the syntax of procedure calls. As it is usually done, a procedure call is composed

of a procedure name (〈procedure-name〉) and a list of expressions (〈expr-list〉). Procedure definitions are

not specified. However, the existence of a function, named pbody(), is assumed. This function takes as

parameter the name of a procedure, and returns the body of this procedure and three sets which describe the

variables used and updated by this procedure.

Let pn be the name of a procedure. pbody(pn) returns (P, ḡ, p̄, l̄) where:

P is the procedure’s body. It is the program which is executed whenever pn is called.
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ḡ is a set of global variables. It must at least include all the global variables modified by the procedure.

In particular, in order to simulate functions (i.e. procedures returning a value), it should include

“returnedValue” which would be a reserved variable name. This variable would be used to store the

returned value. An assignment to this variable should be the last command of every procedure. An

assignment from returnedValue to another variable should follow directly any procedure call.

p̄ is the list of parameter names of the procedure pn.

l̄ is a set of local variables. It must at least include all the local variables defined as such by the method, and

exclude all the global variables used by the method. Ideally, the intersection of p̄ and l̄ is empty.

For example, let incX(n) be a procedure. It increments n times the value of the global variable x by n

and returns the new value of x. This procedure, whose body follows, uses a local variable named i.

1 i := n;

2 whi le ( i > 0) do
3 x := x + n;

4 i := i - 1;

5 done;
6 returnedValue := x

For this procedure, pbody(incX) may return (P, {x, returnedValue}, {n}, {i}) where P is the program given

above which corresponds to the procedure’s body.

The semantics of procedure calls is straightforward. It is given in Figure 5.10(b). This semantics uses

an “undefined” value written [ ([ ∈ D). It can be assimilated to the “null” value of Java. When a procedure

of name pn has to be evaluated in a program state ((σ, ρ), tpc) with the list of parameters ē, the procedure’s

body is evaluated with a modified monitoring execution state (σi, ρi). σi is equal to the value store σ except

for the local variables which are mapped to the undefined value [ and parameters which are mapped to the

value of their respective expressions (∀n ∈ N. σi( p̄n) = σ(ēn)). ρi is equal to the tag store ρ except for the

local variables which are mapped to the tag⊥ and parameters which are mapped to the tag of their respective

expressions (∀n ∈ N. ρi( p̄n) = ρ(ēn)). Let (σf, ρf) be the monitoring execution state after the evaluation of

the procedure’s body. The monitoring execution state after the evaluation of the procedure’s call is (σ′, ρ′).

σ′ is equal to the value store σ except for the global variables defined by pn which are mapped to their

respective value in σf (∀n ∈ N. σ′(ḡn) = σf(ḡn)). ρ′ is equal to the tag store ρ except for the global variables

which are mapped to their respective tag ρf (∀n ∈ N. ρ′(ḡn) = ρf(ḡn)).

Constraints on the static analysis of procedure calls are given in Figure 5.10(c). When analyzing a

procedure call in a given context, the procedure’s body is analyzed in a modified context. The modifica-

tions to the context reflect the modifications which occur when executing a procedure call as described in

Figure 5.10(b). The result returned by the static analysis for the procedure call must be the restriction to the

global variables of the result returned by the static analysis for the procedure’s body in the modified context.
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〈prog〉 ::= . . . | 〈procedure-name〉(〈expr-list〉)

(a) Addition to the syntax of the language

pbody(m) = (P, ḡ, p̄, l̄)
σi = σ[l̄ 7→ [][ p̄ 7→ σ(ē)] ρi = ρ[l̄ 7→ ⊥][p̄ 7→ ρ(ē)]

(σi, ρi), tpc ` P ⇓M (σf, ρf)
(σ, ρ), tpc ` m(ē) ⇓M (σ[ḡ 7→ σf(ḡ)], ρ[ḡ 7→ ρf(ḡ)])

(EM-CALL)

(b) New semantic rule

(D,X) |= ( (σ, ρ) ` m(ē) )

iff there exist (Dm,Xm) such that:
pbody(m) = (P, ḡ, p̄, l̄)
let ζ′ = (σ[ p̄ 7→ σ(ē)][l̄ 7→ [], ρ[ p̄ 7→ ρ(ē)][l̄ 7→ ⊥]) in (Dm,Xm) |= (ζ′ ` P)
D = Id[ḡ 7→ Dm(ḡ)] ∧ X = Xm ∩ ḡ

(c) New constraints on the analysis

Figure 5.10: Addition of procedures to the language for ⇓M

It is anticipated, but not formally proved yet, that with the addition of this constraint on the static analysis

Theorems 5.4.1 and 5.4.2 are preserved.

5.5.2 Records

This section proposes an extension to the dynamic information flow analysis of Chapter 5 in order to take

into account values of type record. A record is a value as are integers or booleans. A record is a set of pairs

composed of a unique field name and a value. A value store, as defined in Chapter 5 and previous chapters,

is a mapping from variable names to values. A record can be seen as a value store mapping field names to

values. Extending previous work of Chapter 5 to incorporate records requires only to redefine the notions

of values, tags, value stores and tag stores. The monitoring semantic rules, acceptability rules, hypotheses,

and theorems remain the same.

Records allow the representation of any complex acyclic structure. For example a simply linked list can

be represented using records having two fields (head and tail). Figure 5.11 shows the graphical representa-

tion of such a record for the list [1, 2]. This “list” is a record which maps the field head to 1 and the field

tail to another record. This second record maps head to 2 and tail to an empty record.

Introduction of records into the default semantics is done by redefining values and value stores. X
is the domain of identifiers. In previous work, X is the set of all variable names. Let F be the set of all field

names. Let Xvar be the set of all variable names (previously X). The domain of identifiers (X) is redefined
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1head

2head

tail

tail

Figure 5.11: Record {head :1, tail : {head :2, tail : {}}} (the list [1, 2])

recursively as follows:

X = Xvar ∪ {id. f | id ∈ X ∧ f ∈ F}

D is the semantic domain of values. Let Dcore be the semantic domain of values as defined in previous

work (integers, booleans, . . . ). The semantic domain of values (D) is redefined recursively as follows:

D = Dcore ∪ (F→ (D ∪ {[}))

A value is either a “core value” (integers, booleans, . . . ) or a total function mapping every field name to a

value or the “undefined” value ([). The record of Figure 5.11 is then a function mapping the field head to

the integer 1, the field tail to another function, and any other field to [.

A value store is a total function from variable names (Xvar) to values (D) (σ : Xvar → D). To simplify

access to values contained in variables, the definition of value store is extended to X as follows:

σ(id. f ) = (σ(id))( f )

Therefore, if the variable x in the value store σ is mapped to the list of Figure 5.11 then σ(x.tail .head ) is 2.

Additionally, to simplify field update, value store update is extended as follows:

σ[id. f 7→ v] = σ[id 7→ σ(id)[ f 7→ v]]

To introduce records into the monitoring semantics it remains to redefine tags and tag stores. T is

the semantic domain of tags. Let Tcore be the set of tags as defined previously (T in previous work). A tag is

now a pair composed of an element of Tcore and a record mapping field names to tags. The semantic domain

of tags (T) is recursively defined as follows:

T = Tcore × (F→ (T ∪ {[}))

The graphical representation of a potential tag for the list [1, 2] is given in Figure 5.12. Suppose this list is

stored in the variable x, σ(x) is represented in Figure 5.11 and ρ(x) is represented in Figure 5.12. From this

tag, it is possible to deduce that, for every initially low-equivalent executions, σ(x) is a list of at least one

element and whose first element is 1.
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⊥

⊥head

>

⊥head

⊥tail

tail

Figure 5.12: A potential tag for the record of Figure 5.11

A tag store is a total function from variable names (Xvar) to tags (T) (ρ : Xvar → T). In the semantic

rules and acceptability rules, access to the tag of a given identifier with field names is defined as follows:

ρ(id. f ) stands for let (tid, rid) = ρ(id) in

let (t f , r f ) = rid( f ) in

(tid t t f , r f )

Similarly to value stores, update of a tag store for an identifier including field names is defined as follows:

ρ[id. f 7→ t] stands for ρ[id 7→ ρ(id)[ f 7→ t]]

The least upper bound operator is also redefined to operate on the new version of tags (t : (T ∪ {[})2 → T).

Its definition follows:

t1 t t2 =


t2 iff t1 = [

t1 iff t2 = [

(tc
1 t tc

2 , λ f . r1( f ) t r2( f )) iff t1 = (tc
1, r1) ∧ t2 = (tc

2, r2)

Comparison of tags is done exclusively on tags belonging to Tcore. A function, called flatten(), is intro-

duced to convert any type of “tag” to a tag belonging to Tcore (flatten() : (Tcore ∪ {[} ∪ T) → Tcore). Tag

comparisons (v, =, . . . ) implicitly apply flatten() on both of their arguments. Definition of flatten() follows:

flatten(t) =


t iff t ∈ Tcore

⊥ iff t = [

tc t
⊔

f∈F flatten(r( f )) iff t = (tc, r)

It is anticipated, but not formally proved, that with those definitions Theorems 5.4.1 and 5.4.2 are pre-

served.

5.6 Conclusion

This chapter, as the previous ones, addresses the problem of monitoring executions in order to enforce

the confidentiality of secret data. However, it focuses on the detection of information flows. No correction
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mechanism is formally defined; even if a suitable one is described on page 82. The confidentiality property to

monitor is expressed using a notion of noninterference between secret inputs of the execution and its public

outputs (Definition 5.1.1). The language taken into consideration is a sequential language with assignments

and conditionals (including loops) as in Chapter 3. The main difference between the dynamic information

flow analysis proposed in this chapter and the ones of previous chapters lies in the static analysis used

to detect implicit indirect flows. The static information flow analyses used by the dynamic analysis in this

chapter are context-sensitive, which is not the case in previous chapters. This allows to increase the precision

of the overall dynamic information flow analysis for the detection of implicit and explicit indirect flows.

Another distinguishing feature of the dynamic information flow analysis developed in this chapter lies

in the definition of the static analysis used for the detection of implicit indirect flows. No static information

flow analysis is formally defined to be used by the dynamic analysis, even if such an analysis can easily be

extracted from the acceptability rules of Figure 5.5 by fix point computation. Instead, three hypotheses are

defined. It has been proved that any static information flow analysis respecting those hypotheses can be used

by the dynamic noninterference analysis proposed in this chapter. The first hypothesis (Hypothesis 5.2.1)

simply requires the static analysis to be sound with regard to the detection of the variables whose value

may be modified by the execution of a given piece of code in a given context. The second hypothesis

(Hypothesis 5.2.2) requires the static analysis to have a precision similar to the overall dynamic analysis

for pieces of code executed in a secret context. Finally, Hypothesis 5.2.3 requires the static analysis to

be deterministic with regard to public data given in the analysis context. Hypotheses 5.2.2 and 5.2.3 are

not required for the overall dynamic analysis to be sound with regard to the detection of information flows.

However, they are required in order to prevent a “bad flows” correction mechanism from creating new covert

channels which may leak secret information.

In Section 5.4, the proposed noninterference analysis is proved to be sound both with regard to the

detection of information flows and with regard to its ability to trigger the correction mechanism without

creating a new covert channel. In the same section, Theorem 5.4.3 states that the noninterference analysis

proposed in this chapter is more precise than the analysis of Chapter 3 and, by transitivity, more precise than

the type system developed by Volpano et al. (1996).
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Chapter 6

Conclusion

6.1 Epitome

This PhD thesis dissertation defends the opinion that dynamic confidentiality analyses are worth developing

even considering the achievements of static confidentiality analyses. It asserts that noninterference monitors

can be formally proved to ensure noninterference, deal with complex programming language features, and

be more accurate than static analyses in some cases due to a more precise knowledge of the execution

context.

In order to support those claims, this PhD thesis dissertation presented three different monitors for en-

suring the confidentiality of secret data manipulated by sequential or concurrent programs. The property of

confidentiality enforced is defined using the notion of noninterference introduced by Goguen and Meseguer

(1982). The goal of those monitors is to prevent an attacker from deducing information about the secret

inputs of an execution by looking at the public outputs of this execution. The attacker is considered to have

access to the source code of the executed program, to the public input values and to the public output values.

All three monitors relies on a dynamic information flow analysis to track secret information and on a

correction mechanism to prevent secret information leakage. In each monitor, the dynamic information flow

analysis relies on a static analysis to detect flows created by unexecuted pieces of code. The correction

mechanisms impact only the external view of the behavior of the program. The monitors do not modify

the internal state of sequential programs monitored. For concurrent programs, the monitor can create new

deadlocks when the original program synchronizes under the influence of secret information.

Chapter 3 proposed an automaton-based noninterference monitor. The monitor is described under

the form of a big-step semantics (the monitoring semantics). Before executing a command, this semantics

communicates with a security automaton. The automaton is in charge of tracking secret information and

prevent secret information leakage. It keeps track of which variables, or other program state entities, contain

secret information (or, as expressed in information theory (Ashby, 1956; Cohen, 1977) and in preceding

chapters, “carry variety”). To prevent secret information leakage, this security automaton sends back an

admonition to the monitoring semantics to control the execution of the program monitored. The security
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automaton can either allow the execution of a command, deny the execution of a command, or replace the

command to be executed by another one.

The monitor proposed in Chapter 3 is proved to be sound with regard to the notion of noninterference

(Theorem 3.4.1). It is also proved to be more precise than a type system for noninterference similar to the

one proposed by Volpano et al. (1996) (Theorem 3.4.2). The precision relationships between the different

dynamic information flow analyses proposed in this document and some type systems are summarized in

Figure 6.1.

Analysis precision

L
an

gu
ag

e
ex

pr
es

si
ve

ne
ss

`SV

`4.11 →

`VSI

`3.5 ⇒
⇓

`SV: type system of Smith and Volpano (1998)

`VSI: type system of Volpano et al. (1996)

`4.11: type system of Figure 4.11

`3.5: type system of Figure 3.5

→: automaton-based monitor of Chapter 4

⇒: automaton-based monitor of Chapter 3

⇓: semantics-based monitor of Chapter 5

Figure 6.1: Precision of different information flow analyses

The noninterference monitor presented in Chapter 4 deals with concurrent programs. As in Chap-

ter 3, the monitor is described as a semantics that communicates with a security automaton. As in the

sequential case, the automaton uses the semantics messages to track the program state entities containing

secret information. In order to prevent secret information leakage, the security automaton sends back direc-

tives to the semantics to control the execution.

Compared to Chapter 3, this monitor is able to enforce noninterference for multi-threaded programs

including synchronization commands. The type of semantics used to describe the monitor is also different.
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In Chapter 4, the monitor is described as a small-step semantics. This allows the confidentiality property

enforced by the monitor to take into consideration nonterminating programs.

Once again, the proposed noninterference monitor for concurrent programs is proved to be sound with

regard to the notion of noninterference (Theorem 4.5.1). It is also proved to be more precise for the de-

tection of information flows than a type system similar to the one proposed by Smith and Volpano (1998)

(Theorem 4.5.2).

The monitor’s dynamic analysis of Chapter 5 relies on context-sensitive static analyses. This dynamic

noninterference analysis is described using a big-step semantics. Unlike analyses of Chapters 3 and 4, appli-

cation of the semantic rules is not controlled by an external security automaton. The dynamic information

flow analysis, which is in charge of tracking secret information, is directly integrated into the monitoring

semantics. However, detection of information flows created by unexecuted pieces of code is still supported

by a static analysis.

This static analysis is not described, as it was the case for the monitors of Chapters 3 and 4. Instead,

three hypotheses are formally defined (Hypotheses 5.2.1, 5.2.2 and 5.2.3). Any static analysis respecting

those hypotheses can be “safely” used in combination with the dynamic information flow analysis for the

detection of information flows at run-time. Those static analyses are context-sensitive. The result they return

depends on the program state at the time the execution detects a piece of code which will not be executed.

Roughly, the context sensitivity consists in the detection of part of code, in the unexecuted code C, which

would not be executed (dead code) due to the program state at the time C would have been executed if some

secret input values were different.

This dynamic noninterference analysis is proved to be sound both with regard to the detection of in-

formation flows and with regard to its ability to trigger the correction mechanism without creating a new

covert channel (Theorems 5.4.1 and 5.4.2). Additionally, it is proved to be more precise than the analysis

of Chapter 3 for the detection of information flows (Theorem 5.4.3). This last analysis being itself more

precise than the type system of Volpano, Smith, and Irvine (1996).

6.2 From Monitoring to Testing

As indicated above, the last noninterference monitor, presented in Chapter 5, relies on the combination of a

defined dynamic information flow analysis and a specified static analysis. This static analysis can be any such

analysis which respects Hypotheses 5.2.1, 5.2.2 and 5.2.3. Hypotheses 5.2.2 and 5.2.3 are required solely

to ensure that the correction mechanism for “bad” flows does not create any new covert channel. Therefore,

any static information flow which respects Hypothesis 5.2.1 (basically, any sound static information flow

analysis) can be used in combination with the semantic rules of Figure 5.4 to obtain a sound dynamic

analysis for the detection of information flows from private inputs to public outputs. Because a dynamic

analysis for the sole detection of information flows is less constrained than a dynamic analysis for the

detection and correction of information flows, other improvements of the precision of the dynamic analysis
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are possible. For example, with sequential programs, explicit indirect flows can be taken into account only

at the end of the execution of the conditional creating them.

With regard to noninterference, a dynamic analysis suited only for the detection of information flows,

and not their correction, can be used only for noninterference testing. The idea behind noninterference

testing is to run enough executions of a program in order to cover a “high enough” subset of all possible

executions of the program. In cases where the dynamic analysis results enable to conclude that all the execu-

tions covered are safe, users gain a confidence in the “safe” behavior of the program which is proportional

to the coverage level. When dealing with the confidentiality of secret data, an incomplete coverage does

not seem acceptable. The aim of noninterference testing is then to cover all possible executions. It is not

possible to run an execution for every possible input set (as there are frequently infinitely many input val-

ues). However, the tags associated to variables — resulting from the dynamic analysis — are the same for

many executions with different inputs. Therefore, it may be possible to conclude about the noninterference

behavior of any execution of a program by testing a limited, hopefully finite, number of executions.

A limited number of executions may be sufficient to conclude that a program is noninterfering. The

main idea behind noninterference testing has been exposed above. Figure 6.2 sketches this idea. Let P be

a program whose secret inputs are represented by h, public inputs by l, and public outputs by a color. P(li,

h j), where (li, h j) are input values, is the public output, represented by a color, of the execution of P with

the inputs (li, h j). In the representations of Figure 6.2, public input values are represented on the x-axis

and secret input values are represented on the y-axis. Each point of the different graphs corresponds to the

execution of P with, as inputs, the coordinates of this point. Whenever a point in the graph is colored, the

color corresponds to the public output value of the execution of P with, as inputs, the coordinates of the

colored point. Figure 6.2(a) represents the execution of P with inputs (l0, h0). Its public output value is

represented by the color and its tag — result of the dynamic information flow analysis — is ⊥ (the public

output does not carry variety). Figure 6.2(b) shows the meaning of this tag. As the public output tag of P(l0,

h0) is ⊥, it means that for any secret inputs h j the public output value of P(l0, h j) is the same as for P(l0, h0);

it is . Even if there exist secret inputs h1 for which the public output tag of P(l0, h1) is >, any execution

of P with public inputs l0 is noninterfering (it corresponds to Theorem 5.4.1 for the analysis of Chapter 5).

It only means that the dynamic analysis is not precise enough to directly detect that the execution of P with

inputs (l0, h1) is noninterfering. However, the fact that P(l0, h1) is noninterfering can be indirectly deduced

from the result of the dynamic analysis of the execution of P with inputs (l0, h0).

The main challenge of noninterference testing is to develop a dynamic analysis for which it is possible

to characterize a set of executions which associate the same tag to the public output as an execution which

as already been tested. For example, assume that it has been proved that all executions in the dashed area

in Figure 6.2(c) associate the same tag to the public output as the execution of P with inputs (l0, h0). As

this tag is ⊥, it is possible to conclude from the single execution of P with inputs (l0, h0) that all colored

executions in Figure 6.2(d) are noninterfering. Therefore, with only a limited number of executions, as in

Figure 6.2(e), it is possible to deduce that the program is noninterfering for a wide range of inputs which

can be characterized.
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(e) Noninterfering executions

Figure 6.2: Sketch of the main idea of noninterference testing.

Developing a dynamic information flow analysis for noninterference testing. As exposed above, in

order to be able to conclude on the interference behavior of a program by testing it, it is necessary to be

able to characterize a finite number of executions which are sufficient to conclude about all executions of

this program. It is then necessary to develop a dynamic analysis which has the right balance between the

number of executions covered by one test and the precision of the analysis.

The solution approached here assumes there is no recursive method calls and is based on “acyclic Control

Flow Graphs” (aCFG). As its name suggests an aCFG is a Control Flow Graph (CFG) without cycles.

In an aCFG, there is no edge from the node corresponding to the body of a loop statement to the node

corresponding to the test of this loop statement. Instead, there is an edge from the body of the loop to the

block following the loop statement. Figure 6.4(a) shows the standard CFG of the code in Figure 6.3, and

Figure 6.4(b) shows its aCFG. In an acyclic CFG, there is a finite number of paths. The maximum number

of paths is equal to 2b, where b is the number of branching statements (if and while statements) in the

program.

The approach to noninterference testing proposed in this section is based on a dynamic information

flow analysis which returns the same result for any execution that follows the same path in the aCFG of the

program analyzed. Let the acyclic CFG trace of an execution be the list of nodes of the aCFG encountered

during the execution. Let τ[[σ ` P]] be the acyclic CFG trace of the execution of program P with initial

value store σ. Let T[[ζ ` P]] be the result of the dynamic information flow analysis of the execution of
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P in the initial program state ζ. The constraint imposed on the dynamic information flow analysis for the

noninterference testing approach proposed is formalized in Hypothesis 6.2.1.

Hypothesis 6.2.1 (Hypothesis on the dynamic analysis for noninterference testing).
For all programs P, value stores σ1 and σ2, and tag stores ρ:

τ[[σ1 ` P]] = τ[[σ2 ` P]] ⇒ T[[(σ1, ρ) ` P]] = T[[(σ2, ρ) ` P]]

With such a dynamic analysis, the problem of verifying the noninterference behavior of any execution

is reduced to the well known testing problem of achieving 100% feasible paths coverage (Beizer, 1990;

Godefroid et al., 2005; Ntafos, 1988; Sen and Agha, 2006; Williams et al., 2005).

Noninterference testing seems as difficult as promising. Noninterference monitoring has one main ad-

vantage and one main drawback compared to static noninterference analyses. Dynamic noninterference

analyses have a more precise knowledge of the control flow of the program than static analyses, which

increases their precision. Of course, some parts of the code must still be statically analyzed even with a

dynamic analysis. However, as shown in Chapter 5, the result of static analyses of unexecuted code in a

dynamic analysis can be more precise than when analyzed with fully static analyses. The reason is that,

1 i f c1 then
2 whi le c2 do P1 done
3 e l s e
4 P2
5 end

Figure 6.3: Listing of an example code

Begin

c1

c2

P2 End

false

true

P1

false

true

(a) Standard CFG

Begin

c1

c2

P2

true

End

true

P1

false

false

(b) Acyclic CFG

Figure 6.4: CFG and aCFG of the code in Figure 6.3
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with a dynamic analysis, pieces of code corresponding to unexecuted code are analyzed in a smaller con-

text than with a fully static information flow analysis. This feature also increases the precision of dynamic

information flow analyses. However, as stated previously in this document and by Le Guernic and Jensen

(2005), to ensure noninterference a monitor must prevent its information flow correction mechanism from

creating a new covert channel. This characteristic imposes a special constraint on the dynamic information

flow analysis which is specific to noninterference monitors. In Chapter 5, this constraint is characterized

by Hypothesis 5.2.2. This constraint implies that the dynamic analyses used by noninterference monitors

are less precise than dynamic analyses developed only for the detection of information flows. The dynamic

information flow analysis used for noninterference testing, except for the coverage problem, is only required

to detect information flows. Therefore, a dynamic information flow analysis for noninterference testing can

enjoy the main advantage of noninterference monitoring over static analyses without suffering from its main

drawback.

It is easy to develop a dynamic information flow analysis for noninterference testing which gives sound

results with regard to the noninterference behavior of tested executions. However, developing a noninterfer-

ence testing methodology which give sound results with regard to the noninterference behavior of a program

(i.e. with regard to the noninterference behavior of all its executions) is way harder. With the methodology

proposed above, it requires achieving and certifying 100% feasible paths coverage in the aCFG (i.e. testing

at least one execution for every path which can be followed by an execution of the program). Another ap-

proach may be to characterize executions which have been covered by the test and guard executions of the

tested program to allow only those executions which have been covered. With a dynamic analysis respect-

ing the Hypothesis 6.2.1, this could be achieved by running a symbolic execution in parallel with every test

execution in order to collect the test values of the conditionals encountered expressed as functions of the

input values.

Noninterference testing may be an interesting field of study having its own specific problems. It may

never be as complete as static noninterference analyses or noninterference monitors. However, it is more

precise, or at least as precise, than the static analyses or monitors on specific executions. Thus noninterfer-

ence testing may allow to validate some specific programs whose validation is out of reach of the two other

approaches, or at least help find information flow bugs.

6.3 Synthesis

In the last quarter of century, research on noninterference — a confidentiality property — has focused on

static analyses. Early work on dynamic noninterference analysis, dating essentially from the seventies, have

not been pushed further during two decades. This dissertation defend the thesis that dynamic noninterfer-

ence analysis is a promising approach, even with the high level of development already achieved in static

noninterference analysis. This point of view seems to be shared by part of the scientific community with a

revival of dynamic information flow analyses in the last couple of years (McCamant and Ernst, 2007; Shroff

et al., 2007; Vachharajani et al., 2004; Venkatakrishnan et al., 2006).
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Contrary to a widely spread assumption, noninterference is a property within reach of dynamic anal-
yses. McLean (1994) and Schneider (2000) proved that strong information flow properties, as noninter-

ference, are not enforceable by execution monitors. Such monitors have only access to the sequence of

actions which are really executed. However, in this thesis and other works (Masri et al., 2004; Shroff et al.,

2007; Vachharajani et al., 2004), it is shown that a dynamic analysis having access to unexecuted code can

effectively track all types of information flows.

Yet, a static noninterference analysis is only concerned with the detection of information flows. This

is not the case for a dynamic noninterference analysis. It is acceptable for a static analysis to warn a

user before execution that a program is or is not noninterfering. On the contrary, it is not acceptable for

a dynamic noninterference analysis to simply warn the user at run time that some secret information have

been spread in the public domain. A user expect a dynamic noninterference analysis to be coupled with a

correction mechanism which prevents any secret information leakage based on the results of the dynamic

analysis. Previous works on dynamic noninterference analysis (Masri et al., 2004; Vachharajani et al.,

2004; Venkatakrishnan et al., 2006) lack formal proofs that the proposed monitor — the combination of

a dynamic information flow analysis and a correction mechanism — actually enforces noninterference.

The present thesis dissertation formally proved that it is possible to develop noninterference monitors that

enforce noninterference (Chapter 3), even for languages including complex features as concurrency and

synchronization (Chapter 4).

Dynamic analyses have some intrinsic advantages over static analyses. First of all, a monitor analyzes

a program at run-time. A monitor is then inherently more user-centric than a static analysis. It is easier for a

dynamic analysis to take into consideration the precise policy desired by a user for a precise execution than it

is for a static analysis. Additionally, a noninterference monitor allows a user to safely use the noninterfering

executions of a program while still preventing interfering ones to leak secret information (at the cost of the

modification of the semantics of those interfering executions). This is more difficult with a static analysis.

Such analyses return a sole conclusion which must be valid for all executions.

Moreover, due to their dynamic nature, noninterference monitors have a better knowledge of the control

flow of the program executed. This allows a dynamic information flow analysis to be sometimes more

precise than a static information flow analysis. As an example, let us consider the following program where

h is the only secret input and l the only public input.

i f ( f ( l ) ) then t := h e l s e sk ip end;
i f ( g( l ) ) then x := t e l s e sk ip end;
output x

Without information on f and g (and often, even with), a static analysis would conclude that this program is

unsafe because the secret input information could be carried to x through t and then to the output. However,

if f and g are such that no value of l makes both predicates true, then any execution of the program is

perfectly safe. In that case, the monitor would allow any execution of this program. The reason is that, l

being a public input, only executions following the same path as the current execution are taken care of by

the monitoring mechanism. So, for such configurations where the branching conditions are not influenced

108



S 6.3

by the secret inputs, a monitoring mechanism is at least as precise as any static analysis — and often more

precise (Theorem 3.4.2).

Finally, as shown in Chapter 5, a dynamic information flow analysis can gain precision over a static

analysis even for the detection of information flows created by unexecuted pieces of code. This is achieved

by taking into consideration some knowledge about the program state in which the unexecuted code would

have been executed if the secret inputs were different. For example, consider the following program where

h is the only secret input and l the only public input.

x := 0; t := f ( l );

i f h then
sk ip

e l s e
i f t then x := 1 e l s e sk ip end

end;
output x

A static analysis would accurately conclude that this program is probably interfering — it is the case if

there exists a value for l such that f( l) is true. Depending on the complexity of the procedure f, it would

be difficult to characterize statically which executions are interfering and which are not. The dynamic

information flow analysis proposed in Chapter 5 is able to accurately detect if an execution of this program

is interfering or not. Therefore, it allows to safely run any noninterfering execution without altering their

semantics while still preventing any secret information leakage for any execution of this program.

Static and dynamic noninterference analyses are worth research investment and works well in combi-
nation. Executions of a program statically verified do not incur a run-time overhead, while final users have

a strong guarantee that the program respects the confidentiality of their secret. However, a final user may

not be able to run a static analysis on a program, or may not be willing to do it for a program he may just use

once a year (a tax application for example). Therefore, a noninterference monitor is useful when the final

user does not trust the source of a program or when a program could not pass a static analysis. The improved

precision of a dynamic information flow analysis on precise executions may allow use of the program, or at

least of the noninterfering executions, while still preserving the confidentiality of secret information.
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Appendix A

Proofs of Chapter 3’s Theorems

A.1 Soundness

Lemma A.1.1 (Same context before and after an execution). For all statement S , automaton states q =

(V ,w) and q f = (V f ,w f ), and value store σ, if (q, σ) ` S
o
=⇒M(O) (q f , σ f ) then w f = w.

Proof. The fact that w f = w follows directly from the definition of the semantics (EM(O)), and the definition

of the transition function of the monitoring automaton.

Lemma A.1.2 (No outputs under secret context).
For all statement S , automaton state (V ,w), and value store σ, if w < {⊥}? then [[S ]]O

M(O)((V ,w), σ) = ε.

Proof. This follows directly from the definitions of the semantics (EM(O)) and (EO) and from the transition

function of the monitoring automaton. The only statement outputting anything is “output e”. The semantics

(EM(O)) always call the automaton to verify any action it will evaluates. Whenever the context of execution

is secret (i.e. w < {⊥}?), the monitoring automaton deny the execution of any print statement.

Lemma A.1.3 (Automaton simulates execution in secret context).
For all statement S , automaton state q = (V ,w), and value store σ, if (q, σ) ` S

o
=⇒M(O) (q f , σ f ) and

w < {⊥}? then (q, not S )→ q f .

Proof. The proof goes by induction on the derivation tree of “((V ,w), σ) ` S
o
=⇒M(O) (q f , σ f )”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(EM(O)-OK) then we can conclude that :

(1) S = “skip” or S = “y := e” or S = “output e”, and “(q, S )
OK
−−→ q f ”.

This follows directly from the definition of the rule (EM(O)-OK) and the grammar of the lan-

guage. It can also be deduced from the rule (EM(O)-OK), the transition function of the monitor-

ing automaton, and the semantics (EO).

Case 1: S = “skip” or S = “output e”
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(a) q f = q.

This follows directly from the transition function of the monitoring automaton.

(•) (q, not S )→ q f .

This follows directly from the transition function of the monitoring automaton because

w < {⊥}? and modified(S ) = ∅.

Case 2: S = “x := e”

(a) q f = (V ∪ {x},w).

This follows directly from the transition function of the monitoring automaton because

w < {⊥}?.

(•) (q, not S )→ q f .

This follows directly from the transition function of the monitoring automaton because

w < {⊥}? and modified(x := e) = {x}.

(EM(O)-EDIT) then we can conclude that :

(1) S = “output e”, and “(q, S )
A′
−−→ q f ”.

This follows directly from the definition of the rule (EM(O)-EDIT) and the grammar of the lan-

guage. It can also be deduced from the rule (EM(O)-OK), the transition function of the monitoring

automaton, and the semantics (EO).

(2) q f = q.

This follows directly from the transition function of the monitoring automaton.

(•) (q, not S )→ q f .

This follows directly from the transition function of the monitoring automaton because w < {⊥}?

and modified(output e) = ∅.

(EM(O)-NO) then we can conclude that :

(1) S = “output e”, and “(q, S )
A′
−−→ q f ”.

This follows directly from the definition of the rule (EM(O)-NO) and the grammar of the lan-

guage. It can also be deduced from the rule (EM(O)-OK), the transition function of the monitor-

ing automaton, and the semantics (EO).

(2) q f = q.

This follows directly from the definition of the rule (EM(O)-NO).

(•) (q, not S )→ q f .

This follows directly from the transition function of the monitoring automaton because w < {⊥}?

and modified(output e) = ∅.

(EM(O)-IF) then we can conclude that :

(1) S = “if e then S 1 else S 2 end”, σ(e) = v, and:
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• (q, branch e)
OK
−−→ q1

• (q1, σ) ` S v
o
=⇒M(O) (q2, σ1)

• (q2, not S ¬v)
OK
−−→ q3

• (q3, exit)
OK
−−→ q f

This follows directly from the definition of the rule (EM(O)-IF).

Let us define qi = (V i,wi) for all integer i from 1 to 3.

(2) w1 < {⊥}
?.

This follows directly from the global hypothesis w < {⊥}? and the definition of the transition

function of the monitoring automaton.

(3) V2 = V ∪modified(S v).

This follows from the application of the inductive hypothesis to the evaluation of S v in the local

conclusion (1) and the definition of the transition (T-NOT-high).

(4) q f = (V ∪modified(S v) ∪modified(S ¬v),w).

From the local conclusion (2), the evaluation of S v in the local conclusion (1) and lemma A.1.1, it

is possible to show that w2 < {⊥}
?. So, the definition of the transition function of the monitoring

automaton imply that V3 = V2 ∪ modified(S ¬v). Finally the desired result is obtain using the

local conclusion (3), the definition of (T-EXIT) and lemma A.1.1.

(•) (q, not S )→ q f .

This follows directly from the transition function of the monitoring automaton because w < {⊥}?

and modified(if e then S 1 else S 2 end) = modified(S 1) ∪modified(S 2).

(EM(O)-WHILEtrue) then we can conclude that :

(1) S = “while e do S l done” and:

• (q, branch e)
OK
−−→ q1

• (q1, σ) ` S l
ol
=⇒M(O) (q2, σ1)

• (q2, exit)
OK
−−→ q3

• (q3, σ1) ` while e do S l done
ow
==⇒M(O) (q f , σ2)

This follows directly from the definition of the rule (EM(O)-WHILEtrue).

Let us define qi = (V i,wi) for all integer i from 1 to 3.

(2) w1 < {⊥}
?.

This follows directly from the global hypothesis w < {⊥}? and the definition of the transition

function of the monitoring automaton.

(3) V3 = V ∪modified(S l).

This follows from the application of the inductive hypothesis to the evaluation of S l in the local

conclusion (1) and the definition of the transition (T-NOT-high) and (T-EXIT).
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(4) V f = V ∪modified(S l).

The local conclusion (2) and the definition of the transition function imply w3 < {⊥}
?. Using

the inductive hypothesis on the evaluation of while e do S l done in the local conclusion (1),

it is possible to show that V f = V2 ∪ modified(S l) because modified(while e do S l done) =

modified(S l). Then, the local conclusion (3) implies the desired result.

(•) (q, not S )→ q f .

This follows directly from the local conclusion (4) and the transition function of the monitoring

automaton because w < {⊥}? and modified(while e do S l done) = modified(S l).

(EM(O)-WHILEfalse) then we can conclude that :

(1) S = “while e do S l done” and:

• (q, branch e)
OK
−−→ q1

• (q1, not S l)
OK
−−→ q2

• (q2, exit)
OK
−−→ q f

This follows directly from the definition of the rule (EM(O)-WHILEfalse).

Let us define qi = (V i,wi) for all integer i from 1 to 2.

(2) w1 < {⊥}
?.

This follows directly from the global hypothesis w < {⊥}? and the definition of the transition

function of the monitoring automaton.

(3) V f = V ∪modified(S l).

This follows from the local conclusion (2) and the definition of the transition function of the

monitoring automaton.

(•) (q, not S )→ q f .

This follows directly from the local conclusion (3) and the transition function of the monitoring

automaton because w < {⊥}? and modified(while e do S l done) = modified(S l).

(EM(O)-SEQ) then we can conclude that :

(1) S = “S 1 ; S 2” and:

• (q, σ) ` S 1
o1
==⇒M(O) (q1, σ1)

• (q1, σ1) ` S 2
o2
==⇒M(O) (q f , σ f )

This follows directly from the definition of the rule (EM(O)-SEQ).

(2) (q, not S 1)→ q1 and (q1, not S 2)→ q f .

Those results follow from the inductive hypothesis. The second result also makes use of

lemma A.1.1 in order to prove that w1 < {⊥}
?.

(3) q f = (V ∪modified(S 1) ∪modified(S 2),w).

This follows directly from the local conclusion (2), the global hypothesis w < {⊥}?,

lemma A.1.1, and the definition of the rule (T-NOT-high).
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(•) (q, not S )→ q f .

This follows directly from the transition function of the monitoring automaton because w < {⊥}?

and modified(S 1 ; S 2) = modified(S 1) ∪modified(S 2).

Lemma A.1.4 (modified(S ) is an over-approximation of the assigned variables in S ). For all state-

ments S , automaton states q = (V ,w), and value stores σ, if “ (q, σ) ` S
o
=⇒M(O) (q f , σ f )” with

q f = (V f ,w f ) then:

• ∀x < modified(S ) : σ f (x) = σ(x)

• V −modified(S ) ⊆ V f ⊆ V ∪modified(S )

Proof. The proof goes by induction on the derivation tree of “(q, σ) ` S
o
=⇒M(O) (q f , σ f )”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(EM(O)-OK) then we can conclude that :

(1) S = “skip” or S = “y := e” or S = “output e”, “(q, S )
OK
−−→ q f ”, and “σ ` S

o
=⇒O σ f ”.

This follows directly from the definition of the rule (EM(O)-OK) and the grammar of the lan-

guage. It can also be deduced from the rule (EM(O)-OK), the transition function of the monitor-

ing automaton, and the semantics (EO).

Case 1: S = “skip” or S = “output e”

(a) q f = q and σ f = σ.

This follows directly from the transition function of the monitoring automaton and the def-

inition of the semantics (EO).

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows directly from the local conclusion (a).

Case 2: S = “x := e”

(a) q f = (V ∪ {x},w) or q f = (V − {x},w), and σ f = σ[x 7→ σ(e)].

This follows directly from the transition function of the monitoring automaton and the def-

inition of the semantics (EO).

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows directly from the local conclusion (a) because modified(S ) = {x}.

(EM(O)-EDIT) then we can conclude that :

(1) S = “output e”, “(q, S )
output θ
−−−−−−→ q f ”, and “σ ` output θ

o
=⇒O σ f ”.

This follows directly from the definition of the rule (EM(O)-EDIT), the grammar of the language,

and the definition of the transition function of the monitoring automaton.

(2) q f = q and σ f = σ.

This follows directly from the local conclusion (1), the transition function of the monitoring

automaton and the definition of the semantics (EO).
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(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows directly from the local conclusion (2).

(EM(O)-NO) then we can conclude that :

(1) q f = q and σ f = σ.

This follows directly from the definition of (EM(O)-NO), and the definition of the transition

function of the monitoring automaton.

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows directly from the local conclusion (1).

(EM(O)-IF) then we can conclude that :

(1) S = “if e then S true else S false end”, σ(e) = v, and:

• (q, branch e)
OK
−−→ q1

• (q1, σ) ` S v
o
=⇒M(O) (q2, σ f )

• (q2, not S ¬v)
OK
−−→ q3

• (q3, exit)
OK
−−→ q f

This follows directly from the definition of the rule (EM(O)-IF).

(2) ∀x < modified(S ) : σ f (x) = σ(x).

This follows from the inductive hypothesis used on the derivation tree of S v in the local con-

clusion (1) and the fact that modified(if e then S true else S false end) = modified(S true) ∪

modified(S false).

Let us define qi = (V i,wi) for all integer i from 1 to 3.

(3) V1 = V .

This follows directly from the definition of the transition function of the monitoring automaton.

(4) V −modified(S v) ⊆ V2 ⊆ V ∪modified(S v).

This follows from the inductive hypothesis applied to the derivation tree of S v.

(5) V2 ⊆ V f ⊆ V2 ∪modified(S ¬v).

This follows from the local conclusion (1) and the definition of the transition function of the

monitoring automaton.

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows from the fact that modified(if e then S true else S false end) = modified(S true) ∪

modified(S false) and the local conclusions (2), (4), and (5).

(EM(O)-WHILEtrue) then we can conclude that :

(1) S = “while e do S l done” and:

• (q, branch e)
OK
−−→ q1
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• (q1, σ) ` S l
ol
=⇒M(O) (q2, σ1)

• (q2, exit)
OK
−−→ q3

• (q3, σ1) ` while e do S l done
ow
==⇒M(O) (q f , σ f )

This follows directly from the definition of the rule (EM(O)-WHILEtrue).

(2) V1 = V .

This follows directly from the definition of the transition function of the monitoring automaton.

(3) ∀x < modified(S l) : σ1(x) = σ(x) and V −modified(S l) ⊆ V2 ⊆ V2 ∪modified(S l).

This follows from the inductive hypothesis applied to the derivation tree of S l found in the local

conclusion (1).

(4) V3 = V2.

This follows directly from the definition of (T-EXIT).

(5) ∀x < modified(S l) : σ f (x) = σ1(x) and V3 −modified(S l) ⊆ V f ⊆ V3 ∪modified(S l).

This follows from the inductive hypothesis applied to the derivation tree of while e do S l done
found in the local conclusion (1) because modified(while e do S l done) = modified(S l).

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows from the local conclusions (3), (4), and (5) because modified(while e do S l done) =

modified(S l).

(EM(O)-WHILEfalse) then we can conclude that :

(1) S = “while e do S l done” and:

• (q, branch e)
OK
−−→ q1

• (q1, not S l)
OK
−−→ q2

• (q2, exit)
OK
−−→ q f

This follows directly from the definition of the rule (EM(O)-WHILEfalse).

(2) ∀x < modified(S ) : σ f (x) = σ(x).

This follows directly from the definition of (EM(O)-WHILEfalse).

(3) V f = V or V f = V ∪modified(S l).

This follows directly from the definition of the transition function of the monitoring automaton.

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows directly from the local conclusions (2) and (3) because

modified(while e do S l done) = modified(S l).

(EM(O)-SEQ) then we can conclude that :

(1) S = “S 1 ; S 2” and:

• (q, σ) ` S 1
o1
==⇒M(O) (q1, σ1)

• (q1, σ1) ` S 2
o2
==⇒M(O) (q f , σ f )
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This follows directly from the definition of the rule (EM(O)-SEQ).

(2) • ∀x < modified(S 1) : σ1(x) = σ(x)

• V −modified(S 1) ⊆ V1 ⊆ V ∪modified(S 1)

• ∀x < modified(S 2) : σ f (x) = σ1(x)

• V1 −modified(S 2) ⊆ V f ⊆ V1 ∪modified(S 2)

Those results follow from the inductive hypothesis.

(•) ∀x < modified(S ) : σ f (x) = σ(x) and V −modified(S ) ⊆ V f ⊆ V ∪modified(S ).

This follows directly from the local conclusion (2) because modified(S 1 ; S 2) = modified(S 1)∪

modified(S 2).

Lemma A.1.5 (WDKL (while-dilemma killer lemma)). For all statement S , expression e, automaton

state q = (V ,w), and value store σ, if FV(e) ∩ V , ∅ and (q, σ) ` while e do S done
o
=⇒M(O) (q f , σ f )

with q f = (V f ,w f ) then:

• o = ε

• V ⊆ V f

Proof. The proof goes by induction on the derivation tree of “(q, σ) ` while e do S done
o
=⇒M(O) (q f , σ f )”.

The last rule used by the derivation tree is either (EM(O)-WHILEtrue) or (EM(O)-WHILEfalse). Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(EM(O)-WHILEtrue) then we can conclude that :

(1) S = while e do S l done and:

• σ(e) = true

• (q, branch e)
OK
−−→ q1

• (q1, σ) ` S l
ol
=⇒M(O) (q2, σ1)

• (q2, exit)
OK
−−→ q3

• (q3, σ1) ` while e do S l done
ow
==⇒M(O) (q f , σ f )

• o = ol ow

This follows directly from the definition of the rule (EM(O)-WHILEtrue).

(2) w1 < {⊥}
?.

This follows directly from the definition of the transition function of the monitoring automaton

and the global hypothesis FV(e) ∩ V , ∅.

(3) ol = ε.

This follows from the local conclusions (1) and (2), and from lemma A.1.2.

(4) w3 < {⊥}
?.

This follows from the local conclusions (1) and (2), lemma A.1.1, and the definition of the

transition function of the monitoring automaton.
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(5) ow = ε.

This follows from the local conclusions (1) and (4), and from lemma A.1.2.

(6) V ⊆ V3.

From lemma A.1.3 and the local conclusion (1), (q1, not S l)
OK
−−→ q2. Then, the desired result

follows from the definition of the transition function of the monitoring automaton.

(7) V3 ⊆ V f .

This follows directly from the inductive hypothesis which can be applied because of the local

conclusion (1) and the fact that the global hypothesis FV(e) ∩ V , ∅ still holds.

(•) o = ε and V ⊆ V f .

This follows directly from the local conclusions (1), (3), (5), (6) and (7).

(EM(O)-WHILEfalse) then we can conclude that :

(1) S = while e do S l done and:

• σ(e) = false

• (q, branch e)
OK
−−→ q1

• (q1, not S l)
OK
−−→ q2

• (q2, exit)
OK
−−→ q3

This follows directly from the definition of the rule (EM(O)-WHILEfalse).

(•) o = ε and V ⊆ V f .

The fact that o = ε follows directly from the definition of the rule (EM(O)-WHILEfalse). The

fact that V ⊆ V f follows directly from the local conclusion (1) and the definition of the transition

function of the monitoring automaton.

Lemma A.1.6 (Correctness). For all statement S , automaton state q = (V ,w), value stores σ and σ′ such

that:

?1 (q, σ) ` S
o
=⇒M(O) (q f , σ f ),

?2 (q, σ′) ` S
o′
==⇒M(O) (q′f , σ

′
f ),

?3 ∀x < V : σ(x) = σ′(x),

it is true that, there exist a variable set V f and an integer w f such that:

• o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x).

Proof. The proof goes by induction on the derivation tree of “((V ,w), σ) ` S
o
=⇒M(O) (q f , σ f )”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(EM(O)-OK) then we can conclude that :
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(1) S = skip or S = y := e or S = output e, “(q, S )
OK
−−→ q′” and “σ ` S

o
=⇒O σ′”.

This follows directly from the definition of the rule (EM(O)-OK) and the grammar of the lan-

guage. It can also be deduced from the rule (EM(O)-OK), the transition function of the monitor-

ing automaton, and the semantics (EO).

Case 1: S = skip

(a) o = ε, q f = q, and σ f = σ

This follows from the case hypothesis, the facts that “(q, S )
OK
−−→ q′” and “σ ` S

o
=⇒O σ′”

(in the local conclusion (1)), the definition of the only transition on skip for the monitoring

automaton (T-SKIP), and the definition of the only rule applying to skip in (EO) (EO-SKIP).

(b) o′ = ε, q′f = q, and σ′f = σ′

This follows from the global hypothesis ?2 and the reasons invoked for the local conclusion

(a).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis ?3 and the local conclusions (a) and (b).

Case 2: S = y := e

Sub-case 2.a: w < {⊥}? or FV(e) ∩ V f , ∅

(α) o = ε, q f = (V ∪ {y},w), and σ f = σ[y 7→ σ(e)]

This follows from the case hypothesis, the sub-case hypothesis, the definition (T) of the

transition function of the monitoring automaton, and the definitions of the semantics

(EM(O)) and (EO).

(β) o′ = ε, q′f = (V ∪ {y},w), and σ′f = σ′[y 7→ σ′(e)]

This follows from the case hypothesis, the sub-case hypothesis, the definition (T) of the

transition function of the monitoring automaton, and the definitions of the semantics

(EM(O)) and (EO).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis ?3 and the local conclusions (α) and (β).

Sub-case 2.b: w ∈ {⊥}? and FV(e) ∩ V f = ∅

(α) o = ε, q f = (V − {y},w), and σ f = σ[y 7→ σ(e)]

This follows from the case hypothesis, the sub-case hypothesis, the definition (T) of the

transition function of the monitoring automaton, and the definitions of the semantics

(EM(O)) and (EO).

(β) o′ = ε, q′f = (V − {y},w), and σ′f = σ′[y 7→ σ′(e)]

This follows from the case hypothesis, the sub-case hypothesis, the definition (T) of the

transition function of the monitoring automaton, and the definitions of the semantics

(EM(O)) and (EO).

(γ) σ(e) = σ′(e)

This follows from the fact FV(e)∩V f = ∅ (from the sub-case hypothesis) and the global

hypothesis ?3.
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(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis ?3 and the local conclusions (α), (β), and (γ).

Case 3: S = output e

(a) w ∈ {⊥}? and FV(e) ∩ V f = ∅

This follows from the definition of the rule (EM(O)-OK), the case hypothesis, and the defi-

nition (T) of the transition function of the monitoring automaton.

(b) o = σ(e), q f = q, and σ f = σ

This follows from the case hypothesis, the facts that “(q, S )
OK
−−→ q′” and the only such

transition for output e (T-PRINT-ok), and the definition of the semantics (EO).

(c) o′ = σ(e), q′f = q, and σ′f = σ

This follows from the case hypothesis, the local conclusion (a), the definition (T) of the

transition function of the monitoring automaton, and the definition of the semantics (EM(O))

and (EO).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis ?3 and the local conclusions (b) and (c).

(EM(O)-EDIT) then we can conclude that :

(1) “(q, S )
A′
−−→ q′” and “σ ` A′

o
=⇒O σ′”.

This follows directly from the definition of the rule (EM(O)-EDIT).

(2) S = output e, A′ = output θ, w ∈ {⊥}?, and FV(e) ∩ V , ∅.

This follows directly from the only transition outputting an evaluable transition (T-PRINT-def).

(3) o = σ(θ), q f = q, and σ f = σ

This follows from the local conclusion (2), the definition of the transition function of the moni-

toring automaton (T), and the definition of the semantics (EO).

(4) o′ = σ(θ), q′f = q, and σ′f = σ

This follows from the fact that w ∈ {⊥}? and FV(e) ∩ V , ∅ (from the local conclusion (2)),

the definition of the semantics (EM(O)) for actions, the definition of the only transition of the

monitoring automaton (T) for print actions whenever w ∈ {⊥}? and FV(e) ∩ V , ∅, and the

definition of the semantics (EO).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis ?3 and the local conclusions (3) and (4).

(EM(O)-NO) then we can conclude that :

(1) “(q, S )
NO
−−→ q′”.

This follows directly from the definition of the rule (EM(O)-NO).

(2) S = output e, and w < {⊥}?.

This follows directly from the only transition outputting “NO” (T-PRINT-no).
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(3) o = ε, q f = q, and σ f = σ

This follows directly from the definition of the rule (EM(O)-NO).

(4) o′ = ε, q′f = q, and σ′f = σ

This follows from the fact that w < {⊥}? (from the local conclusion (2)), the definition of the

only transition of the monitoring automaton (T) for print actions in such a case, and the definition

of the semantics (EM(O)) for actions whenever the automaton outputs “NO”.

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis ?3 and the local conclusions (3) and (4).

(EM(O)-IF) then we can conclude that :

(1) S = if e then S 1 else S 2 end and:

• σ(e) = v

• (q, branch e)
OK
−−→ q1

• (q1, σ) ` S v
o
=⇒M(O) (q2, σ f )

• (q2, not S ¬v)
OK
−−→ q3

• (q3, exit)
OK
−−→ q f

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

Case 1: σ′(e) = v

(a) • (q, branch e)
OK
−−→ q1

• (q1, σ
′) ` S v

o′
==⇒M(O) (q′2, σ

′
f )

• (q′2, not S ¬v)
OK
−−→ q′3

• (q′3, exit)
OK
−−→ q′f

This follows from the case hypothesis, the local conclusion (1), the definition of the

only rule applying to if-statements (EM(O)-IF), and the definition of the transition rules

(T-BRANCH-high) and (T-BRANCH-low) (Both evaluations use the same rule as the

conditions for those depend only e and V).

(b) o = o′, q2 = q′2 = (V2,w2), and ∀x < V2 : σ f (x) = σ′f (x).

This result is obtained by applying the inductive hypothesis to the derivations of S v

found in the local conclusions (1) and (a).

(c) There exists a such that w2 = w f a and if w2 < {⊥}? then q f = (V2 ∪

modified(S ¬v),w f ) = q′f else q f = (V2,w f ) = q′f .

This follows directly from the definition of the transition function of the monitoring

automaton and the local conclusions (1), (a) and (b).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows directly from the local conclusions (b) and (c) because all x, which does

not belong to V f , does not belong to V2.
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Case 2: σ′(e) = ¬v

(a) FV(e) ∩ V , ∅.

The negation of this property is in contradiction with the case hypothesis, the local

conclusion (1), and the global hypothesis ?3.

(b) • (q, branch e)
OK
−−→ q1

• (q1, σ
′) ` S ¬v

o′
==⇒M(O) (q′2, σ

′
f )

• (q′2, not S v)
OK
−−→ q′3

• (q′3, exit)
OK
−−→ q′f

This follows from the case hypothesis, the local conclusion (1), the definition of the

only rule applying to if-statements (EM(O)-IF), and the definition of the transition rule

(T-BRANCH-high).

(c) o = o′ = ε.

Let q1 = (V1,w1). The local conclusion (1), and the definition of (T-BRANCH-high)

imply that w1 does not belong to {⊥}?. This and lemma A.1.2 imply the above result.

Let qa and qb = (Vb,wb) be monitoring automaton states such that “(q1, notS v)
OK
−−→ qa”

and “(qa, notS ¬v)
OK
−−→ qb”.

(d) There exists qc such that “(q1, notS ¬v)
OK
−−→ qc” and “(qc, notS v)

OK
−−→ qb”.

It is obvious from the definition of (T-NOT-high) and (T-NOT-low).

(e) q3 = qb = q′3.

This follows from lemma A.1.3 and the local conclusions (1), (b), and (d).

(f) q f = q′f .

This follows directly from the definition of (T-EXIT) and the local conclusions (e), (1),

and (b).

(g) Vb = V ∪modified(S v) ∪modified(S ¬v).

In the proof of local conclusion (c), we proved that w1 does not belong to {⊥}?. Then

the above result follows directly from the definition of (T-NOT-high).

(h) ∀x < V f : σ f (x) = σ′f (x)

From the definition of (T-EXIT) and the local conclusions (1), (e), and (g), V f =

V ∪ modified(S v) ∪ modified(S ¬v). From the evaluation of S v (in the local conclu-

sion (1)) and lemma A.1.4, if x does not belongs to V f , and so does not belongs to

modified(S v), σ f (x) = σ(x). From the evaluation of S ¬v (in the local conclusion (b))

and lemma A.1.4, if x does not belongs to V f , and so does not belongs to modified(S ¬v),

σ′f (x) = σ′(x). Additionally, if x does not belongs to V f then it does not belongs to

V; which implies that σ(x) = σ′(x) because of the global hypothesis ?3. Finally, those

three equalities imply that if x does not belongs to V f then σ f (x) = σ′f (x).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows directly from the local conclusions (c), (f) and (h).
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(EM(O)-WHILEtrue) then we can conclude that :

(1) S = while e do S l done and:

• σ(e) = true

• (q, branch e)
OK
−−→ q1

• (q1, σ) ` S l
ol
=⇒M(O) (q2, σ1)

• (q2, exit)
OK
−−→ q3

• (q3, σ1) ` while e do S l done
ow
==⇒M(O) (q f , σ f )

• o = ol ow

This follows directly from the definition of the rule (EM(O)-WHILEtrue).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

Case 1: σ′(e) = true

(a) • (q, branch e)
OK
−−→ q1

• (q1, σ
′) ` S l

o′l
==⇒M(O) (q′2, σ

′
1)

• (q′2, exit)
OK
−−→ q′3

• (q′3, σ
′
1) ` while e do S l done

o′w
==⇒M(O) (q′f , σ

′
f )

• o′ = o′l o′w
This follows directly from the local conclusion (1), the global hypothesis ?2, the

case hypothesis, the definition of the only rule applying to this evaluation (EM(O)-

WHILEtrue), and the definition of the transition function of the monitoring automaton.

(b) ol = o′l , q2 = q′2 = (V2,w2), ∀x < V2 : σ1(x) = σ′1(x), and w2 = w.

This result is obtained by applying the inductive hypothesis to the derivations of S l

found in the local conclusions (1) and (a).

(c) q3 = (V2,w3) = q′3 with w2 = w3a.

This follows directly from the definition of transition function of the monitoring au-

tomaton and the local conclusions (1), (a) and (b).

(d) ow = o′w, q f = q′f , and ∀x < V f : σ f (x) = σ′f (x).

This result is obtained by applying the inductive hypothesis to the derivations of

while e do S l done found in the local conclusions (1) and (a). It is possible to ap-

ply the inductive hypothesis because of the local conclusions (c) and (b).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows directly from the local conclusions (1), (a), (b), and (d).

Case 2: σ′(e) = false

(a) FV(e) ∩ V , ∅.

The negation of this property is in contradiction with the case hypothesis, the local

conclusion (1), and the global hypothesis ?3.
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(b) w1 < {⊥}
?.

The local conclusions (a) and (1), and the definition of (T-BRANCH-high) imply that

w1 does not belong to {⊥}?.

(c) ol = ε.

This follows from the local conclusions (1) and (b), and from lemma A.1.2.

(d) • (q, branch e)
OK
−−→ q1

• (q1, not S l)
OK
−−→ q′2

• (q′2, exit)
OK
−−→ q′f

This follows directly from the local conclusion (1), the global hypothesis ?2, the

case hypothesis, the definition of the only rule applying to this evaluation (EM(O)-

WHILEfalse), and the definition of the transition function of the monitoring automaton.

(e) o′ = ε and σ′f = σ′.

This follows directly from the definition of the rule (EM(O)-WHILEfalse).

(f) q3 = (V3,w3) = q′f .

This follows from the local conclusions (1) and (d), lemma A.1.3, and the definition of

the transition function of the monitoring automaton for the input exit..

(g) V3 = V ∪modified(S l).

This follows from the local conclusions (f), (d), and (b), and the definition of the tran-

sition function of the monitoring automaton.

(h) ow = ε and V3 ⊆ V f .

This follows from the local conclusions (1), (a) and (g), and from lemma A.1.5.

(i) ∀x < V f : σ f (x) = σ1(x) and V f = V3.

Both results follow from lemma A.1.4, the fact that “modified(while e do S done) =

modified(S )”. For the first result, from the local conclusion (g) and (h), any variable x,

which does not belong to V f , does not belong to modified(S l). For the second result,

the local conclusions (g) imply that V3 = V3 ∪modified(S l). This result combine with

the local conclusion (h) and the conclusions of lemma A.1.4 imply that V f = V3.

(j) ∀x < V f : σ1(x) = σ′f (x).

For all variable x, if x does not belong to V f then the local conclusions (i) and (g)

imply that x does not belong to V . And so, the global hypothesis ?3 implies that

σ(x) = σ′(x). For all variable x, if x does not belong to V f then the local conclusions

(i) and (g) imply that x does not belong to modified(S l). Which, in turn, combined

with the local conclusion (1) and lemma A.1.4, implies that σ1(x) = σ(x). Those two

equalities combined with the local conclusion (e) imply the desired result.

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x).

From the local conclusion (1), o = ol ow. So, it follows from the local conclusions

(c), (h), and (e) that o′ = o. From the local conclusion (f), q3 = q′f . As done at the

beginning of the proof of this lemma, it can be easily proved that w f = w3. This result
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combined with the local conclusions (i) and (f) imply that q f = q3 = q′f . Finally, from

the local conclusions (i) and (j) ∀x < V f : σ f (x) = σ′f (x).

(EM(O)-WHILEfalse) then we can conclude that :

(1) S = while e do S l done and:

• σ(e) = false

• (q, branch e)
OK
−−→ q1

• (q1, not S l)
OK
−−→ q2

• (q2, exit)
OK
−−→ q3

This follows directly from the definition of the rule (EM(O)-WHILEfalse).

(2) o = ε, q f = q3, σ f = σ, and V ⊆ V f .

This follows directly from the definition of the rule (EM(O)-WHILEfalse) and the definition of

the transition function of the monitoring automaton.

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

Case 1: σ′(e) = false

(a) o′ = ε, q′f = q3, σ′f = σ′.

This follows from the global hypothesis ?2, the case hypothesis, the definition of the

only rule applying to this evaluation (EM(O)-WHILEfalse), and the definition of the

transition function of the monitoring automaton. In this case, the transitions depend

only on the initial state q and the expression e.

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

The first two equalities follow from the local conclusions (2) and (a). From the local

conclusion (2), all variable x, which does not belong to V f , does not belong to V . And

so, the global hypothesis?3 implies thatσ(x) = σ′(x). Then, from the local conclusions

(2) and (a), ∀x < V f : σ f (x) = σ′f (x).

Case 2: σ′(e) = true

(a) FV(e) ∩ V , ∅.

The negation of this property is in contradiction with the case hypothesis, the local

conclusion (1), and the global hypothesis ?3.

(b) • σ(e) = true

• (q, branch e)
OK
−−→ q1

• (q1, σ
′) ` S l

o′l
==⇒M(O) (q′2, σ

′
1)

• (q′2, exit)
OK
−−→ q′3

• (q′3, σ
′
1) ` while e do S l done

o′w
==⇒M(O) (q′4, σ

′
f )

• o′ = o′l o′w
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This follows from the global hypothesis ?2, the case hypothesis, the definition of the

only rule applying to this evaluation (EM(O)-WHILEtrue), the local conclusion (a), and

the definition of the transition function of the monitoring automaton.

Let q1 = (V1,w1), q′3 = (V ′3,w
′
3), and q′f = (V ′f ,w

′
f ).

(c) w1 < {⊥}
?.

The local conclusions (a) and (b), and the definition of (T-BRANCH-high) imply that

w1 does not belong to {⊥}?.

(d) o′l = ε.

This follows from the local conclusions (b) and (c), and from lemma A.1.2.

(e) q′3 = q3 = (V f ,w f ).

This follows from the local conclusions (1) and (b), lemma A.1.3, and the definition of

the rule (EM(O)-WHILEtrue).

(f) V f = V ∪modified(S l).

This follows from the local conclusions (c), (1), and (2), and the definition of the tran-

sition function of the monitoring automaton.

(g) ∀x < V f : σ f (x) = σ′1(x).

For all variable x, if x does not belong to V f then the local conclusion (f) implies that

x does not belong to V . And so, the global hypothesis ?3 implies that σ(x) = σ′(x).

For all variable x, if x does not belong to V f then the local conclusion (f) implies that

x does not belong to modified(S l). Which, in turn, combined with the local conclusion

(b) and lemma A.1.4, implies that σ′f (x) = σ′(x). Those two equalities combined with

the local conclusion (2) imply the desired result.

(h) o′w = ε and V ′3 ⊆ V ′f .

This follows from the local conclusions (b) and (a), and from lemma A.1.5.

(i) ∀x < V f : σ′f (x) = σ′1(x) and V ′f = V ′3.

Both results follow from lemma A.1.4, the fact that “modified(while e do S done) =

modified(S )”. For the first result, from the local conclusion (f), any variable x, which

does not belong to V f , does not belong to modified(S l). For the second result, the local

conclusions (e) and (f) imply that V ′3 = V ′3 ∪ modified(S l). This result combine with

the local conclusion (h) and the conclusions of lemma A.1.4 imply that V ′f = V ′3.

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x).

From the local conclusion (b), o′ = o′l o′w. So, it follows from the local conclusions

(2), (d), and (h) that o′ = o. From the local conclusion (e), q f = q′3. As done at the

beginning of the proof of this lemma, it can be easily proved that w′f = w′3. This result

combined with the local conclusion (i) implies that q′f = q′3 = q f . Finally, from the

local conclusions (i) and (g) ∀x < V f : σ f (x) = σ′f (x).

(EM(O)-SEQ) then we can conclude that :
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(1) S = S 1 ; S 2, (q, σ) ` S 1
o1
==⇒M(O) (q1, σ1), (q1, σ1) ` S 2

o2
==⇒M(O) (q f , σ f ), and o = o1 o2.

This follows directly from the definition of the rule (EM(O)-SEQ).

(2) (q, σ′) ` S 1
o′1
==⇒M(O) (q′1, σ

′
1), (q′1, σ

′
1) ` S 2

o′2
==⇒M(O) (q′f , σ

′
f ), and o′ = o′1 o′2.

This follows from the global hypothesis ?2, the local conclusion (2), and the definition of the

rule (EM(O)-SEQ).

(3) o1 = o′1, q1 = q′1 = (V1,w1), and ∀x < V1 : σ1(x) = σ′1(x)

This result can be obtained from the inductive hypothesis using the evaluations of S 1 in the local

conclusions (1) and (2).

(4) o2 = o′2, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This result can be obtained from the inductive hypothesis using the evaluations of S 2 in the local

conclusions (1) and (2), and the fact that ∀x < V1 : σ1(x) = σ′1(x) (from the local conclusion

(3)).

(•) o = o′, q f = q′f = (V f ,w f ), and ∀x < V f : σ f (x) = σ′f (x)

This follows from the global hypothesis the local conclusions (1), (2), (3), and (4).

A.2 Transparency

Lemma A.2.1 (Simple Security). For all typing environment γ, expression e, and command type τ cmd, if

γ ` e : τ then, for all variable x belonging to FV(e), γ(x) ≤ τ.

Proof. This lemma is just a reformulation of the (Simple Security) lemma appearing in (Volpano et al.,

1996).

Lemma A.2.2 (Confinement). For all typing environment γ, command C, and command type τ cmd, if

γ ` C : τ cmd then, for all variable x belonging to modified(C), τ ≤ γ(x).

Proof. This lemma is just a reformulation of the (Confinement) lemma appearing in (Volpano et al., 1996).

Lemma A.2.3 (Confined Outputs). For all command C, typing environment γ, and value stores σ and σ′

if:

?1 γ ` C : H cmd,

?2 σ ` C
o
=⇒O σ

′,

then o = ε.

Proof. The proof goes by contradiction. If o , ε then C contains a command output e. If it does, because

of the typing rules, C must be typed L cmd. This is in contradiction with the hypothesis ?1.

Lemma A.2.4 (Helper 1). For all command C, automaton states (V ,w) and (V ′,w), and value stores σ and

σ′, if ((V ,w), σ) ` C
ε
=⇒M(O) ((V ′,w), σ′) then, for all w′ of which w is a prefix, ((V ,w′), σ) ` C

ε
=⇒M(O)

((V ′,w′), σ′).
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Proof. The monitoring mechanism does not influence the final value store obtained after the execution. So,

changing the automaton state does not change the final value store. If the command C does not contain

output statements, then any execution of C (whatever the automaton state) outputs nothing. If the command

C contains an output statement executed, then it implies that w does not belong to {⊥}? (otherwise something

would be output). The behavior of the automaton with regard to output statements is the same for any w not

belonging to {⊥}?. So, as w (which does not belong to {⊥}?) is a prefix of w′, the behavior of the automaton

is the same with w or w′. So the output is identical.

Lemma A.2.5 (Monitoring Automaton Precision). For all command1 C, typing environment γ, command

type τ cmd, value stores σ and σ′, and automaton state (V ,w), if:

?1 ∀x ∈ V , γ(x) = H,

?2 w < {⊥}? ⇒ τ = H,

?3 γ ` C : τ cmd,

?4 σ ` C
o
=⇒O σ

′,

then there exists an automaton state (V ′,w) such that:

• ((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′),

• ∀x ∈ V ′, γ(x) = H.

Proof. The proof is done by induction on the size of the derivation tree of “σ ` C
o
=⇒O σ

′”. Assume the

lemma holds for any sub-derivation tree. If the last semantic rule used is:

(EO-ASSIGN) then we can conclude that :

(1) • C is “x := e”,

• σ ` C
ε
=⇒O σ[x 7→ σ(e)].

This follows directly from the rule (EO-ASSIGN).

(2) ((V ,w), σ) ` C
ε
=⇒M(O) ((V ′,w), σ[x 7→ σ(e)]).

This follows directly from the local conclusion (1) and the rules (T-ASSIGN-sec), (T-ASSIGN-

pub), (EM(O)-OK), and (EO-ASSIGN).

(3) ∀y ∈ V ′, γ(y) = H.

Case 1: w ∈ {⊥}? and FV(e) ∩ V = ∅.

(a) V ′ ⊆ V .

This follows directly from the rule (T-ASSIGN-pub).

(◦) ∀y ∈ V ′, γ(y) = H.

This follows from the local conclusion (a) and the global hypothesis ?1.

1We use “command” and “statements” as synonyms
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Case 2: w < {⊥}? or FV(e) ∩ V , ∅.

(a) V ′ = V ∪ {x}.

This follows directly from the rule (T-ASSIGN-sec).

(b) γ(x) = H.

If w < {⊥}? then, because of the global hypothesis ?2, τ = H; and so, because of the

global hypotheses ?3 and the typing rule (T-ASSIGN) (which is the only one applying

to “x := e”), γ(x) = H. If FV(e)∩V , ∅ then there exists a variable y in FV(e) such that

y ∈ V . The global hypothesis ?1 implies that γ(y) = H. Then, the global hypothesis ?3

and lemma A.2.1 imply that τ = H; and so, because of the typing rule (T-ASSIGN)

(which is the only one applying to “x := e”), γ(x) = H.

(◦) ∀y ∈ V ′, γ(y) = H.

This follows from the global hypothesis ?1 and the local conclusions (a) and (b).

(•) there exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)” and “∀x ∈

V ′, γ(x) = H”.

If follows directly from the local conclusions (2) and (3).

(EO-SKIP) then we can conclude that :

(1) • C is “skip”,

• σ ` C
ε
=⇒O σ.

This follows directly from the rule (EO-SKIP).

(2) ((V ,w), σ) ` C
ε
=⇒M(O) ((V ,w), σ).

This follows directly from the local conclusion (1) and the rules (T-SKIP), (EM(O)-OK), and

(EO-SKIP).

(•) there exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)” and “∀x ∈

V ′, γ(x) = H”.

If follows directly from the local conclusion (2) and from the global hypothesis ?1.

(EO-PRINT) then we can conclude that :

(1) • C is “output e”,

• σ ` C
σ(e)
===⇒O σ.

This follows directly from the rule (EO-PRINT).

(2) w ∈ {⊥}? and FV(e) ∩ V = ∅.

The global hypothesis ?3, the local conclusion (1) and the typing rule (T-PRINT) (the only one

applying to “output e”) imply that τ = L. Hence, the global hypothesis ?2 implies w ∈ {⊥}?.

The typing rule (T-PRINT) also implies that “γ ` e : τ”. Then lemma A.2.1 implies that, for all

y in FV(e), γ(y) = L. Hence, because of the global hypothesis ?1, FV(e) ∩ V = ∅.
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(3) ((V ,w), σ) ` C
σ(e)
===⇒M(O) ((V ,w), σ).

This follows from the transition (T-PRINT-ok) (which is the only one applying because of the

local conclusions (1) and (2)) and the rules (EM(O)-OK) and (EO-PRINT).

(•) there exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)” and “∀x ∈

V ′, γ(x) = H”.

If follows directly from the local conclusion (3) and from the global hypothesis ?1.

(EO-IF) then we can conclude that :

(1) • C is “if e then Ctrue else C f alse end”,

• σ(e) = v

• σ ` Cv
o
=⇒O σ

′.

This follows directly from the rule (EO-IF).

(2) There exists a type τ′ such that:

• τ ≤ τ′,

• γ ` e : τ′,

• γ ` Ctrue : τ′ cmd,

• γ ` C f alse : τ′ cmd.

This follows directly from the local conclusion (1), the global hypothesis ?3 and the only typing

rule applying to “if e then Ctrue else C f alse end” (T-IF).

(•) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)” and

“∀x ∈ V ′, γ(x) = H”.

Case 1: FV(e) ∩ V , ∅.

(a) τ′ = H.

From the local conclusion (2), γ ` e : τ′. From the case hypothesis and the global hy-

pothesis ?1, there exists a variable y in FV(e) such that γ(y) = H. Using lemma A.2.1,

those two properties imply that τ′ = H.

(b) There exists an automaton state (V ′,w>) such that “((V ,w>), σ) ` Cv
o
=⇒M(O)

((V ′,w>), σ′)”, and “∀x ∈ V ′, γ(x) = H”.

This follows directly from the inductive hypothesis, the global hypotheses ?1 and the

local conclusions (a), (2) and (1).

(c) ((V ,w), σ) ` C
o
=⇒M(O) ((V ′ ∪modified(C¬v),w), σ′).

This follows from the only rule applying to “if e then Ctrue else C f alse end” (EM(O)-

IF), the local conclusion (b), and the transition rules (T-BRANCH-high) (which is the

only one applying to branch e because of the case hypothesis), (T-NOT-high), and

(T-EXIT).

(d) ∀x ∈ V ′ ∪modified(C¬v), γ(x) = H.

As, from the local conclusion (a) τ′ = H and from the local conclusion (2) γ ` C¬v :
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τ′ cmd, lemma A.2.2 implies that, for all x belonging to modified(C¬v), γ(x) = H. This

result, combined with the local conclusion (b), implies the desired result.

(◦) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”

and “∀x ∈ V ′, γ(x) = H”.

This follows directly from the local conclusions (c) and (d).

Case 2: FV(e) ∩ V = ∅.

(a) There exists an automaton state (V ′,w⊥) such that “((V ,w⊥), σ) ` Cv
o
=⇒M(O)

((V ′,w⊥), σ′)” and “∀x ∈ V ′, γ(x) = H”.

This follows directly from the inductive hypothesis, the global hypotheses ?1 and ?2,

and the local conclusions (2) and (1).

(b) ((V ,w), σ) ` C
o
=⇒M(O) ((V ′′,w), σ′) with w < {⊥}? ⇒ (V ′′ = V ′ ∪modified(C¬v)) and

w ∈ {⊥}? ⇒ V ′′ = V ′.

This follows from the only rule applying to “if e then Ctrue else C f alse end” (EM(O)-IF),

the local conclusion (a), and the transition rules (T-BRANCH-low) (which is the only

one applying to branche because of the case hypothesis), (T-NOT-high), (T-NOT-low),

and (T-EXIT).

(c) ∀x ∈ V ′′, γ(x) = H.

If w ∈ {⊥}? then V ′′ = V ′ and the desired property follows directly from the global

hypothesis ?1. If w < {⊥}? then the global hypothesis ?2 implies τ = H. As, from the

local conclusion (2) τ ≤ τ′ and γ ` C¬v : τ′ cmd, lemma A.2.2 implies that, for all x

belonging to modified(C¬v), γ(x) = H. This result, combined with the local conclusions

(b) and (a), implies that if w < {⊥}? then ∀x ∈ V ′′, γ(x) = H.

(◦) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”,

and “∀x ∈ V ′, γ(x) = H”.

This follows directly from the local conclusions (b) and (c).

(EO-WHILEtrue) then we can conclude that :

(1) • C is “while e do Cl done”,

• σ(e) = true

• σ ` Cl ; while e do Cl done
o
=⇒O σ

′.

This follows directly from the rule (EO-WHILEtrue).

(2) There exists a type τ′ such that:

• τ ≤ τ′,

• γ ` e : τ′,

• γ ` Cl : τ′ cmd.

This follows directly from the local conclusion (1), the global hypothesis ?3 and the only typing

rule applying to “while e do Cl done” (T-WHILE).
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(3) γ ` Cl ; while e do Cl done : τ′ cmd.

From the local conclusion (2) and the typing rule (T-WHILE), γ ` while e do Cl done : τ′ cmd.

Hence, as from the local conclusion (2) γ ` Cl : τ′ cmd, the typing rule (T-SEQ) implies the

desired result.

(4) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` Cl ; while e do Cl done
o
=⇒M(O)

((V ′,w), σ′)”, and “∀x ∈ V ′, γ(x) = H”.

This follows directly from the inductive hypothesis, the global hypotheses ?1 and ?2, and the

local conclusions (2), (3) and (1).

(5) There exist an automaton state (V l,w) and a value store σl such that:

• ((V ,w), σ) ` Cl
ol
=⇒M(O) ((V l,w), σl),

• ((V l,w), σl) ` while e do Cl done
ow
==⇒M(O) ((V ′,w), σ′),

• o = ol ow.

This follows from the local conclusion (4), the only semantic rule applying to

Cl ; while e do Cl done (EM(O)-SEQ), and lemma A.1.1.

(6) “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”.

Case 1: τ′ = H.

(a) ol = ε.

This follows from the case hypothesis and lemma A.2.3 applied to the local conclusions

(2) and (5).

(b) For all w′ such that w is a prefix, ((V ,w′), σ) ` Cl
ol
=⇒M(O) ((V l,w′), σl).

This follows from lemma A.2.4 and the local conclusions (a) and (5).

(◦) “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”.

This follows from the semantic rule (EM(O)-WHILEtrue), the transition (T-BRANCH-

low) and (T-BRANCH-high), the local conclusion (b), the transition (T-EXIT), the local

conclusion (5).

Case 2: τ′ , H.

(a) w ∈ {⊥}? and FV(e) ∩ V = ∅.

As τ ≤ τ′ (from the local conclusion (2)), the case hypothesis and the global hypoth-

esis ?2 imply w ∈ {⊥}?. As γ ` e : τ′ (from the local conclusion (2)), the case

hypothesis, lemma A.2.1, and the global hypothesis ?1 imply FV(e) ∩ V = ∅.

(b) ((V ,w⊥), σ) ` Cl
ol
=⇒M(O) ((V l,w⊥), σl).

This follows from the local conclusion (5) and the fact that w⊥ belongs to {⊥}? (because

of the local conclusion (a)).

(◦) “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”.

This follows from the semantic rule (EM(O)-WHILEtrue), the transition (T-BRANCH-

low) (which is the only one applying because of the local conclusion (a)), the local

conclusion (b), the transition (T-EXIT), the local conclusion (5).
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(•) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”, and

“∀x ∈ V ′, γ(x) = H”.

This follows directly from the local conclusions (6) and (4).

(EO-WHILE f alse) then we can conclude that :

(1) • C is “while e do Cl done”,

• σ(e) = false

• o = ε

• σ′ = σ.

This follows directly from the rule (EO-WHILE f alse).

(2) There exists a type τ′ such that:

• τ ≤ τ′,

• γ ` e : τ′,

• γ ` Cl : τ′ cmd.

This follows directly from the local conclusion (1), the global hypothesis ?3 and the only typing

rule applying to “while e do Cl done” (T-WHILE).

(3) ((V ,w), σ) ` C
ε
=⇒M(O) ((V ′,w), σ) with (w < {⊥}? ∨ FV(e) ∩ V , ∅)⇒ (V ′ = V ∪modified(Cl))

and (w ∈ {⊥}? ∧ FV(e) ∩ V = ∅)⇒ V ′ = V .

This follows from the only rule applying to “while e do Cl done” whenever σ(e) = false

(EM(O)-WHILE f alse) and the transition rules (T-BRANCH-low), (T-BRANCH-high), (T-NOT-

high), (T-NOT-low), and (T-EXIT).

(4) (w < {⊥}? ∨ FV(e) ∩ V , ∅)⇒ (∀x ∈ modified(Cl), γ(x) = H).

If w < {⊥}? then the global hypothesis ?2 imply that τ = H. Hence, because of the local

conclusion (2), τ′ = H. If FV(e) ∩ V , ∅ then, from the global hypothesis ?1, there exists

a variable y in FV(e) such that γ(y) = H. Using lemma A.2.1, as γ ` e : τ′ (from the local

conclusion (1)), this implies that τ′ = H. As τ′ = H in both cases (w < {⊥}? and FV(e)∩V , ∅),

the local conclusion (2) (γ ` Cl : τ′ cmd) and lemma A.2.2 imply the desired result.

(•) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)”, and

“∀x ∈ V ′, γ(x) = H”.

This follows directly from the local conclusions (3) and (4) and from the global hypothesis ?1.

(EO-SEQ) then we can conclude that :

(1) There exists a value store σ′1 such that:

• C is “C1 ; C2”,

• σ ` C1
o1
==⇒O σ

′
1,

• σ′1 ` C2
o2
==⇒O σ

′,

• o = o1 o2.
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This follows directly from the rule (EO-SEQ).

(2) • γ ` C1 : τ cmd,

• γ ` C2 : τ cmd.

This follows directly from the global hypothesis ?3, the local conclusion (1), and the only typing

rule applying to “C1 ; C2” (T-SEQ).

(3) there exists an automaton state (V ′1,w) such that “((V ,w), σ) ` C1
o1
==⇒M(O) ((V ′1,w), σ′1)” and

“∀x ∈ V ′1, γ(x) = H”.

This follows directly from the inductive hypothesis, the global hypotheses ?1 and ?2, and the

local conclusions (2) and (1).

(4) there exists an automaton state (V ′2,w) such that “((V ′1,w), σ′1) ` C2
o2
==⇒M(O) ((V ′2,w), σ′2)”, and

“∀x ∈ V ′2, γ(x) = H”.

This follows directly from the inductive hypothesis, the local conclusion (3), the global hypoth-

esis ?2, and the local conclusions (2) and (1).

(5) ((V ,w), σ) ` C
o1o2
===⇒M(O) ((V ′2,w), σ′2).

This follows from the rule (EM(O)-SEQ) and the local conclusions (3) and (4).

(•) There exists an automaton state (V ′,w) such that “((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′)” and

“∀x ∈ V ′, γ(x) = H”.

This follows directly from the local conclusions (5) and (4).
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Appendix B

Proofs of Chapter 4’s Theorems

By convention, in order to simplify understanding of the proofs and reduce their size, we keep su-

perscripts and subscripts of program states consistent whatever the level of expansion of the program

state notation. Therefore, for any sup and any i, let ζ sup
i be equal to (ςsup

i , qsup
i ), itself equal to

((σsup
i , λ

sup
i ), (V sup

i ,W sup
i , Lsup

i ,wsup
i )).

B.1 Definitions

Definition B.1.1 (Owned locks).
For all monitored statements S , OLocks(S ) is the set of all locks currently owned by the thread executing S .

OLocks(∅) = ∅

OLocks(P) = ∅



OLocks(x := e) = ∅

OLocks(output e) = ∅

OLocks(skip) = ∅

OLocks(if e then P1 else P2 end) = OLocks(P1) ∪ OLocks(P2)

OLocks(while e do P done) = OLocks(P)

OLocks(with x̄ when e do P done) = OLocks(P)

OLocks(S 1 ; P2) = OLocks(S 1) ∪ OLocks(P2)

OLocks(�x̄[S ]) = x̄ ∪ OLocks(S )

OLocks(⊗(P1, P2)[S ]) = OLocks(S )

Definition B.1.2 (Strip Branching Data Function).
strip() takes into parameter a monitored statement (Figure 4.8) and returns an execution statement (Fig-
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ure 4.3).

strip(∅) = ∅

OLocks(P) = P



strip(x := e) = x := e

strip(output e) = output e

strip(skip) = skip
strip(if e then P1 else P2 end) = if e then strip(P1) else strip(P2) end
strip(while e do P done) = while e do strip(P) done
strip(with x̄ when e do P done) = with x̄ when e do strip(P) done

strip(S 1 ; P2) = strip(S 1) ; strip(P2)

strip(�x̄[S ]) = �x̄[strip(S )]

strip(⊗(P1, P2)[S ]) = strip(S )

Definition B.1.3 (Low Equivalent Thread Monitoring States).
Two monitored execution states ((σ1, λ1), q1) and ((σ2, λ2), q2) are low equivalent, written ((σ1, λ1), q1) �

((σ2, λ2), q2), if and only if:

• q1 = q2 = (V,W, L,w) and w ∈ {⊥}?,

• ∀x < V : σ1(x) = σ2(x),

• ∀x < L : x ∈ λ1 ⇔ x ∈ λ2.

By extension, two monitored execution states — (ς1, Q1) and (ς2, Q2) — of a pool of threads Θ

are considered low equivalent, written (ς1, Q1) � (ς2, Q2), if and only if, for all ı in the domain of Θ,

(ς1, extractState(Q1, ı)) � (ς2, extractState(Q2, ı)).

Definition B.1.4 ((State, Statement) Pair Coherency).
A monitored execution state ζ — equals to ((σ, λ), (V,W, L,w)) — is coherent with a monitored statement S ,

written ζ ` S , if and only if:

• ∀x : x ∈ W ⇒ x ∈ V,

• S = ⊗(Pe, Pu)[S b] =⇒ modified(S b) ⊆ modified(Pe),

• S = ⊗(Pe, Pu)[S b] =⇒ (NLocks(S b) ∪ OLocks(S b)) ⊆ NLocks(Pe),

• S = ⊗(Pe, Pu)[S b] =⇒ (¬stoppable(Pe)⇒ ¬stoppable(S b)),

• (S = ⊗(Pe, Pu)[S b] ∧ ∃ w′ s.t. w = >w′) =⇒ modified(Pe) ∪modified(Pu) ⊆ W,

• (S = ⊗(Pe, Pu)[S b] ∧ ∃ w′ s.t. w = >w′) =⇒ NLocks(Pe) ∪ NLocks(Pu) ⊆ L,

• (S = ⊗(Pe, Pu)[S b] ∧ ∃ w′ s.t. w = >w′) =⇒ (∀l ∈ (NLocks(S b) \ OLocks(S b)) : l < λ),

• S = �x̄[S ′] =⇒ ((σ, λ \ x̄), (V,W, L,w)) ` S ′,
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• (S = ⊗(Pe, Pu)[S ′] ∧ ∃ w′ s.t. w = aw′) =⇒ (ς, (V,W, L,w′)) ` S ′,

By extension, a monitored execution state — (ς, Q) — is considered coherent with a pool of threads Θ

, written (ς, Q) ` Θ, if and only if, for all ı in the domain of Θ, (ς, extractState(Q, ı)) ` Θ(ı).

B.1.1 Evaluation context.

The proof makes intensive use of evaluation contexts (Nielson et al., 2005, Sect. 5.5.1).

Definition B.1.5 (Evaluation context).
An evaluation context is a monitored statement containing a unique hole which is written �. Evaluation

contexts are described by the following grammar:

〈eval-context〉 ::= � | 〈eval-context〉 ; 〈prog〉

| �〈ident-set〉[〈eval-context〉]

| ⊗(〈prog〉, 〈prog〉)[〈eval-context〉]

Definition B.1.6 (Evaluation context as a function).
Every evaluation context E is overloaded such that it is also a function mapping monitored statements

to monitored statements. This function returns the monitored statements corresponding to E where � is

replaced by the function’s argument. E(S ) is sometimes written E[S ]. Formally, this function is defined as

follows:

E(S ) =


S if and only if E = �

E′(S ) ; P if and only if E = E′ ; P

�x̄[E′(S )] if and only if E = �x̄[E′]

⊗(P1, P2)[E′(S )] if and only if E = ⊗(P1, P2)[E′]

Definition B.1.7 (Context word of an evaluation context).
During any evaluation, a context word w evolves with the monitored statement S under evaluation. This

monitored statement can be expressed using an evaluation context E and another monitored statement S ′

as follows: S = E(S ′). (w ↓E) is the prefix of w which has been created in the same time as the evaluation

context E. Formally, this function is defined as follows:

(w↓E) =



ε if E = �

(w↓E′) if E = E′ ; P

(w↓E′) if E = �x̄[E′]

a (w′ ↓E′) if E = ⊗(Pe, Pu)[E′] and w = aw′

ε if w = ε

Definition B.1.8 (Inverse of an evaluation context).
The inverse of an evaluation context function E() is the partial function written E−1() such that, for all

statements S , E−1(E(S )) = S .
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B.1.2 Weak Bisimulation Candidate

The proofs rely heavily on a bisimilarity relation between program states. This relation is an invariant

preserved during the execution of two noninterfering executions started with the same public inputs.

Definition B.1.9 (Weak Bisimilarity of Execution Stages).
An execution stage is a coherent pair composed of a monitored execution state and a monitored statement.

The execution stage (ζ1 ` S 1) is bisimilar to the execution stage (ζ2 ` S 2), written (ζ1 ` S 1) ∼ (ζ2 ` S 2), if

and only if they are coherent — ζ1 ` S 1 and ζ2 ` S 2, which is true by definition of execution stages — and

one, at least, of the following is true:

B.1.9C1 S 1 = S 2 and ζ1 � ζ2,

B.1.9C2 there exist an evaluation context E, four programs Pe
1, Pu

1, Pe
2, Pu

2 and two monitored statements S b
1

and S b
2 such that all the following is true:

(a) S 1 = E(⊗(Pe
1, P

u
1)[S b

1]) and S 2 = E(⊗(Pe
2, P

u
2)[S b

2]),

(b) V1 = V2 , W1 = W2 , L1 = L2 and (w1 ↓E) = (w2 ↓E),

(c) ∀i ∈ {1, 2} : ∃ws
i s.t. wi = (wi ↓E) > ws

i ,

(d) ∀x < V1 : σ1(x) = σ2(x),

(e) ∀l < L1 : l ∈ λ1 ⇔ l ∈ λ2,

(f) (¬stoppable(Pe
1) ∧ ¬stoppable(Pu

1))⇔ (¬stoppable(Pe
2) ∧ ¬stoppable(Pu

2)).

By extension, two execution states — (ς1, Q1) and (ς2, Q2) — and two pool of threads — Θ1 and Θ2 —

are considered bisimilar, written ((ς1, Q1) ` Θ1) ∼ ((ς2, Q2) ` Θ2), if and only if, for all ı in the domain of Θ,

((ς1, extractState(Q1, ı)) ` Θ1(ı)) ∼ ((ς2, extractState(Q2, ı)) ` Θ2(ı)).

B.2 Soundness

Lemma B.2.1 (Evaluation Context Generic Evaluation Rule).
For all evaluation contexts E, monitored statements S and S ′, and monitored execution states ((σ, λ), q)

and ((σ′, λ′), q′), E(S ) in state ((σ, λ), q) evaluates to E(S ′) yielding state ((σ′, λ′ ∪ OLocks(E(∅))), q′)

and output o in n steps if and only if S in state ((σ, λ \ OLocks(E(∅))), q) evaluates to S ′ yielding state

((σ′, λ′), q′) and output o in n steps.

Proof. This follows, by induction on E, from the definitions of evaluation context (Definition B.1.5

and B.1.6) and the semantic rules applying to E(S ). E′(S ) ; P takes one evaluation step if and only if

E′(S ) takes one evaluation step in the same state. From the rule (EM(O)-LOCKEDstep), �x̄[E′(S )] takes one

evaluation step in state ((σ, λ), q) yielding state ((σ′, λ′ ∪ OLocks(E(∅))), q′) if and only if E′(S ) takes one

evaluation step in state ((σ, λ \ OLocks(�x̄[∅])), q) yielding state ((σ′, λ′), q′). ⊗(P1, P2)[E′(S )] takes one

evaluation step if and only if E′(S ) takes one evaluation step in the same state.
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Lemma B.2.2 (Preservation of the Evaluation Context’s Branching Context).
For all evaluation contexts E, monitored statements S and S ′, and monitored execution states ζ and ζ′:

?1 〈| ζ ` E(S ) |〉
o
−→M(O) 〈| ζ

′ ` E(S ′) |〉

implies that (w↓E) = (w′ ↓E).

Proof. The proof follows directly from Definitions B.1.6 and B.1.7 and the semantic rules of Figure 4.9

going by structural induction on E.

Lemma B.2.3 (Coherency preservation).
For all monitored statements S and S ′, and monitored execution states ζ and ζ′ such that:

?1 ζ ` S ,

?2 〈| ζ ` S |〉
o
−→M(O) 〈| ζ

′ ` S ′ |〉 ,

it is true that:

• ζ′ ` S ′.

This lemma states that coherency of monitored execution states is an execution invariant.

Proof. The proof of this lemma goes by structural induction on S . If S is an atomic action, only the first

property (∀x : x ∈ W ⇒ x ∈ V) can apply. It is then obvious from the semantic rules of Figure 4.9 and

the transition function of Figure 4.7 that ζ′ ` S ′. For branched statements, the properties are obvious after

deducing from the semantic rules that initially such a statement is always of the form ⊗(Pe, Pu)[Pe]. For

locked statements, it follows from the semantic rule for such statements which temporarily releases the locks

owned by a thread before executing one step for this thread.

Lemma B.2.4 (Bisimilarity preservation).
For all monitored statements S 1 and S 2, and monitored execution states ζ1, ζ′1, ζ2 and ζ′2 such that:

?1 (ζ1 ` S 1) ∼ (ζ2 ` S 2),

?2 V ′1 = V ′2, W′1 = W′2, L′1 = L′2, w′1 = w1 and w′2 = w2,

?3 ∀x < V ′1 : σ′1(x) = σ′2(x),

?4 ∀l < L′1 : l ∈ λ′1 ⇔ l ∈ λ′2,

it is true that (ζ′1 ` S 1) ∼ (ζ′2 ` S 2).
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Proof. This lemma is straightforward. It follows directly from Definition B.1.9. Every property in this

definition involving the execution state is either one of ?2, ?3,?4 or follows directly from one of them.

Lemma B.2.5 (High Context Evaluation Step).
For all evaluation contexts E, monitored statements S and S ′, output sequences o and monitored execution

states ((σ, λ), (V,W, L,w)) and ((σ′, λ′), (V ′,W′, L′,w′)) such that:

?1 ((σ, λ), (V,W, L,w)) ` S ,

?2 〈| ((σ, λ), (V,W, L,w)) ` E(S ) |〉
o
−→M(O) 〈| ((σ

′, λ′), (V ′,W′, L′,w′)) ` E(S ′) |〉 ,

?3 (w↓E) < {⊥}?,

it is true that:

• o is equal to ε,

• V ′ = V , W′ = W , L′ = L and (w′ ↓E) = (w↓E),

• ∀x < modified(S ) : σ′(x) = σ(x),

• ∀l < NLocks(S ) ∪ OLocks(S ) : l ∈ λ′ ⇔ l ∈ λ.

Proof. This follows directly from lemma B.2.1 and the transition function of Figure 4.7. Because of the

hypothesis ?3 any output is forbidden and any possible transition does not modifies V , W , L and (w ↓E);

except for assignments. However, in the case of an assignment to x, because of hypotheses ?3 and ?1, x

belongs to W and V so the transition as no effect on the automaton state and the property on σ and σ′ holds.

Finally, for any lock which is not needed or already owned for the execution of S , an evaluation step of S

will not modify the fact that l belongs or not to λ.

Lemma B.2.6 (High Branch Traversal).
For all evaluation contexts E, monitored statements S and monitored execution states ((σ, λ), (V,W, L,w))

such that:

?1 ((σ, λ), (V,W, L,w)) ` E(S ),

?2 λ ∩ (NLocks(S ) \ OLocks(S )) = ∅,

?3 ¬stoppable(S ),

?4 (w↓E) < {⊥}?,

it is true that, there exists a monitored execution state ((σ′, λ′), (V ′,W′, L′,w′)) such that:

• 〈| ((σ, λ), (V,W, L,w)) ` E(S ) |〉
ε
−→
?

M(O) 〈| ((σ
′, λ′), (V ′,W′, L′,w′)) ` E(∅) |〉 .
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Proof. The proof of this lemma follows from lemma B.2.1 and then goes by structural induction on S . Such

induction goes by reducing the “structural size” of S at any induction step. Usually this type of induction

does not work well with while-statements. For this proof, the hypothesis ?3 solves the problem of while-

statements. Synchronization commands can also be a problem. This one is solved by the hypotheses ?3

and ?2. Additionally, in order for the proof to go smoothly, it is required to give a smaller “structural size”

to the branched statement structure than to the structure of if-statements and while-statements; similarly

for locked statements and synchronization commands. The small details of the proof follows directly from

Lemma B.2.5.

Lemma B.2.7 (One Step Soundness).
For all monitored statements S and S ′, and monitored execution states ζ1, ζ′1 and ζ2 such that:

?1 ζ1 � ζ2,

?2 ζ1 ` S ,

?3 〈| ζ1 ` S |〉
o
−→M(O) 〈| ζ

′
1 ` S ′ |〉 ,

it is true that, there exists a monitored execution state ζ′2 such that ζ′1 � ζ
′
2 and one of the following is true:

B.2.7C1 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 ,

B.2.7C2 all the following is true:

(a) there exist an evaluation context E and three monitored statements S b, Pe and Pu such that S

is equal to E(S b), S ′ is equal to E(⊗(Pe, Pu)[Pe]) and w1 = (w1 ↓E),

(b) w′2 = w2>,

(c) o = ε,

(d) 〈| ζ2 ` S |〉
ε
−→M(O) 〈| ζ

′
2 ` E(⊗(Pu, Pe)[Pu]) |〉 .

Proof sketch. The idea behind this lemma is that the executions of a given statement starting in various

low-equivalent states either take the same step, or take two different branches if the statement to execute is

a conditional branching with a condition influenced by some secret value.

Formal proof. The proof goes by induction on the length of the derivation tree of the global hypothesis ?3

and by cases on the first rule used for this derivation tree. If the first rule used for the derivation tree of the

global hypothesis ?3 is:

(EM(O)-OK) then we can conclude that :
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(1) S is an action (i.e. S = “skip” or S = “y := e” or S = “output e”), “(q1, S )
OK
−−→ q′1” and

“〈| ς1 ` S |〉
o
−→M(O) 〈| ς

′
1 ` ∅ |〉”.

This follows directly from the definition of the rule (EM(O)-OK) and the grammar of the lan-

guage. It can also be deduced from the rule (EM(O)-OK), the transition function of the monitor-

ing automaton, and the semantics (EO).

(2) There exists q′2 such that (q2, S )
OK
−−→ q′2 and q′1 = q′2.

This follows directly from the local conclusion (1) and the global hypothesis ?1 — as well as

the definition of low equivalence (Definition B.1.3).

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

Case 1: S = skip

(a) There exists ς′2 such that 〈| ς2 ` A |〉
o
−→M(O) 〈| ς

′
2 ` ∅ |〉 and ς′1 = ς′2.

This follows directly from the case hypothesis, the rule (EO-SKIP), the local conclusion

(1) and the global hypothesis ?1.

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows directly from the rule (EM(O)-OK) and the local conclusions (2) and (a).

Case 2: S = output e

(a) FV(e) ∩ V1 = ∅.

This follows from the case hypothesis, the fact that “(q1, S )
OK
−−→ q′1” (from the local

conclusion (1)), and the only possible automaton transition (T-OUTPUT-ok).

(b) σ1(e) = σ2(e).

This follows directly from the local conclusion (a), the global hypothesis ?1 and the

definition of low equivalence (Definition B.1.3).

(c) There exists ς′2 such that 〈| ς2 ` A |〉
o
−→M(O) 〈| ς

′
2 ` ∅ |〉 and ς′1 = ς′2.

This follows directly from the case hypothesis, the rule (EO-OUTPUT), the global hy-

pothesis ?1 and the local conclusions (1) and (b).

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows directly from the rule (EM(O)-OK) and the local conclusions (2) and (c).

Case 3: S = y := e

(a) σ′1 = σ1[y 7→ σ1(e)] and λ1 = λ′1.

This follows directly from the case hypothesis, the local conclusion (1) and the only

possible rule (EO-ASSIGN).

(b) There exist σ′2 and λ′2 such that 〈| ς2 ` S |〉
o
−→M(O) 〈| ς

′
2 ` ∅ |〉, σ

′
2 = σ2[y 7→ σ2(e)]

and λ2 = λ′2.

This follows directly from the case hypothesis and the only possible rule (EO-ASSIGN).

(c) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 .

This follows from the local conclusions (2) and (b).

(d) ∀x < V ′1 : σ′1(x) = σ′2(x).
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Sub-case 2.a: FV(e) ∩ V1 , ∅ or y ∈ W1.

(α) V ′1 = V1 ∪ {y}.

From the sub-case hypothesis, the automaton transition of the local conclusion (1)

is (T-ASSIGN-sec). From which comes the desired result.

(•) ∀x < V ′1 : σ′1(x) = σ′2(x).

This follows directly from the global hypothesis ?1 and local conclusions (a), (b)

and (α).

Sub-case 2.b: FV(e) ∩ V1 = ∅ and y < W1.

(α) V ′1 = V1 \ {y}.

From the sub-case hypothesis, the automaton transition of the local conclusion (1)

is (T-ASSIGN-pub). From which comes the desired result.

(β) σ1(e) = σ2(e).

This follows directly from the global hypothesis ?1 and the sub-case hypothesis

FV(e) ∩ V1 = ∅.

(•) ∀x < V ′1 : σ′1(x) = σ′2(x).

This follows directly from the global hypothesis ?1 and the local conclusions (α),

(a), (b) and (β).

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

The first part of the above result comes directly from the local conclusion (c). The

second part of the result — ζ′1 � ζ′2 — comes from the definition B.1.3, the local

conclusions (2) for the first part of the definition, the local conclusions (d) for the second

part of the definition, and the global hypothesis ?1 and the local conclusions (a) and (b)

for the last part.

(EM(O)-EDIT) then we can conclude that :

(1) the following holds:

• (q1, S )
output δ
−−−−−−→ q′1,

• S is “output e”,

• w1 ∈ {⊥}
? and FV(e) ∩ V1 , ∅,

• q′1 = q1,

• o = δ,

• ς′1 = ς1.

This follows directly from the definition of the rule (EM(O)-EDIT), the only automaton transition

returning an action as output (T-OUTPUT-def) and the rule (EO-OUTPUT).

(2) There exists q′2 such that (q2, S )
output δ
−−−−−−→ q′2 and q′1 = q′2.

From the local conclusion (1), w1 ∈ {⊥}
? and FV(e) ∩ V1 , ∅. Hence, from the global hypothe-

sis ?1, w2 ∈ {⊥}
? and FV(e) ∩ V2 , ∅. Then the automaton transition (T-OUTPUT-def) applies

to q2; with the consequences that q′2 = q2. Hence, from the global hypothesis ?1, q′1 = q′2.
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(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

The rule (EO-OUTPUT) implies that there exists ς′2 such that 〈| ς2 ` output δ |〉
δ
−→O 〈| ς

′
2 ` ∅ |〉

with ς′2 = ς2. Hence the rule (EM(O)-EDIT) and the local conclusion (2) imply that 〈| ζ2 `

S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 . From the global hypothesis ?1 and the local conclusions (1) and (2),

q′1 = q′2. Hence from the global hypothesis ?1, the fact that ς′1 = ς1 (from the local conclusion

(1)) and the previous conclusion ς′2 = ς2, ζ′1 � ζ
′
2.

(EM(O)-NO) then we can conclude that :

(1) w1 < {⊥}
?. This follows directly from the definition of the rule (EM(O)-NO) and the only automa-

ton transition denying an action (T-OUTPUT-no).

(•) The first rule used can not be (EM(O)-NO). This follows from the fact that the local conclusion (1)

is in contradiction with the global hypothesis ?1.

(EM(O)-IF) then we can conclude that :

(1) there exists v belonging to the set {true, false} such that:

• S is “if e then Ptrue else Pfalse end”,

• σ1(e) = v,

• (q1, branch(λ1, e, Pv, P¬v))
OK
−−→ q′1,

• ς′1 = ς1,

• S ′ is “⊗(Pv, P¬v)[Pv]”.

This follows directly from the rule (EM(O)-IF).

(•) the property holds.

Case 1: σ2(e) = σ1(e)

(a) there exists q′2 such that (q2, branch(λ2, e, Pv, P¬v))
OK
−−→ q′2 and q′2 = q′1.

The conditions of the two possible transitions for the automaton input

branch(λ2, e, Pv, P¬v) are based on values which, because of the global hypoth-

esis ?1, are equal for q2 and q1. Therefore, the same transition can be taken by the

automaton.

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows from the rule (EM(O)-IF), the global hypothesis ?1, the case hypothesis

and the local conclusions (1) and (a).

Case 2: σ2(e) , σ1(e)

(a) there exist an evaluation context E and a monitored statement S b such that S is equal

to E(S b) and S ′ is equal to E(⊗(Pv, P¬v)[Pv]).

This follows directly from the rule (EM(O)-IF). E is � and S b is S .

(b) FV(e) ∩ V1 , ∅.

This follows by contradiction using the global hypothesis ?1 and the case hypothesis.
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(c) there exists wp such that w′1 = wp>.

The local conclusion (b) implies that the transition used for the automaton input

branch(λ, e, Pv, P¬v) in state q1 is (T-BRANCH-high). Hence, the desired result holds.

(d) there exists q′2 such that (q2, branch(λ2, e, Pv, P¬v))
OK
−−→ qt

2 and q′2 = q′1.

The conditions of the two possible transitions for the automaton input

branch(λ2, e, Pv, P¬v) are based on values which, because of the global hypoth-

esis ?1, are equal for q2 and q1. Therefore, the same transition can be taken by the

automaton.

(e) there exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` E(⊗(P¬v, Pv)[P¬v]) |〉 and ζ′1 � ζ

′
2.

The rule (EM(O)-IF) and the local conclusions (1) and (d) imply the desired result.

(•) the second possible global conclusion holds.

This follows directly from the local conclusions (1), (a), (c), (d) and (e).

(EM(O)-WHILE) then we can conclude that :

(•) the property holds.

The proof is similar to the one for (EM(O)-IF).

(EM(O)-WITH) then we can conclude that :

(1) there exists qt
1 such that:

• S is with x̄ when e do S w done,

• x̄ ∩ λ1 = ∅,

• σ1(e) = true,

• (q1, sync(x̄, e))
OK
−−→ q′1,

• FV(e) ∩ V1 = ∅,

• L1 ∩ x̄ = ∅,

• ζ′1 = ((σ1, λ1 ∪ x̄), q′1),

• S ′ = �x̄[S w].

This follows directly from the global hypothesis ?1, the semantic rule (EM(O)-WITH) and from

the only automaton transition applying to the automaton input.

(2) x̄ ∩ λ2 = ∅ and σ2(e) = true.

Both equalities follow from the global hypothesis ?1, the definition of low equivalence for states

of monitored executions (definition B.1.3) and the local conclusion (1) — L1 ∩ x̄ = ∅ and

FV(e) ∩ V1 = ∅.

(3) There exists q′2 such that (q2, sync(x̄, e))
OK
−−→ q′2 and q′2 = q′1.

The global hypothesis ?1 and the local conclusion (1) imply that L2∩ x̄ = ∅ and FV(e)∩V2 = ∅.

Therefore, the desired results hold.

(4) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′2 = ((σ2, λ2 ∪ x̄), q′2).

This follows from the rule (EM(O)-WITH) and the local conclusions (2) and (3).
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(5) ∀x < V ′1 : σ′1(x) = σ′2(x).

The local conclusion (1) and the automaton transition (T-SYNC) imply that V ′1 is equal to V1. In

addition, the evaluation rule (EM(O)-WITH), the global hypothesis ?3 and the local conclusion

(4) imply that σ′1 is equal to σ1 and σ′2 is equal to σ2. Therefore, the desired result follows from

the global hypothesis ?1.

(6) ∀x < L′1 : x ∈ λ′1 ⇔ x ∈ λ′2.

The local conclusion (1) and the automaton transition (T-SYNC) imply that L′1 = L1. In addition,

the evaluation rule (EM(O)-WITH), the global hypothesis ?3 and the local conclusion (4) imply

that λ′1 = λ1 ∪ x̄ and λ′2 = λ2 ∪ x̄. So the desired result is implied by the global hypothesis ?1.

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows directly from the local conclusions (4), (5) and (6).

(EM(O)-SEQexit) then we can conclude that :

(1) S is “∅ ; S r”, o = ε, ζ′1 = ζ1 and S ′ = S r.

This follows directly from (EM(O)-SEQexit).

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows directly from (EM(O)-SEQexit) and the global hypothesis ?1.

(EM(O)-SEQstep) then we can conclude that :

(1) the following holds:

• S is S i ; S r,

• 〈| ζ1 
 S i |〉
o
−→M(O) 〈| ζ

′
1 
 S j |〉 is a sub-derivation tree of the derivation tree of S ,

• S ′ = S j ; S r.

This follows directly from the rule (EM(O)-SEQstep).

(2) There exists ζ′2 such that ζ′1 � ζ′2 and one of the possible global conclusions holds for the moni-

tored statement S i.

This follows directly from the inductive hypothesis.

(•) The property holds.

Case 1: the first global conclusion holds for S i.

(a) 〈| ζ2 ` S i |〉
o
−→M(O) 〈| ζ

′
2 ` S j |〉

This follows directly from the local conclusion (2) and the case hypothesis.

(•) 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉

This follows directly from the local conclusion (a) and the definition of the evaluation

rule (EM(O)-SEQstep).

Case 2: the second global conclusion holds for S i.

(a) there exist an evaluation context E and three monitored statements S b, Pe and Pu such

that:
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• S i is equal to E(S b) and S j is equal to E(⊗(Pe, Pu)[Pe]),

• w′2 = w2>,

• o = ε,

• 〈| ζ2 ` S i |〉
ε
−→M(O) 〈| ζ

′
2 ` E(⊗(Pu, Pe)[Pu]) |〉 .

This follows directly from the local conclusion (2) and the case hypothesis.

(b) 〈| ζ2 ` S i ; S r |〉
ε
−→M(O) 〈| ζ

′
2 ` E(⊗(Pu, Pe)[Pu]) ; S r |〉

This follows directly from the local conclusion (a) and the evaluation rule (EM(O)-

SEQstep).

(c) there exist E′, equal to “E ; S r”, such that S is equal to E′(S b) and S ′ is equal to

E(⊗(Pe, Pu)[Pe]).

This result is implied by the local conclusions (1) and (a).

(d) 〈| ζ2 ` S |〉
ε
−→M(O) 〈| ζ

′
2 ` E′(⊗(Pu, Pe)[Pu]) |〉 .

From the local conclusion (c), E′(⊗(Pu, Pe)[Pu]) is equal to “E(⊗(Pu, Pe)[Pu]) ; S r”.

Hence, the local conclusions (1) and (b) imply the desired result.

(•) the second possible global conclusion holds.

This follows directly from the local conclusions (c), (a) and (d).

(EM(O)-BRANCHexit) then we can conclude that :

(1) there exists qt
1 such that:

• S is ⊗(Pe, Pu)[∅],

• (q1, merge(Pe, Pu))
OK
−−→ q1,

• ς′1 = ς1

• S ′ is ∅.

This follows directly from the rule (EM(O)-BRANCHexit) and the global hypothesis ?1.

(2) There exists q′2 such that (q2, merge(Pe, Pu))
OK
−−→ q2.

This follows directly from the global hypothesis ?1 and the definition of the transition (T-

MERGE-low).

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows directly from the global hypothesis ?1 and local conclusions (1) and (2).

(EM(O)-BRANCHstep) then we can conclude that :

(1) there exist three monitoring statements S b, S b′ , Pe and Pu such that:

• S b , ∅,

• S is equal to ⊗(Pe, Pu)[S b],

• S ′ is equal to ⊗(Pe, Pu)[S b′],

• 〈| ζ1 
 S b |〉
o
−→M(O) 〈| ζ

′
1 
 S b′ |〉 is a sub-derivation tree of the global hypothesis ?3.
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This follows directly from the definition of (EM(O)-BRANCHstep).

(2) There exists ζ′2 such that ζ′1 � ζ′2 and one of the possible global conclusions holds for the moni-

tored statement S b.

This follows directly from the inductive hypothesis and the local conclusion (1).

(•) The property holds.

Case 1: the first global conclusion holds for S b.

(a) 〈| ζ2 
 S b |〉
o
−→M(O) 〈| ζ

′
2 
 S b′ |〉

This follows directly from the local conclusion (2) and the case hypothesis.

(•) There exists ζ′2 such that 〈| ζ2 
 S |〉
o
−→M(O) 〈| ζ

′
2 
 S ′ |〉 and ζ′1 � ζ

′
2.

This is direct using the definition of the rule (EM(O)-BRANCHstep) and the local con-

clusion (a).

Case 2: the second global conclusion holds for S b.

(a) there exist an evaluation context E and three monitored statements S b2 , Pe2 and Pu2

such that:

• S b is equal to E(S b2) and S b′ is equal to E(⊗(Pe2 , Pu2)[Pe2]),

• w′2 = w2>,

• o = ε,

• 〈| ζ2 ` S b |〉
ε
−→M(O) 〈| ζ

′
2 ` E(⊗(Pu2 , Pe2)[Pu2]) |〉 .

This follows directly from the local conclusion (2) and the case hypothesis.

(b) 〈| ζ2 ` ⊗(Pe, Pu)[S b] |〉
ε
−→M(O) 〈| ζ

′
2 ` ⊗(Pe, Pu)[E(⊗(Pu2 , Pe2)[Pu2])] |〉

This follows directly from the local conclusion (a) and the evaluation rule (EM(O)-

BRANCHstep).

(c) there exist E′, equal to “⊗(Pe, Pu)[E]”, such that S is equal to E′(S b2) and S ′ is equal

to E(⊗(Pe2 , Pu2)[Pe2]).

This result is implied by the local conclusions (1) and (a).

(d) 〈| ζ2 ` S |〉
ε
−→M(O) 〈| ζ

′
2 ` E′(⊗(Pu2 , Pe2)[Pu2]) |〉 .

From the local conclusion (c), E′(⊗(Pu2 , Pe2)[Pu2]) is equal to

“⊗(Pe, Pu)[E(⊗(Pu2 , Pe2)[Pu2])]”. Hence, the local conclusions (1) and (b) imply

the desired result.

(•) the second possible global conclusion holds.

This follows directly from the local conclusions (c), (a) and (d).

(EM(O)-LOCKEDexit) then we can conclude that :

(1) there exists a set of identifiers x̄ such that:

• S is �x̄[∅],

• S ′ is ∅,

• ζ′1 = ((σ1, λ1 \ x̄), q1).
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This follows directly from the rule (EM(O)-LOCKEDexit).

(•) There exists ζ′2 such that 〈| ζ2 ` S |〉
o
−→M(O) 〈| ζ

′
2 ` S ′ |〉 and ζ′1 � ζ

′
2.

This follows directly from the local conclusions (1), the global hypothesis ?1 and the rule

(EM(O)-LOCKEDexit).

(EM(O)-LOCKEDstep) then we can conclude that :

(1) there exist a set of identifiers x̄, a set of locks λt
1 and two monitored statements S s and S s′ , such

that:

• S is equal to �x̄[S s],

• S ′ is equal to �x̄[S s′],

• S s , ∅,

• 〈| ((σ1, λ1 \ x̄), q1) 
 S s |〉
o
−→M(O) 〈| ((σ

′
1, λ

t
1), q′1) 
 S s′ |〉 ,

• λ′1 = λt
1 ∪ x̄.

This follows directly from the definition of (EM(O)-LOCKEDstep).

(2) ζ1 � ζ2 ⇒ ((σ1, λ1 \ x̄), q1) � ((σ2, λ2 \ x̄), q2).

This is obvious from the Definition B.1.3.

(3) ζ1 ` �x̄[S s]⇒ ((σ1, λ1 \ x̄), q1) ` S s.

This is obvious from the Definition B.1.4.

(4) There exists ((σ′2 , λt
2) , q′2) such that ((σ′1, λ

t
1), q′1) � ((σ′2, λ

t
2), q′2) and one of the possible global

conclusions holds for the monitored statement S s.

This follows directly from the inductive hypothesis and the local conclusions (1), (2) and (3).

(•) The property holds.

Case 1: the first global conclusion holds for S s.

(a) 〈| ((σ2, λ2 \ x̄), q2) 
 S s |〉
o
−→M(O) 〈| ((σ

′
2, λ

t
2), q′2) 
 S s′ |〉

This follows directly from the local conclusion (2) and the case hypothesis.

(•) There exists ζ′2, equals to ((σ′2, λ
t
2 ∪ x̄), q′2), such that 〈| ζ2 
 S |〉

o
−→M(O) 〈| ζ

′
2 
 S ′ |〉

and ζ′1 � ζ
′
2.

This is direct using the definition of the rule (EM(O)-BRANCHstep) and the local con-

clusions (a), (4) and (1).

Case 2: the second global conclusion holds for S s.

(a) there exist an evaluation context E and three monitored statements S b, Pe and Pu such

that:

• S s is equal to E(S b) and S s′ is equal to E(⊗(Pe, Pu)[Pe]),

• w′2 = w2>,

• o = ε,

• 〈| ((σ2, λ2 \ x̄), q2) ` S s |〉
ε
−→M(O) 〈| ((σ

′
2, λ

t
2), q′2) ` E(⊗(Pu, Pe)[Pu]) |〉 .
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This follows directly from the local conclusion (4) and the case hypothesis.

(b) there exists E′, equal to “�x̄[E]”, such that S is equal to E′(S b) and S ′ is equal to

E′(⊗(Pe, Pu)[Pe]).

This result is implied by the local conclusions (1) and (a).

(c) 〈| ((σ2, λ2), q2) ` �x̄[S s] |〉
ε
−→M(O) 〈| ((σ

′
2, λ

t
2 ∪ x̄), q′2) ` �x̄[E(⊗(Pu, Pe)[Pu])] |〉 .

This follows directly from the evaluation rule (EM(O)-LOCKEDstep) and the local con-

clusions (1) and (a).

(d) 〈| ζ2 ` S |〉
ε
−→M(O) 〈| ζ

′
2 ` E′(⊗(Pu, Pe)[Pu]) |〉 with λ′2 = λt

2 ∪ x̄.

This result is implied by the local conclusions (c), (1), and (b).

(e) ζ′1 � ζ
′
2.

The local conclusion (4) and the definition B.1.3 imply ∀x < L′1 : x ∈ λt
1 ⇔ x ∈ λt

2.

Combined with the local conclusions (1) and (d), it implies ∀x < L′1 : x ∈ λ′1 ⇔ x ∈ λ′2.

This property and the local conclusion (4) imply the desired result.

(•) the second possible global conclusion holds.

This follows directly from the local conclusions (b), (a), (d) and (e).

Lemma B.2.8 (General Soundness). For all thread pools Θ1, Θ2 and Θ
f
1 , concurrent execution states ϑ1,

ϑ2 and ϑ f
1 , and output sequences o such that:

?1 (ϑ1 ` Θ1) ∼ (ϑ2 ` Θ2),

?2 〈|ϑ1 ` Θ1 |〉
o
−→

?

M(O) 〈|ϑ
f
1 ` Θ

f
1 |〉 ,

it is true that, there exists a concurrent execution state ϑ f
2 and a thread pool Θ

f
2 such that:

• 〈|ϑ2 ` Θ2 |〉
o
−→

?

M(O) 〈|ϑ
f
2 ` Θ

f
2 |〉 .

Proof. The proof goes by induction on the length of the derivation of the global hypothesis ?2.

Obviously, the lemma holds if the length of the derivation is equal to 0. In that case o is equal to ε and

the conclusion holds with Θ
f
2 = Θ2 and ϑ f

2 = ϑ2.

Otherwise, the global hypothesis ?2 implies that there exist a concurrent execution state ϑ′1 and a thread

pool Θ′1 such that:

〈|ϑ1 
 Θ1 |〉
op

−−→M(O) 〈|ϑ
′
1 
 Θ′1 |〉 (B.1)

〈|ϑ′1 ` Θ′1 |〉
os

−→
?

M(O) 〈|ϑ
f
1 ` Θ

f
1 |〉 (B.2)

o = opos (B.3)

The remaining of the proof demonstrates the existence of a concurrent execution state ϑ′2 and a thread pool

Θ′2 such that:

〈|ϑ2 ` Θ2 |〉
op

−−→
?

M(O) 〈|ϑ
′
2 ` Θ′2 |〉

(ϑ′1 ` Θ′1) ∼ (ϑ′2 ` Θ′2)
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The desired property will then follow by induction. As (ϑ′1 ` Θ′1) ∼ (ϑ′2 ` Θ′2), using the inductive hypothesis

on (B.2), we get that there exists an execution state ϑ f
2 and a thread pool Θ

f
2 such that:

〈|ϑ′2 ` Θ′2 |〉
os

−→
?

M(O) 〈|ϑ
f
2 ` Θ

f
2 |〉

Consequently, 〈|ϑ2 ` Θ2 |〉
o
−→

?

M(O) 〈|ϑ
f
2 ` Θ

f
2 |〉 .

Let ϑ1 be equal to (ς1, Q1). The only possible rule for the previous one step evaluation — (B.1) — is

(EM(O)-CONCUR). It implies that there exists ı belonging to the domain of Θ1 such that:

〈| (ς1, extractState(Q1, ı)) 
 Θ1(ı) |〉
op

−−→M(O) 〈| (ς
′
1, q
′
1) 
 S ′1 |〉 (B.4)

ϑ′1 = (ς′1, updateStates(Q1, ı, q′1)) (B.5)

Θ′1 = Θ1[ı 7→ S ′1] (B.6)

Let ζ1 be (ς1, extractState(Q1, ı)), ζ2 be (ς2, extractState(Q2, ı)) — with ϑ2 = (ς2, Q2) —, S 1 be Θ1(ı) and

S 2 be Θ2(ı). Because of the global hypothesis ?1 and the definition of bisimulation for thread pools, the

following is true: (ζ1 ` S 1) ∼ (ζ2 ` S 2). Therefore, one of the conclusions of definition B.1.9 has to hold.

Case 1: The conclusion B.1.9C1 of definition B.1.9 holds.

This conclusion states that “ζ1 � ζ2”, “ζ1 ` S 1” and S 1 is equal to S 2. Hence, as from (B.4) the mon-

itored statement S 1 in the monitored execution state ζ1 evaluates to S ′1 yielding the output sequence

op and the monitored execution state ζ′1, lemma B.2.7 applies and one of its global conclusions has to

hold.

Sub-case 1.a: The global conclusion B.2.7C1 of lemma B.2.7 holds.

This conclusion states that there exists a monitored execution state ζ′2 such that:

ζ′1 � ζ
′
2 (B.7)

〈| ζ2 ` S 2 |〉
op

−−→M(O) 〈| ζ
′
2 ` S ′1 |〉 (B.8)

Let ϑ′2 be equal to (ς′2, updateStates(Q2, ı, q′2)) — with ζ′2 = (ς′2, q
′
2) — and Θ′2 be equal to Θ2[ı 7→

S ′1]. The previous evaluation of S 2 — (B.8) — and the rule (EM(O)-CONCUR) implies:

〈|ϑ2 
 Θ2 |〉
op

−−→M(O) 〈|ϑ
′
2 
 Θ′2 |〉

The global hypothesis ?1 implies that ζ1 ` S 1 and ζ2 ` S 2. Hence, lemma B.2.3, (B.4) and (B.8)

are sufficient to conclude that ζ′1 ` S 1 and ζ′2 ` S 2. Therefore, as ζ′1 � ζ′2 and Θ′1(ı) = Θ′2(ı), the

following is true:

(ζ′1 ` Θ′1(ı)) ∼ (ζ′2 ` Θ′2(ı))
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and, with ϑ′1 = (ς′1, Q
′
1) and ϑ′2 = (ς′2, Q

′
2),

((ς′1, extractState(Q′1, ı)) ` Θ′1(ı)) ∼ ((ς′2, extractState(Q′2, ı)) ` Θ′2(ı))

Equation (B.7) implies:

• V ′1 = V ′2, W′1 = W′2 and L′1 = L′2,

• ∀x < V ′1 : σ′1(x) = σ′2(x),

• ∀l < L′1 : x ∈ λ′1 ⇔ x ∈ λ′2.

For every , let w j
1 be the forth element of extractState(Q1, ). extractState(Q1, ) is equal to

(V1,W1, L1,w
j
1). Let w j

2 be similarly defined. For every  — different from ı — in the do-

main of Θ′1, (B.6) implies Θ′1( ) = Θ1( ); and similarly for Θ′2( ). As well, (B.5) implies that

extractState(Q′1, ) is equal to (V ′1,W
′
1, L

′
1,w

j
1); and similarly with extractState(Q′2, ). Therefore,

lemma B.2.4 applies and, for every  in the domain of Θ1 and different from ı:

((ς′1, extractState(Q′1, )) ` Θ′1( )) ∼ ((ς′2, extractState(Q2, )) ` Θ′2( ))

Consequently,

(ϑ′1 ` Θ′1) ∼ (ϑ′2 ` Θ′2)

Sub-case 1.b: The global conclusion B.2.7C2 of lemma B.2.7 holds.

This conclusion states that there exists a monitored execution state ζ′2 such that ζ′1 � ζ
′
2 and:

1. there exist an evaluation context E, a value v belonging to the set {true, false} and three

monitored statements S b, Ptrue and Pfalse such that S 1 — and S 2 because S 1 = S 2 — is

equal to E(S b), S ′1 is equal to E(⊗(S v, S ¬v)[S v]) and w1 = (w1 ↓E),

2. w′2 = w2>,

3. op = ε,

4. 〈| ζ2 ` S 2 |〉
ε
−→M(O) 〈| ζ

′
2 ` E(⊗(S ¬v, S v)[S ¬v]) |〉 .

Let ϑ′2 be equal to (ς′2, updateStates(Q2, ı, q′2)) and Θ′2 be equal to Θ2[ı 7→ E(⊗(S ¬v, S v)[S ¬v])].

The previous evaluation of S 2 with the monitoring execution state ζ2, the rule (EM(O)-CONCUR)

and the equality between op and ε imply that 〈|ϑ2 
 Θ2 |〉
op

−−→M(O) 〈|ϑ
′
2 
 Θ′2 |〉 .

Lemma B.2.3, the global hypothesis ?1 and the evaluations of S 1 and S 2 imply that ζ′1 ` S ′1 and

ζ′2 ` S ′2.

With Pe
1 = S b

1 = Pu
2 = S v and Pe

2 = S b
2 = Pu

1 = S ¬v, S ′1 is equal to E(⊗(Pe
1, P

u
1)[S b

1]) and S ′2 is

equal to E(⊗(Pe
2, P

u
2)[S b

2]). This is the point (a) of the second definition B.1.9C2 of bisimilarity.

The fact that ζ′1 � ζ
′
2 implies that V ′1 = V ′2, W′1 = W′2, L′1 = L′2 and (w′1 ↓E) = (w′2 ↓E). This is the

point (b) of the second definition B.1.9C2 of bisimilarity.
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From the global conclusion B.2.7C2 of lemma B.2.7, w1 = (w1 ↓E) and w′2 = w2>. The facts that

ζ1 � ζ2 and ζ′1 � ζ
′
2 imply that w1 = w2 and w′1 = w′2. Therefore, w′1 = w1> and w′2 = w2>. This

is the point (c) of the second definition B.1.9C2 of bisimilarity.

As ζ′1 � ζ′2, we have that ∀x < V ′1 : σ′1(x) = σ′2(x) and ∀l < L′1 : l ∈ λ′1 ⇔ l ∈ λ′2. Those

properties are points (d) and (e) of the second definition B.1.9C2 of bisimilarity.

As Pe
1 = Pu

2 and Pe
2 = Pu

1, it is trivial to show that point (f) of the second definition B.1.9C2 of

bisimilarity holds.

Therefore,

(ζ′1 ` Θ′1(ı)) ∼ (ζ′2 ` Θ′2(ı))

and, following a proof similar to the one used in the sub-case 1.a,

(ϑ′1 ` Θ′1) ∼ (ϑ′2 ` Θ′2)

Case 2: The conclusion B.1.9C2 of definition B.1.9 holds.

This conclusion states that there exist an evaluation context E, four programs Pe
1, Pu

1, Pe
2, Pu

2 and two

monitored statements S b
1 and S b

2 such that all the following is true:

1. S 1 = E(⊗(Pe
1, P

u
1)[S b

1]) and S 2 = E(⊗(Pe
2, P

u
2)[S b

2]),

2. V1 = V2 , W1 = W2 , L1 = L2 and (w1 ↓E) = (w2 ↓E),

3. ∀i ∈ {1, 2} : ∃ws
i s.t. wi = (wi ↓E) > ws

i ,

4. ∀x < V1 : σ1(x) = σ2(x),

5. ∀l < L1 : l ∈ λ1 ⇔ l ∈ λ2,

6. ∀L : ¬stoppable(Pe
1) ∧ ¬stoppable(Pu

1)⇔ ¬stoppable(Pe
2) ∧ ¬stoppable(Pu

2).

The point 3 stated above and lemma B.2.5 imply that op equals ε.

Sub-case 2.a: S b
1 , ∅.

Equation (B.4), the conclusion B.1.9C2 of definition B.1.9 and lemma B.2.1 imply that

〈| ζ1 
 ⊗(Pe
1, P

u
1)[S b

1] |〉
ε
−→M(O) 〈| (ς

′
1, q
′
1) 
 E−1(S ′1) |〉

Because of the sub-case hypothesis, the only possible rule for this evaluation step is (EM(O)-

BRANCHstep). Therefore,

〈| ζ1 
 S b
1 |〉

ε
−→M(O) 〈| (ς

′
1, q
′
1) 
 S n

1 |〉 and S ′1 = E(⊗(Pe
1, P

u
1)[S n

1])

The following steps consist in proving that (ζ′1 ` S ′1) ∼ (ζ2 ` S 2).
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The case hypothesis, definition B.1.4 and lemma B.2.5 imply:

V ′1 = V1,W′1 = W1 and L′1 = L1 (B.9)

∀x < modified(S 1) : σ′1(x) = σ1(x) (B.10)

∀l < NLocks(S 1) ∪ OLocks(S 1) : l ∈ λ′1 ⇔ l ∈ λ1 (B.11)

The first point of the definition of bisimilarity is trivial as S ′1 = E(⊗(Pe
1, P

u
1)[S n

1]) and S 2 =

E(⊗(Pe
2, P

u
2)[S b

2]).

The case hypothesis combined with (B.9) imply

V ′1 = V2,W′1 = W2 and L′1 = L2

Lemma B.2.2 imply (w′1 ↓E) = (w1 ↓E). Therefore, the case 2 hypothesis “(w1 ↓E) = (w2 ↓E)”

implies (w′1 ↓E) = (w2 ↓E). This is the point (b) of the bisimilarity definition.

Let E′ be E(⊗(Pe
1, P

u
1)[�]). S 1 is equal to E′(S b

1). As the case hypothesis imply w1 = (w1 ↓E

) > ws
1, by definition (w1 ↓E′) = (w1 ↓E) >. Lemma B.2.2 imply (w1 ↓E′) = (w′1 ↓E′). By

definition of branching context of evaluation context, there exists ws′
1 such that w′1 = (w′1 ↓E′) ws′

1 .

Therefore, there exists ws′
1 such that w′1 = (w′1 ↓E) > ws′

1 . This is sufficient to trivially prove the

point (c) of the bisimilarity definition.

Equation (B.9) implies that all x not in V ′1 is not in V1. Definition B.1.4 implies that all x not

belonging to V1 does not belong to modified(S 1). Therefore, (B.10) implies the point (d) of the

bisimilarity definition.

Similarly, (B.11) implies the point (e) of the bisimilarity definition.

Point (f) of the bisimilarity definition follows directly from the case hypothesis.

Therefore,

(ζ′1 ` Θ′1(ı)) ∼ (ζ2 ` Θ2(ı))

and, following a proof similar to the one used in the sub-case 1.a,

(ϑ′1 ` Θ′1) ∼ (ϑ′2 ` Θ′2)

Sub-case 2.b: S b
1 = ∅.

Equation (B.4), the conclusion B.1.9C2 of definition B.1.9 and lemma B.2.1 imply that

〈| ζ1 
 ⊗(Pe
1, P

u
1)[S b

1] |〉
ε
−→M(O) 〈| (ς

′
1, q
′
1) 
 E−1(S ′1) |〉

Because of the sub-case hypothesis, the only possible rule for this evaluation step is (EM(O)-

BRANCHexit). Therefore, with ṽ = modified(Pe
1) ∪ modified(Pu

1) and l̃ = NLocks(Pe
1) ∪
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NLocks(Pu
1),

S ′1 = E(∅) and ς′1 = ς1 (B.12)

¬stoppable(Pe
1) and ¬stoppable(Pu

1) (B.13)

V ′1 = V1 , W′1 = W1 \ ṽ , L′1 = L1 \ l̃ and w′1 = (w1 ↓E) (B.14)

Equation (B.13), the case hypothesis and definition B.1.4 imply ¬stoppable(S b
2). The case hy-

pothesis and definition B.1.4 imply ∀l ∈ (NLocks(S b
2) \ OLocks(S b

2)) : l < λ2. Therefore,

lemma B.2.6 implies that there exists a monitored execution state ζ t
2 such that:

〈| ζ2 ` S 2 |〉
ε
−→
?

M(O) 〈| ζ
t
2 ` E(⊗(Pe

2, P
u
2)[∅]) |〉

Let E′ be E(⊗(Pe
2, P

u
2)[�]). The previous derivation, the case hypothesis and lemma B.2.5 imply

V t
2 = V2 , W t

2 = W2 , Lt
2 = L2 and (wt

2 ↓E′) = (w2 ↓E′),

∀x < modified(S 2) : σt
2(x) = σ2(x),

∀l < NLocks(S 2) ∪ OLocks(S 2) : l ∈ λt
2 ⇔ l ∈ λ2.

Therefore, the case hypothesis implies:

V t
1 = V t

2 , W t
1 = W t

2 , Lt
1 = Lt

2 and (wt
1 ↓E) = (wt

2 ↓E)

∀i ∈ {1, 2} : ∃wt
i s.t. wt

i = (wt
i ↓E) > wt

i

∀x < V t
1 : σt

1(x) = σt
2(x)

∀l < Lt
1 : l ∈ λt

1 ⇔ l ∈ λt
2

Then, by applying the rule (EM(O)-BRANCHexit) to E(⊗(Pe
2, P

u
2)[∅]), we get that there exists ζ′2

such that

〈| ζ2 ` S 2 |〉
ε
−→
?

M(O) 〈| ζ
′
2 ` S ′1 |〉

and

V ′1 = V ′2 , W′1 = W′2 , L′1 = L′2 and w′1 = w′2
∀x < V ′1 : σ′1(x) = σ′2(x)

∀l < L′1 : l ∈ λ′1 ⇔ l ∈ λ′2

Therefore S ′1 = S ′2 and ζ′1 � ζ
′
2.
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Following a proof similar to the one used in the sub-case 1.a, we can conclude that:

(ϑ′1 ` Θ′1) ∼ (ϑ′2 ` Θ′2)

B.3 Transparency

Lemma B.3.1 (Confinement).
For all monitored statements S and typing environments γ, if “γ `E S : H cmd” then ∀x ∈

modified(S ). γ(x) = H, NLocks(S ) = ∅ and ¬stoppable(S ).

Proof. The proof goes by induction on the derivation tree of the typing judgment and follows directly from

the definitions of the different functions.

Lemma B.3.2 (To an unmonitored execution step of a well-typed program corresponds a monitored step).

For all monitored statements S , execution statements S ′u, execution states (σ, λ) and (σ′, λ′), automaton

states (V,W, L,w), typing environments γ, and types τ if:

?1 ((σ, λ), (V,W, L,w)) ` S ,

?2 ∀x ∈ V, γ(x) = H,

?3 L = ∅,

?4 w < {⊥}? ⇒ τ = H,

?5 γ `E S : τ cmd,

?6 〈| (σ, λ) ` strip(S )1 |〉
o
−→O 〈| (σ

′, λ′) ` S ′u |〉 ,

then there exists an automaton state (V ′,W′, L′,w′), a monitored statement S ′m, and a type τ′ such that:

• 〈| ((σ, λ), (V,W, L,w)) 
 S |〉
o
−→

?

M(O) 〈| ((σ
′, λ′), (V ′,W′, L′,w′)) 
 S ′m |〉,

• ∀x ∈ V ′, γ(x) = H,

• L′ = ∅,

• w′ < {⊥}? ⇒ τ′ = H,

• γ `E S ′m : τ′ cmd,

• S ′u = strip(S ′m).

Proof. The proof goes by induction on the derivation tree of the global hypothesis ?5. If the last typing rule

used is:
1strip(S ) is defined on page 151.
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(TE-NOC) then we can conclude that the lemma is vacuously true as the global hypothesis ?6 does not

hold.

(TE-SKIP) then we can conclude that the lemma is true as the monitored or unmonitored execution of skip
only replace it by ∅.

(TE-ASSIGN) then we can conclude that :

(1) S is “x := e”.

This follows directly from the typing rule.

(2) there exists an automaton state (V ′,W′, L′,w′) such that W′ = W, L′ = L, w′ = w, and:

〈| ((σ, λ), (V,W, L,w)) 
 S |〉
ε
−→
?

M(O) 〈| ((σ
′, λ′), (V ′,W′, L′,w′)) 
 ∅ |〉

This follows directly from the rule (EM(O)-OK) as the security automaton always validate the

execution of assignments.

(3) ∀y ∈ V ′, γ(y) = H.

Case 1: x < W and FV(e) ∩ V = ∅.

(a) V ′ ⊆ V .

This follows directly from the case hypothesis and the rule (T-ASSIGN-pub).

(◦) ∀y ∈ V ′, γ(y) = H.

This follows from the local conclusion (a) and the global hypothesis ?2.

Case 2: x ∈ W.

(a) x ∈ V .

This follows directly from the case hypothesis and the global hypothesis ?1.

(◦) ∀y ∈ V ′, γ(y) = H.

This follows from the local conclusion (a) and the global hypothesis ?2.

Case 3: FV(e) ∩ V , ∅.

(a) V ′ = V ∪ {x}.

This follows directly from the case hypothesis and the rule (T-ASSIGN-sec).

(b) γ(x) = H.

Because of the case hypothesis, there exists a variable z in FV(e) such that z ∈ V . The

global hypothesis ?2 implies that γ(z) = H. Then, the global hypothesis ?5 and the

typing rule (TE-ASSIGN) imply that γ(x) = H.

(◦) ∀y ∈ V ′, γ(y) = H.

This follows from the global hypothesis ?2 and the local conclusions (a) and (b).

(•) the lemma holds.

If follows directly from the local conclusions (2) and (3), the global hypotheses ?3 and ?4, and

the typing rule (TE-NOC).
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(TE-OUTPUT) then we can conclude that :

(1) S is “output e”, γ(e) = L, and τ = L.

This follows directly from the rule (TE-OUTPUT).

(2) w ∈ {⊥}? and FV(e) ∩ V = ∅.

The global hypothesis ?4 and the local conclusion (1) imply w ∈ {⊥}?. The global hypothesis ?2

and the local conclusion (1) imply FV(e) ∩ V = ∅.

(3) the following is true:

〈| ((σ, λ), (V,W, L,w)) 
 S |〉
o
−→

?

M(O) 〈| ((σ
′, λ′), (V,W, L,w)) 
 ∅ |〉

This follows directly from the rule (EM(O)-OK) and the local conclusion (2).

(•) the lemma holds.

If follows directly from the local conclusions (3), the global hypotheses ?2, ?3 and ?4, and the

typing rule (TE-NOC).

(TE-SEQ) then we can conclude that :

(1) S is “S h ; S t” and:

• γ ` S h : τ cmd,

• γ ` S t : τ cmd.

This follows directly from the rule (TE-SEQ).

(•) the lemma holds.

From the inductive hypothesis, the lemma holds for S h. Therefore, from the rules for monitored

and unmonitored executions, both executions evaluate the same way.

(TE-IF) then we can conclude that :

(1) S is “if e then S true else S false end” and there exists a type τ′ such that γ(e) ≤ τ′ and:

• γ ` S true : τ′ cmd,

• γ ` S f alse : τ′ cmd.

This follows directly from the rule (TE-IF).

(2) FV(e) ∩ V = ∅ or NLocks(S true) ∪ NLocks(S false) = ∅.

If FV(e)∩V , ∅ then there exists a variable z in FV(e) such that z ∈ V . The global hypothesis ?2

implies that γ(z) = H. Then γ(e) = H. Therefore, lemma B.3.1 and the local conclusion (1)

imply NLocks(S true) = NLocks(S false) = ∅

(3) FV(e) ∩ V , ∅ implies that both S true and S f alse can be typed as H cmd with the typing environ-

ment γ.

If FV(e)∩V , ∅ then there exists a variable z in FV(e) such that z ∈ V . The global hypothesis ?2

implies that γ(z) = H. Then γ(e) = H and the desired result follows from the local conclusion

(1).
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(•) the lemma holds.

From the local conclusion (2), one of the two transitions (T-BRANCH-low) or (T-BRANCH-

high) applies. Therefore, the monitored execution evaluates similarly to the unmonitored exe-

cution. Additionally, lemma B.3.1, the global hypotheses and the local conclusion (3) imply the

remaining global conclusions.

(TE-WHILE) then we can conclude that :

(1) S is “while e do S l done”, γ(e) = L, τ = L and γ ` S l : L cmd. This follows directly from the

rule (TE-WHILE).

(2) FV(e) ∩ V = ∅.

If FV(e)∩V , ∅ then there exists a variable z in FV(e) such that z ∈ V . The global hypothesis ?2

implies that γ(z) = H. Then γ(e) = H, which is in contradiction with the local conclusion (1).

(•) the lemma holds.

From the local conclusion (2), the transition (T-BRANCH-low) applies. Therefore, the moni-

tored execution evaluates similarly to the unmonitored execution. Additionally, the global hy-

potheses and local conclusion (1) imply the remaining global conclusions.

(TE-SYNC) then we can conclude that :

(1) S is “with x̄ when e do S s done”, γ(e) = L, τ = L and γ ` S s : L cmd. This follows directly from

the rule (TE-SYNC).

(2) FV(e) ∩ V = ∅.

If FV(e)∩V , ∅ then there exists a variable z in FV(e) such that z ∈ V . The global hypothesis ?2

implies that γ(z) = H. Then γ(e) = H, which is in contradiction with the local conclusion (1).

(•) the lemma holds.

From the local conclusion (2), the transition (T-SYNC) applies. Therefore, the monitored ex-

ecution evaluates similarly to the unmonitored execution. Additionally, the global hypotheses

and local conclusion (1) imply the remaining global conclusions.

(TE-LOCKED) then we can conclude that :

(1) S is “�x̄[S s]”, τ = L and γ ` S s : L cmd. This follows directly from the rule (TE-SYNC).

(•) the lemma holds.

From the rules of both semantics for locked statements, the monitored execution evaluates simi-

larly to the unmonitored execution. Additionally, the global hypotheses and local conclusion (1)

imply the remaining global conclusions.

(TE-BRANCHED) then we can conclude that :

(1) S is “⊗(Pe, Pu)[S b]” and there exist a type τ′ such that:

• τ ≤ τ′
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• γ ` S b : τ′ cmd.

This follows directly from the rule (TE-SYNC).

(2) strip(S ) = strip(S b).

This follows directly from the definition of strip().

(3) S b , ∅.

Otherwise, the global hypothesis ?6 does not hold.

(•) the lemma holds.

From the local conclusions (1) and (2), the lemma holds for S b, and from the local conclusion

(3), rule (EM(O)-BRANCHstep) applies to S . Therefore, the lemma holds.

Lemma B.3.3 (To a monitored execution step of a well-typed program corresponds an unmonitored step).

For all monitored statements S and S ′, execution states (σ, λ) and (σ′, λ′), automaton states (V,W, L,w)

and (V ′,W′, L′,w′), typing environments γ, and types τ if:

?1 ((σ, λ), (V,W, L,w)) ` S ,

?2 ∀x ∈ V, γ(x) = H,

?3 L = ∅,

?4 w < {⊥}? ⇒ τ = H,

?5 γ `E S : τ cmd,

?6 〈| ((σ, λ), (V,W, L,w)) 
 S |〉
o
−→M(O) 〈| ((σ

′, λ′), (V ′,W′, L′,w′)) 
 S ′ |〉 ,

then there exists a type τ′ such that:

• 〈| (σ, λ) ` strip(S ) |〉
o
−→

?

O 〈| (σ
′, λ′) ` strip(S ′) |〉 ,

• ∀x ∈ V ′, γ(x) = H,

• L′ = ∅,

• w′ < {⊥}? ⇒ τ′ = H,

• γ `E S ′ : τ′ cmd.

Proof. The proof is similar to lemma B.3.2; however more simple.
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Appendix C

Proofs of Chapter 5’s Theorems

Some of the proofs in this chapter use a semantic rule for the evaluation of expressions. This semantic rule

is defined below.

Definition C.0.1 (Semantics rule for expression evaluation). For all value store σ, tag store ρ, and ex-

pression e:

σ; ρ ` e ⇓ σ(e) : ρ(e)

C.1 Usable Analyses

C.1.1 Hypothesis 5.2.1

Lemma C.1.1 (Constraints in Figure 5.5 enforce the Hypothesis 5.2.1).
For all value stores σ, σi and σo, tag stores ρ, ρi and ρo, program counter tag tpc, statement S , and analysis

result (D,X) such that:

?1 (D,X) |= (σ, ρ ` S ),

?2 ∀x : (ρ(x) = ⊥)⇒ σi(x) = σ(x),

?3 (σi, ρi), tpc ` S ⇓M(O) (σo, ρo)

it is true that:

• ∀x < X. σo(x) = σi(x)

Proof. The proof goes by induction on the derivation tree of “ (σi, ρi), tpc ` S ⇓M(O) (σo, ρo) ”. Assume

the lemma holds for any sub-derivation tree, if the last rule used is:

(E − SKIP) then we can conclude that :

(1) S is “skip” and σo = σi.

This follows directly from the definition of the rule (E − SKIP).
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(•) ∀x < X. σo(x) = σi(x).

This follows directly from the local conclusion (1).

(E − ASSIGN) then we can conclude that :

(1) S is “id := e” and ∀x , id.σo(x) = σi(x).

This follows directly from the definition of the rule (E − ASSIGN).

(2) id ∈ X.

If follows from the global hypothesis ?1 and the local conclusion (1).

(•) ∀x < X. σo(x) = σi(x).

This follows directly from the local conclusions (1) and (2).

(E − SEQUENCE) then we can conclude that :

(1) S is “S 1 ; S 2” and there exist a value store σ1, a tag store ρ1, and two identifiers sets X1 and X2

such that:

• (σi, ρi), tpc ` S 1 ⇓M(O) (σ1, ρ1) is a sub-derivation tree of “S 1 ; S 2”

• (σ1, ρ1), tpc ` S 2 ⇓M(O) (σo, ρo) is a sub-derivation tree of “S 1 ; S 2”

This follows directly from the definition of the rule (E − SEQUENCE).

(2) There exists two analysis results (D1,X1) and (D2,X2) such that:

• (D1,X1) |= (σ, ρ ` S 1)

• (D2,X2) |= (σ, ρ′ ` S 2) with ρ′ = ρ t ((X1 × >) ∪ ((X1)c × ⊥))

• X1 ∪ X2 ⊆ X

This follows from the global hypothesis ?1, the local conclusion (1) and the definition of the

relation |=.

(3) ∀x < X1. σ1(x) = σi(x).

This result is obtained by applying the inductive hypothesis on the derivation “(σi, ρi), tpc `

S 1 ⇓M(O) (σ1, ρ1)” (sub-derivation tree of “(σi, ρi), tpc ` S ⇓M(O) (σo, ρo)”) using the fact

that “(D1,X1) |= (σ, ρ ` S 1)” (from the local conclusion (2)).

(4) ∀x : (ρ′(x) = ⊥)⇒ σ1(x) = σ(x).

For all variable x, from the definition of ρ′ in the local conclusion (2) and the local conclusion

(3), we can conclude that “ρ′(x) = ⊥” implies “ρ(x) = ⊥” and “σ1(x) = σi(x)”. Using the global

hypothesis ?2 and the fact that “ρ(x) = ⊥”, it is possible to show that “σi(x) = σ(x)”. Hence,

we can conclude that “ρ′(x) = ⊥” implies “σ1(x) = σ(x)”.

(5) ∀x < X2. σo(x) = σ1(x).

This result is obtained by applying the inductive hypothesis on the derivation “(σ1, ρ1), tpc `

S 2 ⇓M(O) (σo, ρo)” (sub-derivation tree of “(σi, ρi), tpc ` S ⇓M(O) (σo, ρo)”) using the fact

that “(D2,X2) |= (σ, ρ′ ` S 2)” (from the local conclusion (2)). The inductive hypothesis can be

applied thanks to the local conclusion (4).
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(•) ∀x < X. σo(x) = σi(x).

This follows directly from the local conclusions (2), (3) and (5).

(E − IF⊥) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exists a value v ∈ {true, f alse} such that:

• σi(e) = v and ρi(e) = ⊥,

• “ (σi, ρi), tpc ` S v ⇓M(O) (σo, ρo) ” is a sub-derivation tree of “ (σi, ρi), tpc ` S ⇓M(O)

(σo, ρo) ”

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist Xtrue and X f alse such that:

• (Dv,Xv) |= (σ, ρ ` S v),

• X ⊇ {[Xtrue,X f alse]}ρ(e)
σ(e)

This follows from the global hypothesis ?1, the local conclusions (1), and the definition of |=.

(3) ∀x < Xv. σo(x) = σi(x).

This result is obtained by applying the inductive hypothesis on “(Dv,Xv) |= (σ, ρ ` S v)” and

“(σi, ρi), tpc ` S v ⇓M(O) (σo, ρo)”.

(4) Xv ⊆ X.

This follows directly from the local conclusions (2) and (1).

(•) ∀x < X. σo(x) = σi(x).

This follows directly from the local conclusions (3) and (4).

(E − IF>) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exist a value v ∈ {true, f alse} and a tag store ρ′

such that:

• σi(e) = v and ρi(e) = >,

• “ (σi, ρi), > ` S v ⇓M(O) (σo, ρ
′) ” is a sub-derivation tree of “ (σi, ρi), tpc ` S ⇓M(O)

(σo, ρo) ”

This follows directly from the definition of the rule (E − IF>).

(2) There exist Xtrue and X f alse such that:

• (Dv,Xv) |= (σ, ρ ` S v),

• X ⊇ {[Xtrue,X f alse]}ρ(e)
σ(e)

This follows from the global hypothesis ?1, the local conclusions (1), and the definition of |=.

(3) ∀x < Xv. σo(x) = σi(x).

This result is obtained by applying the inductive hypothesis on “(Dv,Xv) |= (σ, ρ ` S v)” and

“(σi, ρi), > ` S v ⇓M(O) (σo, ρ
′)”.
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(4) Xv ⊆ X.

This follows directly from the local conclusions (2) and (1).

(•) ∀x < X. σo(x) = σi(x).

This follows directly from the local conclusions (3) and (4).

(E −WHILEskip) then we can conclude that :

(1) σo = σi.

This follows directly from the definition of the rule (E −WHILEskip).

(•) ∀x < X. σo(x) = σi(x).

This follows directly from the local conclusion (1).

(E −WHILEtrue⊥) then we can conclude that :

(1) S is “while e do S l done” and there exist a tag te and a tag store ρt:

• σi(e) = true and ρi(e) = te

• “ (σi, ρi), tpc t te ` S l ; while e do S l done ⇓M(O) (σo, ρt) ” is a sub-derivation tree of

“ (σi, ρi), tpc ` S ⇓M(O) (σo, ρo) ”

This follows directly from the definition of the rule (E −WHILEtrue).

(2) There exist an analysis result (Dl,Xl) such that:

• (Dl,Xl) |= (σ, ρ′ ` S l) with ρ′ = ρ t ((Xl × >) ∪ ((Xl)c × ⊥)),

• X = Xl,

This follows from the global hypotheses ?1 and ?2, the local conclusions (1) (S is

“while e do S l done” and σi(e) = true), and the definition of |=.

(3) There exist a value store σ1 and a tag store ρ1 such that:

• “ (σi, ρi), tpc t te ` S l ⇓M(O) (σ1, ρ1) ” is a sub-derivation tree of “ (σi, ρi), tpc t te `

S ⇓M(O) (σo, ρo) ”,

• “ (σ1, ρ1), tpc t te ` while e do S l done ⇓M(O) (σo, ρt) ” is a sub-derivation tree of “

(σi, ρi), tpc t te ` S ⇓M(O) (σo, ρo) ”,

This follows directly from the local conclusion (1) and the definition of the rule

(E − SEQUENCE).

(4) ∀x : (ρ′(x) = ⊥)⇒ (σi(x) = σ(x)).

From the definition of ρ′ (given in the local conclusion (2)), ρ′(x) = ⊥ implies ρ(x) = ⊥. Hence,

the global hypothesis ?2 implies the above result.

(5) ∀x < Xl. σ1(x) = σi(x).

This result follows from the inductive hypothesis applied on “(σi, ρi), tpc t te ` S l ⇓M(O)

(σ1, ρ1)” (given in the local conclusion (3)) and (Dl,Xl) |= (σ, ρ′ ` S l) (given in the local

conclusion (2)). The inductive hypothesis can be applied because of the local conclusion (4).
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Let us define ρl and ρ′l such that:

�1 ∀x ∈ Xl, ρl(x) = >,

�2 ∀x < Xl, ρl(x) = ρ(x),

�3 ρ′l = ρl t ((Xl × >) ∪ ((Xl)c × ⊥)).

Let us define Dt to be {[Dl ◦ (D ∪ Id),Id]}ρl(e)
σ(e) .

(6) ρ′l = ρ′.

This follows from the definitions of ρ′l and ρ′ (given in �3 and (2)). For all x in Xl, ρ′l(x) = > =

ρ′(x). For all x not in Xl, from �2, ρl(x) = ρ(x); hence, ρ′l(x) = ρl(x) = ρ(x) = ρ′(x).

(7) (Dt,Xl) |= (σ, ρl ` while e do S l done).

From the local conclusions (2) and (6), we can conclude that (Dl,Xl) |= (σ, ρ′l ` S l). From

the local definition �3, ρ′l = ρl t ((Xl × >) ∪ ((Xl)c × ⊥)). The local definitions �1 and �2

and the global hypothesis ?2 imply ρl(e) , > ⇒ ρ(e) , > ⇒ σ(e) = σi(e); therefore, as

σi(e) = true, Xl = {[Xl, ∅]}
ρ(e)
σ(e). Hence, from the definition of |= for while-statements, (Dt,Xl) |=

(σ, ρl ` while e do S l done).

(8) ∀x : (ρ(x) = ⊥)⇒ (σ1(x) = σ(x)).

From �1, ρl(x) = ⊥ implies x < Xl. Hence, local conclusion (5) implies σ1(x) = σi(x). From the

property “ρl(x) = ⊥ implies x < Xl”, the local definition �2, and the global hypothesis ?2, it is

possible to show that ρl(x) = ⊥ implies σi(x) = σ(x). Hence, ρl(x) = ⊥ implies σ1(x) = σ(x).

(9) ∀x < Xl. σo(x) = σ1(x).

The inductive hypothesis, using the local conclusions (7), (8), and (3), implies the desired result.

(•) ∀x < X. σo(x) = σi(x).

From the local conclusions (9) and (5), ∀x < Xl. σo(x) = σi(x). The fact X = Xl of the local

conclusion (2) completes the proof.

(E −WHILEtrue>) then we can conclude that :

(•) ∀x < X. σo(x) = σi(x).

The proof goes exactly the same way as for (E −WHILEtrue>).

(E −WHILEfalse>) then we can conclude that :

(•) ∀x < X. σo(x) = σi(x).

The proof goes exactly the same way as for (E −WHILEskip).

C.1.2 Hypothesis 5.2.2

Lemma C.1.2 (Analysis is tag store monotone for assigned variables).
For all value store σ, tag stores ρ1 and ρ2, statement S , and analysis result (D1,X1) such that:

?1 (D1,X1) |= (σ, ρ1 ` S ),
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?2 ρ2 v ρ1

then there exists an analysis result (D2,X2) such that:

• (D2,X2) |= (σ, ρ2 ` S ) and

• X2 ⊆ X1

Proof. The proof, which goes by structural induction on the statement S , is direct. It mainly relies on

the following property. For all tag stores ρ1, ρ′1, ρ2 and ρ′2 and variable sets X1 and X2 such that ρ′1 =

ρ1 t ((X1 × >) ∪ ((X1)c × ⊥)) and ρ′2 = ρ2 t ((X2 × >) ∪ ((X2)c × ⊥)), if ρ2 v ρ1 and X2 ⊆ X1 then ρ′2 v ρ
′
1.

Lemma C.1.3 (Constraints are high-values independent).
For all value stores σ and σ′, tag store ρ, statement S , and analysis result (D,X) such that:

?1 (D,X) |= (σ, ρ ` S ),

?2 ∀x : (ρ(x) = ⊥)⇒ (σ′(x) = σ(x))

it is true that:

• (D,X) |= (σ′, ρ ` S )

Proof. The proof, which goes by structural induction on the statement S , is direct. It mainly relies on the

following property. For all value stores σ and σ′ and tag stores ρ, such that ∀x : (ρ(x) = ⊥) ⇒ (σ′(x) =

σ(x)), the following holds: {[X,Y]}ρ(e)
σ(e) = {[X,Y]}ρ(e)

σ′(e).

Lemma C.1.4 (Constraints in Figure 5.5 enforce the Hypothesis 5.2.2).
For all value store σ, tag store ρ, statement S , analysis result (D,X), and variable x such that:

?1 σ; ρ;> ` S ⇓M(O) σo : ρo ,

?2 (D,X) |= (σ, ρ ` S ),

it is true that:

ρo(x) =
⊔

y∈D(x) ρ(y) t ((X × {>}) ∪ (Xc × {⊥}))(x)

Proof. The proof goes by induction on the derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(E − SKIP) then we can conclude that :

(1) S is “skip” and ρo = ρ.

This follows directly from the definition of the rule (E − SKIP).

(2) D = Id and X = ∅.

This follows directly from the global hypothesis ?2 and the definition of |=.
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(•) ρo = (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This follows from the local conclusions (1) and (2).

(E − ASSIGN) then we can conclude that :

(1) S is “id := e” and ρo = ρ[id 7→ >].

This follows directly from the definition of the rule (E − ASSIGN).

(2) D = Id[id 7→ FV(e)] and X = {id}.

This follows directly from the global hypothesis ?2 and the definition of |=.

(•) ρo = (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This follows from the local conclusions (1) and (2).

(E − SEQUENCE) then we can conclude that :

(1) S is “S 1 ; S 2” and there exist a value store σ1 and a tag store ρ1 such that:

• σ; ρ;> ` S 1 ⇓M(O) σ1 : ρ1 is a sub-derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”

• σ1; ρ1;> ` S 2 ⇓M(O) σo : ρo is a sub-derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (E − SEQUENCE).

(2) There exist (D1,X1) and (D2,X2) such that:

• (D1,X1) |= (σ, ρ ` S 1)

• (D2,X2) |= (σ, ρ′ ` S 2) with ρ′ = ρ t ((X1 × >) ∪ ((X1)c × ⊥))

• D = D1 ◦D2

• X = X1 ∪ X2

This follows from the global hypothesis ?2, the local conclusion (1) and the definition of the

relation |=.

(3) ρ1 = (λx.
⊔

y∈D1(x) ρ(y)) t ((X1 × {>}) ∪ (Xc
1 × {⊥})).

This result is obtained by applying the inductive hypothesis on the derivation “ σ; ρ;> `

S 1 ⇓M(O) σ1 : ρ1 ” (sub-derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”) using the fact

that “(D1,X1) |= (σ, ρ ` S 1)” (from the local conclusion (2)).

(4) ρ′ = ρ1.

For all x in X1, ρ′(x) = > = ρ1(x) (it follows from the definitions of ρ′ and ρ1 in the local

conclusions (2) and (3)). From the local conclusion (2) and hypothesis 5.2.4, if a variable x is

not in X1 then D1(x) = {x}. Hence, from the local conclusion (3), if a variable x is not in X1 then

ρ1(x) = ρ(x). For all x not in X1, ρ′(x) = ρ(x) (it follows from the definition of ρ′ in the local

conclusion (2)).

(5) ∀x : (ρ′(x) = ⊥)⇒ (σ1(x) = σ(x)).

From the definition of ρ′ in the local conclusion (2), for all variable x if ρ′(x) = ⊥ then x is not in

X1. Hence, from the local conclusions (1) and (2) and lemma C.1.1, for all variable x ρ′(x) = ⊥

implies σ1(x) = σ(x).
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(6) (D2,X2) |= (σ, ρ′ ` S 2)⇒ (D2,X2) |= (σ1, ρ1 ` S 2).

This follows directly from the local conclusions (4) and (5) and lemma C.1.3.

(7) ρo = (λx.
⊔

y∈D2(x) ρ1(y)) t ((X2 × {>}) ∪ (Xc
2 × {⊥})).

This result is obtained by applying the inductive hypothesis on the derivation “ σ1; ρ1;> `

S 2 ⇓M(O) σo : ρo ” (sub-derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”) using the fact that

“(D2,X2) |= (σ1, ρ1 ` S 2)” (from the local conclusion (2)).

(8) ((X × {>}) ∪ (Xc × {⊥})) = ((X1 × {>}) ∪ (Xc
1 × {⊥})) t ((X2 × {>}) ∪ (Xc

2 × {⊥})).

This follows from the local conclusion (2) and the fact that ⊥ v >.

(9) λx.
⊔

y∈D(x) ρ(y) = λx.
⊔

z∈D2(x)(
⊔

y∈D1(z) ρ(y)).

This follows from the local conclusion (2).

(•) (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})) = ρo.

For all x, let t(x) =
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥}))(x), then:

t(x) =
⊔

z∈D2(x)

(
⊔

y∈D1(z)

ρ(y))

t ((X1 × {>}) ∪ (Xc
1 × {⊥}))(x) t ((X2 × {>}) ∪ (Xc

2 × {⊥}))(x)

=
⊔

z∈D2(x)

( (
⊔

y∈D1(z)

ρ(y)) t ((X1 × {>}) ∪ (Xc
1 × {⊥}))(x) )

t ((X2 × {>}) ∪ (Xc
2 × {⊥}))(x)

=
⊔

z∈D2(x)

( ρ1(z) ) t ((X2 × {>}) ∪ (Xc
2 × {⊥}))(x)

= ρo(x)

(C.1)

The equation (C.1) follows from the local conclusions (9), (8), (3), and (7).

(E − IF⊥) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exist a value v ∈ {true, f alse} such that:

• “ σ; ρ ` e ⇓M(O) v : ⊥ ”,

• “ σ; ρ; tpc ` S v ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σ; ρ; tpc ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist (Dtrue,Xtrue) and (D f alse,X f alse) such that:

• (Dv,Xv) |= (σ, ρ ` S v),

• D = {[Dtrue,D f alse]}ρ(e)
σ(e) ∪ ({[Xtrue,X f alse]}ρ(e)

σ(e) × FV(e)),

• X = {[Xtrue,X f alse]}ρ(e)
σ(e)

This follows from the global hypothesis ?2, the local conclusions (1), and the definition of |=.

(3) ρo = (λx.
⊔

y∈Dv(x) ρ(y)) t ((Xv × {>}) ∪ (Xc
v × {⊥})).

This result is obtained by applying the inductive hypothesis on “(Dv,Xv) |= (σ, ρ ` S v)” and

“σ; ρ; tpc ` S v ⇓M(O) σo : ρo”.
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(4) It is true that:

• D = Dv ∪ (Xv × FV(e)),

• X = Xv

This follows from the local conclusion (2) and the facts that ρ(e) = ⊥ and σ(e) = v (from the

local conclusion (1)).

(5) ∀y ∈ FV(e), ρ(y) = ⊥.

This follows from the fact that ρ(e) = ⊥ (from the local conclusion (1)) and the semantic rules

for expressions.

(•) ρo = (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This follows from the local conclusions (3), (4), and (5)

(E − IF>) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exist a value v ∈ {true, f alse} such that:

• “ σ; ρ ` e ⇓M(O) v : > ”,

• “ σ; ρ;> ` S v ⇓M(O) σo : ρv ” is a sub-derivation tree of “ σ; ρ; tpc ` S ⇓M(O) σo : ρo ”,

• (D¬v,X¬v) |= (σ, ρ ` S ¬v),

• ρo = ρv t (λx.
⊔

y∈D¬v(x) ρ(y)) t ((X¬v × {>}) ∪ (Xc
¬v × {⊥})),

This follows directly from the definition of the rule (E − IF>).

(2) There exist (Dtrue,Xtrue) and (D f alse,X f alse) such that:

• (Dv,Xv) |= (σ, ρ ` S v),

• (D¬v,X¬v) |= (σ, ρ ` S ¬v),

• D = (Dv ∪D¬v) ∪ ((Xv ∪ X¬v) × FV(e)),

• X = Xv ∪ X¬v

This follows from the global hypothesis ?2, the local conclusions (1), the definition of |=, and

the fact that ρ(e) = > (from the local conclusion (1)).

(3) ρv = (λx.
⊔

y∈Dv(x) ρ(y)) t ((Xv × {>}) ∪ (Xc
v × {⊥})).

This result is obtained by applying the inductive hypothesis on the derivation “ σ; ρ;> `

S v ⇓M(O) σo : ρv ” (sub-derivation tree of “ σ; ρ; tpc ` S ⇓M(O) σo : ρo ”) using the fact

that “(Dv,Xv) |= (σ, ρ ` S v)” (from the local conclusion (2)).

(4) ((X × {>}) ∪ (Xc × {⊥})) = ((Xv × {>}) ∪ (Xc
v × {⊥})) t ((X¬v × {>}) ∪ (Xc

¬v × {⊥})).

This follows from the local conclusion (2) and the fact that ⊥ v >.

(5) ∃y ∈ FV(e) : ρ(y) = >.

This follows directly from the fact that ρ(e) = > (given in the local conclusion (1)) and the

semantics for expressions.

(6) ∀x,
⊔

y∈(X×FV(e))(x) ρ(y) = ((X × {>}) ∪ (Xc × {⊥}))(x).

This follows from the local conclusion (2) and (5).
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(•) (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})) = ρo.

For all x, let t(x) =
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥}))(x), then:

t(x) =
⊔

y∈(Dv∪D¬v∪(X×FV(e)))(x)

ρ(y) t ((X × {>}) ∪ (Xc × {⊥}))(x)

=
⊔

y∈Dv(x)

ρ(y) t
⊔

y∈D¬v(x)

ρ(y) t
⊔

y∈(X×FV(e))(x)

ρ(y)

t ((X × {>}) ∪ (Xc × {⊥}))(x)

=
⊔

y∈Dv(x)

ρ(y) t
⊔

y∈D¬v(x)

ρ(y)

t ((X × {>}) ∪ (Xc × {⊥}))(x) t ((X × {>}) ∪ (Xc × {⊥}))(x)

=
⊔

y∈Dv(x)

ρ(y) t
⊔

y∈D¬v(x)

ρ(y)

t ((Xv × {>}) ∪ (Xc
v × {⊥}))(x) t ((X¬v × {>}) ∪ (Xc

¬v × {⊥}))(x)

=
⊔

y∈Dv(x)

ρ(y) t ((Xv × {>}) ∪ (Xc
v × {⊥}))(x)

t
⊔

y∈D¬v(x)

ρ(y) t ((X¬v × {>}) ∪ (Xc
¬v × {⊥}))(x)

= ρv(x) t
⊔

y∈D¬v(x)

ρ(y) t ((X¬v × {>}) ∪ (Xc
¬v × {⊥}))(x)

= ρo(x)

(C.2)

The equation (C.2) follows from the local conclusions (2), (6), (4), (3), and (1).

(E −WHILEskip) then we can conclude that :

(1) S is “e ; S l” and:

• “ σ; ρ ` e ⇓M(O) false : ⊥ ”,

• ρo = ρ

This follows directly from the definition of the rule (E −WHILEskip).

(2) It is true that:

• D = Id,

• X = ∅

This follows from the global hypothesis ?2, the local conclusion (1), the definition of |=, and the

facts that ρ(e) = ⊥ and σ(e) = false (from the local conclusion (1)).

(•) ρo = (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This follows directly from the local conclusions (1) and (2).

(E −WHILEtrue⊥) then we can conclude that :

(1) S is “while e do S l done” and:
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• “ σ; ρ ` e ⇓M(O) true : ⊥ ”

• “ σ; ρ;> ` S l ; while e do S l done ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σ; ρ;> `

S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (E −WHILEtrue⊥).

(2) There exist (Dl,Xl) such that:

• (Dl,Xl) |= (σ, ρ′ ` S l) with ρ′ = ρ t ((Xl × >) ∪ ((Xl)c × ⊥)),

• D = Dl ◦ (D ∪ Id),

• X = Xl

This follows from the global hypothesis ?2, the local conclusion (1), the definition of |=, and the

facts that ρ(e) = ⊥ and σ(e) = true (from the local conclusion (1)).

(3) There exist a value store σ1 and a tag store ρ1:

• “ σ; ρ;> ` S l ⇓M(O) σ1 : ρ1 ” is a sub-derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”,

• “ σ1; ρ1;> ` while e do S l done ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σ; ρ;> `

S ⇓M(O) σo : ρo ”

This follows directly from the local conclusion (1) and the definition of the rule

(E − SEQUENCE).

(4) There exists an analysis result (DS l ,XS l) such that:

• (DS l ,XS l) |= (σ, ρ ` S l),

• XS l ⊆ Xl

This follows from the lemma C.1.2, the fact that (Dl,Xl) |= (σ, ρ′ ` S l) (from the local conclusion

(2)), and the fact that ρ v ρ′ (from the definition of ρ′ in the local conclusion (2)).

(5) ρ1 = (λx.
⊔

y∈DS l (x) ρ(y)) t ((XS l × {>}) ∪ (Xc
S l
× {⊥})).

This result is obtained by applying the inductive hypothesis on “ σ; ρ;> ` S l ⇓M(O) σ1 : ρ1 ”

(from the local conclusion (3)) and “(DS l ,XS l) |= (σ, ρ ` S l)” (from the local conclusion (4)).

(6) ∀x ∈ Xc
l , ρ(x) = ρ1(x).

From the local conclusion (4), x ∈ Xc
S l

. Hence, from the hypothesis 5.2.4, DS l(x) = {x}. Then,

using the local conclusion (5), we can conclude that ρ1(x) = ρ(x).

Let us define ρ′1 such that:

�1 ρ′1 = ρ1 t ((Xl × >) ∪ ((Xl)c × ⊥)).

(7) ρ′1 = ρ′.

This follows from the local conclusion (6) and the definitions of ρ′1 and ρ′ (given in �1 and the

local conclusion (2)). For all x in Xl, ρ′1(x) = > = ρ′(x). For all x not in Xl, the local conclusion

(6) implies ρ′1(x) = ρ1(x) = ρ(x) = ρ′(x).

(8) ∀x, ρ1(x) = ⊥ ⇒ σ1(x) = σ(x).

This follows from lemma C.2.2 and the local conclusion (3).
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(•) ρo = (λx.
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

Case 1: ρ1(e) = ⊥

(a) (D,X) |= (σ, ρ1 ` while e do S l done).

From the local conclusions (2) and (7), we can conclude that (Dl,Xl) |= (σ, ρ′1 ` S l)

with ρ′1 = ρ1 t ((Xl × >) ∪ ((Xl)c × ⊥)). From the local conclusion (2), D =

Dl ◦ (D ∪ Id) and X = Xl, from the local conclusion (1), σ(e) = true, and, from the

case hypothesis, ρ1(e) = ⊥, then we can conclude that D = {[Dl ◦ (D ∪ Id),Id]}ρ1(e)
σ(e)

and X = {[Xl, ∅]}
ρ1(e)
σ(e) . Hence, from the definition of |= for while-statements, (D,X) |=

(σ, ρ1 ` while e do S l done).

(b) (D,X) |= (σ1, ρ1 ` while e do S l done).

This follows from hypothesis 5.2.3 and the local conclusions (8) and (a).

(c) ρo = (λx.
⊔

y∈D(x) ρ1(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This result is obtained by applying the inductive hypothesis on “ σ1; ρ1;> `

while e do S l done ⇓M(O) σo : ρo ” (from the local conclusion (3)) and “(D,X) |=

(σ1, ρ1 ` while e do S l done)” (from the local conclusion (b)).

Let us define F ρo
1 and F ρo such that:

�1 F
ρo

1 = (λx.
⊔

y∈D(x) ρ1(y)) t ((X × {>}) ∪ (Xc × {⊥})),

�2 F
ρo = (λx.

⊔
y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

(•) ρo(x) = (
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥}))(x) = F ρo(x).

From the local conclusion (c), ρo(x) = F
ρo

1 (x), and, from the local conclusion (2),

X = Xl. If x belongs to Xl, then F ρo
1 (x) = > = F ρo(x). If x does not belong to Xl, then

x does not belong to X (from the local conclusion (2)) and, from the hypothesis 5.2.4,

D(x) = {x}. Hence, if x does not belong to Xl, F
ρo

1 (x) =
⊔

y∈D(x) ρ1(y) = ρ1(x) = ρ(x)

(the last equality comes from the local conclusion (6)). For similar reasons, if x does

not belong to Xl then F ρo(x) =
⊔

y∈D(x) ρ(y) = ρ(x).

Case 2: ρ1(e) , ⊥ (which implies that ρ1(e) = >)

(a) D ∪ Id = (Dl ◦ (D ∪ Id ∪ Id)) ∪ Id.

This follows directly from the fact D = Dl ◦ (D ∪ Id) in local conclusion (2).

(b) (D ∪ Id,X) |= (σ1, ρ1 ` while e do S l done).

From the local conclusions (2) and (7), we can conclude that (Dl,Xl) |= (σ, ρ′1 ` S l) with

ρ′1 = ρ1 t ((Xl×>) ∪ ((Xl)c×⊥)). From the local conclusion (a), D∪Id = (Dl ◦ (D∪

Id ∪ Id)) ∪ Id, from the local conclusion (2), X = Xl, and from the case hypothesis,

ρ1(e) = >, then we can conclude that D ∪ Id = {[Dl ◦ (D ∪ Id ∪ Id),Id]}ρ1(e)
σ(e) and

X = {[Xl, ∅]}
ρ1(e)
σ(e) . Hence, from the definition of |= for while-statements, (D ∪ Id,X) |=

(σ, ρ1 ` while e do S l done). Finally, the hypothesis 5.2.3 and the local conclusion (8)

imply (D ∪ Id,X) |= (σ1, ρ1 ` while e do S l done).

(c) ρo = (λx.
⊔

y∈(D∪Id)(x) ρ1(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This result is obtained by applying the inductive hypothesis on “ σ1; ρ1;> `
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while e do S l done ⇓M(O) σo : ρo ” (from the local conclusion (3)) and “(D∪Id,X) |=

(σ1, ρ1 ` while e do S l done)” (from the local conclusion (b)).

Let us define F ρo
1 and F ρo such that:

�1 F
ρo

1 = (λx.
⊔

y∈(D∪Id)(x) ρ1(y)) t ((X × {>}) ∪ (Xc × {⊥})),

�2 F
ρo = (λx.

⊔
y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

(•) ρo(x) = (
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥}))(x) = F ρo(x).

From the local conclusion (c), ρo(x) = F
ρo

1 (x), and, from the local conclusion (2),

X = Xl. If x belongs to Xl, then F ρo
1 (x) = > = F ρo(x). If x does not belong to Xl, then

x does not belong to X (from the local conclusion (2)) and, from the hypothesis 5.2.4,

D(x) = {x}. Hence, if x does not belong to Xl, F
ρo

1 (x) =
⊔

y∈(D∪Id)(x) ρ1(y) = ρ1(x) =

ρ(x) (the last equality comes from the local conclusion (6)). For similar reasons, if x

does not belong to Xl then F ρo(x) =
⊔

y∈D(x) ρ(y) = ρ(x).

(E −WHILEtrue>) then we can conclude that :

(1) S is “while e do S l done” and:

• “ σ; ρ ` e ⇓M(O) true : > ”,

• “ σ; ρ;> ` S l ; while e do S l done ⇓M(O) σo : ρ′o ” is a sub-derivation tree of “ σ; ρ;> `

S ⇓M(O) σo : ρo ”,

• ρo = ρ t ρ′o.

This follows directly from the definition of the rule (E −WHILEtrue>).

(2) There exist (Dl,Xl) such that:

• (Dl,Xl) |= (σ, ρ′ ` S l) with ρ′ = ρ t ((Xl × >) ∪ ((Xl)c × ⊥)),

• D = (Dl ◦ (D ∪ Id)) ∪ Id,

• X = Xl

This follows from the global hypothesis ?2, the local conclusion (1), the definition of |=, and the

facts that ρ(e) = ⊥ and σ(e) = true (from the local conclusion (1)).

(3) There exist a value store σ1 and a tag store ρ1:

• “ σ; ρ;> ` S l ⇓M(O) σ1 : ρ1 ” is a sub-derivation tree of “ σ; ρ;> ` S ⇓M(O) σo : ρo ”,

• “ σ1; ρ1;> ` while e do S l done ⇓M(O) σo : ρ′o ” is a sub-derivation tree of “ σ; ρ;> `

S ⇓M(O) σo : ρo ”

This follows directly from the local conclusion (1) and the definition of the rule

(E − SEQUENCE).

(4) There exists an analysis result (DS l ,XS l) such that:

• (DS l ,XS l) |= (σ, ρ ` S l),

• XS l ⊆ Xl
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This follows from the lemma C.1.2, the fact that (Dl,Xl) |= (σ, ρ′ ` S l) (from the local conclusion

(2)), and the fact that ρ v ρ′ (from the definition of ρ′ in the local conclusion (2)).

(5) ∀x ∈ Xc
l , ρ(x) = ρ1(x).

By applying the inductive hypothesis on “ σ; ρ;> ` S l ⇓M(O) σ1 : ρ1 ” (from the local

conclusion (3)) and “(DS l ,XS l) |= (σ, ρ ` S l)” (from the local conclusion (4)), we get that

ρ1 = (λx.
⊔

y∈DS l (x) ρ(y)) t ((XS l × {>}) ∪ (Xc
S l
× {⊥})). From the local conclusion (4), x ∈ Xc

S l
.

Hence, from the hypothesis 5.2.4, DS l(x) = {x}. Then, we can conclude that ρ1(x) = ρ(x).

Let us define ρ′1 such that:

�1 ρ′1 = ρ1 t ((Xl × >) ∪ ((Xl)c × ⊥)).

(6) ρ′1 = ρ′.

This follows from the local conclusion (5) and the definitions of ρ′1 and ρ′ (given in �1 and the

local conclusion (2)). For all x in Xl, ρ′1(x) = > = ρ′(x). For all x not in Xl, the local conclusion

(5) implies ρ′1(x) = ρ1(x) = ρ(x) = ρ′(x).

(7) ∀x, ρ1(x) = ⊥ ⇒ σ1(x) = σ(x).

This follows from lemma C.2.2 and the local conclusion (3).

(8) D ∪ Id = (Dl ◦ (D ∪ Id ∪ Id)) ∪ Id.

This follows directly from the fact D = (Dl ◦ (D ∪ Id)) ∪ Id in local conclusion (2).

(9) (D ∪ Id,X) |= (σ1, ρ1 ` while e do S l done).

From the local conclusions (2) and (6), we can conclude that (Dl,Xl) |= (σ, ρ′1 ` S l) with ρ′1 =

ρ1 t ((Xl×>) ∪ ((Xl)c×⊥)). From the local conclusion (8),D∪Id = (Dl◦(D∪Id∪Id))∪Id,

from the local conclusion (2), X = Xl, and , from the local conclusion (1), σ(e) = true, then we

can conclude thatD∪Id = {[(Dl◦(D∪Id∪Id))∪Id,Id]}ρ1(e)
σ(e) and X = {[Xl, ∅]}

ρ1(e)
σ(e) . Hence, from

the definition of |= for while-statements, (D∪Id,X) |= (σ, ρ1 ` while e do S l done). Finally, the

hypothesis 5.2.3 and the local conclusion (7) imply (D∪Id,X) |= (σ1, ρ1 ` while e do S l done).

(10) ρ′o = (λx.
⊔

y∈(D∪Id)(x) ρ1(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This result is obtained by applying the inductive hypothesis on “ σ1; ρ1;> `

while e do S l done ⇓M(O) σo : ρ′o ” (from the local conclusion (3)) and “(D∪Id,X) |= (σ1, ρ1 `

while e do S l done)” (from the local conclusion (9)).

Let us define F ρ′o
1 and F ρo such that:

�1 F
ρ′o

1 = (λx.
⊔

y∈(D∪Id)(x) ρ1(y)) t ((X × {>}) ∪ (Xc × {⊥})),

�2 F
ρo = (λx.

⊔
y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

(•) ρo(x) = (
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥}))(x) = F ρo(x).

From the local conclusion (10), ρ′o(x) = F
ρ′o

1 (x), and, from the local conclusion (2), X = Xl. If

x belongs to Xl, then ρ(x) t F ρ′o
1 (x) = > = F ρo(x). If x does not belong to Xl, then x does not
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belong to X (from the local conclusion (2)) and, from the hypothesis 5.2.4, D(x) = {x}. Hence,

if x does not belong to Xl, ρ(x) t F ρ′o
1 (x) = ρ(x) t

⊔
y∈(D∪Id)(x) ρ1(y) = ρ(x) t ρ1(x) = ρ(x) (the

last equality comes from the local conclusion (5)). For similar reasons, if x does not belong to

Xl then F ρo(x) =
⊔

y∈D(x) ρ(y) = ρ(x).

(E −WHILEfalse>) then we can conclude that :

(1) S is “while e do S l done” and there exists (DS ,XS ) such that:

• “ σ; ρ ` e ⇓M(O) false : > ”

• (DS ,XS ) |= (σ, ρ ` S l ; while e do S l done),

• ρo = ρ t (λx.
⊔

y∈DS (x) ρ(y)) t ((XS × {>}) ∪ (Xc
S × {⊥})),

This follows directly from the definition of the rule (E −WHILEfalse>).

(2) There exist (Dl,Xl) such that:

• (Dl,Xl) |= (σ, ρ′ ` S l) with ρ′ = ρ t ((Xl × {>}) ∪ ((Xl)c × {⊥})),

• D = (Dl ◦ (D ∪ Id)) ∪ Id,

• X = Xl

This follows from the global hypothesis ?2, the local conclusion (1), the definition of |=, and the

fact that ρ(e) = > (from the local conclusion (1)).

(3) There exist (D1,X1) and (D2,X2) such that:

• (D1,X1) |= (σ, ρ ` S l)

• (D2,X2) |= (σ, ρ′′ ` while e do S l done) with ρ′′ = ρ t ((X1 × {>}) ∪ ((X1)c × {⊥}))

• DS = D1 ◦D2

• XS = X1 ∪ X2

This follows from the fact that (DS ,XS ) |= (σ, ρ ` S l ; while e do S l done) (given in the local

conclusion (1)) and the definition of |=.

(4) There exist (D3,X3) such that:

• (D3,X3) |= (σ, ρ′′′ ` S l) with ρ′′′ = ρ′′ t ((X3 × {>}) ∪ ((X3)c × {⊥})),

• D2 = (D3 ◦ (D2 ∪ Id)) ∪ Id,

• X2 = X3

This follows from the fact that (D2,X2) |= (σ, ρ′′ ` while e do S l done) (given in the local

conclusion (3)), the definition of |=, and the fact that ρ(e) = > (from the local conclusion (1)).

(5) X1 ⊆ X and ∀x ∈ Xc
1, D1(x) = {x}.

The lemma C.1.2, the facts that (Dl,Xl) |= (σ, ρ′ ` S l) (from the local conclusion (2)) and

(D1,X1) |= (σ, ρ ` S l) (from the local conclusion (3)), and the fact that ρ v ρ′ (from the

definition of ρ′ in the local conclusion (2)) imply X1 ⊆ Xl. Hence, from the local conclusion (2),

X1 ⊆ X. Finally, the hypothesis 5.2.4 and the local conclusion (3) imply ∀x ∈ Xc
1,D1(x) = {x}.
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(6) X ⊆ X2.

This follows from the lemma C.1.2, the facts that (D,X) |= (σ, ρ ` while e do S l done) (from the

global hypothesis ?2 and the local conclusion (1)) and (D2,X2) |= (σ, ρ′′ ` while e do S l done)

(from the local conclusion (3)), and the fact that ρ v ρ′′ (from the definition of ρ′′ in the local

conclusion (3)).

(7) ρ′′′ = ρ t ((X3 × {>}) ∪ ((X3)c × {⊥})).

The definitions of ρ′′ and ρ′′′ (given in the local conclusions (3) and (4)) imply ρ′′′ = ρt ((X1 ×

{>}) ∪ ((X1)c × {⊥})) t ((X3 × {>}) ∪ ((X3)c × {⊥})). Additionally, the local conclusions (5),

(6) and (4) imply X1 ⊆ X3. Hence, ((X1 × {>}) ∪ ((X1)c × {⊥})) t ((X3 × {>}) ∪ ((X3)c × {⊥}))

equals ((X3 × {>}) ∪ ((X3)c × {⊥})).

(8) D = D2 and X = X2.

The local conclusions (4) and (7) and the fact that ρ(e) = > (from the local conclusion (1))

imply (D2,X2) |= (σ, ρ ` while e do S l done). Hence, the hypothesis 5.2.3 implies (D,X) equals

(D2,X2).

(9) DS = Dl ◦D and XS = X.

The local conclusions (3) and (8) imply DS = Dl ◦D. Finally, the local conclusions (5), (6), and

(8) imply X1 ⊆ X; hence, the local conclusion (3) implies XS = X.

(10) ρo = (λx.
⊔

y∈(DS∪Id)(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

This follows directly from the local conclusions (1) and (9).

Let us define F ρo
S and F ρo such that:

�1 F
ρo

S = (λx.
⊔

y∈(DS∪Id)(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})),

�2 F
ρo = (λx.

⊔
y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥})).

(•) ρo(x) = (
⊔

y∈D(x) ρ(y)) t ((X × {>}) ∪ (Xc × {⊥}))(x) = F ρo(x).

From the local conclusion (10), ρo(x) = F
ρo

S (x) and, from the local conclusion (9), XS = X.

If x belongs to X, then F ρo
S (x) = > = F ρo(x). If x does not belong to X, then , from the

hypothesis 5.2.4, DS (x) = {x}. Hence, if x does not belong to X, F ρo
S (x) =

⊔
y∈(DS∪Id)(x) ρ(y) =

ρ(x). For similar reasons, if x does not belong to X then F ρo(x) =
⊔

y∈D(x) ρ(y) = ρ(x).

C.2 Soundness

C.2.1 Detection

Axiom C.2.1 (Deterministic Expressions).
For all expressions e, value stores σ1 and σ2, the property “∀x ∈ FV(e) (σ1(x) = σ2(x))” implies σ1(e) =

σ2(e).
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Lemma C.2.1 (Public expressions are stable).
For all tag stores ρ, value stores σ1 and σ2, and expression e such that for all variable x the following holds

(ρ(x) = ⊥)⇒ σ1(x) = σ2(x), if ρ(e) = ⊥ then σ1(e) = σ2(e).

Proof. The proof is straightforward. It follows directly from the facts that expression evaluation is deter-

ministic (Axiom C.2.1), the tag of an expression is the least upper bound of the tags of its free variables

(definition on page 83) and that public (⊥) variables have the same value in σ1 and σ2.

Lemma C.2.2 (Tag of assigned variables contains tpc).
For all value stores σi, tag stores ρi, and statement S such that:

• σi; ρi; tpc ` S ⇓M(O) σo : ρo

it is true that:

• ∀x : tpc @ ρo(x) ⇒ (σo(x) = σi(x) ∧ ρi(x) v ρo(x))

Proof. The proof goes by induction on the derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(EM(O) − IF⊥) then we can conclude that :

(1) S is “if e then S true else S f alse end” and “ σi; ρi; tpc t ⊥ ` S v ⇓M(O) σo : ρo ” is a sub-derivation

tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”.

This follows directly from the definition of the rule (EM(O) − IF⊥).

(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

This is obtained by a simple induction because tpc t ⊥ = tpc.

(EM(O) − IF>) then we can conclude that :

(1) S is “if e then S 1 else S 2 end” and there exist S v and ρv such that:

• “ σi; ρi; tpct> ` S v ⇓M(O) σo : ρv ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

• ∀x : ρv(x) v ρo(x)

This follows directly from the definition of the rule (EM(O) − IF>).

(2) ∀x : tpc t > v ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρv(x).

This follows directly from the inductive hypothesis and the local conclusion (1).

(•) ∀x : tpc v ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

As tpc v ρo(x) implies tpc t > v ρo(x), the above result follows directly from the local conclu-

sions (1) and (2).

(EM(O) −WHILEskip) then we can conclude that :

(1) S is “while e do S 1 done” and σo = σi ∧ ρi = ρo.

This follows directly from the definition of the rule (EM(O) −WHILEskip).
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(•) ∀x : tpc v ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

This follows directly from the local conclusion (1).

(EM(O) −WHILEtrue⊥) then we can conclude that :

(1) S is “while e do S 1 done” and there exist S ′, t′e and ρ′ such that:

• “ σi; ρi; tpct⊥ ` S ′ ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

This follows directly from the definition of the rule (EM(O) −WHILEtrue⊥).

(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

This follows directly from the inductive hypothesis and the local conclusion (1).

(EM(O) −WHILEtrue>) then we can conclude that :

(1) S is “while e do S 1 done” and there exist S ′, t′e and ρ′ such that:

• “ σi; ρi; tpct t′e ` S ′ ⇓M(O) σo : ρ′ ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

• ∀x : ρ′(x) v ρo(x)

This follows directly from the definition of the rule (EM(O) −WHILEtrue>).

(2) ∀x : tpc t t′e @ ρ
′(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρ′(x).

This follows directly from the inductive hypothesis and the local conclusion (1).

(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

As tpc @ ρo(x) and ρ′(x) v ρo(x) imply tpc t t′e @ ρ′(x), the above result follows from the local

conclusions (1) and (2).

(EM(O) −WHILEfalse>) then we can conclude that :

(1) S is “while e do S 1 done”, σo = σi and ∀x : ρi(x) v ρo(x).

This follows directly from the definition of the rule (EM(O) −WHILEfalse>).

(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

This follows directly from the local conclusion (1).

(EM(O) − SEQUENCE) then we can conclude that :

(1) S is “S 1 ; S 2” and there exist σ1 and ρ1 such that:

• “ σi; ρi; tpc ` S 1 ⇓M(O) σ1 : ρ1 ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

• “ σ1; ρ1; tpc ` S 2 ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (EM(O) − SEQUENCE).

(2) ∀x : tpc @ ρ1(x)⇒ σ1(x) = σi(x)∧ ρi(x) v ρ1(x) and ∀x : tpc @ ρo(x)⇒ σo(x) = σ1(x)∧ ρ1(x) v

ρo(x).

This follows directly from the inductive hypothesis and the local conclusion (1).
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(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

From the local conclusion (1), if tpc @ ρo(x) then ρ1(x) v ρo(x). Hence, tpc @ ρ1(x). Then,

combining the results of the local conclusion (2), “σo(x) = σ1(x) = σi(x) ∧ ρi(x) v ρ1(x) v

ρo(x)”

(EM(O) − ASSIGN) then we can conclude that :

(1) S is “id := e” and there exist ve, and te such that σo = σi[id 7→ ve] and ρo = ρi[id 7→ te t tpc].

This follows directly from the definition of the rule (EM(O) − ASSIGN).

(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

From (1), if x = id then tpc v ρo(x). Otherwise, x , id and σo(x) = σi(x) ∧ ρi(x) = ρo(x)

(EM(O) − SKIP) then we can conclude that :

(1) S is “skip” and σo = σi ∧ ρi = ρo.

This follows directly from the definition of the rule (EM(O) − SKIP).

(•) ∀x : tpc @ ρo(x)⇒ σo(x) = σi(x) ∧ ρi(x) v ρo(x).

This follows directly from the local conclusion (1).

Lemma C.2.3 (Correctness of semantics ⇓M(O) for information flow detection).
For all:

• variable x,

• value stores σi, σo, σ′i , and σ′o,

• tag stores ρi, ρo, ρ′i , and ρ′o,

• tags tpc and tpc′ ,

• and statement S

such that:

?1 ∀y : (ρi(y) = ⊥)⇒ σi(y) = σ′i(y),

?2 σi; ρi; tpc ` S ⇓M(O) σo : ρo ,

?3 σ′i ; ρ
′
i ; tpc′ ` S ⇓M(O) σ

′
o : ρ′o ,

?4 ρo(x) = ⊥

it is true that:

• σo(x) = σ′o(x).
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Proof. The proof goes by induction on the derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(E − IF⊥) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exists v ∈ {true, f alse} such that:

• “ σi; ρi ` e ⇓M(O) v : ⊥ ”

• “ σi; ρi; tpct⊥ ` S v ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist a value v′, a tag t′, and a tag store ρ′ such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′ ”

• “ σ′i ; ρ
′
i ; tpc′ t t′ ` S v′ ⇓M(O) σ

′
o : ρ′ ”

This follows from the global hypothesis ?3, the local conclusion (1), and the definitions of the

rules applying to “if e then S true else S f alse end” ((E − IF⊥) and (E − IF>)).

(3) v = v′.

This result comes from lemma C.2.1 applied to the derivations “ σi; ρi ` e ⇓M(O) v : ⊥ ” and “

σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′ ”. It is possible to apply it because of the global hypothesis ?1.

(•) σo(x) = σ′o(x).

The conclusion is obtained by applying the inductive hypothesis on “ σi; ρi; tpc t ⊥ ` S v ⇓M(O)

σo : ρo ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′i ; ρ
′
i ; tpc′ t t′ ` S v ⇓M(O)

σ′o : ρ′ ” (because v = v′).

(E − IF>) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exist v ∈ {true, f alse}, two tag store ρv and ρe, and

an analysis result (D,X) such that:

• “ σi; ρi; tpct> ` S v ⇓M(O) σo : ρv ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

• [[σi; ρi ` S ¬v]]]G = (D,X)

• ρv(x) v ρo(x)

• ρe = (X × {>}) ∪ ((Id − X) × {⊥})

• ρe(x) v ρo(x)

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist a value v′ ∈ {true, f alse}, a tag store ρ′v′ , and a tag t′e such that:

• “ σ′i ; ρ
′
i ; tpc′ t t′e ` S v′ ⇓M(O) σ

′
o : ρ′v′ ”

This follows from the global hypothesis ?3, the local conclusion (1), and the definitions of the

rules applying to “if e then S true else S f alse end” ((E − IF⊥) and (E − IF>)).
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Case 1: v = v′

(a) ρv(x) = ⊥.

This follows from the local conclusion (1) and the global hypothesis ?4.

(•) σo(x) = σ′o(x).

The conclusion is obtained by applying the inductive hypothesis on “ σi; ρi; tpc t > `

S v ⇓M(O) σo : ρv ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “

σ′i ; ρ
′
i ; tpc′ t t′e ` S v′ ⇓M(O) σ

′
o : ρ′v′ ”. It is possible to apply the inductive hypothesis

because of the local conclusion (a) and the fact that, by the case hypothesis, v = v′).

Case 2: v , v′ (which implies that v′ = ¬v)

(a) σo(x) = σi(x) ∧ ρi(x) v ρo(x).

From the global hypothesis ?4, ρo(x) = ⊥. Hence, from lemma C.2.2 applied to “

σi; ρi; tpc t > ` S v ⇓M(O) σo : ρv ”, σo(x) = σi(x) ∧ ρi(x) v ρo(x).

(b) σ′o(x) = σ′i(x).

From the local conclusion (1), the global hypothesis ?4, and the definition of ρe in the local

conclusion (1), x < X. Hence, from the local conclusion (1) and the hypothesis 5.2.1 applied

to “ σ′i ; ρ
′
i ; tpc′ t t′e ` S v′ ⇓M(O) σ

′
o : ρ′v′ ”, σ′o(x) = σ′i(x).

(c) σi(x) = σ′i(x).

From the local conclusion (a) and the global hypothesis ?4, we get that ρi(x) = ⊥. Hence,

from the global hypothesis ?1, we get that σi(x) = σ′i(x).

(•) σo(x) = σ′o(x).

This follows directly from the local conclusions (a), (b), and (c).

(E −WHILEskip) then we can conclude that :

(1) S is “while e do S 1 done” and:

• “ σi; ρi ` e ⇓M(O) false : ⊥ ”

• σi = σo and ρi = ρo

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist a value v′ and a tag t′ such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′ ”

This follows from the global hypothesis ?3, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

(3) σ′i = σ′o.

From lemma C.2.1 and the local conclusions (1) and (2), we get v′ = f alse. Hence, from

the global hypothesis ?3, the local conclusion (1), and the definitions of the rules applying

to “while e do S 1 done” whenever “ σ′i ; ρ
′
i ` e ⇓M(O) false : t′ ” ((E −WHILEskip) and

(E −WHILEfalse>)), σ′i = σ′o.
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(4) σi(x) = σ′i(x).

From the local conclusion (1) and the global hypothesis ?4, we get that ρi(x) = ⊥. Hence, from

the global hypothesis ?1, we get that σi(x) = σ′i(x).

(•) σo(x) = σ′o(x).

This follows directly from the local conclusions (1), (3), and (4).

(E −WHILEtrue⊥) then we can conclude that :

(1) S is “while e do S 1 done” and:

• “ σi; ρi ` e ⇓M(O) true : ⊥ ”

• “ σi; ρi; tpc t ⊥ ` S 1 ; while e do S 1 done ⇓M(O) σo : ρo ” is a sub-derivation tree of “

σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (E −WHILEtrue⊥).

(2) There exist a value v′ and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

This follows from the global hypothesis ?3, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

(3) v′ = true.

This follows directly from the local conclusions (1) and (2), and lemma C.2.1.

(4) There exists a tag store ρ′l such that:

• “ σ′i ; ρ
′
i ; tpc′ t t′e ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′l ”

This follows from the global hypothesis ?3, the local conclusions (1), (2) and (3), and the def-

initions of the rules applying to “while e do S 1 done” whenever “ σ′i ; ρ
′
i ` e ⇓M(O) true : t′e ”

((E −WHILEtrue⊥) and (E −WHILEtrue>)).

(•) σo(x) = σ′o(x).

By applying the inductive hypothesis on the derivations “ σi; ρi; tpc t ⊥ `

S 1 ; while e do S 1 done ⇓M(O) σo : ρo ” and “ σ′i ; ρ
′
i ; tpc′ t t′e ` S 1 ; while e do S 1 done ⇓M(O)

σ′o : ρ′l ”, it is possible to deduce that σo(x) = σ′o(x).

(E −WHILEtrue>) then we can conclude that :

(1) S is “while e do S 1 done” and there exist a tag te and a tag store ρl such that:

• “ σi; ρi ` e ⇓M(O) true : > ”

• “ σi; ρi; tpc t > ` S 1 ; while e do S 1 done ⇓M(O) σo : ρl ” is a sub-derivation tree of “

σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

• ρl v ρo

This follows directly from the definition of the rule (E −WHILEtrue>).
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(2) ρl(x) = ⊥.

This follows from the local conclusion (1) and the global hypothesis ?4.

(3) There exist a value v′ and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

This follows from the global hypothesis ?3, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

Case 1: v′ = true

(a) There exists a tag store ρ′l such that:

• “ σ′i ; ρ
′
i ; tpc′ t t′e ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′l ”

This follows from the global hypothesis ?3, the local conclusions (1) and (3), the case

hypothesis, and the definitions of the rules applying to “while e do S 1 done” whenever “

σ′i ; ρ
′
i ` e ⇓M(O) true : t′e ” ((E −WHILEtrue⊥) and (E −WHILEtrue>)).

(•) σo(x) = σ′o(x).

By applying the inductive hypothesis on the derivations “ σi; ρi; tpc t > `

S 1 ; while e do S 1 done ⇓M(O) σo : ρl ” and “ σ′i ; ρ
′
i ; tpc′ t t′e `

S 1 ; while e do S 1 done ⇓M(O) σ
′
o : ρ′l ”, it is possible to deduce, using the local con-

clusion (2), that σo(x) = σ′o(x).

Case 2: v′ = false

(a) σo(x) = σi(x).

This follows directly from the local conclusions (1), the fact that “tpc t > @ ρl(x)”

(from the local conclusion (2)), and the lemma C.2.2 applied to “ σi; ρi; tpc t > `

S 1 ; while e do S 1 done ⇓M(O) σo : ρl ”.

(b) σ′o(x) = σ′i(x).

From the global hypothesis ?3, the local conclusions (1) and (3), the case hypothesis, and

the definitions of the rules applying to “while e do S 1 done” whenever “ σ′i ; ρ
′
i ` e ⇓M(O)

false : t′e ” ((E −WHILEskip) and (E −WHILEfalse>)), σ′i = σ′o.

(c) σi(x) = σ′i(x).

From the local conclusion (2) and lemma C.2.2 applied to “ σi; ρi; tpc t > `

S 1 ; while e do S 1 done ⇓M(O) σo : ρl ”, ρi(x) = ⊥. Hence, from the global hypothe-

sis ?1, we get that σi(x) = σ′i(x).

(•) σo(x) = σ′o(x).

This follows directly from the local conclusions (a), (b), and (c).

(E −WHILEfalse>) then we can conclude that :

(1) S is “while e do S 1 done” and there exist two tag stores ρ1 and ρe such that:

• “ σi; ρi ` e ⇓M(O) false : > ”
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• [[σi; ρi ` S 1 ; while e do S 1 done]]]G = (D,X)

• σo = σi

• ρe = (X × {>}) ∪ ((Id − X) × {⊥})

• ρe(x) v ρo(x) and ρi(x) v ρo(x)

This follows directly from the definition of the rule (E −WHILEtrue).

(2) There exist a value v′ ∈ {true, false} and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

This follows from the global hypothesis ?3, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue) and

(E −WHILEfalse>)).

(3) σi(x) = σ′i(x).

From the local conclusion (1) (ρi(x) v ρo(x)) and the global hypothesis ?4, ρi(x) = ⊥. Hence,

from the global hypothesis ?1, we get that σi(x) = σ′i(x).

Case 1: v′ = false

(a) σ′o = σ′i .

From the global hypothesis ?3, the local conclusions (1) and (2), the case hypothesis, and

the definitions of the rules applying to “while e do S 1 done” whenever “ σ′i ; ρ
′
i ` e ⇓M(O)

false : t′e ” ((E −WHILEskip) and (E −WHILEfalse>)), σ′i = σ′o.

(•) σo(x) = σ′o(x).

This follows directly from the local conclusions (1) (σo = σi), (3), and (a).

Case 2: v′ = true

(a) σ′i ; ρ
′
i ; tpc′ t t′e ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′o

This follows from the global hypothesis ?3, the local conclusions (1) and (2), the case

hypothesis, and the definition of the rule applying to “while e do S 1 done” whenever e

evaluates to true ((E −WHILEtrue)).

(b) x < X.

From the local conclusion (1) (ρe(x) v ρo(x)) and the global hypothesis ?4, we get that

ρe(x) = ⊥. Hence, from the definition of ρe given in the local conclusion (1), x < X.

(c) σ′o(x) = σ′i(x).

From the local conclusion (b), the hypothesis 5.2.1 applied to the analysis from the local

conclusion (1) and the derivation from the local conclusion (a), σ′o(x) = σ′i(x).

(•) σo(x) = σ′o(x).

This follows directly from the local conclusions (1), (3), and (c).

(E − SEQUENCE) then we can conclude that :

(1) S is “S 1 ; S 2” and there exist σ1 and ρ1 such that:

• “ σi; ρi; tpc ` S 1 ⇓M(O) σ1 : ρ1 ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”
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• “ σ1; ρ1; tpc ` S 2 ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (EM(O) − SEQUENCE).

(2) There exist σ′1 and ρ′1 such that:

• “ σ′i ; ρ
′
i ; tpc′ ` S 1 ⇓M(O) σ

′
1 : ρ′1 ”

• “ σ′1; ρ′1; tpc′ ` S 2 ⇓M(O) σ
′
o : ρ′o ”

This follows directly from the global hypothesis ?3, the local conclusion (1), and the definition

of the only rule applying to “S 1 ; S 2” ((EM(O) − SEQUENCE)).

(3) ∀y : (ρ1(y) = ⊥)⇒ σ1(y) = σ′1(y).

This result is obtained by applying the inductive hypothesis on “ σi; ρi; tpc ` S 1 ⇓M(O) σ1 : ρ1 ”

(sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′i ; ρ
′
i ; tpc′ ` S 1 ⇓M(O) σ

′
1 : ρ′1 ”

for any variable y such that ρ1(y) = ⊥.

(•) σo(x) = σ′o(x).

The conclusion is obtained by applying the inductive hypothesis on “ σ1; ρ1; tpc ` S 2 ⇓M(O) σo :

ρo ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′1; ρ′1; tpc′ ` S 2 ⇓M(O) σ
′
o : ρ′o

” using the local conclusion (3).

(E − ASSIGN) then we can conclude that :

(1) S is “id := e”.

Case 1: x , id

(a) σo(x) = σi(x) and ρo(x) = ρi(x).

This follows directly from the case hypothesis and the definition of the rule (E − ASSIGN).

(b) σ′o(x) = σ′i(x).

This follows directly from the global hypothesis ?3, the local conclusion (1), the definition

of the only rule applying to “id := e” ((E − ASSIGN)), and the case hypothesis.

(•) σo(x) = σ′o(x).

As ρo(x) = ⊥, from the global hypothesis ?4, the local conclusion (a) implies ρi(x) = ⊥.

Then, from the global hypothesis ?1, σi(x) = σ′i(x). Hence, from the local conclusions (a)

and (b), σo(x) = σ′o(x).

Case 2: x = id

(a) There exist v and te such that:

• “ σi; ρi ` e ⇓M(O) v : te ”

• σo(x) = v

• te v ρo(x)

This follows directly from the case hypothesis and the definition of the rule (E − ASSIGN).

(b) There exist v′ and t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”
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• σ′o(x) = v′

This follows directly from the global hypothesis ?3, the local conclusion (1), the definition

of the only rule applying to “id := e” ((E − ASSIGN)), and the case hypothesis.

(c) v = v′.

This result comes from lemma C.2.1 applied to the derivations “ σi; ρi ` e ⇓M(O) v : te ”

and “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”. It is possible to apply it because of the global hypothesis ?1

and the fact that, from the global hypothesis ?4 and the local conclusion (a), te = ⊥.

(•) σo(x) = σ′o(x).

This follows directly from the local conclusions (a), (b), and (c).

(E − SKIP) then we can conclude that :

(1) S is “skip”, σo = σi and ρo = ρi.

This follows directly from the definition of the rule (E − SKIP).

(2) σ′o = σ′i .

This follows directly from the global hypothesis ?3, the local conclusion (1), and the definition

of the only rule applying to “skip” ((E − SKIP)).

(•) σo(x) = σ′o(x).

From the local conclusion (1) and the global hypothesis ?4, ρi(x) = ⊥. Then, from the global

hypothesis ?1, σi(x) = σ′i(x). Hence, from the local conclusions (1) and (2), σo(x) = σ′o(x).

C.2.2 Correction

Lemma C.2.4 (Expression tag is deterministic).
For all expressions e and tag stores ρ and ρ′, if ρ = ρ′ then ρ(e) = ρ′(e).

Proof. The proof is straightforward. It follows directly from the facts that the evaluation of an expression’s

tag is deterministic. It is the least upper bound of the tags of its free variables.

Lemma C.2.5 (Correctness of semantics ⇓M(O) for information flow correction).
For all:

• variable x,

• value stores σi, σo, σ′i , and σ′o,

• tag stores ρi, ρo, ρ′i , and ρ′o,

• tags tpc and tpc′ ,

• and statement S

such that:
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?1 ∀y : (ρi(y) = ⊥)⇒ σi(y) = σ′i(y),

?2 ρi = ρ′i ,

?3 tpc = tpc′ ,

?4 σi; ρi; tpc ` S ⇓M(O) σo : ρo ,

?5 σ′i ; ρ
′
i ; tpc′ ` S ⇓M(O) σ

′
o : ρ′o

it is true that:

• ρo(x) = ρ′o(x).

Proof. The proof goes by induction on the derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”. Assume the

lemma holds for any sub-derivation tree, if the last rule used is:

(E − IF⊥) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exists v ∈ {true, f alse} such that:

• “ σi; ρi ` e ⇓M(O) v : ⊥ ”

• “ σi; ρi; tpct⊥ ` S v ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist a value v′ and a tag t′ such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′ ”

This follows from the global hypothesis ?5, the local conclusion (1), and the definitions of the

rules applying to “if e then S true else S f alse end” ((E − IF⊥) and (E − IF>)).

(3) t′ = ⊥ and v = v′.

This follows directly from the local conclusion (1) and (2), lemma C.2.4, and lemma C.2.1.

(4) “σ′i ; ρ
′
i ; tpc′t⊥ ` S v ⇓M(O) σ

′
o : ρ′o ” This follows from the global hypothesis ?5, the local conclu-

sions (1), (2), and (3), and the definition of the rule applying to “if e then S true else S f alse end”

whenever “ σ′i ; ρ
′
i ` e ⇓M(O) v : ⊥ ” ((E − IF⊥)).

(•) ρo(x) = ρ′o(x).

The conclusion is obtained by applying the inductive hypothesis on “ σi; ρi; tpc t ⊥ ` S v ⇓M(O)

σo : ρo ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′i ; ρ
′
i ; tpc′t⊥ ` S v ⇓M(O)

σ′o : ρ′o ”.

(E − IF>) then we can conclude that :

(1) S is “if e then S true else S f alse end” and there exist v ∈ {true, f alse}, two tag stores ρv and ρe,

and an analysis result (D,X) such that:

• “ σi; ρi ` e ⇓M(O) v : > ”
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• “ σi; ρi; tpct> ` S v ⇓M(O) σo : ρv ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”

• [[σi; ρi ` S ¬v]]]G = (D,X)

• ρ¬v = λx.
⊔

y∈D(x) ρi(y)

• ρe = (X × {>}) ∪ ((Id − X) × {⊥})

• ρo = ρv t ρ¬v t ρe

This follows directly from the definition of the rule (E − IF>).

(2) There exist a value v′ ∈ {true, f alse} and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

This follows from the global hypothesis ?5, the local conclusion (1), and the definitions of the

rules applying to “if e then S true else S f alse end” ((E − IF⊥) and (E − IF>)).

(3) t′e = >.

This follows directly from the local conclusions (1) and (2), and the lemma C.2.4.

(4) There exists an analysis result (D′,X′) and three tag stores ρ′v′ , ρ
′
¬v′ and ρ′e such that:

• “ σ′i ; ρ
′
i ; tpc′ t t′e ` S v′ ⇓M(O) σ

′
o : ρ′v′ ”

• [[σ′i ; ρ
′
i ` S ¬v′]]]G = (D′,X′)

• ρ′
¬v′ = λx.

⊔
y∈D′(x) ρ

′
i(y)

• ρ′e = (X′ × {>}) ∪ ((Id − X′) × {⊥})

• ρ′o = ρ′v′ t ρ
′
¬v′ t ρ

′
e

This follows from the global hypothesis ?5, the local conclusions (1), (2), and (3), and the

definition of the rule applying to “if e then S true else S f alse end” whenever “ σ′i ; ρ
′
i ` e ⇓M(O)

v′ : > ” ((E − IF>)).

Case 1: v = v′

(a) ρ¬v(x) = ρ′
¬v′(x) and ρe(x) = ρ′e(x).

This follows from the definitions of ρ¬v, ρ′
¬v′ , ρe, and ρ′e (given in the local conclusions (1)

and (2)), the case hypothesis, the global hypothesis ?2, and the hypothesis 5.2.3.

(b) ρv(x) = ρ′v′(x).

This result is obtained by applying the inductive hypothesis on “ σi; ρi; tpc t > ` S v ⇓M(O)

σo : ρv ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′i ; ρ
′
i ; tpc′ t t′e `

S v′ ⇓M(O) σ
′
o : ρ′v′ ” using the result of the local conclusion (3) and the case hypothesis.

(•) ρo(x) = ρ′o(x).

This follows directly from the definitions of ρo and ρ′o (given in the local conclusions (1)

and (4)) and the local conclusions (a) and (b).

Case 2: v , v′ (which implies that v′ = ¬v)

(a) ρv = ρ′
¬v′ t ρ

′
e.

This follows from the definitions of ρv, ρ′
¬v′ , and ρ′e (given in the local conclusions (1) and

(4)), the case hypothesis, and the hypotheses 5.2.3 and 5.2.2.
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(b) ρ′v′ = ρ¬v t ρ
′
e.

This follows from the definitions of ρ′v′ , ρ¬v, and ρe (given in the local conclusions (1) and

(4)), the case hypothesis, the local conclusion (3) and the hypotheses 5.2.3 and 5.2.2.

(•) ρo(x) = ρ′o(x).

This follows directly from the definitions of ρo and ρ′o (given in the local conclusions (1)

and (4)) and the local conclusions (a) and (b).

(E −WHILEskip) then we can conclude that :

(1) S is “while e do S 1 done” and:

• “ σi; ρi ` e ⇓M(O) false : ⊥ ”

• ρi = ρo

This follows directly from the definition of the rule (E − IF⊥).

(2) There exist a value v′ and a tag t′ such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′ ”

This follows from the global hypothesis ?5, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

(3) v′ = false and t′ = ⊥.

This follows directly from the local conclusions (1) and (2), lemma C.2.1 and lemma C.2.4.

(4) ρ′o = ρ′i .

This follows from the global hypothesis ?5, the local conclusion (1), and the definitions of

the rules applying to “while e do S 1 done” whenever “ σ′i ; ρ
′
i ` e ⇓M(O) false : ⊥ ”

((E −WHILEskip)).

(5) ρi(x) = ρ′i(x).

This follows directly from the global hypothesis ?2.

(•) ρo(x) = ρ′o(x).

This follows directly from the local conclusions (1), (4), and (5).

(E −WHILEtrue⊥) then we can conclude that :

(1) S is “while e do S 1 done” and:

• “ σi; ρi ` e ⇓M(O) true : ⊥ ”

• “ σi; ρi; tpc t ⊥ ` S 1 ; while e do S 1 done ⇓M(O) σo : ρo ” is a sub-derivation tree of “

σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (E −WHILEtrue⊥).

(2) There exist a value v′ and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”
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This follows from the global hypothesis ?5, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

(3) t′e = ⊥ and v′ = true.

This follows directly from the local conclusions (1) and (2), lemma C.2.4, and lemma C.2.1.

(4) “ σ′i ; ρ
′
i ; tpc′ t ⊥ ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′o ” This follows from the global

hypothesis ?5, the local conclusions (1), (2), and (3), and the definition of the rule applying to

“while e do S 1 done” whenever “ σ′i ; ρ
′
i ` e ⇓M(O) true : ⊥ ” ((E −WHILEtrue⊥)).

(•) ρo(x) = ρ′o(x).

The conclusion is obtained by applying the inductive hypothesis on “ σi; ρi; tpc t ⊥ `

S 1 ; while e do S 1 done ⇓M(O) σo : ρo ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo

”) and “ σ′i ; ρ
′
i ; tpc′ t ⊥ ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′o ”.

(E −WHILEtrue>) then we can conclude that :

(1) S is “while e do S 1 done” and:

• “ σi; ρi ` e ⇓M(O) true : > ”

• “ σi; ρi; tpc t > ` S 1 ; while e do S 1 done ⇓M(O) σo : ρl ” is a sub-derivation tree of “

σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

• ρo = ρi t ρl

This follows directly from the definition of the rule (E −WHILEtrue>).

(2) There exist a value v′ and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

This follows from the global hypothesis ?5, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

(3) t′e = >.

This follows directly from the local conclusions (1) and (2), and lemma C.2.4.

Case 1: v′ = true

(a) There exists a tag store ρ′l such that:

• “ σ′i ; ρ
′
i ; tpc′ t > ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′l ”

• ρ′o = ρ′i t ρ
′
l

This follows from the global hypothesis ?5, the local conclusions (1), (2), and (3), the case

hypothesis, and the definitions of the rules applying to “while e do S 1 done” whenever “

σ′i ; ρ
′
i ` e ⇓M(O) true : > ” ((E −WHILEtrue>)).

(b) ρl = ρ′l .

This is obtained by applying the inductive hypothesis on “ σi; ρi; tpc t > `
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S 1 ; while e do S 1 done ⇓M(O) σo : ρl ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O)

σo : ρo ”) and “ σ′i ; ρ
′
i ; tpc′ t > ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′l ”.

(•) ρo = ρ′o.

This follows directly from the local conclusions (1), (a), and (b), and the global hypothesis

?2.

Case 2: v′ = false

(a) There exists an analysis result (D′,X′) and two tag stores ρ′l and ρ′e such that:

• [[σ′i ; ρ
′
i ` S 1 ; while e do S 1 done]]]G = (D′,X′)

• ρ′l = λx.
⊔

y∈D′(x) ρ
′
i(y)

• ρ′e = (X′ × {>}) ∪ ((Id − X′) × {⊥})

• ρ′o = ρ′i t ρ
′
l t ρ

′
e

This follows from the global hypothesis ?5, the local conclusions (1), (2), and (3), the case

hypothesis, and the definition of the rule applying to “while e do S 1 done” whenever “

σ′i ; ρ
′
i ` e ⇓M(O) false : > ” ((E −WHILEfalse>)).

(b) ρl = ρ′l t ρ
′
e.

This follows from the definitions of ρl, ρ′l , and ρ′e (given in the local conclusions (1) and

(a)), and the hypotheses 5.2.3 and 5.2.2.

(•) ρo = ρ′o.

This follows directly from the local conclusions (1), (a), and (b).

(E −WHILEfalse>) then we can conclude that :

(1) S is “while e do S 1 done” and there exist two tag stores ρl and ρe such that:

• “ σi; ρi ` e ⇓M(O) false : > ”

• [[σi; ρi ` S 1 ; while e do S 1 done]]]G = (D,X)

• ρl = λx.
⊔

y∈D(x) ρi(y)

• ρe = (X × {>}) ∪ ((Id − X) × {⊥})

• ρo = ρi t ρl t ρe

This follows directly from the definition of the rule (E −WHILEtrue).

(2) There exist a value v′ ∈ {true, false} and a tag t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

This follows from the global hypothesis ?5, the local conclusion (1), and the definitions

of the rules applying to “while e do S 1 done” ((E −WHILEskip), (E −WHILEtrue⊥),

(E −WHILEtrue>) and (E −WHILEfalse>)).

(3) t′e = >.

This follows directly from the local conclusions (1) and (2), and lemma C.2.4.

Case 1: v′ = false
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(a) there exist two tag stores ρ′l and ρ′e such that:

• [[σ′i ; ρ
′
i ` S 1 ; while e do S 1 done]]]G = (D′,X′)

• ρ′l = λx.
⊔

y∈D′(x) ρ
′
i(y)

• ρ′e = (X′ × {>}) ∪ ((Id − X′) × {⊥})

• ρ′o = ρ′i t ρ
′
l t ρ

′
e

This follows from the global hypothesis ?5, the local conclusions (1), (2), and (3), the case

hypothesis, and the definitions of the rules applying to “while e do S 1 done” whenever “

σ′i ; ρ
′
i ` e ⇓M(O) false : > ” ((E −WHILEfalse>)).

(b) ρl = ρ′l and ρe = ρ′e.

This follows from the definitions of ρl, ρ′l , ρe, and ρ′e (given in the local conclusions (1) and

(a)), the global hypothesis ?2, and the hypothesis 5.2.3.

(•) ρo = ρ′o.

This follows directly from the definitions of ρo and ρ′o (given in the local conclusions (1)

and (a)), the local conclusions (b), and the global hypothesis ?2.

Case 2: v′ = true

(a) There exists a tag store ρ′l such that:

• “ σ′i ; ρ
′
i ; tpc′ t > ` S 1 ; while e do S 1 done ⇓M(O) σ

′
o : ρ′l ”

• ρ′o = ρ′i t ρ
′
l

This follows from the global hypothesis ?5, the local conclusions (1), (2), and (3), the case

hypothesis, and the definitions of the rules applying to “while e do S 1 done” whenever “

σ′i ; ρ
′
i ` e ⇓M(O) true : > ” ((E −WHILEtrue>)).

(b) ρ′l = ρl t ρe.

This follows from the definitions of ρ′l , ρl, and ρe (given in the local conclusions (1) and

(a)), and the hypotheses 5.2.3 and 5.2.2.

(•) ρo = ρ′o.

This follows directly from the local conclusions (1), (a), and (b), and the global hypothe-

sis ?2

(E − SEQUENCE) then we can conclude that :

(1) S is “S 1 ; S 2” and there exist σ1 and ρ1 such that:

• “ σi; ρi; tpc ` S 1 ⇓M(O) σ1 : ρ1 ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

• “ σ1; ρ1; tpc ` S 2 ⇓M(O) σo : ρo ” is a sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”

This follows directly from the definition of the rule (EM(O) − SEQUENCE).

(2) There exist σ′1 and ρ′1 such that:

• “ σ′i ; ρ
′
i ; tpc′ ` S 1 ⇓M(O) σ

′
1 : ρ′1 ”

• “ σ′1; ρ′1; tpc′ ` S 2 ⇓M(O) σ
′
o : ρ′o ”
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This follows directly from the global hypothesis ?5, the local conclusion (1), and the definition

of the only rule applying to “S 1 ; S 2” ((EM(O) − SEQUENCE)).

(3) ∀y : (ρ1(y) v ⊥)⇒ σ1(y) = σ′1(y).

This result is obtained by applying lemma C.2.3 on “ σi; ρi; tpc ` S 1 ⇓M(O) σ1 : ρ1 ” and “

σ′i ; ρ
′
i ; tpc′ ` S 1 ⇓M(O) σ

′
1 : ρ′1 ” for any variable y such that ρ1(y) v ⊥.

(4) ρ1 = ρ′1.

This result is obtained by applying the inductive hypothesis on “ σi; ρi; tpc ` S 1 ⇓M(O) σ1 : ρ1 ”

(sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′i ; ρ
′
i ; tpc′ ` S 1 ⇓M(O) σ

′
1 : ρ′1 ”

for any variable.

(•) ρo(x) = ρ′o(x).

The conclusion is obtained by applying the inductive hypothesis on “ σ1; ρ1; tpc ` S 2 ⇓M(O) σo :

ρo ” (sub-derivation tree of “ σi; ρi; tpc ` S ⇓M(O) σo : ρo ”) and “ σ′1; ρ′1; tpc′ ` S 2 ⇓M(O) σ
′
o : ρ′o

” using the local conclusions (3) and (4).

(E − ASSIGN) then we can conclude that :

(1) S is “id := e”.

Case 1: x , id

(a) ρo(x) = ρi(x).

This follows directly from the case hypothesis and the definition of the rule (E − ASSIGN).

(b) ρ′o(x) = ρ′i(x).

This follows directly from the global hypothesis ?5, the local conclusion (1), the definition

of the only rule applying to “id := e” ((E − ASSIGN)), and the case hypothesis.

(•) ρo(x) = ρ′o(x).

From the global hypothesis ?2, ρi(x) = ρ′i(x). Hence, from the local conclusions (a) and

(b), ρo(x) = ρ′o(x).

Case 2: x = id

(a) There exist v and te such that:

• “ σi; ρi ` e ⇓M(O) v : te ”

• ρo(x) = te t tpc

This follows directly from the case hypothesis and the definition of the rule (E − ASSIGN).

(b) There exist v′ and t′e such that:

• “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”

• ρ′o(x) = t′e t tpc′

This follows directly from the global hypothesis ?5, the local conclusion (1), the definition

of the only rule applying to “id := e” ((E − ASSIGN)), and the case hypothesis.

(c) te = t′e.

This result comes from lemma C.2.4 applied to the derivations “ σi; ρi ` e ⇓M(O) v : te ”

and “ σ′i ; ρ
′
i ` e ⇓M(O) v′ : t′e ”.
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(•) ρo(x) = ρ′o(x).

From the global hypothesis ?3, tpc′ = tpc. Then, the above result follows directly from the

local conclusions (a), (b), and (c).

(E − SKIP) then we can conclude that :

(1) S is “skip” and ρo = ρi.

This follows directly from the definition of the rule (E − SKIP).

(2) ρ′o = ρ′i .

This follows directly from the global hypothesis ?5, the local conclusion (1), and the definition

of the only rule applying to “skip” ((E − SKIP)).

(•) ρo(x) = ρ′o(x).

From the global hypothesis ?2, ρi(x) = ρ′i(x). Hence, from the local conclusions (1) and (2),

ρo(x) = ρ′o(x).

C.3 Transparency

Lemma C.3.1 (More Precise Static Analysis). For all command C, value storeσ, tag store ρ, and analysis

result (D,X), if (D,X) |= (σ, ρ ` C) then, for all variable x in X, x belongs to modified(C).

Proof. The proof goes by structural induction on C and follows directly from the rules given in Figure 5.5

and the definition of modified(C).

Lemma C.3.2 (Existence of a Static Analysis Result). For all command C, value store σ, and tag store ρ,

there exists an analysis result (D,X) such that [[σ, ρ ` C]]]G = (D,X) and Hypotheses 5.2.3 and 5.2.4 hold.

Proof. The proof goes easily by structural induction on C by constructing straightforwardly (D,X) from the

constraints. The only difficult case is for while-statements to show that there exists an adequate solution to

D = {[Dl ◦ (D ∪ Id),Id]}ρ(e)
σ(e).

Let Gl, G+
l and G∗l be graphs whose nodes are X. There exists an edge from x to y in Gl if and only if

(x,y) belongs to Dl. G+
l is the transitive closure of Gl; and G∗l is the reflexive closure of G+

l .

If ρ(e) = ⊥ and σ(e) = false then Idis a solution for D. It is straightforward to see that it complies

with all the requirements.

If ρ(e) = ⊥ and σ(e) = true then D is the set of pairs (x,y) such that there exists an edge from x to

y in G+
l . It is easy to see that (x,y) belongs to Dl ◦ (D ∪ Id) if and only if there exists a node z such that

there exists an edge (x,z) in G∗l and an edge (z,y) in Gl. If this is the case then, as G+
l is the transitive closure

of Gl, there exists an edge (x,y) in G+
l ; and therefore, (x,y) belongs to D. Therefore, Dl ◦ (D ∪ Id) is a

solution for D. From the construction mechanism, it is obvious that (D,X) complies with Hypothesis 5.2.3.

If x does not belongs to Xl then Dl = {x} (by induction). Therefore the sole edge in Gl whose origin is x has

for destination x; and hence, there exists a sole edge whose origin is x in G+
l (the destination of this edge

being x itself). This allows to conclude that, as X = Xl, the Hypothesis 5.2.4 holds.
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If ρ(e) = > then the set of pairs (x,y) such that there exists an edge from x to y in G∗l is a solution for

D. The proof then ends similarly to the preceding case.

Lemma C.3.3 (No Downgrading Under Secret Context). For all command C, value store σ and σ′, and

automaton state (V ,w) and (V ′,w′) such that w < {⊥}?, if ((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w′), σ′) then V ⊆ V ′.

Proof. This follows directly from lemma A.1.3 and the only transition rules applying to “not C” ((T-NOT-

high) and (T-NOT-low)).

Lemma C.3.4 (WDKL (while-dilemma killer lemma) bis). For all command C, expression e, automaton

state q = (V ,w), and value store σ, if

?1 FV(e) ∩ V , ∅,

?2 ((V ,w), σ) ` while e do C done
o
=⇒M(s) ((V f ,w), σ f )

then “((V ,w>), σ) ` while e do C done
o
=⇒M(s) ((V f ,w>), σ f )”.

Proof. ?1 implies that the automaton transition — Figure 3.3 — on branch e is (T-BRANCH-high). The

definition of this transition in turn implies that the transition on not C, if it occurs, is (T-NOT-high).

Lemma C.3.5 (Context Sensitive Dynamic Analysis is More Precise). Assumes that the dynamic infor-

mation flow analysis uses an acceptable — Figure 5.5 — static analysis for which Hypotheses 5.2.3 and

5.2.4 hold. For all command C, value stores σ and σ′, automaton states (V ,w) and (V ′,w), outputs o, tag

stores ρ, and tags tpc, if:

?1 ((V ,w), σ) ` C
o
=⇒M(O) ((V ′,w), σ′),

?2 ∀x, (ρ(x) = >)⇒ x ∈ V,

?3 tpc = > ⇒ w < {⊥}?,

then there exists a tag store ρ′ such that:

• σ; ρ; tpc ` C ⇓ σ′ : ρ′,

• ∀x, (ρ′(x) = >)⇒ x ∈ V ′.

Proof. The proof is done by induction on the size of the derivation tree of “((V ,w), σ) ` C
o
=⇒M(O)

((V ′,w), σ′)”. Assume the lemma holds for any sub-derivation tree. As we consider the language with-

out print statements, the rules (EM(O)-EDIT) and (EM(O)-NO) can not be applied. If the last semantic rule

used is:

(EM(O)-OK) then we can conclude that :

(1) • ((V ,w),C)
OK
−−→ (V ′,w),

• σ ` C
o
=⇒O σ′,
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• C is “skip” or “x := e”.

This follows from the M(O) semantic rule (EM(O)-OK). This rule applies only to actions (skip or

assignment statements).

(•) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >)⇒ x ∈ V ′”.

Case 1: C is “skip”.

(a) V ′ = V and σ′ = σ.

This follows from the case hypothesis, the only rule applying to “skip” in the O se-

mantics (EO-SKIP), and from the only transition in the automaton applying to “skip”

(T-SKIP).

(b) σ; ρ; tpc ` C ⇓ σ : ρ.

This follows directly from the rule (EM(O)-SKIP).

(c) ∀x, (ρ(x) = >)⇒ x ∈ V ′.

This follows directly from the global hypothesis ?2 and from the local conclusion (a).

(◦) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒

x ∈ V ′”.

This follows from the local conclusions (b), (a), and (c).

Case 2: C is “x := e”; and w < {⊥}? or FV(e) ∩ V , ∅.

(a) V ′ = V ∪ {x} and σ′ = σ[x 7→ σ(e)].

This follows from the case hypothesis, the only rule applying to “x := e” in the O

semantics (EO-ASSIGN), and the only transition in the automaton applying to “x := e”

whenever w < {⊥}? or FV(e) ∩ V , ∅ (T-ASSIGN-sec).

(b) σ; ρ; tpc ` C ⇓ σ[x 7→ σ(e)] : ρ[x 7→ tpc t ρ(e)].

This follows directly from the rule (EM(O)-ASSIGN) and Definition C.0.1.

(c) ∀y, (ρ[x 7→ tpc t ρ(e)](y) = >)⇒ y ∈ V ′.

From the local conclusion (a), x belongs to V ′. For all variable y, different from x,

ρ[x 7→ tpc t ρ(e)](y) = > implies ρ(y) = >. Hence, the global hypothesis ?2 and the

local conclusion (a) imply that y belongs to V ′.

(◦) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒

x ∈ V ′”.

This follows from the local conclusions (b), (a), and (c).

Case 3: C is “x := e”; and w ∈ {⊥}? and FV(e) ∩ V = ∅.

(a) V ′ = V − {x} and σ′ = σ[x 7→ σ(e)].

This follows from the case hypothesis, the only rule applying to “x := e” in the O

semantics (EO-ASSIGN), and the only transition in the automaton applying to “x := e”

whenever w ∈ {⊥}? and FV(e) ∩ V = ∅ (T-ASSIGN-sec).

(b) σ; ρ; tpc ` C ⇓ σ[x 7→ σ(e)] : ρ[x 7→ tpc t ρ(e)].

This follows directly from the rule (EM(O)-ASSIGN) and Definition C.0.1.
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(c) tpc t ρ(e) = ⊥.

From the case hypothesis and the global hypothesis ?3, tpc = ⊥. From the case hypoth-

esis and the global hypothesis ?2, ρ(e) = ⊥. Those two properties implying the desired

result.

(d) ∀y, (ρ[x 7→ tpc t ρ(e)](y) = >)⇒ y ∈ V ′.

From the local conclusion (c), the variable x respects the desired property. For all

variable y, different from x, ρ[x 7→ tpc t ρ(e)](y) = > implies ρ(y) = >. Hence, the

global hypothesis ?2 and the local conclusion (a) imply that y belongs to V ′.

(◦) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒

x ∈ V ′”.

This follows from the local conclusions (b), (a), and (d).

(EM(O)-IF) then we can conclude that :

(1) There exist automaton states (V1,w1), (V2,w1), and (V3,w2) such that:

• C is “if e then Ctrue else C f alse end”,

• σ(e) = v,

• ((V ,w), branch e)
OK
−−→ (V1,w1),

• ((V1,w1), σ) ` Cv
o
=⇒M(O) ((V2,w1), σ′),

• ((V2,w1), not C¬v)
OK
−−→ (V3,w2),

• ((V3,w2), exit)
OK
−−→ (V ′,w).

This follows directly from the rule (EM(O)-IF) and lemma A.1.1.

(2) V1 = V and (w < {⊥}? ⇒ w1 < {⊥}
?).

This follows directly from the only two transitions applying to “branch e” ((T-BRANCH-high)

and (T-BRANCH-low)).

(3) There exists a tag te such that ρ(e) = te.

This trivially follows from the local conclusion (1) considering that ρ and σ have the same

domain.

(•) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >)⇒ x ∈ V ′”.

Case 1: te = ⊥.

(a) There exists a tag store ρv such that “σ; ρ; tpc ` Cv ⇓ σ
′ : ρv” and “∀x, (ρv(x) = >) ⇒

x ∈ V2”.

This follows from the inductive hypothesis, the local conclusions (1) and (2), and the

global hypotheses ?2 and ?3.

(b) σ; ρ; tpc ` C ⇓ σ′ : ρv.

This follows from the rule (EM(O)-IF⊥), the case hypothesis, and the local conclusion

(a).
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(c) ∀x, (ρv(x) = >)⇒ x ∈ V ′.

From the local conclusion (1) and the transition rules (T-NOT-high), (T-NOT-low), and

(T-EXIT), V2 ⊆ V ′. Hence, the desired result follow from the local conclusion (a).

(◦) There is a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒ x ∈

V ′”.

This follows from the local conclusions (b) and (c).

Case 2: te = >.

(a) FV(e) ∩ V , ∅.

This follows from the local conclusion (3), Definition C.0.1, the case hypothesis, and

the global hypothesis ?2.

(b) w1 < {⊥}
?.

Transition rule (T-BRANCH-high) and the local conclusions (1) and (a) imply w1 <

{⊥}?.

(c) There is a tag store ρv such that “σ; ρ;> ` Cv ⇓ σ
′ : ρv” and “∀x, (ρv(x) = >) ⇒ x ∈

V2”.

This follows from the inductive hypothesis, the local conclusions (1), (2) and (b), and

the global hypothesis ?2.

(d) V ′ = V2 ∪modified(C¬v).

The local conclusions (1) and (b) and the transition rules (T-NOT-high) and (T-EXIT)

imply the desired result.

Let the analysis result (D,X) be such that [[σ, ρ ` C¬v]]]G = (D,X), and the tag stores ρ¬v

and ρe be such that ρ¬v = λx.
⊔

y∈D(x) ρ(y) and ρe = (X × {>}) ∪ (Xc × {⊥}).

(e) There exists a tag store ρ f such that “σ; ρ; tpc ` C ⇓ σ′ : ρ f ” and “ρ f = ρv t ρ¬v t ρe”.

This follows from the rule (EM(O)-IF>), the case hypothesis, the local conclusions (3)

and (c), and the lemma C.3.2.

(f) ∀x, (ρ f (x) = >)⇒ x ∈ V ′.

For all variable x such that ρv(x) = >, the local conclusions (c) and (d) imply that

x belongs to V ′. For all variable x such that ρe(x) = >, lemma C.3.1 implies that x

belongs to modified(C¬v); and hence, the local conclusion (d) implies that x belongs to

V ′. For all variable x such that ρ¬v(x) = > and D(x) , {x}, Hypothesis 5.2.4 implies

that x belongs to X; and hence, from what has been said before, x belongs to V ′. For all

variable x such that ρ¬v(x) = > and D(x) = {x}, from the definition of ρ¬v, ρ(x) = >;

which, combined with the global hypothesis ?2, the local conclusions (2), (b), and (1),

lemma C.3.3, and local conclusion (d), implies that x belongs to V ′.

(◦) There is a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒ x ∈

V ′”.

This follows from the local conclusions (e) and (f).

(EM(O)-WHILEtrue) then we can conclude that :
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(1) There exist a value store σ1 and automaton states (V ,w1), (V1,w1), and (V1,w) such that:

• C is “while e do Cl done”,

• σ(e) = true,

• ((V ,w), branch e)
OK
−−→ (V ,w1),

• ((V ,w1), σ) ` Cl
ol
=⇒M(O) ((V1,w1), σ1),

• ((V1,w1), exit)
OK
−−→ (V1,w),

• ((V1,w), σ1) ` while e do Cl done
ow
==⇒M(O) ((V ′,w), σ′).

This follows directly from the rule (EM(O)-WHILEtrue), the transitions of the monitoring au-

tomaton, and lemma A.1.1.

(2) There exists a tag te such that ρ(e) = te.

This trivially follows from the local conclusion (1) considering that ρ and σ have the same

domain.

(3) (te = >)⇒ FV(e) ∩ V , ∅.

This follows from the local conclusion (2), Definition C.0.1, and the global hypothesis ?2.

(4) There exists a tag store ρ1 such that “σ; ρ; tpctte ` Cl ⇓ σ1 : ρ1” and “∀x, (ρ1(x) = >)⇒ x ∈ V1”.

From the local conclusion (1) and the transitions (T-BRANCH-high) and (T-BRANCH-low),

there exists a ∈ {>,⊥} such that w1 = wa. Thus, from the global hypothesis ?3, (tpc = >) ⇒

w1 < {⊥}
?. From the transition (T-BRANCH-high) and the local conclusions (3) and (1), (te =

>)⇒ w1 < {⊥}
?. Hence, (tpc t te = >)⇒ w1 < {⊥}

?. Then, using the inductive hypothesis, the

local conclusion (1) and the global hypothesis ?2 imply the desired result.

(•) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >)⇒ x ∈ V ′”.

Case 1: te = ⊥.

(a) There is ρ2 such that “σ1; ρ1; tpc ` while e do Cl done ⇓ σ′ : ρ2” and “∀x, (ρ2(x) =

>)⇒ x ∈ V ′”.

This result is implied by the inductive hypothesis, the local conclusions (1) and (4), and

the global hypothesis ?3.

(b) σ; ρ; tpc ` Cl ; while e do Cl done ⇓ σ′ : ρ2.

This follows directly from the case hypothesis, the semantic rule (EM(O)-SEQUENCE)

and the local conclusions (4) and (a).

(◦) There is a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒ x ∈

V ′”.

This follows from the semantic rule (EM(O)-WHILEtrue⊥), the case hypothesis, and the

local conclusions (2), (b), and (a).

Case 2: te = >.

(a) ((V1,w>), σ1) ` while e do Cl done
ow
==⇒M(O) ((V ′,w>), σ′).

This follows directly from the local conclusion (1) and lemma C.3.4.
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(b) There is ρ2 such that “σ1; ρ1; tpc t te ` while e do Cl done ⇓ σ′ : ρ2” and “∀x, (ρ2(x) =

>)⇒ x ∈ V ′”.

This result is implied by the inductive hypothesis, the local conclusions (a) and (4), and

the fact that w> does not belong to {⊥}?.

(c) σ; ρ; tpc t te ` Cl ; while e do Cl done ⇓ σ′ : ρ2.

This follows directly from the case hypothesis, the semantic rule (EM(O)-SEQUENCE)

and the local conclusions (4) and (b).

(d) ∀x, (ρ(x) = >)⇒ x ∈ V ′.

From the case hypothesis, the local conclusions (3) and (1), and the transition (T-

BRANCH-high), w1 < {⊥}
?. Hence, from lemma C.3.3, V ⊆ V1. From lemma A.1.5,

the case hypothesis, and the local conclusions (3) and (1), V1 ⊆ V ′. Thus, the desired

result follows from the global hypothesis ?2.

(◦) There is a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒ x ∈

V ′”.

This follows from the semantic rule (EM(O)-WHILEtrue>), the case hypothesis, and the

local conclusions (2), (c), (d) and (b).

(EM(O)-WHILE f alse) then we can conclude that :

(1) There exist automaton states (V ,w1) and (V ′,w1) such that:

• C is “while e do Cl done”,

• σ(e) = false,

• ((V ,w), branch e)
OK
−−→ (V ,w1),

• ((V ,w1), not Cl)
OK
−−→ (V ′,w1),

• ((V ′,w1), exit)
OK
−−→ (V ′,w),

• σ′ = σ.

This follows directly from the rule (EM(O)-WHILE f alse) and the transitions of the monitoring

automaton.

(2) There exists a tag te such that ρ(e) = te.

This trivially follows from the local conclusion (1) considering that ρ and σ have the same

domain.

(•) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >)⇒ x ∈ V ′”.

Case 1: te = ⊥.

(a) σ; ρ; tpc ` C ⇓ σ : ρ.

This follows from the rule (EM(O)-WHILEskip), the case hypothesis, and the local con-

clusion (2).

(b) ∀x, (ρ(x) = >)⇒ x ∈ V ′.

From the local conclusion (1) and the transition rules (T-NOT-high) and (T-NOT-low),

V ⊆ V ′. Hence, the desired result follows from the global hypothesis ?2.
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(◦) There is a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒ x ∈

V ′”.

This follows from the local conclusions (a), (1) and (b).

Case 2: te = >.

(a) FV(e) ∩ V , ∅.

This follows from the local conclusion (2), Definition C.0.1, the case hypothesis, and

the global hypothesis ?2.

(b) V ′ = V ∪modified(Cl).

Transition rule (T-BRANCH-high) and the local conclusions (1) and (a) imply w1 <

{⊥}?. Hence, the local conclusion (1) and transition (T-NOT-high) imply the desired

result.

Let the analysis result (D,X) be such that [[σ, ρ ` Cl ; while e do Cl done]]]G = (D,X), and

the tag stores ρl and ρe be such that ρl = λx.
⊔

y∈D(x) ρ(y) and ρe = (X × {>}) ∪ (Xc × {⊥}).

(c) There exists a tag store ρ f such that “σ; ρ; tpc ` C ⇓ σ′ : ρ f ” and “ρ f = ρ t ρl t ρe”.

This follows from the rule (EM(O)-WHILE f alse>), the case hypothesis, the local conclu-

sions (2) and (1), and the Lemma C.3.2.

(d) ∀x, (ρ f (x) = >)⇒ x ∈ V ′.

For all variable x such that ρ(x) = >, the global hypothesis ?2 and the local conclusion

(b) imply that x belongs to V ′. For all variable x such that ρe(x) = >, lemma C.3.1

implies that x belongs to modified(Cl); and hence, the local conclusion (b) implies that

x belongs to V ′. For all variable x such that ρl(x) = > and D(x) , {x}, Hypothesis 5.2.4

implies that x belongs to X; and hence, from what has been said before, x belongs to

V ′. For all variable x such that ρl(x) = > and D(x) = {x}, from the definition of ρl,

ρ(x) = >; which, combined with the global hypothesis ?2 and the local conclusion (b),

implies that x belongs to V ′.

(◦) There is a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >) ⇒ x ∈

V ′”.

This follows from the local conclusions (c) and (d).

(EM(O)-SEQ) then we can conclude that :

(1) There exists a value store σ1 and an automaton state (V1,w) such that:

• C is “C1 ; C2”,

• ((V ,w), σ) ` C1
o1
==⇒M(O) ((V1,w1), σ1),

• ((V1,w), σ1) ` C2
o2
==⇒M(O) ((V ′,w), σ′).

This follows directly from the rule (EM(O)-SEQ) and lemma A.1.1.

(2) There exists a tag store ρ1 such that “σ; ρ; tpc ` C1 ⇓ σ1 : ρ1” and “∀x, (ρ1(x) = >)⇒ x ∈ V1”.

This follows from the inductive hypothesis, the global hypotheses ?2 and ?3, and the local

conclusion (1).
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(3) There exists a tag store ρ′ such that “σ1; ρ1; tpc ` C2 ⇓ σ
′ : ρ′” and “∀x, (ρ′(x) = >)⇒ x ∈ V ′”.

This follows from the inductive hypothesis, the global hypothesis ?3, and the local conclusions

(1) and (2).

(•) There exists a tag store ρ′ such that “σ; ρ; tpc ` C ⇓ σ′ : ρ′” and “∀x, (ρ′(x) = >)⇒ x ∈ V ′”.

This follows from the rule (EM(O)-SEQUENCE) and the local conclusions (1), (2), and (3).
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