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CHAPTER 1

INTRODUCTION

1.1 Definition of Surface Wave. In order to define the term "'surface

wave', it is important to pay attention to the considerations that have
led in the past to the definitions now generally accepted for other
forms of guided electromagnetic waves. All these definitions are based
on behavior in idealistic conditions. An example is the so-called
T.E.M. wave propagating along a twin conductor transmission line where
it is assumed that the guide is lossless.

The main characteristic feature of a surface wave is its nonradiating
property and this should form the bésis of its definition. In addition
to this feature, it is usually assumed that the supporting surface
representing the boundary befween homogeneous media is straight in the
direction of propagation of the wave, so that when curved surfaces arise
they are regarded as perturbations. The definition suggested by Barlow

and Brown (1962) for surface waves is the following: "A surface wave is

one that propagates along an interface between two different media
without radiation; such radiation being construed to mean energy con-
verted from the surface-wave field to some other form'". Another
definition proposed by Zucker (Silver, 1963) for surface waves is as

follows: A surface wave is a source-free solution of Maxwell's equations

over an interface. It satisfies the radiation condition at infinity
and boundary conditions at the interface. The basic principles of their

definitions are based on physical and mathematical interpretations.



1.2. Previous Work in the Area. It has been known for more than

70 years, from a paper by Sommerfeld in 1899, that a ground-wave could
propagate over a flat earth excited from a vertical dipole. This

part of the total field he called ‘'surface wave'. Later his student
Zenneck gave the appropriate solution of Maxwell's equations for

the inhomogencous plane wave over a flat surface with finite losses,
which is the simplest form of surface wave. The interest taken in

the subject was largely restricted to mathematical arguments until

Goubau (1951) demonstrated the capabilities of the single-wire
transmission line as a surface waveguide. Since 1952, many theoretical
and practical investigations have been presented by many workers concerned
with surface waves on antenna and surface waveguide structures. The
common antenna structures are dielectric rods, corrugated rods, slotted
waveguides, helices, Yagi-Uda arrays, dielectric sheets, corrugated
surface ferrite and plasma sheets, and dipoles. Those surface waveguide
structures are dielectric rods, dielectric cylinders, corrugated plane
surfaces, corrugated conductors, dielectric-coated planes and dielectric
coated wires. The details of waveguide structures and antenna structures
have been collected and explained by Collin (1960) and Walter (1965)
respectively. In 1965, Bobrovnikov, Goshin and Smirnov (1965) discussed
the problem of excitation of radial cylindrical surface waves over
metallic surfaces covered by a layer of dielectric or over corrugated
surfaces. They observed that the low efficiencies of surface wave
excitation can be improved by using concentric circular slots located

on a dielectric conducting plane., Barlow (1967) has made a ferrite-loaded
horn type of antenna which is capable of launching a 1.5 Mz surface wave

over the earth.



1.3, Outline of this Report. The purpose of this report is to study

the characteristics of surface waves on thin dielectric coated conducting
planes and their effects on phased array antenna structures. At the

same time, many practical problems concerned with excitation techniques
are discussed.

Chapter II analyzes the characteristics of TM surface waves and TE
surface waves on thin dielectric coated conducting planes by using
Maxwell's equations. The wave impedances in different regions, are also
discussed.

In Chapter III, the effect of surface waves on similar phased array
antenna structures is analyzed and discussed, based on various mathematical
methods and experimental results. The bhysical phenomena of surface
waves on phased antenna structures is also discussed.

In Chapter IV, several typical surface waves and their essential
representive solutions of Maxwell's equations are shown. Also, several
typical wave launchers are presented. Launching techniques and ap-
plications are explained briefly because many practical problems of
launching and receiving need to be studied.

Chapter V gives a summary, and recommendations for further study.
The conclusions of the results in Chapter II, Chapter III, and Chapter IV
are presented. An experimental method to measure the efficiency of

excitation of radical cylindrical surface waves is suggested.



CHAPTER II

CONDUCTING PLANE WITH A THIN DIELECTRIC COATING

2.1 TM Surface Wave And TE Surface Wave. Figure 2.1 illustrates a plane

conducting surface, coated with a dielectric layer of thickness t, having
a relative complex dielectric constant e, = e; - js;'. Let a TM wave be
incident on the interface from the air region with H parallel to the
interface. The incident wave has field components Hy' Ex’ and Ez when
the plane of incidence is in the x-z plane. Then the components of

the electric field are given by

H

jueE_ = - 3;1 (2.1a)
3H

jueE, = EEZ (2.1b)

In the free space region, the magnetic field has the form

HY = A exp(jhlx - jBz), x>t (2.2)
where
2 2 2 2
h1 + B = ho = W HyE (2.2a)

In the dielectric region, the field consists of two waves propagating in

the positive and negative x directions, and has the form

Hy = [B exp(jh,x) + C exp(-jh,x)] e'JBz, 0<x<t (2.3)
where
2 2 2 2
= = 2
hy + 8 = ¢ K = K (2.3a)
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Figure 2,1 A conducting plane coated with a
thin layer of dielectric.
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Figure 2.2 Equivalent transmission—-line circuit
for coated conducting plane.



The wave numbers hl and h2 and the propagation constant g may be
found by using the boundary condition at the free-space-dielectric
interface and the dielectric-conducting plane interface (Collin, 1960).

The wave impedances in the free space and dielectric regions are,

respectively

Z, = ——— ,- x>t (2.4)

Z, = — , 0<x<t (2.5)
where

0 = "M/

N
]

and the normalized surface impedance looking from the dielectric to

the metal is

S N

K. 5
s 0
z_ = (1)) [2620‘ , t <0 (2.6)

where o >> we is assumed. Combining these three wave impedances and
transmission line theory, the equivalent transmission line circuit as
shown in Figure 2.2 can be obtained.

If the normal input impedance at the air-dielectric interface
is equal to 21/20, there will be no reflection at the interface, and
the incoming plane wave will become a surface wave. Conventional

transmission- line theory (Collin, 1960) thus gives

Z, 2+ §(Z,/Z5)tan hyt

Z. = o0 -
in Z.0 22/20 + jZ_tan h,t

NIN
o |-



In this equation, one can make the approximation Zm = 0, because it

is very small at radio frequencies. It is also assumed that the
thickness t is chosen so that hzt is small. Now, by using equations
(2.4), (2.5), and (2.7) one can obtain the normalized input impedance Zin

as

1
L]
[ ot |
NIN
%]
——
=
(3]
t

2
.[zohz} hyt Ryt

23 = j
ErKOJ Z0 ETKO
(e_-1)X
< _I‘E__O t (2.8)
r

Solving equations (2.1) and (2.8) one obtains

™~

e -1
h1=—11<0:j[1; ]th (2.9)
] T

Thus a conductor coated with a thin layer of dielectric may be considered
as a surface with a normalized surface impedance Zs given by

(e -1)
L

£ 0
T

n
.
Fad

(2.10)

The propagation constant B is given by



™w
I
L)
g
o
1
=
=
—

0 > 0
T
e_~1 1/2
_ 5 o 2
= ho{l % e t ] {2+11}

The preceding analysis is valid only for a low-loss thin dielectric
sheet over a highly conducting plane.

The TE surface wave is similar in structure to the TM surface
wave, but the role of electric field and magnetic field is interchanged.

For this case, Maxwell's equations reduce to

3E

juuy H, = - =L (2.12)
3E

jung H = EEX' (2.13)

Similarly one can also write

Ey = A exp(jhlx-jsz), x>t (2.14a)

Ey = [B exp(jhzx)_+ C exp[-jhzx)]e-jsz, 0<x<t (2.14b)
where

hi + 62 = Kg

h2 v g% = e K2



The wave admittance is equal to

Hz YDhl
Yl=-E—=T—, x>t (2.15a)
y 0
Y. h
02
Ty =g s | 0 <x=<t (2.15b)
ro
L
KO 2
Y, (2ch) (1+3), x <0 (2.15¢)
1
where Y0 = za

Similarly to the TM case, if the normal input admittance at the
air-dielectric interface is equal to YlfYO, then there will be no
reflection at the interface and the incoming TE plane wave will become

a surface wave. Conventional transmission line theory gives

E_.= v - EE.Ym + J(YZ/YO) tan h2t .15
0 in YO Y2/Y0 + J Ym tan h2t

By the same assumptions and approximations used for the TM surface

wave, one can obtain the input surface admittance and the wave number

h1 as
€r'1 :
Yin -] . Kot = JBin (2.17)
T
. F’r-1 2
hl Z ] e Kot (2.18)

Therefore, from equations (2.17) and (2.18) it is seen that a

conductor coated with a thin layer of dielectric may be regarded as



a surface with a normalized surface admittance YS given by

-
n
<

[}
L Y

n
i
=]

2.2 Discussion of TM and TE Surface wave Characteristics On a

Coated Conducting Plane. From the analysis of the last section as

indicated in equations (2.10) and (2.19) one can see that TM surface
waves exist over a surface with a surface impedance having an inductive
term, while TE surface waves exist over a surface with a surface
impedance having a capacitive term. According to equations (2.2) and
(2.9) one can find that the TM field has exponential decay normal to
the surface if the reactive part of impedance is inductive. The larger
the inductance of the surface, the more closely will the wave be bound
to the surface, Also, if the dielectric layer is thick, the field will
be tightly bound to the surface. Conversely, the field will be loosely
bound to a thin dielectric layer. From equation (2.11), one can find
that the phase velocity is less than the velocity in free space for a

surface wave supported by a highly inductive surface.

10

K.t (2.19)
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CHAPTER III

SURFACE WAVES ON PHASED ARRAY ANTENNAS

3.1 Introduction. In recent years, many workers have found that

the element patterns of certain types of phased arrays exhibited

nulls and dips at specific scan angles. These nulls and dips are
related to the presence of guided waves supported by the array surface
(Knittel, Hessel, and Oliner, 1968). The element pattern of an array
of coaxial horns covered by individual dielectric radomes was obtained
by Lechtreck, (1968). A pattern, measured at the Bendix Corporation,
of an array of open-ended waveguides arranged in a triangular lattice
in a conducting plane has been published by Farrell and Kuhn (1966).
Each of these element patterns has a dip at an angle closer to broad-
side than that predicted by array theory alone. The shallowness of the
dips obtained in these measurements is due to the fact that the arrays
are small; if the arrays are infinite in extent, the dips will become
nulls.

There are also other kinds of evidence for the existence of this
unusual null in element patterns from theoretical calculations and
from wave-guide simulator experiments. Farrell and Kuhn (1566) have
performed theoretical calculations which verified the experimental
behavior of "“brick' arrays. Diamond (1967) has computed an element
pattern for an array of open-ended square waveguides in a conducting

plane which shows the null.
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Those efforts have gradually been cxpanded by many workers.
Galindo and Wu (1968) have studied the effect of the diclectric zeometry,
dielectric constant, and sheath thickness on the wide angle performance
of an array of rectangular waveguides. Later, Wu and Galindo (1968)
used a dielectric sheathed phased array of rectangular waveguides to
analyze the influence of dielectric thickness, dielectric constant
and waveguide wall thickness on the null location and the relationship
between the null phenomenon and surface waves. They also presented
some further results for thin sheaths and multiple sheaths. Nagelberg
(1968) has shown, both theoretically and experimentally, the radiating
characteristic of an aperture- type antenna covered by a dielectric
sheath. He also predicted that the principal effect of the thickness
of the dielectric is a significant broadening of the radiation pattern
over a narrow frequency band, in which a surface wave is excited and
propagates along the dielectric slab.

Knittel, Hessel, and Oliner (1968) have investigated the basic
causes of these element pattern nulls, and have clarified the relation-
ship between these nulls and possible guided waves. Surface waves and
leaky waves which may be supported by the phased array face itself have
also been found.

In this chapter the primary concern will be with some literature
published in recent years. Various methods have been used in discussing
similar structure problems theoretically and experimentally. The
array structure, which is analyzed in detail by using the unit cell and
equivalent network technique method, Fourier transform method, and
integral equation method will be studied in sections 3.2, 3.3 and 3.4,

respectively.
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3.2 Unit Cell and Equivalent Network Method. Figure 3.1 consists

of an array of slots or apertures in a conducting plane, fed from

below with rectangular waveguides and covered above by a dielectric
slab. In order to study the basic characteristics of external
resonances, the angle dependent resonance of the structure external to the
waveguides, the array structure is chosen as a two dimensional array of
narrow slots fed by parallel plate waveguides, Figure 3.2. This can
not only simplify the prototype of the structure and retain the basic
features, but also can avoid complications in description. Therefore, the
structure will be considered infinite in the x and y directiomns. It

is assumed that a TEM mode is incident from below in the parallel plate
waveguides. These modes are matched to the respective waveguides.

The generators are identical. The amplitude of the incident mode in
each waveguide is the same, but the phases will generally be different.
A plane wave then is radiated into the space above the array at an
angle 8. The scan angle is in the x-z plane and the E-field of the
radiated wave is also in the x-z plane. The array is infinite, so

one can use the unit cell technique to solve the infinite periodic
structure (discussed in detail by Oliner and Malech (1966}). It is

two dimensional, so that one can confine scanning to one plane and

thus simplify the analysis. It is the simplest kind of array utilizing
aperture radiating elements, so that one can clearly distinguish the
external and the internal portions of the array. If the slot width

is kept very small, say d/B < 0.1, an equivalent network is easily
derived and can be used to show the existence of the resonance and its

important characteristics. The E-plane scan is the most useful scan
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plane to be chosen for a study of external resonance, since one finds an
E-plane scan resonance only for a thin dielectric slab. In the ll-plane
scan, however, a thick dielectric siab is required for a resonance
{(Oliner and Malech, 1966).

To derive an equivalent network for the structure in Figure 3.2,
one first forms the unit cell of the aperture as shown in Figure 3.3.
Then one can find an equivalent network for the junction of two wave-
guides with one of them covered with a dielectric layer of finite
thickness, if one knows the form of the electric field in the aperture
at all scan angles.

If it is assumed that the slots in the array in Fizure 3.2 are
chosen to be sufficiently narrow, and there are N propagation modes,

then, their radiation power can be written as

5 2
P= ) Yo vl (3.1)
n=0

where Vun modal veltage in the unit cell

un modal admittance in the unit cell

We may also define the symbols

&n " unit cell vector mode function

éf = feed wave guide vector mode function

Vf = excited voltage furnished by waveguide

Y = input characteristic admittance of unit cell seen by the
TEM mode traveling in the positive z direction in the feed
guide.

E. = transverse electric field in the slot
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The input characteristic admittance Y can be defined as

radiated power _ storcd power

Y =
v l? vel?

(3.2}

The voltage terms in equations (3.1) and (3.2) can be defined in
terms of the vector mode functions (Oliner and Malech, 1966), for
example,

v.=f] E_.e_.ds (3.3)
£ slot t £

% ‘ -
where e_. is the complex conjugate of e

£ £

For the E-plane scan, the unit cell vector mode function Eun and feed

wave guide vector mode function Ef are given by Oliner and Malech,

(1966) as
- ax
€m - :%5 exp(JKxnx) (3.4)
- ax_
ef = E

where

; 27nA
Kxn = K0 sin 6 + B n=0, +1, +2, +3, ... +N (3.42)

Since the tangential field exists only over the aperture and is zero
at the other points in the aperture plane, the integration is performed

only over the slot. From equations (3.3) and (3.4) one finds that
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Vol = 1 B, - & as|
un o lpk t un
) ZEO sin(l(xn d/2) )
= T (3.5)
VB xn
x [E, |
= 0
[ve | IffEt-ede|=—/E-d (3.6)
where Et = E0 ax (3.7)
d = width of slot
Hence
¢ Sin(K__d/2) 42
Jun | .b_[ 1 Rn 3] 5.9
Vf B hxn d/2
By substituting equation (3.8) into (3.2), one can obtain
N sin(K__d/2)y2
_ b xn ;
L Z E’(‘“R__H7§""_J Yan T dB5 (3.9)
n=0 Xn
Equation (3.9) can be simplified by defining the term Yin as
sin(K__d/2) 2
in B K _d/2 un
Xn
=('I‘)2Y (3.10)
n un !

where

. JE sin(K__d/2)
n B K d/2
xn

n=0,1,2, ..., N
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Thus, the TEM mode input admittance Y can be expressed in the form

N
_ 2
Y= 7 (T)° Y, + 3B, (3.11)
n=0
N
= | Yin * 3B
n=0 =

B.ln is the susceptance resulting from the stored power in the cut off
modes on the inside of the aperture and can be approximately expressed

as (Knittel, Hessel and Oliner 1968).

B. = j 3§-Y

wd
- tn csc (EEQ

0

The dielectric in the unit cell waveguide is of thickness t,
and air fills the unit cell for z > t. The electric field in the
unit cell is parallel to the plane of incidence (E-plane scan), so that
the wave admittances for the nth mode in the dielectric region and free
space are, respectively

WeE_E

_ 0
e X 0<z<t (3.11a)
ne
we :
v = z>t (3.11b)
n K —
n
where
2 2
= - 11
KnE ErKO K (3.11c)
K =K - K2 (3.11d)
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where Kna’ and Kn are the wave numbers of the n-th mode in the z-
direction in the dielectric and air respectively, €. is the relative

permittivity of the dielectric, and K. = mvuoeo is the free-space wave

0
number. The parameter Kxn is the wave-number of the n-th mode in the
x-direction and is related to the scan angle. The mode index is n.
Combining the two wave admittances, YnE and Yn, and transmission line
theory (Collin, 1960), one can obtain the equivalent transmission line
circuit as in Figure 3.4(a). From the transmission line circuit represen-
tation, one can determine the nth mode input admittancé in the_unit

cell in the positive z direction as |

JYne + Yn cot (knat)

Yun N Yns Y cot (K t) + jY _ (3.12)
ne ne n

Then, substituting equation (3.12) into equation (3.9) one obtains

the TEM mode input admittance of the unit cell as

N sin(K__d/2) 42 Y. . =Y got(k _t)

y=7 2 = y e BBt 4B (3.13)
& B K_d/2 ne Y_cot(K_ t) + jY in
=0 X1 ne ne n

It is well known that the array input admittance Y is related to

the array reflection coefficient R by

YO -Y
R = T (3.14)
0
where Yo is the characteristic admittance of the TEM mode in the feed
€0
waveguide and YO = —,
*o

Equation (3.11) can be expressed in the form of the equivalent

network as shown in Figure 3.4(b) in which there is no transformer and
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the Yin term is chosen as Ti times the unit cell input admittance Yun’
For the purpose of changing the equivalent network admittance level,

one can use an ideal transformer (l:Tn) to cascade with the unit cell
input admittance Yun and consider Yin as the ideal transformer input
admittance as shown in Figure 3.4(c). Yin still has the same
characteristics. Then, one can parallel jBin to Yin and express equation
(3.9) in the form of the equivalent network as shown in Figure 3.4(c).
The n = 0, and n = 1 mode transmission lines are the essential ones in
the external resonance phenomenon. All the other higher modes outside
the aperture are assumed to be below cut-off in both dielectric and

air and are lumped together as a susceptance (where the subscript
B 7 4

signifies 'higher modes') which is given by

+ Yn cot(KnEt)

8 2 ane
iB= L (@)Y

- : (3.15)
Hop neYnecot(knEt) + j Yn

An equivalent circuit for equation (3.15) has been obtained by Oliner
and Malech (1966), but they do not give an explicit relation between
Bhn and Tn’ since they were concerned only with the particular scan
angle for |R| = 1 and not with the variation of |R| about this angle.
The purpose of choosing a small aperture is that the electric field
in the x-direction is constant for all scan angles, so that Bin is
-independent of scan angle and Tn is only slightly dependent.

Because only two external modes are important in the array, one
can estimate the qualitative features of the reflection coefficient

versus scan angle from the equivalent network. For making the phased

array in Figure 3.2 into a practical phased array, it is necessary to
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include a matching network to match the admittance of the array to

that of the feed guide at broadside scan., This can be done in practice
by adding an appropriate iris (susceptance and transformer) to change
the b-dimension of the feed guide a half wavelength below the aperture
plane. In the equivalent network, this is the same as adding the
susceptance and transformer at the aperture. The latter can be done

as shown in Figure 3.5. In this figure, B, is the sum of three

M

susceptances,

By = By *® B * By (3.16)

where Bex is the extra susceptance added for matching. Bhn is the
totai higher model susceptance when all the higher modes outside the
aperture are assumed to be below cutoff in both dielectric and air.
TM in Figure 3.5 is thé transformer added for matching, and T0 Z T1 :j%
as d is very small,

One can find that BM varies slightly with 6 and that this variation

is mostly due to the n = +2 mode. If this mode is removed from BM and

displayed explicitly, the variation in the resulting By with 6 is

élmost zero. By using the simplified equivalent network as shown in
Figure 3.6, one can more accurately obtain the performance of the
phased array based on three external modes and one internal (TEM) mode.
B, is the susceptance which can cancel the susceptance from the external

N

mode transmission lines at 8 = 0. TN is just the transformer which

transforms the conductance from the n = 0 transmission line at 6 = 0

to the characteristic admittance of the feed guide.
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The equivalent network derived in the preceding analysis yields
the array reflection coefficient R when all the elements of the array
are excited. It also yields the transmission coefficient T for a bean
radiating into space. It has been shown by Oliner and Malech (1966)
that for a lossless array radiating a single beam, |R(6)| is related

to the element pattern via

g, = [1 - [R(®)]%] cos 6 (3.17)

where g is the realized gain of one element in the array with all other
elements terminated in their generator admittances. If R(€) is zero,

go equals 1 for broadside match. If there is more than one radiating
beam, or if the array aperture region contains lossy material, it is

easy to show that equation (3.17) can be replaced by

g, = IT(8)]? cos @ (3.18)

where T(8) is the ratio of power transmitted into the air in the unit
cell to the power incident in the feed waveguide. If T(®6) is given, then
one can compute g, .

One can ascertain from the equivalent network in Figure 3.5 that
there is a null in the element pattern and that the direction of this
null changes with dielectric thickness. This may be argued as follows.

If t = 0, then, from equation (3.l1lb), Yl is infinite at a scan angle for
which Kl = 0., This scan angle 0 (shown in Figure 3.2) is equal to s:'Ln-1
(1 - %J. Since the modal transmission lines are in shunt at the aperture,
the total input admittance Y is infinite. It places a short circuit

across the n = 0 line and causes complete reflection, therefore, a null

occurs in the pattern. If t > 0 and the scan angle is still at the
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same angle for which K, = 0, then, from the equations (3.lla), (3.1ib)

1
and (3.1ic) one can find that Yl is infinite and Yls is finite. Therefore,
Yl = « places a short circuit at the YlE output terminal and the n = 1

line input admittance becomes finite. After transformer transformation,
this finite admittance is parallel to the n = 0 line input admittance
and the total input admittance Y becomes finite. When the scan angle

8 (as shown in Figure 3.2) is larger than the scan angle & for which

Kl = 0, from equations (3.1lla), (3.11b), (3.11lc), (3.11d) and (3.45),
one can find that Y, becomes a capacitive susceptance, and Y, is still

1 le

a conductance. When this scan angle 6 is increased to

g = sin-'1 (%-{#sr-l - %] , one can find that the denominator of equation

(3.12) for n = 1 will become zero. Therefore, the input admittance
for the n = 1 line becomes infinite. After transformer transformatiom,
this infinite admittance is parallel to the n = 0 line input admittance
and the total input admittance Y is infinite. This infinite input

admittance will cause complete reflection. Thus a null occurs in the

pattern at this scan angle, 6 = sin”t (%—Jer-l - %—]

From equations (3.11a} and (3.1lc), one can find that Yls is infinite
at the scan angle for which K1E = 0, This scan angle 8 is equal to
sin-l(er- %J. Thus, the n = 1 line input admittance is also infinite
for this 6. After transformer transformation, this infinite input
admittance is parallel to the n = 0 line input admittance and the total
input admittance Y becomes infinite. This infinite input admittance

Y will cause complete reflection. Thus, another null occurs in the

pattern at this scan angle, 8 = sin'l(sr - %ﬂ,
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The element pattern which exhibits multiple nulls for the array
in Fig. 3.2 with B/x = 0.5, t/x = 0.5, e, = 2.56, b/x = 0.3 (Knittel,
Hessel and Oliner, 1968), is shown in Figure 3.7. Figure 3.8 shows
the relationship between reflection coefficients and element patterns
with different slab thicknesses for the array in Figure 3.2 with B/A = 0.5,
e, = 2.56 and b/x = 0.3.

It is known that the reflection cocfficient magnitude |R| is
equal to unity at a particular scan angle corresponding to the element
pattern null. For this condition all power from the source is reflected
back from the aperture, and the dominant mode input admittance Y becomes
infinite at the aperture or E% away from the aperturé plane. At the
aperture plane, higher modes, are present; however, at a plane A/2 below
the aperture plane it is safe to assume that only the dominant-mode
exists, so that a short circuiting plate may be placed there without
disturbing the field. The resulting structure is seen in Figure 3.9 to
be a dielectric layer placed on a type of corrugated surface.

The approximate analysis presented herein of the array of Figure 3.2

has assumed that a constant field which is independent of scan angle

can exist in the aperture. This field has been given as

E =E.a (3.19)

therefore, the magnitude of the dominant-mode voltage in the aperture

plane becomes

B, |
V.| = —d (3.20)
Vool =75

as in equation (3.6). Because the dominant-mode admittance is infinite,

this dominant-mode voltage must be zero in the aperture plane and EO must
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be zero. Hence, according to this approximation, the total electric
field in the aperture would vanish and a short circuit may be placed,
as in Figure 3.10, actually closing off the slots.

If denominator of equation (3.12) equals to zero, then it is
regarded as the condition on the first higher mode which corresponds
to |R| = 1. It is also consistent with the transverse resonance condition
for a TM surface wave on a dielectric slab placed on a perfectly con-
ducting plane.

The above discussion has indicated that at the particular scan
angle corresponding exactly to the element pattern null one may place
short circuiting plates at an appropriate location in the feed guides,
as shown in Figure 3.9, except that their distance from the aperture plane
will differ from A/2 for wider apertures. Under this condition, the total
field existing on the array face is identical to a surface- wave mode of
the dielectric-loaded corrugated structure as shown in Figure 3.9. Such
a corrugated surface has long been known as a structure which is able
to support surface waves. This structure is a periodic structure and
can support only the TM surface wave in the absence of a dielectric
material. The period of corrugation should be less than a half free
space wave length in order to support the TM surface wave. But if
there is a dielectric slab cover on the array aperture or corrugated
surface, it can not only support a TM surface wave but also a TE surface

wave. Therefore a surface wave can exist on this array structure.

3.3 Fourier Transform Method. This method determines the far-

zone radiation properties of an aperture covered by a dielectric sheath
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as shown in Figure 3.11. It is assumed that the electric field is in
the y-direction and that all the quantities are independent of y. 1In
addition to its mathematical simplicity, this two dimensional situation can
be realized experimentally by erecting parallel conducting planes perpen-
dicular to the electric field (Nagelberg, 1968).

Using a plane wave (Fourier) spectrum to represent the field, Ey

can be expressed by

oo
_ 1 jhz
E, (x,2) = 57 £=_QG(x,h)e dh (3.21)
5 _ -jhz
(x,h) = f Ey(x,z)e dz (3.22)
z:.-no

where h, the transform variable, denotes the z-direction propagation
constant of the particular plane wave component.

The function G(x,h) satisfies the two-dimensional wave equation,

2
§-§i5§31-+ 8%G(x,h) = 0 (3.23)

dx

where B = (K2 - hz)l/2 inside the sheath, B = BO = (KE - h‘?)l/2

being the respective wave numbers. If the proper

~outside

the sheath, with K and Ko

Riemann surface is chosen as shown in Figure 3.12, the square root
can be defined as

+ (Kz - h2)1/2 h real, K > |h| (3.24a)

™
n

L5l - B2

™
n

h real, X < |h| (3.24b)

The conditions given by equations (3.24a) and (3.24b) are based on the

following physical requirements: (i) waves radiated far from the aperture
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travel in the +x direction and (ii) slow waves propagating in the +z
direction decrease exponentially in amplitude with respect to distance
from the dielectric sheath. The boundary conditions for solving this

problem can be regarded as

G(0,h) = Gy(h) (3.252)

G, and %—g— are continuous at x = t (3.25b)

where Go(h) is the Fourier transform of the aperture illumination.
The principal interest is in region 2, outside the sheath, where the
transform function can be denoted by

JBO}:

Gz(x,h) = A(h)e (3.26a)

In a similar manner the field in region 1, inside the dielectric sheet,

can be represented as

jBx X

G, (x,h) = B(w)e? ¥ + C(hye 7B (3.26b)

Solving equations (3.26a) and (3.26b) with the boundary conditiomns given

by equations (3.25a) and (3.25b) yields

Gy () exp(-38;t)
B

cos Bt - ] -%sin Bt

A(h) = {3:27)
And by substituting equations (3.26) and (3.27) into equation (3.21),
one obtains

s= Gy (h) exp(-jB8;t)

B , .
Ey(x,z) = 'Z—H}-{:_w 5 exp (JBOX) exp (jhz) dh (3.28)

cos Bt - j -—g-sin 8t
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The determination of the far-zone radiation pattern is made by using
the integral form given by cquation (3.28) and proceeds by saddle point
integration, First, one transforms equation (3.28) into thec polar
coordinates v, and § as shown in Figure (3.11). The coordinates r and §

are related to x, z by

X =T cos 6
- (3.29)
Z =r s5in 6
Next, using the transformation h = KO sin @, equation (3.28) can be
written
Ey (r,8) = %ﬁ f F(a) exp [jKOr cos (a-8)] cosa da {3.30)
C

where the new contour is given in Figure 3.13. In the transformation
from the h-plane to the a-plane, the integral becomes independent of the
sign of the square root, therefore the branch cuts disappear.

To compute the field, one can let K ,r + =« and use the saddle point

0
method to determine an asymptotic formula for the integral.
For the purpose of finding the radiation pattern only, it is sufficient

to observe that the saddle point occurs at a = 8. Therefore, the angular

variation of field can be specified in terms of a function of 6 as

G(6) = GO(KO sin 8) cos & - T(8) (3.31)

where T(0), the sheath transmission pattern, (Nagelberg, 1968) is

given by
exp (—jKOt cos 6)
T(8) = :
cos [Kot(e -sinze)I/Z] - —d cosza 172 sin [Kot(er- sinze)ljz]
L {sr-sin 8)

(3.32)
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T(8) is dependent on 6 and changes the radiation pattern of the
aperture for all angles to some extent. However, the most significant
changes occur at angles near § = %3 and at the frequencies in the
vicinity of cutoff for a TEn surface wave on a dielectric slab ccvering
a ground plane.

The distortion of the radiation pattern has the physical appearance
of a surface wave. The radiation energy is near the dielectric inter-
face; however, it is quite different in several respects. First, the
radiation which is discussed here belongs to the continuous spectrum
of the aperture radiation field. Its amplitude decays inversely with
respect to the distance frbm,the aperture, rather than being independent
of distance. Furthermore, the endfire radiation does not exhibit a
cutoff characteristic but has a symmetrical amplitude variation about
the frequencies given by equation (3.32).

The surface wave modes excited by the aperture are associated with
the discrete spectrum of the radiation field, and are derived mathematically
from the residues of the inversion integral with respect to its poles.
These poles correspond to solutions of the equation

a

cos 8t + — sin 6t = 0 (3.33)
where @y = (hg - Kg)ljz, h0 being tne surface wave

propagation constant.
Experimental work on this problem has been done by using an apparatus
as illustrated in Figure 3.14, which consists of a network feeding an open

X-band (WR-90) waveguide flanged to a ground plane. In order to simulate

the two dimensional situation, parallel conducting planes in the H-plane



are uscd. No additional field components are induced, and the fields are
independent of the position in the E-plane.

The ground plane and aperture arc covered by a uniform slab of
stycast material with dielectric constant of 6.0 and thicknecss such
that the (TE)l mode cutoff frequency was 10.0 Gliz. The experimental
results shown in Figure 3.15 demonstrate the resonant cnd-fire radiation
phenomenon. The peak of end-fire signal at 10 GHz is the same as that
obtained in the theoretical curve. The first principal effect of the
sheath on the pattern of a matched clement is to introduce a broadening
of the radiation pattern and a resulting component of radiation in the
endfire direction at frequencies near the cutoff frequency of a surface
wave on the dielectric slab. However, it is important to distinguish
this phenomenon, which is regarded as a distortion of the far-zone
radiation pattern, from what is commonly referred as a surface wave,
which is a separate mode of propagation belonging to the discrete

spectrum of tne radiation field.

3.4 Integral Equation Method. This method expands the field into

appropriate normal modes in the various regions and then matches boundary
conditions across the interfaces. The structure of the infinite array

of rectangular wave guides discussed in this method is similar to that

of Figure 3.1. In this method, the array structure is also chosen as a

two dimensional array fed by parallel plate waveguides and the structure

is also considered infinite in both the x and y directions. The differences
between Figure 3.2 and Figure 3.16 are the following. Figure 3.2 has a
symmetric iris in the aperture and the width of the slot is chosen very

small. Figure 3.16 does not have an iris in the aperture and the width
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of the slot is as wide as the parallel plate waveguide. Alsc, the medium
in the parallel plate waveguide of Figure 3.2 is filled with air, whilc
the medium of the parallel plate waveguide of Figure 3.16 is filled with
a dielectric material. In order to consider an infinite array of
parallel plates covered with a single dielectric slab and scanned in the
H-plane azs shown in Figure (3.16b}, it is convenient to divide the space
into three regions, the region inside the waveguides, the region inside
the dielectric slab, and the region in free space. However, regarding
the geometry of the problem, it suffices to separate the space into two
regions, inside and outside the waveguide.

The orthonormal functions and the modal impedances in the feed

waveguide are given by

N &

¢, (x) =f%cos [E—g-x] , ifn=o0dd |x| <

2 nil . b
¢ (x) =\/;-51n (s x) , ifn=even |x| <>
b B
fatxd =0 for o ¢ x| <5
and
Z_ = wu/an
where
2 nily 2 _
an=JKr::1-(—2] , m=0,1,2,3..
K= m#uoao

and o, is the z-directed propagation constant for a waveguide filled with

a dielectric of dielectric constant €~ By using the Floquet theorem
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(Collin, 1960), it can be shown that the dielectric slab region and the
free space region have identical modal functions when the tangential
fields are continucus at all points across the dielectric-free space

interface. The normalized modal functions can take the form:

¢m(x) =Jr%:exp {j[(ZmH/b) + Tx)x} m=20, +1,

where 'I'x is the phase shift per unit length. The modal impedances for
the dielectric and free space regions are different. They are given

respectively by

D _

Z = mu/Bm,
_ 2 2mll 2
Bm —J K 2 - 5t Tx] for 0 <z <t
and

0 _

z = wu/Ym,
2 2m 1 2

T =j K R Tx] for z >t

When the waveguide is excited in the fundamental mode with unit
amplitude, the fields in various regions are expanded into the normal

modes and can be written as
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jalz —jalz o -jo_z

(3.35)

H(x,z) = (e © +#Re ~ ) o)+ ] Ie(xe " , z<0
n=2
o jB_z -jB z
- * m = m )
H (x,2) = mz-m (I e +1_e ) v (X), 0<z<t
= Jy_(z-t)
_ m
Hx(x,z) = E Ié ¢m(x) e i z>t
m=-e
and
jalz -jalz © -janz
Ey(x,z) = -Z,(e -Re ) $(x) + ngz 214 (x)e , 220
= JB z -JB_z
- _ D + m_ - m
Ey(x,z) mz_m z (1 e I e ) v (x), 0<z<t
- jv, (2t
Ey(x,z) = - mzm z Ity (x) e , z>t
where R = reflection coefficient.
Zg = the modal impedance in dielectric
Zg = the modal impedance in free space

The I's are the unknown modal coefficients. Waves of all modes
travelling in both the positive and negative z directions are included
in the fields for 0 < z < t, because this region is situated between two
interfaces. Similarly, the fields for z < 0 contain components travelling
in the negative z-direction due to scattering at the array aperture.
" By applying the boundary conditions at z = 0, the following equations

can be found



H (x)

Ey(x)

Because of

(1+R)

m

Similarly,

H (x,t)

Ey(x,t) =

[==1

= H (x,0) = (1+R)¢; (x) + nzz I ¢ (x)
= mzﬁm (L + 1) ¢ (%)

= E,(x,0) = -Z, (1-R) ¢, (x) + nzz z 1 ¢ (x)
= - mz_m 221 - 1)y (x)

the orthonormality among the modal functions, onc obtains

b/2

¢.(x) H_(x) dx,
“b/2 1 X

b/2

¢_(x) H_(x) dx, n>2
b2 D X -

b/2

Y (x) H (x) dx
_b/2 m X

from the boundary condition at the interface, z = t,

@ jB t -j8 t
= * m = mn I
= mz_m (I e +1 e ) v (x)
= 1 Iy (x)

w jB t -jB t

D m - m

= mz_m z, (1 e -1 e ) v ()
=- 73 AL v (x)

(3.38a)

(3.38b)
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By observing the right and the left side of equations (3.38a)
and (5.38b) which are expanded with respect to the same set of modal
functions, one may write

jB .t -jB t
+ m - no_ oo,
In e + 1 e = Im (3.39a)

* m - _ 50 -, ;
Z (Im e -1 e ) = Zm Im {3.390)

Equations (3.39a) and (3.39b) show that the air-dielectric interface

at z = t is a simple one in that the m-th order mede in the dielectric
region couples only into the same order mode in the free space region.

This implies that the fields at the air-dielectric interface are completely
determined when the fields at the array aperture are obtained. Hence,

it is necessary to solve only for the aperture field. From equations
(3.35), (3.36), (3.39a) and (3.39b) one obtains an integral equation

having only the aperture magnetic field as the unknown function.

Thus
b/2 ¢ = ®
22, ¢, (x) = f { Loz (X)e (x") + ] Zglwm(xwm(x')} H (x') dx'
-b/2 n=1 m=-o<
(3.40)
where
D Z0 - jZD tan Bmt
z! =2 ——% (3.41)
n "z - jZ_ tan B t
] m m

It is clear from equation (3.41) that the equivalent impedance Zé for

the mth order modes is the familiar input impedance of a transmission



5
(93]

line which has a characteristic impedance Zﬁ, propagation constant &
1i

and length t, and is terminated in a load impedance ZO.

1

ia

If one wishes to study the property of an array covered by a
stratified medium as shown in Figure 3.17, eguation (3.40) is still a
valid integral equation. In this case, Zn are the wavegulde mode
impedances, and Z& are the modal impedances which are seen at the array
aperture of the N layer stratified dielectric medium.

According to the Floquet theorem, the exterior modal functions for
the quasi-E plane scan are the same as those for H-plane scan, but the
wave modes supported by the waveguide are different. The orthonomal

modal functions for this scan are

———

€
- n RIL - - £
mn(y) = -J-—E cos (= y] » n =-even, fory <53
“n Tl <
w (y) = - | — sin [—z y) » n = odd, fory < 5
_ c d
w (y) =0 forz <y <>
where
¢ = internal waveguide width
d = element spacing

A sinusoidal variation of sin [{H/d)}x] which applies to all tangential
field components, is omitted for brevity.

The integral equation, with the aperture electric field as the
unknown, can be given by

<«

c/2 =
2Yjwy (y) = {c/2 {nZO Y 0, e (y') + mz_m Yo B w(y')} E (r') dy

(3.42)



where

1

2 nlly 2
Y'ﬂ B IL}\ sl B _C.] /UJ}.I

The Yn are the interior modal admittances and the Y% are the exterior
modal admittances with the presence of the dielectric slab.

The method used in solving the integral equations is as follows:
The first step is to expand the unknown function as a linear combination
of N linearly independent functions. The second step is to substitute
the representation into the original integral equation which leads to
an approximate equation. The third step is to set the difference between
the left and the right side of approximation equations to be orthogonal
to the set of functions individually. Then, the fourth step is to obtain
a set of N equations in N unknowns. The fifth step is to assume the
higher mode coefficients to be zero. The magnetic field is thus assumed

to be

M
- . - ’ <
B (x) : mE_M Ity (x), I =0 for Im| > M (3.43)

Substituting (3.43) into (3.40) leads to

M ©
22,4, (x) - E { z 2, C o (x) + 2! wm(x)} Irzo (3.44)
m=-M ‘n=1
where
b/2
Com = {bxz ¢, (x) ¥ (x) dx

Because equation (3.44) is orthogonal to the set of functions wl(x),

2 =20, +1, ... +M, it can be shown that



&7

mg-b {ngl “nbnntng Cmﬁ} In S 8Cyy 250,23, - 20 (3.45)
where
b/2
G ™ {b/z ¢ (x) ¥, (x) dx .

The reflection coefficient R is then obtained from equations (3.43) and

(53:37)-

M
(1+R) = I, : % C,p It (3.46)

Figures 3.18 and 3.19 show the reflection coefficients as a function
of scan angles for an infinite array of rectangular waveguides which are
covered with a single dielectric layer and scaned in the H-plane. The
results are obtained for the following parameter values; b/XA = B/A = 0,5714,
e, = 3.0625 with different dielectric slab thicknesses t. From those
curves one can find that
(i) when the thickness of dielectric slab is very small, no resonant
peak occurs.

(ii) When the thickness is increased beyond a critical value, usually in
the vicinity of Sks /16 a resonant peak starts to appear at a scan angle
close to the value ;n(l-b/k}, and the peak is preceded by a dip.

(iii) Increasing the slab thickness causes the peak to move toward the
broadside direction and the peak becomes sharper.

(iv) A further increase in the slab thickness makes more than one peak
appear.

For the E plane scan, Figures 3.20 and 3.21 show the amplitude of

the reflection coefficient as a function of scan angle with parameter
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values d/x = 0.5714, = 0.85 and Er = 3.0625. Also, thick wavczuide

£
d
walls are used in order that the waveguides may support only the dominant
TEM mode.

From the above analysis, one may find that for the E plane scan, in
the absence of a dielectric material, the reflection coefficient is flat
over a range of scan angles except in the vicinity of the grating lobe
formation angle (Tyt = 15403. At this angle a sharp peak appears. This
peak position is not changed as long as the dielectric slab is relatively

thin. But as the thickness is increased beyond a critical value of about

A /4, the peak starts to shift toward the broadside direction. A further
%

thickening of the dielectric slab will lead to multiple nulls. This
phenomenon is caused by surface-wave-like space harmonics propagating

over the corrugated surface.



CHAPTER 1V

EXCITATION AND APPLICATION OF SURFACE WAVES

4.1 Typical Surface Waves. For the time being, the surface waves of

greatest interest have the following three distinctive forms, namely
(i) the inhomogeneous plane wave supported by a flat surface, known as
the Zenneck wave; (ii) the inhoﬁogeneous radial cylindrical wave also
supported by a flat surface and sometimes described as the radial form
6f the Zenneck wave; and (iii) the axial cylindical wave (supported by
a cylindrical surface) associated with a surface of circular profile
in the transverse plane and referred to as the Sommerfeld-Goubau wave,
These forms of surface waves are shown in Figure 4.22. All of those
field components can be derived from the Maxwell's equationms.
First, it is assumed that the surface as shown in Fig 4.22(a) lies
in the x-y plane at y = 0 and that the media on each side of the interface
are homogeneous. To describe the wave one requires that there exists
the three fiecld components Ex’ Ey and Hz, both above and below the surface.

Naxwell's equations can then be reduced to

GE,  OE,
8x ~ oy -Joul, wii-dg
oE 1 BZHZ
il — (.2)
% P 2%H, .
oy = (c+ijJ 2 (3]
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Combining equations (4.1), (4.2) and (4.3), the Zenneck wave equation

can be obtained as

- - - > 4
+ K°H_ (4.4}

where

kK2 = -jup(o+jue)

Secondly, in order to find the corresponding field components Er, Ey

and I-i¢ of the radial cylindrical surface wave as shown in Figure 4.22(b)

one can reduce Maxwell's equations in cylindrical coordinates to

BE_  3E
T —-Jiar = -juuH, (4.5)
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Combining the equations (4.5), (4.6}, and (4.7), the radial cylindrical

surface wave equation is obtained

2 2
o H 3 H aH

N ii.n¢ -1t K2H¢ . (4.8)
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where

K = -juwp(otjuwe)



Thirdly, the axial cylindrical wave is shown in Figure 4.22{c) and

it has the ficld components H_, Er, and Ex which can be obtained from

0

the Maxwell's cquations

aEr BEX
ax - ar - I9ull %

BIIB
o = (o+juwe) Er (4.10)

1 BHS
; He + F = (0""]&5) EX (4.11)

Combining equations (4.9), (4.10) and (4.11), one can obtain the axial
cylindrical surface wave equation,

2 2
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where

k2 = -juu(o+jue)

The solutions of equations (4.4) and (4.8) can be found by seeking for an
exponential decay of field above and below the surface. Equation (4.12)
can be solved by using the standard form of Bessel's equation. The
details of solutions of these three fundamental forms of surface waves
have been studied by Barlow and Brown (1962). The axial cylindrical
surface wave is regarded as perhaps the most important form of surface

wave from the point of view of application.

4.2 Excitation and Application of Surface Waves. In recent years, because

there still exists various problems of launching surface waves in
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transmission systems, surface waves have not been widely used. The
problem of launching has been considered in various aspects. Theorctically
an infinite aperture is required to launch a pure surface wave, but in
practical cases a good approximation to this requirement is obtained by
neans of a horn-type radiator spreading out a TEM wave source. This
technique can be applied as shown in Figure 4.23, not only to the plane
and radial form of Zenneck wave, but alsc to the axial cylindrical wave.
The efficiency of launching an axial cylindrical wave is relatively
high because the field distribution of the TEM wave from the coaxial
line source, being inversely proportional to the radius, forms a better
match to the corresponding surface wave Hankel function distribution.
There are alsc other kinds of launchers, such as dipoles and slots. The
two types of launchers can be mounted at appropriate heights above the
guide surface. In suitable circumstances, the launching efficiency can be
as high as 80 percent (sece Figure 4.24). The axial cylindrical wave as
a high-frequency link between two points has many applications. The
single-wire transmission line can be suspended by nylon cords, so as to
keep the wire away from obstacles disturbing the free passage of the
wave. It is generally convenient to coat the wire with a layer of
dielectric in order to confine most of energy of the field within a
reasonable distance outside the wire. An installation of this kind
has been set up over the McDonald Pass in Montana, U.S5.A. as a television
link. The line is 14 miles long and operated in the frequency range of
150 to 250 MHz with an attenuation averaging 10dB per mile.

Surface waves on single-wire transmission lines are not subject to

a frequency cut-off and theoretically they can be used in any part of the



57

flat
stripline /horn
1] :
vy ' E, Yy . RIAFARY
1 I -
LSS

flat supporting
surface

(a) Plane Wave

flat radial horm

VA VAR
\\‘_.

(b) Radial wave over flat surface

Figure 4.23 Horn-Type radiators for launching surface wave



58

cocaxial line

feed
cvllﬂar*cal
‘q' .—.m Y -‘uDCI‘ulI‘Ag

‘ surface

Fegure 4.23 (c) coaxizl cylindrical wave

&4}

~—~

twin wire feed to
vertical dipole

\

_____1{ E

/r-flat supporting surface

ll.pl![ l!l”lf Ty g ¢ 7737
tref it s r'::lf’l'
z//;/zz/l!:/fizlf.-;; Y

(a) vertical dipole launcher over flat surface

waveguide feed
to horizontal
slot

\ ] )
E Flat supporting surface

, ,/r;:l{;{'!l Fig 1777
JII;I Jit ettt/
r:ur;r!;:::::lr;rita::z/

(b) Horizontal launcher over flat surface

coaxial line feed

){//“ coaxial slot

(] I
Matching iris € cylindrical
quarter-wave supporting
transfer section surface

(e¢) coaxial slot launcher over cylindrical surface

Figure L4.2L4 Dipole and Slot Launcher



w
(Xal

spectrum. In practice, the spread of the ficld outside the conductor
becomes excessive below about 30 Miz, so that a compromise is generally
adopted by working in the V.H.F. band. One disadvantage is the fact

that the surface wave circuit forms an unscreened channel which can be
seriously disturbed by any discontinuity along its length, including sharp
bends or water, ice and snow adhering to the surface of the guide.

Under suitable conditions, the Zenneck form of wave can be supported
by the sea and might be used for short range communication between ships.
Because radiation occurs for surface waves transmitted zlong guides
with suitable discontinuities, such guides can be used as radiators.

There arc many antenna structures called surface wave anteannas
which have been found to support surface waves. Some surface wave
antennas can be applied to aircraft, the radiator being mounted nearly
flush with the aircraft surface. According to the form of the radiator,
those structures are divided into two categories, line radiators and
planar radiators, Line radiators comsist of dielectric rods, corrugated
rods, slotted waveguides, helices, and Yagi-Uda arrays. Planar radiators
are dielectric sheet antennas, corrugated surface antennas, ferrite and
plasma sheet antennas and slotted surface wave structures. Launching
a surface wave over the earth has been done by using a ferrite-loaded
horn type of antenna (Barlow, 1967). This type of antenna has been used

to launch a 1.5 MHz surface wave over the earth.



60

CHAPTER V

SUMMARY AND RECOMMENDATION

5.1 Summary. Chapter Il starts with the basic concept of electric

field components of an incident wave. Instead of introducing the angles
of incidence and reflection explicity, the incident wave and transmitted
waves in different regions are obtained. By solving the wave equations,
the wave impedances at different interfaces are also obtained. Using
transmission line theory, the input impedance at the dielectric inter-
face can be represented as an equivalent transmission circuit. By
assuming the dielectric is low-loss and the thickness t is very small,
one can derive the wave number and propagation factor in terms of
the dielectric constant and dielectric thickness t. Thus the character-
istics of surface wave propagation along the thin dielectric coated
conducting plane are determined.

The thick dielectric coated conducting plane is treated elsewhere
by Collin (1960) by means of a complicated mathematical analysis.

Chapter III forms an important part of this report. By using various
mathematical methods the effect of surface waves on phased array antenna
structures is discussed. The first section discusses the unit cell and
equivalent network method. The early history of speculation on the role
of surface waves has been summarized by Oliner and Malech (1966). These
authors also presented a ''ghost mode' hypothesis to explain the cause of
the nulls on dielectric-coated slot arrays, and indicated that the surface
wave was a mode of a modified short circuit structure. Later, Knittel,

Hessel and Oliner (1968) have expanded these early efforts by using the



unit cell and equivalent network method to show the presence of element
pattern nulls which occur at certain scan angles on the phased array.

The method used to examine the presence of guided waves on phased array
surfaces is also mentioned. They have also drawn the conclusion that
surface waves can exist on a phased array which is covered by a dielectric
slab.

The second section of chapter III uses the Fourier Transform method
to investigate the relation between the far-zone radiation pattern and
surface waves in an aperture covered by a dielectric sheath. If the
distortion of the radiation pattern has the physical appearance of a
surface wave, its energy should be near the dielectric interface, but
actually it is quite different in several respects. First, the
radiation discussed in this section belongs to the continuous, rather
than to the discret spectrum of the aperture radiation field. Secondly,
its amplitude decays inversely with distance from the aperture. Thirdly,
the end-fire radiation does not exhibit a cutoff characteristic but
instead has essentially a symmetrical amplitude variation about the
frequency given by equation (3.32). The surface wave modes excited
by the aperture are associated with the discrete spectrum of radiation
field and derive mathematically from the residues of the inversion
integral with respect to its poles.

The third section of chapter III uses the integral equation method
to analyze the effect of dielectric slabs on the characteristics of
phased array antenna structures. According to the theoretical calculations
by Wu and Galindo at different wave lengths, the following conclusions

are obtained:
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(i) ¥hen the thickness of dielectric slab is relatively small,
no surface wave occurs.
(ii) When the thickness is increased beyond a critical value,
usually in the neighborhood of SAerllﬁ a resonant peak in
the reflection of coefficient starts to appear at a scan
angle close to the value of 27(1-b/A) and the peak is usually
preceded by a dip where the surface wave appears.
(iii) When the slab thickness is increased, the peak becomes sharper
and moves toward the broadside direction.
(iv) A further increase in slab thickness makes more than one
peak appear.
Thus the appearance of a peak in the reflection coefficient is caused by
a surface wave at the interface between the dielectric and free space.
Chapter IV contains typical surface wave equations derived from
Maxwell's equation and the typical surface wave mode patterns, Also
many radiators and launchers for surface waves are mentioned. Among
these structures the efficiencies have not been computed by mathematical
formula because their geometrics are very complicated. In practice
only the Zenneck wave and axial cylindrical wave have a reasonable

efficiency using a horn type radiator.

5.2. Recommendations for further study. There still are many

difficulties with the excitation of radial cylindrical surface waves
on a dielectric-coated conducting plane. The most important problem
is the launching efficiency of surface wave power on the conducting
plane covered by a layer of dielectric or over a corrugated surface.

This problem has been discussed by a number of authors.
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ABSTRACT

The purpose of this report is to review the characteristics
of surface waves on thin dielectric coated conducting planes, to
study the effect of surface waves on phased arrays, and to review
the typical surface waves equations and the typical wave mode
patterns.

The results of analysis show that TM surface waves exist over
a thin dielectric coated conducting plane with a surface impedance
having an inductive term, while TE surface waves exist over a thin
dielectric coated conducting plane with a surface impedance having
a capacitive term.

The effect of surface waves on phased arrays has been analyzed
by various mathematical methods. The results indicate that dielectric
covers of various thicknesses over a phased array can change the
radiation pattern significantly at different scan angles. This effect
is caused by the existence of surface waves on the phased array.
Theoretical analysis and experimental measurements have shown good
agreement over a given frequency range near the end-fire direction.

The typical surface wave equations have been derived from Maxwell's
equations. These equations yield three typical surface waves. The
excitation and application of surface waves are discussed. Different

excitation techniques are also shown.



