
A STUDY OP PLANT IDENTI/ICATJON TECHNIQUES

\
by

CHEN-HUNG TANG

B. S., National Taiwan University, 1952

A MASTER'S REPORT

submitted in partial fulfillment of the

reauirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1967

Aoproved by:

I

Major Ptofessor



LP

Ml TABLE OF CONTENTS

INTRODUCTION (i)

MODEL IDENTIFICATION (1)

DYNAMIC TRANSMITTANCE IDENTIFICATION (10)

(1) Evaluation of the Coefficients of the Differential
Equation (10)

(2) Evaluation of the Parameters of the Impulse (or Unit
Step) Response (15)

(a) Determination of the impulse (or unit step) response
by the evaluation of the convolution integral (15)

Braun's method (15)

Mishkin and Haddad ' s method (21)

Kalman's method (28)

(b) Determination of the impulse response using
cross-correlation (39)

(3) Evaluation of the Transfer Function from the State
Equations ( 52

)

CONCLUSION (71)

ACKNOWLEDGEMENTS (72)

REFERENCES (73)



il

Intelligent design of a feedback control -ystem can be ef-

fected only if the designer is cognizant of the dynamic charac-

teristics of the process to be controlled. In a conventional

linear control systen, the process can be described perfectly by

a known transfer function G(s), and a feedback control system

can compensate for variations due to changes in the parameters of

the controlled system and to external disturbances to some ex-

tent. However, a conventional feedback control system is not cap-

able of satisfactory performance in the presence of extreme

changes of the controlled system's parameters, and when the system

is subjected to large external perturbances. These changes are

often in an unpredictable manner. It has been suggested that

adaptive control systems might be designed in such a way as to

alleviate this problem.

Usually, adaptive control systems are characterized by de-

vices which automatically measure the dynamics of the controlled

system and other devices which automatically adjust the charac-

terXsti,c5 of the controlled elements, based on a, Gompsrison of

these measurements with some optimum figure of merit, so that two

fundamental features found in all adaptive control systems are

(1) Identification, (2) Actuation. In this report, some techniques

of identification of linear systems have been studied.

Model identification is described in chapter one. In the

technique, a set of simultaneous differential equations which

constitute a mathematical model of the system is set up usir^

physics laws. From this model a block diagram, or possibly a
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circuit diagram of an analogous electric network Is derived in

order to determine all the parameters of the system.

The study of dynamic transmittance identification is empha-

sized in chapter two. This is a much more practical approach to

the identification problem, since in this restricted interpre-

tation of the problem, attention is focused on only those charac-

teristics which are directly of interest. In particolar, concen-

tration is focused on an evaluation of the transfer characteristics

from the specific inputs to the outputs of primary interest.

Therefore, in this case, the Identification may be in terms of a

set of coefficients of a preselected differential equation, or in

terms of the values of any desired number of points on the impiase

response, of in terms of the transfer function of the system.

Some methods proposed by Braun [1], Kishkin [2], Kalman [3],

Truxal [1] , Anderson [5] and Lendaris [6] in connection with this

technique are investigated in this report.



MODEL IDENTIFICATION

Generally, a physical component can be described mathemati-

cally by means of a differential equation. When a system or pro-

cess is composed of various physical components, we can usually

obtain a set of simultaneous differential equations which consti-

tute a mathematical model of the system. For example [1], if a

process consists of a D-C electric motor driving a load as shown

In Fig. (1.1), the system may be described by the set of six dif-

ferential equations. .

"*

I'M + Hi + Kb^ (1.1-a)

Armature electric circuit

,, d8

^M + K^ •*• Kb-?Taat a dt

Energy conversion term

I4 = K^i (1.1-b)

Summation of torques at motor shaft

1d

d^e

Jm—T * ^m-dF ^ ^^V-^) (l-l-^^

Gear ratio

2 g 1

Torque transmitted through gears

S\(VV = ^2^^-'2^ ^^'1-3)

D'Alembert's law at load

d^e i,s

II



t^i l_4=^ 3l

Fig. (1.1) Electromechanical process

• Parameters

•Motor Inertia J„

Motor damping B„
uX

Shaft oaapllanees K^, Kg

Load inertia J-

Load damping B-

Armature parameters R , L

Variables

Armature voltage e

Armature current i

Motor angle &^
Load position 9,

Gear angles e, , Sg

Developed torque 1^



In this set of differential equations, L^, R^, K^, 3^^^,
J^^^,

K. , K„, g, Jj and B, are the parameters of the system. From this

set of differential equations, assuming that all these parameters

are icnown and the Independent variable e^ is given, then any of

the dependent variables i, 1^, s^, e^, 6^ and 6^ can be deter-

mined.

In fact, the differential equations constitute only a model

of the physical system. In the derivation of the differential

equations for a system, a large number of assumptions must be

made. For example Eq. (1.1) is obtained by the assumption that

the motor is operating in linear region (no saturation, no static

friction), that gears are ideal (no backlaoe, negligible inertia),

and that all damping is viscous.

If the interrelation between the dependent variables in the

physical model is desired, a block diagram can be constructed for

this piarpose. There are many block diaigrams which can be con-

structed, depending on which parameter we are Interested in. The

most common block dlaigraim, however, is one which represents the

manner in which the signals flox'j through the system. For the ex-

ample of the armature-controlled D-C motor and load, a block dia-

gram can be derived from the differential equations in the fol-

lowing manner:

If p is used to represent the operator d/dt, Eq.(l.l-a) yields

e = L Pi + E„i + K, P6
a a . a b m

which can be written in the form -.

e - K.Pe„
, _ a m /, 2)

a a
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k

A relation between the current 1 and the devel oped torque l^is

given by Eq (1.1-b). i.e.,

Id = V (1. 3)

From Eq. (1 .1-c) , it follows that

1/1 = Jml"^d m m mm 1ml
or

h^\-\^ = 1^ - (J„P^ + B„P)e„
d m mm

and from Sq . (1.1-f), it follows that

V'^L ^ ^L^\ *h^'L-'2> = ° (1. ^)

From Eq. (1 .1-e), Eq. (1.4)yields

'l^^'l
^ V\ + s\i\-\) =

- - ,*'
'

or
,
:".

6 = —i-%-^l'

2+B^P)
-H.-

,

(1 5)

Looking back for Eq. (1.1-e) and Eq. (1.1-d). It follows that

1 m s4'V^2)
i

• —

or

\=\-
K

K„
= se2 -g4''^"'2^ (1 .6)



Finally, the relation between 5, ^""^
^r,

^^ derived as follows:

From Eqs. (1.5) and (1.6), it follows that

^2

s^i'Vi^ sKj_[geg - S%(9l-^2^ " ^j

^ Jl^^ + ^L^ "^L^^ * ^L^

g\^ - Vl -^ ^2^ - S^lS^2

^2^2 - Vl
Jj^p2 + B^P

Thus it follows that

(J^p2 + B^P)6^ = ^2^2- Vl

'l'V^ * V * ^2> = ^2^2

^2
(1.7)

If a block diagram is desired to involve the succession of varia-

bles:

\



From Eqs. (1.2). (1.3). (1.5). (1.6) and. (1.7), the final block

diagram of Fig. (1.2) is obtained.

'^O UP+R

KbP

J„P%S.P

JtP' + B.P

JlP^B.P+K;
Kz

ca-o
Pig. (1.2) One possible block diagram

Thus, a block diagram model is exactly analogous to the dif-

ferential equation model, and by means of the diagram, the inter-

relationship of the various system parameters can be shown visu-

ally.

In order to Identify a prooass, the evaluation of each

parameter in the mathematical model of the system is required.

Thus, for the specific example of D-C motor control of an inertial

load with viscous damping mentioned above, all the parameters L ,a

R^. K.|^. B^, J^, IC|_. Kg. g, J-^ and B^ must be evaluated. If all

these parameters are known with reasonable accuracy and the mathe-

matical model adequately represents the process, the performance

of the process under all possible operating conditions and excita-

tions can be determined.



In general, It is Impossible to obtain such extensive data

for the evaluation of all parameters. But certain parameters,

such as the gear ratio, the motor inertia, the motor torque con-

stant, and the shaft compliance in the above example are usually

known with at least reasonable accuracy.

In order to evaluate the other unknown parsimeters, the study

of the differential equations, the block diagrams, or possibly the

circuit diagram of an analogous electric network is needed. To

Illustrate this latter procedure, consider the example mentioned

above. From Eq. (1.1) and using elementary transformer theory,

a circuit diagram as sho-«n in Pig. (1.3) can be obtained. The

differential equations which describe this circuit have the same

form as those describing the electromechanical system shown in

Fig. (1.1). However, in order to easily evaluate the parameters,

the circuit diagram must be as simple as possible. Using ele-

mentary transformer theory again, the two ideal transformers in

Pig. (1.3) can be removed if all impedances are reflected back

into the input circuit. Then the circuit takes the form shown

in Fig. (1.4).

Fig. (1.3) Circuit diagram



Kb 8".

K,

s'kJ A 3K.i

Fig. (LJ^) Circuit diagram simplified fron ?ig. (1.3)

From the simplified diagram as shown in Fig. (1.^), it Is

seen that, by using the bloclced rotor test, H^ and L^ can be

determined by applying either a step function or sinusoidal sig-

nal at e . If a step function is applied, the armature current
a

takes the form

E
i = _a

(1 . ,-H^t/L^) (1.8)

where R can be found from the final value, that is R = E,/I,
a a a.

where I is steady-state current, and L^ can be found from the

time constant of the exponential rise toward the final value.

Similarly, additional tests may be used to determine the values

of mechanical parameters such as torque, damping, etc., of the

system.

There are two difficulties in such a one-by-one determin-

ation of model parameters.
,
First, in utilizing this method, the



control engineer must be able to write the differential equations

from the physical laws, and he must be able to distinguish which

parameters are negligible and which are important in order to

simplify the situation. This is not easy to accomplish except in

relatively simple control systems. The other factor limiting the

usefulness of this parameter-evaluation approach is due to the in-

herent nonlinearity of physical processes. In order to make the

linear model useful, parameters must be measured under the linear

operating conditions.

The advantages of this method are that it gives a detailed

picture of the physics of the operation of the process and the

effect of varying a specific parameter can be directly estimated.

Because of these difficulties and because extensive data is

needed in this approach to identification problem, attention is

usually paid to the evaluation of the transfer characteristics

from the inputs to the outputs of primary interest. For example,

in the system mentioned above, rather than attempting to evaluate

each of the parameters, the over-all transfer function 9 j^/E^ is

sought. Such a restricted interpretation of the identification

problem is referred to as "dynamic transmittance identification."
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DYNAMIC 'TKANSMITTANCa IDENTIFICATION

There are many equivalent mathematical forms which can be

used to describe a linear time-invariant system and each of these

forms can be used for the solution of identification process.

Among these, the following three forms xfill be discussed,

(1) The differential equation

(2) The impulse (or unit step) response

(3) Pulse transfer function

Fig. (2.1) shows the notation to be used in a transmission

process.

r(t)
Process

c(t)

Fig. (2.1) Simplified process

where r(t) and c(t) can be variables in any physical system, and

they need not be in the same units. The only restriction is that

the process must be linear time- invariant. Of course, some pro-

cesses requiring complex adaptive control systems are time-

variable. The following discussion will be confined to either

the time-invariant system or the slowly varying process. By a

slowly varying process it means one in which the impulse response

decays to zero before the process parameters can vary signifi-

cantly .

(1) Evaluation of the Coefficients of the Differential Equation
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The mathematical equations describing the dynamic behavior

of a system can usually be reduced to a differential equation

Involving the input and the output. This equation relates the

output plus its derivatives to the input plus its derivatives,

and formulates the basic relationship between the input and out-

put, i.e., the relationship between the cause and the effect.

For example, assuming that the system is third order, the equation

can be written as

In order to identify the process described by Eq. (2.1), the

coefficients of a's and b's must be evaluated. Generally speaking,

the evaluation of the a's is far more important and difficult than

evaluating the b's, since the right side of the differential

equation usually is knox'jn from the process, and once the a's are

evaluated, the b's may be evaluated in relatively simple manner,

because the a's determine the form of time variations while the

b's determine the relative amplitude of the system response, so

that the concentration is on the evaluation of the a's.

In Eq. (2.1), the a's are the coefficients in the character-

istic polynomial of the process. For example, the zeros of the

polynomial

3 2
s-^ + a-s + a, s + a^
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are the natural frequencies of the above process. If these zeros

are denoted as z, , z^, z,, the transient response of the process

consists of the terms of the forms

e^t e^2^ eV

Thus, evaluation of the natural frecjuencies present in the

transient response may be used to determine the characteristic

polynomial. Take the second order system for example, in this

case

n n

or

^,2
- 2^%dt *%'<= = %'-

• (2.3)

The impulse response corresponding to Eq. (2.3) and Eq. (2.2)

is shown in Fig . (2.2).
1.0

*.8 /~\ > 5=0-1

0.6 //"^C >f=o-^s

0.4 |/\i^> " "'^ /^\
0.2 i^^\\^T=i-'' / \

CM
-0.2

' ^^^-- ' /i^^^——^K^ ^
-O.A-

' \/
-0.1, vy

1 2S4S67S9I0
W„t

Fig. (2.2) Impulse response5
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From this impulse response, it is possible to determine the differ-

ential equation.

If the order and the nature of the right-hand side of the

differential equation are known, an experimental method as shovfn

in Fig. (2,2) can be used to determine the coefficients a^ for the

equation

.2^
d-^C ^ „ d''C

, ^ dC
, „ p _ 1^ ^—3 * ^Z-72 -^ ^dt + %= - ^o-

dt

{2A)

rii)

ho

(X^ and 0.1

P.Yocess

Errar
COwp ufev-

ao

_J

0.3,

1

Cli)

H
dt

df

dt'

Fig. (2,3) Experimental evsauation of Eq, (2.^)

From Eq. (2,^), it is seen that, if the system is stable.

a can be evaluated by the steady-state response with a step
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function input. For example, if the step input amplitude is R,

the steady-state output C is b H/a , and a^ can be obtained.

rT f] C d-^C
In Fig. (2.3) the signals — , -^ , and —t can be gene-

"^
dt'^ dt-^

rated by successive differentiations of the response, and by the

use of trial and error method, a, and a^ can be determined in

such a way as to minimize the deviation from the differential

equation (2.4). For example, in Eq. (2.4), if the input r is a

step function, a, and a^ can be approximately evaluated by mini-

mizing the simi-lnfinlte integral of the square of the error de-

fined as ^._ .' • '

i^c
, ^ d^C

dT3 "2^t2

d-^C
,

d'-C ^ _ dC
o3 ^ ^2-2 ^ ^dt ^ %= - ^-^

In such an approach, for example, if a, and a, of Eq. (2.4)

must be determined, then a two-dimensional space must be searched

for the purpose of adjusting the values of a, and a, so as to

realize the minimum of

Jo
e^dt

Thus, this method involves an extensive calculation, particu-

larly for the higher-order system, and is usually confined to

low-order differential equations which are known a priori.
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(2) Evaluation of the Parameters of the Impulse (or Unit Step)

Response

When the process is a linear time-invariant two port trans-

ducer, the desired information often sought for the identification

process is the impulse response. The unit step response can also

be used to identify the dynamics of a process.

(a) Determination of the impulse (or unit step) response by

the evaluation of the convolution integral

For a linear time- invariant system, the convolution integral

o(t) = Y'(t)g(t-T)dt • (2.5)

must be solved to obtain g(t), the process' impulse response, if

r( t) , the ezcitatlon, and c(t), the response, are known. Three

techniques proposed by Braun, Klshlcin and Kalman by the use of

convolution Integral to the identification problem are discussed.

Braun' s Method

Braun [1] has described an Identifloatlon technique in which

stored energy does not affect the measurement. In Eq. (2.5),

g(t) must be evaluated from known values of c(t) and r(t). If

c(t), r(t) and g(t) all can be expanded in Maclaurin series, then

Eq. (2.5) may be solved for the coefficients of the Maclaurin

series expansion of g(t) in terms of the coefficients of the

series for c(t) and the coefficients of the series for r(t).

Because the function r(t) and c(t) and their derivatives can be

evaluated, the Maclaurin series expansion of r(t) and c(t) can be

determined.
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In practice, in the series expansions of c(t) and g(t) , the

determination of a finite (and usually small) number of terms Is

desired. In that case the applied forcing function will not te

exactly the value needed to force the system output c(t) to be

equal to that which would result if an infinite number of terms

of the series of r(t) viere used. Let o,(t) denote the desired

system output. Therefore, a correction Ar(t) is added to the

system forcing function at t=0. The magnitude of Ar(t) is cho-

sen in such a way as to make o(t)=c,(t), where o(t) is the output
u

when a finite terms of the series of r(t) are used.

This being the case, the system forcing function may be

written as

Y(t) = Yi(t) + Ar(t) (2.6)

where r, (t) is the forcing function before correction and ArCt)

the correction applied at t=0. In other words, r(t)=r-,(t) for

t<0. Substitution of Eq. (2.6) into Eq. (2.5), c(t) yields

C(t)=\ Yj^(T)g(t-T)dT + \ AT(T)g(t-T)d (2.7)

°1^^' + 02(t)

where

and

C^(t) = \ Yj_(T)g(t-T)dT (2.8)

Cp(t) = \ AY(T)g(t-T)dT (2,9)
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since ir(t)=0 for t<0, the solution of g(t) from Eq, (2.9) does

not require a large- capacity memory, such that attention will be

concentrated on Eq. (2.9).

The Maclaurln series expansion of C2(t) for t>0 can be deter-

mined as .

02(t) = C30 . c^^t + 032!^ + ... =
J^

C^^l^ (2.10)

where

d^Op(t)
= C2(-)(0,)

t=0^
°2r dt^

Prom Eq. (2.7), it follows that

C2(t) = c(t) - c^(t) (2.11)

At the instant t=0 , Eq. (2.11) becomes

°2'V = °20 " °^°+^ " °1^°+^ ^^-^^^

The forcing function T-^(.t) is assumed continuous at t=0 , there-

fore c,(t) is continuous at t=0, thus

c^(0_) = o^(o^) (2.13)

But -

c-|_(t) = c(t) for t <

therefore

o^iOj = c(0_) (2.li^)
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On substitution of Eqs, (2.13) and (2.14) into 2q. (2.12),

Op(0 ) becomes

02(0^) = c(O^) - o(0_) (2.15)

By similar reasoning,

o^^^ho^) = O23, = c^'^^(O^) - c^^^0_) for all r i. (2.16)

Eq. (2.16) can be used to determine the coefficients of the

Maclaurln series expansion of 02(t) be making measurements of the

derivatives of c(t) just before and just after the instant t=0.

Since Ar(t) is known, its Maclaurln series expansion can be

determined as

^.2

ir(t) = AR_^6(t) + aHq + AH^t + AR2~ +. . . for t>0 (2.17)

where ^(t) is unit impulse applied at t=0. The addition of the

Impulse is to correct the d-o level of the output at the beginning

of the control Interval.

Assuming that g(t) Is expandable in Maclaurln series expan-

sion, it can be shown as

g(t) = Go + O^t + a^l^ + ... = I^G^g (2.18)

After substitution of Eqs. (2.1?) and (2.18) into Eq. (2.9). and

Integration of Eq. (2.9) term by term, 02(t) becomes
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/t 2

CgCt) =1 [aH_^6(t) + aRq + aH^ + aE^-^ + ...1

Jo

• [Gq + G^(t-T) + G ^'^^-,) + ...]dT

= \ AR_^Gq«(t) + [AHqGq + AH_^G^6(T)(t-T)]

Jo

o

+ [AE^GqT + hrl^G^it-T) + AR_^G2«(T)-''i|Y^]+...dT

= AR_3_Gq + (AR_]_G;j_ + AEQGQ)t

+ (AR_^G2 + AHqG^ + ^\^Q% + ••• (2.19)

Where the fact
j

f ( t) 6( t-t^) dt =/(tQ) is used.

Eq. (2.10) and Eq. (2.19) both express C2(t) in power-series ex-

pansions. From the uniqueness properties of the coefficients of

power aeries, and since they are assumed to be convergent and

have the same sum C2(t), the coefficients of like powers of t in

both series must be equal

°20 = '^-1=0

°21 = '^-1^1 * '^0«0 ^^-2°^

<^22 = •'^-l'^2
"

'^O'^l * '%^0

Solving Eq. (2.20) for Gq, G^ it is found that
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''20

«0 =AEf^

g ^Si-'^o^o
1 AH

^ ^
''22 -"^Oh -^%^0

2 AH ,

In general.

Gj,
:

j-g- (2.21)

for all r>l where AH_, ?^0

If R_-,=0,aR_-. may be made zero in Eq. (2.20). In this case, the

solution of Eq. (2.20)' for Gq, G^ yields

G =^

<^l
- —71^

Cg3 - (AE^G^ ^ ARgGp)

2
-

aRq

In general

,
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°2.r^l - '^%Vl^^"2^r-2-^- •^^Vi^i-^'Vo)
AH. (2.22)

for all r^l, where aRq?=0

Prom Eq, (2.21) and Eq. (2.22), the coefficients of the series

expansion of the Impulse response g(t) are evaluated.

The advantage for this technique is that the existance of

stored energy in the system does not affect the measurement and

that no extraneous signal is required. But the difficulty usually

encountered in the measurement of high-order derivatives and the

requirement for an impulse function in Ar(t) are the disadvantages

of the method,

Mishkln and Haddad' s Method

Mishkin and Haddad [2] described an identification technique

that uses a computer. Such an approach is represented by Fig,

(2.4). In this technique, the computer monitors the signals c(t)

and a(t) and approximately solves the convolution integral for

the system's unit step response every T seconds.

Yf-t)
Computer

alt)
Process

at)

Fig, (2 A) Computer controlled system

If the unit step response of the process is considered, the

convolution integral reads
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-t

C(t) = \ a'(T)u(t-T)dT (2.23)

where the prime denotes differentiation and a(t) is the unit step

response. Eq. (2.23) may ^e rewritten in the form

•0- /t

C(t) =\ a'(T)u(t-T)dT +\ a'(T)u(t-T)dT (2.2if)

C-^i.t) + C2(t)

where

o^(t)=\ a'(T)u(t-T)dT (2.25)

-t

02(t) = \ a'(T)u(t-T)dT (2.26)

The integral c, (t) represents the process response due to stored

energy. It is this term which makes the measurement problem par-

ticularly troublesome. The solution can be done in the following

manners

The Maolaurln series of u(t-T) has the form

u(t-T) = u(-t) +-^u'(-t) +-~u"(-t) +... (2.27)

Substitution of Eg., (2.2?) into Eq.. (2.25) yields
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0- CQ-
tc^(t) =\ a'(T)u(-T)dT + ^ \ a'(^)u'(-T)d (2,28)

+ fj \ a'(T)u"(-T)dT +...

Expanding o^(t) in a Taylor series about t=0_, It Is found

that

0-, (0) -
C3_(t) = 0^(0) + o^'(0)t + -^^^ t^ + ... (2.29)

where

C3_(0) =\ a'(T)u(-T)dT = o(t) ^^Q = c(0_)

c^'(O) a'(T)u'(-T)dT = ^£i^
t=0

= o'(0 )

C;^"(0) a'(T)u"(-T)dT = d_citl

df^
c"{0 )

t=0

Hence

o"(0 )

o^(t) = c(0_) + to'{0_) + ^ -2
2i

= i.^^^ t^
1=0 II

(2.30)
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Eq. (2.30) involves the sum oif an Infinite Taylor series.

In practice, we want a finite number of terms. This can be done

by choosing some interval 0<t<T, such that the series converges

rapidly, n is used to represent this finite number of terms.

Thus, Eq. (2.24) becomes

i=0 ^
'

^ (2.31)

In order to simplify the evaluation of Op(t) , and to measure

the unit step response at every T seconds, a "staircase" function

is used for actuating signal a(t).

ft(f)

T 2T 3T

Fig. (2,5) Staircase form for a(t)

(0.-9.,)

T il

Pig. (2.6) Derivative of staircase function
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Let a(t) be the staircase function shown in Fig. (2.5).

Then a'(t) must be a string of impulses occuring at t=0,T, 2T,.,.

etc. as shown in Fig. (2.6). And in the Interval C^ t<T_, o„(t)

becomes

CgCt) = \ (aQ-a_^)«(T)u(t-T)dT

AaQU(t)^ < t < T (2.32)

where

4ap = ag - a_^ .,

and u(t)- Is the process' unit step response in the interval

0<t<T.

The evaluation of the unit step response at the instant t=T_,

from Eq, (2.30) and Sq. (2.32), Eq. (2. 31) yields

o(T_) = I
^ ° ^,^°-^ + AaQu(T)^ (2.33)

The last term is obtained since the unit step response is contin-

uous at t=T.

Solving Eq_. (2.33) for u(t) ^yields

c(T_) -
I
^ ° ^/°-?

u(T)^= 1^ (2.3^)



•
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Here, u(T), is the unit step response at t=T when a unit step

applied T seconds earlier.

The response at t=2T with a unit step input applied at t=T

can be derived in the similar manner. In this case, Eq, (2.23)

may be rewritten as

rT. j-t

c(t) =\ a'(T)u(t-T)dT + \ a'(T)u(t-T)dT

J— Jt_

(2.24)

= o^lt) + Oi^(t)
_

where

•

f"^- "
.

c,(t) = a'(T)u(t-T)d

J -"

ft _

c^(t) =1 a'(T)u(t-T)dT

JT.

The Taylor series expansion of u(t-T) at t=T yields

u(t-T) = u(T-t) + u'(T-T)(t-T) + ^"^'^"^^(t-T)^ + .... (2.35)

Novr the expansion of o_(t) in a Taylor series about t=T
,, yields

o,"(T) .

Cj{t) = 0^(1) + C2'(T)(t-T) +-2^^—(t-T)2 + ... (2.36)
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where '
"

c^(T) =\ a'(T)u(T-T)dT = c(t)|^^j = c(Tj

Cj'd) = a'(T)u(T-T)d,T = c'{t)[^^j = 0>(TJ

02"(T) = a'(T)u(T-T)dT = o"{t)
l^^j

= c"(Tj

Therefore

c^Ct) = c{T_) + o'(T_)(t-T) +-2^^(t-T)^ + ...

(2.37)

i=0

Considering the Interval T_<t<2T_, c^(t) can be expressed as

c^(t) =\ (aj_-aQ)«(T-T)u(t-T)dT = Aa^u(t-T)

Jt_

(2.38)

= Aaj_u(t)2 T < t < 2T

where Aa, = a - a. and the subscript 2 denotes that the measure-

ment is taken at the second interval. Let t=2T_. From Eq. (2.37)

and Eq, (2.33), Eq. ( 2. 3^^ becomes
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c(2Tj = I
° //-^ 2T - T)^ + Aa,u(t),

i=0 ^' -^ "^

(2.39)

= I- ^i=^^ + Aa,u(T)„
i=0 ^' ^ ^

Solving u(T)„ from Eq. (2.39), it is found that

u(T)2= ^^^^^2 : (2.40)

Similarly, in general

u(T)^ =
'r°^_^ (2.41)

Thus, the unit step response at t=kT can be evaluated from Eq.

(2,41). This can be solved using relatively simple computing

equipment. ^

Kalman's Method

Kalman [31 described a technique employing a pulse transfer

function. For the block diagram of Pig. (2.7), the relationship

between a(t) and cCt) is described by the convolution integral

t -, -

c(t) = 1 a'(T)u(t-T)dT
'

'

, / (2.42)

where u(t) is the unit step response; u(t)=0 when t<0.
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yt-t) etf)
CoYiiroller

control effort

aci-) Dynamic
process

cc<;

Fig, (2.7) Block dlagran of simplest control system

Solution of the identification problem here requires solution

of the integral equation for u(t) which usually is a difficult

task. iCalman handled such problems by using digital techniques

in which sampled values of c(t) and a(t) are used, such that the

solution of an integral equation can be replaced by the solution

of a set of algebraic equations.

In this technique, the sampling instants are denoted by

t=kT, k=0, 1, 2 where T is called the sampling period. Then

the sampled values of a(t) and c(t) are

a(0), a(T) , a(2T),...a(kT),...

o(0) , c(T), o(2T),.,.o(kT),..,

k=0,l,2,...

For the sake of simplification, one sets a^^ = a(kT) and Oj^ = c(kT).

If the sequences of numbers a-^ is used to represent the con-

tinuous function a(t), some method of interpolation is required.

In xThat follovrs, a(t) is assumed to be the output of a "sample-

and-hold" circuit, i.e., a(t) is given by

a(t) = ©, kT ^ t < (k+l)T
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In a manner similar to that we used to handle the "staircase"

function in the previous section, Eq. (2.42) can be vfrltten as

T<t
C(t) = J^TX{t-m{B.j^-3-n_j_) (2.i^5)

Considering only sampled values of c(t) and u(t), and noting that

u(kT)=0 for all k<0, Eq, {Z.ii-5) yields

;=l£ .-.

Cj^ = I u(JcT-^T)(ajj-aj,_^)

f=k
_I u[(k-i)T](a^-aj;_3_)

J?=k ?=k

^J>-f^rjJ:Vi^J!-l

j=k j!=k-i

i!=k =k

J_J^k-r"k-i!-i>^^

;=k .
.-. -

j.
ej._jjaj^ ' (2.46)
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Because the unit step response can be used to Identify the

process, the process dynamics may now be characterized by the

infinite set of numbers Sq, gj_, ... gj^ ... which can be determined

by solving an infinite set of simultaneous linear algebraic

equations given by Eq. (2.46). In practice, it is not possible

to solve an Infinite set of equations, but in the case of a sta-

ble process gj^X) as k*" , so that only a finite set of linear

algebraic equations has to be solved to obtain s^' although the

v.m'b^v ef equatipns required is pejh^ps §^111 lueh tQ9 Iwgt t©

be useful.

A different way to represent a dynamic process utilizes the

pulse transfer function which relates the system output and Input

at the sampling Instants. It is known that if any fixed linear

system whose input a(t) and output c(t) are related by a linear

differential equation, then its input aj^ and output Cj^, at discrete

Instants t=M' can be described by the difference equation

°k + \°k-l + • • • + Vk-n = -^O^k + <^l^k-l + • • • + \^i:.z

.

' ' C- ' (2.47)

In general, n=q. Then, Eq. (2.47) can be rewritten as

°k =
"^O^k ^ W-1 +•••+ Vk-n - ^<=k-l -••- Vk-n ^2.48)

By comparing 3~. (2.48) and Eq. (2.46), it Is seen that when

the system is known to be governed by a difference equation, much

fewer d, and b. than Sy. are needed to represent the system.
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Using the notation z''°}j=Cj^^. . (where i is any integer), and

refering t)ack to Eqs. (2.W) and (2.^6), it is possible to malce

much more efficient use of the available data by employing the

pulse transfer function G(z), defined by

^(^) =m 1 + b, Z"' + ,,. + b„Z""
1 ^

(2.49)

g^z"-"- + ggZ"^ + . . . + gjjZ"^ +

Here dQ=gQ=0, since physical systems cannot respond instantane-

ously.

The coefficients in Eq. (2.48) are the same as the coeffi-

cients in Eq. (2.46). From Eq. (2.49), it is possible to char-

acterize the process' dynamics by the d, and b,, i.e., by 2n

numbers rather than by an infinity of numbers. For this reason,

Kalman used the d. and b. to Identify the process.

The accuracy of the process characterization depends upon

the value of n in Eq. (2.49). n should be chosen sufficiently

large so that the 6.. and b, represent the process with some de-

sired accuracy. This is a matter of approximation and n can be

regarded as the design parameter to be selected by the designer.

For the purpose of illustration, it will be assumed that n=2.

Now the determination of the coefficients of Eq. (2.48), i.e.,

the d, and b, is desired. This can be done by using a substan-

tial amount of measured data in order to minimize the effect of

measurement errors. Kow suppose a particular guess for the i^

and b. at the Nth sampling instant is made. These assumed values

of the coefficients will be denoted by d, (N) and b,(N). It is
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possible to compute all the past values of c^^ using this set of

coefficients in Eq. (2.48). This value of Oj^ will be called

c^(N). It is given by

cJ(N) = i^ime^_^ + -iz'^^Va * ••• + =ln(")^k-n

.b^(N)Cj^_^ - l=2(N^=lc-2- ••• - VN)=k-n

k = 0,1,2 N. (2.50)

The mean-square error is a useful measure of the accuracy of

the set of coefficients chosen. The mean-square error at the sam-

pling instants is defined as
, ,

I I V^{N) =i
I [c - c *(N)]2 (2.51)

o
where £. ( N) denotes the square error between measured past

values c. and values computed from Eq. (2.50). The dj^(N) and

b. (N) will be chosen to minimize Eq. (2.51).

Since the process dynamics may change with time, the older

data should not be given the same importance as more recent data.

In order to nieet this requirement, the mean-square error given

by Eq. (2.51) must be modified to include a weighting function

w(t) which is a continuous, monotonically decreasing function of

time such that

w(0) = 1



3^^

< w(t) < 1 < t < ~ (2.52)

w(t)dt< "

/O

If the value of w(t) at the kth sampling Instant Is denoted,

by w^ , the final criterion of determining the coefficients may

be stated that choosing d,(N), b,(K) in such a way that the ex-

pression

k=N ,
'

.

E(N) = I \W^^_^ (2.53)
K—

J

is a minimum.

The required computation would be considerably simplified if

the coefficients of Eq. (Z.hQ) are not recomputed at every sam-

pling Interval, but rather at every qth interval, where q is an

integer. From Eqs. ^ZA8) and (2.50), assuming n=2, it follows

that

°qj - 2Cqj!^(N)a^3.i+<i2(N)a^j_2-b^(N)C^j_,-b2(N)
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^qj * \'(«)°'j-l *
^2«^')^Jj-2

* 2fel^N)C^jC^j_^

-2b^(N)d^(N)C^j_^aqj_^ - 2b^(N)d2(N)C^j_^a^j_2

(2.5'+)

The measured values of c's and a' s occurred In Eq. {2. 5k)

always in terms of the type

\i-T <^qd-r^qj-s %i-T\i.s (2.55)

where r,s=0,1.2. If we let q=n+l=3, a set of pseudo-correlation

functions may be defined as

oc ^?"/3

*N-r^^-^) =
j]^ =3J-r^3J-s"'N-3J

(2.56)

oa , . ^"f^^
*N-r(^--) = ^J^ Sj-r^3J-s"N-3J

J=N/3

_j4 ^33-r"3J-s"N-3J*K!r(^-^) = I a,,_a„_W



-
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From Eqs. (2.53). (2.5'<-) and (2.56) , the function E(N) may be

written as

E(N)
N

'(0) + b2(N)*°f^(0) f b|(N)*°22(0>

+ 2b^(N)*°°(-l) + 2b2 (N)*^°{-2)

+ 2b^(N)b2(N)<S>°f^(-l) - 2d^(N)*°^(-l)

- 2a2(N)<!.°^(-2) - 2b^ (N)d^(N)*°^3_(0)

- 2b^(N)d2(N)<t°^^(-l) - 2b2(N)d3_(N)*°f2(l)

- 2b2(N)d2(N)4.°^2(0) + d^(N)*^^^(0) + d2(N)*
n!2(°)

+ 2d^(N)d2(N)*^^^^(-l) (2.57)

At this stage. the pseudo-correlation is to be computed. This

can be do ne by choosing the weighting function as

"sj
= aJ (0 < ct < 1) (2.58)

Then

,(r-s:
' = j'=3i-r^3i-s"3J-31

*3(J -l)-r'=
^-^' =

Jl^31-r=31- s"3J-3-31
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and

-_^(r-s) - .*-j_,)_^(r-s)

^3-T^3-s'3i-3 "^ "3'2-r'^3-2-s^''3J-3-2t.

* ^3d-r=33-s"o
-«tC3_^C3_3W3(j_2)

* ^3'2-r°3'2-i^3(>3) *'"* ^3>3-rSj-3-i"o'

= <=3-rVsfW3(^_,, - W3(j_2)] + C3-2-r'^3-2-sS(J-2)

^3(3-3) ^
^---^ C3J-3-r=33-3-sf^^3 " °V "^ (=3J-r=33-s^"o

'=3:-r=3>sWo

" ^3J-r'^33-s

In the similar manner, it can be shown that each pseudo-correlation

function satisfies a first-order difference equation of the type

*°-_^(r-s) - M=f^,_,,_^(r-s) = C3^_^a3^_3 (2.59)

Eq. (2.59) can be used to compute the pseudo-correlation functions

and it requires only a knowledge of the corresponding function

three ssunples earlier plus the values of Oj^_2> °m_i' °m* °N-2 ^""^

3-N-l
•

'
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Now the values of d^(N), d2(N), b^(N), and h^{N) are chosen

to make E(N) In Eq. (2.5?) a minimum. These values are deter-

mined from the conditions

^EiNl = ^^ = for i=1.2....n. (2.60)

Application of Eq. (2.60) to Eq. (2.57) leads to four linear

equations in d^(K), d2(N) , h^{n) and 'b^iN) as follows

d^(N)*^f-^(0) + d2(N)*^f3,(-l) - b^(N)+°^j_(0) - 132(N)*^,^2(1) =

*r<-l\ "^l<"^*N-l^-l^-^2^^'^*N-2^°> - 1=1^N)*n!2^0) =*r^-2).

(2.61)

- <2i(N)dt°> - ^z'^^^ 'n-1^-^^ + \(N)*=f3^(0) + b2(N)*°f^(-l)

=
-*N°(-1).

- di(N)*°^2^^' - '^2^'^'*n!2^°^ * h(N)<!-°fj_(-l)

+ b2(N)*°f2(0) =-*r(-2'.

The straightforward solution of Eq. (2.61) for the desired

coefficients requires considerable computation. Kalman, using

the Gauss-Seidel iteration procedure, found the coefficients as

follows:
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d^{^) =
dg(N)*gf.^(-l)^b3_(N-3)»°:.^(0)+bg(N-3)tg:g(l)+»°°(-l)

*N-%(°^

dgCN)
-d;i_(N)4fj_(-l)+b^(N-3)-t°!--^(-l)+bg(N-3)»g!2(0)+<-g^(-2)

'N-2 (0)

b3^(N)

d^ ( N) « °f^(0)+dg(N)^°^^(-l)-bg(M-3)»°!^(-l)-»g°(-l)

*n!i(o)

b2(N) =
d3^(N)^gri(l)+'^2(N)«g^g(0)-b-^(N)^g°^(-l)-»^°(-2)

*°° (0)
'n-2^"'

(2.62)

Eq. (2.62) constitutes Kalman' s solution of the Identifi-

cation problem. A relatively small special-purpose digital com-

puter Is used to realize this technique.

(b) Determination of the impulse response using cross-

correlation.

Truxal f"^] described a method to measure the Impulse response

of a linear process by the use of cross-correlation. In this

technique, a white noise is used as the process input.

White Mojss
geneirator

.<-t)

Process
zit)

Fig. (2.8) Measurement of g(t) by white noise input
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Fig. (2.8) shows the block diagram for this procedure. The out-

put of the linear process is given as

c(t) = \ g(x)m(t-x)dx (2.63)

The cross- correlation function between m(t) and c(t) Is given by

|.T ' "

Vc(^> = 't'^"25
m(t-T)c(t)dt

J-T

(2.64)

Substituting Eq. (2,63) into Eq. (2.64), *„„(t) becomes

,T
f'

*mc<^^
= T^"-^\ "'(t-T)dt 1 g(x)m(t

J-T 3 -"
-x)dx (2.65)

By interchanging the order of integration, *„„('^) becomes

r° (^

*mc(^)
= \ g(x)dx [^^'2 -^l m(t-T)in.{t-x)dt5 (2.66)

The term within the square brackets is the autocorrelation func-

tlon of the input m(t) with argument (t-x)
, that is

^T

4 (t_x) =-^i';
i \ m(t-T)m(t-x)dt

mm J_^

Thus' *mc^^:
! may be written as

*no(^) g(x)*^^(x-x)dx (2.67)
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In this process, a white noise is injected as the input. It

will be shown that the autocorrelation of white noise Is an im-

pulse.

Some random function x(t) is considered, and let a new

function Xm(t) be defined by

C
x{t) |t| i T

x„(t) = (2.68)
^

I
|t| > T

In the limit as T becomes infinite, the function x_(t) be-

comes equal to x{t); however, x„(t) possesses the advantage of

having only a finite total energy for finite values of T,

The ensemble average of Xm{t)x_(t+T) is defined as

<Xj(t)Xj(t-T)> = -i
\ Xj,(t-T)dt (2.69)

If Xj(t) =^ \ X^(w)E:-'''*dw (2.70)

Substituting Eq. (2.70) into Eq. (2.69), one obtains

< Xj(t)Xj(t+ )> = -if [f -^C lj(w)e^"W]-Xj(t+T:)} dt (2.71)

Interchanging the order of integration, and, in addition, the sub-

stitution t'=t+T is made, Eq. (2.71) yields

<Xj(t)x^(t+T)> =.^ 1
{f^

)
lT(w)e^"(^'-^'dwl-x^(f)]df
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k\ |?X^(-H"^"' x^(t.)-eJ"^'dt.

i XjU)x;(w)c-J"^f

i 1 IM^iUi e-^"*dw (2.72)

Now if T Is allowed to approach Infinity, the Eq. (2.72) defines

the autocorrelation function of x(t) , I.e.,

Prom Eq. (2.73), ^^^ power density spectrum ^-t^"^ ^^

Now the white noise is defined as a random signal with a

flat frequency spectrum, i.e., *yy^^' ~ ^ ^""^ ^^ ^* Then from

Eq. (2.74) and Eq, (2.73) i for white noise, it follows that

*xx^"^=I^ (e-J'-'^dw = K6(T)
, (2.75)

where
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6ix-x^) =i i
e-^(^-^o)^du

and ^{t) is a unit impulse at t=0.

It is shown that the autocorrelation function of a white

noise is an impulse. With this in mind, looking bacJc at Eq.

(2.67), if m(t) is white noise whose power density spectrum is

constant at a value K, *_j,('^) yields

W^5 -K«(t)

and *j_„(t) becomes

4jjj^(t) = K6(t) . (2.76)

Thus, from Eq. (2.76), it is seen that the cross-correlation

function between the process input and output, when the input is

white noise, is proportional to the value of g(t) at the time t='f.

It is possible to obtain the value of g{t) at any desired instant

by Just varying the length of the delay x. A simple mechanization

to realize this procedure is shown in Fig. (2.9).

Although the white noise is a physically unrealizable pheno-

menon, any signal whose power density spectrum is constant over a

frequency range considerably greater than the system bandwidth

may be considered white noise. Therefore, the technique mentioned

above is useful in the experimental Identification of a process

in the laboratory. ' '
' "

-
'
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White noise
generator

m(-t) ?Tocess
set;

Cti)

Time deiaji

t = t
>«M-t-'^' rr^ ct-tJ-^Ct-t;

XI Intggratof —{%\'3C<)

Time delay

c(-t)

lCf-2c; Ju, C(^)'^(-t-2^^,

Ivitegvaior —^i/J^U-Stzr

<(*)

Tivne delay m(i-"0^
C(^)no(-t-nT;

Integrator-t =nr '/^ -5("T.

Pig. (2.9) Mechanization of identification
with cross-correlation

If an adaptive system is considered, the test signal may be

mixed with the normal operating Input. Such a situation Is shown

m Fig, (2.10)

.
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,

White noise
generator

^(t) +r

n(t)

S" m(t)
Process

s(i}

CtiJ

"V^

Fig. (2.10) Identification by cross-correlation

In Fig. (2.10), the signal r(t) is the normal operating input.

and n(t) is white noise. Then, the process input is

m(t) = r(t) + n(t) (2.77)

From Eq. (2.63), the output is

o(t) = \ g(z)rY(t-x) + n(t-x)]dx

c° r
= \ g(x)>(t-x)dx + g(x)n(t-x)dx

J —to-
_ ^ —00

= c^(t) + Cjj(t) (2.78)

where

Cr(t) =
\

g(x)f(t-x)dx (2.79)
j-„
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c^Ct) =
\

g{x)n(t-x)dx (2.80)

The cross-correlation between n(t) and c(t) is

»n^(T) =-^'i:^^ \ n(t-T)c(t)dt (2.81)

After substitution of Eq. (2.78) into Eq. (2.79). one obtains

*„„(t)=^';:^ n(t-T)-c (t)dt +^JT„^ 1 n(t-T)c(t)dt
no^ '^ - T-" 2T

I

"^ " ' v-j,i../u.- j^„ 2T 1

"' " "n^

(2.82)

Substitution of Eqs. (2.79) and (2.80) into Eq. (2.82), ^o^'^'

yields

*„^(t) =li"-^l n(t-T)g(x)Y(t-x)dx

+ {'Z^ \ n(t-T)E(x)n(t-x)dx

g(x) *j^(T-x)dx + e(x)<!>^j^(T-x)dx (2.83)

Since the inputs r(t) and n(t) are unoorrelated,
*fij,('')

=0- In

addition, n(t) is white noise, so Eq. (2.83) becomes

^1 ."
. . W



*nc^^^
"

\
s(x)*j^(T-x)dx = Kg(T)
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(2.84)

Again, a simple realization of Eq. (2.84) for any desired time is

shown in Fig. (2.11) .

Y(-() /^~\rr.(t) Process
g(t} -

c(t)

\.^
mi)

Tiwe delay

t = T

n(t-T) .^-1-, cix;" V 1. w
Integrator 1/

>

I2<J
— 3 (t)

c«r;

Time delay nti-2t)^cn><^(-t-2z)

XH—- Ivitegrator ;< — 3f2t)

C(i)

Tims delay
-t = nT

n (t-i J)
l'^^ CK)" (<-'' ^•'

Integra-tor —r^-^sc«;
^i:^.

While ^noise
genera-tor

Fig. (2.11) Identification in the present of
r(t) using oross-correlation

In this technique, the measurement of g(t) is independent of

r(t), so that stored energy is not considered, since it is due to

r(t). But the compensating disadvantage is that an extraneous

signal in this process is required. .^ ',
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Another method which uses the cross-correlator to measure

the unit Impulse In the identification process will be discussed.

This technique was described by Anderson and Buland and Cooper

[5]. The block diagram of the method is shown in Fig. (2.12).

The excitation x. (t) is assumed to be a sample of an ergodlc ran-

dom process.

X((+) SystRm izing
«aa5wred git)

x,(t)

X.<i)Delay

Sl-t-T„)

X; (t-7„) X Smoothing
filter

< X, > + r\.<i)

Fig. (2.12) A basic cross- correlator

In Fig. (2.12), the system output x,(t) can be obtained from

the convolution integral as

T.-^{t) = \ Xj^(t-x)g(x)dX (2.85)

Then, the function x, (t) is multiplied by the delayed input to

produce '
,

Xo(t) Xj_(t-Tjjj)Xj_(t-X)g(X)dX (2.86)
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The ensemble average value of x^Ct) is

<x„> = i S[z (t-T^)x^(t-X)]s{X)dX (2.87)

Jo

,'!••-, - . -.

f"
= «i3_(T^-x)s(x)dx

jo .......

where *..(t) is the autocorrelation function of x^(,t) .

. Y-'

•

c 3t>v)

/ t-"\ /
^^_^/

Fig. (2.13) Showing the convolution required
to obtain Xq

A graphical representation of the convolution is shown in

Pig. (2.13). When the input Xj^(t) is wide band, the autocorre-

lation of it V7ould be sufficiently narrow, then

<Xo> = Kg(T^) .. (2,38)

where X is the are a under the i|>..(t) function.



50

Eq. (2.88) states that the value <Xg> Is nearly proportional

to the impulse response at t=T^, Therefore the measurement of

<x^> can "be used to measure the impulse response of the system.

If the complete identification which needs to measure the

impulse response at any instant is required, a number of corre-

lation channels with different values of delay are used in paral-

lel.
"

There are disadvantages in this correlator, because it re-

quires an ideal multiplier and an ideal delay filter. These are

both difficult to achieve. Another disadvantage is that the long

smoothing time is required to reduce the random components in the

output

.

In order to alleviate such difficulties, a discrete-interval

binary noise is used as the test signal because of the simplicity

with which the functions of generation, multiplication and delay

can be accomplished. Such an excitation function has only two

possible values ( say +X and -X ) as shown in Fig. (2.l4).

X

XiH)

3t,

t^i;(T)

/

f'

-t, t,

Fig. (2.14) Discrete-interval Fig. (2.15) Autocorrelation of
binary noise Xj^(t)
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For Fig. {2.1'J-), if the minimum interval width is t, seconds, the

autocorrelation function for this type of binary noise is given

by to]

4,i(T) =x2a --!^] •, -t^< X <t^

(2.89)

=0 ; I T I > t^

This autocorrelation function is shown In Pig. (2.15). It is

clear that it can be made as narrow as dsslted by ehooslng t,

sufficiently small.

By using the binary noise as process input as mentioned

above, the mechanization of the cross-correlator can be simplified,

but the reduction of smoothing time must be done in another way,

i.e., a representative sample Nt, seconds long from the discrete-

interval binary noise to form a periodic noise signal is chosen.

Such periodic excitation has an autocorrelation function *,j^(t)

which is periodic and produces a multiplier output ^-(t) over one

period that is the same as the average over all time, and the

smoothing time need be no longer than Nt, . The autocorrelation

function of periodic discrete-interval binary noise is shown in

Fig. (2.16).



52

«|>ucr;

-it: -2f, t, 2t. 3t,

Fig. (2.16) Autocorrelation of periodic
discrete-interval binary noise

(3) Evaluation of the Transfer' Function from the State

Equations

Lendaris [6] described an Identification technique which used

the state equations.

Suppose that a linear system is described by the following

differential equation.

dt"
" ^-ldt"-l "

'^-^dt'^-^

dc „ -u d r— ^n = b„—

-

dt
^dt " %

+ 1=™ 1
*^

„ f + ... + b,|? + b.
la-lgj-in-l Idt (2.90)

For a linear system, a transfer function as well can be used

to describe the system. The transfer function of Eq. (2.90) is

, > b s"^ + b T s""-"- + . . . + b^ s + b„
G(s) = 4^ = -S-^ S^^r-, i ^ (2.91)

rTe n „n-l
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In general, G(s) is a ration.al function, and thus can be expressed

as a ratio of polynomials. Let G( s)=K(s)/?(s) , vrhsre

N(s) = b^s° + Vl^"""^ + ... + b^s + bg

P(s) = s" -
s-n-i^'^"'^

~ ... - &^s - Bq

In order to Identify the system, the coefficients of Eq.

(2.91) must be determined by means of the data which are obtained

from the measurements of the system response when some signal in-

jected as the input. Usually, the measurement of data is performed

in time domain, so that rather than using s-plane characteriza-

tion described by Eq''. (2.91), a set of state equations can be

used to characterize the system in the time domain.

In general, the system may be represented by the state

equations

:

X = Ax(t) + BY(t) (2.92)

£(t) = cx(t) + pY(t)

A is the essential matrix of the system, as the structure

of this matrix decides the nature of the state transi-

tion matrix.

B is a coupling matrix; the structure of this matrix deter-

mines how the input is oou-^^ -"i to the various state vari-

ables.

?( t) is the input vector.
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j(t) is the output vector.

C is also a coupling natvlx, coupling the state variables

to the output.

D is again a coupling matrix, as it directly couples the

input vector to the output vector.

With this concept In mind, the system described by Eq. (2.90)

will be considered. The state vector can be chosen as

x(t) =

x^(t)] [cCt)

i(t)X2(t)

x„(t)

and define an input vector

Y(t)

= ("-^)(t)

I(t)

r(t)

Y='(t)
J

Then the system can be characto-;. zed by

x(t)' = A X (t) + B Y (t)

(2,93)

(2.9i+)
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' "1

1 . , .'

1

..0

A =

ao a^ Eg . . . a^_^
/

and

. .- . .

,/

.

B =

• •

% \ \

As the unit step function is used as an input signal in this

technique, how the input discontinuity affects the system output

will be considered.

Let the input r(t)=u(t), the unit function. Then

''u(t)

6(t)

j(t) =

^(^-l)(t)

^ /
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where ^(t) is the Dirac delta function, and from Eq. (2.90), one

has

K=0 ^ K=0
^

Now if all u''^'(t) terms in Eq. (2.96) are separated and

express what remains as a power series in t, then make a succes-

sion of integrations, one obtains

'^^t) = Id^u(^'(t) +i,Ifn^c<^
k=0

c^-^t)=Td,,,u(^)(t).d,t.J^^t-^

,(n-2)(,)
=

,1 \+2"^ '^^^ +
-^i^

^ %fj ^ J-.T^mum^
K=0 ^-J-

k+2

:(---l)(t) = j d^,,.iu^^^(t) . d^.2t . d^_3|^
,2

k=0

t'"-^ ^ ; ^k ,.k+m-l
+ *0 (m-1) )

^
j^l-i

(k+l)(k+2)7..(k+m-l)
t
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o^'^-'^ht) = V^°^t) + d^_,t ^ d^_2 1^ +...+ do S

+ j^I^(k+l)(k+2)...(k+m)^

2 J. 3 t""
"*""

,(n-m-l)(,) = ^t H- d^_^ |y + d^.2
fy

+. ..+ d^
-^^j:;^^^

" ^k , k+m+l
+ j^I^(k+l)(k+2).. .(k+m+l)''

(From here down, each term of all derivatives has a factor of t

or its powers)
^^^

Substituting Eq. (2.97) into Eq. (2.96) and considering only

those terms contributing to the discontinuity at t=0 , one obtains

!d,ut^'(0) =1V^)(0). [b,u(^)(0)
k=0 ^

. k=0 ^ k=0
'^

Thus, ' '

^0u(°> + d^u'l^O) + i^n^^ho) +...+ dy"'(0) = aoc(°'(0)

+ a,c(l'(0) + agc^^)^,, ^,,.^ an-l°^"'"^°' * V°'(0)

+ b3_u<^'(0) + bgu'^^O) +...+ bjjjU^'^^O)
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= a„.,ct--)(0) .a„.^,,o^—^'(0) .. . .. a^.^c^""^' (0)

+ bQU^°'(0) +b^u'l^(0) +b2U<2)(0) +...+ b^u^'^^0)

= -n-MV^°'(°' --n-m.llVl-^°'(°'
•^d^u(l)(03 *...

+ a^_^[d^u'°^0) + dgU^^^O) +...+ d^u^'^-^'(O)]

+ bgu^°'(0) + b^u^l^O) +b2U^2)(o) +_.+ t^u(ni)(o)

= ^%.m<im * ^n-m+lVl ^- ' '^ %-l*l * ^o^^^°^tO)

+ (-„-m+l% ^••^ -n-1^2 -^ ^)«^'^(°) +•••* V^"'^°^

(2.98)

Comparlns both sides of Eq. ;2.98), it is found that

^0 -
^n-m^m - ^n-m+lVl -••-

^n-l'^ = ^0

^1- ^n-^^l^^--- ^n-l^Z-h ' '
^2.99)

Vi - ^n-l'^m = Vl <''''..

dm = \ '
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If the a's and b's are known, the d' s can be obtained from Eq.

(2.99).

Now suppose a unit step function is applied at t=0 , with

x(0_)=0. Then from Eq. (2.97) and the fact that higher-order

derivatives of u(t) are zero for time t _> 0^, x(0_^) yields

C(O^)

c(o^)

2(0^) = c(n-m-l)(0^^

c("-i^o^)

Vi

= d (2.100)

z(0^)=d will be called as unit discontinuity vector.

It has been shown that the state vector for t=0^ is given by

Eq. (2,100). The state vector for t>0_^ will be investigated.

Let a step function r(t)=r,.u(t) be applied at t=0. Since

r(t)=r(t)=. ..=r'™' (t)=0 for t>0^, one obtains

" ---

a(t) =
•

and 3 Y.(t)= y,.

.

^0
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^0

Then for t>0 , the state equation can be vrrltten as

x(t) = Ax(t) + Y^b (2.101)

The solution of Eq. (2.101) is given as

•t

-At
x(t) = e^"x(0^) + Y eA(t-^).bdT (2.102)

Looking back at Eq. (2.93ji it is clear that the output c(t) can

be determined by Eq. (2.102) at any time for t>0..

In order to Identify the system, some measurements of the

output must be made. To simplify the situation, these measure-

ments may as well be taken at t=kT, where k=0,l,2,... and T is

the sampling period. Therefore, for the step input function

r=r„.u(t), from Eq. (2.102), one has, for t=T_,

x(T_) = e^^x(0+) + To \ e^'""'^bdT (2.103)
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Let
.

case

i = e^^ands = f e^^^-^hi.

Jo

, x(0^)=i;.d with x(0_)=0, Eq.

and from

(2.103)

Eq.

can

(2.100) , in this

be rewritten as

x(T_ ) = ro^a+ ^S (2.104)

Let

2k
= x(kT^) (2.105)

and with the idea in mind that

2k
= x(l!:T_) + discontinuity term at t ime kT,

It follows that / '
'

2o
= x(0_) + agd

2l
=, x(T_) = i Xq + Yq£

22
=

: x(2T_) = 12^ + YqS

and, in general

2k+i

k = 0, 1, 2, ...

y^^lV-K. ..+ !)£ (2.106)

where a^ is due to the non- zero :Initial ccmdition at t=0.

The Cayley-Hamilton theorem states that every matrix satis-

fies Its own characteristic equation, Foi• the system which is

concerned, it implies that P(A)=(3 . Thus

,

a'' =-„_xA"-^-a,.3A-^-..,. . + a^A + -ol (2.107)



Suppose that matrix A has distinct eigenvalues X, , \ ^,

^
, then the transition matrix is

AT .. AT,,,-1
_£ = e— = we— A

where M is modal matrix and A is diagonal matrix.

AT
The eigenvalues of *_ = e- can be derived as follows

62

IZI - e^^l IZM I M"-'- - Ke^^M"-'-

= iM(ZI - e-'^)M"^

Ml-IZI - e^^l-lM-ll

Since iKl ^ 0, one obtains

IZI - ei^

Z-e^l^ ...

Z-e^a'^

Z - e''n'^

Thus, the eigenvalues of * are

Z, = e^l^ Z^ = e^n'^ (2.108)

The characteristic equation for j; is

(Z-Z-^)(Z-Z2) ...(Z-Z^) = Z" - S^.iZ'^"^-..,- ?iZ-% (2.109)
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Again, the Cayley-Hamilton theorem implies

Sn-l^""^ +...+ e3_i + CqI (2.109)

The essential of this technique lies in the fact that if

some experimental procedures can "oe used to determine [ ^,^} in Eq.,

(2,109), then, in turn, { \^] own be determined from Eq. (2.108),

so that P(s) is identified. These procedures can be accomplished

in the following manner.

Because the first component of x{t) is the system response

which may be readily measured at any instant, an "Observation"

vector is introduced as follows

1

(2.110)

Then, the magnitude of the output at any instant t=kT can be ex-

pressed as the inner product of Xjj and 0.

Again, a system subjected to a step input r(t) = r,.u(t),

with x(0_) 7^ 0, will be considered. Recalling Eq. (2.106), it

follows that

k-1
± Zo + Tq^^ "^ ^

,k-2
.+ I)S



6iJ.

Let

ii\ " -k+1 ~ -in " '

^K+1 .k, ,

^o'-s. (2.111)

The observed magnitude of the response at time t =^ kT can be

written as

*k
=

<2i,.
o> (2.112)

Let

^k = *k+l - *k = ' >

(2.113)

= <1^' >

= <(.^+l . ik)Xo 4
^oi^'-S' 2^

From Eq,. (2.109) . it follows that

+ ...+ ^,1^^^ + ^oi
(2.11i^)

Then , from Eq. (2.113) , one obtains

9n

- < i"xqO > + ^ ^O-^S'O*

= I^Q<tZQ 'O* + C-|_<1 2q.O > +. .. + Vi^i%''O''

- Kq<1Zo .o>- f^X * 2. S '- ^ " •
• -^n-l<i'^"^^0 .0*

+ ?o-'o^i£'^
-»+

'^I'l'o *!£' 2 ^ ^•••+^n-1^0^i''"^S .0*

,'-
'i.

'i ' \

- k.

1 .
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= Kq <(±-I)Zo + ^oiB'0='+ ^1* (l^-l)2o +^ QtB'9.> +•••

(2.115)

= %eo + ^l^l
+•••+ ^n-l«n-l

Similarly,

^n+l = ^0^1 * ^1^2 ""•••* ^n-l«n

; (2.116)

e2n-l = ^0 9n-l + ^l^n +• • -^ ^ n-lS2n-2

From Eqs, (2.115) and. (2.116), the {^\ can be expressed in matrix

form as

'^0 \ ' • • %-l
-1

e
n

?1 ^1 °2 .
'.

. %
•

%+l

(2.117)

^n-1 "n-l «n .-•. • • ^2n-2 /2n-l

Since
{ e^ i

can be measured from the system output, the \ ^^'t °an

be determined from Eq. (2.117). The solution Is unique if and

only if the simultaneous equations are linearly independent.

Once the
1 c* J

has been determined, the f X , ) can be deter-

mined as we described before, and the identification of P(s) is

aocomplished.



66

After P(s) is identified, N(s) will be Identified. This can

be done in following manner:

Looking back at Sq. (2.99), because P(s) can be identified

first, so that j a. ) is known. To identify N(s), i.e., to deter-'

mine
f
b. j , ! d. S , the unit discontinuity vector, must be identified.

It has been shown that [?], [8],

s ^k"^
4=^ = 6^^'^=

y y (yt/z/z,, (2.118)
kil i=0 ^ ~^^

s "^k"^

k=l J!=0
^^ ^^

S
^^^

}(A) = I ^y^^'H^^k ^2-^20)
^

k=l ^=0 '^
^

where s is the number of the distinct eigenvalues of A, and mj^ is

the multiplicity of the eigenvalue x-^ .

And

a, n = — where Z,, = e-^k-^ (2.121)
kO A

i^
K

. -k., ^ k k

(-l)^-^il ^) }
(2.122)

for X=l. 2. 3. ••• mjj;

(A-X(^I)

—kJt
~

Fi

—

-in
(where Enis a projection, and in this case.
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^k

m(x)n, (x)
Q^(A) = , in which m(x) is the minimal poly-

nomial of the matrix A)
(2.123)

From Eqs. (2.118), (2.119) and (2.122), and s:Lnce T, X ]j
and

^k
are known, the a'j^ s can "oe computed. Therefore, In order to

evaluate £_

^ and 5 , the values of Zj^ are needed. Referring to

Eq. (2.120), and knowing that there are n unknowns Zj^ , the

following n functions are chosen.

ii(x)

/ .... j^^M = (x-x^)'"^

im J
+1 ( x) = (X-Xg). jm +2^^'^ ^ (X-Xg)'

-
,

•••' im:i+m2^^^ = (x-Xg)"^

(2.12^1)

fn-m^+1^^' = ^^-^s'l fn-ng+2(^' = ^^'^s^^

....}„(x) = (x-X3)^s

Substitution of Eq. (2.124) into Eq. (2.120), one :obtains

(A-•XlD =
^11 * (^2->-l'^20 *^21 *•'' (^s-Xl'2,0 *^sl

(A-X,I)^ =
= ZZ^2 + ( ^ "^1^%0 "^ ^''^ "^l'^21

'*' 2-222 +...+ 2Z^2

(A-X3I) = (x,-Xi)»%o-^-s(Xs-^l)"^"\l *•••*(-"s"^smg (2.125)
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These n simultaneous equations can be used to solve for the n

unknowns Zj^. , and In turn, *_ "'' and ^ can be determined.

Now d vrill be Identified. Again, consider the system re-

sponse with the input r(t)=r,.u{t) and x(0_);^0.

Let

lit
"" ^^' *

'^"'^ +•..+ !) (2.126)

Then, from Eqs. (2,106) and (2.126), it follows that

$^x(0_) +.-aQj.^d + Yglk-l^ k = 1, 2, (2.127)

Now let

k W

*v =
•^k

'IJ

*(lc)i3

i, J = 1, 2, .,

i. j = 1, 2, .,

and x(0 ) =

x^(0_)

X2(0_)

-n(°-)
;

Looking back to Eqs. (2.100), (2.112) and (2.127), one has



*i
= <i''''^x(0_) + aQi^''''d + Ygg, >

>,,(l'x,(0_) + *i/^'x2(0J +...*,Jl'x„(OJ + a^^.l^^i^,,

^.. ^ Vl!n-m-.2Vl *••* ^Ohn''*'^! + ^0^

'('2 ~ '^- 2.'°J + ^0- - '*'

"''O-lS' -

S,,<2'x,(0J +...+ *iJ'^,(OJ + ao*l!n-m+A ^ ^0

^l,n-m+2Vl +•••"' ^0*ln ^ ^1 *• ^0*(1)U + ^0* (1) 12^2

"•••+
^0*(l)ln^n

,
(n+m) In \ , . . Cn+m) ,n \ . . (n+m) , . , (n+n= *il x^(0_)+...+ 43^^ '^nf°J+ ^0*l,n-m+lV^O*l,n-

(y)Since z-i< S2'---S^, all the *^ 1 and *(y\.* can be computed, and

ii-j^, ')'2' •
•

' *n+m °^" ^® measured from the system response, the values

of
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n la-l 1

and

x^iOj, x^(0_), ... x^{OJ

can be determined by solving (n+m) simultaneous equations (2.128).

Thus, djj, ^21+"^ ^^^^ ^eon determined. From the simultaneous

equations (2.99), the bj_'s can be determined. This completes

the Identification of N(s).

In summary, by taking some measurements of the system re-

sponse, P(s) can be identified first and then N(S) is identified.

The step function is, used as system input in this technique.

1 ,..-• •
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CONCLUSION

The requirement of process identification is of central im-

Dortance in the design of adaptive control systems. Several

techniques which have been described in the literature for ob-

tainino a process identification have been presented in this re-

port.

The parameter-evaluation approach to the identification

problem is somewhat theoretical and often not a practical one,

since it is difficult to accurately evaluate all the parameters

in the system, laarticularly when the system is in operation. The

inherent nonlinearity of physical processes also limits the use-

fulness of this technique. But the advantage of the technique is

perhaps that it possesses a detailed picture of the physics of

the operation of the process, and it is useful when one desires

to estimate directly the effects of varying a specific parameter.

The dynamic transmittance identification approach which

focuses its attention on determining a specified dynamic input-

output relation is achieved in terms of a set of coefficients of

a preselected differential equation or in terms of a time-domain

representation of the dynamic response to some specified test

sianal such as white noise and discrete-interval binary noise.

The response sought usually is the impulse or unit step response.

The problem of automatically determining the technique of

identification v/hich is most suitable for the task at hand is

still one of the most interesting aspects of the design of adap-

tive control system.
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The main purpose of this report is to study the identifica-

tion problem as applied to control systems.

Model identification is presented in the first chapter. In

this technique, a set of differential equations is established to

constitute a mathem.atical model of the system. From this model,

all parameters of the process may be evaluated. The block dia-

gram and circuit diagram are derived for this purpose.

With the complexity that is inherent in most control systems,

it is more practical to attempt to evaluate the transfer char-

acteristics from the specific inputs and outputs of primary in-

terest. For this purpose, the impulse or unit step response is

the desired information. The solution of the convolution inte-

gral and the application of the basic cross-correlator are pre-

sented.

Finally, since information concerning the system is usually

in the tim.e domain, a method that utilizing the state equations

to identify the transfer function G(s) of the system is presented.


