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I. INTRODUCTION

This document is concerned with the development of numerical
methods for finding the probability of detection for a very general
square~-law detector system. The system consists of a bandpass pre-
filter followed by a square-law envelope detector and a low-pass video
filter.

~ This problem has been dealt with previously by Kac and Siegert [1]
and by Marcum [2]. The results found by Kac and Siegert require eigen-
values and eigenvectors of an integral equation. The final form for the
probability of detection does not allow for easy sclution of the eigen-
value problem, i.e., there is not a general solution to finding the
eigenvalues, and the method for doing so must be found on a case-by-case
basis. Marcum's development deals with specific input signals and is
not readily adaptable to various filter transfer functions or input
signal configurations.

The development found in this paper incorporates a series repre-
sentation of noise [Yaglom, 3] that allows for matrix formulation of
noise only or signal plus noise cases. The matrix representation
affords solution of the eigenvalue problem, and leads to numerical
solutions for the probability of detection for the signal plus noise
case, or the probability of false alarm for the noise only case.

The results of this development are general in the sense that they
are applicable to arbitrary pre- and post-filter tranéfer functions as
well as to arbitrary input signal formats, and the results may be used
for systems where the ratio of RF bandwidth to video bandwidth is large.
Thus, the results of the development found here are useful in solving

some traditionally difficult detection problems.



II. A MODEL FOR THE SQUARE-LAW RECEIVER

The Physical System

A simplified block diagram of the receiver under consideration is
shown in Figure 1. It consists of a bandpass pre-filter having trans-
fer function H(f) followed by a square-law envelope detector and low-
pass filter with transfer function G(f). The input to the receiver is a
signal of interest, s(t), plus a stationary bandpass Gaussian noisge
process, n(t). All of the results presented herein are for the case
where n(t) has a flat power spectrum given by

T {NO/Z , f,-B <[] <f_ +B, a5
0 , elsewhere
where fc denotes the center frequency of the pre-filter and ZBn is the
bandwidth of the noise process, typically somewhat wider than the
bandwidth of the pre-filter so that for practical purposes the input
noise appears to be white. There are no restrictions on the pre-filter

or post-filter other than that of linearity.

An Equivalent Low-Pass Model

The equivalent low-pass model shown in Figure 1 is develcped in the

usual way [4] with a signal and its complex envelope related by
jw e
s(t) = Re{é(t> e © } ()

where g(t) is the complex envelope of s(t) and w, = wac is the center
frequency or carrier frequency of the signal and is taken as the center

frequency of the bandpass pre-filter for convenience. The complex enve-
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v
lope, n(t), of the input noise process is a stationary complex Gaussian
process. The power spectrum of g(t) is related to that of n(t) by the
equation

S_(£) = F Snu(f - £) + 7 Su(-E - £) . (3)

N
Thus the power spectrum for n(t) used here is

2N, |£] < B

Sw(f) = { (4)

o , |£| > B,

The sum of signal and noise envelopes, g(t) + g(t), serves as the
input to the low-pass equivalent of the pre-filter. The transfer
function of the pre-filter and that of its low-pass equivalent, ﬁ(f),

are related via

H(E) = H(E - £) + B -2 . (5)

The complex envelope of the signal at the pre-filter output is a sum,
E(t) + %(t), of filtered signal and noise envelopes respectively. The
action of the square law detector is to produce a voltage v(t) propor-

tional to the magnitude squared of this complex envelope, i.e.,
3" N 2
v(t) = |p(r) +w(e)|”, (6)

The output y(t) is obtained by passing v(t) through a low pass filter

with transfer function G(£f).

A Matrix Formulation for the Qutput

The determination of the probability distribution for the output
v(t) depends upon the development of a matrix representation for v(t).

We begin by expanding (6) as



v(e) = |3(e)|? + 2Re{B(t) wh(e)} + |wee)|? )

where * denotes the complex conjugate.

If the subscripts r and i are used to denote real and imaginary parts

respectively, v(t) may be further expanded to yield
o2 ny a a2
v(t) = pr(t) * 2Pr(t) Wr(t) + wr(t)
+ 32 + 25, (0) W, (0) + W 8
Py p,(t) w, (t w, (t). (8)

At this point a noise model described in Appendix A is introduced.
Our objective is to find tractable expansions for the noise terms in
(8). Let the complex envelope of the input noise be represented by
K jALt -jA. t
v _ k k
n(t) = Z (ake + bke ) (9)
where the 3 and bk are statistically independent complex Gaussian
random variables and the Ak are a set of frequencies selected in
accordance with the procedure outlined in Appendix A. The nature of the
model is such that the real and imaginary parts of the &, and bk are

zero-mean and statistically independent with variances

2 g
E{a” } = E{a; } =R /2 (10)
rk ik Rk
and
B2 } = Bl } = R /2 (11)
T L

It is shown in Appendix A that the pairs of frequencies and variances
(lk, Rk) may be determined from a tabulated Gauss quadrature rule (GQR)

with respect to the unit weighting function on the interval (-1,1].

w



This feature makes the model particularly attractive for numerical work.
If the GQR pairs obtained from tables are designated as (Yk, vk), then

Ak and Rk are found from

A, = ZﬂBn v (12)

k

and

R

2N B Y, - (13

Further expansion of (8) requires expressions for the real processes
N N , v ; ;
wr(t) and wi(t). An expression for the complex process w(t) is readily

obtained from (9) as

A~

it -
k k } (14)

;:;(t) = z (aki-\ll(lk)e + bkﬁ(—l )
k=1

The real part of ;(t) is then given by

K IAt -iAt
a n, k & k
Wr(t) = Re{ z (akH(Ak)e -+ ka (Ak)e )} (15)
k=1
where in writing (15) we have assumed that H(f) is symetrical about fc
*
so that ﬁ(—k) = ﬁ (A). Observing that the real part of a sum is the sum

of the real parts, we have

At -jA t
k % k
+ b, B (xk)e } (16)

g2
~
(33
~
1}

Il ~158

Re{a H()
i eta, k)e

One may verify after some manipulation that the indicated real part in

(16) may be written in the form



At

] -jx t
Re{akﬁ(xk)e k +bkﬁ*(>\k)e k}

jA, t " =jA t
Hoe < + 8 0pe
= (ar * br ) 2
k k
jA. t & -jA t
Hope © - ¥ 0e 8
+ (b - ay ) - . 17N
L 4 23
Define a new set of random variables using
a + br , k=1, ., K
k k
¢ & (18)
bi - a; , k= K+, ... , 2K .
k=K k-K
The S

are real Gaussian random variables with zero-means and variances
given by

ko= o e X
3 b 3
Elc.} = {R“ (19)
Rk-K , k = K+1, , 2K .
It can be shown that they are also statistically independent.
Now define the real parameter hk as
jALE % -jA t
Hope © + ¥ e
5 , k=1, s K
hk = (20)
INgE ~iA gt
i ", -
ﬁ(lk_K)e +H (G _ge ,
27 k = K+1, , 2K.
The real part of %(t) may now be written as
Yo - X
w (t) = ¢, h (21)
T K=1 k 'k

and the square of this quantity is readily obtained as



2K 2K

vz
wo(t) = 3 ¥ ¢ h b oc, . (22)
r k=1 2=1 kK "k 2 7%

Equations (21) and (22) may be conveniently arranged in matrix notation

by defining the vectors

T
¢ = (Cl' Cos svvs czK) s {23)

h™ = (h i) (24)

12 Bgs wees Bop

and the real symetric matrix

hibs  Bghy  ww x Byl
hohy - hohy

= . X . (25)
gy - gyl

The resulting matrix forms are:

v_(t) = e (26)
Csim e (27)

Note that all of the system properties and time dependence are imbedded
in the vector h and matrix H and that ¢ is a Gaussian random vector with
elements that are statistically independent.

Following the same procedure yields similar forms for ai(t) and
$i(t). The details are omitted here, but one may verify the not too
surprising result that system properties and time dependence contained

in h and H turn out to be the same for this case as for the development



leading to (26) and (27). It is necessary; however, to define a new

random vector d with elements dk given by

153
+
o
~
]

1, vovy K

& = (28)

K+l, ..., 2K .

w
i
o
~
]

The dk are real Gaussian random variables with zero-means and variances

given by

o1 - (29)

Furthermore they are statistically independent and it may be shown that
the vector d so defined is independent of the vector c. The resulting

A N2
matrix forms for wi(t) and wi(t) are:

hig (30)

it

W, (£)

dTHd (31)

e (t)

A matrix form of the square-law device output, v(t), is now

obtained by substitution of (26), (27), (30), and (31) into (B8), Viz.
v(t) = gi(t) + ZBr(t) th + cTHc
+ ﬁi(t) +25,(t) bl + d'Hd . (32)

This signal is subsequently filtered to give the system output y(t). An
expression for y(t) may be found by convolving (32) with the impulse
response g(t) of the low-pass filter. It is helpful to define the new
set of variables,

9, = Bi(t) * g(t) (33)
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ay = Ba(e) * g(t) (34)
2o = (25_(0)hT) # g(¢) (35)
23 = (2B, (OR) * 5(0) (36)
P=H%g(t) (37)

where * denotes convolution. The operations implied in Equatioms (33)-
(37) are tedious but not particularly difficult. The details are
contained in Appendix B. These transformations allow the gystem output
to be written as

T T
= +
y(t) q  +tzecte Pc

+q, + zid + a%pd . (38)

3
In writing (38), the time dependence has been suppressed for convenience
in subsequent discussions; but it should be kept in mind that 9, and 9y

are scalar functions of time, zz and ZE are vector functions of time and

P is a time varying matrix.



ITI. DETERMINATION OF THE PROBABILITY DENSITY

FUNCTION OF AN OUTPUT SAMPLE

The major objective of this work is to present procedures for
determining the statistical properties of the output of a very general
square-law receiver. An important step is to determine the probability
density function of a sample of the output process. The approach used
is to find the characteristic function and then obtain the density

function via the Fourier transform.

The Characteristic Function of y(t)

As a preliminary step, we consider the problem of finding the
characterisitic function of a portion of y(t). The methods used are
similar to those used by Kwon and Shehadeh [5] in an analysis of

noncoherent FSK systems. Specifically we seek M& (v) where
r

y. = a. + zgc + cTPc . (39)

First decompose the random vector c as

c = Dv (40)
so that D is a diagonal matrix and v is a Gaussian random vector with
components that are zero-mean, statistically independent and have unit

variance. This is achieved by choosing the diagonal elements of D as

]
’.-l
=

1//§; , k

d, . = (41)
Kk { —
1/ Rk"K ) k = .. .

|
~
4+
=
[y
=

Substitution for ¢ in (39) vyields

y_=q_+ zEDv + vDPDV . (42)

11
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Let the orthonormal eigenvectors of DPD be arranged as the columns of a

matrix M and define the Gaussian vector u by the transformation
u=Mwv. (43)

Because the columns of M are orthonormal, it is not difficult to show
that the components of u are uncorrelated, zero-mean and have unit
variance. Furthermore, M is an orthogonal matrix with the preperty
MTM?I so that we have

| v = Mu. (44)

Substitution for v in (42) yields

T.T

T ™ G, + zz DMu + u M DPDMu . (45)

T

Observing that MTDPDM is just a diagonalizing transformation of the

matrix DPD, we define the diagonal matrix

D_ & M'DPDH. (46)

It is a simple exercise to counstruct DCc since its diagonal elements are

just the eigenvalues of DPD. It is also useful to define the vector

LA ZIDM . (47)
T - Y

Substitution of (47) and (46) into (45) leads to

_ T ., T
¥, =9 + ru+u Duu. (48)

A scalar form for (48) is more convenient in subsequent manipulations.

We have
2% 2K

y_=4 +
T k=1

2
r + ) a (49)
e S



where {ak} are the eigenvalues of DPD. Rearranging (49) as a sum of

squares leads to

r2 2
Zlf Ty 212( rrk
y.=4qa_ - - + {u + ———}
r r k=1 4ak k=1 e Mk Zak
Now let
r2
r = 7r k=1 4ak
and
T
Ry g'fji )
ko "%
Substitution yields
2% 9
y.=0Q_ + (u, + R_ )
r T k=1 e Mg rk

where the only random terms are the w which are statistically
independent zero-mean, unit-variance Gaussian random variables.

The characteristic function of P is obtained by forming

vy
M (v) = E{e r}
Ir
2% 9
jva_ v ) o (o +R_ )
{ r k=1 kM Ty }
= E<e e

; . 2
JQr\J 2K Jvuk(uk * Rrk)
e E{ I e
k=1

(50)

(51)

(52)

(53)

(54)

Since the W are statistically independent and Gaussian, we may write

13



LEP O
M o (v) =e I Eie k , (55)
Ve k=1

where

{ jvuk(uk + Rr )2}
k
Eqe

= e ! e du.k
- e
a R2 v
k T,
) Ty
=T 172 . (56)
(1-32 a V)
The characteristic function of 2 thus becomes
.
) Juerkv
jQ_v 2K xp 1-jZa, v
M (v) =e II 173 (57)
Ve k=1 (1-j2a; v)

The same procedures may be used to find the characteristic function

of the remaining terms in y(t),
v, =a + z?_d + da'pd (58)

with the result

(jak Rikv
3,V 2K e“'{l—jz{xk "
M (V) = e I v (59)
71 k=L (1-3 2a,v)

where

14



He B

(60)

Q

fw
fle=>
O
[
1
1
o
|

and rH
R, A=x— . 61
ik 20lk )

Finally, observing that y = ¥ + vy is the sum of independent random
variables, ¢ and d are independent random vectors hence Y, and y; are

also independent, we may find the characteristic function of y from

M (v)y =M (v) M_ (V)
y Yr Yi
which becomes
s
IR oy
eXpPi\T—7
_ jav 2K 1 J2aku
M (V) = e I > 4 (62)
¥ g=y (33 20y W)
where
Q=0q, +10, (63)
and
f =B R . (64)
Rk T 1

Probability Density for the Case of Noise Only

Since the density function and the characteristic function of a
random variable are Fourier transform pairs, the problem now reduces to
finding the transform of My(v) as given in (62), i.e., we want to

evaluate
PG = M IS (65)

A considerable reduction in the required effort is possible for the case
of noise only. The simplification results from observing that when the

signal is set to zero, we find that

15



and

R = 0, all k.

The characteristic function for the case of noise only thus becomes

2K 1

52 & v ° (66)

My(v) = -

II
k=1

When the eigenvalues are distinct, My(u) may be expanded in partial

fractions to yield

2K
My(v) = 1 x

atoa ot (67)
kel (l-j2akv)

where
= (1-32 a, v) M (V)
Kk k v (68)

L
2oy

The Fourier transform of My(v) is now readily found by the method of

v

residues with the result

KK ‘E‘Zik_
2(y) =kzl§-;k e , ¥ >0 (69)
where
Kk=2§ el (70)
i=l M
i#k o

Probability Density for the Case of Signal Plus Noise

Solutions for the case of signal plus noise require numerical
procedures, Since demsity functions are known to be real, it is only

necessary to deal with the real part of the transform integral

16
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L |
“ 4 ca . BK 1-j2a, v
py) = f eIV EJQ\J I —l:"T—k“'g'Y' (71)
- k=l T SR VAT
The real part of (71) may be shown to be
oK (rz + r? ) v2
1 vk
expi~ 3 1 Z 2 }
] k=1 (1 + 4 4 Vv )
I @+ 4 el v
2 2 3
w [Cr T A ;
. cos|qv - yv - - tan (20 V) E%’ (72)

k=1 L (1 +4 ui w25

where q A qr + qi is the output signal voltage at the instant of
interest. The integrand in (72) has been found to be an even function
and is well behaved when y is close to q so that numerical sclutions
yield good accuracy for values of y within a few standard deviations of
the mean. It has not been possible te achieve useful results for values
of v in the tails of the distribution.

Some solutions for p(y) are graphed in Figures 2-6. The input
gignal is the same for all cases shown, a 100 ns rectangular RF pulse in
the center of the pre-filter passband. The density functions are given
for a sample taken at a time corresponding to the peak of the output
signal waveform. Various filter configurations were considered. 1In
every case, the post-filter bandwidth was less than the pre-filter

bandwidth but not enough less to justify a Gaussian assumption.

17
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The Mean and Variance of a Sample of y(t)

It is possible to compute the mean and variance of a sample of the
output process y(t) in terms of the eigenvalues and eigenvectors of the
matrix DPD, A sample y = Y. + y; may be written, with the aid of

Equation (49) for 49 and the implied counter part for Y5 as

2§ 2§ 5
¥ =gy * u,  + u
k=1 rk ™ k=1 & Tk
(73)
ST
o u, .
k=1 ik i - ki

Recalling that the u and u, are statistically independent Gaussian
k
random variables with zero-mean and unit variance, the mean of y is

readily found to be
2K

q + q + 2 z o
k-.-

v K
or
2K

q+2 3§ o (74)
k=1

1]

y
: z2 ,
An expression for the variance, cy, is found by forming

-2
» E{(y-y) }

2
2% [ NETAT + 2 }1 } (75)
E u u T.u r, u - 2a
A A T J

Q
~
[}

[}

Expanding the indicated square leads to

2% 2% { 2 2

E<(a (u” +u, ) +r u +r,u, = 20,)
LI e ™ R S
. (u (u +u ) + r,ou + r,ou, - 2a£)} (76)

i Mg 2 7% L 7R
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If 2#k, the indicated expectation becomes zero for any choice of £ and k
due to the fact that the random variables are independent, zero-mean,
and unit variance. Consequently, (76) reduces to

2K 2

2 2 2
c=EE{( (uf +u ) +r_u +r.u.-2a)} (77)
A e e e Tk k k

After squaring and averaging term by term, the variance is found to be

2K
(ri G rik) . (78)

2K 9
c_ =4 E o + z
k=1 k=1 k

It is worth observing that in the case of noise only, the eigenvalues ay
remain the same but the terms T, and rik are identically zero for all
k

k whenever the signal component is set to zero. Thus the variance of an

output sample for the case of noise only reduces to

2
g =
¥

2K 5
4 3 @ noise onmly. (79)
k=1
The output process is known to be stationary for the case of noise only,
hence the eigenvalues, 4 ., are not expected to change with time even
through the elements of the P matrix are time-varying. This property
has been verified. TFor the case of signal plus noise, the cutput
process is frequently nonstationary. In this case the variance changes

with time and all of the time dependence is embedded in the parameters

T and ri .
T k
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Iv. CALCULATION OF DETECTION PROBABILITY

The most commonly used indicator of receiver performance is the
received signal power required to yield a specified probability of
detection when the receiver has been set up to operate at a specified
false-alarm rate. The purpose of the following arguments is to extend
the results of the previous section to yield relationships which may be
used to compute this performance measure for very general recelver con-
figurations. The discussion begins with the problem of determining the

threshold which results in the desired false-alarm rate.

Setting the Threshold

The false-alarm rate (FAR) 1s the average number of times per
second that the threshold is exceeded when the receiver has noise only
at the input. If the bandwidth of low-pass output filter is sz Bz,
there are approximately Zsz independent opportunities per second for

the output noise to exceed threshold. The probability of false alarm,

Pf, for a given noise sample is then related to the false-alarm rate by
FAR

Pe=2m (80)
Lp

The probability of false alarm is, in turn, related to the threshold
voltage Vt by

p. = [ dy (81)

v
=

where p(y) is the probability density function for a sample of the
receiver output for the case of noise only at the input. This density

was determined in a previous section to be

25
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2K K, -2
%%
p(y) = = & .
kzl 2oy,

Po= ) K e (82)

which may be readily solved by numerical methods tc find the threshceld

Vt to yield a specified Pf or corresponding FAR.

Calculating Pd

The probability of detecticn, denoted by Pd’ of an output signal is

equal to the probability of the output signal exceeding the detector

threshold voltage. That is,
P,(V) aPly 2V,]

or

PR mwls Bly < ¥, (83)

where Vt is the threshold voltage of the detector. Equation (83) is
based on the assumption that pre~filter and post-filter bandwidths are
such that only one independent sample of the pulse occurs.

Recall from (72) that

(ri + ri )] vz
exol- L K o

L ° 2 w21l ui ¥y
i T 5 5 A
I (1 +4 % v )
k=1

2K




2 2 3
2K (rrk + rik)ak " -1
» coslqv - yv - I 55— ~ tan (2ak v) dv
k=1 (1L +4 A v )

Letting
cxpl- L e
2pm1 L1+ s ai v
e(v) = 2K 2 9 1/2 (84)
I (L+4 W v )
k=1
and
2 2 3
2K (rrk T rik) % V .
g(v) = -qv + 55— - tan (2a V)| (85)
k=1 (1 + 4 ap v)
Fquation (72) becomes
oly) = -21-%- [ e(v) cos(yv + g(v)) dv . (86)
Using the rectangular rule of numerical integration, p(y) can be
expressed as
1 N
plry == £=ZN e(v,) cos(yv, + g(v,)) &v (87)

To find Py < Vt], p(y) is integrated over the appropriate limits.

Specifically,

Vt
Ply < V.1 = [ p(y) dy (88)

-0

8} v
= oty ay + [Coly) dy . (89)
-0 0
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Solving the first integral in (89),

0 © N
[ o) dy = 5= | (L ey costyvy + 500 v ay
N © cos (yv, + g(v,))
= EZ e(v,) f %w : d?} Av

It is shown in Appendix C that

e cos(y\)E + g(vi)) Sin(yvg + g(vl))

1
dy = 'i- 6(\)2) +

— 2m TI'\)R‘
Therefore
0 N 1
[ oy) dy = 1} 7 e(v,) 8(vy) av
-0 2==N
L ? {e(ug) sin(g(vi))ﬂv}
2T 4=mN Ul

The expression
N

=§N<% e(vi) 6(v£) Av

represents the rectangular rule integration form of

-]

[ e smav

-0

which can be shown to be %u Thus

\Y

N e(vi) sin(g(vz))Av
L )
2==N A

0 . 3
[ ) dy =5+ 5

-

(90)

(91)

(92)

(93)

(94)

(95)

(96)
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v
Now finding ftp(y) dy,

0
v, v, ¥
Cf) p(y) dy = g 77 L e(v,) cos(yy, + g(v,))Av dy (97)
=-N
1 N re(v,) [sin(V,v, + g(v,)) - sin(g(v,))]av
o z (98)
v
g==N 2
Substituting (96) and (98) into (89), we have
N re(v,) sin(V_v, + g(v_ ))Av
Ply<v,] = 5 + o= { L £ 2 : } (99)
2=-N %

Recognizing that the expression in braces is an even function, (99) can

be rewritten as

N re(v,) sin(V_ v, + g(v, )})Av
P(y<V, ] =%+% 3 { & 5”’ 2 } (100)
=1 L
Now substituting (100) into (83), we find
N re(v,) sin(V_.v, + g(v,))
P, (V) =z-2 ] { 1 o £ }m) , (101
=1 2

and replacing e(vg) and g(vl) with the expressions defined in (84) and

(85), the final form of P, is found to be

d
( 2 3.3
(r + v
’:}.21&1 rk ikl
N 2 k=1 (1 + 4 az vg)
P(V)=-];—£EJ L k "2
e’ TT T L 2K , 172
vy T (1+4 mk vl)
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V. PROBABILITY OF DETECTION CURVES FCR SOME SPECIFIC CASES

The numerical solution for probability of detection, Equation
(102), developed in a previous section was used to find probability of
detection curves for several cases of interest. The results are
presented in Figures 7, 8 and 9. In all cases, a 100 nancsecond pulse
is used as the input signal to the system. Results are based on a
single sample of the output signal with the time of sampling
corresponding to the time of the output signal peak. Also, a system
noise figure of 2 dB was used for all cases.

Figure 7 shows the probability of detection curves for cases of a
surface acoustic wave (SAW) RF pre~filter with a bandwidth of 31.25 MHz.
A l-pole Butterworth filter is used as the post filter. The three
curves presented correspond to post filter bandwidths of 2 MHz, 4 MHz,
and 10 MHz, or pre- to post.filter bandwidth ratios of 15.625, 7.81, and
3.125,

As a check on the accuracy of the numerical methods developed in
this work, a comparison was done with results presented by Skolnik [6]
and is shown in Figure 8. The results found by Skolnik are based on a
linear envelope detector. However, it is generally accepted that the
detector law plays a minor role in the probability of detection. The
comparison presented is based on a 4-pole Butterworth pre-filter with a
bandwidth of 40 MHz, and a l-pole post filter with a bandwidth of 20
MHz, or a pre- to post filter bandwidth ratio of 2. The results found
by the numerical methods and those of Skolnik are in close agreement.

Figure 9 shows a comparison of the probability of detection curves
found with and without a Gaussian assumption for the case of a 4-pole

Butterworth pre-filter of 40 MHz bandwidth and a l-pole Butterworth post
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filter with a bandwidth of 2 MHz, or a pre- to post filter bandwidth
ratio of 20. It will be noticed that as signal power increases, the
probability of detection curves for the results with a Gaussian
assumption and those without a Gaussian assumption come closer together.
This is not unexpected since the signal dependent noise terms begin to

dominate at high signal power, and these noise terms are Gaussian in

nature.
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VI. CONCLUSIONS

A method for evaluating the probability of detection for a general
square-law detector has been given. The main results appear in Equa-
tions (72) and (102), the probability density function and probability
of detection, respectively. The solutions of these equations are easily
found using numerical methods.

The results of the development presented are directly applicable to
any input signal and to any pre- and post filter configuration. The
procedure given is not without its limitatioms, however. As the
pre-filter to post filter bandwidth becomes very large (greater than
40), the matrices used become sparse and the accuracy of the results
becomes suspect. Also, the accuracy of the probability of detection on
the tails of p(y) are not accurate due to the nature of p(y).

The probability density functions and the probability of detection
curves for several filter configurations have been presented. All
results are based on a single sample of the signal plus noise. Further
development must be done to find the density function and probability of

detection for the multiple sample case.



APPENDIX A

THE NOISE MODEL

The objective of this appendix is to outline the derivation of a
noise model which has proven effective in numerical procedures. The
approach uses a series expansion described in Yaglom [3] to approximate

the complex envelope of a bandpass random process.

The Equivalent Low-Pass Model

Let the noise signal of interest be a stationary bandpass Gaussian
process, n(t). Procedures for modeling n{t) in terms of a low-pass
complex envelope g(t) are available elsewhere [4], therefore only a few
necessary results are summarized here. The bandpass signal and its
complex envelope are related by

a(t) = Re {R(t)ejmct} (AL)
where w, is the center freﬁuency of the system. The complex envelope
g(t) is a complex low-pass statiomary Gaussian random process. If the

correlation function of g(t) is defined as
Rg(r) A E{n*(t)n(t+1) } , (A2)

then it can be shown that the power spectrum of n(t) is related to that
of n(t) by
1

5_(£) = %-Sg(f - £) + 7 SY(-f ) (A3)

where Sg(f) and Rg(r) are Fourier transform pairs. The complex process

"] "
ﬁ(t) may be written in terms of the real processes nr(t) and ni(t), 1.8

?{(t) = Kr(t} + 3 %’i(t) (AL)
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V] V]
where nr(t) and ni(t) are statistically independent Gaussian processes

with identical correlation functions

Rgr("r) = Rr'\;i(r) = % Rg(T)- (AS)

N\
An Approximation for n(t)

It has been shown (see Yaglom [3]) that every stationary random

process with a correlation function of the form

o= jlkt
RY(1) = ¥ R.e (A6)
k==o
may be expressed as a series,
@ jAt
B = ] me (a7)

(48)

s
=
B
-
]
o

and ; fer (A9)

=

N
WP
o}

#*

2
\

The Ak are an appropriately selected set of frequencies. For the case
of interest here, g(t) is a Gaussian process and hence the n, are neces-—
sarily Gaussian random variables. Condition (A8) implies they are also
statistically independent. It may be verified that a sufficient condi-
tion for satisfying requirements (A4) and (A5) is to further stipulate
that the o have real and imaginary parts nrk and nik which are statis-
tically independent with zero-means and equal variances



. } = E{n2 } =

" L%

E{n

B
2

(A10)

A suitable finite term approximation to (A7) may be obtained if the
parameters Rk and lk can be specified In such a way that the correlation
function Rg(t) is accurately represented over an appropriate range of T.
The key is to use a Gauss quadrature procedure. A specific case will
serve to illustrate.

Let the bandpass process n{t) have a power density NO/2 over a
bandwidth Bn centered on fc Hz. Then the complex envelope E(t) will
have the power spectrum

28, |f] <B
o} —n
Sg(f)= . (All)
o , |f] >B_
n
The correlation function of g(t) is found by taking the inverse Fourier

transfer of Sg(f), i.e.,

B
Ry (1) = _gﬂ 2 N_ cos(2mfr) df . (A12)
n

Making the change of variables f = BV allows (Al2) to be written as

1
Rg(r) = 2 No Bn _{ cos(ZWBnVT) dv . (A13)
K
Let the pairs {(Yk, uki} be a Gauss quadrature rule (GQR) with respect
==K

to the unit weighting function on [-1, 1]. A good approximation to the

integral in (Al3) which improves with increasing K is

39



K
Rg(r) 2 2 No Bn kZ-K Yy cos(Zanvkr). (Ald)
Now define
R, 2N B v, (A15)
and ;
kk A 2 B, Vi - (Al6)

Substitution into (Al4) yields the form

K
Rv(1) & =§K R, cos(A 1) . (A17)
A convenient symmetry of the GQR employed here is that for every pair
(Yk, vk) in the rule, the pair (Yk, —vk) is also in the rule. Thus an
exactly equivalent representation of (Al7) is
K jAkT
Ry(t) £ ] Re . (A18)
=—K
It is routine to show that (Al8) 1s the correlation function of the
approximating process
Jkkt

K
e 5 (A19)
el

[

n(t)

hence we conclude that if the pairs {(Rk, lk)} are selected using the
GQR procedures just described, (Al9) will be a good approximation for K
sufficiently large. The nature of the approximation (Al8) is such that
it compares very well with the actual correlation function with only a
few terms when T is small. The memory of the system under analysis thus

dictates the number of terms required for a useful representation.
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There are times when it is convenient to rearrange (Al9) slightly
by taking advantage of the symmetry of the GQR. Let the rule be re-

stricted to have an even number of terms. Then (Al9) may be written as

" K £ -jlkt
i(e) =} (age + be ) (A20)

where

and

by Am , k=<1, -2, ..., =K.

The ay and bk are observed to be statically independent complex random

variables with equal variances

E{laklz} = E{[bkfz} =R, k=1,2, ..., R. (421)



APPENDIX B

COMPUTATIONAL CONSIDERATIONS

42

The purpose of this Appendix is to give procedures for carrying out

the computations implied in Equations (33)-(37).

The Qutput Signal

The signal component of the output is

q(t) = qr(t) + qi(t)
= I3 |% * g(o)
where
P(t) = S(t) * h(r)

It is convenient for numerical purposes to represent the complex
v
envelope, s(t), of the input signal in the series form
N Jmnt

S(e) = ) se ,
=-N

where N is taken sufficiently large to yield a good representation.

")
series representation for p(t) is then readily found as

(B1)

(B2)

(B3)

(B4)

Carrying out the operations implied in (Bl) yields the output signal as

j(wn-mm)t
a(t) = [ [ ppk Glu-u ) e :
nm

(B5)



The Signal Cross Noise Vectors, zE and z?

T T . T .
The vectors z. and z, are real and since the vector h™ and impulse

i
response g(t) are also real, it follows from Equations (35) and (36)
that the elements of these vectors are given by

z_ = Re{(25(t) h) * g(t)} (B6)

k
and

z, = Im{ (2$(t)hk) * o(t)} . (B7)

ik

If ;(t) is in series form as in (B4), the quantity in braces may be

found with the aid of (20) to be

[
Flw + Xk)t
r}; sn[?{uk)ﬁ(wn)c(mn e "
dlw - A0t
+ﬁ*cxk)ﬁ(mn)c(mn -age © 7y,
" ke ly 25 coay &
[Zp(t)hk(t)]*g(t) - ; _ (B8)
Jlo g + A )t

. A} y
le —js_[HO,_DHW )G + 2 e
) ilw - kk_K)t]
k-K’© ,

| k = K+1, ..., 2K

AT ny
- B Oy _JH(@ )G = )

Numerical evaluation of detection probability and probability density
requires elements of the vectors rf and rE. Once the vectors ZE and zE

are formed using (B6), (B7), and (B8); ri and rf are obtained from

rT = zi DM (B9)

and

rT zi DM . (B10)
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The Noise Matrix, P

As indicated in Equation (37), the matrix P is found by convolving
the matrix H with the impulse response, g(t), of the output filter.
Actually, the exponential nature of the elements of H makes it more con-
venient to perform this operation in the frequency domain. The elements

of P may be found by straightforward manipulation te be

jO + 2t
- L eefdo N kT
sz =3 Re{H(kk)H(AE)G(lk + Az)e
i (A, = A )t
+ HOOH )60y - 2pe LI } (B11)
for L<k <K, 1<2<K
and
J(A, + A )t
1 a, y k =K
By ™5 Im{H(Ak)H(Az_‘k)G(Ak + A, e
A S 30y = At
- HOOE ()60 - A, e } (B12)
for 1 <k <K, K< <2K
WithP£k=Pkaorlf_£iK, K <k < 2K
and finally
J(h + X )t
_ 1 8 n k L
Pki =-3 Re{H(Ak)H(lg)G()\k + li)e
% It = Ak
- ﬁ(,\k)ﬁ (A )60 = A)de L } (813)

for K <k < 2K , K < & < 2K.
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APPENDIX C

SOLUTION OF A USEFUL INTEGRAL

The purpose of this Appendix is to find a closed form of

? cos(ut + &)

_l 5 dw.

0 -9/t 0
f cos(w§ﬂ+ $) diy - f Eﬂﬁiﬁg;i_il.dm + I/Egéiﬂg?i—il-dw . (C1)
- 00 -0 -¢ o

Let (w + ¢/t) = x and dw = dx. When w = -¢/t, x = 0 and when w = -,

x = ==, Then
-4/t 0
cos (wt + @) _ T C0S Xt o
_c{ el -_i =du=2 ) (C2)

Substituting (C2) into (Cl), we get

0 0
f cos(wt + 9) dii =%-_ §(t) + f cos(ut + 9) dw 5 (C3)

o 2m 6/t 2w

The remaining integral on the right-hand side is straightforward, and

the result is

0 :
cos {wt + @) o A sin ¢
f e iy 8 5 By e (C4)

3%
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APPENDIX D

COMPUTER PROGRAMS

The computer programs used for the numerical solution to probabi-
lity of detection or the probability density function, along with some
of the required subroutines, are presented. All routines are double
precision.

The routine SQUARE LAW DETECTOR, PART I does the matrix manipula-
tions necessary to find the eigenvalues and eigenvectors. One can
choose to find the probability density function for noise only in which
case ci = 1 is used. This choice will find intermediate results that
can be used by SQUARE LAW DETECTOR, PART II, which allows for finding
the probability demsity functions for signal plus noise cases. The
other choice is for SQUARE LAW DETECTOR, PART 1 to obtain intermediate
results which can be used by SQUARE LAW DETECTOR, PART II to find
probability of detection for signal plus noise. 1In this case, the false
alarm rate (FAR) or probability of false alarm is an input parameter to
SQUARE LAW DETECTOR, PART I.

The calculations were broken into two programs due to memory size
limitations of the computer used (Data General Nova 4). The programs
require a great deal of memory to store the necessary matrices and to
complete the matrix manipulations. Thus, at the termination of SQUARE
LAW DETECTOR, PART I, the input parameters and only those wvectors,
matrices and other results necessary for completion of probability
density functions or probabilities of detection are stored on disk,
which can then be retrieved by SQUARE LAW DETECTOR, PART II.

The routines BUTTERWORTH RESPONSE FUNCTION, SAW RESPONSE FUNCTION,

and FILTER are all function subroutines. BUTTERWORTH RESPONSE FUNCTION
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returns the complex response of a 1, 2, 3, or 4 pole Butterworth filter
at a specified input frequency to filter 3 dB bandwidth ratio. SAW
RESPONSE FUNCTION returns the complex response of a surface acoustic
wave (SAW) filter at the specified input frequency to filter 3 dB
bandwidth ratio. The routine FILTER will return the complex response of
either a Butterworth or a SAW filter as described.

The routines as presented are configured to handle a rectangular
input signal, SAW or Butterworth pre-filter and a Butterworth post
filter. The programs could be easily adapted to other configurations by
modifying the expressions for SN and SM (the series expressions for the
low pass equivalent of the signal input) found in SQUARE LAW DETECTOR,
PART II, and by substituting the desired filter response functions for

BUTTERWORTH RESPONSE FUNCTION, SAW RESPONSE FUNCTION, and FILTER.
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(B3 2303 0203228303030 8000 3030823030000 2¢283080383 0303803 ¢3+3%333¢380¢33338333380%1

rEy s ErEryEr RNy Ry Re NNl

PURPQSE

BUTTER
CLOSEP
FILTER
OPENP
RDATA
RS

SINCDP
WAIT
WDATA
WNANE

OO OO0 0OO0O00O00cO0OO000O000000

SQUARE LAW DETECTOR PROBLEMs PART I
DATA GENERAL FORTRAN 3 SOURCE FILENAKME:! CA2RS.FR

PROGRAMMED BY CONNIE ADAMS
DEPARTHENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY

FINAL REVISION DATE -- FEB 07, 1982

P332 222002333232 050¢0 230000t et eo it iiio it se it ot iei st iioistt]

This routine gives the outrut of & snuare law detector with 3
pre-detection filter and 2 rost-detection filter.

ROUTINE(S) CALLED BY THIS ROUTINE

finds response of a Butterworth filter

KSU LIBRARY SUBROUTINE--closes the linerprinter

finds response of 3 srecified filter

KSU LIBRARY SUBROUTINE--orens the linerrinter

KSU LIBRARY SUBROUTIME--reads 3 file from disk

EISPAK SUBROUTINE-~finds eidenvalues and
eidenvectors (develored by ARGONNE
NATIONAL LABORATORY)

KSU LIBRARY FUNCTION SUBROUTINE--finds SIN(X)}/X

SYSTEM SUBROUTINE

KSU LIBRARY SUBROUTINE--writes 3 file to disk

KSU LIBRARY SUBROUTINE--checks disk for existing
file

bS P2 0103038385000 020030002220t tP oot et ettt ittt Pt ettt eie it toRes

DIKENSION NAME(13), SPDF(100)
DOUBLE PRECISION T» WC1, WC2, WXy YMAX» YINCy GQR(74).,

VEC(30»30)

PFTV, COMP»

U RN e

LAMB1, LAMB2, HK, THETAK, HLs THETALs LAMBS, GLAMBS,

GLAMBDs GS» PHISs GD¢ LAMBD, PHID, P(30,30), VAL(30),

FUL1(30)y FV2(30)s VARy KK(I0)s Yr PDF(100), TEMF2,
PI, HMEANs YMIN, TEMWP3I, NOs FFy TAUs PFAs TV, FARs Fyr G»

UBs LBy TEMPi, G1

DOUBLE PRECISION COMPLEX BUTTER, FILTER

FORMAT ("<012><015>"s "DISK FILE CONTAINING GOQR DATA 7 ")

FORMAT (S5Xs °*NPAIR = "» I2)
FORMAT (SXs 'NPOLE (PRE-FILTER)= *r 3X, I4 )

c
c
1
2 FORMAT (823}
3
]

7 FORMAT (5Xs *T =

's F10,5, * NANOSECONDS®)

12 FORMAT (*<012><015>"s °*RUN PROGRAM AGAIN ? *)

13 FORMAT (81)

14 FORHAT (5X» 'NPQIE = %y IX» F10,3)
18 FORMAT ('<012><015>*")



21
22
25

27
28
29
30

31
36
38
43
44
45
46
47
48
49
50

o1
32
33
54
39
36
57
58
60
61

62
63

c

FORMAT
FORMAT
FORMAT

FORMAT
FORNMAT
FORMAT
FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

§23)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

FORMAT
FORMAT
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(5Xs "PRE FILTER CUT-OFF = *» F10.5» " MHz"),

(5Xs "POST FILTER CUT-OFF = *y F10.3» " MHz"):
(*€012><015><012><015>"y "PROBRABILITY DENSITY FUNCTION', '<012>
{015>*)

(3Xs °"REFERENCE BANDWIDTH = ' F10,5y * MHz*)

{5X» "NOISE FIGURE = *, F10.,3s " dB")

("OUTPUT PROBABILITY DENSITY FUNCTION TO DISK ? ")
("<012><015>PROBABILITY DENSITY FUNCTION STORED ON DISK FILE: *,
2Xs 823) '

(*<0125><0155<012><015>"y 5Xs» *VARIANCE = *, F10,5)
('<012>€015>"y SX» "MEAN = 'y IX, F12.8) :
("<012><015>"» 5X» "GAIN FOR UNITY THRESHOLD = '» F10.5, * dB"}
(3Xs °NPOLE (POST-FILTER) = *» 33X, I4)

(3Xr "SAW PRE-FILTER®)

(5X» *BUTTERWORTH PRE-FILTER')

(5Xs °*FUNDAMENTAL FREQUENCY = ®» F10.5y * MHz")

(53X °*RECEIVER GAIN = ", F10.5, * d4B")

(5Xs PULSE WIDTH = *y F10.5r " NANOSECONDS')

(3Xr *NUMBER OF POSITIVE FOURIER COEFFICIENTS = *»y [2)
(*<012><015>"» 'USER INPUT INFORMATION STORED IN DISK FILE: "',

(*<0125<015>", "EIGENVALUES STORED IN DISK FILE: ', 523)
("<012><015>*, 'EIGENVECTORS STORED IN DISK FILE: ', 823
("<012><015>*» 5Xy °"REFERENCE BANDWIDTH = ', Fi2.4» * HHz")
(3Xs " (FALSE ALARM RATE = "» F12.4r 2Xs ' ALARMS/SEC)")

(35X "NO = *y F12,4)

(*FIND PROBABILITY DENSITY FUNCTION (NOISE ONLY) 7 %)
('<012><015>"s 5X» °*DESIRED PROBABILITY OF FALSE ALARM = '» F10.5)
(*<012><013>*» 5X» "ACTUAL PROBABILITY OF FALSE ALARM = ', F12.8)
(3Xr *(ACTUAL FALSE ALARM RATE = '» F12.4» "ALARMS/SEC)")
(*<012><015>"y 3Xs °*GAIN FOR UNITY VARIANCE (NOISE ONLY) = *y
F12.4, ' dB")

(*"USER PROVIDED PARAMETERS<012><013>")

( "RESULTS<012><015>")

' dB*)

C!31*****3*****#!*!#1*#*****t*ttx*t!*ftt*******!**t**t*i*#tt!t**#X**tttt****tt!*

c

=300

125

ITT70
ITTI

ICHRAN =
PI = 3,

10
11

12
141593

GET USER PROVIDED INFORMATION

CONTINUE

TYPE

ACCEPT "NPAIR = 7 ', NPAIR

CONTINUE

ACCEPT *PRE-FILTER! BUTTERWORTH = 1, SAW =0 'y N

IF (NJNE«1.AND.N.NE.O) TYPE °*TRY AGAIN®
IF (N.NE.1.,AND,N.NE.O) GO TO 125

TYPE

IF (N.,EQ.Q) GO TO 130

TYPE



130

132

135

140

1435

c
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ACCEPT °*NUMBER OF POLES IN PRE-FILTER 7 *» N1

TYPE

CONTINUE

ACCEPT "NUMBER OF POLES IN POST-FILTER ? ", N2
TYPE

ACCEPT 'T =7 *» T

NPAIRD2 = NPAIR/2

TYPE

ACCEPT *CUT-OFF OF PRE~-FILTER (HZ) = ", WCl
TYPE

ACCEPT °*CUT-O0FF OF POST-FILTER (HZ) = *» WC2
TYPE

ACCEPT °*REFERENCE BANDWIDTH (WX) = *» WX
TYPE

ACCEPT "NOISE FIGURE (dB) = ? *y F
F =10 3x (F/10.0)

TYPE

ACCEPT "FUNDAMENTAL FREQUENCY = 7 *» FF
TYPE

ACCEPT °*PULSE WIDTH = 7 *» TaU

TYPE

ACCEPT "NUMBER OF POSITIVE FOURIER COEFFICIENTS = 7 s NFC
CONTINUE

ACCEPT "FIND GAIN FOR TV = 1 OR FOR VAR = 1 (0 OR 1) ? *, NOP
IF (NOP.,NE.O.AND.NOP.NE.1) GO TO 132

IF (NOP.EQ+1) GO TO 145

CONTINUE

ACCEPT °*INPUT FFA OR FAR (0 OR 1) 7 *y Ii

IF (I1,NE.1.AND.I1.NE.O) TYPE "TRY AGAIN"

IF (I1.NE.1,AND.I1,NE,0) GO TO 135

IF (I1.EQ.1) GO TO t40

ACCEPT °*PROBABILITY OF FALSE ALARM = 7 ', PFA

FAR = 2.0 ¥ WC2 % PFA

GO TO 1435

CONTINUE

ACCEPT "FALSE ALARM RATE = 7 *» FAR

PFA = FAR / (2.0 ¥ WC2)

CONTINUE

6 =10.0 xx 10

NO = 4,0 x (10.0 %x¥ -21) ¥ G X F

(2020228220082 2 0220220002 0028020200282 223 3000200 022020000080 e 20000028804

c
c
c
150

c
c
c
c
c
c
C

READ GAUSS QUADRATURE TABLE FROM DISK FILE

CONTINUE

WRITE (ITTO., 1)

READ (ITTIs 2) NAME(1)

CALL RDATA (0» "D"s 2%XNPAIR:, NAME, GOGR)

1223002302000 830200000ttt Pettiotiettti oot et oottt iteiet et

FIND P MATRIX

FIND UPPER LEFT SECTION



1200
1300

1400
1500
c
c
c

[Z 38 ]

1
2

INC = NPAIR + NPAIRD2 + 1
DO 1300 K = 1, NPAIRD2
LAMB1 = GAR(INC-K) % WX / WC1
= DCABS(FILTER(NsN1,LANBL))
THETAK = DATAN2(DIMAG(FILTER(N N1,LAMB1)) DREAL(FILTER(N»N1,LANEL}))
DO 1200 L = L, NPAIRD2
LAMB1 = GAR(INC-L) % WX / WCi
HL = DCABS(FILTER(NsN1,LAMB1))
THETAL = DATAN2(DIMAG(FILTER(N»N1sLAMB1))+
DREAL(FILTER(NsN1,LANB1)))
LAMBES = (BQRR(INC-K) + GAR(INC-L)) % WX / WC2Z
GLAMBS = (GGR(INC-K) + GRR(INC-L)) % WX
GLAMBD = (BOR(INC-K) - GAR(INC-L)) X HX
GS = DCABS(BUTTER(N2,LANBS))
PHIS = DATAN2(DIMAG(BUTTER(N2,LAMES)) sDREAL(RUTTER(N2,LAMES)))
LAMBD = (GAR(INC-K) - GOQR(INC-L)) % WX / uC2
= DCABS(BUTTER(N2,LAMBD))
PHID = DATAN2(DIMAG(BUTTER(NZ,LAMBD)) »DREAL (BUTTER(N2:LAMED) 1}
P(KsL) = 0.5 ¥ HK x HL ¥ G5 % DCOS(GLANBS ¥ 2,0 x PI % T
+ THETAK + THETAL + PHIS) + 0,5 % HK ¥ HL ¥ GD X DCOS(GLAMBD
¥ 2,0 ¥ PI T + THETAK - THETAL + PHID)
CONTINUE
CONTINUE

FIND UPPER RIGHT SECTION

DU.1500 K = 1y NPAIRD2
LAMB1 = GAR(INC-K) ¥ WX / WC1
HK = BCABS(FILTER(N:NI;LAHBi))
THETAK = DATAN2(DIMAG(FILTER(NsN1sLANB1)), DREQL(FILTER(N;NIsLAHBl)))
DO 1400 I = NPAIRD2+1, NPAIR
L = I - NPAIRD2
LANB1 = GAR{INC-L) % WX / WC1
HL = DCABS(FILTER(N,N1sLAMBL1))
THETAL = DATAN2(DIMAG(FILTER(NsN1,LAMBL1)),
DREAL(FILTER(NsN1:LAMNB1)))
LAMBS = (GGR(INC-X) + GOR(INC-L)) ¥ WX / WC2
GLAMBS = (GAR(INC-K) + GAR(INC-L)) x WX
GLAMBD (GQR(INC-K} - GARCINC-L)) % WX
LAMBD = (GQR(INC-K} - GARC(INC-L)) % WX / WC2
GS = DCABS(BUTTER(NZ:LANBS))
PHIS = DATAN2(DIMAG(BUTTER(N2,LAMES)})sDREAL(RUTTER(N2+LAKBS)))
GB = DCABS(BUTTER(N2,LANED))
PHID = DATAN2(DIMAG(BUTTER(N2,LAMED)) sDREAL(BUTTER(N2,LANED)))
P(KeI) = 0,5 ¥ HK ¥ HL % G5 x DSIN(GLAMBS ¥ 2.0 x PI x T
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+ THETAK + THETAL + PHIS) ~ 0.3 ¥ HK ¥ HL % GD % DSIN(GLAMBD X
2.0 ¥ PI ¥ T + THETAK - THETAL + PHID)
CONTINUE
CONTINUE

FIND LOWER LEFT SECTION

DO 1700 K = NFAIRD2+1» NPAIR
DD 1400 L = 1, NPAIRD2
P(KsL) = P(L,K)
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1500 CONTINUE

1700 CONTINUE

c

¥ FIND LOWER RIGHT SECTION
c

DO 1900 J = NPAIRD2+1, NPAIR

K = J - NPAIRDZ2 '

LAHB1 = GQR(INC-K) % WX / WC1

HK = DCABS(FILTER(NsN1,LAMB1))

THETAK = DATAN2(DIMAG(FILTER(NsN1,LAHBL))sDREAL(FILTER(NsN1,LAKB1))})
DO 1800 I = NPAIRD2+1, NPAIR
L = I - NPAIRD2
LAMBL = GAR(INC-L)} % WX / WC2
HL = DCABS(FILTER(N:Ni,LAMB1))
THETAL = DATAN2(DIMAG(FILTER(N,N1:LAHBL1)),

b4 _ DREAL(FILTER(NsN1sLAME1)))

LAMBS = (GQR{INC-K) + GAR(INC-L)) x WX / HC2
GLAMBS = (GAR(INC-K) + GOR(INC-L)) % WX
GLAMBD (GAGR{INC-K) - GAR(INC-L)) % WX
LAHBD = (BGGR(INC-K) - GGR(INC-L)) % WX / WC2
GS = CABS(BUTTER(N2,LAHBS))
PRIS = DATANZ2(DIMAG(BUTTER(N2>LAMBS))sDREAL(BUTTER(N2,LAHRS)}))
GD = CABS(BUTTER(N2:LAMNBD))
PHID = DATAN2(DIMAG(BUTTER(N2,LAMBD))»DREAL(BUTTER(NZ,LAKBD)))
PCJsI) = =0.35 % HK ¥ HL x GS % DCOS(GLAMBS * 2,0 * PI %X T ¢

1 THETAK + THETAL + PHIS) + 0.5 % HK % HL % GD X DCOS(GLAMBD
2 ¥ 2.0 X PIL T + THETAK - THETAL + PHID)

1800 CONTINUE - :

1900 CONTINUE

c
0028322023203 P2ttt P00 0028002003003 00 3300022220002 082830022000 22
c
c FORM DPD MATRIX
c
DO 2140 K = 1» NPAIR
IF (K.LE.NPAIRD2) LAMBY1 = SQRT(2.0XNOXWXXGQR(NFAIRD2+1i-K))
IF (K.GT.NPAIRD2) LAMB1 = SQRT{(2,0XNOXWXYGAR(NPAIR+1-K))
D0 2130 L = 1» NPAIR
IF (L.LE.NFAIRDOZ2) LAMB2 = SORT(2,0%kNOXWXXGQR(NPAIRD2+1-L))
IF (L.GT.NPAIRD2) LANB2 = SQRT(2,0XNOXWXXGAR(NFAIR+1-L))
P(KsL) = LAMBL ¥ P(KsL) % LANBZ
2130 CONTINUE
2140 CONTINUE
£
(D232 382 0353020030t t0 R0 0t ettt et oot tet oot sttt toptoovosotbsctitt e b s
c
c FIND EIGENVALUES AND EIGENVECTORS OF DPD MATRIX
c

CALL RS(30s NPAIR, P» ValL, 1» VEC» FV1, FV2s, IERR)

IF (IERR.EQ.0) GO TO 2200

TYPE '

TYPE "ERROR ON RETURN FROM EISPAKs ERROR CODE = *» IERR

STOP .

2200 CONTINUE

c

(B33 030 838333332383 8003 0030008300003 033 3388208383003 0323202232022 ¢8R0 32023223
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2250
c

53

FIND MEAN AND VARIAMCE

VAR = 0.0

MEAN = 0.0
DO 2250 K = 1, NPAIR
TEMP2 = 4.0 x VAL(K) ¥X 2
VAR = UAR + TEMP2
MEAN = MEAN + 2.0 x VAL(K)
CDNTINUE

IR 22 0230223308222 2302000880200 00 0002830800000 ¢0883 808008380303 3383202203832223

c
c
c

2330
2375
2400

C

FIND KK
DO 2400 K = 1s NPAIR
KK(K) = 1.0
DO 2350 I = 1» NPAIR
IF (I.EQ.K.OR.VAL(K).EQ.,0.,0) GO TO 2350
KK(K) = KK(K) / (1.0 = (VAL{I)/VAL(K)))
IF (KK(K).EQ.0.0) GO 7O 2375
CONTINUE
CONTINUE
CONTINUE

IF (NOP.EQ.1) GO TOD 3235

(223200022002 0200 0002002302020 3808 8323000238023 00320 03303433 8003¢03398003338¢841

c
C
c

3220

3225

3230

c

FIND THRESHOLD FOR THE GIVEN FALSE ALARM RATE: IF DESIRED

COMP = PFA % 1,0D-3

LB = 0.0

UB = 1.0

TV = UB

CONTINUE

PFTV = 0.0
DO 3225 K = 1y NPAIR
TEMPL = 0.0
TEMF2 = 0.0

IF (VAL(K),BT.0.0) TENPI = TV / (2,0 ¥ VAL(K))
TEMP2 = KK(K) x DEXP(-TEMP1)
PFTV = PFTV + TEWP2
CONTINUE
IF (DABS(PFTV-PFA).LE.COMP) GO TO 3230

IF (PFTV.LT.PFA)Y UB = TV
IF (PFTV.LT.PFA) TV = (TV + LB) / 2.0
IF (PFTV,GT.PFA) LB = TV

IF (PFTV.GT.PFA) TV
GO TO 3220
CONTINUE

(ug + TV) / 2.0

¥ 10,0 x =21 s G ¥ F

B 2300220222000 0008302822000t e P20t 0ottt tistst ot et et stsessoeotsststtesessis
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Lor]

FIND GAIN FOR VAR = 1, IF DESIRED

[or I o

IF (NOP.EG.O0) GO TO 3240
3235 CONTINUE
61 =G
6 = G / DSQGRT(VAR)
¥ (10,0 xx -21) x G X F

C 5
R0 00020200302 0000022000008 220 0000038508080 80033003¢3833383333333834%7

c
c ADJUST EIGENVALUES FOR CALCULATED RECEIVER GAIN
£
32490 CONTINUE
DO 3250 K = 1, NPAIR
: VAL(K) = G / G1 ¥ VAL(K)
3250 - CONTINUE
c
2230020220200 0200 000 0000003ttt et st ettt et sttt st et etstsssetsssoet:
c

c FIND MEAN AND VARIANCE FOR CALCULATED RECEIVER GAIN
C

VAR = 0.0

MEAN = 0,0

DO 3260 K = 15 NPAIR

TEMP2 = 4.0 ¥ (VAL(K) xx 2)

VAR = VAR + TEMP2

HEAN = MEAN + 2.0 % VAL(K)
3260 CONTINUE

c
D203 20 8200032020320 22 033002032002 33¢520 8223003202282 033 002002203333 20330003338 38941

c

c QUTPUT USER PROVIDED INFORMATION AND CALCULATED DATA
c
3242 CONTINUE

CALL WAIT

CALL OPENP (ICHANy "SQUARE LAW DETECTOR PROBLENM")
WRITE (ICHANs 62)

IF (NJEQR.0) WRITE (ICHAN: 44)

IF (NJEQ.1) MRITE (ICHAN, 43)

WRITE (ICHAN» 3) NPAIR

IF (N+EQ.1) WRITE (ICHAN, &) NI

WRITE (ICHANs 43) N2

WRITE (ICHANs 21) WC1/1.0Dé

WRITE (ICHANs 22) WNC2/1.0Dé

WRITE (ICHANs 27) WX/1.0Dé

WRITE (ICHANs 46) FF/1.0Dé

WRITE (ICHAN, 48) TAU/1.0D-9%

WRITE (ICHAN: 49) NFC

WRITE (ICHAN: 7) T/1.,0D-9

WRITE (ICHAN, 28) 10.0 x DLOGIO(F)

WRITE (ICHAN» 63)

WRITE (ICHAN: 53) NO

IF (NOP,EQ.Q) WRITE (ICHAN» 38) 10 % DLOG10(G)
IF (NOP.EQ@.1) WRITE (ICHANs 61) 10 x DLOG10(G)
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WRITE (ICHAN: 31) VAR

WRITE (ICHANs 34) MEAN

IF (NOP.EG.0) WRITE (ICHANs 57) PFA

IF (NOP.EQ.0) WRITE (ICHAN, 54) FAR

IF (NOP.EQ.0) WRITE (ICHANs 58) FPFTV

IF (NOP.EQ.,0) WRITE (ICHANs, 40) PFTV % 2,0 % WC2
IF (NOP.EQ.O) GO TO 3295

c

(2222028223020 0 20830202t 0000 8000302ttt sdte et ettt te T et ossseetttstsssssttss
c

c FIND PROBABILITY DENSITY FUNCTION, IF DESIRED

c

WRITE (ITTO» Sé)

READ (ITTI, 13) 1IANS

IF (IANS.NE,'Y<0>*') GO TO 3295

WRITE (ICHANs 25)

YMAX = MEAN + 1.5 ¥ DSQGRT(VAR)

YMIN = MEAN ~ 1.5 ¥ DSQRT(VAR)

IF (YMIN.GT.1.00-4) GO TO 3270

YMIN = MEAN - 1,0 ¥ DSQRT(VAR)

IF (YMIN.GT.1.0D-4) GO TO 3270

YMIN = MEAN - 0.5 ¥ DSQRT(VAR}

IF (YMIN.GT.,1.0D-4) GO TO 3270

YNIN = MEAN

IF (YKIN.ER.0,0) YMIN = YMIN + 0.01

3270 CONTINUE

Y = YMIN

YINC = 0.125 x DSART(VAR)

I =1 ‘

3280 CONTINUE

PDF(I1) = 0.0
DO 3290 K = 1» NPAIR
IF (VAL(K).LE.0.0) GO TO 3290
TEMP2 = EXP(-Y/(2,0%XVAL(K)))
IF (Y/(2.0%VAL(K)),GE.,1465.,0) TEMP2 = 0,0
TEMP3 = KK(K)/(2.,03VAL(K))
TEMP2 = TEMP2 % TEMP3J
PDF(I) = PDF(I) + TEMP2
SPDF(I) = SNGL(PDF(I))

3290 CONTINUE
WRITE (ICHAN» 26) Ys PDF(I)
Y =Y + YINC
I1=1+%1
IF (Y,LE.YMAX) GO TO 3280

c
222220222222 022002 R0 Pt R R bt 0000ttt ettt Rt ettt st tsettsetttttsss:
c
c QUTPUT PROBABILITY DENSITY FUNCTION TO DISK IF DESIRED
C
WRITE (ITTOs 29)
READ (ITTI,» 13) TIANS
IF (IANS.NE.*Y<0>*) GO TO 3225
LENGTH = I - 1
CALL WNAME (°FILE FOR PROBABILITY DENSITY FUNCTION ? *, NAME)
CALL WDATA (0r "R"'s LENGTHs NAMEs SPDF)
WRITE (ICHAN, 30) NAME(1) '
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M 2222222020000 2800332380003 2203 0033803323300 08 s ettt o Tt e e ottseeetstst:

c
c
[
3295

Lo B o B v |

a0

c

QUTPUT DATA TO DISK

CONTINUE

GQR(41) = DFLOAT(N1)
GAR(62) = DFLOAT(N2)
GAR(&3) = T

GQR(44) = DFLOAT(NPAIR)
BGAR(45) = WCI

GAR(466) = WC2

GOR(467) = WX

GQR(48) = NO

GOR(469) = DFLOAT(N)
GAR(70) = FF

GOR(71) = TV

GAR(72) = TAU

GQR(73) = DFLOAT(NFC)
GQR(74) = 10.0 % DLOG10(G)
GAR(75) = 10.0 x DLOG1O(F)
GAR(76) = DFLOAT(NOP)

OUTPUT GGR VECTORs USER PROVIDED PARAMETERS AND SOME RESULTS

CALL WNAME ('FILE FOR GGR & USER DATA 7 ', NAME)
CALL WDATA(Os °*D*» 74s NAMEs GOR)
WRITE (ICHAN» 50) NAME(1)

DUTPUT EIGENVALUES AND EIBEﬂUECTﬂRS

CALL WNAME ('FILE FOR EIGENVALUES 7 *» NAME)
CALL WDATA (0s '"D"s NPAIR, NAMEs VAL)

WRITE (ICHAN» 51) NAME(1)

CALL WNAME ('FILE FOR EIGENVECTORS 7 ', NAME)
CALL WDATA (0» "D", NPAIR % NPAIRs NAMEs VEC)
WRITE (ICHAN, S2) NAME(1)

2220320222 2200 Rttt e et et ottt el sttt ittt it et et e et oseeeesstst

c
c
c

CLOSE THE LINEPRINTER AND ASK IF PROGRAM IS TO RE RERUN

CALL CLOSEP(ICHAN)

WRITE (ITTO, 12)

READ (ITTI» 13) 1IANS

IF (TANS.EQ.°Y<0>') GO TO 100
sTOP

END
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(D222 2020220223 0220200800030 ¢e 0ottt Pttt sttt ettt te sttt ieesesters:

LAW DETECTOR PROBLEM» PARTII

DATA GENERAL SOURCE FILENAME: CA2P2R.FR

PROGRAMMED BY CONNIE ADAMS

DEPARTHENT OF ELECTRICAL ENGINEERINGs KANSAS STATE UNIVERSITY
FINAL REVISION DATE -- FEB 07, 1982

2202202020208 20 32003002 32028228 20200000ttt ettt i ettt st eesss

This is the second Part of the SQUARE LAH DETECTOR PROBLEM
PrOSram,

ROUTINE(S) CALLED BY THIS ROUTINE

BUTTER finds response of a Butterworth filter

FILTER finds response of a3 srecified filter

SINCDP KSU LIBRARY FUNCTION SUBROUTINE--finds SIN(X)/X

RDATA KSU LIBRARY SUBROUTINE--reads 2 file from disk

WAIT SYSTEH SUBROUTINE

WDATA KSU LIBRARY SUBROUTINE--writes 3 file to disk

WNANE KSU LIBRARY SUBROUTINE--checks disk for existing
file '

LRI 2200220200330 33003000t e ettt et sttt sttt ettt ittt it esateeese et

DIMENSION MNAHE(13)s PYSP(100)

c
c SQUARE
c
c
c
c
c
c
c
c
c
c
c
c PURPOSE
c
c
c
c
c
c
c
c
c
c
c
c
c
G
c
c
c
DOUBLE
i
&
3
&
DOUBLE
]
c
c
1 FORMAT
2 FORMAT
3 FORMAT
4 FORMAT
5 FORMAT
é FORMAT
7 FORNAT
8 FORMAT
9 FORMAT
10 FORMAT
11 FORMAT
12 FORMAT

13 FORNAT

PRECISION Ty WC1, WC2y WXs NO» GQR(74)» VAL(30)» VEC(30,30),
PI+ FFy FNs TAUs Ar RR(30)y RI(30)y ZRy Z1,s FM:
SINCDPs LAMB1, RSUM» X1y X2, MEANs VARs TV» S5,
X3s NUs PDETs COMP: Y, PY(100)y Gs Fy PS, PSDBM,
TEMP1,» TEMP2, SNRDB» SNR

PRECISION COMPLEX BUTTER, FILTER, HHGs EXP1, EXP2, HCHG,
TEMPy FN+ PHs @» QT PHG(30)s SNy SM

(823)

(5X» *NPOLE (PRE-FILTER) = *: 3X, I4)

(5Xs *T = "y IX» F10.5, * NANOSECONDS®')
(*<012><015>"y "RUN FROGRAM AGAIN? ')

(81) '

(3X» "NPAIR = 'y 3Xs I2)

(*<012><015>")

(5Xy "PRE FILTER CUT-OFF = *; F10.5» ' MHz")
(3Xr "POST FILTER CUT-OFF "+ F10.5¢ " MH2")
(3Xs "REFERENCE BANDWIDTH '» F1045s * HHz")
(3Xr *NO = *y G10.5)

(SXs "NPOLE (POST<FILTER)
(3Xs *SAW PRE-FILTER")

oy

13

Yy 3%y I4)



14 FORMAT (35X, "BUTTERWORTH PRE-FILTER")

15 FORMAT (35X, "FUNDAMENTAL FREQUENCY = "¢ F10.5, * MHZI")

16 FORMAT ('<012><013><012><015>*y 5X, °*SIGNAL POWER = *» F10.Sr *dBm*) -

17 FORMAT (SX, °PULSE WIDTH = ", F?.3, * NANOSECONDS®)

18 FORMAT (5X» "NUMBER OF POSITIVE FOURIER COEFFICIENTS = "'y IZ2)

21 FORMAT (*NAME OF DISK FILE CONTAINING USER INPUT DATA AND GAGR? *)

22 FORMAT (*NAME OF DISK FILE CONTAINING EIGENVALUES? *)

23 FORMAT (°NAME OF DISK FILE CONTAINING EIGENVECTORS? *)

24 FORHAT (5X» °0Q/A%%2 = ('» G15.8y "'y G15.8» %)

23 FORMAT (*RR("+I2,°)/A = *, G135.8y 10X, "RI(",I2,")/A = *y G15,8)

26 FORMAT ("<012><15>"y BXs"Q(T)/AX%2 = (*+615.8+"+"+615.8,") ")

27 FORMAT (SXr "MEAN = 'y F10.5) ,

28 FORMAT (5Xs °"VARIANCE = *, F10,3)

22 FORMAT (*OQUTPUT PROBABILITY DENSITY FUNCTION TO DISK ? *)

i FORMAT (5X» °*THRESHHOLD VOLTAGE = "y 3X» F10.5)

32 FORMAT (5X, "INTEGRATION STEP SIZE = *, 3X, F10.5)

33 FORMAT (SX» °*POF(*, G15.,8s *) = *» G15.8)

34 FORMAT (°<012><015>'s 3X» °'PROBABILITY OF DETECTION = ', G15.8)

35 FORMAT (5Xy °*COMPARISON VALUE = *s F10.3)

36 FORMAT (SX: "PY(', G15.8, ") = 'y G15.8)

37 FORMAT ('FIND PY(Y) ? ")

38 FORMAT (5Xs °*RECEIVER GAIN = *'» F10.5, 2Xs “dB")

39 FORMAT (S5X, °"MOISE FIGURE = *» F10,3» 2X» *dB")

40 FORMAT (35X, *SIGNAL POWER AT THRESHOLD VOLTAGE = 's F10.3,» 2X» *dBa’:
] '€012><015>")

42 FORMAT ("FIND PROBABILITY OF DETECTION FOR NEW SIGNAL POWER 7 ')

43 FORMAT (SXs "FALSE ALARM RATE = '» F10.35r 2Xs "ALARMS/SEC")

44 FORMAT (°'FIND PDF FOR A NEW SNR ? "y 2)

45 FORMAT ("<012><015>"+3Xy*SIGNAL~-TO-NOISE RATIO = 'sF10.5,"dBa")

46 FORMAT (°<012><013>*» 5X» °PDF STORED OMN DISK FILE ! ', §23)

47 FORMAT (*USER PROVIDED PARAMETERS<012><013>*")

48 FORMAT ("PARAMETERS FROM PART 1<012><015>")

49 FORMAT ("RESULTS<012><015>")

c

B3 Es 2302330222320 0030002800003 2000000000 2220 00020082803+
c

ITT0 = 10
ITTI = 11
ICHAN = 12

PI = 3.,1415793

READ GGR AND USER DEFINED DATA

=005

00 CONTINUE
TYPE
WRITE (ITT0r 21)
READ (ITTIs 1) NAME(1)
CALL RDATA (0:» *D", 74+ NAME,» GOR)
N1 = IFIX(SNGL(GRR(&1)))
N2 = IFIX(SNGL(GOR(62)))
T = GAR(43)
NPAIR = IFIX(SNGL(GQR(&4)))
NPAIRD2 = NPAIR/2
WC1 = GAR(6D)
WC2 = GAR{(&4)
WX = GAR(&47)
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NO = GAR(48)
N = IFIX{(SNGL(GAR{49)))
FF = GGR(70)
TV = BAR(71)
TAU = GUR(72)
NFC = IFIX(SNGL(GQR(73))})
= GQR(74)
= GAR(73)
P = IFIX{SNGL(BAR(74)))

nooun n

G
F
NG

READ EIGENVALUES AND EIGENVECTORS FROM DISK

a0

WRITE (ITTOs 22)
READ (ITTI,» 1) NAME(1)
CALL RDATA(O» *D*,» NPAIR, NAMEs VAL)
WRITE (ITTOy 23
READ (ITTIs 1) NAME(1)
CALL RDATA (0y °*D*» NPAIR % NPAIR, NAME, VEC)
TYPE
ACCEPT 'STEPSIZE FOR INTEGRATION = 7 *, SS
ACCEPT *LOWEST VALUES OF PDF TO BE INCLUDED IN INTEGRATION = 7%, COMP
TYPE
C
103033282253 0300032 4¢3 20t2 ot setas st stsotisotetotistsio ettty
c
c FIND RR» RI AND Q
c
6 = 10.0 %x (G/10.0)
PSDBEM = 10,0 % DLOG1O(TV / (2.0 X G)) + 30.0
TYPE *SIGNAL POWER CORRESPONDING TO THRESHOLD = *» PSDBM

FINDING RR AND RI

a0

DO 300 K = 15 NPAIR
IF (K.LE.NPAIRD2) INC
IF (K.GT,NPAIRD2} INC
FHG(K) = (0.,0y 0.0}
LAMBL = GARCINC - K} x WX
DO 200 I = 1, 2XNFC + 1
FN = FF % DFLOAT(I-NFC-1)
HHG = FILTER(Ns>N1,LAMB1/WC1) % FILTER(N:+NIsFN/WC1) X
H BUTTER(N2, ((FN + LAMBL1)/MC2))
X1 = DCOS(2.0 % PI % (FN + LAMBI) x T)
%2 = DSINC2.0 % PI ¥ (FN + LAMBIL) %x T)
EXP1 = DCMPLX(X1, X2) '
HCHG = DCONJG(FILTER(MsNi,LAMB1/WC1)) ¥ FILTER(NsNI1,FN/WC1) X
1 BUTTER(N2,(FN - LAMB1)/WC2)
X1 = DCOS(2,0 ¥ Pl * (FN - LAMEL) x T)
X2 = DSIN(2.0 % PI ¥ (FN - LANB1l) % T)
EXP2 = DCMPLX(X1,» X2}
SN = DCHMPLX((TAU % FF x SINCDP(PIXFNXTAU})» 0.0)
IF (K.LE.NPAIRD2) TEHMP = SN % (HHG % EXP1 + HCHG ¥ EXP2)
IF (K.GT.NPAIRD2) TEHP = (0.0s -1,0) % SN x (HHG x EXP1 -
p . HCHG % EXP2)
PHG(K) = PHG(K) + TEHP
200 CONTINUE

NPAIR + NFAIRD2 + 1
2 % NPAIR + 1

0 ou
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300 CONTINUE
DO 450 K = 1, NPAIR
RR(K?>
RI(K)

0 400 L = 1, NPAIR
F (L.LE.NPAIRD2) LAMB1
H +1-L)
IF (L.GT.NPAIRD2) LAMB1
H 1 =4y}
ZR = DREAL(PHG(L))
DIMAG(PHG(L))
RR(K} = RR(K) + ZR ¥ LAMB1 ¥ VEC(L:K)
RI(K) = RI(K) + ZI ¥ LAMB1 ¥ VEC(L:K)
400 CONTINUE
450 CONTINUE
c
c FINDING @
c

DSART(2.0 x NO x WX x GAR(NPAIRD2

DSQART(2.0 % NO x WX x GAR(NPAIR +

"

~N
]
u

QT = (0.0r 0.0)
DO 800 I = 1, 2 ¥ NFC + 1
FN = FF % DFLOAT(I-NFC-1)
SN = DCHMPLX((TAU % FF % SINCDP(PIXFNXTAU))s 0.0)
PN = SN % FILTER(N, N1, FN / WC1)
DO 700 J = 1y 2 % NFC + 1
FM = FF X DFLOAT(J-NFC-1)
SH = DCMPLX((TAU % FF % SINCDP(PIXFMXTAU))» 0,0)
PM = S x FILTER(Ns N1, FH / NC1)
X1 = DCOS(2,0 % PI % (FN - FH) ¥ T)
X2 = DSIN(2,0 £ PI % (FN - FM) X T)
EXP1 = DCHPLX(X1:s X2)
QT = QT + PN % DCONJG(PM) ¥ BUTTER(N2, (FN-FH)/
2 _ NC2) t EXP1
700 CONTINUE
800 CONTINUE
RSUM = 0.0
D0 900 K = 1» NPAIR
RSUM = RSUM + (RR(K) ¥% 2 + RI(K) ¥X 2)/(4.0 ¥ VAL(K))
900 CONTINUE

@ = RT - RSUH
c
C
(B E23083 032080220020 220 00202200804 223008 3200022002283 0082300022022028¢84F
c
c FIND MEAN AND VARIANCE
c

925 CONTINUE
IF (HOP.EQ.Q) ACCEPT °*SIGNAL POWER (dBm) FOR WHICH Pd DESIRED?", PSDBN
IF (NOP.EG.,0) PS = 10,0 %% (PSDBM/10.0 - 2.0)
IF (NOP.EQ.0) A = DSQRT(2.0 ¥ G X PS)
IF (NOP.EG.1) ACCEPT "SIGNAL-TO-NOISE RATIO (dB) = 7 ", SNRDB
IF (NOP,EQ.1) SNR = 10.0 x¥ (SNRDB/10.0)
IF (NOP.EQ.1) A = 2,0 X DSORT(ND x WC1 x SNR)
MEAN = DCABS(Q@ % A xx 2) :
VAR = 0.0
DO 950 K = 1» NFAIR
TEHPL = (8.0 %X VAL(K) %% 2 + (RR(K)} %X A) ¥x 2
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H + (RICK) % A) %xx 2) / (4,0 % VAL(K))
MEAN = MEAN + TEMP1 ,
TEMP2 = 4.0 ¥ VAL(K) %X 2 + (RR(K) x A) XX 2 +
1 (RI(K) ¥ A) %x 2
VAR = VAR + TEMP2
950 CONTINUE
c
(1333028802838 3222222800 002803 33+22008 0280803323320 000¢2 3332302000833 %8484
c

c FIND PROBABILITY OF DETECTION (SIGNAL PLUS NOISE CASE)
C i

IF (NOP.,EQ.1) GO TO 1240

NU = 0,0

RSUM = 0.0

DO 975 X = 1» NPAIR
RSUM = RSUM + VAL(K)

975 CONTINUE
PDET = (((TV - A %X 2 % DREAL(QT))>/2,0 - RSUM) / PI1) % S§S
NU = NU + SS '
IFLAG = 0.0
1000 CONTINUE
RSUM = 0.0

DO 1100 K = 1, NPAIR
TEHPL = ((RR(K) X A) %% 2 + (RI(K) ¥ A) %x 2) /

i (1,0 + 4.0 x VAL(K) %X 2 ¥ NU *x 2)
RSUH = RSUM + TENWP1
1100 CONTINUE ‘
RSUM = -0.5 X RSUM % NU xx 2
X1 = DEXP(RSUN)/(2.0 ¥ PI)
LANBL = 1,0
RSUN = 0.0 .
DO 1200 K = 1, NPAIR
TEMPL = (((RR(K) X A) xx 2 + (RICK) % A) %¥ 2) % VAL(K) x NU
] X33 /7 (1.0 + 4.0 % VAL(K) %X 2 % NU ¥x 2) - DATAN(2.0 %
i VAL(K) % NU))

RSUM = RSUM + TEMP1
TEHP2 = 4.0 % VAL(K) ¥% 2 % NU %% 2
LAMB1 = LAMB1 % DSGRT{1.0 + TEMP2)
1200 CONTINUE
LAMBL = LAMBL % NU
X2 = DSINC(TV - DREAL(QT) % A¥%2) x NU + RSUM)
X3 = X1 % X2 / LAMB1
IF (DABS(X3).LT.COMP) IFLAG = IFLAG + 1
IF (DABS(X3).GE.CONP) IFLAG =0
IF (IFLAG.GE.(IFIX{3.,0 / S8))) X3 = X3 % 0.5
PDET = PDET + X3 x SS
NU = NU + S8
IF (IFLAG.LT.(IFIX(5.0 / 88))) GO 7O 1000
PDET = 2.0 % PDET
IF (NOP.EQ.O) GO TO 1420

c

330282000052 8032500000 20000 003320000823 3332000032¢83020000002¢22232320¢00382302¢04]
c

c FIND PY(Y) FOR A FEW VALUES OF Y, IF DESIRED

c

1240 CONTINUE



I=1
Y = HEAN = 1.5 ¥ DSGRT(VAR)
1250 CONTINUE
IFLAG = 0
PY(I) = 0.0
NU = 0.0
1273 CONTINUE
RSUM = 0.0
DO 1300 K = 15 NPAIR
RSUM = RSUM + ((RR(K) ¥ A) %% 2 + (RI(K) % A) %% 2) /
& (1,0 + 4,0 % VAL(K) xx 2 ¥ NU %% 2)
1300 CONTINUE
RSUM = =0.3 % RSUM £ NU xx 2
X1 = DEXP(RSUM)/(2.0 x PI)
LANBL = 1.0
RSUM = 0.0
DO 1350 K = 1y NPAIR
RSUM = RSUM + (((RR(K) X A) %% 2 + (RI(K) X A) %% 2)

i ¥ VAL(K) X NU ¥x 3 / (1.0 + 4.0 % VAL(K) ¥ 2 %
& NU xx 2) - DATAN(2.0 ¥ VAL(K) % NU))
LAHBL = LAMBL % DSQRT(1.0 + 4,0 x VAL(K) %% 2 ¥ NU xx 2)
1350 CONTINUE

X2 = DCOS((DREAL(QT) ¥ A %X 2 - Y) ¥ NU - RSUM)
X3 = X1 x X2 / LAMB1

IF (DABS(X3).LT.COMP) 1IFLAG = IFLAG + 1

IF (DABS(X3),GE.COMP) IFLAG = 0

IF (IFLAG.GE.(IFIX(5.0 /7 88))) X3 = X3 % 0.5
PY(I) = PY(I) + 2,0 x X3 x S5 '
NU = NU + S5

IF (IFLAG.LT,(IFIX(5.,0 / SS))) GO TO 127%
I=1+1

Y =Y + 0,125 ¥ DSQRT(VAR)

IF (Y,LE.(MEAN + 1.5 % DSQRT(VAR))) GO TO 1250

c
2222302220002 003 8200820822200 0200 0800ttt Pttt ettt storrretsetttstsss
C

c OQUTPUT USER DEFINED INFORMATION AND RESULTS
c
1420 CONTINUE

CALL WAIT

CALL OPENP (ICHANs 'SQUARE LAW DETECTOR FROBLEM, PART II")
IF (N.EQ.0) WRITE (ICHANs 13)

IF (N.EQ.1) WRITE (ICHANs» 14)

WRITE (ICHANs &) NPAIR

IF (NJEQ.1) WRITE (ICHAN, 2) N1
WRITE (ICHAN, 12) N2

WRITE (ICHAN» 8) WNCi/1.0Dé

WRITE (ICHANs %) WC2/1.0Dé&

WRITE (ICHANs 10) WX/1.,0D4

WRITE (ICHANs 11) NO

WRITE (ICHAN» 13) FF/1.00é

WRITE (ICHAN, 17) TAU/1,0D-9

WRITE (ICHAN» 18) NFC

WRITE (ICHAN, 3) T/1.0D-9

IF (NOP.EQ.0) WRITE (ICHAN, 21) TV
WRITE (ICHAN, 32) SS
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WRITE (ICHAN» 35) COMP
WRITE (ICHAN:, 38) 10,0 ¥ DLOG10(G)
WRITE (ICHANs 39) F
WRITE (ICHAN» 25) DREAL(QT), DIMAG(QT)
WRITE (ICHAN» 24) DREAL(Q)» DIMAG(Q)
WRITE (ICHAN, 27) MEAN
WRITE (ICHANs 28) VAR
IF (NOP.EQ.1) GO TO 1430
WRITE (ICHAN» 16) PSDBM
WRITE (ICHAN, 34) 0.5 - PDET
CALL CLOSEP(ICHAN)
WRITE (ITTO, 42)
READ (ITTIs 5) IANS
IF (IANS.EQ.'Y<0>") GO TO 925
B0 TO 1440
1430 CONTINUE
WRITE (ICHAN» 45) SNRDB
WRITE (ICHANs 7)
WRITE (ICHAN» 7)
Y = MEAN - 1.5 ¥ DSGRT(VAR)
DO 1440 K = 1,y I-1
WRITE (ICHANs 34) Y: PY(K)
PYSP(K) = SNGL(PY(K))
Y =Y + 0,125 1 DSGRT(VAR)

1440 CONTINUE

c

c OUTPUT PY(Y) TO DISK IF DESIRED
c

WRITE (ITTO, 29)
READ (ITTI, 5) [IANS
IF (IANS.NE."'Y<0>') GO 70 1450
CALL WNAME('FILE FOR PDF ? ', NAME)
CALL WDATA (0» °R", I-1s NAME; PYSP)
WRITE (ICHAN: 44) NAME(1)
1450 CONTINUE
CALL CLOSEP(ICHAN)
WRITE (ITTO», 44)
READ (ITTIs» 5) IANS
IF (IANS.EQ.'Y<0>") GO TO 925
c :
(2202220202000 23022 00005 300080808030300283088000 2030383830300 888800¢303300508003
c
c ASK IF PROGRAM IS TO BE RERUN
c
1460 CONTINUE
WRITE (ITTO, 4)
READ (ITTI» 3) TIANS
IF (IANS.EQ.'Y<0>") 60 TO 100
STOP
END
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BUTTERWORTH RESPONSE FUNCTION (DOUBLE PRECISION VERSIDN)

DATA GENERAL SOURCE FILENAME: BUTTER.FR

PROGRAMMED BY FRED RATCLIFFE

DEPARTMENT OF ELECTRICAL ENGINEERING» KANSAS STATE UNIVERSITY

FINAL REVISION DATE -- APRIL 13, 1981

1333388000003 3335 02482030330 ¢3330¢3030302202302080 030820020330 20 82022024

CALLING SEQUENCE
COMPLEX RESPONSE = BUTTER (NFOLE, WRATID)

PURPOSE

This routine czlculates the resronse of a Butterworth
filter 3t a srecified frecuency.

ROUTINE(S) CALLED BY THIS ROUTINE
NONE

ARGUMENT (S) REGUIRED FROM THE CALLING ROUTINE
NPOLE number of filter roles (1-4)

WRATIO ratio of freaquency 3t which resronse is desired
to 3db cutoff freaguency of filter (W / Wcutoff)

ARGUMENT(S) SUPPLIED TO THE CALLING ROUTINE

NONE

333 PSSR 3003030520020 000 0000008000000 00 0202822202020

NOTE 1! This routine makes no checks on the validity
of the data sureplied by the czlling routine.

NOTE 2! The name BUTTER must he declared comrlex
by the czlling routine.

3382038333833 0 255303300303 002003 3003003200003 800303 3002203200203 0202 2]

DOUBLE PRECISION COMPLEX FUNCTION BUTTER (NPOLE, WRATIO)
DOUBLE PRECISION WRATIOs ANGLE, TEMP

(IR S0 S0 3 O B b B ¢

CALCULATE NUMERATOR ANGLE

64



100

200

300

400

4600

Cx*%x

OO0

65

GO TO (100s 200, 300 400) NPOLE
CONTINUE

ANGLE = - DATAN (WRATIO)
GO TO 400
CONTINUE

ANGLE = - DATAN2 (1.414 ¢ WRATIO» 1.0 - WRATIO xx 2)
G0 TO 600
CONTINUE

ANGLE = - DATAN (WRATIO) - DATAN2 (WRATIO» 1.0 - WRATIO *x 2)
GO TO 400
CONTINUE

ANGLE = - DATAN2 (0,765 % WRATIOr 1,0 - WRATIO Xf 2)
- DATANZ (1.848 % WRATIO, 1.0 - WRATIO ¥x 2
CONTINUE

FXTXxrrxx

CALCULATE COMPLEX RESPONSE

TEMF = DSGRT (1.0 + WRATIO %% (2 X NPOLE))

BUTTER = DCHPLX (DCOS (ANGLE} / TEMPs DSIN (ANGLE) / TEMP)

RETURN
END



(2223222209202 200220220082¢2308 2003300300 3338¢2823203 33330 ¢33 ¢32¢33¢¢¢:
SAW RESPONSE FUNCTION (DOUBLE PRECISION VERSION)

[ATA GENERAL FORTRAN 5 SDURCE FILENAME! SAW.FR

PROGRAMMED BY FRED RATCLIFFE

DEPARTHENT OF ELECTRICAL ENGINEERING» KANSAS STATE UNIVERSITY
FINAL REVISION DATE ~-- JUNE 29, 1981

2202000202020 8 Rt BP0 st o2033

OO0 000CO000QC0O0n

CALLING SEQUENCE
COMPLEX RESPONSE = SAN (WRATIO)
PURFOSE

This routine calculates the resronse of a SAW
filter a3t a srecified freauency.

RﬂUTINEfS) CALLED BY THIS ROUTINE

ARGUMENT(S) REGUIRED FROM THE CALLING ROUTINE

WRATIO ratio of freaquency at which resronse is desired
to Idb cutoff freauency of filter (W / Weutoff)

ARGUMENT(S) SUPPLIED TO THE CALLING ROUTINE
NONE
3308230822083 20000 2000002203083 000 0002002302 03200 082200030030 800 02385

NOTE 1! This routine makes no checks on the validity
of the data supeplied by the calling routine.

NOTE 27 The name SAW must be declared double rrecision complex
by the calling routine,

b3 200 2233022000033 22802003000 3383200030000 083300 000t i oot tteetsstty

OO00O00O0C0OCO000O0000O000CO0O0000O00O00O000O0oO0ne

DOUBLE PRECISION COMPLEX FUNCTION SAW (WRATID)
DOUBLE PRECISION CONSTANT, PI+ ANGLE, SINCDP, WRATIOD

0

INITIALIZATION

CONSTANT = 0.566
PI = 3.141593
ANGLE = PI ¥ WRATIOD % CONSTANT

66

SINC KSU LIBRARY FUNCTION SUBROUTINE--finds SIN(X)/X



CALCULATE RESPONSE

SAW =

RETURN
END

SINCDP (0.4 %X ANGLE) % (SINCDP (ANGLE) + (0.23 / 0.S54) %
(SINCDP (ANGLE + PI) + SINCDF (ANGLE - PI)))

67
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FILTER (DOUBLE PRECISION VERSION)
DATA GENERAL FORTRAN 5 SOURCE FILENAME! FILTER.FR

PROGRAMMED BY CONNIE ADAMS

DEPARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY

FINAL REVISION DATE -- JUNE 29, 1981

b220 PP 0220t ettt too et ettt Rt o sttt e it ei it ot st i s etiviss

CALLING SERUENCE
COMPLEX RESPONSE = FILTER (NF: NPOLE, WRATIO)
PURPOSE

This routine determines the response of either 3 SAU
filter or 3 BUTTERWORTH filter.

ROUTINE(S) CALLED BY THIS ROUTINE

SAW finds resronse of 3 SAW filter
BUTTER finds resronse of 3 Butterworth filter

ARGUMENT(S) REQUIRED FROM THE CALLING ROUTINE
NF an inteder indicating the tupre of filter used

0 SAW filter
i BUTTERWORTH filter

ARGUMENT(S) SUPPLIED TO THE CALLING ROUTINE

NONE

PR30 RO PR oIt Rt e s 0030000023503 800008 2200308000030 0300030320 8

NOTE 1! This subroutine mskes no chechks on the validity
of the data susrplied by the czllind routinie.

NOTE 2! Ardguament(s) suprlied by the rcalling routine are
not modified by this subroutine.

b2 2802000222 2020 30200002323 220000002 2332000000 2230000 0200808025303 52¢%+

DOUBLE PRECISION CDMPLEX FUNCTIDN FILTER (NF, NFOLEs WRATIO)
DOUBLE PRECISION COMPLEX BUTTER, SAU
DOUBLE PRECISION WRATIO

FIND FILTER RESPONSE
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1IF (NF.EQ.1)
IF (NF.EQ.0)
RETURN

END

FILTER
FILTER

uou

BUTTER(NPOLEs WRATIO)
SAWCWRATIO)
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ABSTRACT

This document involves the development of numerical methods for
finding the probability of detection for a square-law detector system
comprised of an RF pre~-filter, a square-law envelope detector, and a
video post filter. The input to the system is an arbitrary signal plus
noise with the filter configuration also being arbitrary. All results
are based on a single sample of the output signal plus noise with the
sample time corresponding to the signal peak.

Computer programs are presented which are capable of finding
probability density functioms and probabilities of detection for a
gystem with a rectangular input signal, a surface acoustic wave (SAW) or
Butterworth pre-filter, and a Butterworth post filter. The programs
yield good accuracy provided the pre- to post filter bandwidth ratio
does not exceed 40 and the probability of detection is sought for a
gystem output value that does not fall in the tails of the probability
density function.

Probability demsity functions and probability of detection curves
are presented for some specific cases of filter configuration and input
signal shape. Results for a classical case are compared to previous

work.





