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Abstract 

The Indianmeal moth, Plodia interpunctella Hübner, is capable of infesting a number of 

different commodities including a wide variety of grains, nuts and finished stored products. 

Therefore, control of the Indianmeal moth is especially needed in areas where food is being 

stored for human consumption. Increased concerns of consumers and producers regarding the 

impact of conventional insecticides on the environment and on human health has prompted 

scientists and the agricultural chemical industry to search for insecticides that do not affect 

mammalian nervous systems and have limited effects on non-target organisms.  One group of 

insecticides with reduced risks is insect growth regulators (IGRs), which are substances that 

mimic insect hormones essential to normal development and reproduction.   

Currently methoprene, a juvenile hormone analog, is labeled for direct application to 

stored grains, as well as a contact insecticide and as an aerosol application inside mills, 

warehouses, and indoor food storage facilities. Surface treatments and aerosol space applications 

can be effective ways to treat the interior surfaces and storage areas of warehouses and food 

processing facilities. There is little recent research with large-scale aerosol applications in 

storage sites; furthermore, there are no published references in the scientific literature regarding 

efficacy of using methoprene alone in aerosol form.  Therefore, the purpose of this research was 

to evaluate the use of surface and aerosol applications of methoprene on finished stored-product 

packaging materials and facilities for the control of P. interpunctella.   

Results of this research showed that while methoprene has good residual activity, and 

efficacy is unaffected by temperature, surface applications of methoprene on packaging materials 

is not as effective for control of P. interpunctella as aerosol applications of methoprene. Aerosol 

methoprene is highly effective alone and in combination with conventional chemicals for control 

of eggs and wandering-phase larvae. Simulations with a population growth model make it 

possible to estimate impact of insecticide treatments at different temperatures and application 

times on populations of P. interpunctella. Aerosol treatments are also economically viable as 

part of an overall integrated pest management program. 
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Abstract 

The Indianmeal moth, Plodia interpunctella Hübner, is capable of infesting a number of 

different commodities including a wide variety of grains, nuts and finished stored products. 

Therefore, control of the Indianmeal moth is especially needed in areas where food is being 

stored for human consumption. Increased concerns of consumers and producers regarding the 

impact of conventional insecticides on the environment and on human health has prompted 

scientists and the agricultural chemical industry to search for insecticides that do not affect 

mammalian nervous systems and have limited effects on non-target organisms.  One group of 

insecticides with reduced risks is insect growth regulators (IGRs), which are substances that 

mimic insect hormones essential to normal development and reproduction.   

Currently methoprene, a juvenile hormone analog, is labeled for direct application to 

stored grains, as well as a contact insecticide and as an aerosol application inside mills, 

warehouses, and indoor food storage facilities. Surface treatments and aerosol space applications 

can be effective ways to treat the interior surfaces and storage areas of warehouses and food 

processing facilities. There is little recent research with large-scale aerosol applications in 

storage sites; furthermore, there are no published references in the scientific literature regarding 

efficacy of using methoprene alone in aerosol form.  Therefore, the purpose of this research is to 

evaluate the use of surface and aerosol applications of methoprene on finished stored-product 

packaging materials and facilities for the control of P. interpunctella.   

Results of this research show that while methoprene has good residual activity and 

efficacy is unaffected by temperature, surface applications of methoprene on packaging materials 

is not as effective for control of P. interpunctella as aerosol applications of methoprene. Aerosol 

methoprene is highly effective alone and in combination with conventional chemicals for control 

of eggs and wandering-phase larvae. Simulations with a population growth model make it 

possible to estimate impact of insecticide treatments at different temperatures and application 

times on populations of P. interpunctella. Aerosol treatments are also economically viable as 

part of an overall integrated pest management program. 
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Literature Review 

Biology, Significance and Control of the Indianmeal moth 

Life History Characteristics  

The Indianmeal moth, Plodia interpunctella Hübner, is a widespread pest of stored 

products which infests a number of different commodities (Tzanakakis 1959, Sedlacek et al. 

1996, Arbogast 2007a).  Larvae consume a wide variety of nuts, grains, and finished stored 

products, and have been reported or collected from most areas of the world (Tzanakakis 1959, 

Rees 2004, Arbogast 2007b).  This pyralid moth may be distinguished from other members of 

the family by the characteristic markings on its forewings: reddish-brown on the outer two-

thirds, whitish-grey on the inner third (USDA 1986).   

The adult females typically lay 100-300 white to grayish eggs, singly or in groups, on or 

near a food source (USDA 1986).  The number of days until eggs hatch depends primarily on 

temperature (Bell 1975, Sedlacek et al. 1996, Johnson 2007).  After hatching, the neonates 

disperse in search of food; their small size enables them to enter containers that have even 

minute openings due to manufacturing defects or mechanical damage. Larvae are external 

feeders with the ability to bore into some package materials.  The duration of the larval period 

(five molts) depends on environmental factors such as temperature and diet (Tzanakakis 1959, 

Mohandass et al. 2007).  The larvae range in color from tan to light green to pale pink and can 

vary in size depending on diet and population size.  Once larvae reach the 5th instar or wandering 

phase, they typically leave the food medium in search of a pupation site (Sedlacek et al. 1996).    

The developmental time from egg to adult varies with temperature, relative humidity, and 

diet (Bell 1975, Mbata and Osuji 1983, Johnson et al. 1992, Subramanyam and Hagstrum 1993, 

Arbogast and Chini 2005) and the life cycle may be extended considerably by entering diapause 

(Tzanakakis 1959, Mohandass et al. 2007).  Typically, the time from egg to adult is 

approximately 27 days at 32.2°C (90°F) (Jenson, unpublished data).  At this developmental rate, 

a population infesting a commodity could have as many as eleven generations per year in the 

presence of other favorable growing conditions.  The Indianmeal moth’s short life cycle, 
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combined with its high reproductive capacity, give it the potential for significant product damage 

in and around food storage facilities. 

Significance: Damage Caused by Indianmeal moth 

Indianmeal moth can be problematic in all stages of the production of food products from 

the grain bin to the end user.  The list of commodities that the Indianmeal moth is known to 

infest is long and extensive and includes many different grains as well as dried fruit and nuts 

(Mohandass et al. 2007).  Infestations lead to equipment damage and direct losses in raw and 

finished products.  They are also unsightly and have an unpleasant odor, which causes negative 

consumer feed-back in addition to the problems they create during the food manufacturing 

process. 

Beginning with the on-farm storage of a commodity, populations of Indianmeal moth in 

grain bins can cause heat and moisture gradients resulting in bacterial or fungal growth, in 

addition to the physical feeding damage which reduces grain weight.  Unmanaged infestations 

can then be transported with the commodity, or the product can become infested during transit.  

In the absence of an in-bound inspection or sampling program, Indianmeal moth can enter a 

facility unnoticed along with the raw product. Adults are strong fliers and can enter facilities 

through open doors and windows.  Indianmeal moth can also be a problem in facilities that store 

finished stored products; in manufacturing plants; storage warehouses or even retail stores. 

Early instars are able to penetrate packaged products that have only tiny ruptures or 

seams, even when it appears that packages are tightly sealed (Mullen 1994, Mowery et al. 2004). 

Larvae are only limited by distance from the resource and size of their head capsule.  Young 

larvae typically stay in the food, while mature larvae seek concealed pupation sites, therefore 

they may be difficult to detect in homes and food storage facilities.   

Damage caused by Indianmeal moth includes losses from direct feeding, product 

contamination and creation of favorable conditions for mold and bacterial growth.  Aside from 

the regulations concerning insect parts and frass in food for human consumption for which 

infestation is a problem, the sticky silken webbing that all larval stages produce can be just as 

harmful and add to the overall damage caused by these insects (Tzanakakis 1959).  For example, 

extensive webbing can cause food particles to clump, binding and slowing of equipment, or 

directly render the product unmarketable.  Therefore, control of the Indianmeal moth is 

especially needed in areas where food is being stored for human consumption. 
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Management Options 

The late instar wandering-phase of the Indianmeal moth may leave the food source to 

find a pupation site, thus providing a window for control.  However, this larval stage is difficult 

to control with conventional insecticides.  Arthur (1997) reported little susceptibility of 5th instar 

larvae to residues of deltamethrin dust except during the immediate period after treatment.  

Cyfluthrin and chlorpyrifos-methyl are only effective at high rates (22-30 ppm) immediately 

following application (Arthur 1989, 1995).  Other pests such as adult red flour beetles, Tribolium 

castaneum (Herbst), and adult merchant beetles Oryzaephilus mercator (Fauvel), have much 

greater sensitivity to chlorpyrifos-methyl than do mature moth larvae (Arthur 1989).  The 

wandering-phase is also much more tolerant of conventional insecticides than are younger 

Indianmeal moth instars, adult coleopterans (Arthur et al. 2004), or other lepidopteran larvae 

(Yue et al. 2003).  

When eggs are oviposited in areas that may come in contact with a surface or aerosol 

application of insecticide, this provides another potential window for control.  Eggs of stored 

grain and fruit pests are often the most difficult life stage to kill using conventional fumigants; 

including methyl bromide (Weller and Morton 2001, Armstrong and Whitehand 2005). They are 

also relatively heat and cold tolerant (Mahroof and Subramanyam 2006, Johnson 2007).  With 

high rates of insecticide application, low residual activity, and the apparent tolerance of the 5th 

instars to conventional insecticides, a different type of insecticide is needed to control the 

Indianmeal moth in areas where processed and packaged foods are stored.  Other management 

options should also be considered. 

Basic components of an integrated pest management program for Indianmeal moth are 

sanitation, chemical and physical control and inspection.  Products should be inspected for signs 

of infestation prior to storage in a warehouse or residence.  Removal of product waste and debris 

in and around facilities will reduce the amount of food resources and pupation sites available for 

larvae.  Many studies have proven the efficacy of using physical control methods such as heat 

treatments (Johnson et al. 2003, Mahroof and Subramanyam 2006), freezing (Johnson and 

Wofford 1991, Johnson 2007), vacuum sealing (Mbata et al. 2004) and cool air aeration (Reed 

and Arthur 2000, Johnson, et al. 2002, Kaliyan et al. 2007).  Chemical control methods using sex 

pheromones for mass capture and mating disruption may also reduce Indianmeal moth 

populations (Nansen and Phillips 2004, Nansen et al. 2006).  Use of conventional insecticides 
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has been shown to be moderately effective; but there is evidence that insect growth regulators 

such as methoprene and hydroprene may provide highly effective control for both eggs and 

larvae (McGregor and Kramer 1975, Fajardo and Morallo-Rejesus 1979, Mohandass et al. 

2006b, 2006c).  With the scheduled phase-out of methyl bromide (Fields and White 2002), there 

is a definite need to find alternatives to conventional fumigation. 

Chemical Control Using Insect Growth Regulators 

Insect Growth Regulators:  History and Attributes 

Due to growing public and scientific concern about the effects of insecticides in the 

environment, and the observation of insect resistance to the current insecticides on the market, 

the search for a “better” insecticide is an important research priority.  “Third generation” 

insecticides, which alter insect growth and development, were discovered as potential 

insecticides in 1952 with the report of lowered egg hatch in cultures of the linden bug reared 

with paper towels in the jar (Tunaz 2004).  Subsequent studies showed that juvabione, a juvenile 

hormone mimic, was present in the paper used in rearing (Tunaz 2004).  Carrol Williams’ group 

began isolating the “juvenile hormone” in 1956 from the abdomen of male Cercropia moths 

(Roman et al. 1967, Slama 1971, Klowden 2002).  Following this major discovery, groups of 

researchers began to study these compounds for their function in insects and insecticidal 

properties.  Insect growth regulators (IGRs) are substances which act within an insect to 

accelerate or inhibit a physiological regulatory process essential to the normal development of 

that insect (Siddall 1976).  Since that time a number of studies have examined the effects and 

potential of IGRs, especially juvenile hormone, on a wide range of insect species.    

As reported in Mondal and Parween (2000), there are both advantages and disadvantages 

to the use of IGRs in the control of insects.  Discussions often compare and contrast their use 

with conventional insecticides such as carbamates and organophosphates.  The primary 

difference between IGRs and conventional insecticides is that IGRs are considered to be 

“reduced risk” insecticides for humans and other non-target organisms with high selectivity, 

whereas conventional insecticides typically have low selectivity and substantial risks.  “High 

selectivity” refers to the physiological sensitivity of the target organism compared with other 

non-target organisms.  Insecticides that have high selectivity are generally considered “safer” 

due to their reduced risks of detrimental affects to non-target organisms such as birds and 
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mammals.  The “reduced risk” of using IGRs can, in part, be attributed to the specific life stage 

that is being targeted in the pest, relatively quick degradation in the environment, and low 

mammalian toxicity (Mondal and Parween 2000).    In addition to these characteristics, reduced 

risk also refers to other negative affects such as groundwater contamination and resistance 

development. Lower risk to non-target species is especially advantageous in controlling insects 

associated with human food.   

Another advantage of IGRs is their rapid degradation in the outside environment due to 

UV radiation and short half-lives.  However, in closed, often dark conditions where commodities 

are stored, IGRs can persist longer than in the outside environment.  Regardless, there is 

evidence that IGRs do not change the quality of stored products (Mondal and Parween 2000). 

IGRs have been shown to work in “low” doses compared to conventional insecticides and have 

especially important applications in stored product situations.  Along with low risk, high 

selectivity and low persistence, IGRs are relatively stable over a variety of temperature and 

relative humidity conditions.  Because of the nature of these compounds, the use of insect growth 

regulators seems to fit with existing integrated pest management programs (Tunaz 2004).   

Among the disadvantages of IGRs is that they work relatively slowly.   For example, 

hormone mimics can prolong larval life, leading to a longer window in which the larvae can feed 

(Mohandass et al. 2006c).  By comparison, conventional insecticides typically cause rapid 

knockdown and nearly immediate mortality of pest populations.   IGRs also have lower contact 

mortality than conventional insecticides; instead, their primary effect is to reduce population 

growth by not allowing adult emergence, or sometimes by causing impairment to adults 

following contact with IGRs in the larval stages.  While relative risk to humans and other 

mammals is quite low, these compounds can negatively affect beneficial insects in the same way 

as pest species; this can be either an advantage or a disadvantage depending on the system that is 

being targeted.  Timing of application may also be a problem because some IGRs only work in 

certain developmental stages.  Many IGRs are most effective when they can be ingested or 

readily absorbed through the cuticle prior to molting.  Therefore some life stages, such as pupal 

Lepidoptera, and most adult insects are not affected by applications of these types of chemicals. 

Another disadvantage of IGRs is that very little is known about the sub-lethal effects of these 

types of chemicals in field situations.  It is not known how significantly exposure to affects 

reproduction and population growth in pest species.  
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Chemistry of Juvenile Hormones and their Analogs 

Juvenile hormone (JH) was initially described as an “inhibitory hormone” because it 

prevented metamorphosis to the adult stage in Rhodnius prolixus in experiments conducted by 

Wigglesworth (Klowden 2002).  Since that time, researchers have found that JH has many 

functions in insect sexual behavior and egg production, embryonic development, metamorphosis, 

migration, diapause and social structure in eusocial insects (Hartfelder 2000, Davey 2007).  JH is 

a sesquiterpene with several forms produced in the corpora allata (Chapman 1998, Minakuchi 

and Riddiford 2006).  These forms (JH0, JHI, 4-methyl JHI, JHII, JHIII, and JHIII bisepoxide), 

which differ slightly in regard to their carbon number, vary by order, with most insects having 

the most primitive form, JHlll (Klowden 2002).  Because JH is such an important hormone with 

many roles in insects, it makes it an ideal target for management of insect pests. 

JH modifies the insect’s response to ecdysteroids and prevents change in commitment of 

epidermal cells (Chapman 1998, Klowden 2002, Truman and Riddiford 2002).  During the larval 

stages of insects, the ratio of JH to ecdysteroid is high until prior to ecdysis, when levels of JH 

esterase and ecdysteroid rise.  In this way, JH works as a “status quo” hormone by suppressing 

the developmental pathways to new cuticle production, effectively ‘keeping’ the insect ‘young’.  

When JH esterase and JH epoxide hydrolase degrade JH in the hemolymph, ecdysteroid is 

allowed to act on epidermal cells to initiate metamorphosis (Chapman 1998, Klowden 2002, 

Minakuchi and Riddiford 2006).  One mode of action of juvenile hormone mimics and related 

IGRs is to disrupt the endocrine system and metamorphosis by introducing JH-like compounds 

that prevent eclosion to the pupal and adult stages.  Suspending insects in the larval stages or 

introduction of supernumerary molts prevents them from becoming reproductively mature, 

effectively reducing pest populations.   

Though insect resistance to hormone mimics was thought to be impossible at one time, 

like all insecticides, insects can become resistant to these compounds and cross-resistance may a 

problem (Dhadialla et al. 1998, Mondal and Parween 2000).  Insect resistance to methoprene, 

hydroprene, kinoprene, pyriproxifen, RH 5992 and diflubenzuron have been reported (Hoffmann 

and Lorenz 1998).  The current theories of resistance are placed in three broad groups: resistance 

caused by the mutation or impaired function of a gene or JH receptor; resistance due to increased 

metabolic degradation caused by esterases; and resistance due to the action of microsomal P450 
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enzyme (Feyereisen 1999, Browder et al. 2001, Truman and Riddiford 2002).  In Drosophila 

(Diptera) there is a Methoprene-tolerant (Met) gene which belongs to the bHLH family of 

transcriptional regulators (Feyereisen 1998, Truman and Riddiford 2002).  The presence of this 

gene in methoprene-resistant lab colonies was confirmed and expression results in tolerance to 

JH mimic insecticides and sub-lethal effects, such as bristle malformation and malrotated 

genitalia in male flies (Wilson et al. 2006).  A similar gene was also found in Tribolium 

(Coleoptera) (Konopova and Jindra 2007).  Juvenile hormone esterase is vital in the 

metamorphosis of insects; both production and degradation of juvenile hormone is important and 

fluctuates throughout the insect life cycle (Klowden 2002).  Resistance to JH mimics could be 

associated with activation of the esterases and mixed function oxidases. Another possibility is 

that microsomal P450 is involved in the metabolic degradation of JH mimic insecticides and also 

in insect resistance to these toxicants.  The proposed mechanism of resistance related to this 

enzyme system is that detoxification is occurring and results in a block of JH synthesis, leading 

to adult sterility and precocious adults (Feyereisen 1999).  Overall, the benefits of using an 

insect’s own hormone to safely control pest populations must be weighed against the non-target 

and environmental effects, as well as the potential for resistance development.   

Commercial Availability of JHA  

There are many juvenile hormone analogues (JHA) and juvenile hormone mimics that are 

used as insecticides. These include S-hydroprene (Ethyl(2E,4E,7S)-trimethyl-

2,4dodecadienoate), methoprene (Isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyl-2,4-

dodecadienoate, and S-kinoprene (2-Propynly(s-(2E,4E))-3,7,11-trimethyl-2,4-dodecadienoate) 

compounds.  Again, these compounds have different effects depending on exposure interval and 

life stage, and they are mostly used as contact poisons (Mondal and Parween 2000, Mohandass et 

al. 2006a).  Hydroprene is labeled for direct use as a surface treatment in food storage facilities, 

and as a vapor strip in cabinets and cupboards.  Methoprene is labeled for a variety of surface 

treatments indoors and outdoors and has action against many insects such as flies, mosquitoes, 

ants, moths, beetles, and mites (Henrick 2007).  It is effective on the lesser grain borer, 

Rhyzopertha dominica (F.), a major internal feeder on stored grains (Arthur 2004, Chanbang et 

al. 2007).  Female lesser grain borer oviposit eggs on the outside of a grain kernel, and after 

hatching the first instar bores into the grain.  During this brief window, the insect can be exposed 

to methoprene residues on the grain surface.  Currently methoprene is labeled for direct 
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application to stored grains, as well as a liquid or aerosol application inside mills, warehouses, 

and indoor food storage facilities (Central Sciences International 2002, 2004).  

Methoprene and Stored Product Protection 

Several studies have been published on the incorporation of methoprene into the pest’s 

food source (Strong and Diekman 1973, McGregor and Kramer 1975, Loschiavo 1976, 

Firstenberg and Silhacek 1976, Mian and Mulla 1982, Manzelli 1982).  Because of the 

occurrence of favorable conditions for both pests and use of IGRs in storage situations, it is no 

surprise that there has been extensive research conducted in this area.   Methoprene incorporated 

into food media has been shown to reduce survival of Indianmeal moth and several other stored-

product pests with increasing concentrations (Loschiavo 1975, 1976; McGregor and Kramer 

1975, Strong and Diekman 1973).  Even at very low doses of 2-5 ppm, survival to the adult stage 

was greatly diminished (McGregor and Kramer 1975, Loschiavo 1976, Fajardo and Morallo-

Rejesus 1979).  Also of interest are the sub-lethal effects of methoprene, such as deformation, 

supernumery molts, sterility and reduced longevity of adults, which may help to control 

populations of the pest (Fajardo and Morallo-Rejesus 1979).  Although there has been 

considerable research with IGRs in stored products, they have received increased attention for 

incorporation into a variety of insect pest management programs (Oberlander et al. 1997, Mondal 

and Parween 2000, Mohandas et al. 2006a).  

Factors Affecting Efficacy of Methoprene for Control of Indianmeal Moth 

Temperature 

The number of days required for Indianmeal moth development is influenced by a 

number of factors, including diet (Johnson et al. 1992), relative humidity (Bell 1975), and 

temperature (Cline 1970).  Temperature can heavily influence the number of eggs laid as well as 

the rate of development in the presence of other satisfactory conditions (Tzanakakis 1959, 

Mohandass et al. 2007).  Short exposures to low temperatures (2.4°C) in the egg stage have been 

shown to decrease survival (Cline 1970), while rearing insects at high temperatures (35°C) has 

been shown to decrease the ability to reproduce (Johnson et al. 1992).  Bell (1975) reported the 

range of suitable temperatures as 15 to 30°C for development and reproduction of the Indianmeal 

moth.  Development is also affected by relative humidity, diet, and natural variation of different 
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moth populations.  Temperature can also influence the effectiveness of the insecticides.  Toxicity 

of organophosphates generally increases as temperature increases, while toxicity of pyrethroids 

can decrease with temperature (Arthur et al. 2004).  This interaction between temperature and 

toxicity can have a profound effect on the performance and efficacy of a particular insecticide, 

and also on the target insect species.  This influence becomes especially important when 

methoprene is applied in combination with a chemical that has reduced efficacy with varying 

temperatures. 

Packaging and Surface Types 

One possible way to reduce insect infestation by companies supplying finished products 

to the consumer is the investment in “better” package design.  This can be prompted by 

consumer complaints about insect damaged products, packages damaged in shipment, or the 

return of damaged products to the manufacturer.  Although the manufacturer may not be directly 

responsible for the damage done to packaging in shipment, the company still remains 

accountable for the finished products (Highland 1978).  Economic losses as a result of insect 

infestation in finished products exceed the loss of quantity and quality that is easily quantified, 

but can extend to loss of consumer confidence, ultimately tarnishing the company’s image in the 

eye of the consumer.   

Insects can enter a finished product along one of two routes, chewing or boring into the 

package, or entering a rupture in the package that was initially caused by something else. 

Indianmeal moth larvae are capable of boring into many common package types (Cline 1978, 

Highland et al. 1984).  There are many ways to decrease the incidence of insects entering 

finished product packages, including the use of repellents, odor barriers, insecticides and insect-

resistant packaging (Highland 1978).  Choices in package design, such as selection of material 

type and method of sealing, can reduce insect entry.  Other modifications such as type of 

shipping containers may make insect entry difficult to impossible.  The use of methoprene on 

finished product packaging materials may not prevent entry into the package, but could suppress 

infestation by preventing subsequent generations from infesting other packages in the shipment 

or warehouse. 
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Application Method 

As stated previously, the wandering-phase larva of the Indianmeal moth is difficult to 

control using conventional insecticides.  Methoprene has been shown to be effective against this 

species when incorporated into food sources, and incorporation of methoprene into packaging 

materials could provide another source of protection for stored products and storage facilities, 

without the risks associated with conventional insecticides. Application of the insecticide to 

packaging materials instead of incorporation into the product may also reduce the need for 

precise timing and multiple applications.  Food packages are designed to protect food from the 

manufacturer until the product reaches the consumer. Infestations by insects can occur during the 

manufacturing process, enroute to the outlet, and even on the grocery shelves (Mullen and 

Mowery 2003).  Infestations reduce consumer confidence in the product, so elimination of 

infestations is vital.  Several packaging methods are available, including insect-resistant 

packaging (physical barrier), repellent treatments, and odor barriers (Mullen 1994) however, 

there are few packages that can deliver protection for all products in all situations (Mullen and 

Mowery 2003).  Direct application of methoprene to the food packaging materials, or 

incorporation of methoprene into the package coating, may be a useful tactic to reducing 

warehouse and storage facility infestations.  However, there are no previous reports on the 

efficacy against Indianmeal moth larvae of methoprene applied to packaging materials.  Package 

and surface materials, on which methoprene is applied, may also influence the efficacy of this 

insecticide. 

Aerosol space applications may also be an effective way to treat the interior surfaces and 

storage areas of warehouses and food processing facilities.  Recent field studies by Arthur (2008) 

have shown that aerosol applications of pyrethrin can control the red flour beetle, Tribolium 

castaneum (Herbst).  However, there are no published references in the scientific literature 

regarding efficacy of using methoprene alone in aerosol form to control the Indianmeal moth. A 

common pest management strategy is to use methoprene in combination with a pyrethrin or 

pyrethroid insecticide.  Systems for ultra low volume (ULV) aerosol delivery have been designed 

and installed in commercial milling and storage facilities.  

Mixtures of Insecticides 

Currently, in manufacturing and food processing plants where aerosol fogging systems 

are installed, pest managers are using conventional insecticides alone, and in combination with 
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methoprene.   Efficacy of these chemicals individually, and in combination, needs to be 

evaluated. Therefore, the current research is being undertaken to evaluate the use of methoprene 

on finished stored-product packaging materials and surfaces for the control of Indianmeal moth. 

Predicting How Methoprene Will Perform in Real-World Situations 

Population Growth Models 

Many ecological models have been developed for stored product pests (Throne 1995) and 

can be adapted to different systems. Models for the almond moth, Cadra cautella (Walker), the 

predator Lyctocoris campestris (F.), the flat grain beetle, Cryptolestes pusillus (Schoenherr) and 

the red flour beetle, Tribolium castaneum (Herbst), have been developed (Throne 1995).  As far 

back as 1967, computers have been used to simulate population development (Throne 1995).  

Many factors influence development of stored product pests; temperature, relative humidity and 

diet are all important factors to be included in any of these models (Throne et al.1998).  Once a 

model is developed to predict growth rates on one type of diet, it can be modified to show rates 

of growth after chemical application or other types of diets.   

Economic Models 

An economic analysis can compare different application methods and rates of 

methoprene alone, and in combination with conventional insecticides, to enable food production 

plant managers and warehouse managers to make better decisions. Integrated pest management 

in field crops has a long history of using concepts such as economic injury levels and thresholds 

to determine timing of control strategies.  With extremely low thresholds in finished stored 

product situations, a slightly different approach is needed (Higley and Wintersteen 1992, Stejskal 

2002, 2003). Many types of economic analysis have already been applied to other systems, 

including field crops and ornamentals (Headley and Hoy 1987, Jetter et al. 1997) and grain bins 

(Tilley et al. 2007) however, the warehouse environment is a novel use of these standard 

methodologies.  These types of analyses will show how methoprene application as a control 

strategy may be optimized in warehouse environments. 

  Economic analysis for some other methyl bromide alternatives for specific field crops 

have been developed using enterprise budgets (Nelson 1996, Byrd et al. 2006). Partial budget 

analysis, which compares costs of control strategies can be used to determine levels of risk 
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associated with each strategy (Boehlje 1984).  Cost inputs in the partial budget in this analysis 

for a stored product situation could be chemical, applicator and/or equipment, shutdown/loss of 

production, labor and sampling (and costs associated with this process).  

Conducting an analysis of cost and risk associated with different control strategies can 

determine whether methoprene is an economically-competitive control strategy compared with 

other methods such as sanitation, conventional insecticides or physical control methods.  An 

analysis can also determine which type of methoprene application is the most effective and 

efficient strategy.  A cost versus effectiveness tradeoff model can be used if the partial budget 

analysis reveals significant differences between these different systems. Aerosol methoprene 

may be an economically viable alternative to methyl bromide and costly fumigations. 
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Objectives 

The overall hypothesis I wish to test is that methoprene on packaging materials offers an 

effective control strategy against Indianmeal moth. The specific objectives of this study are to: 

1. Examine the effect of exposing egg-neonate and 5th instar Indianmeal moths to 

methoprene on paper packaging materials under different temperatures on survival to 

the adult stage. 

2. Test the effect of different types of packaging and surface materials on the efficacy of 

methoprene on survival of the Indianmeal moth to the adult stage. 

3. Determine the effect of aerosol application of methoprene alone and in combination 

with an esfenvalerate insecticide on the survival of Indianmeal moth to the adult 

stage. 

4. Compare the survival of Indianmeal moths to the adult stage on product packaging, 

diet, and direct exposure to methoprene and synergized pyrethrin aerosols in a field 

situation. 

5. Simulate population dynamics of Indianmeal moth using responses to methoprene 

and combinations of methoprene and other conventional insecticide treatments with 

time and temperature as variables. 

6. Develop an economic model to determine costs and risk associated with methoprene 

and other chemical applications to control Indianmeal moth. 

 l



 1

CHAPTER 1 - Efficacy of Methoprene Applied at Different 

Temperatures and Rates to Different Surface Substrates to 

Control Eggs and Fifth Instars of Indianmeal moth (Plodia 

interpunctella Hübner)  

Abstract 

As regulations on use of insecticides continue to become more stringent, there is a need 

to look for lower impact alternatives, including insect growth regulators.  The insect growth 

regulator, methoprene, has been shown to decrease populations of Indianmeal moth (Plodia 

interpunctella Hübner) by preventing development to the adult stage.  Eggs were exposed to 

methoprene on paper packaging materials treated at the label rate for surface application then 

allowed to mature to adulthood at four temperatures.  Larvae were exposed for different intervals 

ranging from 0-4 hours on a paper packaging material treated at the several rates of methoprene, 

at temperatures ranging from 20 to 32°C.  Survival of larvae to the adult stage decreased with 

increasing exposure and rate of insecticide.  Eggs and larvae were exposed in a similar manner to 

methoprene on nine different surface and packaging materials.  While temperature did not affect 

efficacy of methoprene, surface materials did influence rate of survival to the adult stage.  

Results show that the surface substrate affects control of the Indianmeal moth through the use of 

methoprene. 

 

 

Keywords: temperature, methoprene, packaging materials, Indianmeal moth 



Introduction 

Insect growth regulators may fill a critical need for lower-impact insecticides in food 

processing facilities (Mondall and Parween 2000, Mohandass et al. 2006a).  The scheduled 

phase-out of methyl bromide, coupled with consumer demand for safer food products, makes 

insect growth regulators an attractive management option (Campbell et al. 2004, Mondall and 

Parween 2000). The insect growth regulator (IGR), methoprene, is a juvenile hormone analog 

that has many biological effects and works as an insecticide to reduce pest populations by 

preventing maturation to the adult stage (Oberlander et al. 1997, Henrick 2007).  Specifically, 

there have been many studies demonstrating effectiveness of methoprene incorporated into an 

insect’s food source (Strong and Diekman 1973, McGregor and Kramer 1975, Loschiavo 1976, 

Firstenberg and Silhacek 1976, Mian and Mulla 1982, Manzelli 1982).  Methoprene is currently 

labeled for direct application to stored grains, as well as a liquid space application inside mills, 

warehouses, and indoor food storage facilities (Central Sciences International 2002, 2004).  

The Indianmeal moth (Plodia interpunctella Hübner) is a serious pest as it occurs on 

many commodities and stored products and occurs during the entire food manufacturing process, 

from the grain bin to the table (Doud and Phillips 2000, Johnson et al. 2003, Mahroof and 

Subramanyam 2006).  The number of days required for Indianmeal moth development (and 

subsequent population dynamics) is influenced by a number of factors, including diet (Johnson et 

al. 1992), relative humidity (Bell 1975), and temperature (Cline 1970).  Temperature can heavily 

influence the number of eggs laid as well as the rate of growth and development in the presence 

of other satisfactory conditions (Tzanakakis 1959, Mohandass et al. 2007).  Temperature can also 

influence the effectiveness of some insecticides. Toxicity of organophosphates generally 

increases as temperature increases, while toxicity of pyrethroids can decrease with temperature 

(Arthur et al. 2004).  This interaction between temperature and toxicity can have an important 

impact on efficacy of a particular insecticide.  The Indianmeal moth’s short life cycle, combined 

with its high reproductive capacity, give it the potential for significant product damage in and 

around food storage facilities.  For these reasons, there is a need to assess how temperature 

affects efficacy of methoprene for control of this pest.   

While incorporation of methoprene into a pest’s food source can be highly effective, 

incorporation onto packaging materials could provide another source of protection for stored 
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products and storage facilities, without the risks associated with conventional insecticides. 

Application of the insecticide to packaging materials instead of incorporation into the product 

may also reduce the need for precise timing and multiple applications.  Food packages are 

designed to protect food from the manufacturer until the product reaches the consumer. 

However, infestations by insects can occur during the manufacturing process, enroute to the 

outlet, and even on the grocery shelves (Mullen and Mowery 2003).  Infestations reduce 

consumer confidence in the product, so elimination of infestations is vital.  Due to the occurrence 

of favorable conditions for both pests and use of IGRs in food storage situations, there has been 

considerable research conducted in this area.  However, few studies have demonstrated efficacy 

against the Indianmeal moth or its efficacy when used as a surface or packaging treatment. 

The Indianmeal moth is difficult to control with conventional insecticides, especially in 

the late-larval stages (Arthur 1997). Cyfluthrin and chlorpyrifos-methyl are only effective at high 

rates (22-30 ppm) immediately following application (Arthur 1989, 1995). Eggs of stored grain 

and fruit pests are often the most difficult life stage to kill using conventional fumigants, even 

methyl bromide (Weller and Morton 2001, Armstrong and Whitehand 2005).  Eggs of the 

Indianmeal moth are also relatively heat-and cold-tolerant, making this life stage an important 

target for control of populations (Mahroof and Subramanyam 2006, Johnson 2007). The late-

instar wandering phase larvae may leave the food source to find a pupation site, thus providing 

one window for control.  When eggs are oviposited on packaging, shelving, flooring, or on 

spilled products, the eggs may come into contact with a surface application of insecticide; thus, 

eggs provide a second window for control. Therefore, the objectives of this study were to 

determine 1) whether temperature affects efficacy of methoprene in preventing survival to the 

adult stage for exposed eggs and larvae, and 2) if surface type modifies the effectiveness of 

methoprene. 

Materials and Methods 

General Procedures 

 The Indianmeal moth population that was used in all experiments derived from a 

laboratory colony established in June 1988 from individuals collected in Riley County, KS, 

U.S.A., and periodically supplemented with wild-type individuals captured in Riley County.  

This colony has been maintained on an enriched wheat diet of cracked wheat and shorts (4.4 kg), 
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brewer’s yeast (22g), sorbic and benzoic acid (9.5g each), honey (240ml), glycerin (240ml) and 

water (120ml) inside environmental growth chambers (Forma-Scientific, Thermo Electron 

Corporation, Waltham, MA) at 27±1°C, approximately 50% RH., and in darkness (L:D = 0:24 

hrs) at the United States Department of Agriculture Agricultural Research Service (USDA-ARS) 

Grain Marketing and Production Research Center in Manhattan, KS.  Voucher specimens have 

been deposited in the Kansas State University Museum of Entomological and Prairie Arthropod 

Research under Lot Number 208.  Experiments were conducted in environmental chambers 

under the same physical conditions as the colony.  Humidity chambers were constructed for the 

temperature experiment using acrylic boxes with lids that contained a saturated solution of 

distilled water and NaBr, which maintains a constant 57% relative humidity (Greenspan 1977).  

A more detailed set of procedures for construction and use of these boxes was described by 

Arthur (2000). The units were approximately 26 x 36.5 x 15 cm rectangular plastic boxes with a 

waffle-style plastic grid cut to fit the bottom. Separate humidity chambers were used for the 

various methoprene treatments and the untreated controls.  Humidity boxes and environmental 

chambers were selected randomly for each experiment and re-randomized between blocks of 

each experiment.  Temperature was monitored using digital thermometers checked frequently. 

Temperature and relative humidity were also recorded using a HOBO data logger (Onset 

Computer Corporation, Bourne, MA) placed in humidity chambers.  

Experiment 1: Survival of Eggs Exposed to Methoprene at Different Temperatures 

Eggs and neonates were tested at five temperatures (16, 20, 24, 28, and 32 + 1°C), a 

range that will support Indianmeal moth population growth.  Treatment arenas were constructed 

by gluing a 100 mm Petri dish inside of a 150 mm Petri dish with industrial adhesive.  

Approximately 75 g of standard wheat diet was placed uniformly into the outer ring. Preliminary 

tests show that the amount of diet in each arena is sufficient for normal development to the adult 

stage of 100 Indianmeal moth eggs.  Lids on the 150 mm Petri dishes were altered to have a 5.08 

cm (2 in) diameter vent cut in the top with a standard filter paper secured with a non-toxic 

adhesive to allow air movement. The inner dish had a diameter of 62 cm².  The construction of 

these treatment arenas allowed for movement between the smaller and larger dish.  Eggs were 

placed in the inner dish for testing purposes and after hatch were allowed to exit the inner circle 

to the diet area.  Adult female moths, less than 48-hours-old, were placed in a jar for oviposition 
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and eggs were collected for a period of three hours.  One-hundred 0-3-hour-old Indianmeal moth 

eggs were counted using an aspirator with a small glass collection jar and placed in the center of 

treated or untreated papers cut to fit the smaller dish. 

The treated and untreated material used in all temperature experiments was uncoated 

brown Kraft paper similar to that used by the United States Agency for International 

Development (USAID) for commodity shipments.  It was obtained from the Smurfit-Stone 

Company, Kansas City, MO in 2005.  Chosen for its widespread industry use, preliminary 

experiments indicated that this paper was a suitable material. The methoprene used in 

experiments was the formulation, Diacon II®, which is an emulsifiable concentrate of 33.6% 

active ingredient, 300 grams per liter.  This was obtained from Central Sciences International 

Dallas, TX.  Methoprene was mixed with distilled water to achieve the desired concentration.  

Four concentrations were used: 0 rate methoprene (control), the label rate for surface application 

(300 mg AI /94m2), 0.5 times the label rate for surface application, and 1.5 times the label rate 

for surface application. Controls were treated with distilled water alone. Brown Kraft paper was 

cut into 19 x 13 cm pieces and these were individually treated by dripping 1 ml of one of the test 

solutions onto the paper and then spreading the liquid over the surface using a glass rod.   Dried 

treated papers were cut into 62 cm² circles to fit inside the smaller dish in the treatment arenas 

and eggs added.  The plates were sealed with Parafilm® and placed into humidity boxes (separate 

for treatments and controls) inside growth chambers at the different temperatures.  

Preliminary observations indicated that 2 to 14 days are required for egg hatch, 

depending on temperature. After sufficient time for hatching had elapsed, the plates were 

checked (by unsealing the dishes), and unhatched eggs counted using a microscope.  Treated and 

control papers were removed from the plates when at least 75% of the eggs were hatched in each 

plate to prevent the larvae from coming into contact with the treated surface after their initial 

exposure.  Days until 75% hatch, first date of adult emergence, the number of days to beginning 

and ending adult emergence, and total number of adults were recorded and analyzed. Once adult 

emergence began, treatment arenas were monitored daily until emergence in each plate reached 

zero. The experimental design was a split plot with temperature (growth chamber) representing 

the whole plot treatment and methoprene treatment serving as the sub-plot, organized in two 

randomized complete blocks with four replications each.  
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Experiment 2: Survival of Fifth Instars Exposed to Methoprene at Different 

Temperatures 

To test the effect of temperature and methoprene exposure to 5th instar larvae on survival 

to the adult stage, an experiment was conducted similar to that described above for eggs and 

neonates except that only four temperatures were used: 20, 24, 28, and 32+ 1°C.  Data from the 

egg-neonate study (Experiment 1) showed that 16°C is near the minimum temperature needed 

for survival of the test species as survival at that temperature was very low.  Therefore, this 

temperature was omitted. An additional difference in the experimental design was that only two 

methoprene treatments were used – either the label rate or an untreated control.  Preliminary 

studies suggest short exposure intervals will be sufficient for control because wandering phase 

(5th instar) Indianmeal moth larvae are very susceptible to IGRs (Mohandas et al. 2006b;c). Kraft 

paper was cut and treated in the same manner as previously described; however, after the paper 

dried, it was not cut. The paper was folded into packets that allowed for larval movement inside 

and then secured with painter’s tape at the seams in a manner similar to grocery bags. Actively-

wandering larvae were collected using a soft forceps, and placed into these packets for the 

duration of the exposure interval.  For each treatment, ten 5th instar larvae were exposed for 0, 

0.5, 1, or 2 hours. After the exposure period, packets were opened and remaining larvae (minus 

those damaged or escaped) were transferred to 150 mm Petri dishes and allowed to mature to the 

adult stage. These dishes had filter paper vents, as described above, and were sealed with 

Parafilm® and placed in humidity boxes inside incubators of different temperatures.  

In the second portion of this experiment (which I will refer to as experiment B, with the 

former portion designated as experiment A), four concentrations (0.5x the label rate, the label 

rate, 1.5x the label rate, and a control) of methoprene were used and another exposure interval (4 

hours) was added. The additional exposure interval was deemed necessary to demonstrate 

increased mortality due to exposure time based on results from the previous experiment. The 

number of temperatures was reduced to three: 22, 27 and 32 + 1°C. All other procedures were 

the same, including the construction and use of the paper packets.  Data collected for both 

temperature experiments included the number of days until first adult emergence and the overall 

number of emerging adults. The experimental design was a split-plot with the same treatment 

structure as the egg and temperature experiments.  In the first experiment, temperature 

represented the whole plot treatment and length of exposure interval the sub-plot treatment.  In 
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the second experiment, concentration*exposure interval represented the sub-plot treatment.  

Treatments were organized into randomized complete blocks and three replications per 

experiment were completed.  

Data for all temperature experiments (both eggs and larvae) were analyzed using the 

MIXED procedure (PROC MIXED) of the Statistical Analysis System (SAS) (SAS Institute 

2001). For percent survival to the adult stage for each life stage, means and standard errors were 

calculated using the MEANS Procedure of SAS. Means for treatments were separated using the 

Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 for each 

treatment combination. 

Experiment 3: Survival of Eggs Exposed to Methoprene on Different Surfaces 

In this experiment, temperature was fixed at 27+1°C and methoprene concentration was 

the label rate for surface applications with distilled water controls. To test the effect of packaging 

type on eggs, tests were conducted using similar procedures and the same test arenas as 

described above in the egg/temperature experiments. Nine package and surface types were 

examined: uncoated brown Kraft paper, black paper with a laminated coating, cardboard, 

cardboard with a laminate coating, plastic pallet wrap, Kraft paper with a waxy coating, concrete 

wood and tile.  Brown Kraft paper is described above. Cardboard pet food cartons (for laminated 

and uncoated cardboard) and multi-walled pet food bags (for laminated paper and waxy paper), 

were obtained from Northwest Coatings (Greensboro, NC) in 2006.  Package materials were 

chosen to represent the variety of materials that might be encountered in a typical grocery 

warehouse.  Package materials were cut to a uniform size and treated with methoprene at the 

label rate using a Badger 100 artist’s airbrush (Badger Corporation, Franklin Park, IL) to spray 

the materials.  The airbrush was used instead of the roller method due to the variety of packaging 

and surface types.  

The surface materials (concrete, wood and vinyl floor tile) were chosen as representative 

of three flooring types in most manufacturing plants and warehouses.  Wood (in the case of 

shelving and stackable pallets) also represents a surface that might be accessed by pests. Surface 

materials were constructed in a slightly different manner. Concrete treatments were made by 

pouring a thin layer (10 m) of concrete patching material (Rockkite®) in the bottoms of 100 mm 

Petri dishes. This slurry was water-based and prepared by mixing about 2000 g concrete mix 
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with 1.0 L of tap water. Construction grade plywood (1.25 cm thick) and self-adhesive vinyl 

flooring were cut to fit inside the 100 ml Petri dishes to make the individual treatments for those 

surfaces. Methoprene was sprayed onto surfaces using the same air-brush technique and all 

treatments were allowed to dry before exposing eggs.  After drying, twenty eggs (less than 3 

hours after oviposition) were placed in the center of the treatment arenas.  Again, after 75% 

hatch, treated materials were removed from the arenas to prevent further exposure in other life 

stages.  This experimental design was a randomized complete block design conducted in four 

blocks (replicates) over time. Treatment structure was a 2 x 6 x 3 factorial, with two 

concentrations (control and insecticide treatment), six packaging types, and three surface 

material types.  Data from each treatment, including total number of emerged adults, total 

number of days until beginning adult emergence, number of days until adults were finished 

emerging were collected and analyzed using the same SAS procedures as previously described.  

Experiment 4: Survival of Fifth Instars Exposed to Methoprene on Different Surfaces 

To test the effect of packaging and surface materials on 5th instars, the same package 

materials were used as in the egg experiment. Temperature was fixed at 27+1°C and methoprene 

concentration was the label rate for surface applications with distilled water controls. Packets, as 

described in the temperature experiments, were made from the packaging materials after 

insecticide treatment. This experiment was conducted at the same temperature and treatment 

levels described previously. Because of the wide variety of packaging and surface material types 

used, treatment arenas were constructed in different manners, but were treated and allowed to dry 

for the same period of time.  Two complete blocks with three treatment replicates and one 

control per block were run to reduce experimental variability.  Data collection and analysis were 

conducted in the same way as the larvae/temperature experiments and the egg/packaging 

material experiments, but the analysis was run in two separate parts (packaging and surface 

components) due to the differences in construction of treatment arenas. 

Construction of treatment arenas for testing surface materials for wandering larvae 

required a different approach from that described in previous experiments.  A method to contain 

the wandering larvae, and also to prevent escape from the treated surface, was needed; so that 

boxes were completely lined with the surface material.  Wooden boxes were constructed with 

plywood. These were fastened together with wood adhesive and they had an inner surface area of 
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4 x 3.26 x 2.44 cm.  The inside surfaces and lids of these wooden boxes were coated with the 

desired surface material. The self-adhesive vinyl floor tile was cut to size and pressed into the 

cubes. The concrete was mixed thick and pored into the boxes using a metal pan as a mold 

covered with plastic wrap.  For the wood treatment, the boxes were lightly sanded. For the wood 

and tile surface treatments, arenas were caulked to smooth the box joints and to prevent escape 

from the treated surface.  Because of the differences in surface types and box construction, boxes 

had slightly different inner dimensions for which the insecticide treatment was adjusted 

accordingly. Lids for the wooden boxes were a 5 x 5 cm piece of plywood; for the concrete 

treatment, a 5.75 x 4.5 cm poured concrete slab was used; and for the tile, a 5 x 5 cm piece of the 

vinyl flooring.  Boxes were treated and larvae added in the same manner as above.  Lids were 

sealed to the boxes using window caulk, which prevented escape but was easily removed after 

the exposure interval.  To reduce variability, this experiment was run with two complete blocks 

with three treatment replicates and one control per block.  

Results 

Experiment 1: Survival of Eggs Exposed to Methoprene at Different Temperatures  

There was a significant (P < 0.0002) effect of methoprene rate on Indianmeal moth 

survival.  However, neither temperature nor the temperature by methoprene rate interaction was 

significant (Table 1-1).  In general, there were very few significant pairwise differences in adult 

survival across treatments or replications except at 16ºC where temperature was too low to 

support development, and at the highest rate of methoprene at 32ºC where survival was lowest 

(Figure 1-1). (Mean separation analysis revealed that there was less than a 10% difference in 

survival between 20-28ºC and 32ºC.)  Between 24 and 32ºC mean adult emergence was 

significantly lower (P<0.05) at the 1.5x rate of methoprene compared to the corresponding lower 

rates or the untreated controls.  This difference was not observed at 20ºC (Figure 1-1).   

Temperature had a significant effect on time to develop to adults; development was 

inversely related to temperature and survival to adulthood was significantly affected by 

temperature (P= 0.0469) (Tables 1-2 and 1-3). The rate of methoprene did not influence time to 

first adult emergence (P=0.7763), but it did have a significant effect (P < 0.005) on time until 

adults finished emerging.  There was no significant temperature by treatment interaction (Tables 
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1-2 and 1-3).  For all rates of methoprene, time to hatch decreased in a temperature-dependent 

manner between 20 and 28ºC.  However, hatching rates were similar at 28 and 32ºC (Fig. 1-2). 

Experiment 2: Survival of Fifth Instars Exposed to Methoprene at Different 

Temperatures 

Fifth instars were sensitive to methoprene exposure and exposure interval (Table 1-4 and 

1-5, P < 0.0001).  There was a significant interaction between methoprene treatment and 

exposure interval (Table 1-4, 1-5). Between 20 and 32ºC, survival to adult emergence was 

significantly lower when 5th instars were exposed to methoprene compared to the untreated 

control (Fig. 1-3).  However, differences in survival among exposure intervals generally were not 

significant except at 32ºC. The highest mortality occurred at the highest temperature and highest 

concentration similar (Fig. 1-3).   

Figures 1-4, 1-5, and 1-6 display the results of Experiment B (separate graphs for 22, 27 

and 32°, respectively).  Table 5 is the analysis of variance that corresponds to these figures. All 

three main effects -- temperature, level of methoprene treatment, and exposure interval – 

significantly influenced survival to the adult stage.  However, there were no significant 2- or 3-

way interactions (Table 1-5).  At all three temperatures, survival in both methoprene treatments 

was lower at the two longest exposure intervals than at the shortest or no exposure intervals 

(Figs. 1-4 to 1-6).  Generally, differences occurred between the control and the highest 

application rate; but contrasts were only moderate between the control and the label rate.  

Experiment 3: Survival of Eggs Exposed to Methoprene on Different Surfaces 

Both main effects -- surface type/packaging materials and level of methoprene treatment 

(either the label rate or distilled water control) -- had a highly significant effect on survival 

(P<0.0009 and P<0.0001, respectively).  There was also a highly significant interaction between 

these two factors (P<0.0001) (Table 1-6).  Survival to adults was lowest when methoprene was 

applied to black paper with a laminate coating (5.2 + 2.2%) and to wood (23.75 + 5.2%) (Fig. 1-

7).  These two treatments also differed most from their respective controls.  Survival was highest 

where methoprene was applied to plastic, tile, wax paper and uncoated cardboard (~60-63%).  

On most of these materials, survival was statistically no different than the untreated controls at 

P=0.05 (Fig. 1-7).   
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Experiment 4: Survival of Fifth Instars Exposed to Methoprene on Different Surfaces 

Treatment of 5th instars with methoprene at the label rate (vs. no treatment) on different 

types of packaging material resulted in significant differences in survival (Table 1-7; 

methoprene: P<0.0001, packaging: P<0.0002).  There was also a highly significant interaction 

between methoprene treatment and packaging type (Table 1-7).  In contrast, exposure interval (2, 

4 or 8 h at 27ºC) had no influence on survival. However, there was a significant treatment by 

exposure interval interaction (Table 1-7).  For all surfaces, differences between treatments and 

controls became larger with increasing exposure interval (cf. Figs. 1-8, 1-9, and 1-10). Adult 

emergence was consistently the lowest on laminated cardboard compared with its control across 

all exposure intervals (Figs. 1-8, 1-9, and 1-10).  When concrete, wood and tile were tested, there 

was no general effect of surface material on survival of 5th instars through adult emergence 

(Table 1-8; P=0.202).  However, methoprene treatment and exposure interval were significant (P 

< 0.0001 and P=0.0058, respectively).  Of the three surface materials evaluated, lowest adult 

emergence occurred on the vinyl tile across all exposure intervals (Fig. 1-11). 

Partial Budget Analysis 

Using chemical cost information calculated per 929 m2 (10,000 ft2) for surface 

application, we conducted a partial budget analysis to compare costs of methoprene as a surface 

treatment for eggs and larvae at several rates and exposures.  Economic risk was calculated at 

three levels (90, 95, and 99%) as deviations below the target goal. In the case of these three 

experiments, time and equipment cost were fixed and the only variable cost was the cost of the 

chemical.  Risk, in this case, was the inverse of mortality up to the mortality target, at which it 

was set to zero.  Therefore, the downside risk was mortality below the target level. Results are 

displayed in Table 1-9. Results show that for eggs, using the no action (untreated control) 

strategy was virtually as effective as either of the realistic application rates (0.5x and the label 

rate).  For wandering larvae, methoprene was more effective; with increasing exposure interval, 

risk decreased but total chemical cost remained the same.  

 

Discussion 

Overall, temperature does not affect the efficacy of methoprene as a surface treatment for 

control of the Indianmeal moth. This finding is similar to that of hydroprene and temperature on 
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survival of Indianmeal moth to the adult stage (Mohandas et al, 2006b). The poor control of eggs 

and wandering larvae of Indianmeal moth is in contrast to the work of Arthur (2004) and 

Chanbang et al. (2007) where methoprene was highly effective on progeny of adults of 

Rhyzopertha dominica exposed on grain. It is also in contrast to the work conducted by 

Mohandas et al. (2006b, 2006c) where hydroprene (another juvenile hormone mimic) was used 

with success to control eggs and wandering-phase larvae of the Indianmeal moth. Hydroprene 

has also been shown effective against larval Tribolium castaneum (Arthur 2001, Toews et al. 

2005). 

For eggs of the Indianmeal moth, methoprene is most likely not a reliable control 

strategy, as overall survival to the adult stage was high (~78 to 88% in all treatments compared 

to ~88% for the controls). Fifth instars appear to be a more susceptible life stage to methoprene 

than eggs.  However, survival for treated 5th instars (~54%) was still quite high compared to the 

controls (~90%).  In fact, given the low tolerance for Indianmeal moths and stored product pests 

in general, this level of adult survival would be considered unacceptable by industry standards.  

Survival to adult was reduced when larvae were exposed for two hours or more at temperatures 

ranging from 22-32ºC; but survival was still 51%.  My findings suggest that mortality of 5th 

instars may be increased with repeated or prolonged exposure; but more data are needed.  

Although manufacturers may not be directly responsible for the damage done to 

packaging in shipment, they remain accountable for the finished products (Highland 1978). 

Economic losses as a result of insect infestation in finished products exceed the loss of quantity 

and quality that is easily quantified, but can extend to loss of consumer confidence which, 

ultimately, may tarnish the company’s image in the eyes of consumers.  The need for protection 

of finished stored products in storage and transit is essential.  There are many ways to decrease 

the incidence of insects entering finished product packages, including the use of repellents, odor 

barriers, insecticides and insect-resistant packaging (Highland 1978, Mullen 2000, Mullen and 

Mowery 2003).  Surface and package material treatment with methoprene or similar IGRs may 

be an effective control strategy for other insects such as flour beetles (Arthur, 2004).  But based 

on my studies, it appears to provide only marginal protection against the Indianmeal moth.  

While the use of methoprene on finished product packaging materials may not prevent entry into 

packages, it could partially suppress infestations by preventing subsequent generations from 

infesting other packages in the shipment or warehouse. 
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There may be several reasons for the high survival of Indianmeal moth eggs and larvae 

on treated package materials.  Methoprene is considered to be relatively stable over a long period 

of time in grain bins and over a wide range of temperatures (Daglish et al. 1995, Daglish and 

Wallbank 2005); so degradation of the insecticide most likely is not related to the relatively high 

survival I observed.  On the other hand, differences in surface materials may be an important 

factor.  Absorption of methoprene into the package material may not leave enough active 

ingredient on the surface for neonates and wandering larvae to acquire.  This may correspond to 

the lower survival of Indianmeal moths on non-porous materials such as vinyl flooring tile and 

laminated paper package treatments compared with porous materials such as wood and uncoated 

Kraft paper.  Lower survival to the adult stage in the surface treatments with eggs may also be 

attributed to the application method (airbrush versus dispersing with a glass rod); there may have 

been better coverage with the airbrush treatment method. 

Other studies (Jenson, unpublished data) show that aerosol applications of methoprene 

reduce survival to the adult stage in eggs of the Indianmeal moth exposed directly to the 

insecticide and on package materials exposed to the insecticide.  Aerosol applications of 

methoprene are formulated with an organic solvent and this may partially explain the differences 

with this study where methoprene is formulated with water for surface treatments.  Aerosol 

treatments of methoprene have also recently been shown to be effective against flour beetles 

(Arthur 2008). While methoprene as a surface treatment is not likely to replace aerosol 

insecticides or fumigants for control of this pest, it could be a useful part of an overall integrated 

pest management program. 
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Figures and Tables 

Figure 1-1 Survival to the adult stage of Indianmeal moth eggs exposed to four rates of 

methoprene (0 (control), the label rate for surface application (1 ml/ 94m2), 0.5 times the 

label rate, and 1.5 times the label rate) and held under five constant temperatures 16, 20, 

24, 28, and 32°C (16 °C data not shown). Asterisks indicate treatments that were 

statistically different from other treatments at P= 0.05. Mean and standard errors were 

calculated using the MEANS procedure in SAS and means were separated using Ryan-

Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 for each 

treatment combination.  
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Figure 1-2 Days until 75% hatch, beginning and ending adult emergence on Indianmeal 

moth eggs exposed to four rates of methoprene (0 (control), the label rate for surface 

application (1 ml/ 94m2), 0.5 times the label rate, and 1.5 times the label rate) and held 

under five constant temperatures 16, 20, 24, 28, and 32°C (16°C data not shown). Mean 

and standard errors were calculated using the MEANS procedure in SAS and means were 

separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level of P 

=0.05 for each treatment combination. Capital letters indicate statistical differences in the 

temperature treatment, there was no significant difference at P=0.05 for insecticide 

treatments.  
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Figure 1-3 Survival to the adult stage of 5th instars exposed to the label rate of methoprene 

for surface application at four temperatures (20, 24, 28, and 32°C) and four exposure 

intervals (0, 0.5, 1, and 2 hours). Mean and standard errors were calculated using the 

MEANS procedure in SAS and means were separated using Ryan-Einot-Gabriel-Welsch 

Multiple Range test at a significance level of P =0.05 for each treatment combination. 

Lower case letters indicate statistical differences among treatment*temperature 

combinations at each exposure interval. There was no statistical differences in survival of 

controls at any temperature or exposure interval P= 0.05 level.  
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Figure 1-4 Survival to the adult stage of 5th instars exposed to four concentrations (0.5x the 

label rate, the label rate, 1.5x the label rate, and a control) of methoprene at five exposure 

intervals (0, 0.5, 1, 2, and 4) and held at 22°C.  Mean and standard errors were calculated 

using the MEANS procedure in SAS and means were separated using Ryan-Einot-Gabriel-

Welsch Multiple Range test at a significance level of P =0.05 for each treatment 

combination. Asterisks indicate statistical difference among controls across treatments and 

exposure intervals and lower case letters indicate differences by level of insecticide 

treatment across exposure intervals. Treatments were statistically different from controls 

but not from each other at 2 and 4 hour exposure intervals.  
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Figure 1-5 Survival to the adult stage of 5th instars exposed to four concentrations (0.5x the 

label rate, the label rate, 1.5x the label rate, and a control) of methoprene at five exposure 

intervals (0, 0.5, 1, 2, and 4) and held at 27°C. Mean and standard errors were calculated 

using the MEANS procedure in SAS and means were separated using Ryan-Einot-Gabriel-

Welsch Multiple Range test at a significance level of P =0.05 for each treatment 

combination. Asterisks indicate statistical difference among controls across treatments and 

exposure intervals and lower case letters indicate differences by level of insecticide 

treatment across exposure intervals.  Treatments were statistically different from controls 

but not from each other at 2 and 4 hour exposure intervals. 
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Figure 1-6 Survival to the adult stage of 5th instars exposed to four concentrations (0.5x the 

label rate, the label rate, 1.5x the label rate, and a control) of methoprene at five exposure 

intervals (0, 0.5, 1, 2, and 4) and held at 32°C. Mean and standard errors were calculated 

using the MEANS procedure in SAS and means were separated using Ryan-Einot-Gabriel-

Welsch Multiple Range test at a significance level of P =0.05 for each treatment 

combination. Asterisks indicate statistical difference among controls across treatments and 

exposure intervals and lower case letters indicate differences by level of insecticide 

treatment across exposure intervals.  Treatments were statistically different from controls 

but not from each other at 2 and 4 hour exposure intervals. 
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Figure 1-7 Eggs exposed to the label rate of methoprene for surface applications on nine 

different packaging and surface types held at 27°C.  Mean and standard errors were 

calculated using the MEANS procedure in SAS and means were separated using Ryan-

Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 for each 

treatment combination. Lower case letters indicate statistical differences between surface 

type treatment and asterisks indicate treatment pairs where there were not statistical 

differences in the between treatments and controls at the P= 0.05 level.  
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Figure 1-8 Survival to the adult stage of 5th instars exposed to the label rate of methoprene 

for surface applications on six different packaging types on a 2-hour exposure interval, 

held at 27°C. Mean and standard errors were calculated using the MEANS procedure in 

SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a 

significance level of P =0.05 for each treatment combination. Asterisks indicate statistical 

difference between treatment and controls and lower case letters indicate differences in 

survival when exposed to the label rate of methoprene with packaging type.  
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Figure 1-9 Survival to the adult stage of 5th instars exposed to the label rate of methoprene 

for surface applications on six different packaging types on a 4-hour exposure interval, 

held at 27°C. Mean and standard errors were calculated using the MEANS procedure in 

SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a 

significance level of P =0.05 for each treatment combination. Asterisks indicate statistical 

difference between treatment and controls and lower case letters indicate differences in 

survival when exposed to the label rate of methoprene with packaging type.  
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Figure 1-10 Survival to the adult stage of 5th instars exposed to the label rate of methoprene 

for surface applications on six different packaging types on an 8-hour exposure interval, 

held at 27°C. Mean and standard errors were calculated using the MEANS procedure in 

SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a 

significance level of P =0.05 for each treatment combination. Asterisks indicate statistical 

difference between treatment and controls and lower case letters indicate differences in 

survival when exposed to the label rate of methoprene with packaging type.  
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Figure 1-11 Survival to the adult stage of 5th instars exposed to the label rate of methoprene 

for surface applications on three different surface types on three exposure intervals (2, 4, 

and 8 hours) held at 27°C. Mean and standard errors were calculated using the MEANS 

procedure in SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple 

Range test at a significance level of P =0.05 for each treatment combination. Asterisks 

indicate statistical difference between treatment and controls across all surface types and 

exposure intervals. 
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Table 1-1 Results of analysis of variance on survival of Indianmeal moth eggs exposed to 

four rates of methoprene (0 (control), the label rate for surface application (1 ml/ 94m2), 0.5 

times the label rate, and 1.5 times the label rate) and held under five constant temperatures 

16, 20, 24, 28, and 32°C (16°C not included in analysis due to extremely low survival).  

 

Effect of Methoprene and Temperature  Num DF Den DF F Value Pr > F 

Temperature 3 4.91 1.39 0.3501

Level of Methoprene Treatment 3 150 7.03 0.0002

Temperature*Treatment 9 150 0.94 0.4946

 

 

Table 1-2 Results of analysis of variance on days to beginning adult emergence on 

Indianmeal moth eggs exposed to four rates of methoprene (0 (control), the label rate for 

surface application (1 ml/ 94m2), 0.5 times the label rate, and 1.5 times the label rate) and 

held under five constant temperatures 16, 20, 24, 28, and 32°C (16°C not included in 

analysis due to extremely low survival).  

 

Effect on Days to First Adult Emergence Num DF Den DF F Value Pr > F 

Temperature 3 6 4.91 0.0469

Level of Methoprene Treatment 3 167 0.37 0.7763

Temperature*Treatment 9 167 0.75 0.6634
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Table 1-3 Results of analysis of variance on days to final adult emergence on Indianmeal 

moth eggs exposed to four rates of methoprene (0 (control), the label rate for surface 

application (1 ml/ 94m2), 0.5 times the label rate, and 1.5 times the label rate) and held 

under five constant temperatures 16, 20, 24, 28, and 32°C (16°C not included in analysis 

due to extremely low survival).  

 

Effect on Days until Ending Adult 

Emergence 

Num DF Den DF F Value Pr > F 

Temperature 3 6 10.03 0.0094

Level of Methoprene Treatment 3 167 4.38 0.0054

Temperature*Treatment 9 167 0.42 0.9250

 

 

Table 1-4 Results of analysis of variance on survival to the adult stage of 5th instars exposed 

to the label rate of methoprene for surface application at four temperatures (20, 24, 28, and 

32°C) and four exposure intervals (0, 0.5, 1, and 2 hours). 

 

Effect Num DF Den DF F Value Pr > F

Temperature 3 64 0.00 1.0000

Level of Methoprene Treatment 1 64 107.10 <.0001

Temperature * Treatment 3 64 1.21 0.3117

Exposure Interval 3 64 11.61 <.0001

Temperature * Exposure Interval 9 64 1.66 0.1171

Treatment * Exposure Interval 3 64 11.92 <.0001

Temp. * Treatment * Exposure Interval 9 64 1.04 0.4167
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Table 1-5 Results of analysis of variance on survival to the adult stage of 5th instars exposed 

to four concentrations (0.5x the label rate, the label rate, 1.5x the label rate, and a control) 

of methoprene at five exposure intervals (0, 0.5, 1, 2, and 4) and held at three temperatures 

22, 27 and 32°C. Corresponds with Figures 1-5 to 1-7. 

Effect Num DF Den DF F Value Pr > F

Temperature 2 4 9.06 0.0327

Level of Methoprene Treatment 2 354 72.32 <.0001

Temperature * Treatment 4 354        1.40 0.2340

Exposure Interval 4 354 79.50 <.0001

Temperature * Exposure Interval 8 354 1.11 0.3581

Treatment * Exposure Interval 8 354 19.62 <.0001

Temp. * Treatment * Exposure Interval 16 354 0.90 0.5695

 

 

 

Table 1-6 Results of analysis of variance on eggs exposed to the label rate of methoprene 

for surface applications on nine different packaging and surface types held at 27°C.  

 

Effect Num DF Den DF F Value Pr > F 

Surface or Packaging Materials 8 51 4.05 0.0009

Level of Treatment 1 51 150.32 <.0001

Surface Material * Treatment 8 51 8.78 <.0001
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Table 1-7 Results of analysis of variance on survival to the adult stage of 5th instars exposed 

to the label rate of methoprene for surface applications on six different packaging types 

(Kraft paper, black paper, waxy paper, cardboard with laminated coating, cardboard with 

no coating, and plastic) on three exposure intervals (2, 4, and 8 hours) held at 27°C. 

Corresponds with Figures 1-8 to 1-10. 

 

Effect Num DF Den DF F Value Pr > F

Level of Methoprene Treatment 1 177 137.92 <.0001

Exposure Interval 2 177 0.16 0.8546

Treatment * Exposure Interval 2 177 12.55 <.0001

Package Material 5 177 5.20 0.0002

Treatment * Package Material 5 177 2.56 0.0292

Exposure Interval * Package Material 10 177 1.61 0.1060

Treatment * Exposure Interval* Package 

Material 
10 177 1.62 0.1031

 

Table 1-8 Results of analysis of variance on survival to the adult stage of 5th instars exposed 

to the label rate of methoprene for surface applications on three different surface types 

(concrete, wood and tile)  on three exposure intervals (2, 4, and 8 hours) held at 27°C.  

 

Effect Num DF Den DF F Value Pr > F

Level of Methoprene Treatment 1 53 76.22 <.0001

Exposure Interval 2 53 5.69 0.0058

Treatment * Exposure Interval 2 53 0.21 0.8119

Surface Material 2 53 1.65 0.2021

Treatment * Surface 2 53 2.13 0.1293

Exposure Interval * Surface 4 53 1.46 0.2284

Treatment * Exposure Interval* Surface 4 53 0.85 0.4999
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Table 1-9 Summary of costs and risk levels for methoprene surface treatments compared with untreated controls for 

Experiments 1 and 2a. Risk is presented as three thresholds; 90, 95 and 99% mortality above which risk is set equal to zero.  

Letters denote statistical difference at the P= 0.05 level. The mean survival of the egg stage are separated using insecticide 

treatment (Experiment 1) and larvae by insecticide treatment and exposure interval, since temperature wasn’t statistically 

significant for survival in Experiments 1 and 2a. The scenario that represents the lowest risk, lowest cost and highest mortality 

are the highest levels of methoprene and the longest exposure intervals.  

 

Economic 
Summary  

      

Costs: per 10,000  ft2 (label rate)  Methoprene = $1.56 
       
Exp. 1 Eggs, Temperature and Rate of Methoprene    
Stage Treatment % Mortality Risk (90%) Risk (95%) Risk (99%) Cost ($)  
Eggs Untreated 

Control 
0.116896A 0.783104 0.833104 0.873104 0.00 

Eggs 0.5x Rate 0.122561A 0.777439 0.827439 0.867439 0.78 
Eggs Label Rate 0.156433A 0.743567 0.793567 0.833567 1.56 
Eggs 1.5x Rate 0.218588B 0.681412 0.731412 0.771412 2.34 

    
Exp. 2  Larvae, Temperature, Rate of Methoprene, and Exposure Interval   
Stage Treatment % 

Mortality 
Risk (90%) Risk (95%) Risk (99%) Cost ($)  

Larvae Untreated Control at all 
exposures 

0.104346A 0.795654 0.845654 0.885654 0.00 

Larvae Label Rate * 0 hr  0.136111A 0.763889 0.813889 0.853889 1.56

Larvae Label Rate * 0.5 hr 0.47430B 0.425694 0.475694 0.515694 1.56

Larvae Label Rate * 1 hr 0.543981B 0.356019 0.406019 0.446019 1.56

Larvae Label Rate * 2 hr 0.697222B 0.202778 0.252778 0.292778 1.56
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CHAPTER 2 - Efficacy of an Esfenvalerate plus 

Methoprene Aerosol for the Control of Eggs and Fifth 

Instars of the Indianmeal moth (Lepidoptera: Pyralidae) 

Abstract 

To fulfill the mandate to replace the fumigant methyl bromide, new options for managing 

anufacturing and storage facilities are needed. Aerosol insecticides 

 little is known about the efficacy of these insecticides for control of 

ianmeal moth, Plodia interpunctella (Hübner), a major insect pest of stored processed 

on currently in use commercially to control stored-product 

rate, in combination with the insect growth regulator (IGR), 

ethoprene.  Pyrethroids are contact insecticides that kill adult stored-product insects, but 

ulations may not provide residual efficacy. Methoprene is an IGR that normally 

dual persistence for control of immature stages of most stored-

ray or as an aerosol formulation. In this study, 
th instars of the Indianmeal moth were exposed to aerosol applications of esfenvalerate 

ethoprene, alone and in combination, in open and obstructed positions inside small sheds. 

ethoprene, subsequent adult emergence was 7.1 ± 1.5%. In 

ergence was 92.5 ± 3.5% when larvae were treated with esfenvalerate alone. 

ethoprene, subsequent adult emergence ranged from 10.8 ± 1.3% 

esfenvalerate, adult emergence was consistently 

ergence rate also was considerably lower than when fifth instars 

bination treatment of methoprene plus esfenvalerate at 

nce following larval exposure was 0.91 ± 0.61% 

pared to 16.3 ± 9.6% when eggs were exposed. Our results indicate that while methoprene 



alone is highly effective in reducing adult emergence after larval exposure, it is not as effective 

on eggs as esfenvalerate. Results suggest that different combinations of pyrethroid plus 

methoprene at less than the label rate could be used to control both egg and wandering-phase 

larval stages of the Indianmeal moth.  An economic risk analysis also supports a strategy of 

combining methoprene and esfenvalerate 

Keywords: methoprene, esfenvalerate, aerosols, Indianmeal moth 
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Introduction 

New strategies for managing stored product pests are needed to replace the fumigant 

methyl bromide in food manufacturing and storage facilities, especially for control of the 

Indianmeal moth, Plodia interpunctella Hübner. These pyralid moths can be problematic in all 

life stages and in all phases of the food manufacturing process, from grain bin to end user (Doud 

and Phillips 2000, Johnson et al. 2003, Mahroof and Subramanyam 2006). Indianmeal moth 

infestations of finished stored products present a unique challenge in that the products typically 

are of high-value products and are stored for variable periods of time in multiple locations.  

Thus, the insect threshold is essentially zero.  The Indianmeal moth is a cosmopolitan pest 

known to infest a great number of commodities, including many different grains, dried fruit and 

nuts (Mohandass et al. 2007).  Infestations can lead to equipment damage, physical product 

losses, aesthetic damage and unpleasant odors. Even one insect can cause negative consumer 

feedback, which compounds problems related to the food manufacturing process.  

We have identified two main windows of time in the Indianmeal moth life cycle for 

controlling them in finished stored products with aerosol insecticides. Unlike fumigants, aerosols 

do not infiltrate packaging materials; so treatment needs to be made when the Indianmeal moth is 

on the exterior of a package.  The first window for control is late instar wandering-phase larvae 

as they leave the food source to find a pupation site.  The second is eggs that are oviposited in 

unconcealed areas that may come into contact with a surface or aerosol application of 

insecticide.  

The Indianmeal moth is generally difficult to control with conventional insecticides, 

especially in the late-larval stages (Arthur 1997).  For example, Arthur (1997) showed that 5th 

instars are insensitive to residues of deltamethrin dust except during the immediate period after 

treatment.  Moreover, cyfluthrin and chlorpyrifos-methyl are only effective at high rates (22-30 

ppm) and immediately following application (Arthur 1989, 1995).  

 Eggs of stored grain and fruit pests are often the most difficult life stage to kill using 

conventional fumigants, including methyl bromide (Weller and Morton 2001, Armstrong and 

Whitehand 2005).  Eggs of the Indianmeal moth are also an important target life stage for control 

as they are relatively heat- and cold-tolerant, making them difficult to control with non-chemical 
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management strategies (Mahroof and Subramanyam 2006, Johnson 2007).  With high rates of 

application, low residual activity of insecticides, and the apparent insensitivity of 5th instars to 

conventional insecticides, a replacement for fumigants is needed to control the Indianmeal moth 

in areas where processed and packaged foods are stored.  One insecticide combination currently 

in use is the pyrethroid, esfenvalerate, in conjunction with methoprene.  Pyrethroids work as 

contact insecticides whereas methoprene provides residual control. 

One constraint on integrated pest managers is cost.  Chemicals, applicator labor and/or 

equipment costs, as well as costs associated with shutdown/loss of production in terms of time, 

are a major consideration. Partial budget analysis compares costs of replacement control 

strategies with existing ones.  Thus, they are used to determine levels of economic risk 

associated with each strategy (Boehlje 1984).  A partial budget analysis can compare different 

application methods and rates of methoprene alone and in combination with conventional 

insecticides such as esfenvalerate to enable food production plant managers and warehouse 

managers to make better decisions. Economic analysis of other methyl bromide alternatives 

using enterprise budgets for specific field crops have been developed (Nelson 1996, Byrd et al. 

2006).  

The objectives of this study were to 1) determine the effect of aerosol application of 

methoprene alone and in combination with an esfenvalerate insecticide on the survival of 

Indianmeal moth to the adult stage, and 2) estimate differences in cost and risk associated with 

each strategy. 

 

Materials and Methods 

General Procedures 

The Indianmeal moths used in the experiments derive from a laboratory colony 

established in 1988 and periodically supplemented with wild individuals from collections in 

Riley County, Kansas in the United States.  The colony is located at the USDA-ARS Grain 

Marketing and Production Research Center in Manhattan, KS1 and has been maintained 

                                                 
1  Kansas State University Museum of Entomological and Prairie Arthropod Research under Lot Number 

208. 
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continually in environmental growth chambers (Forma-Scientific, Thermo Electron Corporation, 

Waltham, MA) at 27±1°C, approximately 40% RH., and in darkness (L:D = 0:24 hrs). Relative 

humidity was maintained using pans of water in the bottom of the incubator. Larvae have been 

reared on a standard enriched wheat diet consisting of cracked wheat and shorts (4.4 kg), 

brewer’s yeast (22g), sorbic and benzoic acid (9.5g each), honey (240ml), glycerin (240ml) and 

water (120ml).  

During experiments insects were placed on clean diet following treatment and allowed to 

develop and/or mature to the adult stage under the above environmental conditions.  Three 

separate experiments were conducted using small sheds measuring 2.8 m wide x 5.9 m long x 

2.0-2.2 m high to simulate a food warehouse situation.  Flooring and drywall in each shed were 

installed in the same manner described by Toews et al. (2005a). Temperature and relative 

humidity were recorded using a HOBO data logger (Onset Computer Corporation, Bourne, MA) 

placed next to treatment areas.  

In each shed, concealed conditions such as those found in food storage warehouse were 

created using large corrugated cardboard boxes placed on top of a wooden pallets suspended on 

concrete blocks.  Concrete blocks were used to raise the pallets so that treatment arenas could be 

placed underneath the pallets. Eggs (less than 24 hours after oviposition) were exposed to the 

aerosol spray in 100 mm Petri dishes painted with acrylic paint to reduce static.  Actively 

wandering 5th instars were exposed using a series (five sizes) of cardboard garment boxes nestled 

together and secured with a mixture of instant tapioca and water, to hold the boxes together.  

Boxes were then taped with painter’s tape around the edges so that larvae could not escape the 

aerosol by crawling under the boxes.  Box dimensions ranged from 21.94 cm - 53.34 cm (11-21 

in) long and 21.59 -35.56 cm (8.5-14 in) wide; when stacked inside each other, the distance from 

each side was approximately 2.54 cm (1 in) from the next closest box edge.  The glue mixture 

was previously determined to have no adverse affect on the larvae.  These “hurdles” were 

designed to contain the wandering larvae during the two-hour exposure period (see Figure 2-1). 

Preliminary experiments were conducted to determine the viability of this treatment method.  

 Within each shed there were both unobstructed and concealed positions.  The standard 

experimental set-up of each shed is illustrated in Figure 2-2. Unobstructed positions were 

considered to be those that were fully exposed to the settling aerosol particles, and concealed 

positions were those underneath the mock pallet, partially shielded from the settling particles.  
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Experiment 1   

Applications were done using a hand-held ultra low volume (ULV) applicator (model no. 

E2 MLD® Chemical Dispersal Unit, MicroGen Equipment Corporation, San Antonio, TX 

78217).  Each of four sheds was treated with methoprene aerosol in proportion to the label rate 

(Central Sciences  2004) of 3 ml of the Diacon II® formulation, which is 900 mg of active 

ingredient [AI], per  283.7 m3 (10,000 ft3). The insecticide was formulated by mixing 1.93 ml 

methoprene with 200 ml of a petroleum-based carrier (Isopar-M)  The target volume for 

application in the smaller three sheds was 35.7 ml diluted solution and 44.0 ml for the larger two 

sheds.  Solutions were weighed prior to application and after to be sure that the target amount of 

chemical was applied to each shed. This corresponds with the label rate for aerosol applications, 

and the equipment dispenses aerosol at the rate of 29.5 ml per 60 s. One shed was chosen as the 

untreated control and the same shed was designated as the untreated control for both blocks of 

this experiment. The insecticide was applied by running the applicator for the time calculated to 

achieve the label rate for the two shed sizes (71 and 81 s).  The applicator slowly pivoted during 

the spray to ensure even coverage.  Timing was done by the applicator and also a person outside 

the treatment area.    

The first block of this experiment was conducted in June of 2006 and the second 

completed in September 2006.  Eggs and fifth instars were exposed to the aerosol in 

unobstructed and concealed positions with three replicates of each.  In this experiment, twenty 

eggs were exposed using 100 mm Petri dishes lined with filter paper.  Insects were placed in the 

treatment areas immediately prior to insecticide application. After the aerosol application was 

completed, the insects remained in place for two hours to be consistent with similar field 

applications of aerosols. The lights were turned off inside the sheds while the insects were 

exposed. Temperature and relative humidity were monitored during the two hour exposure 

period and temperatures were 23 + 1°C with 60 + 8 % relative humidity for the first block and 

21+ 1°C with 60 + 2 % relative humidity. After this two-hour exposure period, egg dishes and 

larvae were collected from arenas and transported back to the laboratory.   Eggs were counted for 

each treatment and both eggs and larvae transferred to clean dishes with wheat diet and 

incubated at 27+ 1°C at approximately 40% relative humidity until they emerged as adults or 
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were determined to be unable to emerge.  This determination was made when a second 

generation of larvae was visible in the control dishes (approximately one week after adults began 

to emerge in controls). Counts of emerged adults were made at three weeks, and a second count 

made at four weeks from date of exposure. 

This experiment was designed as a split plot with the methoprene or untreated control 

treatment as the whole plot treatment and unobstructed and concealed positions as the sub-plot 

treatments. Data analysis was conducted using the Mixed Procedure (PROC Mixed) of the 

Statistical Analysis System (SAS) (SAS institute 2001). Means and standard errors for percent 

survival for each life stage were also calculated using the MEANS Procedure of SAS. Means for 

treatments were separated using the Ryan-Einot-Gabriel-Welsch Multiple Range test at a 

significance level of P =0.05 for each for each life stage. 

Experiment 2   

In the second experiment, methoprene was compared to the pyrethroid esfenvalerate 

(Conquer®, (EPA Reg. No. 1021-1641-57076) and a combination treatment of esfenvalerate 

with methoprene.  The esfenvalerate solution, applied in proportion to the label rate of 29.6 ml 

diluted solution per 28.3 m3 (1000 ft3), was made from 296 ml Conquer®  concentrate in 3785.4 

ml (1 gallon) carrier oil. This chemical was applied in the same manner and formulated as 15.47 

ml esfenvalerate in 200 ml of oil for applying to the sheds.  The target delivery rate for 

esfenvalerate alone was similar to the methoprene alone treatments. This experiment was 

conducted in the same manner as Experiment 1; however, approximately 50 eggs were exposed 

to the aerosol in painted 100 ml Petri dishes.  Following treatment, 20 eggs were selected from 

each treatment and allowed to mature to the adult stage.  Six blocks by time replicates were 

conducted, with only one replication of each life stage at each position.  Four sheds were 

assigned to the chemical treatments: 1) carrier only, 2) methoprene at the label rate, 3) 

esfenvalerate at the label rate, and 4) a combination of methoprene and esfenvalerate at their 

respective label rates.  In addition, one shed was designated as the untreated control.  Although 

we had the ability to regulate temperature within each shed, air conditioners remained turned off 

so that air flow would not interfere with the aerosol treatment. Blocks were conducted in late 

May 2007 through early July 2007 with temperatures and relative humidity recorded by HOBO 

monitors. Temperatures ranged from 21 to 27 + 1°C and relative humidity ranged from 40-60%.  
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This variation in the physical environment was due to the varying times of the day and the period 

of time over which the tests were conducted. In this experiment, treatments were fixed to each 

shed to avoid contamination between sheds.  Any larvae that escaped the treatment arenas were 

disposed of and not included in the analysis. Data analysis was conducted as in Experiment 1.   

 

Experiment 3   

In this experiment, different combinations of methoprene and esfenvalerate at less than 

the label rate were assessed to determine if treatments at less than the label rate could be as 

effective full rates.  Four chemical treatments: 1) full label rate methoprene plus one-third of the 

label rate esfenvalerate, 2) full label rate methoprene plus two-thirds of the label rate 

esfenvalerate, 3) full label rate esfenvalerate plus one-third of the label rate methoprene, and 4) 

full label rate esfenvalerate plus two-thirds of the label rate of methoprene, were conducted and, 

again, one shed served as the untreated control.  Treatments were assigned to each shed in a 

Latin square blocked by day of treatment. We conducted each block during a different time 

during the day with block one run in September 2007 and blocks 2-5 in September 2007. 

Temperatures were monitored using HOBO data monitors.  Temperatures ranged from 20 to 27 

+ 1°C and relative humidity ranged from 45 to 60%. Five complete blocks were conducted with 

one replicate of each life stage by position sub-plot treatment. The experimental design was split 

plot and data were analyzed using Proc Mixed in SAS.   

Results 

There were no significant differences in adult emergence for either exposed eggs or 5th 

instars between the concealed and unobstructed (open) habitats in any of the experiments (Tables 

2-1, 2-3).  In the methoprene-only treatments, survival to the adult stage was significantly lower 

(P < 0.0001) for both eggs and 5th instars compared to the untreated controls (Fig. 2-2).  For 

exposed eggs, 10.8 + 9.1% emerged compared to 72.1 + 9.9% in the control; for fifth instars, the 

emergence rate was 7.1 + 10.6% compared to 87.7 + 12.5% in the control.  Overall, adult 

emergence was significantly different (P = 0.0149) in regard to eggs versus larvae.  

When Indianmeal eggs were exposed to each insecticide alone, or a combination of the 

two, adult emergence was significantly lower (mean range: ~18-30%) than in the untreated 

control (83.7 + 5.8%) or with carrier (67.3 + 32.4%) (Fig. 2-3).  Emergence also was 
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significantly lower when exposed to the carrier than to the untreated control. There was no 

statistical difference in adult emergence between the methoprene and esfenvalerate treatments 

(both ~38%); but these chemicals in combination reduced adult emergence to approximately half 

of that in either chemical treatment alone (Fig. 2.3).  

There was a large difference in larval response to insecticide treatments; fifth instars that 

were exposed to methoprene alone had a very low emergence rate (0.4 + 1.4%).  However, adult 

emergence in the esfenvalerate treatment was 90.4 + 9.3%, which was not statistically different 

from the untreated control (P = 0.7055) (Fig. 2.3).  When methoprene was combined with 

esfenvalerate, emergence was very low (1.98 + 2.35 %) and statistically similar to the 

methoprene treatment (mean 0.417 + 1.44%). The carrier did not reduce adult emergence 

compared to the untreated control after 5th instar exposure (87.8 + 10.1 and 89.5 + 10.9%, 

respectively) (Fig. 2.3).  

All rates and combinations of insecticides resulted in reduced survival of Indianmeal 

moths compared to the untreated control, both when eggs and 5th instars were exposed 

(P<0.0001).  However, for each life stage (eggs or 5th instar), no combination of treatments had a 

significantly different effect on survival (P < 0.05). While high mortality is the measure of 

efficacy of any insecticide, cost is also a major consideration in any pest management program.  

Using chemical cost information calculated per 283.7 m3 (10,000 ft3), we conducted a partial 

budget analysis to compare costs of methoprene and esfenvalerate treatments.  Economic risk 

was calculated at three levels (90, 95, and 99%) as deviations below the target goal. Tilley 

(2007) reports a modified Target MOTAD (mortality goal) model for optimizing cost and risk, 

but in the case of these three experiments, time and equipment cost are fixed and the only 

variable cost is the cost of the chemical.  Risk, in this case, is the inverse of mortality up to the 

mortality target, at which it is set to zero.  Therefore, the downside risk is mortality below the 

target level. Results are displayed in Tables 2-4 through 2-6. Chemical and carrier oil costs were 

calculated based on current industry prices.  Carrier oil costs fluctuate with the global petroleum 

market but for the purposes of this analysis were fixed to $0.83 per L ($3.15 per gallon) or 

$0.0008 per ml. Our results indicate that while methoprene alone reduced adult emergence in 

treated larvae by 99.58 %, it only reduced emergence for treated eggs by 26.33%. Conversely, 

the esfenvalerate treatment reduced adult survival by 9.67% for exposed larvae, and reduced 

emergence in exposed eggs by 64.58%.   Of all treatment scenarios, the full rate methoprene plus 
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full rate esfenvalerate treatments represent the lowest risk and also represent the highest cost per 

283.7 m3 (10,000 ft3) for controlling both life stages of the Indianmeal moth (Table 2-6).  

 

Discussion 

Overall, aerosol methoprene and esfenvalerate treatments had good efficacy, both alone 

and in combination, for eggs and fifth instars of the Indianmeal moth. Adult emergence was 

significantly different in regard to eggs versus larvae, which is not surprising given the hardiness 

of wandering phase Lepidoptera larvae and the need to transport insects to the research site and 

back to the laboratory.  These results show that eggs have slightly higher survival to the adult 

stage in the combination treatments (experiment 3) than in experiment 2; however there were no 

treatments in experiment 3 that contained the full rates of both methoprene and esfenvalerate. It 

is interesting to note that the life stages (egg and fifth instar) responded very differently to the 

methoprene and esfenvalerate treatments.  It could reasonably be concluded that for overall 

control of the Indianmeal moth, the use of both chemicals together would result in greater control 

of both life stages than either chemical alone. 

These results add to other recent publications demonstrating the efficacy of aerosol 

treatments (Arthur and Campbell 2007, Arthur 2008) for both conventional insecticides and 

insect growth regulators.  The other significant result is that there was no difference between 

percent mortality in unobstructed and concealed positions for any treatment combination.  This is 

consistent with other studies (Arthur and Campbell 2007, Arthur 2008) showing good coverage 

of the aerosol fog at least as far as 0.3048 m (1 ft) under equipment and pallets. This study 

simulates some possible field conditions, as food manufacturing and storage facilities often have 

product stacked on pallets and hidden areas under equipment.   

Methoprene is an insect growth regulator that mimics an insect’s natural juvenile 

hormone.  This chemical suppresses populations by impeding growth of individuals that it 

contacts, both by preventing maturity to the adult stage and causing reduced fecundity in those 

insects that are able to eclose.  Methoprene has important applications in other stored product 

situations such grain bins (Chanbang et al. 2007) and other urban pest situations such as fire ant 

and mosquito control (Aubuchon et al. 2006, Henrick 2007). Stability over a wide range of 
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temperatures and has good residual activity are two of the characteristics that makes this 

chemical an attractive management option.  

The usefulness of our economic analysis is that by standardizing costs to 283.7 m3 

(10,000 ft3) gives way to rapidly calculate costs for facilities based on size.  In our analysis, 

equipment costs were fixed, due to the unique needs and equipment requirements of different 

food manufacturing facilities and also shut-down time was fixed at two hours.  Carrier costs can 

be especially important because methoprene is applied at a much lower rate (making amount of 

carrier higher); approximately seven times lower than the esfenvalerate, and is approximately 

eight times more expensive. Insect growth regulators can be expensive in comparison with 

conventional insecticides; it is important to be able to determine if increasing input costs by a 

small margin could give better control of stored pests or if it would be more cost effective to 

employ a different management option. 

Especially with concerns about the safety of fumigants, the impending phase-out of 

methyl bromide and consumer preference for “safer” products, using insect growth regulators as 

control tactics is becoming more widespread.  Management options such as methoprene for the 

control of Indianmeal moth provide good control while costing nearly the same as a more 

hazardous conventional insecticide. Studies such as this demonstrate that even difficult to kill 

insect pests may be effectively and economically managed with a lower risk insecticide.  Though 

industrial usage of insect growth regulators may not be immediately adopted, alternatives to 

hazardous fumigants need to be made available.   
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Figures and Tables 

 

Figure 2-1 Experimental arenas used to contain wandering phase Indianmeal moth larvae.  

Construction of these units is described above.  Drawings are not to scale. 
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Figure 2-2 Experimental set-up of the pilot-scale sheds for all three simulated warehouse 

experiments.  Concealed positions were created by making a scaled-down mock pallet 

described above. Position of the entry door is marked with the dashed gray curve and 

unobstructed and concealed positions are labeled. Drawings are not to scale. 
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Figure 2-3 Survival of eggs and fifth instars of Indianmeal moth to the adult stage after 

exposure to aerosol methoprene treatments. Letters indicate statistical differences in means 

and standard errors using the MEANS procedure in SAS and means were separated using 

the Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 for 

each life stage. Average adult emergence was significantly different (P < 0.0001) for each 

life stage between the methoprene treatments and the untreated control.  
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Figure 2-4 Comparison of survival of eggs and fifth instar Indianmeal moth to the adult 

stage exposed to aerosol methoprene and esfenvalerate treatments in pilot scale sheds. 

Capital letters indicate statistical differences between treatments for fifth instars and lower 

case letters indicated statistical differences between treatments for exposed eggs.  Mean 

and standard errors were calculated using the MEANS procedure in SAS and means were 

separated using the Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level 

of P =0.05 for each life stage.  There was no statistical difference in response to 

unobstructed or concealed positions (P = 0.1309). 
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Figure 2-5 Survival of eggs and fifth instar Indianmeal moth exposed to combinations of 

aerosol methoprene and esfenvalerate treatments at less than the label rate. Capital letters 

indicate statistical differences between treatments for fifth instars and lower case letters 

indicated statistical differences between treatments for exposed eggs.  Mean and standard 

errors were calculated using the MEANS procedure in SAS and means were separated 

using the Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 

for each life stage.  There was no statistical difference in response to unobstructed or 

concealed positions (P = 0.9170).  
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Table 2-1 Analysis of variance statistical effects on mortality of Indianmeal moth eggs and 

larvae exposed to aerosol methoprene treatments in unobstructed and concealed positions. 

 

Effect Num DF Den DF F Value Pr > F

Treatment 1 (methoprene, control) 1 16.6 1037.08 <.0001

Treatment 2 (open, concealed)   1 16.6 1.29 0.2713

Treatment 1 * Treatment 2 1 16.6 0.00 0.9902

Life Stage (egg, larvae) 1 16.6 7.38 0.0149

Life Stage * Treatment 1 1 16.6 19.29 0.0004

Life Stage * Treatment 2 1 16.6 1.28 0.2736

Life Stage * Treatment 1 * Treatment 2 1 16.6 0.15 0.7009

 

Table 2-2 Analysis of variance statistical effects on mortality of Indianmeal moth eggs and 

larvae exposed to aerosol methoprene alone, aerosol esfenvalerate alone and both chemicals 

in combination treatments in unobstructed and concealed positions. 

 

Effect Num DF Den DF F Value Pr > F

Treatment 1 (open, concealed) 1 95 0.01 0.9170

Treatment 2 (methoprene,  control) 4 95 108.06 <.0001

Treatment 1 * Treatment 2 4 95 0.52 0.7230

Life Stage (egg vs. larvae) 1 95 4.30 0.0408

Life Stage * Treatment 1 1 95 1.67 0.1989

Life Stage * Treatment 2 4 95 26.12 <.0001

Life Stage * Treatment 1 * Treatment 2 4 95 0.09 0.9853
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Table 2-3 Analysis of variance statistical effects on mortality of Indianmeal moth eggs and 

larvae exposed to aerosol methoprene and esfenvalerate combination treatments at four 

rates in unobstructed and concealed positions. 

 

 

Effect Num DF Den DF F Value Pr > F

Treatment 1 (open, concealed) 1 4 3.59 0.1309

Treatment 2 (methoprene,  control) 4 72 48.08 <.0001

Treatment 1 * Treatment 2 4 72 0.55 0.7027

Life Stage (egg vs. larvae) 1 72 7.68 0.0071

Life Stage * Treatment 1 1 72 4.46 0.0381

Life Stage * Treatment 2 4 72 2.78 0.0330

Life Stage * Treatment 1 * Treatment 2 4 72 0.24 0.9159
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Table 2-4 Summary of costs and risk levels for chemical treatments in Experiment 1 

(methoprene vs. untreated control). Risk is presented as three thresholds; 90, 95 and 99% 

mortality above which risk is set equal to zero.  Costs reflect insecticide and carrier oil 

costs as explained above.  The scenario that represents the lowest risk at any threshold for 

both life stages is the methoprene insecticide treatment. 

 

Economic Summary       
Costs: 
per 10,000 ft3 

Methoprene plus carrier 0.70   

       
       
Stage Treatment % Mortality Risk (90%) Risk (95%) Risk (99%) Cost ($)   
Eggs Control 27.92A 0.62 0.67 0.71 0.00 
Eggs Methoprene 89.14B 0.04 0.07 0.10 0.70 
Larvae Control 12.26a 0.78 0.83 0.87 0.00 
Larvae Methoprene 92.86b 0.03 0.05 0.07 0.70 

 

Table 2-5 Summary of costs and risk levels for chemical treatments in Experiment 2 

(methoprene alone, esfenvalerate alone and combination treatment). Risk is presented as 

three thresholds; 90, 95 and 99% mortality above which risk is set equal to zero.  Costs 

reflect insecticide and carrier oil costs as explained above.  The scenario that represents the 

lowest risk at any threshold for both life stages is the methoprene and esfenvalerate 

combination treatment insecticide treatment. 

 

Economic Summary       
Costs:  per 10,000 ft3 Carrier only $0.25   

  
Methoprene plus carrier 

$0.70   

  
Esfenvalerate alone 

$0.71   

  
Combination treatment 

$1.17   
       
Stage Treatment % Mortality Risk (90%) Risk (95%) Risk (99%) Cost ($) 
Eggs Untreated Control 16.33a 0.74 0.79 0.83 0.00 
Eggs Carrier Only 32.71b 0.59 0.63 0.66 0.25 
Eggs Methoprene Only 65.33c 0.26 0.30 0.34 0.70 

Eggs 
Esfenvalerate 
Only 

64.58c 0.26 0.31 0.34 0.71 

Eggs 
Methoprene plus 
Esfenvalerate 

82.33d 0.10 0.13 0.17 1.17 

Larvae Control            12.23A 0.78 0.83 0.87 0.00 
Larvae Carrier Only 9.34A 0.79 0.84 0.88 0.25 
Larvae Methoprene Only 99.58B 0.00 0.00 0.00 0.70 
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Larvae 
Esfenvalerate 
Only 

9.67A 0.80 0.85 0.89 0.71 

Larvae 
Methoprene plus 
Esfenvalerate 

  98.01B 0.00 0.00 0.01 1.17 
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Table 2-6 Summary of costs and risk levels for chemical treatments in Experiment 3.  Risk 

is presented as three thresholds; 90, 95 and 99% mortality above which risk is set equal to 

zero.  Costs reflect insecticide and carrier oil costs as explained above.  The scenario that 

represents the lowest risk at any threshold for eggs is the full esfenvalerate + two-thirds 

methoprene treatment.  For fifth instars the lowest risk treatment is full methoprene + two-

thirds esfenvalerate. 

 

Economic Summary       
Costs: per 10,000 ft3. Carrier only $0.25   
  Methoprene plus carrier $0.70   
  Esfenvalerate alone $0.71   
  Combination treatment $1.17   
       
Stage Treatment % Mortality Risk 

(90%) 
Risk 

(95%) 
Risk 

(99%) 
Cost ($)  

Eggs Untreated Control 27.07A 0.63 0.68 0.72 0.00 
Eggs Full Esfenvalerate +  

2/3 Methoprene 
82.02B 0.12 0.14 0.17 1.01 

Eggs Full Esfenvalerate +  
1/3 Methoprene 

78.30B 0.14 0.18 0.21 0.85 

Eggs Full Methoprene +  
2/3 Esfenvalerate 

77.20B 0.15 0.19 0.22 1.00 

Eggs Full Methoprene + 
 1/3 Esfenvalerate 

66.70B 0.25 0.29 0.32 0.86 

Larvae Untreated Control 15.48a 0.75 0.80 0.84 0.00 
Larvae Full Esfenvalerate +          

2/3 Methoprene 
92.15b 0.04 0.05 0.07 1.01 

Larvae Full Esfenvalerate +  
1/3 Methoprene 

88.33b 0.06 0.08 0.11 0.85 

Larvae Full Methoprene +  
2/3 Esfenvalerate 

94.15b 0.01 0.03 0.05 1.00 

Larvae Full Methoprene +  
1/3 Esfenvalerate 

91.45b 0.05 0.06 0.08 0.86 
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CHAPTER 3 - Methoprene and Synergized Pyrethrins as an 

Aerosol Treatment of Commercial Buildings for the 

Management of Indianmeal moth (Lepidoptera: Pyralidae) 

 

Abstract 

New strategies for managing stored product pests are needed to fulfill the mandate to replace 

the fumigant methyl bromide in food manufacturing and storage facilities. Fumigant treatments 

in a commercial building can be costly in terms of insecticide costs and shut-down times. 

Aerosol insecticides delivered through an ultra-low volume application system provide one 

alternative, but little is known about the efficacy and distribution of these insecticides. One 

insecticide combination currently in use is synergized pyrethrins, alone and in combination with 

the insect growth regulator, methoprene. One stored product pest that is particularly difficult to 

manage is the Indianmeal moth (Plodia interpunctella Hübner).  This insect causes 

contamination of stored products and sometimes equipment damage in food processing facilities.  

Infested products can also reach the consumer making management of the Indianmeal moth 

essential where food products are stored. There is little previous research on the efficacy of 

aerosol insecticides, especially methoprene, in the management of Indianmeal moth eggs.  Eggs 

may be oviposited outside of food packages or in other exposed areas, making the egg stage a 

target for control as aerosols do not penetrate packaging materials as do fumigants. The study 

focused on two commercial buildings: a flour mill in Kansas and a grocery distribution 

warehouse in Missouri.  The three goals were to: 1) compare the susceptibility of Indianmeal 

moth eggs when they are exposed to aerosol insecticide treatment, an Indianmeal moth diet that 

had been treated with insecticide, and packaging materials that had been exposed to aerosol 

insecticide; 2) evaluate the benefit of using a combination of methoprene and pyrethrin versus 
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methoprene only; and 3) examine the distribution of aerosol in “concealed” as well as 

“unobstructed” areas within a commercial facility.   

Keywords: methoprene, esfenvalerate, packaging materials, Indianmeal moth 
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Introduction 

The Indianmeal moth (Plodia interpunctella Hübner) can develop on a number of 

different commodities including grains, flours, beans, meals and dried fruits (Mohandass et al. 

2007).  For this reason it is a major pest in warehouses, elevators and commercial food 

processing facilities (Subramanyam and Hagstrum 1993, Doud and Phillips 2000, Arbogast et al. 

2002). Indianmeal moths are specifically known to infest grain mills, as well as grocery facilities 

(Buchelos 1980, Campbell and Mullen 2004).  Management of Indianmeal moth populations 

inside a food processing facility is essential because infestations of food materials during 

processing and of finished products lead to rejection of products by distribution centers and 

consumers (Campbell et al. 2002). Historically, many flour mills have relied on fumigation with 

methyl bromide to control stored product pests such as the Indianmeal moth; but this product is 

scheduled to be phased out under a world-wide agreement, the Montreal Protocol, (Anonymous 

2004). Currently mills and process plants have received a critical use exemption (CUE) for the 

continued use of methyl bromide.   

Because of the scheduled phase-out of methyl bromide, plus the fact that it is a very 

hazardous chemical, mills and processing facilities are evaluating safer and less expensive 

alternatives (Campbell et al. 2004, Mondall and Parween 2000).  One available management 

option is to use an aerosol treatment with a mixture of the insect growth regulator, methoprene, 

and synergized pyrethrins.   The advantage of this mixture is that the synergized pyrethrin 

product results in quick knock-down of the pests whereas the methoprene, which is stable over 

longer time periods, has residual activity (Mondall and Parween 2000). Both products are 

currently labeled for use in food handling facilities. Methoprene is registered by Central Sciences 

International (EPA reg. no. 2747-427); while several companies have registered their own 

proprietary formulations and application systems for synergized pyrethrins. 

In determining what insect pest management methods to implement, cost and loss of 

production time are major considerations. Fumigants often require specialized training for 

application and can be expensive in terms of shut-down and applicator costs.  An important 

aspect of any integrated pest management program is to determine the cost of a particular 

treatment method. Partial budget analysis can be used to compare chemical costs of control 
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strategies and can also be used to determine levels of risk associated with each strategy (Boehlje 

1984).  In the case of aerosol insecticide treatments, a partial budget analysis can compare 

different combinations of synergized pyrethrins and methoprene enabling food production plant 

managers and warehouse managers to be able to make better decisions. Economic analysis for 

some other methyl bromide alternatives using enterprise budgets for specific field crops have 

previously been developed (Nelson 1996, Byrd et al. 2006) and the same method can be applied 

to finished stored product situations.  

Little research has been done on the efficacy of aerosol insecticide treatments in active 

commercial mills and warehouses, especially the use of insect growth regulators and their 

distribution as aerosols throughout a facility (Arthur 2008, Arthur and Campbell 2007). There is 

some previous laboratory research showing varying efficacy of synergized pyrethrins (both in 

direct contact and residual activity) for control of stored product beetles, but not for control of 

Indianmeal moth (Bernhard and Bennett 1981, Cline et al. 1984). Aerosol droplets may be 

impeded by barriers such as equipment, shelving and stored products. For this reason, 

information on distribution of the aerosol under such barriers must be obtained in order to 

determine the efficacy of aerosol treatments against the Indianmeal moth.   

Indianmeal moth females oviposit eggs on a number of surfaces associated with food 

materials. Eggs may come into direct contact with aerosol particles, surfaces that have been 

exposed, and spilled food materials that have been exposed to aerosol particles.  It is important to 

evaluate the efficacy of these chemicals in all three situations.  The specific objectives of this 

experiment were to: 1) compare the susceptibility of Indianmeal moth eggs when they were 

exposed directly to aerosol insecticide treatment, various food materials that have been exposed 

to aerosol insecticides, and packaging materials that have been exposed to insecticides, 2) 

evaluate the benefit of using a combination of methoprene and pyrethrin versus methoprene-only 

and pyrethrin-only aerosol treatments, and 3) examine the distribution of aerosol particles in 

“concealed” and “unobstructed” areas as evidenced by survival of Indianmeal moth eggs to the 

adult stage. 
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Materials and Methods 

General Procedures 

A laboratory colony of Indianmeal moths was used for all studies.  This colony was 

established in 1988 from individuals collected in Riley County, Kansas in the United States, and 

periodically supplemented with wild individuals. These colonies are maintained at the USDA-

ARS Grain Marketing and Production Research Center in Manhattan, KS2.  The colony has been 

maintained in environmental growth chambers (Forma-Scientific, Thermo Electron Corporation, 

Waltham, MA) on an enriched wheat diet at 27±1°C, approximately 40% RH., and in darkness 

(L:D = 0:24 hrs). Relative humidity was maintained using pans of water in the bottom of the 

incubator. The colony was reared on a standard wheat-based diet.  The standard rearing diet 

contains cracked wheat and shorts (4.4 kg), brewer’s yeast (22g), sorbic and benzoic acid (9.5g 

each), honey (240ml), glycerin (240ml) and water (120ml). 

For each study there were three treatment methods: 1) eggs exposed directly to settling 

aerosol particles, 2) diet materials exposed to the aerosol with unexposed eggs added following 

the treatment, and 3) packaging materials exposed to the aerosol with the corresponding diet 

inside, with unexposed eggs added following treatment. Eggs (less than 24 hours after 

oviposition) were exposed to the aerosol spray in 100 mm Petri dishes painted with black acrylic 

paint to reduce static.  Eggs were transported to and from each facility in these dishes. 

Approximately 100 g of each diet material were exposed to aerosols in 150 mm Petri dishes and 

after exposure diet materials were transferred to clean Petri dishes of the same size.  Package 

materials with diets inside were placed directly on the floor of the facilities.  After exposure, 

these materials were placed in clean plastic containers (disposable) purchased from the local 

grocery store that were 5 cm high, 13.7 cm wide, and 13.7 cm long. Following aerosol 

treatments, eggs that were exposed to insecticide were placed in clean diets and allowed to 

mature to the adult stage under the above conditions.  Packaging and diet materials exposed to 

insecticide were transported back to the laboratory where eggs placed on these materials were 

allowed to mature to the adult stage under the previously described conditions.   Lids on the 150 

                                                 
2  Kansas State University Museum of Entomological and Prairie Arthropod Research under Lot Number 

208 
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mm Petri dishes and the disposable plastic containers were altered to have a 5.08 cm (2 in) 

diameter vent cut in the top with a standard filter paper secured with a non-toxic adhesive to 

allow air movement. Temperature and relative humidity inside incubators were recorded using a 

HOBO data logger (Onset Computer Corporation, Bourne, MA).  

Diet materials that were used for both studies were standard wheat-based diet (same as 

above), commercially available corn muffin mix and protein bars (peanut butter flavor) and 

raisins.  Package material and diet combinations were standard wheat diet inside 16.8 cm x 14.9 

cm sandwich-size zipper-seal plastic bags, commercially available peanut butter protein bar 

inside their original laminate paper packaging, corn muffin mix inside original packaging 

(laminated cardboard), and two snack-size boxes of raisins taped end to end inside original 

laminated cardboard packaging.  All sizes of packaging materials were selected so that total 

surface area of exposure was approximately the same for all combinations.  After exposure, we 

made small entry holes in each package (five holes in a star pattern) with a sharp probe to allow 

neonates to enter the packages. 

Both field sites were equipped with an ultra-low-volume (ULV) compressed air 

application system, which dispensed aerosol insecticides at an approximate particle size of 15 

microns, installed by Entech Systems (Kenner, Louisiana, USA). These application systems can 

be operated manually or by timer 

Experimental Design for Flour Mill Experiment 

The experiment was conducted in a commercial flour mill located in central Kansas.  The 

mill was previously equipped a ULV system, through which a methoprene plus pyrethrin 

treatment is delivered on a regular basis. Additionally, there is an insect population sampling 

program and a temperature monitoring program ongoing in the facility. This mill actively 

practices integrated pest management (IPM) techniques such as sanitation as part of an overall 

pest management program. Materials for each block of the experiment were prepared and 

transported to the mill prior to each treatment period and transported back to the laboratory after 

exposure. One floor of the mill was chosen as the experimental site and controls were held in an 

unexposed building during fogging period. This floor of the mill had approximately 20-25% 

occupied space with milling equipment and was approximately 1,170 m2 (18,480 ft2). 
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The experimental design was a split-split-split plot experiment blocked by time.  The 

whole plot (WP) treatment was three replicated insecticide treatments: 1% pyrethrin plus 

methoprene, 3% pyrethrin only, and 3% pyrethrin plus methoprene.  The 1% pyrethrin plus 

methoprene treatments were replicated four times with all sub-plot factors included and the 3% 

pyrethrin plus methoprene treatments replicated three times with exposed eggs only.  The 3% 

pyrethrin only treatment was only run once and only because there was an error in shipping and 

the methoprene was not received at the mill in time to include it in the treatment. The 1% 

pyrethrin treatment was Entech Fog-10® (EPA Reg. No. 40391-10) which is 1.0 % pyrethrins, 

2.0% piperonyl butoxide synergist, 3.33% N-octyl bicycloheptene dicarboximide and 93.67% 

inert ingredients.  The 3% pyrethrin treatment was Entech Fog-30® (EPA Reg. No. 73049-400-

40391) which contains 3.0 % pyrethrins, 6.0% piperonyl butoxide synergist, 10.0% N-octyl 

bicycloheptene dicarboximide and 81.0% inert ingredients. Each treatment was applied at the 

label rate for surface applications of 295.7 ml (10 oz) undiluted concentrate per 283.7 m3 (10,000 

ft3). For the combination treatments, Diacon II® (methoprene) was added at the label rate for 

space applications, which is 900 mg of active ingredient [AI], per 283.7 m3 (10,000 ft3). For each 

test, treatments were placed in the mill and allowed to be exposed to the settling aerosol particles 

for two hours. 

Sub-plot (SP) treatments were position in relation to spray nozzle (see Figure 1), 

“unobstructed” or “concealed” during treatment, method of treatment, and diet/packaging 

combinations.  For this purpose of this study, “concealed” sites within each position were fully 

underneath a piece of equipment in the mill.  While equipment in this mill was raised up off the 

floor, the treatments were still partially shielded from the aerosol particles as they settled, thus 

simulating food patches or insects under a pallet of product or equipment.  “Unobstructed” sites 

were those not under equipment or other barriers.  For each position and unobstructed/concealed 

sub-plot treatment, there were three exposure methods designed to simulate three possible 

scenarios. The purpose of this treatment was to compare the susceptibility of Indianmeal moth 

eggs (measured by emergence as adults) when they were exposed directly to aerosol insecticide 

treatment, exposed to food materials that had been treated with insecticide, and exposed to 

packaging materials that had been exposed to aerosol insecticide but which contained untreated 

food materials. The final sub-plot treatment was the type of diet/packaging material.  Three 

representative package types were used: laminate paper, laminate cardboard and plastic. These 
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packages represent what would happen when damaged products were allowed to remain in the 

facility after insecticide treatment. Three types of diet were used for the diet exposure part of the 

study: standard Indianmeal moth diet, organic protein bar, and raisins. These products were 

chosen to represent spilled food material that could be found inside a commercial facility.   

For each replicate, twenty eggs that had been exposed to the aerosol treatment were 

randomly chosen and placed in clean food material.  In addition, twenty untreated eggs were 

placed on each of the exposed diets and on exposed packaging materials after they had been 

returned to the laboratory.  Test dishes were held in a 27ºC incubator with a pan of water as a 

humidity source (approximately 40% relative humidity). Adult emergence was recorded and 

experiments terminated when controls reached at least 75% adult emergence or when it was 

determined that there was no more survival which was approximately one week following 

beginning adult emergence from the control dishes.  Beginning with block (time-replicate) 5, 

only eggs were exposed to the insecticide treatment, due to nearly zero adult emergence in the 

treated diet and treated packaging results from the previous time periods. Temperature and 

relative humidity inside incubators were recorded using a HOBO data logger (Onset Computer 

Corporation, Bourne, MA) placed next to one “unobstructed” and one “concealed” area during 

each treatment. A HOBO was also placed in the area where controls were being held. 

Temperatures and relative humidity in the mill fluctuated with the season.  The experiment was 

run during a period from February 2007 through July 2007 and timing of application ranged 

from early morning to early evening.  Temperatures ranged from 22+1 to 34+1°C and relative 

humidities from 23-65%.   

Data were organized as a split-split-split plot design and analysis of variance was 

conducted using the PROC MIXED procedure in the Statistical Analysis System (SAS Institute 

2001) with random effects were block (whole plot treatment) and block (whole plot 

treatment)*position.  For percent survival to the adult stage for each life stage means and 

standard errors were also calculated using the MEANS Procedure of SAS. Means for treatments 

were separated using the Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level 

of P =0.05 for each treatment combination. 
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Experimental Design for Grocery Warehouse Study 

This experiment was conducted in a food distribution facility equipped with an aerosol 

fogging system (compressed air-operated) that is used infrequently to deliver methoprene and 

synergized pyrethrins. For these tests, Diacon II® was delivered through this system at the label 

rate (Central Sciences 2004) for space application which is 3 ml per 283.7 m3 (10,000 ft3).  The 

test area (Figure 2) was a large, relatively open warehouse room with little fixed shelving.  The 

room houses a variety of products (fresh and preserved food products, kitchen equipment and 

paper goods) that are moved in and out of the room frequently.  The estimated occupied space 

(stacked goods) of this room at any given time is 10%.  The volume of the room minus the 10% 

occupied space is approximately 15,050 m3. The room has multiple exits to the rest of the 

building, but no outside exits; therefore any insects moving into the room come from either the 

products or the adjacent warehouse.  The treatment room has two nozzles for dispensing 

insecticide and the ULV system in this facility was installed such that one room can be treated 

separately from the others.   

The experimental layout for this study was designed in a similar manner as the above 

experiment. Three sub-replicates in different areas of the fogged room were also done to reduce 

experimental variability, and controls were held in an office that was not exposed to the aerosol. 

The placement of packages was determined prior to the test. The same three package types were 

used as described in the previous experiment.  For blocks (times) 1-4, standard wheat diet, 

protein bar and corn muffin mix were used; in blocks 5 and 6, raisins were substituted for the 

corn muffin mix due to low control survival.  Packages were placed in the treated room and were 

considered either “open” or “concealed” in the same manner as in the previously-described 

experiment.  This experiment was a split-split plot with the methoprene treatment as the whole 

plot factor blocked by time and the sub-plot as position in the warehouse.  The sub-sub plot 

treatment was 2 areas (“unobstructed” or “concealed”) within each position.  Complications with 

the execution of this experiment created an imbalance in the experimental design:  treated 

package data were available for the first two blocks only; corn muffin mix was used in blocks 3 

and 4, and raisins were used in blocks 5 and 6. Treatments were placed in the room and the 

aerosol system started, then treatments were allowed to be exposed to the aerosol for two hours 

before collection. After the aerosol treatment, packages were removed from the room, placed in 
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plastic containers and transported back to our facility.  There, eggs were added to the treatments 

and allowed to mature to the adult stage in the same manner described above.  

Temperature and relative humidity inside incubators were recorded using a HOBO data 

logger (Onset Computer Corporation, Bourne, MA) placed next to treatment areas. All tests were 

conducted in the late afternoon during the summer of 2006; temperatures in the treatment area 

were 28 + 1°C and relative humidities ranged from 30-70%.  Temperatures in the control room 

were 24 + 1°C with relative humidities of 50-60%.  All data was analyzed for this experiment 

using the PROC MIXED procedure of the Statistical Analysis System (SAS Institute, 2001) in 

the same way as the previous experiment. Analysis was carried out on treated packaging 

materials in blocks 1 through 4 with results reported below.  Due to the low control survival of 

treatments in blocks 3-4 in the other treatments, only blocks 5 and 6 are reported. 

Partial Budget Analysis 

Using chemical cost information calculated per 283.7 m3 (10,000 ft3),  partial budget 

analysis revealed that to compare costs of methoprene and synergized pyrethrin treatments (alone 

and in combination) for two field sites for managing eggs of the Indianmeal moth.  Risk was 

calculated at three levels (90, 95, and 99%) as deviations below the target goal. Tilley (2007) 

reports a modified Target MOTAD (mortality goal) model for optimizing cost and risk, but in the 

case of these three experiments time and equipment cost were fixed and the only variable cost 

was the cost of the chemical.  Risk, in this case, was the inverse of mortality, up to the mortality 

target, at which it was set to zero, therefore the downside risk was mortality below the target 

level. 

Chemical and carrier oil costs (for the methoprene only treatments) were calculated based 

on current industry prices.  Carrier oil costs fluctuate with the global petroleum market, but for 

the purposes of this analysis they were fixed to $0.83 per L ($3.15 per gallon) or $0.0008 per ml. 

Carrier costs can be especially important if comparisons are being made between chemicals with 

different application rates.  In the case of the synergized pyrethrin applications, the formulation 

is premixed, so cost calculations were done on a per unit basis.  For our analysis, means from all 

treatments in both the flour mill study and the grocery warehouse study were used to calculate 

overall mortality and risk. Since grocery warehouses are a mixture of products and package 
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types, we attempted to get an estimate of overall mortality and risk across all scenarios (treated 

eggs, treated packaging, and treated diet) for each diet type.  

 

Results 

Flour Mill Experiment 

For blocks 1-4 (WP treatment 1% pyrethrin plus methoprene) analysis was run as if the 

control plates were an 11th position.  Results are displayed in Table 3-1. Treating the control 

plates as a separate position was done because the controls were held in a separate room from the 

insecticide treatments. This procedure allowed us to better examine the effect of position within 

the treatment area. Unobstructed and concealed positions were not significantly different 

(P=0.7174).   However, the method of treatment and diet had highly significant effect (P = 

<.0001). There were also significant differences among the three methods of treatment (treated 

eggs, treated package materials and treated diet) (Figures 3-5). When eggs were placed on any of 

the three treated diets, survival to the adult stage was virtually zero (Figure 3-3). Similarly, when 

eggs were exposed to treated packaging materials, adult emergence was also close to zero 

(Figure 3-5).  However, while treatments were significantly different from controls (P= 0.05), 

overall survival was lower when eggs were exposed directly to the aerosol treatment (Figure 3-

4). Survival was significantly lower in the treatments involving raisins than in the other two 

diets.  Because there was virtually no survival to adulthood of Indianmeal moths in both the 

treated diets and treated packages portion of the experiment, these factors were omitted from the 

final four blocks of the experiment.   

Analysis of the treated egg treatment method across all blocks (1-8) and all three whole 

plot treatment methods (1% pyrethrin plus methoprene, 3% pyrethrin alone, and 3% pyrethrin 

plus methoprene) revealed no significant differences in the efficacy of treatments (P=0.5021) 

(Table 3-2). Analysis was conducted as described above with controls as position 11.  The main 

effects diet and position were statistically significant at P<0.0001.  Overall, treatments were 

significantly different from controls (P=0.05) but survival to the adult stage was higher than in 

the treated packaging and treated diet tests conducted in the first four blocks. Figure 3-6 displays 

differences by insecticide treatment and diet.  
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While assigning control tests to separate position made the overall position effect highly 

significant, it was important to determine if distance from the aerosol fogging nozzle in the 

treated tests was a significant factor as well.  Figure 3-1 shows the positions in order of their 

approximate distance from the insecticide source and Table 3-3 shows the results of analysis of 

variance carried out on treated eggs for the effect of position on adult emergence. Treated diet 

and treated package data were omitted from this analysis because of the low survival to the adult 

stage in treatments. In general, as distance from the spray nozzle increased, so did survival to the 

adult stage (Figure 3-7).  

Grocery Warehouse Study 

Analysis was carried out in the same manner as the flour mill experiment.  Table 3-4 

shows the overall analysis of variance for treated package materials and diet combinations for 

blocks (times) 1-4.  These were standard wheat diet inside plastic bags, commercially available 

peanut butter protein bar inside their original laminate paper packaging, and corn muffin mix 

inside original packaging (laminated cardboard).  Analysis was done using control data as 

position 4 because the tests were held in an untreated room in the same facility (Table 3-4).  Diet 

was the only main effect that was statistically significant (P<0.0001).  Figure 8 shows the 

differences in diet/package type.  The controls and treatments for wheat diet were significantly 

different at P=0.05, but not the corn muffin mix or the protein bar treatments and controls.   

In blocks 3 and 4 there was low survival to the adult stage in controls of all three diets.  

Analysis of variance revealed no significant difference in positions or treatment type, though diet 

was still a significant main effect (P<0.0001) (Table 3-5).  Possible reasons for the low survival 

include the handling of the treated eggs to and from the facility, escape from the plastic 

containers where the insects were allowed to mature, or nutritional quality of the wheat diet. 

Results are displayed in Figure 9. Analysis of variance is reported in Table 3-6 for blocks 5 and 

6.  Raisins were used instead of corn muffin mix in these two blocks due to higher adult 

emergence in the raisins.  Table 3-7 shows means and standard errors for these two diets.  

Overall, the main effects of method of treatment and diet were statistically significant 

(P<0.0001).  Results of means separation and differences by treatment method and diet are 

displayed in Figure 3-10.  
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Partial Budget Analysis 

To make the best decisions in insect pest management, the cost of any given control 

method must be weighed against its efficacy. In the case of our partial budget analysis, efficacy 

was measured by overall mortality (failure to emerge as adults) Results of these are displayed in 

Tables 3-8 to 3-10.  Methoprene was applied at approximately 100 times the rate of the 

synergized pyrethrin formulation (29.57 versus 295.7 ml per 10,000m3) and costs 8.5 times as 

much as the most expensive pyrethrin treatment tested (3%). Our results indicate that while the 

3% pyrethrin alone reduced survival of eggs to the adult stage by 80.18%, methoprene alone 

only reduced adult emergence in eggs exposed directly to the aerosol treatment by 72.06%.  The 

1% combination treatment was approximately as effective as the 3% combination treatment; 

83.06% and 78.39% respectively when comparing the treated egg method.  See Table 3-10 for 

full comparison.  When treated packaging and treated diet data are factored in, reduction in 

survival for the methoprene alone and 1% pyrethrin plus methoprene treatments was 

substantially increased but we can only compare the treated egg scenario across all insecticide 

treatments.  Of all treatment scenarios, the 1% rate synergized pyrethrin plus methoprene 

represents the lowest risk, but not the highest cost.  While the cost is still almost four times the 

cost of methoprene alone ($3.14 versus $0.71), mortality was significantly increased with the 

addition of the 1% synergized pyrethrin. 

Discussion 

These studies show that insecticides delivered via aerosols can be a feasible alternative to 

traditional methods such as fumigation, especially when considering chemical costs.  Also, the 

installation of a facility-wide system may be less expensive than the cost of one fumigation 

treatment depending on size and specific needs. Previous research indicates that Indianmeal 

moth survival to the adult stage is prevented when larvae and eggs are fed diets exposed to 

methoprene (Arthur, unpublished data, Oberlander, et al., 1997). We showed the same results on 

four different diets.  Indianmeal moth survival is also reduced when eggs and larvae are exposed 

to packaging materials or aerosol treatments of methoprene (Jenson et al., unpublished data).  

Although we would have expected to see better efficacy with the treatments in the open position 

because aerosol droplets may be impeded by equipment and other barriers, survival in 

unobstructed and concealed positions was not significantly different. Therefore this study also 
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demonstrates that aerosol particles will carry beneath stacked products and machinery in 

commercial environments.  Our results also showed better efficacy and distribution of aerosol 

synergized pyrethrins than in previous experiments (see Bernhard and Bennett 1981, Cline et al. 

1984). Our results for synergized pyrethrins are also similar to other laboratory studies involving 

grain (corn and wheat) treated with synergized pyrethrins that showed good efficacy against the 

rice moth (Corcyra cephalonica) and Indianmeal moth (Huang and Subramanyam 2003, 2005).   

The efficacy of aerosol treatments with methoprene alone was similar to the pyrethrin 

plus methoprene treatments with respect to eggs exposed to treated packaging materials and to 

treated diets. Survival to the adult stage in these treatments overall was very low. However, eggs 

that were directly exposed to the methoprene-only aerosol treatment had a much higher survival 

to the adult stage than the pyrethrin alone treatments or the combination of the two insecticides 

(Figures 3-6 and 3-10).  The overall feasibility of all aerosol treatments was demonstrated by the 

cost-risk analysis.  Total mortality of the egg stage of the Indianmeal moth across all treatment 

scenarios was between 70 and 85%, so these treatments would be expected to significantly alter 

population dynamics of insects infesting these products.  Additionally, our findings indicated that 

the most expensive treatment option is not always the lowest risk.  For example, the 3% 

pyrethrin plus methoprene treatment did not reduce survival to the adult stage as much as the 

other treatments.  These results represent the efficacy of these chemicals for eggs of the 

Indianmeal moth only. Consideration of Indianmeal moth life stages, other pest species and 

particular needs of each facility must be carefully assessed before insecticide application. 

Field trials are especially important to conduct when attempting to assess insecticides that 

are currently being used in food-processing facilities.  This study also adds to the growing 

information that reduced-risk insecticides in the form of aerosols can be combined with sampling 

and sanitation as part of a comprehensive pest management program. By utilizing other 

integrated pest management techniques such as sanitation, the risk of infestations in spilled food, 

such as in our treated diet scenario would decrease.  Also, using pheromone trapping to monitor 

Indianmeal moth populations is a valuable tool in determining whether or not to treat the facility 

with insecticide (Doud and Phillips 2000, Campbell et al. 2002).  

We had a unique opportunity to work closely with cooperators at these two commercial 

facilities to evaluate this integrated pest management alternative under “real-world” conditions.  

By working with mill managers and exchanging information, we were able to test previous 
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laboratory research on the chemical control of Indianmeal moth with methoprene in a large-scale 

environment. One limitation of field research of this nature is that normally live insects cannot be 

brought into a facility.  We were able to assess eggs of the Indianmeal moth, but other life-stages 

should be assessed. Further research into methods of safely containing other life stages and 

insect species should be conducted so that overall population reduction can be assessed in large-

scale experiments.  Another limitation of using commercial field sites is that the timing of 

sprays, and concentrations and combinations used, are fully determined by the cooperator. 

Therefore, the ideal number of replications may not be reached, and other combinations of 

insecticides that are of interest may not necessarily be tested.  Large-scale field studies in 

facilities, especially facilities that store finished stored products, are vital in understanding how 

efficacy differs from laboratory research and how pests can be managed safely in situations 

where food is stored for human consumption.  Due to the complex nature of grocery warehouses 

(variation of product, frequent rotation of product, little control over product in transit) field 

experiments also help to clarify specific needs of industry in developing integrated pest 

management strategies.   
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Figures and Tables 

 

Figure 3-1 Flour Mill Experiment. Equipment and treatment layout of the flour mill 

experiment.  The black oval represents the position of the aerosol delivery nozzle and dark 

gray blocks represent exits from that floor of the mill.   Drawings are not to scale. 
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Figure 3-2 Grocery Distribution Warehouse Experiment. Dark gray circles represent 

locations of aerosol delivery nozzles.  Breaks in the perimeter indicate exits from test room.  

Positions inside this room were chosen at random prior to testing periods.  Locations of 

stacked product and shelving varied with each time period. Drawings are not to scale. 
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Figure 3-3 Flour Mill Experiment. Survival of Indianmeal moth eggs exposed to three diet 

types exposed to a 1% synergized pyrethrin plus methoprene aerosol treatment at the label 

rate for space applications. Capital letters indicate statistical differences between diet types 

and asterisks indicate statistical differences between treatments and controls.  Mean and 

standard errors were calculated using the MEANS procedure in SAS and means were 

separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level of P 

=0.05 for each treatment combination. 
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Figure 3-4 Flour Mill Experiment. Survival of Indianmeal moth eggs exposed directly to a 

1% synergized pyrethrin plus methoprene aerosol treatment at the label rate for space 

applications and reared on three diet types. Capital letters indicate statistical differences 

between diet types and lower case letters indicate statistical differences between treatments 

and controls.  Mean and standard errors were calculated using the MEANS procedure in 

SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a 

significance level of P =0.05 for each treatment combination. 
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Figure 3-5 Flour Mill Experiment. Survival of Indianmeal moth eggs exposed to three 

diet/package type combinations exposed to a 1% synergized pyrethrin plus methoprene 

aerosol treatment at the label rate for space applications. Capital letters indicate statistical 

differences between diet types and asterisks indicate statistical differences between 

treatments and controls.  Mean and standard errors were calculated using the MEANS 

procedure in SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple 

Range test at a significance level of P =0.05 for each treatment combination. 
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Figure 3-6 Flour Mill Experiment. Survival of Indianmeal moth eggs exposed directly to 

three aerosol insecticide combinations (1% synergized pyrethrin plus methoprene, 3% 

synergized pyrethrin alone, and 3% synergized pyrethrin plus methoprene) Asterisks 

indicate statistical differences among treatments and between treatments and controls. 

Mean and standard errors were calculated using the MEANS procedure in SAS and means 

were separated using Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance 

level of P =0.05 for each treatment combination. 
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Figure 3-7 Flour Mill Experiment. Survival to the adult stage for Indianmeal moth eggs 

exposed to three aerosol insecticide combinations (1% synergized pyrethrin plus 

methoprene, 3% synergized pyrethrin alone, and 3% synergized pyrethrin plus 

methoprene).  Treatments were pooled and overall means plotted. Mean and standard 

errors were calculated using the MEANS procedure in SAS and means were separated 

using Ryan-Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 for 

each treatment combination. Lower case letters indicate differences in adult emergence by 

position. 
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Figure 3-8 Grocery Distribution Warehouse Experiment. Survival of Indianmeal moth eggs 

exposed to three diet/package type combinations exposed to an aerosol methoprene 

treatment at the label rate for space applications. Asterisks indicate statistical differences 

among treatments and between treatments and controls.  Mean and standard errors were 

calculated using the MEANS procedure in SAS and means were separated using Ryan-

Einot-Gabriel-Welsch Multiple Range test at a significance level of P =0.05 for each 

treatment combination. 
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Figure 3-9 Grocery Distribution Warehouse Experiment. Blocks 3 and 4. Survival of 

Indianmeal moth eggs exposed to three treatment methods (treated diet, treated eggs, 

treated packaging exposed to a methoprene aerosol treatment at the label rate for space 

applications. Asterisks indicate statistical differences among treatments and between 

treatments and controls.  Mean and standard errors were calculated using the MEANS 

procedure in SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple 

Range test at a significance level of P = 0.05 for each treatment combination. 
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Figure 3-10 Grocery Distribution Warehouse Experiment. Blocks 5 and 6. Survival of 

Indianmeal moth eggs exposed to three treatment methods (treated diet, treated eggs, 

treated packaging exposed to a methoprene aerosol treatment at the label rate for space 

applications. Asterisks indicate statistical differences among treatments and between 

treatments and controls.  Mean and standard errors were calculated using the MEANS 

procedure in SAS and means were separated using Ryan-Einot-Gabriel-Welsch Multiple 

Range test at a significance level of P = 0.05 for each treatment combination. 
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Table 3-1 Flour Mill Experiment.  Results of analysis of variance of survival to the adult 

stage of Indianmeal moth eggs exposed to three treatment methods (treated diet, treated 

eggs, treated packaging) during a 1% synergized pyrethrin plus methoprene aerosol 

treatment at the label rate for space applications.  Treatments are labeled below.  Main 

effects that were significant at the P= 0.05 level were treatment method and diet.  There 

were also several significant main effect interactions. 

 

Effect 

Whole Plot Treatment 1% Pyrethrin and Methoprene 

Num DF Den DF F Value Pr > F 

Position (1-10 treated, 11 control) 

(sub-plot) 

9 30 1.01 0.4528 

Treatment 1(egg, pack, diet)  

(sub-sub-sub plot) 

2 849 116.73 <.0001 

Position * Treatment 1 18 849 3.19 <.0001 

Treatment 2 (unobstructed, concealed) (sub-sub plot) 1 849 0.13 0.7174 

Position * Treatment 2 9 849 0.28 0.9792 

Treatment 1 * Treatment 2 2 849 0.59 0.5557 

Position * Treatment 1 * Treatment 2 18 849 0.27 0.9990 

Diet 2 849 63.42 <.0001 

Position * Diet 18 849 0.58 0.9148 

Treatment 1 * Diet 4 849 18.74 <.0001 

Position * Treatment 1 * Diet 36 849 0.71 0.9030 

Treatment 2 * Diet 2 849 0.29 0.7472 

Position * Treatment 2 * Diet 18 849 0.27 0.9989 

Treatment 1 * Treatment 2 * Diet 4 849 0.14 0.9677 

Position * Treatment 1 * Treatment 2 * Diet 36 849 0.29 1.0000 
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Table 3-2 Flour Mill Experiment. Results of analysis of variance of survival to the adult 

stage of Indianmeal moth eggs exposed to three aerosol insecticide combinations (1% 

synergized pyrethrin plus methoprene, 3% synergized pyrethrin alone, and 3% synergized 

pyrethrin plus methoprene (at the label rate for space applications)) and reared on three 

diet types. Main effects that were significant at the P= 0.05 level were position and diet.  

There were also several significant main effect interactions. 

Effect Num 

DF 

Den DF F Value Pr > F 

Whole Plot Treatment  

(1%, 3% Pyrethrin plus Methoprene , Methoprene only) 

2 5 0.79 0.5021 

Position (1-10 treated, 11 control)  

(sub-plot) 

9 50 12.29 <.0001 

Whole Plot Treatment * Position 18 50 1.38 0.1822 

Treatment 2 (unobstructed, concealed) 

(sub-sub- plot) 

1 467 0.07 0.7967 

Whole Plot Treatment * Treatment 2 2 467 0.99 0.3730 

Position * Treatment 2 9 467 0.40 0.9333 

Whole Plot Treatment * Position * Treatment 2 18 467 0.56 0.9262 

Diet  2 467 174.67 <.0001 

Whole Plot Treatment * Diet 4 467 15.92 <.0001 

Position * Diet 18 467 4.38 <.0001 

Whole Plot Treatment * Position * Diet 36 467 1.22 0.1870 

Treatment 2* Diet 2 467 0.34 0.7138 

Whole Plot Treatment * Treatment 2* Diet 4 467 0.15 0.9608 

Position * Treatment 2 * Diet 18 467 0.43 0.9805 

Whole Plot Treatment * Position * Treatment 2 * Diet 35 467 0.68 0.9170 

Diet 2 467 174.67 <.0001 

Whole Plot Treatment * Diet 4 467 15.92 <.0001 

Position * Diet 18 467 4.38 <.0001 

Whole Plot Treatment * Position * Diet 36 467 1.22 0.1870 

Treatment 2 * Diet 2 467 0.34 0.7138 

Whole Plot Treatment * Treatment 2 * Diet 4 467 0.15 0.9608 

Position * Treatment 2 * Diet 18 467 0.43 0.9805 

Whole Plot Treatment * Position * Treatment 2* Diet 35 467 0.68 0.9170 

 

 90



 

Table 3-3 Flour Mill Experiment. Results of analysis of variance of mortality of Indianmeal 

moth eggs and larvae exposed to aerosol treatments in unobstructed and concealed 

positions. Indianmeal moth eggs were exposed to three aerosol insecticide combinations 

(1% synergized pyrethrin plus methoprene, 3% synergized pyrethrin alone, and 3% 

synergized pyrethrin plus methoprene) at the label rate for space application.  Treatments 

were pooled and overall means plotted.  

 

Effect 

Position Effect, Treated Eggs  

Num 

DF 

Den DF F Value Pr > F 

Whole Plot Treatment   

(1%, 3% Pyrethrin plus Methoprene , Methoprene only) 

2 5 0.74 0.5210 

Position (1-10 treated, 11 control)  

(sub-plot) 

10 50 23.54 <.0001 

Whole Plot Treatment * Position 20 50 1.43 0.1518 

Diet 2 556 134.31 <.0001 

Whole Plot Treatment * Diet 4 556 13.92 <.0001 

Position * Diet 20 556 11.24 <.0001 

Whole Plot Treatment * Position * Diet 40 556 1.34 0.0856 
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Table 3-4 Grocery Distribution Warehouse Experiment. Results of analysis of variance of 

mortality of Indianmeal moth eggs exposed to package materials and diet combinations 

that were exposed to aerosol methoprene treatments in unobstructed and concealed 

positions. Main effects that were significant at the P= 0.05 level were diet.  There were no 

significant main effect interactions. 

 

 

Effect Num DF Den DF F Value Pr > F

Position  

(1-3 treated, 4 control) (sub-plot) 
2 9 1.29 0.3223

Diet 2 75 40.95 <.0001

Position * Diet 4 75 0.66 0.6203

Treatment 2 (unobstructed, concealed) 

(sub-sub- plot) 
1 75 0.01 0.9392

Position * Treatment 2 2 75 0.29 0.7482

Treatment 2 * Diet 2 75 0.43 0.6539

Position * Treatment 2 * Diet 4 75 0.39 0.8152
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Table 3-5 Grocery Distribution Warehouse Experiment Results of analysis of variance of 

mortality of Indianmeal moth eggs exposed to three methods (treated diet, treated eggs, 

treated packaging) that were exposed to aerosol methoprene treatments in unobstructed 

and concealed positions. Main effects that were significant at the P= 0.05 level were diet.  

There were no significant main effect interactions all involving diet.  

 

Effect Num DF Den DF F Value Pr > F 

Position  

(1-3 treated, 4 control) (sub-plot) 
2 3 0.63 0.5899 

Treatment 1  

(unobstructed, concealed) (sub-sub- plot) 
1 94 2.46 0.1198 

Position * Treatment 1 2 94 0.97 0.3828 

Treatment 2  

(egg, pack, diet) (sub-sub-sub plot) 
2 94 2.00 0.1410 

Position * Treatment 2 4 94 2.53 0.0458 

Treatment 1 * Treatment 2 2 94 0.67 0.5162 

Position * Treatment 1 * Treatment 2       4 94 1.70 0.1575 

Diet 2 94 10.29 <.0001 

Position * Diet 4 94 1.83 0.1297 

Treatment 1 * Diet 2 94 1.21 0.3019 

Position * Treatment 1 * Diet 4 94 1.52 0.2022 

Treatment 2 * Diet 4 94 0.91 0.4628 

Position * Treatment 2 * Diet 8 94 1.53 0.1588 

Treatment 1 * Treatment 2 * Diet 4 94 1.54 0.1972 

Position*Treatment 1*Treatment 2*Diet 8 94 1.47 0.1770 
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Table 3-6 Grocery Distribution Warehouse Experiment Results of analysis of variance of 

mortality of Indianmeal moth eggs exposed to three methods (treated diet, treated eggs, 

treated packaging) that were exposed to aerosol methoprene treatments in unobstructed 

and concealed positions. Main effects that were significant at the P= 0.05 level were diet.  

There were several significant main effect interactions all involving diet.  

 

Effect Num DF Den DF F Value Pr > F 

Position  

(1-3 treated, 4 control) (sub-plot) 
2 3 1.40 0.3720 

Treatment 1  

(unobstructed, concealed) (sub-sub- plot) 
1 95 0.93 0.3381 

Position * Treatment 1 2 95 1.38 0.2557 

Treatment 2  

(egg, pack, diet) (sub-sub-sub plot) 
2 95 116.23 <.0001 

Position * Treatment 2 4 95 2.28 0.0665 

Treatment 1 * Treatment 2 2 95 0.59 0.5543 

Position * Treatment 1 * Treatment 2        4 95 0.40 0.8065 

Diet 2 95 174.19 <.0001 

Position * Diet 4 95 3.26 0.0151 

Treatment 1 * Diet 2 95 0.12 0.8828 

Position * Treatment 1 * Diet 4 95 1.84 0.1275 

Treatment 2 * Diet 4 95 36.47 <.0001 

Position * Treatment 2 * Diet 8 95 0.98 0.4539 

Treatment 1 * Treatment 2 * Diet 4 95 0.27 0.8987 

Position*Treatment 1*Treatment 2*Diet 8 95 1.42 0.1992 
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Table 3-7 Grocery Distribution Warehouse Experiment. Means and standard error 

generated using SAS for the substitution of raisins for corn muffin mix in the final two 

blocks of the experiment.  

 

Treatment Method Methoprene Treatment Diet Type Mean Std. Error (+) 

Treated Diet Control Corn muffin mix 0 0 

Treated Eggs Control Corn muffin mix 0.83 0.83 

Treated Diet Label Rate Corn muffin mix 0.417 0.417 

Treated Eggs Label Rate Corn muffin mix 1.25 0.65 

Treated Diet Control Raisins 6.67 4.01 

Treated Eggs Control Raisins 13.33 4.77 

Treated Diet Label Rate Raisins 0 0 

Treated Eggs Label Rate Raisins 10.83 2.45 
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Table 3-8 Summary of costs and risk levels for chemical treatments in Flour Mill Experiment (1% synergized pyrethrin plus 

methoprene, 3% synergized pyrethrin alone, and 3% synergized pyrethrin plus methoprene) versus untreated controls. Risk is 

presented as three thresholds; 90, 95 and 99% mortality above which risk is set equal to zero.  Costs reflect insecticides as 

explained above.  Treated eggs are compared across all treatment levels. The scenario that represents the lowest risk, lowest 

cost and highest mortality is the 1% pyrethrin plus methoprene treatment. 

 

Economic Summary        

Costs: per 10,000 ft3 3% pyrethrin only $ 5.390     

 1% pyrethrin plus methoprene $ 3.141     

 3% pyrethrin plus methoprene $ 5.851     

Summaries by Chemical Combination  

   

3% Pyrethrin Only Treatment Method- Treated Eggs 

Diet Chemical Treatment 
% Mortality 

Risk 

(90%)

Risk 

(95%)

Risk 

(99%)
Cost ($)

Protein bar Control/None 23.50% 0.6650 0.7150 0.7550 $0.00

Wheat diet Control/None 58.89% 0.3222 0.3667 0.4022 $0.00

Raisins Control/None 90.00% 0.0300 0.0600 0.0920 $0.00

Protein bar 3% Pyrethrin Only 56.05% 0.3421 0.3895 0.4295 $5.39

Wheat diet 3% Pyrethrin Only 88.75% 0.0425 0.0725 0.1045 $5.39

Raisins 3% Pyrethrin Only 95.75% 0.0050 0.0125 0.0365 $5.39

Total No treatment 57.46% 33.91% 38.06% 41.64% $0.00

 Aerosol treatment- 3% Pyrethrin  80.18% 12.99% 15.82% 19.02% $5.39

   

1% Pyrethrin Plus 

Treatment Method Chemical Treatment % Mortality Risk Risk Risk Cost ($)



Methoprene 

Diet 
(90%) (95%) (99%)

Protein bar Treated Diet Control/None 45.38% 0.4750 0.5088 0.5388 $0.00

Wheat diet Treated Diet Control/None 35.88% 0.5613 0.6000 0.6330 $0.00

Raisins Treated Diet Control/None 90.50% 0.0400 0.0650 0.0890 $0.00

Protein bar Treated Diet 1% Pyrethrin plus Methop. 98.50% 0.0063 0.0088 0.0138 $3.14

Wheat diet Treated Diet 1% Pyrethrin plus Methop. 99.81% 0.0000 0.0006 0.0016 $3.14

Raisins Treated Diet 1% Pyrethrin plus Methop. 100.00% 0.0000 0.0000 0.0000 $3.14

Protein bar Treated Eggs Control/None 26.47% 0.6403 0.6878 0.7258 $0.00

Wheat diet Treated Eggs Control/None 30.17% 0.5983 0.6483 0.6883 $0.00

Raisins Treated Eggs Control/None 85.28% 0.0760 0.1110 0.1400 $0.00

Protein bar Treated Eggs 1% Pyrethrin plus Methop. 72.00% 0.2005 0.2370 0.2714 $3.14

Wheat diet Treated Eggs 1% Pyrethrin plus Methop. 83.94% 0.1059 0.1298 0.1544 $3.14

Raisins Treated Eggs 1% Pyrethrin plus Methop. 93.24% 0.0183 0.0375 0.0616 $3.14

Protein bar Treated Packages Control/None 67.95% 0.2462 0.2821 0.3128 $0.00

Wheat diet Treated Packages Control/None 56.25% 0.3538 0.3950 0.4290 $0.00

Raisins Treated Packages Control/None 82.75% 0.1050 0.1375 0.1655 $0.00

Protein bar Treated Packages 1% Pyrethrin plus Methop. 99.24% 0.0000 0.0000 0.0060 $3.14

Wheat diet Treated Packages 1% Pyrethrin plus Methop. 100.00% 0.0000 0.0000 0.0000 $3.14

Raisins Treated Packages 1% Pyrethrin plus Methop. 99.30% 0.0006 0.0019 0.0059 $3.14

Total No treatment* 47.31% 43.82% 48.23% 51.80% $0.00

 Aerosol 1% Pyrethrin plus Methoprene* 83.06% 10.82% 13.48% 16.25% $3.14

 

* Treated Eggs only for comparison with other 

chemical treatments 
 

3% Pyrethrin plus 

Methoprene Treatment Method- Treated Eggs 
% Mortality 

Risk 

(90%)

Risk 

(95%)

Risk 

(99%)
Cost ($)
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Diet Chemical Treatment  

Protein bar Control/None 24.83% 0.6550 0.7033 0.7420 $0.00

Wheat diet Control/None 14.14% 0.7586 0.8086 0.8486 $0.00

Raisins Control/None 89.31% 0.0328 0.0603 0.0976 $0.00

Protein bar 3% Pyrethrin plus Methoprene 70.77% 0.2123 0.2498 0.2838 $5.85

Wheat diet 3% Pyrethrin plus Methoprene 70.08% 0.2233 0.2567 0.2907 $5.85

Raisins 3% Pyrethrin plus Methoprene 94.32% 0.0119 0.0254 0.0505 $5.85

Total No treatment 42.76% 48.21% 52.41% 56.27% $0.00

 Aerosol 3% Pyrethrin plus Methoprene 78.39% 14.92% 17.73% 20.83% $5.85
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Table 3-9 Grocery Distribution Warehouse Experiment. Summary of costs and risk levels for chemical treatments by 

treatment method for aerosol methoprene alone versus untreated controls. Risk is presented as three thresholds; 90, 95 and 

99% mortality above which risk is set equal to zero.  Costs reflect insecticide and carrier cost as explained above.  Treated 

eggs, treated packaging and treated diet are compared across all diets. The scenario that represents the lowest risk, lowest cost 

and highest mortality is the treated diet method for all diets. 

Economic Summary        

Costs: per 10,000 ft3 Methoprene only $ 0.461     

 Plus carrier cost $ 0.711     

Summaries by Treatment Method  

Treated Diet Chemical Treatment 
% Mortality 

Risk 

(90%)

Risk 

(95%)

Risk 

(99%)
Cost ($)

Corn Mix Control/None 100.00% 0.0000 0.0000 0.0000 $0.00

Protein Bar Control/None 21.67% 0.6833 0.7333 0.7733 $0.00

Raisins Control/None 93.33% 0.0250 0.0417 0.0617 $0.00

Wheat diet Control/None 49.58% 0.4208 0.4625 0.4958 $0.00

Corn Mix Label Methoprene 99.58% 0.0000 0.0000 0.0033 $0.71

Protein Bar Label Methoprene 96.25% 0.0208 0.0250 0.0350 $0.71

Raisins Label Methoprene 100.00% 0.0000 0.0000 0.0000 $0.71

Wheat diet Label Methoprene 0.80 0.12 0.16 0.20 $0.71

Total No treatment 66.15% 28.23% 30.94% 33.27% $0.00

 Aerosol methoprene  93.85% 3.49% 4.58% 5.83% $0.71

   

Treated Eggs Chemical Treatment 
% Mortality 

Risk 

(90%)

Risk 

(95%)

Risk 

(99%)
Cost ($)
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Corn Mix Control/None 99.17% 0.0000 0.0000 0.0067 $0.00

Protein Bar Control/None 35.83% 0.5542 0.5958 0.6325 $0.00

Raisins Control/None 88.00% 0.0600 0.0900 0.1140 $0.00

Wheat diet Control/None 57.69% 0.3423 0.3808 0.4146 $0.00

Corn Mix Label Methoprene 99.09% 0.0000 0.0000 0.0073 $0.71

Protein Bar Label Methoprene 44.79% 0.4667 0.5083 0.5433 $0.71

Raisins Label Methoprene 89.17% 0.0333 0.0708 0.1008 $0.71

Wheat diet Label Methoprene 52.21% 0.3729 0.4083 0.44 $0.71

Total No treatment 70.17% 23.91% 26.67% 29.19% $0.00

 Aerosol methoprene  72.06% 21.82% 24.69% 27.29% $0.71

   

Treated Packages Chemical Treatment 
% Mortality 

Risk 

(90%)

Risk 

(95%)

Risk 

(99%)
Cost ($)

laminate cardboard Control/None 93.75% 0.0208 0.0375 0.0575 $0.00

laminate paper Control/None 52.50% 0.3750 0.4250 0.4650 $0.00

plastic bag Control/None 67.08% 0.2292 0.2792 0.3192 $0.00

laminate cardboard Label Methoprene 99.38% 0.0000 0.0000 0.0050 $0.71

laminate paper Label Methoprene 59.38% 0.3146 0.3604 0.3971 $0.71

plastic bag Label Methoprene 93.54% 0.0208 0.0396 0.0596 $0.71

Total No treatment 71.11% 20.83% 24.72% 28.06% $0.00

 Aerosol methoprene  84.10% 11.18% 13.33% 15.39% $0.71

   

Totals for all No Treatment 69.14% 24.32% 27.44% 30.17% $0.00

 Aerosol methoprene  83.34% 12.16% 14.20% 16.17% $0.71
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Table 3-10 Overall Economic Summary of both flour mill and grocery warehouse experiments.  The highlighted line 

represents the treated egg and chemical combination that represent the lowest risk. Risk is presented as three thresholds; 90, 

95 and 99% mortality above which risk is set equal to zero.   

 

 
Overall Economic 
Summary        

Costs: per 10,000 ft3 3% pyrethrin only  $ 5.390     

 
1% pyrethrin plus 

methoprene 
 $ 3.141

   
 

 
3% pyrethrin plus 

methoprene 
 $ 5.851

   
 

 
Methoprene only plus 
carrier 

 $ 0.711
   

 

Treated Eggs  % Mortality Risk (90%) Risk (95%) Risk (99%) Cost ($) 

3% Pyrethrin Only No treatment 57.46% 0.3391 0.3806 0.4164 $0.00 

 Aerosol treatment 80.18% 0.1299 0.1582 0.1902 $5.39 
1% Pyrethrin Plus 
Methoprene 

No treatment 47.31% 0.4382 0.4823 0.5180 $0.00 

 Aerosol treatment 83.06% 0.1082 0.1348 0.1625 $3.14 
3% Pyrethrin plus 
Methoprene 

No treatment 42.76% 0.4821 0.5241 0.5627 $0.00 

 Aerosol  treatment 78.39% 0.1492 0.1773 0.2083 $5.85 

Methoprene Only No treatment 70.17% 0.2391 0.2667 0.2919 $0.00 

 Aerosol  treatment 72.06% 0.2182 0.2469 0.2729 $0.71 
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CHAPTER 4 - Modification of a Population Growth Model 

to Simulate Response in Indianmeal moth (Plodia 

interpunctella Hübner) to Methoprene Alone and in 

Combination With Pyrethrin and Esfenvalerate 

Abstract 

Management strategies for urban and stored product pests are chosen for a variety of 

attributes, including cost, efficacy and human safety. As regulations and restriction on the use of 

insecticides continue to increase, low-impact alternatives to traditional neurotoxins such as insect 

growth regulators may be valuable management options.  As these products become available, 

there is a need to determine efficacy in regard to survival after exposure, timing of application, 

and effect on population dynamics, so that overall value of these chemicals can be determined.  

This study was done to predict the effect of methoprene, and two conventional insecticides 

combined with methoprene, on survival of eggs and wandering larvae to the adult stage. Effects 

on populations were simulated using two (wheat-based and raisin diet) modified temperature-

based growth models for the Indianmeal moth. Each insecticide combination was compared at 

several temperatures under four beginning population levels which differed with diet. Population 

dynamics varied greatly between the two diets and with increasing temperature. Simulations 

were also conducted to compare timing and frequency of insecticide treatments for control of the 

Indianmeal moth, which also were largely different between the two diets. This study also 

demonstrated that population growth happens so rapidly with this pest that numerous sequential 

insecticide treatments may be needed to reduce populations, even at temperatures that are not 

optimal for Indianmeal moth development. 

Keywords: temperature, methoprene, Indianmeal moth, development, population 

dynamics 

 

 



Introduction 

The Indianmeal moth (Plodia interpunctella Hübner) is a cosmopolitan pest of many 

different commodities, including but not limited to nuts, whole grains, dried fruits, chocolate, 

beans, flours and meals (Tzanakakis 1959, Simmons et al. 1975, Rees 2004, Mohandas et al. 

2007). In addition to the damage caused by Indianmeal moth infestations in raw commodities, it 

is also a major pest throughout the food manufacturing process (Doud and Phillips 2000, 

Johnson et al. 2003, Mahroof and Subramanyam 2006). While the Indianmeal moth can be found 

on numerous food products, development time varies widely with diet (Johnson et al. 1992, 

Sedlacek 1996). The number of days required for Indianmeal moth development is also 

influenced by a number of other factors, especially temperature (Howe 1965, Cline 1970), which 

can heavily influence the number of eggs laid by Indianmeal moth females and the rate of growth 

in the larval instars (Tzanakakis 1959, Howe 1965, Mohandass et al. 2007).  The Indianmeal 

moth’s short life cycle, which can be as short as 19 days (Jenson, unpublished data), combined 

with the high reproductive capacity of 100-300 eggs per female (USDA, 1986), give it the 

potential for significant product damage in and around food storage facilities. For these reasons, 

there is a need to assess how different insecticides and timing of insecticides affect population 

number and composition.   

There has long been an interest in predicting population changes of pest species in 

response to abiotic and biotic factors. In 1967, one of the first simulation studies was conducted 

using a computer and a simple model for population development of the red flour beetle (Throne 

1995). Since that time, many models have been developed to simulate population growth and 

decline in response to management practices, especially for stored product pests.  Models for the 

almond moth (Cadra cautella (Walker)), the predator Lyctocoris campestris (F.), the flat grain 

beetle (Cryptolestes pusillus (Schonherr)), sawtoothed grain beetle (Oryzaephilis surinamensis 

(L.)) and the red flour beetle (Tribolium castaneum (Herbst)) have been developed on 

commodities (Throne 1995).  There have also been a number of attempts to modify these models 

for management tools such as fumigation, biological control and grain protectants (Throne 

1995). Many factors influence development of stored product pests; temperature, relative 

humidity and diet are all important factors to be included in any of these models (Throne 1998).  

Once a model is developed to predict growth rates on one type of diet, it can be modified to show 

rates of growth after chemical application or other types of diets (Throne 1995).   
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The period of time required for Indianmeal moth development from egg to adult is 

influenced by diet (Johnson et al. 1992), relative humidity (Bell 1975), and temperature (Cline 

1970).  Temperature can heavily influence number of eggs laid as well as the rate of 

development in the presence of other satisfactory conditions (Tzanakakis, 1959, Arbogast 2007a, 

Mohandass et al. 2007).  Short exposures to low temperatures (2.4°C) in the egg stage have been 

shown to decrease survival (Cline 1970), while rearing insects at high temperatures (35°C) has 

been shown to decrease the ability to reproduce (Johnson et al. 1992).  Bell (1975) reported the 

range of suitable temperatures to be between 15 and 30°C for development and reproduction of 

the Indianmeal moth. Johnson et al.(1995) demonstrated that the temperature range for 

Indianmeal moth development was 13-14°C to slightly less than 34°C. There is a wide range of 

data supporting different biological parameters for Indianmeal moth development (Mohandass 

2007). Temperature becomes especially important when our primary insecticide, methoprene, is 

applied in combination with a chemical that has reduced efficacy with varying temperatures 

(Arthur et al. 2004).  Development is also affected by diet and natural variation of different moth 

populations.  Diet type and quality are also important factors in the developmental time of 

Indianmeal moth and time from egg to adult can vary substantially with diet type (Mbata and 

Osuji 1983, Subramanyam and Hagstrum 1993, Johnson et al .1995). 

Jenson (dissertation chapters 1 and 2) has also shown decreased survival to the adult 

stage when Indianmeal moths are exposed to methoprene, both as a surface treatment and as an 

aerosol application.  These studies (Jenson, dissertation chapters 2 and 3) demonstrated 

effectiveness of methoprene and methoprene in combination with two conventional insecticides 

(esfenvalerate and synergized pyrethrin) when insects were directly exposed, as well as when 

they were exposed to package materials treated with these chemicals. Surface and aerosol 

treatments of methoprene have different survivorship patterns, as do different insecticide 

combinations; therefore, predictions of overall population change depend on temperature, 

commodity type, insecticide type, combination of insecticides, method of insecticide application 

and timing of application. 

The specific objective of this study was to predict response of populations of Indianmeal 

moth as a result of insecticide applications. For this study, we predicted Indianmeal moth 

population changes in response to methoprene and to combination treatments with esfenvalerate 

and synergized pyrethrin at different temperatures by using a computer-based growth model. 
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This model was developed for Indianmeal moth on whole corn modified for wheat diet and 

raisins, where one of the primary biological parameters is temperature.  We also predicted how 

the effect of the two different diets would alter survivorship to the adult stage, as well as, timing 

and frequency of insecticide treatment. Indianmeal moth populations can be substantially 

reduced with methoprene when used as surface and aerosol treatments, and simulation of that 

response can be a tool to determine the most efficient timing of methoprene application for 

control of Indianmeal moth. 

Materials and Methods 

Model Development for Growth on Wheat Diet 

The data set was obtained from Jenson (Chapter 1).  A wheat diet was chosen for this 

study because it represents a complete diet on which survivorship to the adult stage is high (near 

100% in species reared in the lab).  The enriched diet was composed of cracked wheat and shorts 

(4.4 kg), brewer’s yeast (22g), sorbic and benzoic acid (9.5g each), honey (240ml), glycerin 

(240ml) and water (120ml).  This diet is also representative of a finished stored product that has 

multiple components (versus a commodity) and some processing or manufacturing. Indianmeal 

moth eggs used in this study were obtained from a laboratory colony established in June 1988 

from individuals collected in Riley County, KS, U.S.A. This colony has been maintained on the 

same diet described above. The colony from which eggs were obtained were maintained inside 

environmental growth chambers (Forma-Scientific, Thermo Electron Corporation, Waltham, 

MA) at 27±1°C, approximately 50% relative humidity, and darkness (L:D = 0:24 hrs) at the 

United States Department of Agriculture Agricultural Research Service (USDA-ARS) facility in 

Manhattan, KS3.  Temperature and relative humidity in growth chambers were monitored using 

digital thermometers and recorded by HOBO data loggers (Onset Computer Corporation, 

Bourne, MA). Humidity chambers were constructed to ensure consistent relative humidities of 

57% using acrylic boxes containing a saturated solution of distilled water and NaBr (Greenspan 

1977) and described by Arthur (2000).   

                                                 
3 Kansas State University Museum of Entomological and Prairie Arthropod Research under Lot Number 

208. 
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The model used for these simulations is similar to the Cadra cautella (Walker) (Almond 

moth) model developed by Throne et al. (1998) with components being the time required for the 

complete life cycle, male longevity, female longevity, and fecundity.  Simulations were done 

using a model for Indianmeal moth originally developed on corn (Throne, unpublished). In the 

corn model, development time from egg to adult fit a quadratic equation using data from 

Arbogast’s (2007b) study for temperatures 20-35°C, extrapolated to 10-40°C. While there is 

some evidence that relative humidity and sex affect development rate, they are not included in 

this equation. For our model to simulate survivorship on wheat diet, data were fit to a linear 

equation (y=-66.242-1.1513x (R2= 0.94)) based on data generated by averaging control 

treatments for eggs in experiments reported in Jenson (dissertation chapter 1) (Table 4-1). Egg to 

adult development was fit to a linear equation and extrapolated to 10-35°C.  Survivorship did not 

differ with temperature (it was about 88% across all temperatures); this development is similar to 

that found by Johnson et al. (1992). Above 32°C, we used a linear regression to predict that no 

survivorship will occur at temperatures approaching 40°C; below 20°C, survivorship was also set 

at zero. K values (thermal constants) generated from the Jenson data set were too small for the 

model because individuals emerged within a 2-3 day time span (insects are very uniform in a 

carefully controlled colony situation).  Therefore, we used K values from the Arbogast (2007b) 

model.  

There are no published data regarding adult male longevity.  However, Brower (1976) 

showed no difference in longevity of males and females at 27°C and at 60% relative humidity.  

Although not compared statistically, longevity of males and females did not appear to differ at 

28°C and 65% relative humidity in a study by Huang and Subramanyam (2003). For the 

purposes of this model, male longevity data from Arbogast (unpublished) was used so that a 

linear regression equation was fit from 20-35°C with 75% relative humidity; extrapolated from 

10-40°C.  Above 40°C, the same longevity information was used as at 40°C; below 10°C, 

longevity was set to 20 days. For female longevity, the adult females were divided into two 

groups based on data from Arbogast (unpublished data). Young females were classified as young 

until they had oviposited 75% of their eggs.  Thereafter, they were entered into a group 

designated as “old” females. Standard deviations needed to calculate K values for longevity were 

estimated using the method of Shaffer (1983).  The model includes no effect of relative humidity 

on female longevity.  Longevity was the same for both groups of females as male longevity at 
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and above 40°C.  For young females below 10°C, longevity was set to 15 days; for old females it 

was set to 20 days. 

Fecundity data in the model were from an unpublished study on fecundity by Arbogast, 

and data were extrapolated to 15°C based on Mbata’s study (1985) on factors affecting 

oviposition in Indianmeal moth. Effects of relative humidity on fecundity were simulated also 

based on Mbata’s study (1985) using linear regression to reduce fecundity when relative 

humidity was below 75%.  The accuracy of this model’s components was checked using a series 

of manual simulations in lieu of a formal validation on wheat diet.  Beginning with one of each 

life stage, time to emergence or expiration was noted and all components appear to match 

expected values at temperatures from 5 to 45°C at 5 degree intervals. All simulations run for the 

purposes of this study were run at one of several constant temperatures with all relative 

humidities fixed to 57%.  

Model Development for Growth on Raisins  

Survivorship on raisins was calculated based on means and standard errors of control 

treatments in Jenson (dissertation, chapter 3).  Data for the adjustment of the model for raisins 

was based on a cumulative mortality and days until adult emergence from several studies 

conducted to determine effects of aerosol methoprene treatment with Indianmeal moth in various 

situations, including direct exposure to the insecticide. Eggs used in those experiments were 

derived from the same colony as described above.  Mean survival from experiments in Chapter 3 

excluded treated package materials (to avoid interference with development rate) and used 

treated diet and treated egg controls with raisins as the diet; they were 11.00 + 10.27% 

(approximately 1.7 times the growth rate on the original model for corn.). For development time 

(number of days) on raisins, from the data in Chapter 3 there are no standard deviations, just a 

range from 58 to 61 days when treatments were examined and data were collected for total 

number of emerged adults. Initially, treatments were counted on day 46; then we extended 

incubation time to approximately 60 days because data from Johnson (1992) showed overall 

adult emergence was spread out for Indianmeal moth reared on raisins. 

Development of the raisin model is more similar to the original model (Throne, 

unpublished) for Indianmeal moth development on corn than that of the wheat diet model 

described above. Survivorship was set to 11% from 20-32°C and with no survivorship below 
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20°C and above 40°C (above 32°C a linear regression was used to predict no survivorship at 

40°C, and survivorship at 20°C and below was set to zero).  Development time from egg to adult 

was fit to a quadratic equation (y = 882.6-57.464x +1.0018x2, R2= 0.99) extrapolated from 10-

35°C, based on the original model’s developmental rate adjusted for days to adult emergence 

observed on raisins (Table 4-2).  Adult longevity and fecundity were calculated by the model in 

the same way as described for the wheat diet. Accuracy of this model’s components was checked 

using a series of manual simulations instead of actual validation data on raisins.  Beginning with 

one egg, one young female, one young male and one old female, time to emergence or expiration 

was noted and all components appear to match expected values at temperatures from 5-45°C at 5 

degree intervals. All simulations in this study were done at one of several constant temperatures 

with all relative humidities fixed to 57%.  

Temperatures simulated for both diets were 21, 24, 27, 30, 32, and 35°C and were chosen 

to represent a range of temperatures that may be encountered in warehouse, transportation, or 

food manufacturing facilities. Simulations were run at these temperatures for both diets with 

different beginning populations. Data points for curves represent total population (adults and 

immatures) on that day of simulation. It is important to note that aside from the biological 

parameters placed on the Indianmeal moth populations, and the occurrence of insecticide 

treatment events, there are no other limiting factors on the populations.  This model does not 

provide for the limitation of population growth based on amount or quality of food source 

(carrying capacity), space constraints, or multiple diet types present for individuals to access.   

Survivorship Data for Exposure to Insecticide Treatments 

Because the adjustment for survivorship in the model must be applied to all immatures 

rather than separate eggs and larval stages, based on the outcomes of previous experiments 

(Jenson, unpublished, see Chapters 1 through 3) survivorship information for each insecticide 

treatment is based on data for eggs. Data are available for survival of eggs to the adult stage for 

all treatment types. Adjustment of survivorship was applied only to immatures because there are 

no data to support the assertion that methoprene kills adult Lepidoptera. Mortality for each 

insecticide was calculated using the label rate for surface or aerosol application as this is the 

most likely scenario for use in field situations.  
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Mortality was simulated to occur at noon on the day of insecticide treatment for all 

immatures that would be in that stage at that time. While methoprene extends the larval period in 

Indianmeal moth, these individuals will most likely not reach the adult stage.  Because the goal 

of this model is to determine effect of treatment combinations on the overall survival of moths to 

the adult stage, mortality occurring immediately removes these insects from the pool that may 

become mature and reproduce. Also, although larval data were not used in developing these 

scenarios, there is evidence that with increasing exposure interval, there is increased mortality 

for fifth instars; so the possibility that insects may come in contact with the chemical after the 

treatment interval makes this a reasonable way to account for survivorship.  The third factor in 

determining survivorship for each chemical treatment was that only information for insects 

reared on wheat diet were used for the wheat model, and insects reared on raisins were used for 

the raisin model. While insecticide treatments chosen may also reduce adult survival, we have no 

data to support inclusion of that mortality into the model. 

Four insecticide treatments were selected for simulations based on the experiments in 

Chapters 1, 2 and 3. These were methoprene as a surface treatment, methoprene as an aerosol 

treatment, methoprene and esfenvalerate applied together as an aerosol, and methoprene and 1% 

synergized pyrethrins applied together as an aerosol. Because there is no interaction between 

temperature and methoprene (Jenson, unpublished) the survivorship value of methoprene alone 

as a surface treatment applied at the label rate is 45.07%. This was calculated based on 

experiments from Chapter 1 and included survival across all surface types when Indianmeal 

moth eggs were exposed to the label rate. The survivorship value calculated for methoprene at 

the label rate delivered as an aerosol was based on data from Chapter 3 in which we had a 

methoprene-only aerosol treatment.  The mean survivorship averaged across all exposure types 

was 30.99%. Values for the aerosol insecticide treatment combination of methoprene and 

esfenvalerate were calculated from egg exposure data in Chapter 2, for which both chemicals 

were delivered at the label rate and were determined to be 17.67% survival. The final insecticide 

combination used for these simulations was the aerosol treatment of methoprene and 1% 

synergized pyrethrins (both at the label rate for aerosol application) from data in Chapter 3. The 

survivorship value of these treatments is 5.37%, the lowest survivorship used in the simulations. 

Simulations were run at three temperatures (24, 30 and 35°C) for insecticide treatment scenarios, 

with a beginning population of 100 eggs and no adult moths. 

 109



Timing of Insecticide Applications 

In addition to mortality, timing and frequency of insecticide applications have a large 

impact on population levels.  We examined three one-time applications of each insecticide (30, 

60 and 90 days) from the first day of the simulations (with a beginning population of 100 eggs 

and no adult moths) at one temperature for wheat diet (24°C) and three temperatures for the 

raisin diet (24, 30 and 35°C). We also simulated monthly and bi-weekly recurring insecticide 

treatments for both diets and at three temperatures (24, 30 and 35°C).  Monthly and bi-weekly 

treatments were based on current industry practices.  

Results 

Development on Wheat Diet and Raisins at Several Temperatures 

Simulations of population growth for five scenarios (different beginning numbers of 

individuals) on the wheat diet for each of six constant temperatures (21, 24, 27, 30, 32, and 

35°C) are shown in Figures 4-3 through 4-8. These simulations were run from day 1 to day 180 

and used a fixed relative humidity (57%). Scenarios were: beginning with a single egg; one 

young female; one old female; ten young females; and 10 old females.  When ten young females 

were used, this caused the populations to begin and end at the highest levels compared to the 

other scenarios.  As temperature increased from 21 to 32°C, populations became increasingly 

larger, while at 35°C populations were the smallest.  All scenarios began with slightly different 

numbers of individuals, but they followed the same trends as populations increased. Results are 

displayed on a log scale because of rapid population growth, even when simulations were begun 

using a single individual.  

Simulated population development on a raisin diet using four population growth 

scenarios at six constant temperatures (21, 24, 27, 30, 32, and 35°C) and 57% relative humidity 

is shown in Figures 4-9 through 4-14. The four population growth scenarios simulated were: 

beginning with one hundred eggs; one hundred young females; one hundred old females; and one 

hundred of each young and old females.  Simulations were conducted over 180 days and figures 

were labeled using the log scale for comparison with the wheat diet.  Growth curves followed 

approximately the same trend for all temperatures and, again, 35°C had the lowest rate of 

population growth. 
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Response of Populations Following Exposure to Insecticide Treatments with Different 

Timing and Frequency of Applications 

One-time applications of insecticides for wheat diet were simulated beginning with one 

hundred eggs on day one and run for 180 days on only one temperature (24°C).  Using only one 

temperature was adequate to describe the small effect produced by any of the insecticide 

treatments (applied only one time). Even the methoprene plus 1% pyrethrin with a survivorship 

of 5% would result in extensive development of Indianmeal moth populations. Figures 4-15, 4-

16, and 4-17 show the overall population effect when each insecticide is applied at 30, 60 and 90 

days, respectively, and Figures 4-18 through 4-20 show a more detailed view of population 

reductions in response to each of these insecticide treatment scenarios.   

Figures 4-21 through 4-29 display the effects of one-time applications of insecticide 

treatments on population development of Indianmeal moths on raisins.  Simulations were run 

beginning with 100 eggs on day one and run for 180 days, with single insecticide applications at 

30, 60 and 90 days shown in separate figures. Unlike simulations on the wheat diet, temperatures 

of 24, 30 and 35°C were used. Single applications at each of these periods at 24 and 30°C greatly 

reduced populations, but not enough to eliminate the entire population.  In contrast, at 35°C the 

model simulations show a predicted decline in population levels (Figures 4-23, 4-26, and 4-29).  

Predicted population responses to monthly and bi-weekly treatments of each insecticide 

were simulated at 24, 30 and 35°C. While all insecticide treatments reduced total population at 

the end of 180 days, the populations on wheat showed a continual population increase (Figures 

4-30 to 4-32). Predicted population responses were lower on raisins (Figures 4-33 to 4-35).  

Surface treatments of methoprene, as well as methoprene aerosol treatments and esfenvalerate 

combination treatments, significantly reduced populations on raisins; but at all three 

temperatures aerosol combination treatments with 1% pyrethrin done monthly nearly eliminated 

populations. Bi-weekly treatments with surface and aerosol treatments on wheat followed the 

same population trend as the monthly treatments (Fig. 4-36 to 4-38), but treatments combinations 

of methoprene with esfenvalerate and methoprene with pyrethrin significantly reduced 

populations, and even kept populations to near zero at 35°C (Fig. 4-38).  Similarly, for insects on 

raisins exposed to bi-weekly insecticide treatments, populations were reduced to virtually zero in 

the first three biweekly treatments (Figures 4-39 to 4-41). 
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Partial Budget Analysis 

Using chemical cost information calculated per 929m2 (10,000 ft2) for surface application 

and 283.7 m3 (10,000 ft3) for aerosol applications, we conducted a partial budget analysis to 

compare costs of the four insecticide treatments (surface treatment with methoprene, aerosol 

treatment with methoprene, methoprene plus esfenvalerate, and methoprene plus 1% pyrethrin) 

with the simulated mortality at each diet (100% survivorship, wheat diet survivorship and raisin 

survivorship).  Chemical and carrier oil costs (for aerosol treatments) were calculated based on 

current industry prices.  Carrier oil costs fluctuate with the global petroleum market, but for the 

purposes of this analysis they were fixed to $0.83 per L ($3.15 per gallon) or $0.0008 per ml. 

Economic risk was calculated at three levels (90, 95, and 99%) as deviations below the target 

goal. In the case of these three experiments, time and equipment cost are fixed and the only 

variable cost is the cost of the chemical.  Risk, in this case, is the inverse of mortality up to the 

mortality target, at which it is set to zero.  Therefore, the downside risk is mortality below the 

target level. Results are displayed in Table 5-3. Results show that for Indianmeal moth on the 

raisin diet, a less expensive control strategy such as aerosol methoprene alone may be used for 

population suppression, compared with the wheat diet where the most aggressive (and 

expensive) treatment must be used (methoprene plus 1% pyrethrin). 

 

Discussion 

Methoprene incorporated into food media has been shown to be highly effective in 

reducing survival of Indianmeal moth (Strong and Diekman 1973, McGregor and Kramer 1975, 

Loschiavo 1976, Firstenberg and Silhacek 1976) to the adult stage.  Even at very low doses of 2-

5 ppm, survival to the adult stage was greatly diminished (McGregor and Kramer 1975, 

Loschiavo 1976, Fajardo and Morallo-Rejesus 1979). Jenson (unpublished) showed that 

methoprene can also be an effective management strategy for Indianmeal moth when applied to 

eggs and wandering larvae directly, both on diet and on packaging materials, as an aerosol.  

Management is especially effective in combination with conventional insecticides, although 

simulations show little population decrease in response to these chemicals without the presence 

of other limiting factors on wheat diet.  Survivorship values determining response following 

insecticide treatments were conservatively calculated to include only mortality to immatures.  
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This model assumes that adults were not affected by the insecticide treatment, which is another 

factor leading to higher populations than one might expect in a food warehouse or grain bin.  

Indianmeal moth population growth in response to raisin and wheat diets were very 

different, as would be expected with such a large differences in mean survivorship for each diet. 

Differences in simulation at different temperatures would also be expected given that 

survivorship was modeled in wheat to follow a linear regression, while in raisins the model was 

developed to fit a quadratic equation. The wheat diet is an example of a “worst-case scenario”; it 

is a product that can support rapid population growth. Populations on the wheat diet were 

predicted to grow so rapidly that even with an insecticide treatment that produced 94% mortality, 

population levels rebounded to pre-treatment levels within a few days.  Aside from the biological 

parameters (temperature-dependent development time, survivorship and fecundity) placed on the 

Indianmeal moth populations and the occurrence of insecticide treatment events, this model does 

not include other limiting factors such as amount or availability of a food source. This model 

assumes that all food present is accessible and present in sufficient enough supply to support the 

extremely high population numbers that we are generating in our simulations. Despite the 

simulation of these “worst-case scenario” conditions, populations of Indianmeal moth can grow 

rapidly given their high reproductive capacity. Therefore, management of the Indianmeal moth in 

any area containing products that contained wheat diet would be crucial to avoid devastating 

product loss.  

With their high reproductive capacity, populations on raisins were also able to reach high 

levels in less than six months. This is remarkable given that Indianmeal moth typically have low 

survival and long development times on this commodity (Johnson et al. 1995).  Raisins were 

chosen for this study as a contrast to wheat diet because dried fruit products can be infested by 

Indianmeal moth and significant damage can occur (Johnson and Vail 1989, Johnson et al. 

2002). Also, there is a critical need to replace the fumigant methyl bromide, which has been 

relied upon heavily for the dried fruit and nut industries (Johnson and Vail 1989, Hilton and 

Banks 1997, Johnson et al. 2002). Aerosol applications of methoprene, as demonstrated by our 

simulations, can be a viable alternative, especially when used in combination with conventional 

insecticides to reduce Indianmeal moth populations on dried fruit.  

There are unique challenges to working in a finished stored product or warehouse 

situation.  In a food warehouse or manufacturing facility situation, temperatures typically do not 

 113



fluctuate day-to-day, but they do follow broad seasonal patterns. Temperatures during the cooler 

months may not be sufficient to eliminate populations (Kaliyan et al. 2007a;b, Johnson 2007), 

especially in climate-controlled facilities that allow population levels to remain high throughout 

the year.  Although this model does not account for movement of individuals in or out of 

populations, sampling and monitoring can be used to estimate seasonal population fluctuations 

and pinpoint sources of infestation in food processing and manufacturing situations (Doud and 

Phillips 2002, Arbogast et al. 2005). There are also constraints on chemicals that may be applied 

and on the timing of those applications (Arthur 2008), although insecticide treatments are not the 

only control strategies that can be effective alternative for the use of methyl bromide for 

management of Indianmeal moth.  Heat (Roesli et al. 2003, Mahroof and Subramanyam 2006), 

biological agents such as granulosis virus (Vail et al. 1991, Bjornstad et al. 1998), and low-

temperature aeration treatments (Mason et al. 1997, Kaliyan et al. 2007b) have all been modeled 

using similar biological parameters as we used in our simulations.  Other management options 

can be highly effective in controlling this pest, and can be used in commercial facilities such as 

good sanitation practices (Fields and White 2002) and insect-resistant packaging (Mullen 1994).  

While results of our simulation study show that contact insecticides or insect growth regulators 

can be used for population suppression of the Indianmeal moth, frequency of insecticide 

applications may be more critical than the timing of treatments at which the insecticide is 

applied.  This is especially true when populations are large on a commodity with high survival.  

Simulations of population dynamics can be an important and useful tool when coupled with other 

management strategies as part of an overall integrated pest management program.  Sampling for 

insects may be an important part of the management strategy, in that, along with population 

modeling, may be an early indicator of infestation, so that chemical applications could be made 

less frequently and in a timely manner. 
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Figures and Tables 

 

Figure 4-1 Five population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for wheat diet. Scenarios were; beginning with a single egg, one young female, one 

old female, ten young females and 10 old females.  The Y axis is labeled in log scale 

(common) due to the rapid growth at all temperatures. Tick marks on the X axis represent 

30 days.  Data points are for total population at that day of the simulation.  
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Figure 4-2 Five population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 24°C with 57% relative humidity with the model 

modified for wheat diet. Scenarios were; beginning with a single egg, one young female, one 

old female, ten young females and 10 old females.  The Y axis is labeled in log scale 

(common) due to the rapid growth at all temperatures. Tick marks on the X axis represent 

30 days.  Data points are for total population at that day of the simulation. 
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Figure 4-3 Five population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 27°C with 57% relative humidity with the model 

modified for wheat diet. Scenarios were; beginning with a single egg, one young female, one 

old female, ten young females and 10 old females.  The Y axis is labeled in log scale 

(common) due to the rapid growth at all temperatures. Tick marks on the X axis represent 

30 days.  Data points are for total population at that day of the simulation. 
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Figure 4-4 Five population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 30°C with 57% relative humidity with the model 

modified for wheat diet. Scenarios were; beginning with a single egg, one young female, one 

old female, ten young females and 10 old females.  The Y axis is labeled in log scale 

(common) due to the rapid growth at all temperatures. Tick marks on the X axis represent 

30 days.  Data points are for total population at that day of the simulation. 
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Figure 4-5 Five population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 32°C with 57% relative humidity with the model 

modified for wheat diet. Scenarios were; beginning with a single egg, one young female, one 

old female, ten young females and 10 old females.  The Y axis is labeled in log scale 

(common) due to the rapid growth at all temperatures. Tick marks on the X axis represent 

30 days.  Data points are for total population at that day of the simulation. 
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Figure 4-6 Five population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 35°C with 57% relative humidity with the model 

modified for wheat diet. Scenarios were; beginning with a single egg, one young female, one 

old female, ten young females and 10 old females.  The Y axis is labeled in log scale 

(common) due to the rapid growth at all temperatures. Tick marks on the X axis represent 

30 days.  Data points are for total population at that day of the simulation. 
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Figure 4-7 Four population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for raisins. Scenarios were; beginning with one hundred eggs, one hundred young 

females, one hundred old females, and one hundred of each young and old females.  

axis is labeled in log scale (common) for comparison with simulations on the wheat diet and 

due to the rapid growth at all temperatures. Tick marks on the X axis repre

The Y 

sent 30 days.  

Data points are for total population at that day of the simulation. 
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Figure 4-8 Four population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for raisins. Scenarios were; beginning with one hundred eggs, one hundred young 

females, one hundred old females, and one hundred of each young and old females.  The Y 

axis is labeled in log scale (common) for comparison with simulations on the wheat diet and 

due to the rapid growth at all temperatures. Tick marks on the X axis represent 30 days.  

Data points are for total population at that day of the simulation. 
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Figure 4-9 Four population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for raisins. Scenarios were; beginning with one hundred eggs, one hundred young 

females, one hundred old females, and one hundred of each young and old females.  The Y 

axis is labeled in log scale (common) for comparison with simulations on the wheat diet and 

due to the rapid growth at all temperatures. Tick marks on the X axis represent 30 days.  

Data points are for total population at that day of the simulation. 
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Figure 4-10 Four population growth scenarios (beginning on day 1 of simulation) over 180

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for raisins. Scenarios were; beginning with one hundred eggs, one hundred young 

females, one hundred old females, and one hundred of each young and old females.  The Y 

axis is labeled in log scale (common) for comparison with simulations on the wheat diet and 

due to the rapid growth at all temperatures. Tick marks on the X axis represent 30 days.  

Data points are for total population at that day of the simulation. 
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Figure 4-11 Four population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for raisins. Scenarios were; beginning with one hundred eggs, one hundred young 

females, one hundred old females, and one hundred of each young and old females.  The Y 

axis is labeled in log scale (common) for comparison with simulations on the wheat diet and 

due to the rapid growth at all temperatures. Tick marks on the X axis represent 30 days.  

Data points are for total population at that day of the simulation. 
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Figure 4-12  Four population growth scenarios (beginning on day 1 of simulation) over 180 

days at a constant temperature of 21°C with 57% relative humidity with the model 

modified for raisins. Scenarios were; beginning with one hundred eggs, one hundred young 

females, one hundred old females, and one hundred of each young and old females.  The Y 

axis is labeled in log scale (common) for comparison with simulations on the wheat diet and 

due to the rapid growth at all temperatures. Tick marks on the X axis represent 30 days.  

Data points are for total population at that day of the simulation. 
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Figure 4-13 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on wheat diet.  One hundred eggs were present beginning on

of simulation and simulations ran over 180 days at a constant temperature of 24°C with 

57% relative humidity. Insecticide treatment was applied at day 30.  
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Figure 4-14 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on wheat diet.  One hundred eggs were present beginning on day 1 

of simulation and simulations ran over 180 days at a constant temperature of 24°C with 

57% relative humidity. Insecticide treatment was applied at day 60. 
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Figure 4-15 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on wheat diet.  One hundred eggs were present beginning on day 1 

of simulation and simulations ran over 180 days at a constant temperature of 24°C with 

57% relative humidity. Insecticide treatment was applied at day 90. 
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Figure 4-16 A closer examination of the effect of a one-time application of each in

treatment on Indianmeal moth living on wheat diet.  One hundred eggs were present 

beginning on day 1 of simulation and simulations ran over 60 days at a constant 

temperature of 24°C with 57% relative humidity. Insecticide treatme

secticide 

nt was applied at day 

30. 
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Figure 4-17 A closer examination of the effect of a one-time application of each insecticide 

treatment on Indianmeal moth living on wheat diet.  One hundred eggs were present 

beginning on day 1 of simulation and simulations ran over 90 days at a constant 

temperature of 24°C with 57% relative humidity. Insecticide treatment was applied at day 

60. 
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Figure 4-18 A closer examination of the effect of a one-time application of each insecticide 

treatment on Indianmeal moth living on wheat diet.  One hundred eggs were present 

beginning on day 1 of simulation and simulations ran over 120 days at a constant

temperature of 24°C with 57% relative humidity. Insecticide treatment was applied at day 

90. 
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Figure 4-19 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 

simulation and simulations ran over 180 days at a constant temperature of 24°C w

relative humidity. Insecticide treatment was applied at day 30. 
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Figure 4-20 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 30°C with 57% 

relative humidity. Insecticide treatment was applied at day 30. 
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Figure 4-21 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 35°C with 57% 

relative humidity. Insecticide treatment was applied at day 30. 
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Figure 4-22 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 24°C with 57% 

relative humidity. Insecticide treatment was applied at day 60. 
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Figure 4-23 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 30°C with 57% 

relative humidity. Insecticide treatment was applied at day 60. 
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Figure 4-24 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 35°C with 57% 

relative humidity. Insecticide treatment was applied at day 60. 
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Figure 4-25 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 24°C with 57% 

relative humidity. Insecticide treatment was applied at day 90. 
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Figure 4-26 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 30°C with 57% 

relative humidity. Insecticide treatment was applied at day 90. 
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Figure 4-27 The effect of a one-time application of each insecticide treatment on 

Indianmeal moth living on raisins.  One hundred eggs were present beginning on day 1 of 

simulation and simulations ran over 180 days at a constant temperature of 35°C with 57% 

relative humidity. Insecticide treatment was applied at day 90.  
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Figure 4-28 The effect of a multiple applications on Indianmeal moth populations

wheat diet.  One hundred eggs were present beginning on day 1 of simulation and 

simulations ran over 180 days at a constant temperature of 24°C with 57% relative 

humidity. Insecticide treatment was applied for the first time at 

 living on 

day 30 and at 30 day 

interva r the remainder of the simulation. Multiple treatments of each insecticide plus a 

control are shown. 
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Figure 4-29 The effect of a multiple applications on Indianmeal moth populations living on 

wheat diet.  One hundred eggs were present beginning on day 1 of simulation and 

simulations ran over 180 days at a constant temperature of 30°C with 57% relative 

humidity. Insecticide treatment was applied for the first time at day 30 and at 30 day 

intervals for the remainder of the simulation. Multiple treatments of each insecticide plus a 

control are shown. 

 

Five Insecticide Treatments Occuring Every 30 days
 with one Population Growth Scenario at 30°C

for Indianmeal Moth on Wheat Diet

Days (ticks are thirty day intervals)

T
ot

al
 n

um
be

r 
of

 in
se

ct
s

(lo
g 

sc
al

e)

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

1e+14

1e+15

No Treatment
Surface Treatment Methoprene
Aerosol Treatment Methoprene
Aerosol Methoprene plus Esfenvalerate
Aerosol Methoprene plus 1% Pyrethrin

654321

Five Insecticide Treatments Occuring Every 30 days
 with one Population Growth Scenario at 30°C

for Indianmeal Moth on Wheat Diet

Days (ticks are thirty day intervals)

T
ot

al
 n

um
be

r 
of

 in
se

ct
s

(lo
g 

sc
al

e)

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

1e+14

1e+15

No Treatment
Surface Treatment Methoprene
Aerosol Treatment Methoprene
Aerosol Methoprene plus Esfenvalerate
Aerosol Methoprene plus 1% Pyrethrin

654321 654321

 

 148



 

Figure 4-30 The effect of a multiple applications on Indianmeal moth populations living on 

wheat diet.  One hundred eggs were present beginning on day 1 of simulation and 

simulations ran over 180 days at a constant temperature of 35°C with 57% relative 

humidity. Insecticide treatment was applied for the first time at day 30 and at 30 day 

intervals for the remainder of the simulation. Multiple treatments of each insecticide plus a 

control are shown. 
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Figure 4-31 The effect of a multiple applications on Indianmeal moth populations living on 

raisins.  One hundred eggs were present beginning on day 1 of simulation and simu

ran over 180 days at a constant temperature of 24°C with 57% relative humidity. 

Insecticide treatment was applied for the first time at day 30 and at 30 day intervals fo

remainder of the simulation. Multiple treatments of each insecticide plus a control are 

shown. 

lations 

r the 

Five Insecticide Treatments Occuring Every 30 Days
 with one Population Growth Scenario at 24°C

for Indianmeal Moth on Raisins

Days (ticks are thirty day intervals)

T
ot

al
 n

um
be

r 
of

 in
se

ct
s

(lo
g 

sc
al

e)

0.1

1

10

100

1000

10000

Baseline (No Treatment)
Surface Treatment with Methoprene
Aerosol Treatment with Methoprene
Aerosol Methoprene plus Esfenvalerate
Aerosol Methoprene plus 1% Pyrethrin

654321

Five Insecticide Treatments Occuring Every 30 Days
 with one Population Growth Scenario at 24°C

for Indianmeal Moth on Raisins

Days (ticks are thirty day intervals)

T
ot

al
 n

um
be

r 
of

 in
se

ct
s

(lo
g 

sc
al

e)

0.1

1

10

100

1000

10000

Baseline (No Treatment)
Surface Treatment with Methoprene
Aerosol Treatment with Methoprene
Aerosol Methoprene plus Esfenvalerate
Aerosol Methoprene plus 1% Pyrethrin

654321 654321

 150



 

 

 

Figure 4-32 The effect of a multiple applications on Indianmeal moth populations living on 

raisins.  One hundred eggs were present beginning on day 1 of simulation and simulations 

ran over 180 days at a constant temperature of 30°C with 57% relative humidity. 

Insecticide treatment was applied for the first time at day 30 and at 30 day intervals for the 

remainder of the simulation. Multiple treatments of each insecticide plus a control are 

shown. 
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Figure 4-33 The effect of a multiple applications on Indianmeal moth populations living on 

raisins.  One hundred eggs were present beginning on day 1 of simulation and simulations 

ran over 180 days at a constant temperature of 35°C with 57% relative humidity. 

Insecticide treatment was applied for the first time at day 30 and at 30 day intervals for the 

remainder of the simulation. Multiple treatments of each insecticide plus a control are 

shown. 
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Figure 4-34 The effect of a multiple applications on Indianmeal moth populations living on 

wheat diet.  One hundred eggs were present beginning on day 1 of simulation and 

simulations ran over 180 days at a constant temperature of 24°C with 57% relative

humidity. Insecticide treatment was applied for the first time at day 14 and at biweekly 

intervals for the remainder of the simulation. Multiple treatments of each insecticide pl

control a

 

us a 

re shown. 
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Figure 4-35 The effect of a multiple applications on Indianmeal moth populations living on 

wheat diet.  One hundred eggs were present beginning on day 1 of simulation and 

simulations ran over 180 days at a constant temperature of 30°C with 57% relative 

humidity. Insecticide treatment was applied for the first time at day 14 and at biweekly 

intervals for the remainder of the simulation. Multiple treatments of each insecticide plus a 

control are shown. 
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Figure 4-36 The effect of a multiple applications on Indianmeal moth populations living on 

wheat diet.  One hundred eggs were present beginning on day 1 of simulation and 

simulations ran over 180 days at a constant temperature of 35°C with 57% relative 

humidity. Insecticide treatment was applied for the first time at day 14 and at biweekly 

intervals for the remainder of the simulation. Multiple treatments of each insecticide plus a 

control are shown. 
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Figure 4-37 The effect of a multiple applications on Indianmeal moth populations living on 

raisins.  One hundred eggs were present beginning on day 1 of simulation and simu

ran over 180 days at a constant temperature of 24°C with 57% relative humidity. 

Insecticide treatment was applied for the first time at day 14 and at biweekly intervals fo

the remainder of the simulation. Multiple treatments of each insecticide plus a control are 

shown. 
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Figure 4-38 The effect of a multiple applications on Indianmeal moth populations living on 

raisins.  One hundred eggs were present beginning on day 1 of simulation and simulations 

ran over 180 days at a constant temperature of 30°C with 57% relative humidity. 

Insecticide treatment was applied for the first time at day 14 and at biweekly intervals for 

the remainder of the simulation. Multiple treatments of each insecticide plus a control are 

shown. 
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Figure 4-39 The effect of a multiple applications on Indianmeal moth populations living on 

raisins.  One hundred eggs were present beginning on day 1 of simulation and simulations 

ran over 180 days at a constant temperature of 35°C with 57% relative humidity. 

Insecticide treatment was applied for the first time at day 14 and at biweekly intervals for 

the remainder of the simulation. Multiple treatments of each insecticide plus a control are 

shown.  
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Table 4-1 Survivorship and days to adult emergence by temperature on wheat diet. This 

information was used to calculate development curve. K values for model were too

due to uniform development in insects used, so values for model were based on Arbogast 

(2007). 

 

 small 

Temp 
Level of 

Treatment 
N Percent Survival Days to Adult Emergence 

K = 
mean2/s2* 

   Mean SD Mean SD  

20 Control 8 87.2819791 11.9079973 36.0833333 11.9503392 9.1 

24 Control 12 88.6280463 7.5399454 31.2500000 2.3403574 178.3 

28 Control 12 90.0457818 4.8181990 21.0000000 0.8528029 610 

32 Control 12 86.9431023 6.4460302 19.3333333 0.7784989 612 

mean  88.2247274  352.35 

 

 

Table 4-2 Survivorship and days to adult emergence by temperature on raisins.  This 

information was used to calculate development curve and K values for model. 

Temp 
Arbogast mean 
dev. time 

Dev. Time on 
raisins (Arbogast 
data X 2) 

Std. Dev. 
(Shaffer 1983) 

K = mean2/s2 

20 66.8776062 133.7552124 7.45 322.34 

24 40.7542373 81.5084746 5.19 246.64 

28 29.0347490 58.069498 4.05 205.58 

32 34.9680000 69.936 4.64 227.18 

mean    250.44*

K < smallest mean/2 DT = 58/(2*(1/24)) = 58 * 12 = 696; use k = 250 
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11% Survival Simulating  
Raisins as Diet 

 

No treatment 0.89 0.01 0.06 0.1 0.00

Methoprene- Surface  0.9395 0 0.0105 $1.56

Methoprene- Aerosol 0.9659 0.0000 0.0000 0.0241 0.711

Methoprene plus Esfenvalerate 0.9806 0.0000 0.0000 0.0094 1.169

1% Pyrethrin 0.9941 0.0000 0.0000 0.0000 3.141
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CHAPTER 5 - Economic Feasibility of Methoprene Applied 

as a Surface Treatment and as an Aerosol Alone and in 

Combination with Two Other Insecticides 

Abstract 

ic evaluations of integrated pest management options are becoming increasingly 

important as restrictions on conventional insecticides continue to become more stringent and 

costs of chemical control strategies rise.  Aerosol treatments with insect growth regulators alone, 

and in combination with conventional contact insecticides, can be a feasible alternative to 

expensive and dangerous fumigants such as methyl bromide for control of the Indianmeal moth 

(Plodia interpunctella Hübner). Mortality of Indianmeal moth eggs exposed to surface-applied 

methoprene, aerosol methoprene alone, and in combination with esfenvalerate and synergized 

pyrethrins w y.  The effect of temperature on 

develop akes frequency and timing of insecticide applications very important as 

evidenced by simulations of population levels in response to a variety of treatment dates by diet. 

It also becomes critical in situations where survival of Indianmeal moth is high. Using a 

meas m  that is equal to deviations below a target mortality goal (99%), we were able 

to optim requency of application using simulated mortality data for each of the 

treatment strategies.  Optimal timing of each insecticide treatment depends heavily on the rate of 

development based on diet.   

 

Keywords: m oprene, esfenvalerate, synergized pyrethrin, Indianmeal moth, economic 

analysis
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    Integrated pest management in stored products relies on a variety of management tools 

for control of pest insects. One traditional insect management practice in mills and dried fruit and 

nut warehouses (Johnson and Vail 1989, Johnson et 

me

agreem

groups involved eceived a 

critical use exemption (CUE) for the continued use of methyl bromide (Arthur 2008); but 

replacement strategies will soon need to be owdy 2002).   

enced 

e 

 

ers are 

s). 

 al. 

) (Jenson, Chapters 1-3).  Comparisons can also be made between 

e use of methoprene as an aerosol and as a contact surface treatment an in food storage and 

conomic analyses of other methyl bromide alternatives using enterprise budgets for 

ecific field crops have been developed (Nelson 1996, Byrd et al. 2006).  Partial budget analysis 

omparing costs of control strategies are used to determine levels of risk associated with each 

rategy (Boehlje 1984).  Using cost information from our partial budget analysis (Jenson 

Chapters 1-4), along with a population growth model simulating development in response to 

multiple diet types (Jenson, Chapter 4), a ic analysis could allow food 

al. 2002, Arthur 2008) is to fumigate with 

thyl bromide.  However, this product is scheduled to be phased out under a world-wide 

ent, the Montreal Protocol (Fields and White 2002, Anonymous 2004).  Some industry 

 in food production and transportation for human consumption have r

 employed (D

One current, largely unexplored management option is aerosol applications of 

conventional insecticides and insect growth regulators (IGRs) to control insect pests in food 

storage and manufacturing facilities.  Aerosol space applications can be an effective way to treat 

the interior surfaces and storage areas of warehouses and food processing facilities, as evid

by recent studies (Arthur and Campbell 2007, Arthur 2008) demonstrating aerosol pyrethrin for 

management of the red flour beetle, Tribolium castaneum (Herbst). Systems for ultra low volum

(ULV) aerosol delivery have been designed for and installed in commercial milling and storage

facilities.  Currently, in facilities where aerosol fogging systems are installed, pest manag

using conventional insecticides alone, and in combination with insect growth regulators (IGR

IGRs are insecticides that mimic various hormones involved in the developmental processes in 

insects. They have been proposed for the control of stored-product insects (Oberlander et

1997, Mondall and Parween 2000, Campbell et al. 2004, Mohandass et al. 2006a).  One IGR, 

methoprene, which is a juvenile hormone analog, has been evaluated alone and in combination 

with esfenvalerate and 1% synergized pyrethrin for control of eggs of the Indianmeal moth 

(Plodia interpunctella Hübner

th

processing facilities.  

E

sp

c

st

 modified econom
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produc

 

 

007).  However, the 

wareho  was to 

 

 

apter 

r mortality when insecticides were applied to eggs (Jenson, Chapter 1).  

Adjustm rt 

osed 

 

scenario for use in field situations.  

tion plant managers and warehouse managers to make decisions regarding control of a 

single pest species by comparing costs, efficacy of different treatments, and frequency of 

application of those treatments.  Using population growth models to simulate consequences of 

management decisions can provide even more insight.  With extremely low thresholds in 

finished stored product situations, a slightly different approach from traditional economic injury

levels is needed (Higley and Wintersteen 1992, Stejskal 2002; 2003).  Many types of economic 

analysis have already been applied to other systems, including field crops and ornamentals

(Headley and Hoy 1987, Jetter et al. 1997) and grain bins (Tilley et al. 2

use is a novel environment for applying standard methodologies.  The objective

show how these types of analyses may be optimized for insecticide applications in warehouse

environments.  The specific hypothesis was that there will be significant differences in the cost-

benefit structure for each of the insecticide treatment scenarios.  The specific goals were to: 1) 

ascertain how to best utilize the three aerosol insecticide treatments by optimizing timing and 

frequency of applications and 2) examine the effects of a different food source in response to 

insecticide applications.  

Materials and Methods 

Computer Simulations of Mortality due to Various Scenarios of Temperature, Timing

and Frequency of Insecticide Application 

Simulations of the effect of timing and frequency of insecticide treatments were 

conducted using a population growth model modified for wheat and raisin diets (Jenson, Ch

4).  This model was based on four main components: time required for the complete life cycle, 

male longevity, female longevity, and fecundity.  Survivorship values for this model were 

calculated from data fo

ent of survivorship was only applied to immatures because there are no data to suppo

the assertion that methoprene kills adult Lepidoptera.  Mortality was simulated to occur at noon 

on the day of insecticide treatment for all immatures that were in that stage at that time. 

Survivorship values were calculated using the mortality data for Indianmeal moth eggs exp

to the label rates for surface or aerosol application of each insecticide reared on the 

corresponding diet (wheat diet or raisins)(Jenson, Chapters 1-3), as this is the most likely
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The survivorship value calculated for methoprene at the label rate delivered as an aeros

was based on data from Chapter 3, which evaluated a methoprene-only aerosol treatment. 

mean survivorship averaged across all exposure types was 31.0%.  Values for the aerosol 

insecticide treatment combination of methoprene and esfenvalerate were calculated from e

exposure data in Chapter 2, where both chemicals were delivered at the label rate and survival 

was estimated as 17.7%.  The final insecticide combination that was used for these simulations 

was the aerosol treatment of methoprene and 1% synergized pyrethrins (both at the label rat

aerosol application) from data in Chapter 3.  Survival was estimated as 5.4%, which was the 

lowest survivorship used in the simulations.  Although there is no interaction or relationship 

between temperature and methoprene in survival or mortality of Indianmeal moth between 20 

and 32°C (Jenson, unpublished), there is a strong relationship between temperature and total 

development time from egg to adult.  Beginning populations were standardized to 100 eggs and

no adult moths.  Simulations were run at six temperatures (21, 24, 27, 30, 32, and 35°C) for 

various insecticide treatment scenarios.  Simulation of different temperatures was necessary to

evaluate the specific timin

ol 

 The 

gg 

e for 

 

 

g of insecticide applications because of the proportion of immatures 

present in the population on the day of treatment. 

Frequency and timing of tr n to represent various industry 

practices.  In addition to m

tim

Chapter 4).   

ons, 

e label 

$0.83 per L 

the 

eatments scenarios were chose

ortality from treatment and response of population to temperature, 

ing and frequency of insecticide applications had a large impact on population levels (Jenson, 

Calculation of Costs  

For the purposes of this economic analysis, shut-down time and equipment costs were 

fixed and the only variable costs were the costs of the chemical, the carrier for the applicati

and the combinations of carrier and insecticides.  Costs associated with methoprene surface 

treatments were calculated using current industry costs for Diacon II®, calculated per 929.03 m2 

(10,000 ft2) at the label rate for surface applications (Central Sciences  2002, 1 ml/94m2).  Costs 

for aerosol methoprene treatments were calculated in the same way for per 283.7 m3 at th

rate for aerosol space treatments (900 mg of active ingredient per 10,000 ft3) plus the cost of oil 

carrier.  The costs of the oil carrier were fixed for the purposes of this analysis as to 

($3.15 per gallon) or $0.0008 per ml.  However, the cost of oil carriers may fluctuate with 
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global 

 

d of 

r 

r 

 up to the target mortality target of 99%. Cost 

structur  

sk, 

s case is lowered cost and increased risk for treatments that allow for higher 

survival of the pest insect.  

Mortality indexes were obtain ty of Indianmeal moth eggs 

expose  2, 

 

ates 

petroleum market. Current prices for esfenvalerate (Conquer®) and 1% synergized 

pyrethrin (Entech Fog-10®) were calculated based on their labeled rates for aerosol delivery 

systems (Paragon Products, Entech) per 283.7 m3.  Costs for combination treatments were 

calculated by adding together the specific insecticide costs and adjusting the cost for carrier oil.  

Target Mortality Model and Optimization 

Tilley (2007) modified a target minimization of total absolute deviations (MOTAD) 

model (Tauer 1983) for grain infestation into a model for modeling risk-and-return in heat 

disinfestations of grain bins.  This empirical model (Target MOTAD) is useful in analyzing 

trade-offs between risk and return to maximize return above a critical limit (Tauer 1983).  Risk

and return are directly related; therefore decreasing returns are associated with decreased risk 

levels (Tilley et al. 2007).  Return in this study is defined as mortality of the target insects as a 

result of a specific management intervention; therefore, the target return was set to a threshol

99%.  The threshold for this model was set at such a high level to provide a realistic threshold fo

infestation food processed and stored for human consumption (which is virtually zero insects pe

unit).  Risk, in this case, is the inverse of mortality

e is calculated using the price of the chemical as the relevant cost.   Labor and equipment

costs are fixed between treatments.  Modification of Tilley’s model for optimization of cost, ri

and frequency of insecticide treatment allowed us to minimize risk and maximize mortality. The 

tradeoff in thi

ed by simulating mortali

d to six scenarios: no treatment, one treatment at day 28, and recurring treatments every

3, 4, and 6 weeks beginning at day 28.  These treatments were simulated across six temperatures

(21, 24, 27, 30, 32, and 35°C) separately for both a wheat and raisin diet.  Survivorship estim

for insecticide treatments were modeled based on results from studies by Jenson (unpublished, 

Chapters 1-3) and calculated for use in population simulations in Chapter 4 and in this study. 

Cells for mortality levels in the economic model were calculated by subtracting the population 

total at 180 days for each treatment from the total population surviving at 180 days where there 

was no treatment.  Therefore, mortality indexes for the target mortality model are the percentage 
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reduction in population size from the baseline population at each temperature.  Cost was 

minimized based on the allowable deviations below the target 99% mortality rate. 

Results 

Costs of each treatment and cumulative costs for each treatment scenario over the 6 

month interval are display .14 per treatment and 

from $7 e, 

lity 

d 

ed 

cost 

are displayed in Table 5-5 as well.  The insecticide treatment option 

of meth ons in 

ean 

g 

 

ed in Table 5-1.  Costs ranged from $0.71 to $3

.82 to $34.55 for 6 months of biweekly treatments per 10,000 ft3 of facility headspac

which caused the individual costs of specific treatments to be significantly different.  Morta

levels (explained above) were not correlated with treatment cost (i.e., the least expensive 

treatment did not always have the lowest cost).  Population levels are presented in Tables 5-2 an

5-3.  Inclusion of these data were necessary because optimization of the economic model show

that there was a 99% or more reduction in some of the treatment scenarios.  However, due to 

unequal survivorship on wheat and raisins (88% and 11%, respectively) based on data from 

Jenson, Chapter 4), there were often considerably more surviving individuals on wheat diet, 

although insecticide treatments reduced survival proportionally for both diets.  

Tables 5-4 and 5-5 show the results of the model fit to the methoprene plus 1% 

synergized pyrethrin treatments.  Minimization of costs at risk level 1 (the lowest realistic 

amount of risk) was $5.98 per treated unit, and the optimal mix of treatments was between our 

one-time treatment at day 28 and treating every 6 weeks starting from day 28 in an environment 

where both diets were present beginning with 100 Indianmeal moth eggs on day 1.  Lower 

and higher risk alternatives 

oprene plus esfenvalerate applied as an aerosol is modeled in Table 5-6, with soluti

Table 5-7.  The optimal mix of timing scenarios at risk level 1 was to treat with these insecticides 

at an interval between 3- and 4-weeks (following an initial treatment at day 28) at the cost of 

$3.63 per unit area.  The risk level 0 scenario, is not realistic, and even at $9.24 per treatment this 

scenario cannot be optimized.  Tables 5-8 and 5-9 present the target mortality model for aerosol 

methoprene treatments.   Overall these treatments are the least expensive option, but have a m

of only 59% mortality per treatment.  However, looking at the optimal mix of treatments, treatin

with aerosol methoprene between 3 and 6 weeks can cost as little as $2.40 per unit area and keep

risks minimized near the 1 level.  Surface application of methoprene can be optimized for costs 
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when treating one time at 28 days and six weeks thereafter for $5.87 per treatment unit (T

5-10 and 5-11). 

ables 

Discussion 

s), 

s 

ions 

st 

uct insects.  Our 

results d, with 

cosmopolitan pest known to infest a great number of commodities, including many different 

Treatments in our economic model are based on a mix of two diets (wheat and raisin

on which Indianmeal moth survives very well and very poorly, respectively.  These types of 

simulations are realistic given that warehouse environments may have many different food type

stored in close proximity to one another.  Possibilities for simulations are limited only by 

available pest population growth models and variable cost information.  While our simulat

and economic models do not include every possible treatment scenario, we have presented a 

range at which decisions about insecticide type, application type, and frequency could be made 

under our model conditions.  It may be possible to compare and optimize for non-chemical pe

management options such as chilled air aeration, ambient air aeration, fumigation and heat 

treatments of facilities (Mason et al. 1997, Maier et al. 1997, Rulon et al. 1999, Tilley et al. 

2007), which may be used to control the Indianmeal moth and other stored prod

are especially useful when comparing management strategies, such as those liste

costs of low risk insecticides.  

The warehouse environment is a new and novel environment for economic simulation.  

Integrated pest management practices have long employed the concepts of economic and 

aesthetic injury levels in field crop systems and in biological control programs (Stejskal 2002, 

2003).  Integrated pest management in a finished stored products situation presents unique 

opportunities and challenges because of the low tolerance for insects and the tangible and 

intangible costs associated with insect infestation.  Integrated pest management in field crops has 

a successful history of using economic injury levels and economic thresholds to determine 

timing of control strategies.  In fact, there are recent studies of economic analyses for novel 

control strategies where economic thresholds are applied in field crops where it is possible to 

relate number of insects with a damage estimate (Crowder et al. 2006, Antwi et al. 2007, Beres et 

al. 2007).  Indianmeal moth infestation of finished stored products presents a unique challenge in 

that the products typically are of high-value products and are stored for variable periods of time 

in multiple locations; thus, the insect threshold is essentially zero.  The Indianmeal moth is a 
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grains, dried fruit and nuts (Mohandass et al. 2006a).  Damage caused by Indianmeal moth can 

range from direct feeding to product contamination, to package holes and ruptures, and to the 

creation of favorable conditions for mold and bacterial growth.  Also, losses from these moths 

can occur anywhere within the process, fr er to the home of the consumer 

(Mowe

e et 

tfall 

 

h, 

 pest 

om manufactur

ry et al. 2004).  And, several studies have shown that Indianmeal moth infests facilities 

ranging from feed mills (Larson et al. 2008) to flour mills and pet food storage facilities (Ryn

al. 2007).  

There are many recent examples of the use of pheromone traps, sticky traps, and pi

traps to monitor insect pests in food storage facilities (Arbogast et al. 2000, Nansen et al. 2004).

However, because of the various biological and environmental factors that can affect trap catc

it is often difficult to relate the numbers of insects caught in traps to the actual populations 

(Arbogast et al. 2002; 2005).  Using an economic approach to estimate the need for insecticide 

applications in food storage sites may be a useful addition to integrated pest management 

programs.  Using target mortality models to analyze economic risks and benefits may enable

managers to optimize multiple controls and improve their pest management programs.  
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Figures a Ta

 

Table 5-1 Summary by Frequency of Insecticide Application 

Number of Treatments in 
180 days 

0 1 

nd bles 

6 4 8 11 

 Total Cost per 10,000 ft3* $ $ $ $ $ 
No treatment 0 0 0 0 0 0 
Methoprene- Surface 0 1. 24 56 6. 9.36 12.48 17.16 
Methoprene- Aerosol 0 0. 84 71 2. 4.27 5.69 7.82 
Methoprene plus 
Esfenvalerate 

0 1. 68 6 17 4. 7.014 9.35 12.8

Methoprene plus 1% 
pyrethrin  

0 3. .56 5 5 14 12 18.8 25.13 34.5

* or 10,000ft2 for surface treatments 
 



 
 

Table 5-2 Simulations of Survival of Indianmeal moth on Raisins Before and After Insecticide Treatments at 6 Temperatures  

 
Temperature 
(°C) 

Insecticide Treatment 
No Treatment One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks 

21 Methoprene plus Esfenvalerate 2.E+02 4.E+01 0.E+00 1.E+00 0.E+00 0.E+00
24 Methopre

27 Methoprene plus 
ne plus Esfenvalerate 5.E+03 8.E+02 6.E+00 0.E+00 0.E+00 0.E+00

Esfenvalerate 2.E+03 4.E+02 8.E+00 0.E+00 0.E+00 0.E+00
30 alerate 2.E+03 4.E+02 .E+00 0.E+00 00 0.E+00

Methoprene plus fenvalerate 7.E+02 1.E+02 .E+00 0.E+00 00 0.E+00
prene plus fenvalerate 4.E+00 1.E+00 E+00 00 00 0.E+00

 One 6 Wee 4 Wee 3 Wee 2 Weeks 
Methoprene plus  Pyrethrin 2.E+02 1.E+01 +00 00 00 0.E+00

Methoprene plus Esfenv 4 0.E+
32 Es 4 0.E+
35 Metho Es 0.  0.E+ 0.E+

 No Treatment time  ks ks ks 
21 1% 0.E  0.E+ 0.E+
24 Meth

27 

oprene plus 1% Pyrethrin 5.E+03 3.E+02 0.E+00 0.E+00 0.E+00 0.E+00
Methoprene plus 1  Pyrethrin 2.E+03 1.E+02 00 00 00 0.E+00

30 in 2.E+03 1.E+02 0.E+00 0.E+00 0.E+00 0.E+00
32 Methoprene plus 1% Pyrethrin 7.E+02 4.E+01 0.E+00 0.E+00 0.E+00 0.E+00
35 Methoprene plus 1% Pyrethrin 4.E+00 0.E+00 0.E+00 0.E+00 0.E+00 0.E+00

  No Treatment One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks 
21 Methoprene- Surface 2.E+02 1.E+02 1.E+01 3.E+00 1.E+00 0.E+00

% 0.E+  0.E+ 0.E+
Methoprene plus 1% Pyrethr

24 Methoprene- Surface 5.E+03 2.E+03 2.E+02 8.E+01 1.E+01 2.E+00
27 Methoprene- Surface 2.E+03 1.E+03 1.E+02 3.E+01 8.E+00 1.E+00
30 Methoprene- Surface 2.E+03 1.E+03 1.E+02 2.E+01 6.E+00 1.E+00
32 Methoprene- Surface 7.E+02 3.E+02 5.E+01 8.E+00 2.E+00 0.E+00
35 Methoprene- Surface 4.E+00 2.E+00 0.E+00 0.E+00 0.E+00 0.E+00

  No Treatment One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks 
21   Methoprene- Aerosol 2.E+02 8.E+01 3.E+00 0.E+00 0.E+00 0.E+00
24   Methoprene- Aerosol 5.E+03 1.E+03 5.E+01 1.E+01 1.E+00 0.E+00
27   Methoprene- Aerosol  2.E+03 7.E+02 4.E+01 4.E+00 1.E+00 0.E+00
30   Methoprene- Aerosol 2.E+03 7.E+02 3.E+01 3.E+00 0.E+00 0.E+00
32   Methoprene- Aerosol 7.E+02 2.E+02 2.E+01 1.E+00 0.E+00 0.E+00
35   Methoprene- Aerosol 4.E+00 1.E+00 0.E+00 0.E+00 0.E+00 0.E+00
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Table 5-3  Simulations of Survival of Indianmeal moth on Wheat Diet Before and After Insecticide Treatments at 6 

Temperature Insecticide 
o Treatment One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks 

Temperatures  

(°C) Treatment N

21 
Methoprene plus 

E+08 E+08 +06 05 .E+04 E+02Esfenvalerate 8. 1. 6.E  2.E+ 2 4.

24 
Methoprene plus 
Esfenvalerate 7.E+10 E+10 +10 07 .E+06 E+04

E+12 E+12 +10 10 .E+08 E+06

E+14 E+13 +12 E+11 .E+09 E+07

+14 E+13 +12 10 .E+11 E+07

+06 E+06 +04 03 .E+03 E+00
 ent On 6 W 4 3 2 

+08 E+07 +05 03 .E+01 E+00

2. 2.E  1.E+ 2 1.

27 
Methoprene plus 
Esfenvalerate 4. 3. 4.E  4.E+ 1 9.

30 
Methoprene plus 
Esfenvalerate 2. 5. 1.E 1. 7 9.

32 
Methoprene plus 
Esfenvalerate 1.E 3. 1.E  4.E+ 1 7.

35 
Methoprene plus 
Esfenvalerate 4.E 1. 4.E  3.E+ 1 6.

 No Treatm e time  eeks Weeks Weeks Weeks 

21 
Methoprene plus 
1% Pyrethrin 8.E 4. 9.E  1.E+ 9 0.

24 1%  4.  7.E+ 1

4.E+12 E+12 +09 10 .E+05 E+04

2.E+14 E+13 +10 10 .E+08 E+04

1.E+14 E+13 +11 08 .E+10 E+04

35 1%  6.  7.E+ 0
 No Treatment O 6 W 4 3 2 

8.E+08 E+08 +07 07 .E+06 E+05

Methoprene plus 
 Pyrethrin 7.E+10 9.E+09 E+07 04 4.E+03 .E+00

27 
Methoprene plus 
1% Pyrethrin 3. 3.E  2.E+ 3 1.

30 
Methoprene plus 
1% Pyrethrin 3. 8.E  4.E+ 1 4.

32 
Methoprene plus 
1% Pyrethrin 1. 5.E  9.E+ 5 1.
Methoprene plus 

 Pyrethrin 4.E+06 9.E+05 E+03 01 2.E+02 .E+00
 ne time  eeks Weeks Weeks Weeks 

21 
Methoprene- 
Surface 3. 6.E  1.E+ 4 7.

24 
Methoprene- 
Surface 7.E+10 E+10 +09 09 .E+08 E+07

4.E+12 3.E+12 11 11 3.E+10 5.E+09

4. 5.E  1.E+ 4 4.

7 
Methoprene- 
Surface 4.E+  3.E+2
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30 Surface 2.E+14 9.E+13 1.E+13 3.E+12 1.E+12 1.E+11

32 
Methoprene- 
Surf

Methoprene- 

ace 1.E+14 5.E+13 2.E+12 2.E+12 1.E+12 1.E+11
Methoprene- 

4.E+06 2.E+06 4.E+05 1.E+05 5.E+04 5.E+03
 

35 Surface 
 No Treatment One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks 

21 
 Methoprene- 
Aerosol 8.E+08 2.E+08 2.E+07 2.E+06 4.E+05 3.E+04

24 
 Methoprene- 
Aerosol 7.E+10 3.E+10 2.E+09 2.E+08 4.E+07 4.E+07

27 
 Methoprene- 
Aerosol  4.E+12 3.E+12 1.E+11 1.E+11 3.E+09 4.E+08

30 
 Methoprene- 
Aerosol 2.E+14 7.E+13 5.E+12 7.E+11 1.E+11 7.E+09

32 
 Methoprene- 
Aerosol 1.E+14 4.E+13 4.E+12 5.E+11 4.E+11 6.E+09

35 
 Methoprene- 
Aerosol 4.E+06 2.E+06 2.E+05 2.E+04

 
9.E+03 3.E+02
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ble 5-4 E del with min on of v e costs atment meth % ed pyrethrin. 

onstraint- Diet  ng of Ap n  Deviations
Sum 

Product 

lit

Ta mpirical mo imizati ariabl  for tre s with oprene plus 1  synergiz

 

C Temperature- Timi plicatio   
Inequa y 

ns 
Mortality 

Goal 

 No 4 Wee 3 Weeks      d1  d12-

Sig

ne One time  6 Weeks ks 2 Weeks -          ……
T1 - Wheat Di 0.00 0. 0.9988 99999 1.000 0. ≥ 0.99et 945914 09 0.9 1.0000 0 1 99
T2 - Wheat Di 0.00 0. 0.9994 99999 1.0000 0. ≥ 0.99

- Wheat Di 0.00 0 0.9991 95312 1.000 0. ≥ 0.99
T4 - Wheat Di 0.00 0. 0.9995 99782 1.0000 0. ≥ 0.99

- Wheat Di 0.00 0 0.9962 99993 1.000 0. ≥ 0.99
T6 - Wheat Di 0.00 0.797588 0.998629 0.999984 1.0000 1.0000   0.99 ≥ 0.99

 - Raisins 0.00 0. 1 1 1   0. ≥ 0.99
T2 - Raisins 0.00 0.945247 1 1 1 1   0.99 ≥ 0.99

 - Raisins 0.00 0. 1 1 1   0. ≥ 0.99
T4 - Raisins 0.00 0.945514 1 1 1 1   0.99 ≥ 0.99

 - Raisins 0.00 0. 1 1 1   0. ≥ 0.99
 - Raisins 0.00 1 1 1 1 1               1 0.99 ≥ 0.99

Sum of Deviations       1   ……….         1  
Sum Product        1.0  

Minimum Variable Cost 
      

  
$3.14

1 
 

Table 5-5 Empirical model solutions and optimization for treatments methoprene plus 1% synergized pyrethrin. 

Model Solution Timing of Application

Cost ($) unit area 
Overall Risk 

Level 
None One time 6 Weeks 4 Weeks 3 Weeks 2 Weeks 

et 
et 

874124 20 0.9 1.0000  99
T3 .360308 

804419 
56 0.9
41 0.9

1.0000 
1.0000 

0 
 

99
99et 

et T5 .905590 58 0.9 0.9996 0 99
et 

T1 946939 1 99

T3 944869 1 99

T5 944979 1 99
T6

17.68 0 0.01 0.00 0.60 0.13 0.13 0.13 

5.98 1 0.00 0.70 0.30 0.00 0.00 0.00 

2.98 2 0.05 0.95 0.00 0.00 0.00 0.00 

2.68            3 0.15 0.85 0.00 0.00 0.00 0.00 
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Table 5-6  Empirical model with minimization of variable costs for treatments with methoprene plus esfenvalerate. 

Constraint- 
Temperature- Diet 

   
Timing o

Application
  

Deviations
Sum Product

Inequality 
Mortality 

 None One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks  

f 
Signs 

 
Goal 

d1-    … d12-   

T1 - Wheat Diet 0. 1 00 0.99 ≥ 0.9900 0.823227 0.99242  0.999764 1.0000     1. 00 1 

T2 - Wheat Diet 0.00  22 000 000  0 ≥
0.00  78 000 000  0 ≥
0.00  79 000 000  0 ≥
0.00  59 990 000  0 ≥
0.00  74 997 000  0 ≥
0.00 18 1 1  0 ≥
0.00 0. 707 1 1 1  0 ≥
0.0 0. 607 1 1 1  0 ≥
0.0 0. 121 1 1 1  0 ≥
0.0 0. 498 1 1 1  0 ≥
0.00 1 1              1 0 ≥

ations      1 . .    
                1.00   

iable Cost               $1.1 9

 
Table 5-7  Empirical model solutions and optimization of frequency of treatments for treatments with methoprene plus 

tion
 

e e ks eks eek eeks 

 0.760742 0.760742 0.9998  1.0  1.0 .99 0.99
T3 - Wheat Diet  0.313587 0.990475 0.9888  1.0  1.0 .99 0.99
T4 - Wheat Diet  0.700078 0.993749 0.9992  1.0  1.0 .99 0.99
T5 - Wheat Diet  0.788132 0.989063 0.9996  0.9  1.0 .99 0.99
T6 - Wheat Diet  0.694141 0.990192 0.9993  0.9  1.0 .99 0.99
T1 - Raisins  0.82449 1 0.9959  .99 0.99
T2 - Raisins  0.823453 998 .99 0.99
T3 - Raisins 0 0.823155 996 .99 0.99
T4 - Raisins 0 0.823391 998 .99 0.99
T5 - Raisins 0 0.822558 994 .99 0.99
T6 - Raisins  0.75 1 1    .99 0.99
Sum of Devi  . . .  .1

Sum Product       

Minimum Var    6

esfenvalerate. 

Model Solution Timing of Applica

Cost ($) unit area 
Overall Risk

Level 
Non One tim 6 Wee 4 We 3 W s 2 W

9.24 0 0.01 0.00 0.02 0. 27 39 0.31 0.

3.63 1 0.00 0. 0.70 0.00 0.00 0.00 

2 0.00 0. 0.34 0.00 0.00 0.00 

3 0.01 0.99 0.00 0.00 0.00 0.00 

 

30  

2.36 66  

1.16  
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Table 5-8 Empirical model with minimization of variable costs for treatments with aerosol methoprene alone. 

   
 of 
on

  
ons

Sum Timing
Applicati

Deviati

Product 

Inequality
Constraint- 

Temperature- Diet 

 

 

s s k k
  

Signs 
Mortality 

Goal 

 
None One time  6 Week 4 Week 3 Wee s 2 Wee s 

d1-    … 
d12- 

 

T1 - Wheat Diet 0.00 0.690031 7 75 9 1 990.97337 0.9969 0.99 4 1.0000 0. ≥ 0.99
T2 - Wheat Diet 0.00 0.637666 7 95 95 995  99

 5 50 92 999  99
 1 84 92 000  99
 1 92 68 000  99
 5 90 79 999  99

6 0. 7755 1 1  99
 9 96982 99784 999784  99
 8 98304 99576 999576  99
 8 98591 1 1  99
 6 98624 1 1  99

 1 1 1 1    1 99
       .  .1   

      
     

1.00 
Minimu ariable Cost                  $0.711

Model Solution Timing of Application
Overall Risk 

None One time 4 Weeks 3 Weeks 2 Weeks 

0.97634 0.9973 0.99 0.9 0. ≥ 0.99
T3 - Wheat Diet 0.00 0.262839 0.96285 0.9726 0.99 0.9 0. ≥ 0.99
T4 - Wheat Diet 0.00 0.586806 0.97236 0.9960 0.99 1.0 0. ≥ 0.99
T5 - Wheat Diet 0.00 0.660623 0.96885 0.9964 0.99 1.0 0. ≥ 0.99
T6 - Wheat Diet 0.00 0.581840 0.96487 0.9946 0.99 0.9 0. ≥ 0.99
T1 - Raisins 0.00 0.68979 98 1 0. ≥ 0.99
T2 - Raisins 0.00 0.689804 0.98986 0.9 0.9 0. 0. ≥ 0.99
T3 - Raisins 0.00 0.689567 0.98218 0.9 0.9 0. 0. ≥ 0.99
T4 - Raisins 0.00 0.689995 0.98684 0.9 0. ≥ 0.99
T5 - Raisins 0.00 0.690509 0.97661 0.9 0. ≥ 0.99
T6 - Raisins 0.00 0.75              0. ≥ 0.99
Sum of Deviations 1 . . . .  

Sum Product 
        

m V
 
Table 5-9 Empirical model solutions and optimization of frequency of treatments for treatments with methoprene aerosol. 

Cost ($) unit area Level 
6 Weeks 

6.81 0 0.00 00 16 0 0.70 0.03 0. 0. 0.1

2.40 1 0.00 0. 9 0.00 0.00 

2 0.00 0. 5 0.00 0.00 

           3 0.0 0. 1 0.00 0.00 

21 0.7 0.00 

1.88 
1.36 

45 0.5 0.00 

0 69 0.3 0.00 
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Table 5-10 Empirical model with minimization of variable costs for treatments with methoprene as a surface treatment. 

   
n 

  
uct 

equality
Constraint- Temperature- Timing of 

Deviations
Sum 

In

Diet Applicatio Prod

 
Mortality 

None One time  6 Weeks 4 Weeks 3 Weeks 2 Weeks 
d1-    … 

-
 

Signs 

 

Goal 

 
d12  

 

T1 - Wheat D et 0.00 6 20 214 8 91 0. 0.99i 0.54994 0.9262  0.982 0.994  0.99  1 99 ≥
T2 - Wheat Diet 0.00 0.508218 0.928429 0.983511 7 4  99 ≥ 9

  8 7  99 ≥ 9
  9 2  99 ≥ 9
  7 1  99 ≥ 9
  6 9  99 ≥ 9

 18  99 ≥ 9
  98 69  99 ≥ 9
  7 6  99 ≥ 9
  2 3  99 ≥ 9
    99 ≥ 9
  948 991              1 99 ≥ 9

ations   1  

    
    

iable Cost            $1.56 

Table 5-11 Empirical model solutions and optimization of frequency of treatments for treatments with surface treatments of 

Timin

0.994  0.999  
 

0. 0.9
T3 - Wheat Diet 0.00 0.212273 0.901215 0.934323 0.992 0.998 0. 0.9
T4 - Wheat Diet 0.00 0.467671 0.919168 0.981419 0.992 0.999 0. 0.9
T5 - Wheat Diet 0.00 0.598091 0.983633 0.983633 0.988 0.999 0.

0.
0.9
0.9T6 - Wheat Diet 0.00 0.463724 0.907381 0.974776 0.988 0.998

T1 - Raisins 0.00 0.55102 0.95102 0.987755
0. 1893

0.9959
0. 71

1 
0 995

0. 0.9
T2 - Raisins 0.00 0.549903 0.956672 98 99 .9 0. 0.9
T3 - Raisins 0.00 0.550042 0.939355 0.98855 0.99660 0.99957 0. 0.9
T4 - Raisins 0.00 0.550023 0.949272 0.989197 0.99718

0. 7249
0.9995

1 
0. 0.9

T5 - Raisins 0.00 0.550206 0.927098 0.988996 99 0. 0.9
T6 - Raisins 0.00 0.549946 

  
0.926220

 
0.982214

 
0.9 0.9    0. 0.9

Sum of Devi 1 . . . . .  .  
      

 
  

Sum Product 
  

 
1.00 

 Minimum Var
 

     

methoprene   

Model Solution g of Application

Cost ($) unit area 
Overall Risk 

Level 
None One time 6 Weeks 4 Wee 3 Weeks 2 Weeks ks 

14.91 0 0.00 0.01 0.00 0.0 0. 0.0 46 54 

5.87 1 0.00 0.00 0.00 

0 0.00 0.00 0.00 

46 0.54 0.00 0.00 0.00 

0.00 0.08 

0.27 

0.92 

.73 

 

4.98 

4.09 

2 

           3 

0.00  

0.00 0.  
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Summary and Conclusions 

odia interpunctella Hübner is a major economic pest  variety o m  

 sto  products.  Pest status is due in part to the fact th  can expl  wide range of 

 s and . nmea ths can be problematic at all 

e oduction, storage, and distribution of food products for human co

e, cause several types of economic da  Infestation manufacturing facilities can 

 equ ent, as well 

 dir s in raw and finished prod esulting fro eeding e

stations (u age to retail o ts ma er 

plaints and returned products. eal moth managem equir fficient and cost- 

ctive managem  these control options are safe to use in 

lities whe an consumption. The insect growth regulator, 

or a variety of uses, including direct application to stored grains, liquid 

a tmen d aerosol applications to the interior of the 

li is  product inse st species, alone, and in 

bination with conventional insecticides. Insect growth reg rs are con e

uced risk ticides; they are specifically targeted towards 

cts and ha rget organism cluding humans.  

In Chapter 1 nd su

ho e a stars of the I meal moth. Generally, 

perature d prene applied at the label rate as a surface 

tment, but overall development of viable adults from exposed eggs is high in relation to 

ea contro lf may not be a reliable c ol strategy with 

s of the In meal moth as the target life stage.  Fifth instars appear to be a m

 s  compared to the eggs. When fifth instars are exposed to the label rate of methopre

a st two hours, survival of the adult stage is reduced compared to untreated controls. 
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Methoprene applied as an aerosol alone and in combination with the pyrethroid, 

esfenvalerate, gave a high de f the Indianmeal moth.  

These results add to other recent publications demonstrating the efficacy of aerosol treatments 

for both

 

eld 

 

 

ging 

ss all 

treatme f 

ation 

tion 

duce 

nd to 

 

nse on the wheat diet compared to raisins because mean survivorship 

is much higher on the wheat diet than on raisins.  Differences in simulation at different 

gree of control of eggs and fifth instars o

 conventional insecticides and insect growth regulators, and results are discussed in 

Chapter 2.  The other significant result of these studies is that there was no difference in 

mortality of the target life stages when exposed in the open compared to underneath a shelf, 

which indicates good coverage and penetration of the aerosol fog.  This result is applicable to

field conditions, as food manufacturing and storage facilities often have products stacked on 

pallets which will provide refugial sites for insects underneath the pallets.  Results show 

potential spread and dispersion of aerosols in these obstructed sites.   

Installation of a facility-wide aerosol application system, and costs of insecticidal 

treatments, may be less expensive overall than the costs of frequent fumigation with methyl 

bromide or any other fumigant.  Confirming the effects of aerosol insecticides applied in fi

systems on Indianmeal moth survival is vital in determination of cost effectiveness of these 

chemicals. Chapter 3 describes the results of a large-scale study with methoprene delivered as a 

aerosol, alone and in combination with synergized pyrethrins, in which target life stages were

directly exposed or exposed to different treated diets and treated packaging materials.  Adult

emergence of Indianmeal moth was differentially reduced depending on the diet and packa

product exposed to insecticides. In each of the field trials aerosol particles were effectively 

distributed underneath stacked product and machinery in each of the field trials.  Acro

nt scenarios with the combination of methoprene with synergized pyrethrin, mortality o

exposed eggs ranged from 70 to 85%. These results indicate significant effects on the popul

dynamics of insects infesting these products.  Additionally, the most expensive treatment op

is not always the lowest risk; in this case, 3% pyrethrin plus methoprene treatment did not re

survival to the adult stage as much as the other treatments.  These results represent the efficacy 

of these chemicals for eggs of the Indianmeal moth only.  Consideration of other pest species and 

particular needs of each facility must be carefully assessed before insecticide application.  

In Chapter 4, model simulations determined how Indianmeal moth populations respo

various temperatures and insecticide treatments on two different diets.  Insecticide interventions

resulted in a different respo
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temper llow a 

d 

n 

o pre-

its 

rst-

ven their high reproductive 

capacit tained 

 

es 

ns 

nge 

econom

atures would also be expected given that survivorship was modeled in wheat to fo

linear regression, while in raisins the model was developed to fit a quadratic equation.  The 

wheat diet is an example of a “worst case” scenario because it is a product that can support rapi

population growth.  Populations on the wheat diet were predicted to grow so rapidly that eve

with an insecticide treatment that produced 95% mortality, population levels rebounded t

treatment levels within a few days.  Aside from the biological parameters (temperature-

dependent development time, survivorship and fecundity) placed on the Indianmeal moth 

populations and the occurrence of insecticide treatment events, the model does not include lim

based on the amount or availability of a food source.  Despite the simulation of these “wo

case” conditions, populations of Indianmeal moth can grow rapidly gi

y, so management of the Indianmeal moth in any area containing products that con

wheat diet would be crucial to avoid devastating product loss.  Overall feasibility in terms of

chemical cost and risk related to mortality are presented in each chapter (1-4) in the form of a 

partial budget analysis.  

Treatments in the overall economic model are based on a mix of two diets (wheat and 

raisins), on which Indianmeal moth survives very well and very poorly.  These types of 

simulations are realistic given that warehouse environments may have many different food typ

stored in close proximity to one another.  Possibilities for simulations are limited only by 

available pest population growth models and variable cost information.  While my simulatio

and economic models do not include every possible treatment scenario, I have presented a ra

for which decisions about insecticide type, application type, and frequency could be made under 

the available model conditions.  It may be possible to compare and optimize for non-chemical 

pest management options such as those already modeled and analyzed, such as chilled air 

aeration, ambient air aeration fumigation and heat treatments of facilities.  My results are 

especially useful when comparing management strategies such as those listed with costs of low 

risk insecticides.  

 Further research must be done to build more exact population growth and 

ic models related to Indianmeal moth control.  One major area where more information is 

needed is how adults are affected by methoprene.  While literature suggests there are sub-lethal 

effects associated with methoprene, there have been no studies to date on the Indianmeal moth.  
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As aerosol insecticide treatments becoming increasingly utilized, more field studies must be 

conducted to assess the effects of these chemicals on other stored product pests. 
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