
 
A COMPARISON OF HYPOTHESIS TESTING PROCEDURES FOR TWO 

POPULATION PROPORTIONS 
 
 

by 
 
 
 

MOLLY HORT 
 
 

A.S., Garden City Community College, 2003 
 

B.S., Kansas State University, 2005 
 

 
 

A REPORT 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

 MASTER OF SCIENCE 
 
 

Department of Statistics 
College of Arts and Sciences 

 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2008 
 

Approved by: 
 
 
 
 

Major Professor 
Dr. John Boyer

 



 

Abstract 

 It has been shown that the most straightforward approach to testing for the difference of 

two independent population proportions, called the Wald procedure, tends to declare differences 

too often.  Because of this poor performance, various researchers have proposed simple 

adjustments to the Wald approach that tend to provide significance levels closer to the nominal.  

Additionally, several tests that take advantage of different methodologies have been proposed. 

 This paper extends the work of Tebbs and Roths (2008), who wrote an R program to 

compare confidence interval coverage for a variety of these procedures when used to estimate a 

contrast in two or more binomial parameters.  Their program has been adapted to generate exact 

significance levels and power for the two parameter hypothesis testing situation. 

 Several combinations of binomial parameters and sample sizes are considered.  

Recommendations for a choice of procedure are made for practical situations.  
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CHAPTER 1 - Introduction and the Wald Estimator 

Binomial parameters are of interest in many different areas of statistical research.  In 

particular, two sample problems are often investigated to see if there is a difference in two 

binomial proportions.  One can use confidence intervals to estimate the difference in proportions 

or do a formal hypothesis test with the null hypothesis being that H0: p1 = p2.  Because of the 

widespread use of binomial parameters, various statisticians have developed confidence interval 

formulas and testing procedures for dealing with binomial random variables.  Pertinent 

references regarding confidence interval construction include Brown, Cai, and DasGupta (2001), 

Reiczigel (2003), Zhou, Tsao and Qin (2004), and Brown and Li (2005).   

The usual solution to this problem, which is taught in introductory statistics courses, is to 

use the asymptotic normality of the sample fractions and test a hypothesis about the difference 

between two parameters using maximum likelihood methods.  First, suppose that X1 and X2 are 

independent binomial random variables such that X1 ~ Bin(n1, p1) and X2 ~ Bin(n2, p2).  Then, an 

approximate 100(1-α)% confidence interval for the difference in proportions, p1 - p2 is defined as 

 1 1 2 2
1 2 / 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) p p p pp p z
n nα
− −

− ± +        (1.1) 

where the maximum likelihood estimator (MLE) of  is ip̂ .
i

i

n
x

 

An equivalent test of H0:  p1 = p2 versus Ha:  p1 ≠ p2 would call for one to reject H0 if 

 1 2
/ 2
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ˆ ˆ
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−
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where  is the standard normal deviate.  / 2zα

This confidence interval and testing procedure was developed by Abraham Wald and is 

perhaps the most straightforward way to test two-tailed hypotheses about two binomial 

proportions (Agresti & Caffo, 2000).  Clearly, there is a comparable version of this test for a one-

tailed alternative.    
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To illustrate the two ideas given above, consider the example below (Anderson & 

Williams, 2008). 

Example:  A 2003 New York Times/CBS News poll sampled 523 adults who were 

planning a vacation during the next six months and found that 141 were expecting to travel by 

airplane.  A similar survey question in a May 1993 New York Times/CBS News poll found that 

of 477 adults who were planning a vacation in the next six months, 81 were expecting to travel 

by airplane. 

A 95% confidence interval for the difference in proportions for the two polls can be 

computed as follows:  

 

1 2
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1 2
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Therefore, the difference in proportions is estimated to be between 0.0490 and 0.1506.  In 

other words, the percentage of adults who were planning a vacation in the next six months was 

estimated to be between 4.9% and 15.06% more in 2003 than in 1993.  From this confidence 

interval, it can be concluded with 95% confidence that there is a non-zero difference between the 

two population proportions.  

Equivalently, one could perform a hypothesis test with this data to test the equality of 

population proportions.  In that case, the hypotheses 

 H0:  p1 = p2 vs. Ha:  p1 ≠ p2 

would be tested by generating the test statistic 
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This results in a two-sided p-value < 0.0001.  The null hypothesis is rejected at the 5% 

level of significance and a difference between the two population proportions is concluded.  This 

is consistent with the results of the confidence interval approach above.   

As mentioned previously, the aforementioned confidence interval is commonly referred 

to as the Wald interval.  However, as will be discussed later in this paper, the Wald interval 

performs poorly under certain conditions (Agresti & Caffo, 2000).  Because of this, others have 

developed alternative approaches to constructing binomial confidence intervals that seem to 

perform better under those conditions. 

Chapter 2 of this paper begins with a discussion of the limitations of the Wald interval 

and suggests why there is a need to adjust confidence intervals to account for these limitations.  

Other proposed estimators will also be discussed in Chapter 2, including the Laplace-Wald, 

Price-Bonett, Haldane, and Jeffreys-Perks intervals.  Chapter 3 will discuss the issues with the 

aforementioned confidence intervals, both computationally and performance-wise.  Chapter 4 

will present two new interval estimators proposed by Roths and Tebbs in their 2006 paper.  It 

will also describe their computer program, which computes coverage probabilities for each of the 

estimators described.  Finally, there will be an explanation of how to use their program to 

compute exact levels of significance and power in performing a two-tailed test of hypotheses 

about the difference between two independent binomial parameters.  Chapter 5 will present the 

results of the power study.  The paper will conclude in Chapter 6 with some recommendations 

and conclusions based on the power study.   
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CHAPTER 2 - Alternatives to the Wald Interval 

Limitations of Wald Approach and Reason for Studying Other Estimators 
It has been shown by Price and Bonett (2004) that confidence intervals found using the 

Wald approach discussed in Chapter 1 often do not give the desired nominal coverage.  

Generally, the Wald approach behaves poorly when sample sizes are small, with the most 

dramatic results when each pi is near zero or one.  Moreover, Agresti and Caffo (2000) note that 

the coverage is often well below the nominal level, regardless of how large the sample size is.   

Because of this lowered coverage probability, simple adjustments have been proposed by 

various researchers to obtain coverage probabilities closer to the nominal level.   

Alternatives 

Laplace-Wald 

The simplest adjustment to account for this lowered coverage probability with small 

sample sizes is to add a count of one to the successes and a count of one to the failures for each 

sample and then compute the usual Wald interval based on this new dataset.  In other words, ni 

and  in equation (1.1) are replaced by nip̂ i* = ni + 2 and   =  (x*ˆ ip i + 1) / ni*.  This interval seems 

to require a relatively minor adjustment but tends to improve coverage probabilities without 

making the computation more difficult.  Adjustments of this sort were proposed by Wilson 

(1927).  However, this paper uses the specific version described in Greenland (2001). 

Price-Bonett 

Another simple adjustment as mentioned in Roths and Tebbs (2008) was developed by 

Price and Bonett, who demonstrated that their interval holds closest to the correct coverage 

probability.  In a fashion similar to the Laplace-Wald Interval, the Price-Bonnett modifications 

involves adding a count of 2/k successes and a count of 2/k failures for each sample, where k is 

the number of nonzero constants among c1,c2,…,ck and c1,c2,…,ck are the specified constants for 

the interval estimate of a linear combination 1 1 2 2 ... k kc p c p c pθ = + + +  of k binomial proportions.  

In our two sample case, k will be 2.  Therefore, ni and  in (1.1) are replaced by nip̂ i* = ni + 2 and  
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*ˆ ip   =  (xi + 1) / ni*.  Clearly, this interval reduces to the Laplace-Wald interval when dealing 

with a two population problem, as is the focus of this paper.  Because of this, any discussions 

into the Price-Bonett interval will be dropped hereafter.     

Haldane and Jeffreys-Perks 

The estimators that are called the Haldane and Jeffreys-Perks estimators result from a 

Bayesian approach to the problem.  One applies a prior distribution to each of the pi’s which has 

a Beta distribution with both parameters equal to α (thus resulting in a density which is 

symmetric about ½), and so the joint posterior distribution of the Pi’s, given X1,,X2,…,Xk  = 

x1,x2,…,xk can be shown to be 
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i i
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+ − −

=
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for 0 < pi < 1, where ( ) (( , )
( 2 )

i i i
i i i
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x n xx n x
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)α αβ α α
α

Γ + Γ − +
+ − + =

Γ +
.  One then transforms the 

density by considering θ1 = p1 – p2 and θ2 = p1 + p2.  In this context, θ2 is a nuisance parameter to 

be dealt with.  Following the approach of Beal (1987), θ2 is replaced by its posterior mean 

1 2

1 22 2
x x

n n
α α
α α

+ +
+

+ +
, and a resulting 100(1-α)% confidence interval is determined from the one-

dimensional posterior for θ1. 

 It can be shown that the random variable θ1 is asymptotically normal, although with a 

complicated variance.  This asymptotic normality is then used to generate a 100(1-α)% 

confidence interval estimate of θ1. 

 The special case of α = 0 results in the Haldane interval.  One should note that in this 

particular case, the value of θ2 that is used is the sum of the two maximum likelihood estimators 

of p1 and p2 respectively.  Similarly, the special case of applying α = ½ results in the Jeffreys-

Perks interval.    
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CHAPTER 3 - Problems with Estimators 

The Wald Interval discussed in Chapter 1 requires very little in the way of computation 

and is usually the preferred method when teaching introductory statistics students.  Though 

computationally straightforward, this interval generally is not recommended unless sample sizes 

are very large due to the unsatisfactory coverage probability.  As noted previously, a greater 

problem exists when the population proportions are near zero or one (Roths & Tebbs, 2006).  

Another problem with the Wald interval is that, because of how the interval is constructed, it is 

entirely possible to obtain interval limits outside of the interval [-1, 1].  This makes no sense 

when dealing with proportions, and thus poses a problem.  Additionally, Roths and Tebbs (2008) 

have shown that the Wald interval is often anticonservative.   

The modification proposed by Greenland (2001) is very slight and does not complicate 

the computations.  However, like the Wald interval, it may still generate an interval that makes 

no sense because of values outside of the interval [-1, 1].  The Laplace-Wald modification also 

tends to be a little conservative, resulting in significance levels below the nominal level. 

 The Haldane interval seems to be anticonservative according to the analysis performed by 

Roths and Tebbs (2008).  Due to the complicated computations and anticonservative nature of 

the Haldane interval, it appears that this interval would not be a good choice under the conditions 

cited by Roths and Tebbs.  However, those conditions are reduced to a two population case in 

this paper to investigate the Haldane interval further.  

 The last interval discussed thus far was the Jeffreys-Perks interval.  The Jeffreys-Perks 

interval seems to not have as many problems as the others.  It has been shown by Roths and 

Tebbs (2008) that the Jeffreys-Perks interval rivals the Laplace-Wald interval.  It is, however, 

considerably more computationally complicated than the simple adjustment needed in the 

Laplace-Wald interval.   

 Because of the computational and performance issues identified above for the estimators 

described thus far, Roths and Tebbs (2006) recently developed two closely related alternatives to 

deal with this problem.  Chapter 4 will describe these new estimators in detail, as well as provide 

a simplification to the two-population case that is dealt with in this paper. 

 6



CHAPTER 4 - Tebbs/Roths Work 

Confidence Interval Approach to Linear Combinations 
In Chapter 2, a description of the procedure for constructing the Haldane and Jeffreys-

Perks intervals was given.  The specific α value needed to produce the Haldane interval from 

Equation (2.1) is α = 0, and α = ½ is needed to produce the Jeffreys-Perks interval.  Specifying 

an α value in these two intervals could create a problem if the α value specified constitutes a poor 

choice.  In this case, the posterior distribution could be far from what the true posterior 

distribution should be.  Consequently, the posterior mean estimate could be incorrect, and hence, 

the confidence interval as well.  To account for this, Roths and Tebbs (2006) have developed a 

parametric empirical-Bayesian approach that may work better in such situations.  They have 

developed two different approaches to this problem, one using an estimate of α based on 

Maximum-Likelihood (MLE) methods, and the other using Method of Moments (MOM).  It 

should be noted that both of these approaches are motivated by the work performed by Beal 

(1987).   

The MLE approach involves first noting that the joint marginal distribution for x1 and x2 

depends on α; that is 

( ) 1 21 1 1 2 2 2
1 2

1 2

( , ) ( ,, |
( , ) ( , )

n nx n x x n xf x x
x x

)β α α β αα
β α α β α α

⎛ ⎞ ⎛ ⎞+ − + + − +
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i α . 

One then treats α as the unknown parameter here, and α can be estimated using conventional 

methods.  Roths and Tebbs (2006) estimate α by maximum likelihood methods, solving 

 1 2( , | ) 0f x x α
α
∂

=
∂

 

for α using numerical methods.  The resulting estimator, computed in exactly the same way as 

the Haldane and Jeffreys-Perks versions, is called the Empirical Bayesian MLE (EBMLE) 

estimator (Roths & Tebbs, 2006).  They note that on rare occasions, the value of α produced by 

this method may be infinite and so they provide a remedy for that situation. 

 In a similar fashion, they used the method of moments technique to find estimates of α.  

Since the means of x1 and x2 are both free of α, it involves equating theoretical second moments 
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of x1 and x2 to the observed second moments and solving for α.  The resulting estimator they 

labeled Empirical Bayesian MOM (EBMOM). 

Description of R Program 
Roths and Tebbs (2008) developed an R program to compute confidence interval limits 

for a linear combination 1 1 2 2 ... k kc p c p c pθ = + + +  using all intervals discussed in this paper.  In 

addition to the intervals, this program also reports exact coverage probability, exact mean length 

of the confidence interval, and the conditional mean length ratio for any linear combination of 

population proportions and any collection of sample sizes.   

In their work, Roths and Tebbs (2006) describe their reasons for using the conditional 

mean length ratio provided by the R program.  Desirable confidence intervals are often precise 

and cover the difference p1 – p2 with a probability at the nominal level or above.  However, not 

all confidence intervals obtain this.  In those cases, there is a question of whether or not it is 

worth having a narrower confidence interval that does not cover this difference.  This could lead 

the researcher astray. 

In light of this problem, Roths and Tebbs (2006) discussed a method that calls for the 

researcher to compute the mean length of the confidence interval for those cases where p1 – p2 is 

included (µI) and to compute the mean length for those cases where p1 – p2 is excluded from the 

interval (µE).  Then, the conditional mean length ratio is defined as µI/µE, for which smaller 

values are desired.  If a larger value occurs (greater than one), this indicates the mean length is 

smaller when p1 – p2 is excluded and larger when p1 – p2 is included, which is not desirable to a 

researcher. 

The R program, in its entirety, is in Appendix A of this paper.  In addition, this program 

can be found at http://www.stat.sc.edu/~tebbs/index.htm.   

Converting to a Power Study for Difference in Two Proportions 
Since there has already been significant work regarding confidence interval construction 

and consideration of which interval works best in certain situations, the focus here is not on 

confidence intervals, but instead on size and power in a hypothesis test about the difference 

between two independent binomial parameters.  The confidence intervals described thus far can 

be used as methods to investigate power in such a hypothesis test.  The power study focuses on 
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the null hypothesis H0: , and the two-sided alternative H1 2 0p p− = a: 1 2 0p p− ≠ .  It has been 

widely taught in introductory statistics courses that this two sided hypothesis can be tested using 

a confidence interval around p1 - p2, and rejecting H0 if and only if the confidence interval for p1 

- p2 fails to contain zero.  Therefore, the R program developed by Roths and Tebbs (2008) can be 

used with any contrast c1,c2,…,ck.   

Restricting attention to the two sample case, (c1,c2) = (1,-1) is used and hence confidence 

intervals for p1 – p2 are constructed based on the methods described in Chapter 2.   

The exact coverage probability can then be obtained from the R program, and for those 

cases where p1 and p2 are equal, one can subtract this probability from one to obtain the size of 

the test.   

To obtain power at alternative parameter configurations, p1 and p2 are set to differing 

values.  For example, if p1 is set at 0.5 and p2 is set at 0.4, then p1 – p2 = 0.1.  The program is 

versatile enough that is allows us to obtain coverage probabilities as if p1 – p2 = 0.  Therefore, a 

type II error is committed here if the resulting interval covers zero, hence the coverage 

probability is the type II error probability.  Therefore, to obtain the power of the test, one needs 

only to subtract this coverage probability from one.  In this fashion, the confidence interval 

approaches discussed in Chapter 2 may be used to investigate both size and power of the various 

testing procedures to determine which, if any, produce the desired or optimum results in a 

multitude of situations.   

A description of how to use the R program developed by Roths and Tebbs (2008) follows 

as it is used in this paper.  Although it is written in a more general context, attention is restricted 

to the use of two sample problems as described in this paper.  Once the code has been pasted into 

R, the function needed is: 

 

 > results(c(c1,c2),c(n1,n2),c(p1,p2),conflevel,method) 

 

As mentioned in the preceding paragraph, c1 = 1 and c2 = -1 for the two sample case.  Any 

specified combination of sample sizes n1 and n2 are permitted, as well as any combination of 

population proportions p1 and p2.  In the code, conflevel is the desired confidence level for the 

intervals, and method is chosen using the following 7 choices: 
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1 – Wald 

 2 – Laplace-Wald 

 3 – Price-Bonett 

 4 – Haldane 

 5 – Jeffreys-Perks 

 6 – EBMLE 

 7 – EBMOM 

The program outputs include the exact coverage probability and mean length.   

 A sample of the output from a run of this program is provided below.  The example used 

assumes two independent binomial random variables X1 and X2 such that X1 ~ Bin(10, 0.2) and 

X2 ~ Bin(25, 0.7).  

> results(c(1,-1),c(10,25),c(0.2,0.7),0.95,5) 

[1] 0.1817852 0.5692779 1.1952525 

As noted, this finds, for the Jeffreys-Perks procedure, the exact coverage probability, the exact 

mean length of the confidence interval, and the conditional mean length ratio, as discussed in this 

chapter.  It is imperative to note that the output from this program includes coverage probabilities 

of p1 – p2 = 0 instead of the true value of p1 – p2, which is 0.2 – 0.7 = -0.5 in this example.   

Description of the Power Study 
The power study involved the use of four different combinations of sample sizes.  These 

combinations were chosen to determine the effect of sample size on power in each of the 

methods discussed.  The four sample size combinations (n1, n2) used were:  (10, 10), (10, 25), 

(25, 10), and (25, 25).   

To investigate the effect of proportions on power, a variety of combinations of p1 and p2 

were used for each of the sample sizes listed above.  The value of p1 was fixed at 0.0 and p2 was 

varied from 0.0 to 1.00 by 0.05.  In addition, p1 was fixed at 0.1, 0.2, 0.3, 0.4, and 0.5 while 

varying p2 in the same fashion as just mentioned.  It is interesting to note why a fixed value of p1 

= 0.6 through p1 = 1.00 was not used.  This is because the power curves for the latter 

combinations of (p1, p2) would be exactly the same as the power curves for the former 

combinations of (p1, p2).  This is due to the binomial distribution being used in all calculations so 
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that, whether looking at the proportion of successes or the proportion of failures, the resulting 

power would be equivalent.   

In all power calculations, a confidence level of 0.95 was chosen, implying, of course, that 

the corresponding tests of hypotheses use a significance level of α = 0.05.  Certainly, any 

confidence level could be used to investigate power and the program could be run to see the 

results.  
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CHAPTER 5 - Exact Results of Power Study 

The previous section indicated which combinations of n1, n2, p1, and p2 values were used 

in this study.  Given the values stated, there are 24 power curve graphs included in this paper.  

All of these graphs can be found in Appendix B.  The results are described below, according to 

the fixed value of p1.  However, one might first note a few properties to look for. 

In order to compare power curves, one needs to first note the size of the test.  The size of 

a test is the probability of rejecting the null hypothesis when the null hypothesis is true.  This is 

also known as the type I error rate.  Therefore, as mentioned in Chapter 4, one would assess this 

by looking at the rejection probability where p1 = p2.     

If the size is approximately the same as the nominal level of 0.05, the power curves are 

suitable to compare.  Ideally, one would want the size to equal the nominal level, but this is often 

not the case.  As will be seen later, some methods have a size well above the nominal, which 

indicates that particular method would not be an optimal choice for analysis purposes.   

Results for p1 = 0.0 
In all of the different sample size configurations when p1 = p2 = 0.0, it is easy to see that 

the size of the test is zero.  This makes sense because, with p1 = p2 = 0.0, there are no successes 

in the dataset.  Therefore, p1 – p2 = 0 and the resulting confidence intervals will all contain zero, 

thus giving coverage probabilities of one and a size of zero.   

Another observation that can be seen from the graphs deals with comparing a small 

sample size to a relatively larger sample size.  As one would expect, by comparing Figure B-1 to 

Figure B-4, power tends to increase as sample sizes increase.  This is the case for all methods 

discussed in this paper.   

It is difficult to compare the six described methods in terms of power when dealing with 

population proportions that are both zero.  For this reason, other results with larger proportions 

will now be discussed. 
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Results for p1 = 0.10 
Figures B-5 through B-8 provide some interesting information.  Figure B-5 shows that 

the Wald approach has a significance level closer to the nominal level.  In contrast, the other 

interval approaches have a smaller significance level, making them more conservative tests.  

This significance level discrepancy raises a few questions.  Although it appears that the Wald 

approach results in greater power and the others provide less power, the discrepancy may be due 

to the conservativeness of those other tests.   

Looking at all of the figures relating to p1 = 0.10, it appears that the Haldane method 

results in high power, even while being slightly conservative.  As already mentioned, the Wald 

approach leads to higher power but also tends to be anticonservative.  The performance of the 

Haldane method can be seen best in Figure B-6.  The significance level of the test is below the 

nominal level, but it has higher power than the majority of the other tests.  This is consistent 

across all combinations of sample sizes.  Therefore, the Haldane method would be recommended 

when one population proportion is near 0.10.   

Results for p1 = 0.20 
Looking at Figures B-9 through B-12, it appears that the Wald approach results in the 

greatest power.  However, upon closer inspection, it can be seen that this approach has a size of 

nearly two times what it should be.  This means that the Wald approach tends to reject the null 

hypothesis a lot more often, even when it is true.  This could cause problems in many 

applications.  Because of this, it appears that the Wald approach is not suitable in maintaining a 

desired nominal level of coverage.  The figures also show that the other testing approaches seem 

to work well in maintaining the nominal level.   

The graphs show that the Haldane method provides higher power, regardless of sample 

sizes.  However, the Haldane method tends to be anticonservative in most sample size 

configurations. It can be seen that the Jeffreys-Perks approach results in significance levels 

slightly lower than the nominal level in all sample size configurations.  Therefore, this method 

provides good power while not risking a higher type I error rate.  The EBMLE method isn’t too 

far from the Jeffreys-Perks.  In a situation where one proportion is near 0.2, the Jeffreys-Perks 

approach would be recommended, with the EBMLE approach as a reasonable alternative.   
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Results for p1 = 0.30 
Figures B-13 to B-16 provide a similar conclusion as to which method to suggest.  

Comparing the significance levels for all methods, it is found that the EBMLE approach gives 

levels very close to the nominal level, being slightly conservative.  The Jeffreys-Perks method 

tends to give high power, but is a little anticonservative.   

In addition to having significance levels close to what is desired, the power of the 

EBMLE test is fairly high.  A few of the graphs seem to suggest the Haldane approach would 

result in greater power, but this is likely the consequence of an anticonservative test.  Therefore, 

it appears the EBMLE procedure would be recommended when one population proportion is 

near 0.30.   

Results for p1 = 0.40 
 When p1 = 0.40, if one is just looking at significance levels, the EBMLE procedure seems 

to provide the closest to nominal significance level.  However, by looking at Figures B-17 to B-

20, it is apparent that the EBMLE procedure results in somewhat smaller power than some of the 

other comparable procedures.   

Therefore, if one is to be entirely concerned about the type I error rate and keeping that 

rate at the nominal level, the EBMLE approach would be suggested.  If the type I error rate isn’t 

as much of a concern, the Jeffreys-Perks procedure would be a better fit.  This is because the 

significance level is very close to the nominal level but the power is higher than what is 

produced by the EBMLE procedure.  This would be a matter of personal preference and the 

decision would be made in accordance with the researcher’s objectives. 

Results for p1 = 0.50 
Looking at Figures B-21 to B-23, it appears that the Laplace-Wald, Haldane, Jeffreys-

Perks and EBMLE methods hold the highest power without compromising the type I error rate.  

One can also see by looking at Figure B-21 that the EBMOM procedure has a type I error rate 

very close to the four previously mentioned tests but gives lower power.  In contrast, the Wald 

approach, again, tends to be an anticonservative test.   

Upon closer inspection, one can see that the Haldane and Jeffreys-Perks approaches tend 

to produce somewhat anticonservative tests as compared to the EBMLE and Laplace-Wald tests.  
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Additionally, in Figure B-22, the EBMLE approach is somewhat superior to Laplace-Wald in 

terms of power.  Both of them have similar significance levels, but the EBMLE approach results 

in greater power.   

For all of the reasons discussed above, the EBMLE method was shown to produce greater 

power and closest to nominal significance levels.  Therefore, in situations where p1 = 0.5, the 

EBMLE method would be suggested.   

Another note can be made by looking at these graphs.  In Figure B-24, all of the curves 

are very similar.  This suggests that, as the ni’s  increase when p1 is near 0.5, all methods tend to 

give similar power curves.  In this case, for higher sample sizes, one could use any of the six 

methods and obtain a test with high power, assuming one population proportion is near 0.5.      
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CHAPTER 6 - Recommendations 

There are several noteworthy conclusions that come from this power study.  First, it 

appears that the Haldane approach results in higher power without compromising the type I error 

rate when one population proportion was near zero.  As one population proportion nears 0.2, it 

appears the Jeffreys-Perks procedure or the EBMLE procedure would result in higher power.  

Finally, the EBMLE procedure tends to provide the highest power when one proportion is near 

0.5 without resulting in an anticonservative test.      

Using the symmetry argument introduced in Chapter 4, it should also be noted that the 

procedures above work well for higher values of the proportion as well.  The Haldane approach 

would be best suited for a population proportion near one, whereas the Jeffreys-Perks or EBMLE 

procedures would work well when a population proportion is near 0.8, and the EBMLE 

procedure working well with a population proportion around 0.5 or 0.6.   

The power study also suggested, as was hypothesized, that the Wald procedure fails to 

achieve the desired significance level.  This is especially apparent when one population 

proportion is near zero or one.   

Finally, one might make note about what effect sample size has on power and 

significance levels.  It is worthwhile to investigate what happens when the two populations have 

differing sample sizes.  As it turns out, this doesn’t have a great effect on the power of the test.  

This effect can be seen by looking at all of the figures in Appendix B. 

Lastly, because one may not know what p1 and p2 are in a smaller sample size situation, 

an overall recommendation based on the findings in this report is given.  The EBMLE procedure 

most often results in the highest power without ending up with an anticonservative test.  Even in 

those situations where some of the other methods seem better, the EBMLE procedure is 

comparable, as it holds the desired significance level and has similar power.  Therefore, the 

EBMLE procedure is recommended, as it gives high power without compromising the type I 

error rate. 
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Appendix A - R Program 

           ######################################################################## 

## R code for Tebbs and Roths (2007)                                                                              ## 

## "New large-sample confidence intervals for a linear combination of binomial           ##     

##                                                    proportions"                                                               ## 

## Journal of Statistical Planning and Inference, in press.                                                ## 

## Date: 23 October 2006                                                                                                  ## 

## Revised: 21 May 2007                                                                                                  ## 

## Please email Scott Roths (sar320@psu.edu) if you have any questions.                      ## 

######################################################################## 

gram = function(x) 

{ 

# takes matrix of independent columns and returns matrix of orthonormal columns 

# algorithm from Christensen 

r = length(x[1,]) 

y = matrix(1, nr=length(x[,1]), nc=r) 

y[,1] = x[,1] / sqrt(sum(x[,1]^2)) 

temp = x[,2] - sum(x[,2]*y[,1])*y[,1] 

y[,2] = temp / sqrt(sum(temp^2)) 

if(r>2) 

{ 

for(s in 3:r) 

{ 

temp = x[,s] - apply(apply(x[,s]*y[,1:(s-1)],2,sum)*t(y[,1:(s-1)]),2,sum) 

y[,s] = temp / sqrt(sum(temp^2)) 

} 

} 

return(y) 

} 
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######################################################################## 

ortho.comp = function(x) 

{ 

# takes a row vector and returns basis of orthogonal rows 

# 'normalized' such that M'M = (x'x)*I 

# g-by-g identity matrix 

g = length(x) 

M = matrix(0, nr=g, nc=g) 

M[row(M) == col(M)] = 1 

# replace appropriate row with x 

i = min((1:g)[x!=0]) 

M[i,] = x 

# orthogonalize M 

M = sqrt(sum(x^2))*gram(t(M)) 

return(t(M)) 

} 

######################################################################## 

limits = function(c,n,y,conf=.95,type=4,n.old=NULL,y.old=NULL) 

{ 

# returns limits for single experiment with at least 2 groups 

quad.form = function() # local to limits 

{ 

# returns truncated roots of c2x^2+c1x+c0=0 

discr = c1^2-4*c2*c0 

if(discr<0) return(c(sum(c*y/n),sum(c*y/n))) 

else return(c(max(sum(c[c<0]),(-c1-sqrt(discr))/2/c2),min(sum(c[c>0]),(-

c1+sqrt(discr))/2/c2))) 

} 

dln.bb = function(alpha) # local to 'limits' 

{ 

# evaluates derivative of log-likelihood of Y 
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alpha = alpha*rep(1,g) # makes alpha a vector 

temp1 = rbind(2*alpha,2*alpha,y.old+alpha,n.old-y.old+alpha) 

temp2 = rbind(alpha,alpha,n.old+2*alpha,n.old+2*alpha) 

sum(apply(temp1,2,digamma)) - sum(apply(temp2,2,digamma)) 

} 

is.good = function() # local to 'limits' 

{ 

# returns 1 if root exists between 0.005 and 1000, -1 otherwise 

-sign(dln.bb(0.005)*dln.bb(1000)) 

} 

g = length(c) # number of binomial groups 

chi = qchisq(conf,1) # critical value 

if(type==1 || type==2 || type==3) 

{ 

if(type==2) # Laplace-Wald 

{ 

# adds one success and one failure 

n = n+2 

y = y+1 

} 

if(type==3) # Price Bonett 

{ 

k = length(c[c!=0]) # number of nonzero coefficients in c 

n = n+4/k # adds 4/k trials 

y = y+2/k # adds 2/k successes 

} 

moe = sqrt(chi*(sum((c/n)^2*y) - sum((c*y/n)^2/n))) 

l = max(sum(c[c<0]),sum(c*y/n)-moe) 

u = min(sum(c[c>0]),sum(c*y/n)+moe) 

return(c(l,u)) 

} 
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else # data-driven formulas 

{ 

L = ortho.comp(c) # completes orthogonal rows 

mult = sum(c^2) # multiple st L'L = mult*Identity 

if(is.null(n.old)) 

{ 

# previous information not incorporated 

n.old = n 

y.old = y 

} 

if(type==4) alpha = 0 # extended Haldane limits 

if(type==5) alpha = .5 # extended Jeffreys-Perks limits 

if(type==6) # extended MLE limits 

{ 

# if root exists, assign that to alpha, else -1 

alpha = ifelse(is.good()==1, uniroot(dln.bb,c(.005,1000),tol=10**(-5))$root, -1) 

# if all success counts are endpoints, assign 0 to alpha 

if(sum((n.old-y.old)*y.old)==0) alpha = 0 

} 

if(type==7) # extended MOM limits 

{ 

if(sum(abs(rep(n.old[1],g)-n.old))==0) # equal sample sizes 

{ 

denom = g*n.old[1]^2+g*n.old[1]-4*sum(y.old^2) 

alpha = ifelse(denom==0, -1, max(0,2*sum(y.old^2)-g*n.old[1]^2/denom)) 

} 

else # unequal sample sizes 

{ 

denom = 4*y.old^2-n.old^2-n.old 

alpha = ifelse(prod(denom)==0, -1, max(0,mean((n.old^2-2*y.old^2)/denom))) 

} 
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} 

if(alpha<0) a = apply(L,1,sum)/2 # if alpha is infinite 

else a = L%*%((y+alpha)/(n+2*alpha)) # if alpha is finite 

a1 = sum(c*y/n) # point estimator 

a = as.matrix(a[2:g]) # nuisance parameters 

L = as.matrix(t(L)[,2:g]) # coefficients of nuisance parameters 

# coefficients of the quadratic 

c2 = 1+chi*sum(c^4/n)/mult^2 

c1 = -2*a1-chi*sum(c^3/n)/mult+2*chi*sum(c^3/n*L%*%a)/mult^2 

c0 = a1^2-chi*sum(c^2/n*L%*%a)/mult+chi*sum(c^2/n*L%*%a^2)/mult^2 

return(quad.form()) 

} 

} 

######################################################################## 

results = function(c,n,p,conf,type) 

{ 

# Returns the exact coverage probability and mean length 

# c - coefficients of interest 

# n - sample sizes 

# p - population proportions 

# conf - confidence coefficient 

# type - specifies which interval formula 

# (1) Wald 

# (2) Laplace-Wald 

# (3) Price-Bonett 

# (4) Haldane 

# (5) Jeffreys-Perks 

# (6) MLE 

# (7) MOM 

wts = function(x) 

{ 
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# local to 'results' 

# returns cover indicator and width weighted by prob 

lmt = limits(c,n,x,conf,type) 

pmf = prod(choose(n,x)*p^x*(1-p)^(n-x)) 

cov = ifelse(lmt[1]<=a1 && a1<=lmt[2], 1, 0) 

wid = lmt[2]-lmt[1] 

wid.i = cov*wid # width for intervals covering parameter 

return(pmf*c(cov,wid,wid.i)) 

} 

# considering just groups of interest 

g = length(c) 

nonz = (1:g)[c!=0] 

k = length(nonz) 

c = c[nonz] 

n = n[nonz] 

p = p[nonz] 

a1 = 0 # linear combination of interest 

N = prod(n+1) # number of values of y in support 

M = matrix(nr=N, nc=k) 

M[,1] = rep(0:n[1], length.out=N, each=1) 

for(i in 2:k) 

{ 

# creates matrix of y row vectors 

M[,i] = rep(0:n[i], length.out=N, each=prod(n[1:(i-1)]+1)) 

} 

temp = apply(apply(M,1,wts),1,sum) # computes temporary results 

wid.e = (temp[2]-temp[3])/(1-temp[1]) 

wid.i = temp[3]/temp[1] 

temp[3] = wid.i/wid.e 

temp 

} 
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######################################################################## 

limits.all = function(c,n,y,conf) 

{ 

# returns all six confidence intervals 

ret = matrix(nr=6,nc=2,dimnames=list(c("Wald", "Laplace", 

"Price-Bonett","Haldane","Jeffreys-Perks ","EBMLE"),c("Lower", "Upper"))) 

for(i in 1:6) ret[i,] = limits(c,n,y,conf,type=i) 

round(ret,4) 

} 
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Appendix B - Power Study Results 
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Figure B-1 
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Figure B-2 
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Figure B-3 
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Figure B-4 
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Figure B-5 
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Figure B-6 
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Figure B-7 
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Figure B-8 
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Figure B-9 
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Figure B-11 
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n1 = n2 = 10, p1 = 0.30
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Figure B-13 
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Figure B-14 

 32



n1 = 25, n2 = 10, p1 = 0.30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p2

Po
w

er

W
LW
H, EBMOM
JP
EBMLE

 
Figure B-15 
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Figure B-16 
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n1 = n2 = 10, p1 = 0.40
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Figure B-17 
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Figure B-21 

 

 

 

 

n1 = 10, n2 = 25, p1 = 0.5
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Figure B-22 
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n1 = 25, n2 = 10, p1 = 0.5
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Figure B-23 
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