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ABSTRACT 
 

Handgrip contractions are a useful exercise for assessing muscle fatigue in the 

forearm musculature. Most conventional hand-forearm ergometer systems require the 

researcher to manually guide subject activity, collect subject data, and assess subject 

fatigue after it has occurred. Since post-processing tools are not standardized for this type 

of experiment, researchers resort to building their own tools. This process can make 

comparing results between research groups difficult.   

This thesis presents updates to a hand-forearm ergometer system that automate the 

control, data-acquisition, and data-analysis mechanisms. The automated system utilizes a 

LabVIEW virtual instrument as the system centerpiece; it provides the subject/researcher 

interfaces and coordinates data acquisition from both traditional and new sensors. The 

system also processes the hand-forearm data within the LabVIEW environment as the 

data are collected. This allows the researcher to better understand the onset of subject 

fatigue while an experiment is in progress. 

System upgrades relative to prior work include the addition of new parameters to the 

researcher display, a change in the subject display from a binary up-down display to a 

sliding bar for better control over subject grip state, and a software update from a simple 

data acquisition and display system to a real-time processing system. 

The toolset has proven to be a viable support resource for experimental studies 

performed in the Kansas State University Human Exercise Physiology Laboratory that 

target muscle fatigue in human forearms. Initial data acquired during these tests indicate 

the viability of the system to acquire consistent and physiologically meaningful data 

while providing a useable toolset for follow-on data analyses. 
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 INTRODUCTION CHAPTER 1:

A.  Motivation 

The work described in this thesis was supported by the Kansas State University 

(KSU) Human Exercise Physiology Laboratory (KSU Department of Kinesiology) and 

the KSU Department of Electrical & Computer Engineering (ECE) with funding from the 

NASA Human Research Program – Research and Technology Development to Support 

Crew Health and Performance in Space Exploration Missions. The NASA grant aims to 

provide tools that can help to assess astronaut health during space exploration. One focus 

of the KSU work is assessing subject fatigue in forearm musculature during intense or 

repetitive tasks. The studies that motivated the technical work presented in this document 

focused on monitoring muscle fatigue in human forearms using a two-hand ergometer 

system. The reliability, accuracy, and integrity of that experimental work depended on 

how data were collected, processed, and displayed [1]. Typically, data collection and 

processing, as well as subject movement cues, are all addressed manually by the 

researcher. This can make comparing and correlating data difficult even within a single 

research group. One solution is to automate these processes to improve data quality and 

experimental consistency [2]. This was a primary driver for the work presented here. 

B.  Traditional Hand-Forearm Ergometer Systems 

Handgrip contractions are a standard means to evaluate the intact muscular system [3, 

4] and mechanisms of fatigue [5]. Traditional hand-forearm ergometers are limited to a 

subject pulling against a suspended weight or spring with a single limb. This type of 

resistance allows the researcher to test the subject only at a single work rate per session. 

The researcher must prompt the subject with continual squeeze-release-rest cues while 

also manually acquiring data and identifying subject fatigue [6, 7]. Recent hand-forearm 

ergometer advancements have automated the data collection process [8, 9] and offer 

limited controls for data acquisition and post-processing. However, these systems tend to 

be experimentally specific and do not offer the researcher a central interface to control 

data collection and processing [8]. The work presented here represents an advancement in 
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hand-forearm ergometry, where an automated hand-forearm ergometer previously 

developed at Kansas State University [10-12] has been updated to incorporate real-time 

data processing. 

C.  Fatigue Parameters 

An electromyogram (EMG) is an electrode-acquired, time-domain signal that 

represents the electrical activity in the musculature nearest to an electrode pair.  A typical 

electromyographic signal and its accompanying frequency-domain power spectrum are 

depicted in Figure 1.1. EMG parameters traditionally used to track the progression of 

subject fatigue include mean and median power frequency [13, 14], rectified, integrated 

EMG [15], and the RMS value of the EMG [16, 17]. Most studies employ sustained 

muscle contractions when measuring fatigue, where the extended muscle ‘bursts’ are 

divided up by time and parameters are calculated for the specific time blocks. By 

definition, these types of experiments are robust due to the minimization of movement 

artifacts. However, most real-world activities do not involve sustained muscle 

contractions but rather a series of muscle contractions. This makes identifying fatigue 

relatively difficult in comparison to prior work, which ignored the effects of the rest cycle 

on muscle behavior. Until these effects are better understood, researchers that work in 

this area are constrained to apply the parameters used in sustained contractions to studies 

that involve repetitive contractions.  
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Figure 1.1 Typical EMG burst with fatigue parameter calculations. 

The mean and median power frequencies are intuitive fatigue parameters. Two types 

of muscle fibers exist: fast- and slow-twitch muscle fibers [18]. In fresh muscles, both 

types of muscle fibers engage to produce the force required to complete a task. As the 

subject continues the activity, the fast-twitch muscle fibers start to disengage, while the 

slow-twitch muscle fibers continue to contribute. This results in a shift in the EMG 

frequency spectrum which can be observed by tracking the changing mean and median 

power frequencies. These frequencies are calculated per burst using the following 

formulas [13]: 

mean frequency =  
∑ 𝑛∗|𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙

∑ |𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙

   

and 

median frequency = ∑ |𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙  > 0.5 * ∑ |𝐹𝐹𝐹(𝑛)| 

where n is a frequency index, |FFT(n)| represents the magnitude of the Fast Fourier 

Transform [19] of the EMG burst, and fl and fh are indices that relate to the lowest and 

highest frequencies, respectively. 

The RMS value (a.k.a., RMS voltage) of an EMG is another intuitive fatigue 

parameter. It is a measurement of the average amplitude of the EMG and represents the 
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amount of effort the muscle fibers must put forth to complete the task at hand. As a 

subject experiences fatigue, one of two things occurs: 1) more muscle units are recruited 

to maintain the desired force or 2) the motor unit firing rates increase [20]. Both cases 

result in an increase in EMG amplitude and therefore an increase in the RMS value of the 

EMG. The RMS value is calculated per burst using the following formula [17]: 

RMS = �1
k

 ∑ x𝑛2𝑛  , 

where n is an index value for the data (n = 1,2,3….), k is the total number of data points 

(a constant), and x is the value of the signal at a given n. 

The rectified, integrated EMG is a less intuitive fatigue parameter. Similar to the 

RMS value, iEMG is a measurement of the amount of energy in a muscle burst. As the 

subject experiences fatigue, the force-generating capacity of the muscle decreases, which 

leads to an increase in EMG amplitude at submaximal contractions [20]. The iEMG is 

calculated per burst using the formula 

𝑖𝑖𝑖𝑖[|𝑚(𝑡)|] = ∫ |𝑚(𝑡)| 𝑑𝑑𝑡
0   

where m(t) is the rectified EMG signal [15]. 

D.  Non-Traditional Fatigue Parameters 

Non-traditional fatigue parameters are parameters that are thought to be influenced by 

fatigue but are not agreed upon within the community. Zero crossing rate [13, 14, 21, 22], 

average rectified value [14, 20, 21], total spectral magnitude [14, 22], skewness, and 

kurtosis are such parameters that will also be discussed in this thesis.  

The zero crossing rate, useful when estimating muscle conduction velocity, relates to 

how fast the muscle fibers are firing. It has been suggested that muscle conduction 

velocity decreases as a subject fatigues [20, 23]. However, muscle conduction velocity 

has also been shown to correlate with the mean power frequency, which would reduce its 

effectiveness in a multivariate approach to detecting muscle fatigue [24]. Zero crossing 

rate is sensibly calculated by looking for the number of times the raw EMG signal crosses 

the time axis (both positive and negative slopes).  

The average rectified value (ARV) is similar to the RMS value of a muscle burst, but 

it differs in an important way. Instead of requiring the square root of a sum of squares, 
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the ARV utilizes the mean of the rectified, raw EMG signal. The ARV is calculated with 

the following formula [14]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉(𝑖) = 1
𝑁
∑ |𝑥𝑖(𝑛)|𝑁
𝑛=1 , 

where i is a burst index and n is an index variable used to step through a sequence of N 

values that comprise a burst. 

The total spectral magnitude (TSM) is similar to the iEMG, except that the iEMG is a 

time-domain parameter and the TSM is a frequency-domain parameter. The TSM is 

calculated by finding the area under the FFT magnitude spectrum [14]: 

𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[|𝑚(𝑓)|] = ∫ |𝑚(𝑓)| 𝑑𝑑𝑓
0   

The skewness and kurtosis values are fatigue parameters that have not been addressed 

in the literature with regard to muscle fatigue, yet their use seems natural given the 

change in EMG spectral shape that occurs with fatigue. In this thesis, the skewness and 

kurtosis values are calculated from the coefficients of the raw power spectrum 

(LabVIEW implementation – see Section 5.B) as well as from a Gaussian curve that is fit 

to the raw FFT power spectrum (MATLAB movie – see Section 5.B) [25]: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖) = ∑ (𝑌𝑖(𝑛)−𝑌�)3𝑁
𝑛=1

𝑠3
/𝑁  

and 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑖) = ∑ (𝑌𝑖(𝑛)−𝑌�)4𝑁
𝑛=1

𝑠4
/𝑁 , 

where i is a burst index, 𝑌𝑖(𝑛) is a spectral value, 𝑌� is the average spectral value, s is the 

standard deviation of the spectral values, and n and N are defined as above. 
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  BACKGROUND CHAPTER 2:

A.  Previous Hardware Design 

As illustrated in Figure 2.1 and Figure 2.2, the previous hardware design consisted of 

the existing hand-forearm ergometer, a pressurized force-tank system, an NI USB-6211 

data acquisition card, a Delsys EMG sensor, and a personal computer running LabVIEW 

version 10.0 in Windows 7  [10-12]. The pressure tank system uses a nitrogen gas 

mixture to pressurize the cylinder. As the subject squeezes and releases the metal bars of 

the ergometer, the pressurized force-tank system collects and transmits the force and 

displacement data via the USB-6211 unit, while the Delsys EMG sensor collects and 

transmits forearm EMG data to the computer via the same USB-6211 unit. The squeezing 

force exerted on the bars by the subject equates to the current pressure in the cylinder. 

The experiment continues until the subject can no longer squeeze the two bars together. 

The previous hardware/software design was comprised of five main parts: 

1. ergometer, 

2. pressure cylinder and manual control box, 

3. potentiometers and load cells, 

4. digital metronome and stopwatch (not depicted), and 

5. researcher interface. 

The ergometer has been utilized when experiments observing the forearm 

musculature are conducted. A typical experiment consists of the subject squeezing the 

two metal bars of the ergometer together repeatedly until the subject can no longer keep 

pace with the metronome. The researcher can manually control the pressure inside the 

cylinder via a potentiometer dial on the front of the manual control box, depicted in 

Figure 2.3, or with the LabVIEW interface depicted in Figure 2.4. The latter allows for 

both constant and ramp force experiments to be performed [10]. The hardware design has 

been kept the same for this work.  
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Figure 2.1 Previous hardware design. 

 

Figure 2.2 Demonstration of the hand-forearm ergometer system. 
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Potentiometer 
Knob

Switch to change 
from DAQ to 

Manual Control
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Display

Pressure
Display

 

Figure 2.3 Front panel of the manual cylinder-pressure control box. 

 

Figure 2.4 LabVIEW interface for the cylinder-pressure control box. 
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B.  Previous Software Design 

The previous software design [10-12] consisted of three simple LabVIEW virtual 

instruments (VIs): one VI to collect subject data, one VI to prompt the subject’s forearm 

movements, and one VI to manipulate the pressure inside the force-tank system. As 

illustrated in Figure 2.5 and Figure 2.6, the data collection VI utilized a DAQ assistant to 

retrieve the data from the correct ports and convert them to useful units: force in 

kilograms, displacement in centimeters, and EMG in microvolts. The subject interface, 

depicted in Figure 2.7, gave the subject visual cues for when to grip the ergometer 

handles. Depending on which experiment was in progress, the pressure of the force-tank 

system could be kept the same, increased, or decreased throughout the experiment. At the 

conclusion of the experiment, these data were processed using multiple MATLAB scripts 

to identify the muscle bursts, calculate various fatigue parameters, and compile a burst 

movie to display burst sequences over time. 

 

Figure 2.5 Previous researcher interface. 
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Figure 2.6 Previous software design. 

 

 

Figure 2.7 Previous subject display. The left image is an example of correct subject 

movement, and the right image is an example of incorrect subject movement. 
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 REAL-TIME PROCESSING OF EMG SIGNALS CHAPTER 3:

A. Producer and Consumer Loop Functionality 

To collect and analyze data at the same time can be an arduous task when computing 

power is limited. Analysis techniques are often complex and intensive, interfering with 

data collection processes. This effect is compounded as delayed collected data move into 

analysis processes, further bogging down the system. To prevent this situation, one can 

separate the data collection and analysis processes from each other and then further 

prioritize the data collection efforts. 

One option is to implement a producer-consumer loop system which contains two 

while() loops connected by a queueing system. The first while() loop manages the 

data collection process and the second loop manages the analysis techniques. Once data 

are collected, they are sent to the queueing system for the consumer loop to process. 

Since (a) LabVIEW uses data flow to control which blocks execute first and (b) the 

blocks are connected as producer—queue—consumer, the producer loop must be 

executed prior to the consumer loop before data are available to process in the producer 

loop. So by design, the producer-consumer loop system separates the data acquisition 

process from the data-analysis process, allowing the data acquisition functionality to run 

uninhibited from computer-intensive analyses.  

Figure 3.1 presents a flowchart that describes the high-level implementation of the 

producer-consumer loop employed for this work. The system first identifies whether the 

user wants to run a live experiment or run a replayed experiment, using a given text file, 

through a Boolean control variable on the researcher screen. Once the type of experiment 

is determined, the system then enters the producer loop. If the user has indicated that the 

experiment is a replay, then the system conditions the file by removing the header of the 

text file. As stated earlier, the producer loop consists solely of data collection processes, 

ensuring the timing integrity of these data. The consumer loop contains data-analysis 

processes, such as identifying muscle bursts and calculating fatigue parameters. The 

functional elements of these producer and consumer loops are described in more detail in 

the following sections. 
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Figure 3.1 Flowchart for the overall producer-consumer loop design. 

B. Top-Level VI 

B.1 Overview 

The top-level VI contains the producer and consumer loops and manages the 

queueing system that connects both loops. As illustrated in Figure 3.2, the VI takes in the 

user inputs (contained in the clusters) and returns three data files containing the raw data 

(force, displacement, and EMG), the frequency–domain spectrum (EMG power 

coefficients), and parameter values. The data saving procedure is illustrated in Figure 3.3. 

The producer and consumer loops are discussed in more detail in the following sections. 
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Figure 3.2 Top-Level VI that contains the producer and consumer loops. 
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Figure 3.3 Top-Level VI that contains the data saving process. 

B.2 Add Timestamp to Filepath VI 

The Add Timestamp to Filepath VI adds a timestamp to the end of an input filename. 

As illustrated in Figure 3.4, the VI receives the file path and then returns the new file path 

with the timestamp appended. First, the filepath is separated from the filename itself. 

Then, the current time and date are added to the filename. Lastly, the filename is 

appended to the end of the file path.  

 

Figure 3.4 Add Timestamp to Filename VI. 
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B.3 Save Raw Data Blocks VI 

The Save Raw Data Blocks VI saves the data to the raw data file. As illustrated in 

Figure 3.5, the VI receives the file path, the raw data array, the index to save, the buffer 

size, and the sampling frequency. It then writes the raw data with time values to the 

appropriate spot in the raw data file. The Index to Save variable is an integer value that 

represents the current row in the raw data array to start a number of rows of data (equal to 

Buffer Size) that will be stored in the raw data file. First, the VI writes the header to the 

file if the current call of the VI is the first call. It then generates the appropriate time 

values using a for() loop. Lastly, the time values and raw data values are written to the 

end of the raw data file.   

 

Figure 3.5 Save Raw Data Blocks VI. 

B.4 Save Data Files VI 

The Save Data Files VI writes a data array and a header to the given file path. As 

illustrated in Figure 3.6, the VI receives the file path, the header array, and the data array. 

It then writes the data to the end of the given file. This VI is used to write both the FFT 

(power) coefficients and the parameter data to their respective files.  
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Figure 3.6 Save Data Files VI. 

C. Producer Loop 

C.1. Overview 

As stated above, the primary function of the producer loop is to acquire data and pass 

them into the queueing system. These data can either be captured from the hardware or 

procured from a text document with a known format. Data are captured in data blocks 

whose sizes are dictated by the user and then sent to the consumer loop. 

C.2. Collect Data VI 

The roles of the Collect Data VI are (a) to determine if the data are to be gathered 

from a text document or acquired with hardware (Figure 3.7) and (b) to collect the data at 

the desired sampling rate (Figure 3.8). As illustrated in Figure 3.7 and Figure 3.8, the VI 

receives the buffer size, the sampling frequency, the file path (if applicable), a Boolean 

variable that indicates if the data are from a file or from hardware, a Boolean variable that 

indicates if the user wants to stop the program, and the file offset. The VI then returns the 

force, displacement, and EMG data as three separate arrays of dynamic data. If the data 

are collected with hardware, the VI simply uses a DAQ Assistant to gather the data from 

the various DAQ ports and scales these data into units of kilograms (force), centimeters 

(displacement), and microvolts (EMG). These data are passed into the queueing system 

as dynamic data. If data are collected from a file, the file path is passed into the Remove 

Header VI (see the next section), which identifies the start of the data and provides that 

file offset as an output. If the Remove Header VI has been called already this run, the VI 

passes the file offset through instead of recalculating it each time. Once the file offset is 

found, the Collect Data VI grabs the next set of data to be passed into the queueing 

system. The VI then converts the double-precision data into the dynamic data type by 
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first converting the data to a waveform. (‘Dynamic’ data are used by LabVIEW as a 

general data type for data generation or data acquisition and the data can easily and 

immediately be graphed in LabVIEW using any of the basic graphing tools.) However, 

many built-in LabVIEW VIs do not accept the dynamic data type, so the data must be 

converted to a different data type prior to analysis. After the final conversion, the data are 

sent into the queueing system. 

 

Figure 3.7 Collect Data VI acquiring data from hardware. 

 

Figure 3.8 Collect Data CI acquiring data from data file. 
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C.2.1. Remove Header VI 
The Remove Header VI removes any non-data text at the beginning of the file that 

resides at the given path. As illustrated in Figure 3.9, the VI receives the file path and the 

file offset. It then returns the header offset. The file offset input contains the position of 

the next character to be read in the file. This file offset is output by the Read From 

Spreadsheet File VI (which is native to LabVIEW), and its value updates each time the 

Read From Spreadsheet File VI is called. The first time the Remove Header VI is called, 

the VI determines the size of the header in terms of the number of characters and passes 

that value out as the header offset. For any subsequent call, the Remove Header VI passes 

through the file-offset input as the header offset, which is illustrated in Figure 3.10. 

 

Figure 3.9 Remove Header VI removing the header. 

 

Figure 3.10 Remove Header VI passing the file offset through. 
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D.  Consumer Loop 

D.1. Overview 

As stated in Section A, the role of the consumer loop is to receive the 

electromyographic data, identify the muscle bursts, and calculate the desired parameters 

of each muscle burst. As illustrated in Figure 3.11, the consumer loop smooths the 

incoming data and uses a threshold method to separate the muscle bursts from the rest of 

the signal. Once a muscle burst is found, the consumer loop then calculates its power 

spectrum (via an FFT), from which the median and mean power frequencies, skew, and 

kurtosis are then determined. The researcher’s screen is continuously updated with the 

results. The consumer loop is made up of multiple VIs: Baseline Calculation VI, Find 

Start & Stop Times VI, Power FFT VI, Mean and Median Power Frequencies VI, and 

Skew and Kurtosis VI. These VIs are discussed in more detail in the following sections. 

 

Figure 3.11 Consumer Loop VI – top level. 

D.2. Baseline Calculation VI 

The Baseline Calculation VI finds the baseline value of the force, displacement, and 

EMG data. As illustrated in Figure 3.12 and Figure 3.13, the VI receives the buffer size, 

the force, displacement, and EMG data, the time used to calculate the preliminary 

baseline (known as delay time), and the current iteration of the producer loop. The delay 

time represents a set number of buffers of data points for the system to collect before 

allowing the consumer loop to perform any analysis. This lets the system calculate 

baseline values for force, displacement, and EMG to improve the threshold for detecting 

muscle bursts. The VI returns the updated baseline array, the updated raw data array, and 

the signal threshold. The baseline array is the array that holds the “DC” values of the 
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force, displacement, and EMG data. This array is essentially the result of a moving 

average calculation applied to a length of data equal to the delay multiplied by the buffer 

size. The raw data array holds a number of data values that can be up to delay-multiplied-

by-buffer-size in length. This reduces the amount of data held in memory at any given 

time, which speeds up the execution of the consumer loop.  

During the first call of the VI, the VI creates the raw data and baseline arrays, then 

inserts the current data into the raw data array. Each member of the baseline array is 

filled with the sum of the respective data values divided by the length of the moving 

average filter. While the current iteration of the producer loop is less than the specified 

delay time, the VI keeps appending values to the raw data array (from oldest to newest) 

and updates the baseline array by adding in the sum of the respective data values divided 

by the length of the moving average filter. Once the current count is greater than or equal 

to the delay length, the old data are removed from the raw data array and the new data are 

placed into the raw data array. The baseline EMG value is adjusted by subtracting off the 

old data points and adding in the new data points, both of which are divided by the full 

length of the moving average filter. The signal threshold is set equal to the baseline of the 

EMG multiplied by 1.5. This value was chosen using trial and error across several test 

sets. Currently, this value does not update itself, as that can cause problems when future 

sections of code compare previous burst data to the signal threshold. At this time, the 

force and displacement baseline values are not updated because they are not useful for 

later calculations. 
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Figure 3.12 Baseline Calculation VI during the delay period. 
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Figure 3.13 Baseline Calculation VI after the delay period. 
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D.3. Find Start & Stop Times VI 

D.3.1. Overview 
The Find Start & Stop Times VI determines the start and stop times of the muscle 

bursts during an experiment. As illustrated in Figure 3.14 and Figure 3.15, the VI 

receives the current raw data block and the DC value of the EMG found in the Baseline 

Calculation VI, then it returns start and stop points in an array format. The VI first filters 

the raw data using a 50-point-wide sliding median filter (to remove random outliers) 

followed by a 50-point-wide moving average filter (to remove broader-band noise). Next, 

the VI uses the filtered data set along with the DC value of the EMG to determine the 

location of any muscle bursts that have occurred. The filtering and location functions are 

contained in their own VIs: Prepare Signal VI and Find Muscle Bursts VI, respectively.  

 

Figure 3.14 Find Start and Stop Times VI during the delay period. 
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Figure 3.15 Find Start and Stop Times VI after the delay period. 

D.3.2. Prepare Signal VI 
The Prepare Signal VI (see Figure 3.16) receives raw data and conditions these data 

in a way that eliminates the startup times for the smoothing algorithms. The VI 

accomplishes this by holding onto a set of raw data from the previous block whose length 

corresponds to the combined sizes of the median filter and moving average filter 

windows. 

 

Figure 3.16 Prepare Signal VI 

D.3.2.1. Median Filter VI 

The Median Filter VI (see Figure 3.17) receives raw data from the Prepare Signal VI 

and returns data that have been smoothed using a 50-point-wide sliding median filter. The 

median filter’s window has a right rank of 0 and a left rank of the desired window size, 
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W. This means that the first W filtered data points will be zero, which represents the 

startup time of the filter. Once the data have passed through the median filter, the startup 

data are deleted. The filtered data are shifted to be time aligned with the start of the raw 

data and returned as the output of the Median Filter VI. 

 

Figure 3.17 Median Filter VI. 

D.3.2.2. Smooth Signal VI 

The Smooth Signal VI (see Figure 3.18) receives data that have been output by the 

Median Filter VI described in the section above and returns data that have been smoothed 

using a 50-point-wide moving average filter. Before the data are filtered, they are 

rectified so that the smoothing operation more readily leads toward a waveform envelope 

that can be used to discern start/stop times for the individual EMG bursts. The VI then 

implements a moving average filter of size W to process the data. Again, this means that 

the first W filtered data points will be zeros that represent the startup time of the filter. 

These startup data are again deleted as above. The filtered data are shifted to be time 

aligned with the start of the raw data, and then they are returned as the output of the 

Smooth Signal VI. 
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Figure 3.18 Smooth Signal VI 

D.3.3. Find Muscle Bursts VI 
D.3.3.1. Overview 

The Find Muscle Bursts VI (see Figure 3.19, Figure 3.20, Figure 3.21, and Figure 

3.22) receives the smoothed signal from the Prepare Signal VI, a different window size 

for burst detection, the signal threshold found in the Baseline Calculation VI, the 

start/stop array, the minimum burst length, the number of both start and stop points, and 

the index of the block of raw data relative to the start of the experiment. It then returns 

the start and stop points as well as an updated count for the start and stop points. The VI 

first calculates a new signal threshold using the smoothed data through the Update 

Threshold VI. The VI also contains a for() loop that allows it to step through the 

smoothed signal with a window of size S while it holds the start/stop array and the 

number of start and stop points. A Boolean shift register keeps track of the burst activity, 

allowing identification of a false start or stop point. A shift register of type ‘double’ also 

keeps track of the previous S-1 data points from the previous data block. This allows the 

system an uninterrupted stream of data, meaning that the system still looks for muscle 

burst start and stop times across consecutive data blocks. Once inside the loop, the VI 

concatenates the old data to the front of the new data and then sends them on to the 

start/stop decision tree. The VI then compares the data points against the updated signal 

threshold. To avoid undesired outcomes such as missing stop points, start points only a 

few data points away, etc., the VI keeps the previous signal threshold to compare with the 

old data. The decision tree checks for muscle burst activity by looking at the first and last 

data points of the S-sized window and checking if the data cross the signal threshold. The 

four conditions checked are 1) if the first and last points are both below the threshold, 2) 

if the first point is below the threshold and the last point is above the threshold, 3) if the 
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first point is above the threshold and the last point is below the threshold, and 4) if the 

first and last points are both above the threshold. 

As illustrated in Figure 3.19, the first condition indicates that no burst activity exists 

in the current S EMG points. The muscle burst activity variable is then set to ‘false.’ As 

illustrated in Figure 3.20, the second condition indicates the potential start of a muscle 

burst. The loop then saves the potential start point and increments the number of start 

points variable. The muscle burst activity variable is then set to ‘true.’ As illustrated in 

Figure 3.21, the third condition indicates the potential end of a muscle burst. The VI 

compares the length of the potential burst with the minimum burst length. If the burst is 

too short, the start point is removed and the number of start points variable is 

decremented. If the burst length is longer than the minimum burst length, the stop point is 

added to the start/stop point array, and the number of stop points variable is incremented. 

The muscle burst activity variable is then reset to ‘false.’ As illustrated in Figure 3.22, the 

fourth condition indicates that potential burst activity is underway. The muscle burst 

activity variable is then set to ‘true.’ 

 

Figure 3.19 Find Muscle Bursts VI condition 1. 
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Figure 3.20 Find Muscle Bursts VI condition 2. 

 

Figure 3.21 Find Muscle Bursts VI condition 3. 
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Figure 3.22 Find Muscle Bursts VI condition 4. 

D.3.3.2. Update Threshold VI 

The Update Threshold VI scales the threshold found with the raw data to be better 

suited for the smoothed data. As illustrated in Figure 3.23, Figure 3.24, and Figure 3.25, 

the VI receives an array of smoothed data, the number of points over which to calculate, 

and the raw data signal threshold. It then returns the updated threshold. The VI has two 

shift registers that store the size of the holder array and the holder array itself. This allows 

the VI to perform calculations over a range of data that is larger than the buffer size. To 

update the threshold, the VI looks at two Boolean outputs: the first call function’s output 

and the output of a comparison function that determines whether the placeholder array is 

filled. The first call function is a native LabVIEW function that determines if the current 

VI has been called since the start of the overall program. These two outputs relate to four 

possible outcomes, three of which are useful: 1) both outputs are false, 2) the first call 

function is true, and the second output is false, and 3) the first call function is false and 

the second output is true. The fourth outcome, where both outputs are true, would result if 

the desired size of the placeholder array was smaller than the buffer size. Since this is an 

undesirable result, it has been hardcoded not to happen. 

The first condition indicates that the placeholder array is not quite full and that this is 

not the first call of the VI. The VI then updates the size of the placeholder array and 

inserts the new smoothed data into the placeholder array. The VI then takes the median 
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value of the array and adds it to the raw data array offset to get the updated threshold 

value. Adding in the raw data signal threshold allows the median threshold to be placed 

just above the peak of the noisy smoothed data. The second condition indicates that the 

placeholder array is not quite full and that this is the first call of the VI. The VI then 

creates a placeholder array and adds the median of the smoothed signal to the raw data 

threshold to create the updated threshold. The third condition indicates that the 

placeholder array is full and that this is not the first call of the VI. The VI then adjusts the 

size of the placeholder array and, if necessary, removes the old data from the array, adds 

in the new data from the smoothed data array, and then takes the median of the 

placeholder array and adds that value to the raw data threshold, which becomes the 

updated threshold. 

 

Figure 3.23 Updated Threshold VI condition 1. 

 

Figure 3.24 Updated Threshold VI condition 2. 
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Figure 3.25 Updated Threshold VI condition 3. 

D.4. Select Bursts VI 

The Select Bursts VI selects the current muscle burst and calculates the RMS value of 

the current muscle burst. As illustrated in Figure 3.26, the VI receives the sampling 

frequency, the buffer size, the current iteration of the producer loop, the current iteration 

of the consumer loop, the baseline array, the raw data array, the start/stop point array, the 

delay time, the number of stop points, and the RMS array. It then returns the burst data 

array, the two-dimensional burst-and-time-data array, and an updated RMS array. First, 

the VI decides which burst is the current burst and places that section of the raw data 

block into the burst data array. The VI also calculates when the burst occurs relative to 

the beginning of the experiment. It then uses the sampling frequency to generate the time 

values (starting at 0) and places the time values alongside the burst values into the burst-

and-time-data array. Finally, the VI calculates the RMS value of the current burst and 

places it into the RMS array. 
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Figure 3.26 Select Bursts VI. 

D.5. Power FFT VI 

D.5.1. Overview 
The Power FFT VI calculates the power spectrum of each muscle burst and splits the 

FFT spectrum into high (95+ Hz) and low (5-30 Hz) frequency bands. As illustrated in 

Figure 3.27 and Figure 3.28, the VI receives the current muscle-burst-and-time-data 

array, the FFT array (magnitudes squared), and the sampling frequency. The VI returns 

an updated FFT array, the power spectrum, and the high and low frequency bands of the 

FFT spectrum. First, the burst data must be converted into a waveform data type so that 

the native FFT spectrum VI can compute the real and imaginary parts of the burst 

coefficients. The FFT is then computed, and the real and imaginary parts are combined 

(making a complex value for each frequency) and then squared to create the power 

coefficients. The VI then takes the spectrum and splits it into the corresponding bands of 

interest. Since the LabVIEW software is unable to enlarge an array if a larger array is 

inserted into a current array, the Insert Large Row Array VI checks to see if the new 

spectrum is longer (in terms of the number of coefficients) than the previous spectrum 

and adjusts the array length if necessary. 
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Figure 3.27 Power FFT VI – FFT calculation. 

 

Figure 3.28 Power FFT VI – frequency banding. 
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D.5.2. Insert Large Row Array VI 
The Insert Large Row Array VI determines if any rows need to be added to the FFT 

array due to the greater length of an incoming spectrum. As illustrated in Figure 3.29 and 

Figure 3.30, the VI receives the array that contains all of the previous FFT values 

(frequencies and powers). It then returns an array that has the new FFT values inserted as 

two columns (frequencies and powers) to the end of the FFT array. First, the VI finds the 

sizes of the two incoming arrays and determines which has the highest number of rows. If 

the previous FFT array has a greater length, the VI simply inserts two new columns and 

places the new FFT values into those columns. If the new FFT array is longer, the VI 

creates a new array that has a length equal to the new FFT array, and the number of 

columns is kept equal to the previous FFT array’s columns plus two. The VI then inserts 

the previous FFT values into the new array and then places the new FFT values into the 

array. This preserves the FFT values and prevents LabVIEW from truncating the 

incoming FFT values.  

 

Figure 3.29 Insert Large Row Array VI with a larger new row. 
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Figure 3.30 Insert Large Row Array VI with a smaller new row. 

D.6. Mean and Median Power Frequency Calculation VI 

D.6.1. Overview 
The Mean and Median Power Frequency Calculation VI calculates the mean and 

median power frequencies (MPF and MDF, respectively) for a given power spectrum – 

see Figure 3.31. Currently, the VI calculates the MPF and MDF of the full spectrum (0-

500 Hz), the low band of frequencies (5-30 Hz), and the high band of frequencies (95+ 

Hz). To simplify the coding structure, this VI calls another VI for each frequency band. 

 

Figure 3.31 Mean and Median Power Frequency VI – top level. 
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D.6.2. MDF MPF Calculation VI 
The MDF MPF Calculation VI calculates the mean and median power frequencies for 

a spectrum. As illustrated in Figure 3.32, the VI receives the FFT values for a frequency 

band as well as the mean and median power frequency arrays. It then returns the updated 

mean and median power frequency arrays. The equations used to calculate these values 

are given below: 

mean frequency =  
∑ 𝑛∗|𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙

∑ |𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙

 , where n is the frequency index of the FFT coefficients 

and 

median frequency = ∑ |𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙  > 0.5 * ∑ |𝐹𝐹𝐹(𝑛)|, 

where n is a frequency index, |FFT(n)| represents the magnitude of the Fast Fourier 

Transform [19] of the EMG burst, and fl and fh are the indices that relate to the lowest and 

highest frequencies, respectively. 

 

Figure 3.32 Mean and Median Power Frequency VI calculation. 

D.7. Skewness and Kurtosis Calculation VI 

The Skewness and Kurtosis Calculation VI calculates the skewness and kurtosis of 

the spectrum of the current muscle burst. As illustrated in Figure 3.33, the VI receives the 

current FFT values (frequencies and power) and returns the skewness and kurtosis of that 

spectrum.  The equations used to calculate these values are given below  [25]: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖) = ∑ (𝑌𝑖(𝑛)−𝑌�)3𝑁
𝑛=1

𝑠3
/𝑁  
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and 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑖) = ∑ (𝑌𝑖(𝑛)−𝑌�)4𝑁
𝑛=1

𝑠4
/𝑁 , 

where i is a burst index, n is a frequency index,  𝑌𝑖(𝑛) is a spectral power, 𝑌� is the 

average spectral value, s is the standard deviation of the spectral values, and N is the 

number of coefficients in the spectrum. 

 

Figure 3.33 Skewness and Kurtosis VI. 

F.  Researcher Display 

The researcher display provides the researcher with an interface to (a) manipulate 

acquisition variables prior to the experiment and (b) observe the raw and calculated data 

during the experiment. As illustrated in Figure 3.34, Figure 3.35, Figure 3.36, and Figure 

3.37, the researcher display contains three main parts: 1) the input variables panel, 2) the 

raw data panel, and 3) the calculated data panel. 

Figure 3.34 depicts the input-variables panel on the researcher display. The file paths 

in the upper-left-hand corner point to the directories where the raw data, FFT 

coefficients, and start/stop data files are stored. The bottom-left and middle windows hold 

fields for input variables. The bottom-right window displays output variables of interest 

to the researcher for troubleshooting purposes. The button in the upper-right-hand corner 

is used to stop the program safely.  

The input variables control the sampling frequency (Hz), buffer size (number of data 

points), minimum burst length (seconds), delay (number of buffers), replayed versus live 

data, and file path for replayed experiments if troubleshooting a replayed data set 

(number of data points). The ‘Sampling Frequency’ is simply the number of samples the 

system will acquire per second during a live experiment. For a replayed experiment, the 
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system pulls ‘Buffer Size’ number of data points and treats them as being sampled at the 

sampling frequency. For a live experiment, the ‘Buffer Size’ refers to how many data 

points the hardware can hold before these data will be transferred to the software. For a 

replayed experiment, the buffer size refers to the number of data points the software will 

take from the data file at a time before sending these data into the software analysis VIs. 

The ‘Replayed’ Boolean variable determines if the system will pull data from a file or 

accept data from hardware. If the researcher desires to pull data from a file, the ‘File 

Path’ variable points to that experiment file. ‘Min Burst Length’ refers to the smallest 

expected muscle burst length (seconds) for both live and replayed experiments. The 

‘Delay’ variable refers to how many buffers of data points to take in as baseline values 

for both live and replayed experiments. 

 

Figure 3.34 Researcher display input variables. 

Figure 3.35 depicts the raw data panel of the researcher display. The panel displays 

the force data (kg), the displacement data (cm), the EMG data (µV), and the current count 

of the experiment. The force, displacement, and EMG data are either acquired from 

hardware or from data files depending on whether the experiment is live or replayed. The 

count variable displays how many buffers of data have been passed through the system 

during either a live and replayed experiment. 
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Figure 3.35 Researcher display raw data (inverted color). 

Figure 3.36 presents the top half of the calculated data display: 

• Upper left plot – current burst data.  

• Upper center plot – burst RMS values.  

• Upper right plot – EMG power spectrum for the current muscle burst.  

• Middle left plot – mean power frequency calculated from the entire EMG 

amplitude spectrum for each individual burst.  

• Center plot – median power frequency calculated from the entire EMG amplitude 

spectrum for each individual burst.  

• Middle right plot – displacement data for the current muscle burst.  

• Bottom left plot – mean power frequency calculated from the low band (5-30 Hz) 

of the current EMG amplitude spectrum.  

• Bottom center plot – median power frequency calculated from the low band (5-30 

Hz) of the current EMG amplitude spectrum.  

• Bottom right plot – force data for the current muscle burst. 



 40  

 

Figure 3.36 Researcher display calculated data – top half. 

Figure 3.37 presents the bottom half of the calculated data display: 

• Upper left plot – mean power frequency calculated from the high band (95+ Hz) 

of the current EMG amplitude spectrum.  

• Upper right plot – median power frequency calculated from the high band (95+ 

Hz) of the current EMG amplitude spectrum.  

• Bottom left plot – kurtosis value for each muscle burst.  

• Bottom right plot – skewness value for each muscle burst. 

 

Figure 3.37 Researcher display calculated data – bottom half. 
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G.  Subject Display 

As illustrated in Figure 3.38, the subject display contains a simple slider tool native to the 

LabVIEW software. The purpose of the subject display is to give the subject a visual 

representation of their required grip sequence. To start the VI, the researcher first clicks 

on the white run arrow at the top of the window to allow the VI to create the array 

necessary to fill and empty the slider. Next, the researcher turns on the audio file that 

gives an audio cue to the subject that signals when to grip and release. The researcher 

then clicks on the start button in synchronization with the audio signal. This gives the 

subject both audio and visual cues for grip timing. 

 

Figure 3.38 Subject display. 
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 BURST MOVIES CHAPTER 4:

A.  Overview 

EMG burst shape, spectral content, and parameters change from burst to burst as a 

subject fatigues, and these changes can be difficult to visualize.  To address this issue, a 

MATLAB script was developed that creates “burst movies” which allow one to 

pictorially replay the results of an EMG-based fatigue experiment. Each updated frame in 

a movie depicts data from a new EMG burst, and when a movie is played over and over, 

it allows a researcher to visualize trends in time-domain EMG burst shape, frequency-

domain magnitude and power spectra shapes, and the associated parameters as fatigue 

occurs. This MATLAB script gives the researcher the flexibility to test new fatigue 

parameters using old data produced by the real-time analysis system. The script takes in 

raw data files and FFT coefficient files populated by the real-time system, and it produces 

two movies that document changes in EMG signals, EMG spectra, and fatigue 

parameters: a Time-Domain Movie and a Frequency-Domain Movie. Each movie 

displays six plots in a three-row by two-column grid. Before the video frames are 

captured, the script makes an initial pass through the input files to determine optimal axis 

ranges for each plot. The content of these two types of movies is described in more detail 

below. It should be noted that the MATLAB script displays both magnitude and power 

frequency spectra while the LabVIEW code only displays power frequency spectra. 

Further, the researcher can manually edit out non-experiment bursts in the MATLAB 

script, while the LabVIEW script displays all muscle bursts that appear after the delay 

time and are above threshold. 

B.  Time-Domain Movie 

The time-domain movie is designed to display the time-domain EMG and fatigue 

parameters. These parameters include the traditional fatigue parameters, RMS and iEMG, 

of each muscle burst as well as the more non-traditional fatigue parameters, zero crossing 

rate and average rectified value. A normalization factor is also included to fit the EMG 

muscle burst into a y-axis range of [-1,1]. An example of the final frame of a time-domain 

burst movie is depicted in Figure 4.1. 
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Figure 4.1 Time-domain burst movie frame. 

The upper-left plot in Figure 4.1 depicts the normalized muscle burst data along with 

a smoothed curve that represents the general shape of the burst. The smoothed curve is 

created by rectifying the raw EMG burst and then processing the burst with a sliding 

median filter followed by a moving average filter, both of length 101 points.  

The upper-right plot depicts the normalization factor trend for the entire session. This 

is the factor used to scale each raw muscle burst into a [-1,1] amplitude window. It is 

important to note that this factor is only relevant in constant-force experiments. 

The middle-left plot depicts the trend of the root-mean square (RMS) value of each 

muscle burst for the entire session. The RMS value is found using the following equation: 

𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉 =
1

𝑙𝑙𝑙𝑙𝑙ℎ(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
∗ ��𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎2  

The middle-right plot depicts the trend of the integrated EMG, or iEMG for the entire 

session. This value is found for each burst by integrating the rectified EMG burst data. 

The lower-left plot depicts the trend of the zero crossing rate for the entire session. 

The zero crossing rate is found for each burst by calculating how many times the raw 

EMG burst crosses zero. This value is useful when determining the muscle conduction 

velocity [13]. 
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The lower-right plot depicts the trend of the average rectified value for the entire 

session. The average rectified value is found for each burst by taking the mean of the 

rectified EMG muscle burst data [14]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉(𝑖) = 1
𝑁
∑ |𝑥𝑖(𝑛)|𝑁
𝑛=1 , 

where i is a burst index and n is an index variable used to step through a sequence of N 

values that comprise a burst. 

C.  Frequency Domain Movie 

The Frequency Domain movie is designed to display burst-to-burst changes in the 

EMG magnitude and power spectra as well as the fatigue parameters associated with the 

frequency domain. These parameters include traditional fatigue parameters (mean and 

median power frequency) of each muscle burst as well as non-traditional fatigue 

parameters – total spectral magnitude, skewness, and kurtosis. The skewness and kurtosis 

of each burst was calculated from a Gaussian curve fit to the respective power spectrum. 

This slightly reduced the amount of jitter in the skewness and kurtosis values when 

compared to calculations performed using the power spectra directly. An example of the 

final frame of an FFT coefficient burst movie is depicted in Figure 4.2. 

 

Figure 4.2 FFT coefficient burst movie frame. 
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The upper-left plot in Figure 4.2 depicts the magnitude spectrum for the current burst 

along with the mean and median frequencies of the spectrum. The magnitude spectrum is 

found for each burst by taking the square root of the power spectrum produced by the 

real-time analysis system. The plot also displays a smoothed version of the magnitude 

spectrum, obtained by applying a 101-point sliding median filter followed by a 101-point 

moving average filter. The mean and median frequencies are found for each burst using 

the following formulas [13]: 

mean frequency =  
∑ 𝑛∗|𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙

∑ |𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙

   

and 

median frequency = ∑ |𝐹𝐹𝐹(𝑛)|𝑓ℎ
𝑛=𝑓𝑙  > 0.5 * ∑ |𝐹𝐹𝐹(𝑛)| 

where n is a frequency index, |FFT(n)| represents the magnitude of the Fast Fourier 

Transform [19] of the EMG burst, and fl and fh are the indices that relate to the lowest and 

highest frequencies, respectively. 

The upper-right plot displays the power spectrum of the current burst along with the 

mean and median power frequencies and a Gaussian fit to the power spectrum. The 

power spectrum is read from the FFT coefficient file stored by the real-time analysis 

system. The mean and median power frequencies are found using the same equations 

used to find the mean and median magnitude frequencies given above, but with a focus 

on power instead of magnitude. The Gaussian fit is found by utilizing a gaussfit.m 

MATLAB script written by Przemyslaw Baranski [26]– see the Appendix for the script 

and the copyright/licensing information. The Baranski script takes in the desired data set 

and uses an iterative LMS method to determine the average and standard deviation of the 

symmetric Gaussian curve that best fits that data set. 

The middle-left plot depicts the trend of the total spectral magnitude for the entire 

session. The total spectral magnitude is the sum of the square roots of the FFT 

coefficients of each individual burst. 

The middle-right plot depicts the trend of all of the mean and median frequencies 

found for the upper-left and upper-right plots for the entire session. 

The lower-left plot depicts the skewness of the Gaussian fit found in the upper-right 

plot. The skewness is determined for each muscle burst using the expression  
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖) = ∑ (𝑌𝑖(𝑛)−𝑌�)3𝑁
𝑛=1

𝑠3
/𝑁  

where i is a burst index, 𝑌𝑖(𝑛) is a spectral value, 𝑌� is the average spectral value of the 

fitted Gaussian curve, s is the standard deviation of the fitted Gaussian curve, n is a 

frequency-domain index, and N is the number of frequency-domain coefficients. The 

above formula for skewness is referred to as the Fisher-Pearson coefficient of skewness 

[25]. Some software programs adjust (multiply) this coefficient by �𝑁(𝑁−1)
𝑁−1

 to correct for 

smaller sample sizes. This adjustment was not used because the sample sizes were 

sufficiently large enough (N > 250) that the correction would not induce a noticeable 

effect on the skewness coefficient.  

The lower-right plot depicts the kurtosis of the Gaussian fit found in the upper-right 

plot. Kurtosis is described as the peaked-ness of a curve. The kurtosis is found for the 

power spectrum of each muscle burst using expression 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑖) = ∑ (𝑌𝑖(𝑛)−𝑌�)4𝑁
𝑛=1

𝑠4
/𝑁, 

where the variables in the expression are the same variables used in the skewness 

calculation described above. 
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 ANALYSIS RESULTS CHAPTER 5:

A.  Summary of Experiments 

The constant force experiments consisted of a subject gripping the hand-forearm 

ergometer in intervals of two seconds up, one second down, and one second for rest. The 

subjects contracted at a frequency of 20 contractions/minute at a fixed power output of 

85% of their maximum power, which was found on a previous date. The subject was 

paced by an audio file. This process was repeated either with constant or increasing force 

until the subject could no longer grip the two bars of the ergometer together. The 

increasing force experiment consisted of a subject pedaling on a cycle ergometer. The 

subjects pedaled on the ergometer while the power output increased by 60 Watts/min 

starting from 25 Watts.  This continued until the subjects reached exhaustion. While the 

cycle ergometer data (described first below) were clearly acquired with a setup that is 

different than the hand-forearm ergometer, these data were included here as a means to 

verify the correct operation of the burst identification and parameter calculation code. 

B.  Observations from Data 

The main goal of this work was to build a real-time hand-forearm fatigue analysis 

system based off of the current post-processing model. Logically, the post-processing 

system can be used as a baseline (i.e., a comparison standard) to gauge the accuracy of 

the real-time system by way of several test data sets. With this in mind, the real-time 

system was applied to four experimental data sets and evaluated by tracking (a) the 

number of bursts detected during each experiment and (b) the accuracy of burst 

identification over three experimental time spans chosen for each experiment.  

Test 1 – Increasing Force Experiment 

For this first test, the subject pedaled on a cycle ergometer at a starting power output 

of 25 Watts. The researcher then increased the power output by 60 Watts at each one-

minute interval until the subject reached exhaustion. As noted in Figure 5.1, the sampling 

frequency was set to 1 kHz, the data set was replayed through the system, and the buffer 

size was set to 500 data points. The start and stop points are unequal due to the subject 



 48  

engaging their muscles as the researcher ended the completed experiment. Figure 5.2 

illustrates that (a) the RMS value peaks as the subject fatigues, (b) the mean and median 

power frequencies for the broadband spectrum dip, and (c) the mean and median power 

frequencies for the low band (5-30 Hz) stay constant throughout the experiment. The 

RMS value drops sharply toward the end of the experiment due to subject movement 

while the system was still running. Note that since the experiment was replayed using 

data files of an unsupported format (e.g., data gathered from a previous version of the 

software, where two different files were used to store force/displacement and EMG data), 

the force and displacement data shown are incorrect. Also note that the mean and median 

frequencies on the LabVIEW screen represent power rather than magnitude. Figure 5.3 

illustrates that the mean and median power frequencies in the high band (95+ Hz) hold 

constant during the experiment. The dip at the end is due to post-experiment movement. 

The skewness and kurtosis parameters stay relatively constant.  

 

 

Figure 5.1 Input variables for Test 1. 

 

 

Figure 5.2 Top half of the output panels for Test 1. 
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Figure 5.3 Bottom half of the output panels for Test 1. 

As noted in Figure 5.4, the real-time system found more bursts during the experiment 

than the post-processing system. Even so, when only the total number of bursts is 

considered, the relative error of the real-time system when compared to the post-

processing model would be 2.2%.  

 

 

Figure 5.4 Number of bursts found using the post-processing system (top) versus the 

real-time system (bottom). 

Figure 5.5 displays a comparison between the start and stop times for Test 1 over the 

whole experiment; the post-processing results are on the top and the real-time results are 

on the bottom.  Generally, both systems found a sufficient amount of muscle bursts and 

there are no noticeable sections of experiment data where either system did not find 

muscle bursts. Figure 5.6 and Figure 5.7 help to gauge the burst-to-burst accuracy for the 
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post-processing system versus the real-time system by comparing start/stop points for the 

individual bursts for the beginning of Test 1. While the peaks can be easily seen, the 

threshold used in the post-processing approach was unable to pick them out. The real-

time system exhibited a similar result. For the first two blocks of ten seconds, the real-

time system identifies more muscle bursts than the post-processing system. However, in 

the last ten-second block, the post-processing system identifies more muscle bursts. 

Figure 5.8 and Figure 5.9 address the accuracy of the post-processing system versus the 

real-time system for the middle of Test 1. During this time window, the post-processing 

system easily identified all of the muscle bursts, as did the real-time system. Figure 5.10 

and Figure 5.11 address the accuracy of the post-processing system versus the real-time 

system for the end of Test 1. During this time window, the post-processing system easily 

identified all of the muscle bursts, as did the real-time system.  
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Figure 5.5 Full experiment with start/stop times identified post-experiment (top) 

and in real-time (bottom). 
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Figure 5.6 Post-processing of Test 1 data over the time interval of [720, 750] 

seconds. 

 

Figure 5.7 Real-time processing of Test 1 data over the time interval of [720, 750] 

seconds. 
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Figure 5.8 Post-processing of Test 1 data over the time interval of [910, 940] 

seconds. 

 

Figure 5.9 Real-time processing of Test 1 data over the time interval of [910, 940] 

seconds. 
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Figure 5.10 Post-processing of Test 1 data over the time interval of [1100, 1130] 

seconds. 

 

Figure 5.11 Real-time processing of Test 1 data over the time interval of [1100, 1130] 

seconds. 

These time windows illustrate a scenario where the real-time processing system more 

accurately identified muscle bursts than the post-processing system. This improved burst 

identification is due to the fact that the real-time system uses a moving threshold, while 
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the post-processing system employs a static threshold. This allows the real-time system to 

quickly adapt to the changing level of the EMG. 

 

Figure 5.12 illustrates the Test 1 time-domain fatigue parameters calculated in the 

MATLAB burst movie script. Consistent with the results on the LabVIEW screen, the 

RMS value increases with fatigue. The integrated EMG and average rectified value also 

increase. The zero crossing rate, though, is fairly constant during Test 1. As a reminder, 

the LabVIEW screen contained all of the bursts before (i.e., test bursts), during, and after 

the experiment, while the burst movie contains just those during the experiment. Figure 

5.13 illustrates the Test 1 frequency-domain fatigue parameters calculated in the 

MATLAB burst movie script. Consistent with the results on the LabVIEW screen, the 

MPF and MDF decrease near the end of Test 1, whereas the total spectral magnitude 

increases. The skewness and kurtosis values are fairly constant during Test 1. 

 

 

 

Figure 5.12 Time-domain movie frame for Test 1. 
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Figure 5.13 Frequency-domain movie frame for Test 1. 

Test 2 – Constant Force Experiment A 

The next test, Test 2, is the first of three tests that are constant force experiments. 

These tests were performed an on hand-forearm ergometer. The subjects were tested for 

maximum power output at a previous date before the fatigue experiment. The subjects 

contracted at a frequency of 20 contractions/min at a fixed power output of 85% of their 

maximum power output. This power output was maintained until the subject reached 

exhaustion. 

As noted in Figure 5.14, the sampling frequency was set to 1 kHz, the data set was 

replayed through the system, and the buffer size was set to 500 data points. Figure 5.15 

illustrates that (a) the RMS value increases as the subject fatigues, (b) the mean and 

median power frequencies for the broadband spectrum decrease, and (c) the mean and 

median power frequencies of the low band (5-30 Hz) stay constant throughout the 

experiment. As before, since the experiment was replayed using data files of an 

unsupported format, the force and displacement data shown are incorrect. Figure 5.16 

illustrates that the mean and median power frequencies in the high band (95+ Hz) 

decrease during the experiment. The skewness and kurtosis parameters increase slightly 

as the subject approaches fatigue.  
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Figure 5.14 Input variables for Test 2. 

 

 

Figure 5.15 Top half of the output panels for Test 2. 

 

Figure 5.16 Bottom half of the output panels for Test 2. 

As noted in Figure 5.17, the real-time system found fewer bursts during the 

experiment than the post-processing system, yielding a relative error of -37.6%, which is 

not encouraging. 
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Figure 5.17 Number of bursts found using the post-processing system (top) versus 

the real-time system (bottom). 

Figure 5.18 displays a comparison between the start and stop times for Test 2 over the 

whole experiment; the post-processing results are on the top and the real-time results are 

on the bottom. Generally, both systems found a sufficient amount of muscle bursts and 

there are no noticeable sections of experiment data where either system did not find 

muscle bursts. Figure 5.19 and Figure 5.20 help to gauge the burst-to-burst accuracy of 

the post-processing system versus the real-time system by comparing start/stop points for 

the individual bursts for the beginning of Test 2. The post-processing system identifies 

multiple bursts in some cases when only one burst exists. This is one cause of the 

discrepancy in the number of bursts found in Figure 5.19.  Unlike the post-processing 

system, the real-time processing system does not artificially increase the number of 

muscle bursts detected. Figure 5.21 and Figure 5.22 address the accuracy of the post-

processing system versus the real-time system for the middle of Test 2. During this time 

window, the post-processing system is still artificially increasing the number of muscle 

bursts by misidentifying the trailing edge of individual bursts as new bursts. During this 

time window, the real-time processing system was able to properly identify individual 

muscle bursts. Figure 5.23 and Figure 5.24 address the accuracy of the post-processing 

system versus the real-time system for the end of Test 2. During this time window, the 

post-processing system continues to over-count the number of muscle bursts, whereas the 

real-time processing system properly identifies the muscle bursts. 
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Figure 5.18 Full experiment with start/stop times identified post-experiment (top) 

and in real-time (bottom). 
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Figure 5.19 Post-processing of Test 2 data over the time interval of [70, 100] 

seconds. 

 

Figure 5.20 Real-time processing of Test 2 data over the time interval of [70, 100] 

seconds. 
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Figure 5.21 Post-processing of Test 2 data over the time interval of [140, 170] 

seconds. 

 

Figure 5.22 Real-time processing of Test 2 data over the time interval of [140, 170] 

seconds. 
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Figure 5.23 Post-processing of Test 2 data over the time interval of [220, 250] 

seconds. 

 

 

Figure 5.24 Real-time processing of Test 2 data over the time interval of [220, 250] 

seconds. 
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These time windows illustrate a scenario where the real-time processing system more 

accurately identified muscle bursts than the post-processing system. In this scenario, after 

the user releases their hold on the ergometer handles, the musculature continues to 

generate a trailing EMG signature. This improved burst identification is due to the fact 

that the real-time system uses a moving threshold, while the post-processing system 

employs a static threshold. This allows the real-time system to quickly adapt to the 

changing level of the EMG. 

Figure 5.25 illustrates the Test 2 time-domain fatigue parameters calculated in the 

MATLAB burst movie script. Consistent with the results on the LabVIEW screen, the 

RMS value increases with fatigue. The integrated EMG and average rectified value also 

increase, whereas the zero crossing rate noticeably decreases. As a reminder, the 

LabVIEW screen contained all of the bursts before, during, and after the experiment, 

while the burst movie contains just those during the experiment. Figure 5.26 illustrates 

the Test 2 frequency-domain fatigue parameters calculated in the MATLAB burst movie 

script. Consistent with the results on the LabVIEW screen, the MPF and MDF (both 

magnitude and power) decreases near the end of Test 2. The total spectral magnitude, 

skewness, and kurtosis increase as the subject approaches fatigue. It is important to 

remember that the skewness and kurtosis are calculated using probability density function 

values acquired from a Gaussian fit to the power FFT coefficients, not calculated directly 

from the raw power FFT coefficients, which is how the real-time system calculates 

skewness and kurtosis. 
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Figure 5.25 Time-domain movie frame for Test 2. 

 

Figure 5.26 Frequency-domain movie frame for Test 2. 
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Test 3 – Constant Force Experiment B 

As noted in Figure 5.27, the sampling frequency was set at 1 kHz, the data set was 

replayed through the system, and the buffer size was set to 500 data points. Figure 5.28 

illustrates that (a) the RMS value increases as the subject fatigues, (b) the mean and 

median power frequencies for the broadband spectrum decrease, and (c) the mean and 

median power frequencies for the low band (5-30 Hz) stay constant throughout the 

experiment. As before, since the experiment was replayed using data files of an 

unsupported format, the force and displacement data shown are incorrect. Figure 5.29 

illustrates that the mean and median power frequencies in the high band (95+ Hz) 

decrease during the experiment. The skewness and kurtosis parameters hold constant as 

the subject approaches fatigue.  

 

Figure 5.27 Input variables for Test 3. 

 

Figure 5.28 Top half of the output panels for Test 3. 
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Figure 5.29 Bottom half of the output panels for Test 3. 

As noted in Figure 5.30, the real-time system found fewer bursts during the 

experiment than the post-processing system, yielding a relative error of -12.2%, which is 

not encouraging. 

 

Figure 5.30 Number of bursts found using the post-processing system (top) versus 

the real-time system (bottom). 

Figure 5.31 displays a comparison between the start and stop times for Test 3 over the 

whole experiment; the post-processing results are on the top and the real-time results are 

on the bottom. Generally, both systems found a sufficient amount of muscle bursts and 

there are no noticeable sections of experiment data where either system did not find 

muscle bursts. Figure 5.32 and Figure 5.33 help to gauge the burst-to-burst accuracy of 

the post-processing system versus the real-time system by comparing start/stop points for 

the individual bursts for the beginning of Test 3. The post-processing system double-

counts a burst only once in this window. This behavior may be one cause of the 
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discrepancy in the number of bursts found in Figure 5.32. Unlike the post-processing 

system, the real-time processing system does not artificially increase the number of 

muscle bursts detected. Figure 5.34 and Figure 5.35 address the accuracy of the post-

processing system versus the real-time system for the middle of Test 3. During this time 

window, the post-processing system is still artificially increasing the number of muscle 

bursts. The real-time processing system properly identified these muscle bursts. Figure 

5.36 and Figure 5.37 address the accuracy of the post-processing system for the end of 

Test 3. During this time window, the post-processing system continues to over-count the 

number of muscle bursts, whereas the real-time processing system properly identifies the 

muscle bursts. 
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Figure 5.31 Full experiment with start/stop times identified post-experiment (top) 

and in real time (bottom). 
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Figure 5.32 Post-processing of Test 3 data over the time interval of [70, 100] 

seconds. 

 

Figure 5.33 Real-time processing of Test 3 data over the time interval of [70, 100] 

seconds. 
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Figure 5.34 Post-processing of Test 3 data over the time interval of [210, 240] 

seconds. 

 

Figure 5.35 Real-time processing of Test 3 data over the time interval of [210, 240] 

seconds. 
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Figure 5.36 Post-processing of Test 3 data over the time interval of [330, 360] 

seconds. 

 

Figure 5.37 Real-time processing of Test 3 data over the time interval of [330, 360] 

seconds. 

These time windows illustrate a scenario where the real-time processing system more 

accurately identified muscle bursts than the post-processing system. As with Test 2, this 

improved burst identification is due to the fact that the real-time system uses a moving 
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threshold, while the post-processing system employs a static threshold. This allows the 

real-time system to quickly adapt to the changing level of the EMG. 

Figure 5.38 illustrates the Test 3 time-domain fatigue parameters that were calculated 

in the MATLAB burst movie script. Consistent with the results on the LabVIEW screen, 

the RMS value increases with fatigue. The integrated EMG and average rectified value 

also increase, whereas the zero crossing rate noticeably decreases. As a reminder, the 

LabVIEW screen contained all of the bursts before, during, and after the experiment, 

while the burst movie contains just those during the experiment. Figure 5.39 illustrates 

the Test 3 frequency-domain fatigue parameters calculated in the MATLAB burst movie 

script. Consistent with the results on the LabVIEW screen, the MPF and MDF (both 

magnitude and power) decrease near the end of Test 3. The total spectral magnitude 

noticeably increases, while the skewness and kurtosis have a very small increase. 

 

Figure 5.38 Time-domain movie frame for Test 3. 
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Figure 5.39 Frequency-domain movie frame for Test 3. 

Test 4 – Constant Force Experiment C  

As noted in Figure 5.40, the sampling frequency was set at 1 kHz, the data set was 

replayed through the system, and the buffer size was set to 500 data points. Figure 5.41 

illustrates that (a) the RMS increases as the subject fatigues, (b) the mean and median 

power frequencies for the broadband spectrum decrease, and (c) the mean and median 

power frequencies for the low bands (5-30 Hz) stay constant throughout the experiment. 

About halfway through the experiment, the RMS, MDF, and MPF all remain constant. As 

before, since the experiment was replayed using data files of an unsupported format, the 

force and displacement data shown are incorrect. Figure 5.42 illustrates that the mean and 

median power frequencies in the high band (95+ Hz) decrease during the experiment. The 

skewness and kurtosis parameters hold constant as the subject approaches fatigue.  

 

 

 

Figure 5.40 Input variables for Test 4. 
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Figure 5.41 Top half of the output panels for Test 4. 

 

Figure 5.42 Bottom half of the output panels for Test 4. 

As noted in Figure 5.43, we see that the real-time system found less bursts during the 

experiment than the post-processing system, yielding a relative error of -19.4%, which is 

not encouraging. 
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Figure 5.43 Number of bursts found using the post-processing system (top) versus 

the real-time system (bottom). 

Figure 5.44 displays a comparison between the start and stop times for Test 4 over the 

whole experiment; the post-processing results are on the top and the real-time results are 

on the bottom. Generally, both systems found a sufficient amount of muscle bursts and 

there are no noticeable sections of experiment data where either system did not find 

muscle bursts. Figure 5.45 and Figure 5.46 help to gauge the burst-to-burst accuracy of 

the post-processing system versus the real-time system by comparing start/stop points for 

the individual bursts for the beginning of Test 4. The post-processing system double 

counts bursts twice in this window. This behavior may be one cause of the discrepancy in 

the number of bursts found in Figure 5.45. Unlike the post-processing system, the real-

time processing system does not artificially increase the number of muscle bursts 

detected. Figure 5.47 and Figure 5.48 address the accuracy of the post-processing system 

versus the real-time system for the middle of Test 4. During this time window, the post-

processing system miscounts a burst only once. The real-time processing system properly 

identified these muscle bursts. Figure 5.49 and Figure 5.50 address the accuracy of the 

post-processing system for the end of Test 4. During this time window, the post-

processing system continues to over-count the number of muscle bursts, whereas the real-

time processing system properly identifies the muscle bursts. 
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Figure 5.44 Full experiment with start/stop times identified post-experiment (top) 

and in real time (bottom). 
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Figure 5.45 Post-processing of Test 4 data over the time interval of [90, 120] 

seconds. 

 

Figure 5.46 Real-time processing of Test 4 data over the time interval of [90, 120] 

seconds. 
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Figure 5.47 Post-processing of Test 4 data over the time interval of [360, 390] 

seconds. 

 

Figure 5.48 Real-time processing of Test 4 data over the time interval of [360, 390] 

seconds. 
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Figure 5.49 Post-processing of Test 4 data over the time interval of [630, 660] 

seconds. 

 

Figure 5.50 Real-time processing of Test 4 data over the time interval of [630, 660] 

seconds. 

These time windows illustrate another scenario where the real-time processing system 

more accurately identified muscle bursts than the post-processing system. As with Tests 2 

and 3, this improved burst identification is due to the fact that the real-time system uses a 
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moving threshold, while the post-processing system employs a static threshold. This 

allows the real-time system to quickly adapt to the changing level of the EMG. 

Figure 5.51 illustrates the Test 4 time-domain fatigue parameters that were calculated 

in the MATLAB burst movie script. Consistent with the results on the LabVIEW screen, 

the RMS value and integrated EMG increase with fatigue, whereas the zero crossing rate 

noticeably decreases. As seen in the LabVIEW screen, the parameters all hold constant 

during the last half of the experiment. Figure 5.52 illustrates the Test 4 frequency-domain 

fatigue parameters calculated in the MATLAB burst movie script. The MPF and MDF 

(both magnitude and power) decrease at the beginning of Test 4, which is consistent with 

the results on the LabVIEW screen. The total spectral magnitude noticeably increases, 

while the skewness and kurtosis have a very small increase. 

 

Figure 5.51 Time-domain movie frame for Test 4. 
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Figure 5.52 Frequency-domain movie frame for Test 4. 

Results Summary 

The secondary goal of this work was to evaluate the effectiveness of traditional and 

non-traditional parameters to identify the onset of fatigue in repetitive (as opposed to 

sustained) muscle contractions. From the LabVIEW results in all four tests, the RMS 

values increased, and the MPF and MDF of each broadband spectrum decreased as the 

subject approached fatigue. The MPF and MDF for the low and high bands, the 

skewness, and the kurtosis did not exhibit significant trends during the increasing force 

experiment. However, the MPF and MDF parameters for the high frequency band and, to 

some extent, skewness and kurtosis, showed substantive fatigue trends in the constant 

force tests. From the burst movies, the iEMG, average rectified value, and total spectral 

magnitude increased with subject fatigue in all tests, while the zero crossing rate, 

skewness, and kurtosis exhibited slight upward trends in the constant force tests. 
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 CONCLUSION AND FUTURE WORK CHAPTER 6:
This work focused on detection of fatigue onset in forearm muscles. The main goal of 

this work was to develop a system to detect and process muscle bursts in real-time. The 

resulting LabVIEW VI accomplished this goal and was supplemented with a MATLAB 

script that aided our investigation into new fatigue trends. While the LabVIEW system 

has the ability to support live experiments and replayed experiments, the replay 

functionality is limited to only the EMG data. With its current abilities, however, the real-

time system out-performed the previous post-processing system in terms of burst count 

and local accuracy at the beginning, middle, and end of experiments. The tests also noted 

that some fatigue parameters, such as RMS value, iEMG, MDF, and MPF, are better 

suited for monitoring fatigue during repetitive movements in the forearm. 

This work focused on merging a LabVIEW-based data acquisition system with a 

collection of post-processing tools to create an integrated real-time system acquisition 

and analysis system. The hand-forearm ergometer system now automatically gathers the 

data from the subject, calculates and displays fatigue parameters, and saves the raw and 

calculated data for further use. Having accomplished the goal of automating the 

processing of these data, the logical next step would be to actively predict fatigue and 

task failure. Doing so would create a fully automated system that would have the ability 

to warn a researcher or a subject of the subject’s impending task failure due to muscle 

fatigue. To accomplish this next task, the start/stop point accuracy must be perfected. 

While a substantial upgrade was made with this work, the muscle burst detection will 

always be a top upgrade priority. 

Another future work target would be analyzing the fast- and slow-twitch muscles in 

the forearm and their effect on the resulting muscle bursts’ magnitude and power 

frequency spectra. Observing both types of muscles’ effects on the overall skewness and 

kurtosis may lead to better picture of how forearm muscles respond to fatigue. 

Furthermore, separating the slow-twitch muscles’ frequency spectrum from the fast-

twitch muscles’ frequency spectrum would also have the potential to greatly increase our 

understanding of how forearm muscles react to fatigue.  
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APPENDIX A:  MATLAB SCRIPTS 

Burst Movie 

Main Code 
function movieFile = BurstMovie(fftDataFile, signalFile, 
startStopDataFile) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Author: Phillip Kuehl              % 
% Kansas State University            % 
% Date: April 16, 2015               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%%%                       About this Function Call                      
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% 
% This function is used to create a time-domain and frequency-domain 
movie 
% file which shows each individual burst in an experiment. 
% 
% This function requires the input files to be in the following format: 
% 
% fftDataFile - This file is the frequency power spectra of each 
individual 
% burst in columns of frequency and amplitude as 2-column pairs. The 
% columns for each burst are detailed as such: 
    % Column 1 : Frequency 
    % Column 2 : Amplitudes of the power frequency spectrum of the 
current 
    %            burst 
% 
% signalFile - This file is the original EMG data set in which you 
% are wanting to anaylise. The columns of raw data are detailed as 
such: 
    % Column 1 : Time 
    % Column 2 : Force 
    % Column 3 : Displacement 
    % Column 4 : raw EMG 
%    
% startStopDataFile - This file contains the start and stop points in 
the 
% raw EMG data where the individual bursts are located as well as the 
% parameter information for each burst. Each row represents a burst and 
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% each column represents a different parameter. The columns are 
detailed as 
% such: 
    % Column 1 : Start Point 
    % Column 2 : Stop Point 
    % Column 3 : Mean Power Frequency of All Bands (0-500 Hz) 
    % Column 4 : Median Power Frequency of All Bands (0-500 Hz) 
    % Column 5 : Mean Power Frequency of Low Bands (5-30 Hz) 
    % Column 6 : Median Power Frequency of Low Bands (5-30 Hz) 
    % Column 7 : Mean Power Frequency of High Bands (95-500 Hz) 
    % Column 8 : Median Power Frequency of High Bands (95-500 Hz) 
    % Column 9 : Work 
    % Column 10: Power 
    % Column 11: Kurtosis 
    % Column 12: Skewness 
%  
% This function will display a series of two figures with the 
corresponding 
% information on them. Please do not disturb the program while it is 
% running. It may take quite a bit of time to save each image into each 
% movie file. If you want to plot burst during a certain time frame, 
% uncomment the section entitled "Change Start and Stop Time of 
Experiment" 
% and choose the times for variables start and stop in the following  
% format: 
%       start = (seconds * sampling frequency) 
%       stop = (seconds * sampling frequency) 
%% 
%Initialize Data Points 
  
%Load in the FFT data file and signal data file 
[~,fftData] = hdrload(fftDataFile); 
[~,signalData] = hdrload(signalFile); 
[~,startStopData] = hdrload(startStopDataFile); 
  
%If time values are present, remove times values 
if (size(signalData,2) == 4) 
    samplingFrequency = 1/... 
                          (signalData(3,1)-signalData(2,1)); 
    signalData = signalData(:,2:4); 
else 
    samplingFrequency = 1000; 
end 
  
%% 
%Change Start and Stop Time of Experiment 
% %Manually figure out where the experiment starts and stops 
% start = 400*samplingFrequency; 
% stop = 1345*samplingFrequency; 
% startInbetween = startStopData((startStopData(:,1)>start),1); 
% lenStartDelete = max(size(startStopData)) - 
max(size(startInbetween)); 
% startInbetween = startInbetween(startInbetween(:,1)<stop); 
% lenStopDelete = max(size(startStopData)) - lenStartDelete - 
max(size(startInbetween)); 
% stopInbetween=startStopData((startStopData(:,1)>start),2); 
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% stopInbetween=stopInbetween(startInbetween(:,1)<stop); 
%  
% startStopData = [startInbetween stopInbetween]; 
% [fftRows,fftCols] =size(fftData); 
% fftData = fftData(:,(2*lenStartDelete-1):(2*(fftCols/2-lenStopDelete-
1))); 
  
%% 
  
%Get dimensions of the data 
[numRows, numColumns] = size(fftData); 
  
%Initialize variables 
lengthColumn = 0; 
count = 1; 
currentColumn = 2; 
frameRate = 1; 
fig1 = figure(1); 
fig2 = figure(2); 
upperBound = 500; 
lowerBound = 5; 
[numBursts,~] = size(startStopData); 
maxFFT = 0; 
maxFFTPower= 0; 
totalSpectralMagnitude(numBursts) = 0; 
totalSpectralPower(numBursts)=0; 
MDF(numBursts) = 0; 
MPF(numBursts) = 0; 
MDFPower(numBursts) = 0; 
MPFPower(numBursts) = 0; 
normalizationBurstFactor(numBursts) = 0; 
emgRMS(numBursts) = 0; 
iEMG(numBursts) = 0; 
zeroCrossings = 0; 
zeroCrossingRate(numBursts) = 0; 
averageRectifiedValue(numBursts) = 0; 
  
%Initialize .avi file for FFT video 
file = fftDataFile; 
[pathstr, oldfile, ext] = fileparts(file); 
fileName = [oldfile '_burstMovie.avi'  ];  
videoObjectFFT = VideoWriter(fileName); 
videoObjectFFT.FrameRate = frameRate; 
  
%Initialize .avi file for Raw Data video 
file = signalFile; 
[pathstr, oldfile, ext] = fileparts(file); 
fileName = [oldfile '_burstMovie.avi'  ];  
videoObjectBurst = VideoWriter(fileName); 
videoObjectBurst.FrameRate = frameRate; 
  
%Get all axes values 
xValueBurst = max(startStopData(:,2)-startStopData(:,1)); 
yValueBurst = max(max(signalData(:,3),abs(min(signalData(:,3))))); 
xValueFFT = max(max(fftData(:,1:2:end))); 
%yMinValueSpectral = min(sum(fftData(5:end,2:2:end))); 
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yMaxValueSpectral = max(max(sum(fftData(5:end,2:2:end).^(1/2)))); 
% yMinValueSpectralPower= min(sum(fftData(5:end,2:2:end).^2)); 
% yMaxValueSpectralPower= max(max(sum(fftData(5:end,2:2:end).^2))); 
  
kurtosisFFT(numBursts) = 0; 
skewnessFFT(numBursts) = 0; 
  
%Get FFT axis value 
while (currentColumn < (numColumns + 1)) 
    
    %Adjust the size of the data to be plotted (e.g. remove unnecessary 
    %zeros) 
    while(count < numRows) 
         
        %Check for the end of the data stream in the current column 
        if(fftData(count,currentColumn) == 0 && 
fftData(count,currentColumn - 1) == 0 && count > 1) 
            if(lengthColumn == 0) 
                lengthColumn = count; 
            end 
        end 
         
        %Iterate count 
        count = count + 1; 
    end 
     
    if(lengthColumn == 0) 
       lengthColumn = count;  
    end 
       
    %Get current start and stop times of the burst and the burst data 
from 
    %the data files 
    startTime = startStopData(currentColumn/2,1); 
    stopTime = startStopData(currentColumn/2,2); 
    currentBurstData = signalData(startTime:stopTime,3); 
     
    %Get frequency indices and fft data from data file 
    frequencyIndex = fftData(1:lengthColumn, currentColumn - 1); 
    currentFFTData = fftData(1:lengthColumn, currentColumn); 
     
    %Remove DC values, find total spectral power, and normalize FFT 
Data 
    currentFFTData(1:4) = [0 0 0 0]; 
    normalizedFFTData = currentFFTData.^(1/2) / (sum(currentFFTData));       
    normalizedFFTPowerData = currentFFTData / (sum(currentFFTData)); 
     
    %Hold maximum value of normalized FFT Data 
    maxFFT = max(max(normalizedFFTData,maxFFT)); 
    maxFFTPower = max(max(normalizedFFTPowerData,maxFFTPower)); 
     
    %Calculate Skewness and Kurtosis 
    [gaussianArray] = GenerateGaussian( frequencyIndex, 
normalizedFFTPowerData ); 
    skewnessFFT(currentColumn/2) = skewness(gaussianArray); 
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    kurtosisFFT(currentColumn/2) = kurtosis(gaussianArray); 
     
    %Calculate EMG RMS and iEMG 
    emgRMS(currentColumn/2) = (1/length(currentBurstData) * 
sum(currentBurstData.^2)).^(1/2); 
    iEMG(currentColumn/2) = sum(abs(currentBurstData)); 
  
    %Increment currentColumn 
    currentColumn = currentColumn + 2; 
     
    %Reset counter variables 
    count = 1; 
    lengthColumn = 0; 
end 
  
yMaxRMS = max(emgRMS); 
yMaxIEMG = max(iEMG); 
yMaxSkewness = max(skewnessFFT); 
yMaxKurtosis = max(kurtosisFFT); 
currentColumn = 2; 
yValueFFT = maxFFT; 
yValueFFTPower = maxFFTPower; 
  
%% 
%Smooth Data 
  
%Get the smoothed data for plotting 
signal_abs = abs(signalData(:,3)); 
%stand_noise = mean(signalData(1:5000,3)); 
  
% Calculate the moving average power of the signal, 101 points average 
signal_length = length(signal_abs); 
smooth_signal = zeros(signal_length,1); 
  
%Median Filter Data 
smooth_signal = medfilt1(signal_abs,101); 
  
%Moving Average Filter 
for i = 51:signal_length - 50 
    signal_abs_101 = signal_abs(i-50:i+50); 
    smooth_signal(i) = sqrt(sum(signal_abs_101.^2)/101); 
end 
smooth_signal_abs = abs(smooth_signal); 
  
% Calculate the moving average again for signal 
smooth_signal_final = zeros(signal_length,1); 
  
for i = 51:signal_length - 50 
    smooth_signal_final(i) = mean(smooth_signal_abs(i-50:i+50)); 
end  
  
  
%% 
%Open Video Objects 
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open(videoObjectFFT) 
open(videoObjectBurst) 
%% 
%Plot Data 
  
%plot each FFT and save it as a frame 
while (currentColumn < (numColumns + 1)) 
     
    %Adjust the size of the data to be plotted (e.g. remove unnecessary 
    %zeros) 
    while(count < numRows) 
         
        %Check for the end of the data stream in the current column 
        if(fftData(count,currentColumn) == 0 && 
fftData(count,currentColumn - 1) == 0) 
            if(lengthColumn == 0) 
                lengthColumn = count-1; 
            end 
        end 
         
        %Iterate count 
        count = count + 1; 
    end 
     
    if(lengthColumn == 0) 
       lengthColumn = count;  
    end 
     
    %Get current start and stop times of the burst and the burst data 
from 
    %the data files 
    startTime = startStopData(currentColumn/2,1); 
    stopTime = startStopData(currentColumn/2,2); 
    currentBurstData = signalData(startTime:stopTime,3); 
     
    %Get frequency indices and fft data from data file 
    frequencyIndex = fftData(1:lengthColumn, currentColumn - 1); 
    currentFFTData = fftData(1:lengthColumn, currentColumn); 
     
    %Remove DC values and find total spectral power 
    currentFFTData(1:4) = [0 0 0 0]; 
    totalSpectralMagnitude(currentColumn/2) = 
sum(currentFFTData.^(1/2)); 
    totalSpectralPower(currentColumn/2) = sum(currentFFTData); 
     
    %Normalize Burst Data and FFT Data 
    normalizationBurstFactor(currentColumn/2) = 
max(max(currentBurstData,abs(min(currentBurstData)))); 
    normalizedBurstData = currentBurstData / 
normalizationBurstFactor(currentColumn/2); 
    normalizedFFTData = currentFFTData.^(1/2) / (sum(currentFFTData)); 
    normalizedFFTPowerData = currentFFTData / (sum(currentFFTData)); 
     
    %Calculate the moving average for FFT Magnitude data 
    fft_length = length(normalizedFFTData); 
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    smooth_fft = zeros(fft_length,1); 
  
    for i = 21:fft_length - 20 
        fft_41 = normalizedFFTData(i-20:i+20); 
        smooth_fft(i) = sqrt(sum(fft_41.^2)/41); 
    end 
     
    %Calculate the moving average for FFT Power data 
    fft_power_length = length(normalizedFFTPowerData); 
    smooth_power_fft = zeros(fft_power_length,1); 
  
    for i = 21:fft_power_length - 20 
        fft_41 = normalizedFFTPowerData(i-20:i+20); 
        smooth_power_fft(i) = sqrt(sum(fft_41.^2)/41); 
    end     
     
    freqMedian = MedianPowerFrequency(frequencyIndex, 
normalizedFFTData, lowerBound, upperBound);   
    freqMean = MeanPowerFrequency(frequencyIndex, normalizedFFTData, 
lowerBound, upperBound);   
         
    freqMedianPower = MedianPowerFrequency(frequencyIndex, 
normalizedFFTPowerData, lowerBound, upperBound);   
    freqMeanPower = MeanPowerFrequency(frequencyIndex, 
normalizedFFTPowerData, lowerBound, upperBound); 
     
    %Calculate Skewness and Kurtosis 
    [gaussianArray] = GenerateGaussian( frequencyIndex, 
normalizedFFTPowerData ); 
     
    %Calculate Zero Crossing Rate 
    [zeroCrossings,~] = size(find(diff(sign(currentBurstData))~=0)); 
%find number of zero crossings 
    zeroCrossingRate(currentColumn/2) = 
zeroCrossings/length(currentBurstData)*samplingFrequency; 
     
    %Calculate Average Rectified Value 
    averageRectifiedValue(currentColumn/2) = 
mean(abs(currentBurstData)); 
  
    %Fill mean and median power and magnitude frequency arrays 
    MDF(currentColumn/2) = freqMedian; 
    MPF(currentColumn/2) = freqMean; 
  
    MDFPower(currentColumn/2) = freqMedianPower; 
    MPFPower(currentColumn/2) = freqMeanPower; 
    
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Start Plotting 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    clf(fig1) 
    clf(fig2) 
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    %Set Figure to fullscreen 
    screenSize = get(0,'ScreenSize'); 
    set(fig1,'position',screenSize); 
    set(fig2,'position',screenSize); 
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %FFT Data Video 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    figure(fig1) 
  
    %FFT Magnitude with MDF, MPF, and Smoothed FFT 
    subplot(321) 
    hold on  
  
    %Plot the current FFT burst data 
    plot(frequencyIndex, normalizedFFTData ); 
    plot(frequencyIndex, smooth_fft,'r'); 
  
    %Plot the Mean Magnitude Frequency 
    stem(freqMean,0.9*yValueFFT,'r') 
  
    %Plot the Median Magnitude Frequency 
    stem(freqMedian,yValueFFT,'g') 
  
    %Plot numbers for the MPF and MDF 
    plot(freqMedian, yValueFFT ,'w.') 
    text(freqMedian, yValueFFT , [' ' num2str(floor(freqMedian))]) 
    plot(freqMean, 0.9*yValueFFT ,'w.') 
    text(freqMean, 0.9*yValueFFT , [' ' num2str(floor(freqMean))])    
    hold off 
  
    title('FFT Magnitude Data with MPF, MDF, and Smoothing'); 
    xlabel('Frequency (in Hz)'); 
    ylabel('Amplitude'); 
    legend('FFT Data','Smoothed FFT','MPF','MDF'); 
    axis([0 xValueFFT 0 1.1*yValueFFT]); 
    grid on 
  
    %FFT Power with MDF, MPF, and Smoothed FFT 
    subplot(322) 
    hold on  
  
    %Plot the current FFT burst data 
    plot(frequencyIndex, normalizedFFTPowerData ); 
%     plot(frequencyIndex, smooth_power_fft,'r'); 
    plot(frequencyIndex, gaussianArray,'r'); 
  
    %Plot the Mean Power Frequency 
    stem(freqMeanPower,0.9*yValueFFTPower,'m') 
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    %Plot the Median Power Frequency 
    stem(freqMedianPower,yValueFFTPower,'k') 
  
    %Plot numbers for the MPF and MDF 
    plot(freqMedianPower, yValueFFTPower ,'w.') 
    text(freqMedianPower, yValueFFTPower , [' ' 
num2str(floor(freqMedianPower))]) 
    plot(freqMeanPower, 0.9*yValueFFTPower ,'w.') 
    text(freqMeanPower, 0.9*yValueFFTPower , [' ' 
num2str(floor(freqMeanPower))])    
    hold off 
  
    title('FFT Power Data with MPF, MDF, and Smoothing'); 
    xlabel('Frequency (in Hz)'); 
    ylabel('Amplitude'); 
    legend('FFT Data','Smoothed FFT','MPFPower','MDFPower'); 
    axis([0 xValueFFT 0 1.1*yValueFFTPower]); 
    grid on    
  
    subplot(323) 
    hold on 
    plot(totalSpectralMagnitude(1:currentColumn/2)); 
    title('Total Spectral Magnitude and Total Spectral Power'); 
    xlabel('Burst Index'); 
    ylabel('Amplitude'); 
    legend('Total Spectral Magnitude'); 
    axis([0 numBursts 0 1.3*yMaxValueSpectral]) 
    grid on 
  
%     [ax,~,~] = 
plotyy(1:(currentColumn/2),totalSpectralMagnitude(1:currentColumn/2),1:
(currentColumn/2),totalSpectralPower(1:currentColumn/2)); 
%      
%     title('Total Spectral Magnitude and Total Spectral Power'); 
%     xlabel(ax(1),'Burst Index'); 
%     ylabel(ax(1),'Amplitude'); 
%     ylabel(ax(2),'Amplitude'); 
%     legend('Total Spectral Magnitude','Total Spectral Power'); 
%     set(ax(1),'YLim',[0.9*yMinValueSpectral 1.1*yMaxValueSpectral]); 
%     set(ax(2),'YLim',[0.9*yMinValueSpectralPower 
1.5*yMaxValueSpectralPower]); 
  
    %Mean and Median Magnitude Frequency 
    subplot(324)  
  
    hold on 
    plot(MPF(1:currentColumn/2),'r'); 
    plot(MDF(1:currentColumn/2),'g'); 
    plot(MPFPower(1:currentColumn/2),'m'); 
    plot(MDFPower(1:currentColumn/2),'k'); 
    hold off 
  
    title('Mean and Median Power Frequencies'); 
    xlabel('Burst Index'); 
    ylabel('Frequency (in Hz)'); 
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    legend('MPF','MDF','MPFPower','MDFPower'); 
    legend BOXOFF 
    axis([0 numBursts 0 200]); 
    grid on  
  
    %Skewness 
    subplot(325)  
  
    plot(skewnessFFT(1:currentColumn/2),'r'); 
  
    title('Skewness'); 
    xlabel('Burst Index'); 
    ylabel('Magnitude'); 
    legend('Skewness'); 
    axis([0 numBursts 0 1.3*yMaxSkewness]); 
    grid on    
  
    %Kurtosis 
    subplot(326)  
  
    plot(kurtosisFFT(1:currentColumn/2),'r'); 
  
    title('Kurtosis'); 
    xlabel('Burst Index'); 
    ylabel('Magnitude'); 
    legend('Kurtosis'); 
    axis([0 numBursts 0 1.3*yMaxKurtosis]); 
    grid on       
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Burst Data Video 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  
    figure(fig2) 
  
    %Normalized Raw Data with smoothing and twice smoothing waveforms 
    subplot(321) 
  
    hold on 
    time=0:(1/samplingFrequency):(numel(normalizedBurstData)-
1)/samplingFrequency; 
    plot(time,normalizedBurstData); 
    
%plot(time,smooth_signal_abs(startTime:stopTime)/normalizationBurstFact
or(currentColumn/2),'m') 
    
plot(time,smooth_signal_final(startTime:stopTime)/normalizationBurstFac
tor(currentColumn/2),'r') 
    %plot(zeros(length(smooth_signal_abs(startTime:stopTime)),1),'k') 
    
%plot(stand_noise*ones(length(smooth_signal_abs(startTime:stopTime)),1)
,'r') 
    hold off 
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    title('Raw Data with Smoothing Alogrithms'); 
    xlabel('Time (in seconds)'); 
    ylabel('Amplitude'); 
    legend('Raw Data', 'Double Smooth'); 
    axis([0 xValueBurst/samplingFrequency -1 1]); 
    grid on 
  
    %Normalization Factor for Bursts 
    subplot(322) 
    hold on 
    plot(normalizationBurstFactor(1:(currentColumn/2))); 
    hold off 
  
    title('Normalization Factor'); 
    xlabel('Burst Index'); 
    ylabel('Amplitude'); 
    legend('Normalization Factor'); 
    axis([0 numBursts 0 1.5*yValueBurst]); 
    grid on 
  
    %FFT Magnitude with MDF, MPF, and Smoothed FFT 
    subplot(323) 
  
    plot(emgRMS(1:(currentColumn/2))); 
  
    title('RMS of the EMG'); 
    xlabel('Burst Index'); 
    ylabel('Amplitude'); 
    legend('RMS'); 
    axis([0 numBursts 0 1.1*yMaxRMS]); 
    grid on 
  
    %FFT Power with MDF, MPF, and Smoothed FFT 
    subplot(324) 
  
    plot(iEMG(1:(currentColumn/2))); 
  
    title('iEMG'); 
    xlabel('Burst Index'); 
    ylabel('Amplitude'); 
    legend('iEMG'); 
    axis([0 numBursts 0 1.1*yMaxIEMG]); 
    grid on    
  
    %Zero Crossing Rate 
    subplot(325) 
  
    plot(zeroCrossingRate(1:currentColumn/2)); 
    title('Zero Crossing Rate'); 
    xlabel('Burst Index'); 
    ylabel('Amplitude'); 
    legend('Zero Crossing Rate'); 
    axis([0 numBursts 0 samplingFrequency/2]) 
    grid on 
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    %Average Rectified Value 
    subplot(326)  
  
    plot(averageRectifiedValue(1:currentColumn/2)); 
    title('Average Rectified Value'); 
    xlabel('Burst Index'); 
    ylabel('Amplitude'); 
    legend('Average Rectified Value'); 
    axis([0 numBursts 0 0.3*yValueBurst]) 
    grid on 
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Capture Frames 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    writeVideo(videoObjectFFT,getframe(fig1)); 
    writeVideo(videoObjectBurst,getframe(fig2)); 
    %Iterate the current Column 
    currentColumn = currentColumn + 2; 
  
    %Reset count and lengthColumn 
    count = 1; 
    lengthColumn = 0; 
end 
  
% %Iterate the current Column 
% currentColumn = currentColumn + 2; 
%  
% %Reset count and lengthColumn 
% count = 1; 
% lengthColumn = 0; 
  
close(videoObjectFFT); 
  
close all 
clear all 
end 
 

GaussFit 
function [sigma, mu] = gaussfit( x, y, sigma0, mu0 ) 
% [sigma, mu] = gaussfit( x, y, sigma0, mu0 ) 
% Fits a guassian probability density function into (x,y) points using 
iterative  
% LMS method. Gaussian p.d.f is given by:  
% y = 1/(sqrt(2*pi)*sigma)*exp( -(x - mu)^2 / (2*sigma^2)) 
% The results are much better than minimazing logarithmic residuals 
% 
% INPUT: 
% sigma0 - initial value of sigma (optional) 
% mu0 - initial value of mean (optional) 



 97  

% 
% OUTPUT: 
% sigma - optimal value of standard deviation 
% mu - optimal value of mean 
% 
% REMARKS: 
% The function does not always converge in which case try to use 
initial 
% values sigma0, mu0. Check also if the data is properly scaled, i.e. 
p.d.f 
% should approx. sum up to 1 
%  
% VERSION: 23.02.2012 
%  
% EXAMPLE USAGE: 
% x = -10:1:10; 
% s = 2; 
% m = 3; 
% y = 1/(sqrt(2*pi)* s ) * exp( - (x-m).^2 / (2*s^2)) + 0.02*randn( 1, 
21 ); 
% [sigma,mu] = gaussfit( x, y ) 
% xp = -10:0.1:10; 
% yp = 1/(sqrt(2*pi)* sigma ) * exp( - (xp-mu).^2 / (2*sigma^2)); 
% plot( x, y, 'o', xp, yp, '-' ); 
  
  
% Maximum number of iterations 
Nmax = 50; 
  
if( length( x ) ~= length( y )) 
    fprintf( 'x and y should be of equal length\n\r' ); 
    exit; 
end 
  
n = length( x ); 
x = reshape( x, n, 1 ); 
y = reshape( y, n, 1 ); 
  
%sort according to x 
X = [x,y]; 
X = sortrows( X ); 
x = X(:,1); 
y = X(:,2); 
  
%Checking if the data is normalized 
dx = diff( x ); 
dy = 0.5*(y(1:length(y)-1) + y(2:length(y))); 
s = sum( dx .* dy ); 
if( s > 1.5 | s < 0.5 ) 
    fprintf( 'Data is not normalized! The pdf sums to: %f. 
Normalizing...\n\r', s ); 
    y = y ./ s; 
end 
  
X = zeros( n, 3 ); 
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X(:,1) = 1; 
X(:,2) = x; 
X(:,3) = (x.*x); 
  
  
% try to estimate mean mu from the location of the maximum 
[ymax,index]=max(y); 
mu = x(index); 
  
% estimate sigma 
sigma = 1/(sqrt(2*pi)*ymax); 
  
if( nargin == 3 ) 
    sigma = sigma0; 
end 
  
if( nargin == 4 ) 
    mu = mu0; 
end 
  
%xp = linspace( min(x), max(x) ); 
  
% iterations 
for i=1:Nmax 
%    yp = 1/(sqrt(2*pi)*sigma) * exp( -(xp - mu).^2 / (2*sigma^2)); 
%    plot( x, y, 'o', xp, yp, '-' ); 
  
    dfdsigma = -1/(sqrt(2*pi)*sigma^2)*exp(-((x-mu).^2) / (2*sigma^2)); 
    dfdsigma = dfdsigma + 1/(sqrt(2*pi)*sigma).*exp(-((x-mu).^2) / 
(2*sigma^2)).*((x-mu).^2/sigma^3); 
  
    dfdmu = 1/(sqrt(2*pi)*sigma)*exp(-((x-mu).^2)/(2*sigma^2)).*(x-
mu)/(sigma^2); 
  
    F = [ dfdsigma dfdmu ]; 
    a0 = [sigma;mu]; 
    f0 = 1/(sqrt(2*pi)*sigma).*exp( -(x-mu).^2 /(2*sigma^2)); 
    a = (F'*F)^(-1)*F'*(y-f0) + a0; 
    sigma = a(1); 
    mu = a(2); 
     
    if( sigma < 0 ) 
        sigma = abs( sigma ); 
        fprintf( 'Instability detected! Rerun with initial values 
sigma0 and mu0! \n\r' ); 
        fprintf( 'Check if your data is properly scaled! p.d.f should 
approx. sum up to \n\r' ); 
        exit; 
    end 
end 
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GaussFit License 

Copyright (c) 2012, Przemyslaw Baranski 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are 

met: 

 

    * Redistributions of source code must retain the above copyright 

      notice, this list of conditions and the following disclaimer. 

    * Redistributions in binary form must reproduce the above copyright 

      notice, this list of conditions and the following disclaimer in 

      the documentation and/or other materials provided with the distribution 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF  

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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