
 

Role of the Transition Dipole Amplitude and Phase on the Generation
of Odd and Even High-Order Harmonics in Crystals

Shicheng Jiang,1,2 Jigen Chen,2,3 Hui Wei,2 Chao Yu,1 Ruifeng Lu,1,4,* and C. D. Lin2,†
1Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China

2J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
3Department of Physics, Taizhou University, Taizhou 318000, People’s Republic of China

4State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,
Dalian 116023, People’s Republic of China

(Received 10 February 2018; published 18 June 2018)

Since the first observation of odd and even high-order harmonics generated from ZnO crystals in 2011,
the dependence of the harmonic yields on the orientation of the laser polarization with respect to the crystal
axis has never been properly interpreted. This failure has been traced to the lack of a correct account of the
phase of the transition dipole moment between the valence band and the conduction band. Using a simple
one-dimensional two-band model, here we demonstrate that the observed odd harmonics is directly related
to the orientation dependence of the magnitude of the transition dipole, while even harmonics is directly
related to the phase of the transition dipole. Our result points out the essential role of the complex transition
dipole moment in understanding harmonic generation from solids that has long been overlooked so far.
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High-order harmonic generation (HHG) resulting from
the interaction of an intense laser field with atomic or
molecular gases has led to the emergence of attosecond
physics and the rapid advance in ultrafast science in the past
decade. HHG from a crystalline solid came along much
later, not until the first observation in 2011 on ZnO [1].
Since then, HHG from many solids, including ZnO [1–5],
MgO [6–8], SiO2 [9–11], GaSe [12–14], MoS2 [15],
graphene [16,17], and rare-gas solids of Ar and Kr [18],
has been reported. Like gas-phase HHG before it, harmon-
ics from solids can be used to generate isolated attosecond
pulses, but with a more compact design since it requires
much lower driving laser intensities, typically a few
TW=cm2 or less. At the same time, like in atoms and
molecules, HHG from solids offers opportunities for
probing the structure of solids. Indeed, it has been touted
that harmonics from solids can be used to reconstruct the
electronic band structure [4,19] and atomic orbitals inside
the crystal [6] using all-optical measurements. However,
such optimism is premature since much is still unknown
about HHG in solids. Experiments using driving lasers
from visible to multi-THz waves each point to different
generation mechanisms [1,3,5,9,10,12].
Because of the complexity of solids, it may be too naive

to expect that a single mechanism can interpret high
harmonic generation from all kinds of crystals. In this
Letter, we go back to the basics and ask whether harmonics
generated from the simplest solids can be accurately
calculated. These are solids that have the simplest band
structure, for example, the ZnO that was studied in 2011
[1], in particular, the harmonic yields versus the

polarization direction of the laser. These earlier experi-
mental data have been reproduced in another recent
measurement [2]. The choice of ZnO is appropriate since
in the (11-20) plane where the harmonics were studied, the
valence and the first conduction bands are well separated
from all the higher conduction bands; thus a simple two-
band model may be enough [5].
Before proceeding let us see what we know about ZnO.

In Fig. 1(a), we show the wurtzite ZnO crystal in real space.
The (11-20) plane is indicated by the light blue color (gray).
The XYZ axes are also shown. In Figs. 1(b) and 1(c), the
arrangement of Zn and O atoms on the (11-20) plane in real
space, the unit cell, and the corresponding reciprocal space
are displayed. On this plane, the crystal axis is along the Z
axis, and the polarization angle θ of the laser is defined with
respect to the crystal axis. Figure 1(d) shows the band
structure along the Γ-M axis. The valence band and the first
two conduction bands are marked in color. Figure 1(e)
shows the magnitude of the transition dipole coupling
between each pair of the three bands indicated.
The orientation-dependent harmonics obtained in

Ref. [2] are displayed in Fig. 2(a). In this experiment,
the authors used a 3.8 μmmidinfrared laser. Their data look
quite similar to the earlier ones obtained by Ghimire et al.
[1], where the driving laser wavelength is 3.25 μm.
A quick glance at the experimental harmonic spectra in

Fig. 2(a) reveals that both even and odd harmonics appear
at all angles except for θ ¼ 90°, where only odd harmonics
appear. In particular, even harmonics show up quite clearly
near θ ¼ 0° and 180°. [The “irregularity” for “harmonics”
near the tenth order was known to be due to band
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fluorescence (band gap is 3.3 eV) so it will not be
considered further.] Such a difference in the angular
dependence can be easily understood based on symmetry,
by taking examples from harmonics generated in gas-phase
atoms and molecules. In atoms, the target has intrinsic
inversion symmetry; thus only odd harmonics exist.
Consider a molecule that is fixed in space; if the molecule
does not have inversion symmetry, then even harmonics
would coexist with odd harmonics. Such rules should
apply to solids as well. From Fig. 1(b), clearly reflection
symmetry occurs when θ ¼ 90°; thus only odd harmonics
appear. Away from this direction, the inversion symmetry is
broken; thus even harmonics are expected, as seen in the
experiment.
Oddly enough, such a self-evident prediction has not been

reproduced in theoretical calculations. Previous modeling on
the existence of even harmonics relies on the introduction of
a second harmonic in addition to the fundamental driving
laser [19]; i.e. it relies on the asymmetry of the electric field
of the driving laser. In other theoretical works, the absence
of even harmonics near 0° and 180° was not addressed;
see Refs. [20,21]. In Refs. [12,22], it was argued that even
harmonics would appear only when multiple bands are
included in the calculation.

Why are the obvious results that can be deduced from
symmetry alone not reproduced even qualitatively in all of
these theoretical calculations? Clearly, if the calculation
employs an approximation that violates symmetry, then
symmetry-imposed predictions would no longer hold.
As shown in our recent paper [23], the transition dipole
moment is intrinsically a complex number when the system
does not possess proper symmetry. In most theoretical
calculations so far, it has been a common practice to neglect
the phase of the transition dipole which leads automatically
to the disappearance of even harmonics.
It is important to note that the band energies and

transition dipole like Figs. 1(d) and 1(e) are available from
most commercial codes like the Vienna ab initio simulation
package (VASP). These codes do not provide the phase of
the transition dipole. Thus the phases are simply ignored or
obtained only near the Γ point using simple approxima-
tions. In these codes, the band energies are calculated at
each fixed crystal momentum k independently by some
diagonalization procedure; thus the relative phase of
eigenfunctions between neighboring k vectors is not
determined, nor is the transition dipole phase (TDP).
In this Letter, we take into account the TDP and employ

the familiar semiconductor Bloch equations (SBEs) method

FIG. 2. (a) Orientation-dependent HHG spectra, redrawn from
the experimental data in Ref. [2]. (b) Spectra calculated from the
present theory. (c) Spectra calculated from the present theory but
artificially removing the phase of the transition dipole between
the valence and conduction bands. The efficiency of the harmonic
spectra has been normalized to the 11th-order harmonic. Param-
eters of the lasers used are given in the text.

FIG. 1. (a) The crystal structure of wurtzite ZnO and the
definition of the XYZ axes. The (11-20) plane is indicated by
light blue color. (b) The arrangement of atoms in real space on the
(11-20) plane, where O and Zn atoms are shown as red and gray
balls, respectively. The unit cell and laser polarization are
indicated. (c) The corresponding ky ¼ 0 plane in the reciprocal
space where high symmetry k points are Γ ¼ ð0.0; 0.0; 0.0Þ,
A ¼ ð0.0; 0.0; 0.5Þ, and M ¼ ð0.5; 0.0; 0.0Þ. The crystal axis is
defined to be the Z axis, and the orientation angle θ is between the
crystal axis and the axis of the laser polarization which lies on the
(11-20) plane. (d) Band structure of ZnO. The valence band and
the two lowest conduction bands are highlighted. (e) The
magnitude of the transition dipole between each pair of bands
considered.
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within the simplest 1D two-band model to calculate the
angle-dependent high-order harmonics from ZnO. The
results are shown in Fig. 2(b), which are to be compared
to Fig. 2(a) from the experiment of Ref. [2]. One can see the
agreement between the two-band model and the experiment
is quite good. Even harmonics appear at angles away from
θ ¼ 90° as expected. We did try a three-band calculation,
and the results are essentially the same (the difference is
<1%). This is expected if one looks at the dipole moment
shown in Fig. 1(e). Coupling from the valence band to the
C1 conduction band is large near the Γ point, but not near
the M points. Direct coupling of the valence band with the
C2 conduction band is very small. In Fig. 2(c) we also show
the two-band SBEs calculations but setting the TDP to zero
artificially. Clearly all the even harmonics disappear.
Having resolved the simple issues of the existence of

even versus odd harmonics in ZnO, we next check whether
the details of the harmonic spectra can also be explained by
the present two-band model. We defer the computational
details to the Supplemental Material (SM) [24], including
the parameters used to run the VASP code for generating the
band structure and the transition dipole shown in Figs. 1(d)
and 1(e). Since we have not been able to obtain the TDP
from the VASP code, we chose to calculate the TDP based
on the analytical tight-binding model. For the latter, the
details are also given in the SM [24], but an outline of the
method is given here.
To obtain TDP we use the semiempirical tight-binding

model in Ref. [25]. The Bloch-type wave function is taken
to be

jn; b;ki ¼ 1
ffiffiffiffi

N
p

X

R

e½ik·ðRþtbÞ�jn; b;Ri; ð1Þ

where jn; b;Ri is the wave function localized at the site
Rþ tb. Here, b stands for the four atoms in the unit cell as
indicated in Fig. 1(b); n ¼ s, px, py, or pz are the four
different atomic orbitals. The crystal eigenstates can be
expanded as jλ;ki ¼ P

n;bC
λ
n;bjn; b;ki. We will use only

six atomic orbitals per unit cell, namely, 1(O): px, pz; 2(O):
px, pz; 3(Zn): s; 4(Zn): s. We further include only the on-
site integrals and the nearest-neighbor two-center integrals,
thus reducing to a 6 × 6 Hamiltonian matrix. After the
matrix is diagonalized analytically, we can obtain the
k-dependent transition dipole phases between bands λ1
and λ2 from Eq. (S14) in the SM [24].
Note that the transition dipole moments are obtained

based on the three-dimensional (3D) wave functions; thus,
the dipole moments contain DxðkÞ, DyðkÞ, and DzðkÞ. We
reduce the 3D problem to a 1D problem by projecting the
3D dipole moment onto the polarization direction of the
driving laser. Once the band energies and transition dipole
amplitude and phase (TDP) are calculated as described
above, we solved the 1D two-band SBEs. In the experi-
ment, the pulse duration is estimated to be 100 fs and the
intensity is about 1–2 TW=cm2, while in the theory they

are 65 fs and 9 × 1010 W=cm2, respectively. Recall that the
experimental intensity refers to outside the crystal and in
the calculation it refers to within the crystal. The intensity
for the theory was chosen such that the harmonic spectra
exhibit best agreement with the experimental data.
Next we examine the details of the measured and

calculated harmonic spectra. We comment that the exper-
imental data shown in Fig. 2(a) have been replotted using
the digital data provided by the authors of Ref. [2], to allow
for better visualization when compared to the calculations.
The fine features to be discussed below are not as clearly
seen in the published data in Ref. [2], especially the weaker
signals away from θ ¼ 0° and 180°. In order to make a
quantitative comparison, we define the strength Pi of the
ith-order harmonic by integrating the harmonic signal from
ði − 0.5Þω to ðiþ 0.5Þω, where ω is the photon energy of
the driving laser. The strengths of the 11th and 12th
harmonics are then selected for comparison in Figs. 3(a)
and 3(b), respectively.
We first focus on the 11th-order odd harmonic shown in

Fig. 3(a). Theory shows maxima at 0°, 72°, 108°, and 180°,
andminima at 47° and 133° approximately. The results agree
well with experimental data except for angles close to 90°
where experiment has only one peak located at 90°. Since a
large dipole transition matrix element would lead to higher
ionization probability of an electron from the valence band,
we explore the angle-dependent harmonic yields versus the
square of the absolute values of the transition dipole moment
D̄ around the Γ point. The latter are shown in Fig. 3(c). Here,
D̄ is defined as D̄ ¼ Rþ0.05

−0.05 DðKÞdk. One can clearly see
the nearly identical angular modulations between Figs. 3(a)
and 3(c). This is a clear illustration that the angle-dependent

FIG. 3. (a),(b) Comparison of theoretical and experimental
orientation-dependent harmonic strength of the 11th-order and
the 12th-order harmonics, respectively. (c) The square of the
absolute value of the transition dipole moments D̄ versus the
orientation angle of the laser polarization direction. (d) The same
quantity as in (c) but multiplied by the square of the phase of the
transition dipole at k ¼ 0.2. See text for details.
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harmonic yield is directly related to the square of absolute
value of the angle-dependent transition dipole element.
We next focus on the angle dependence of the 12th-order

even harmonic; see Fig. 3(b). The peaks at 0° and 180° are
similar to the odd harmonics. A more obvious valley is
observed at 90° for both the experimental data and the
calculated results. The disappearance of even harmonics at
90° is of course due to the reflection symmetry of the crystal
along this direction where the TDP is always zero (or a
constant). Clearly, one would examine how the harmonics
are related to the angle-dependent transition dipole phase. In
our previous paper [23] [near Eq. (38)] we demonstrated that
the efficiency of even harmonics depends on sin2ðΔβÞ,
where Δβ ¼ jβr − βij, i.e., the difference of the TDP
between the subcycle excitation time and the recombination
time. Assuming that electrons are excited from the Γ point
where the TDP is set to zero, then Δβ ¼ jβrj. Since jβrj is
small, we further replace its sine function by the phase itself.
Thus, in Fig. 3(d), we plot the angular dependence of
jDj2jjβrj2 to compare with Fig. 3(b). The angular depend-
ence from Fig. 3(d) matches the theoretical HHG spectra in
Fig. 3(b), which is shifted only slightly from the exper-
imental data. Comparing Figs. 3(c) and 3(d), the phase factor
jβrj2 is 2 orders smaller. This is also reflected by the fact
that even harmonics is about 2 orders smaller than odd
harmonics. We comment that the TDP is given at k ¼ 0.2 in
Fig. 3(d), but its trend does not change for other k points.
A few additional comments on Fig. 3 are in order. First,

the inset in Fig. 3(c) shows the bond angles in ZnO.
Note that the angles indicated happen to also be where the
dipole moments are also at the maximum. So this is an
example that angle-dependent harmonic signals can be
directly related to the arrangement of atoms in the crystal.
Qualitatively, the observed orientation-dependent har-
monics yields observed in MgO was also interpreted in
terms of bond angles [6], but actual calculations in MgO
show the maxima of the transition dipole do not always
lie along the direction of the interatomic axis. Since the
reciprocal space and real space are not independent, it is
not surprising that interpretation in terms of real space
parameters may work, but the more fundamental quantity
in describing harmonic generation is the transition dipole.
Clearly, even harmonics cannot be explained in terms of
real space since the phase is involved. Finally, in the SM
[24], we show additional data for harmonics from the 13th
to 16th. One can conclude that all the odd harmonics have
the same angular dependence, and all the even harmonics
have the same angular dependence.
In Figs. 2(b), 3(a), and 3(b), the present 1D model

contains only parallel components of the harmonics. We
can add the contribution of the perpendicular components
calculated using the linearly coupled excitations (LCE)
model [14]. A description of this model and the new results
are shown to compare even better with experimental data;
see SM [24].

In the SBEs model, a phenomenological dephasing time
T2 is often introduced to account for the loss of coherence
due to the interaction of the excited electron with the crystal
medium. The parameter T2 will modify the relative strength
and the “coherence” of the harmonics generated. Figure 4
shows how the harmonic yields at θ ¼ 90° versus different
values of T2. To obtain narrow harmonic peaks as observed
in the experiment, as shown in Fig. 4(a), T2 ¼ 1 fs is the
best. However, the calculated higher-order harmonics then
drop much faster than the experiment. If T2 ¼ 2 fs is used,
then each harmonic becomes very broad, but the relative
peak heights become closer to the observation. Figure 4(b)
shows the quantitative comparison. Since the scattering of
the laser-driven electron with the crystal is expected to
depend on the momentum of the electron, we introduce a k-
dependent T2. We found that if we choose T2 to have a bell-
shaped form, T2ðkÞ ¼ 1þ 1=½1þ expð100jkj − 5Þ�, then
the calculated harmonic yields as well as the sharpness of
the harmonics would best agree with the data. This bell-
shaped function gives T2 ¼ 2 fs at k ¼ 0. It drops quickly
to 1.5 fs at jkj ¼ 0.05 a:u: For larger jkj away from the Γ
point, it reduces to 1 fs quickly. Note that the k-dependent
dephasing time T2ðkÞ has been discussed and mentioned in
Refs. [26–29].
In conclusion, we have demonstrated that a one-

dimensional two-band SBEs model can nicely explain the
observed orientation-dependent high-order harmonic spectra
for ZnO reported in Refs. [1,2]. The keys to the success are
the accurate band energies and the transition dipole between
the two bands. We demonstrated that the correct phase of the
transition dipole is essential to explain the even harmonics.
The phase appears to have been overlooked in most of the
previous theoretical treatment of harmonics in solids. Our
result is reminiscent of HHG in gas-phase molecules where it
was established in the quantitative rescattering theory
[30,31] that an accurate angle-dependent complex transition
dipole is essential for the correct description of harmonics
in molecules. The success of the two-band model in ZnO
would pave the way for extending the theory to more
complex multiple-band models for other solids, but only
if the TDPs are correctly calculated.

FIG. 4. (a) The dependence of the calculated harmonics on the
dephasing time and the comparison with experimental data. The
colored lines on the top indicate the different dephasing time
and the color for the experimental data. (b) Comparison of the
strength of the harmonics versus the dephasing time.
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Looking ahead, much remains to be done. It is imper-
ative to find an efficient computational method to calculate
the phase of the transition dipole that is not available in
today’s commercial crystal structure packages. Next, it is
desirable to extend the 1D SBE calculation to 3D such that
the polarization of the harmonics [14] can also be explored.
In addition, the dephasing time has been introduced in the
SBE method to bypass the need of carrying out propagation
of harmonics in the medium. A critical test of this
procedure may benefit from the measurement of the phase
of the harmonics.
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Légaré, C. R. McDonald, T. Brabec, and P. B. Corkum,
Nature (London) 522, 462 (2015).

[4] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F.
Légaré, C. R. McDonald, T. Brabec, D. D. Klug, and P. B.
Corkum, Phys. Rev. Lett. 115, 193603 (2015).

[5] Z. Wang, H. Park, Y. H. Lai, J. Xu, C. I. Blaga, F. Yang, P.
Agostini, and L. F. DiMauro, Nat. Commun. 8, 1686 (2017).

[6] Y. S. You, D. A. Reis, and S. Ghimire, Nat. Phys. 13, 345
(2017).

[7] S. Ghimire, J. Phys. B 47, 204030 (2014).
[8] Y. S. You et al., Opt. Lett. 42, 1816 (2017).
[9] T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th.

Hassan, and E. Goulielmakis, Nature (London) 521, 498
(2015).

[10] M. Garg, M. Zhan, T. T. Luu, H. Lakhotia, T. Klostermann,
A. Guggenmos, and E. Goulielmakis, Nature (London) 538,
359 (2016).

[11] Y. S. You, Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang,
S. Gholam-Mirzaei, M. Chini, Z. Chang, and S. Ghimire,
Nat. Commun. 8, 724 (2017).

[12] O. Schubert et al., Nat. Photonics 8, 119 (2014).
[13] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U.

Huttner, S. W. Koch, M. Kira, and R. Huber, Nature
(London) 523, 572 (2015).

[14] F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M.
Kira, and R. Huber, Nat. Photonics 11, 227 (2017).

[15] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A.
Reis, Nat. Phys. 13, 262 (2016).

[16] N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736
(2017).

[17] M. Taucer et al., Phys. Rev. B 96, 195420 (2017).
[18] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J.

Schafer, M. B. Gaarde, and D. A. Reis, Nature (London)
534, 520 (2016).

[19] A. A. Lanin, E. A. Stepanov, A. B. Fedotov, and A. M.
Zheltikov, Optica 4, 516 (2017).

[20] C. D. Liu, Y. H. Zheng, Z. N. Zeng, and R. X. Li, Phys. Rev.
A 93, 043806 (2016).

[21] E. N. Osika, A. Chacón, L. Ortmann, N. Suárez, J. A. Pérez-
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