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NOMEWCUTURE

All auantities in slug-foot-second units

IV

Symbol Meaning

Cd Drag coefficient - 4D

Cp Pressure coefficient
P - Po.

c Constant of integration

D Pressure foredrag

°B Base diameter

f , F Integrand function

Units

K

L

M

N

P

q

R

s

S

V

i-ineness ratio
Db/2

i

Drag parameter
D

2Vq^

Ratio of specific heats

Body length

Mach number

Distance measured normal to the body surface

Static pressure

Dynamic pressure

Radius of curvature of streamline in plane
containing symetric of body

Length along surface

Surface area

Resultant velocity

Ibf

ft

ft'

ft

ft

Ibf/ft^

lbf/ft2

ft

ft

2
ft*^

ft/sec



Vol

(T

A

C

Body voliime ft^

Coordinates of point on meridian curve of body ft

Turning angle, angle between free stream direction
and tangent to body surface rad

Shock angle

Lagrange multiplier

Density

rad

slug/ft'

Subscripts

00

+

B

C

s

X

y

Value at comer of meridian curve

Value at nose point of meridian curve or value before
oblique shock

Value at base point of meridian curve or value after
oblique shock

Value of free stream

Right-hand limiting value of quantity at comer on
minimizing curve

Left-hand limiting value of quantity at comer on
minimizing curve

Value along meridian curve

Value due to surface cvurvature

Value behind shock

Value before normal shock '

Value after normal shock ..,.,, '

,*->..* i.'



SECTION 1

INTRODUCTION

Since the advent of higher Mach number missiles, the problem of deter-

mining the shapes of nonlifting bodies of revolution having minimum pressure

drag at supersonic and hypersonic speeds has received much attention from many-

investigators. Based on the small perturbation potential flow theory, von

Karman and later on, Haack, Ferrari, Lighthill and Sears calculated the

minimum-drag body shapes for various conditions. Their findings are represen-

tative of body shapes of practical fineness ratios at low supersonic Kach

numbers. (Ref. l) "

Using a method similar to the present day calcvilus of variations, Newton

was perhaps the first to calculate the body shape of minimum drag. The problem

which Newton was concerned with was to determine the body shape of minimum

drag at extremely high speeds, where the inertia forces are large compared to

the elastic forces in the fluid. The drag law adopted by Nevrton, known as the

impact theory, is a good approximation to that for hypersonic flow. It states:

on impact, the approaching stream loses its normal component of momentum to

the body surface at hypersonic speeds, while the tangential con^onent remains

unchanged. Since then, certain generalizations of Newton's work have been

done by other investigators.

Taking into consideration the effects of centrifugal forces of flow over

a cvirved surface, Eggers, Resnikoff and Denis made some modification to the

simple impact theory and obtained the optimum body shapes for certain given

geometric conditions (Ref. 2). By using the calculus of variations, solutions

to the minimum-drag body problems are generally rather conplicated parametric



eq\iations. The minimizing curve for given fineness ratio can be approximated

by the 3/4 or 2/3 power body, depending on whether the centrifugal force

effects are considered or not.

It is undertalcen in this report to present methods for the determination

of shapes of the nonlifting bodies of revolution having minimum pressure drag

at hypersonic speeds by means of the calculus of variations and the Newtonian

inqjact theory. Much of the material is taken from sources of references 1 and

2. In the latter part and some other respects, fuller development is given by

the author of this report for the results from these references. The presen-

tation will be carried out for the various combinations of conditions of

given length, base diameter, surface area and volume. In each case, separate

analysis will be made in accordance with simple and modified theory for

comparison. In order to maintain the best possible continuity for the presen-

tation of the subject, fundamentals of the hypersonic flow theory and the

calculus of variations are given in the next two sections.



.
. ; : SECTION 2

FUNDAMENTAL HYPERSONIC YUJ.-J THEORY

2-1 Introductory Remarks. The hypersonic speed range lies between Mach

numbers from 5 to 40. Results obtained from the simple impact theory appro-

ximate satisfactorily for straight-side bodies if the free stream Mach number

is of the oixier of 15 or higher. For curved surfaces, effects of the centri-

fugal forces should be taken into account especially at moderate hypersonic

Mach numbers

.

As the Mach number increases (M,>6), the extremely high temperatures

behind the shock cause serious alterations in the thermodynamic properties of

the air, and more complicated boundary layer and heat transfer problems are

involed. In addition, the shock wave has a tendency to wrap itself around the

body surface, forming the so called "hypersonic boundaiy layer" between the

shock and the surface. The concept is of particular use in calculating the

pressure coefficients over a surface when curvature effects are considered.

Throughout this section, all analyses are based on the assumption that effects

of viscosity, molecular vibration and dissociation are considered negligible.

Since the Newtonian simple impact theory is satisfactory only at extreme

hypersonic speeds and the validity of the linearized theory is doubtful at

M„>3, special considerations are given for flow at moderate hypersonic speeds,

i.e., 35M^il5. As certain shock relations are required in presenting materials

on the hypersonic flow, a short summary of the pertinent relations is given

in the present section, . .



2-2 Normal Shock.

Consider the air flow through a normal shock as shown in Fig. 2-1. The

continviity, momentum and energy equations are given by

p — p =p\/'^ — pv

Cp(T^-Tj = Vf - V'
'p\'>^

By using the perfect gas relations.

r K-1 rfi tc-i p

Eq. (2-3) can be expressed as

~{f-^hii<-v:)K"i Tx r/

(2-1)

(2-2)

(2-3)

(2-3a)

Normal shock

Fig. 2-1. Normal shock wave.

Eljjninating V^ and Vy from Eqs. (2-1), (2-2) and (2-3a), the Rankine-Hxigoniot

relation is obtained, i.e..



The ratio of pressures fore and aft of the shock can be written in terms

of the initial Mach nimiber K^: '

,.
"

'
. .

•

. (2-5)

Substituting in Eq. (2-4) ^ one obtains the density ration across the shock

2-3 Oblique Shock.

^' ^ + (K-l)

(2-6)

Fig. 2-2. Oblique shock wave

The oblique shock wave may be thought of as being formed by superimpoing

a flow parallel to the normal shock wave such that the resultant velocities

V-^ and ^2 are parallel to the walls fore and aft of the shock, respectively.

The continuity, momentum and energy equations can be written as

Continuity: -
• .

p V = P W, (2-7)



Momentum in t-direction: -

• f^Vn,)Vt,= (P.V.J V^^
(2-8)

\/*
1

= V,. = v^

Momentum in n-direction:

P. — P=fV — PV' (2-9)

Energy:

or

since

-i<- fA _ ^\ _L/v^ _V^ ^ (2-10)

,;z.

.. and

Note the siinilarity between the continuity, momentum and energy equations

for the normal shock and the oblique shock. If we put V^ = V and V ^ = V„,

all the relations derived for the normal shock are also applicable to the case

of oblique shock. Substitution of M, sin forJC in Eqs. (2-5) and (2-6) gives

-=• ?Jl -^^- ^^ X"' (2-11)

p, k-i'i'""'" k.i

r^ K+i
•>

C\ -2
. ^

t

.
' *

( 2-12)



Now J from the geometry of Fig. 2-2,
r 1 \ ".• :>«

tcin <r _ \^i At _ "^n' _ /°a (2-13)

Combining Eqs. (2-12) and (2-13),
'J

'' . K^\ _ ton (T

IM^in^o-

^ = (K+l)^^-CK-l)
M75'n (T ta-n ^

= 2 + (:k+i)
:$;n((r-s)co5(r

K+i 5ln§

M^^inT ^ Co5((r-s)5'>^
(2-14)

2-4- Basic Hypersonic Relations.

The region betv/een the body surface and the shock is kno;vn as the hyper-

sonic boundary layer. In order to calculate pressures on bodies at hypersonic

speeds, it is important to know the position and shape of the leading shock

wave.

Referring to Eq. (2-12), when the free stream Hach number normal to the

oblique shock, i.e., I'Lsino", is large, the density ratio across the shock

becomes ' [

/VJ

•—a^^ * t



The tvro limiting cases can be studied as follows '.
"

«^
*% \

•" % '

(i) Extreme hypersonic flow.

The free stream Mach niimber is very large. The tremendous temperatures

behind the shock cause a large variation in the specific heat ratio K such

that K-* 1 as M^oo . Thus for K = 1/

-y--^^ (2-16)

^^O. (2-17)'
•.

. ,•
, '"I

which indicates ¥^2 is negligible compared to Y^. Furthermore, from Eq. 2-13

—^ = y
—*• OO

.
. (=, tan((r- S)

where generally, (r^ 90", i.e., tanO";^ oo .. ,

Therefore
i , ^\

(2-18)

or cT — '^

(ii) Moderate hypersonic flow.

The free stream Mach nxmber is high but finite. Consider K = 1.4 as the

limiting case behind the shock. For slender bodies, tan (T^ r , tan ((r-5)- (r-5",

thus *

(r= 6(0"- S) • .

or
(r= 1.2 6 (2-19)

From Eqs. (2-18) and (2-19 )> it is seen that the shock wave closely

follows the body surface, resulting in a hypersonic boundary layer of infini-

tesimal thickness. This is especially so for bodies of revolution in the three



dimensional hypersonic flow.

2-5 Newtonian Impact Theory.

From the concluding remarks of the last paragraph, we know that the shock

is near]^ coincident with the body surface in a hypersonic flow. Furthermore,

since V^ is practioal negligible compared with V^, it is seen that on impact

the approaching stream loses all its normal component of momentum to the body

surface while its tangential component of momentum remains unchanged. Eq.(2-9)

can be written as

Dividing by q. = i pX' ^« ^^^ain the local pressure coefficient for shock

flow, , .

•. i.- .::; c = ^^ --if^f = 25ia'

6

(2-20)

where the local pressure is denoted by P and the free stream pressure by P^ .

% is the angle between the tangent to the local surface and the free stream

direction since S ^(T accordijig to Eqs. (2-18) and (2-19).

It should be noted that the Newtonian approximation, Eq. (2-20) does not

specify the pressure coefficient on surfaces that do not "see" the flow, i.e.

surfaces on which expansion flow would be predicted according to supersonic

gasdynamics. In fact, Eq. (2-20) can be applied to problems of three-dimen-

sional flow as well as two-4iamensional flow. However, in the case of bodies

with surfaces curved in the direction of the stream, the pressure relieving

effects of the local centrifugal forces must be taken into consideration, in

particular when the free stream Mach number is moderate. The resultant local

3*. V •
.

V'V.
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pressure coefficient shoxild be the siun of the pressure coefficient just

behind the shock and the pressure coefficient due to the centrifugal forces.

This will be treated in Art. 2-6.

Now, the pressure coefficient behind the shock wave can also be obtained

as follows. From Eqs.(2-ll) and (2-14),

C = -^/^ _

km;
-— M, 3.n*a

4
(K+ i)m'

11,5in
/

^ 2 S'lriTS'in S

Since (r= 6 , the relation for hypersonic speeds becomes

C„ = 2sin^S (2-21)

Thus it is sho'.m by Eqs. (2-20) and (2-21) that a two dimensional body with

no surface curvature in the stream direction has the same pressiire on the

surface as behind the leading shock. This is also true for straight-side three

dimensional bodies.

2-6 Centrifugal Force Effects. .'.

• As stated before, the centrifugal force effects on the pressures at the

body surfaces at high but finite Mach numbers must be taken into account.

Consider the flov; in the hjroersonic boundary layer around the body of
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revolution as shown in Fig. 2-3. •> r . -^

shock wave

stream line

body sxorface

Fig. 2-3. Hypersonic boxmdary layer

The local pressure change from the surface to the shock due to centrifu-

gal forces in the fluid is

(2-22)

where rY^/R is the pressure gradient due to the centrifugal force of fluid of

densityf ; R is the local radius of curvature; and V is the local velocity in

the hjrpersonic boundary layer. Assvmiption has been made that the streamlines

in the hypersonic boundary layer are essentially parallel to the local surface.

By using the mean values of the velocity and radius in the distance N, Eq.

(2-22) can be va-itten as

.P.-^V
r^

f^MAhi (2-23)

By continuity, the mass flow rate through the section ring JJ' is



Substituting in Eq. (2-23),

12

^ ^ ',
?

Xtn!**

(2-24)

(2-25)

;al force is obtained

^
R_
^ Too Vo-

•
' S =^=-^^ (2-26)

'^c too R \c -
:- .

From Eq. (2-26), the pressure coefficient due to centrifugal forces can be

worked out for the two regions of hypersonic speeds as follows,

(i) Extreme hypersonic flov;.

As shovm in previous sections, at infinite ^iach number, the hypersonic

boundary layer is of infinitesimal thickness, and thus R equals the body

surface radius of cvirvature,

S = Rg (2-27)

Since y' = dy/dx = tan

Therefore

± = ^ A3_ ^ y' c\€

^^'"^
jy (2-28)

Assiming uniform thickness of the hypersonic boundary layer, i.e., constant

velocity along streamlines downstream of the bow shock, the mean velocity up
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to a certain point J on the surface can be vrritten as

since V =

(2-29)

•J \J O , ^ . J .t

Substitution of Eqs. (2-28) and (2-29) into Eq. (2-26), all in terms of the

local coordinates, yields the pressure coefficient due to the centrifugal

force at a point J on the surface

I fy-

Y c^sS dy (2_3o)

However, at infinite Mach numbers, C^ » Cp , this modification is always
*• s c

neglected in the calculation of the pressure coefficients.

(ii) Moderate hypersonic flovr.

At Mach numbers that are high but finite, the value of K is closer to 1.4

than 1. As shown in Eq. (2-19), <r - 1.2S, that is, the hypersonic boundary

layer is no longer of infinitesimal thickness. The evaluation of R and V from

Eqs. (2-28) and (2-29) are in error. An improved schematic of hypersonic

boimdarj'- layer is shov/n in Fig. 2-3 where the shock wave takes on a shape such

that the lateral distance N between the surface and the shock increases do'.m-

stream along streamlines in the hypersonic boundary layer. It should be noted

that near the base of the body, R»Rg. The approximation of R = Rg is good

only in the vicinity of the nose. According to Ref. 2, a better approximation

is suggested as _
R = 1 " (2-3l)

% 1 - y/yo •
.

•



lA

•where y is the body ordinate of the base . ' '!

Ln the hypersonic boundary layer of nonuniform, finite thickness, pressure

disturbances can be transmitted across the streamlines, and the velocity along

streamlines dovmstream of the shock v^ave is not necessarily constant. A better

approximation to the mean velocity V may be obtained from the impact theory,

i-e.,
, - _

•'
• .

^ V= V^cosS •

"'

(2-32)

Substitution of Eqs. (2-28), (2-31) and (2-32) in Eq. (2-26) gives the local'

pressure coefficient due to centrifugal force in the form of

y . .. . d^

= XA| - ^) Asians
>1 ^ ^/ (2-33)

The total pressure coefficient Cp is the si;u:i'of the pressure coefficient

just behind the shock and the pressure coefficient -due to the centrifugal

force. Therefore, from Eqs. (2-20) and (2-33), one obtains

c = c -1- c
p ^ Pc

= a..n^..f(|-|)i.;.'S
(a-34)

This result will be used in Section 4 in the calculation of pressure drag for

bodies of revolution in hypersonic flov; of finite l-lach numbers when the effects

of centrifugal forces are to be taken into consideration.
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SECTION 3

BASIC PRINCIPLES OF CALCULUS OF VARIATIONS

3-1 Introductory Remarks.

The simplest case of a typical variational problem is to determine the

function y(x) for an integral

takenalong a ciirve connecting two given points A and B, as shown in Fig. 3-l>

in which the integral is to be a maximum or minimum. The determination of the

maximum or minimum will be carried out in a way similar to that for ordinary

functions. The purpose here is to present the basic principles of the calculus

of variations that are needed in Section 4 in the treatment of the minimum-

drag body profile problem at hypersonic speeds. No attenqpt is made to give a

complete presentation on the subject in this report.

3-2 Maximum or Minimum of an Integral.

B(x2,y2)

A(x3^,yi)

Fig. 3-1. Nomenclatiire for infinitesimal changes

The two end points A and B are Joined by any curve y = y(x), therefore

71 = yUj^), 72 = 7(^2)
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Now, the integral is taken along curve C. When curve C is replaced by another

curve joining A and B, the value of the integral is usually changed. As y is

replaced by y +5y, the slope of the curve changes from y' to y' + 5y', and an

infinitesimal change in I occurs. Qq)anding the integrand by Taylor series,

one obtains \

I + 4l = F (x , /+ Sy
,

/
' ^y

'
) Jx

X,.

i^yf f^y -^^^y W Pyy + (^yf^r.

(3-2)

We shall call that part of the change in the integral which contains only the

first or second order terms inSy and Sy' the first or second variation of the

integral and denote it by hi or ^I repectively, i.e..

SI = C><^

s'l-L
/-^^

(3-3)

(3-Jf)

The preceding results are equivalent to differentiating under the integral

sign in Eq. (3-1). All higher order variations of the integral are negligible

compared with the first variation. A necessary condition for the integral to

be stationary is that the first variation must vanish, i.e.,

SI = (3-5)



i.i^--y-:,V'-
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3-3 Euler Equation.
. z^.

Let the varied cvirve be

Y = y + S7 (3-6)

where y = y(x) is the original curve. By differentiation, ^.
i?

Y' =y +^i^y) *

(3-7)

By definition of variation, one can also vrrite

Y' =y« +S7^ =y' +^(g)
"

(3-8)

Therefore

That is, the derivative of a variation is the variation of a derivative.

Now, integrate the second term of the first variation in Eq. (3-3) by

parts, i.e., in the integral ;^

f^ sy'F,. d/ =[' p, :^Uy)clx

let
Fy = M

axxL
:4(iy)^^=c/v
dx

then.

'j<iV - S/

Integrating by peirts.

sy' F, dx = F. sy
y.

,x.

X|
'yj-.^r'"

Substituting into Eq. (3-3),

hl= f^, Sy
y.

-I- '^yi^r-i^ry-' (3-10)



Now, A and B are fixed end points. The integrated part must vanish, thus

SI^ P Svi^y-^ Fx')^^ .. (3-11)

In otMer that the iiitegral be stationary, the quantity in the parenthesis of

the integrand in Eq. (3-11) must vanish, i.e.,
_ . ^

.,.

since Sy is an arbitrary function subject to only those general conditions

such as Sy must vanish at the end poii^ts, it should be a continuous function

with first derivative or higher order derivatives, and either |iy| or both l^y 1

and |6y' I should be small.

This is known as the Euler equation. If a maximum or a miniiuum value of

I along a curve C exists, that curve must be a solution to this differential

equation. Since F = F(x, y, y"), Eq. (3-12) can be written in the fom of

This is a second oxxier differential equation. Since the curve passes through

fixed end points A and B, the two arbitrary constants contained in its

solution can be determined, if possible, from these two boundary conditions.

However, there are only a few simple instances in which the Euler equations

are integrable. In problems of finding the minimum^rag body, the integrand F

depends on y and y' only, ."

F = F(y, y) (3-14)

Then, F ,
= 0. From Eq. (3-13), the Euler equation becomes
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Multiplying"both sides by y', the left hand side of Eq. (3-15) turns into an

exact derivative, i.e.,

:

y'(Fy-y'Fy,y-y"Fy,y,) = o
\.

""
• i-(F -y'F ,) = .;,;- :\-". :•

ox •' t -. ..

Therefore
;

'.-
;^^:

, p - y ' F ,
= c ; •

(3-16)

The first order differential equation can be solved for y' either by separation

of variables or by introducing a parameter.

For an ordinary function to be an extreme, the first necessary condition

is that the first derivative of the function be zero and a maxmum or mini™

is deteimned by the sign of the second derivative. LiJcewise, ir^ the calculus

of variations, for a functional to be an extremum, the first condition is that

the first variation of the functional be zero, i.e., solving the Euler equation

a maximum or miniiirum is determined by the sign of the second variation or the

expression
2_ -'-m

yy
' isyf F^ + 2(^y)(6y') Fyy. + Uy') Fy.y,

. ,

vmder the integral in Eq. (3-4). The integral I is a maximum if the expression

is negative or a minimum if the expression is positive.

3-4 Typical 1-Iinimum-Drag Body Problem. ' ;• •

The integral to be minimized in the typical minimum-^rag body problem, in

most cases, has its integrand in the form
'

> -^

F(y, y') =y0(y') ; ; -.-•r-
^ (3-17)

Thus, Eq. (3-16) turns to be ,
'

'

^ . -^

y0(y') - yy'0'(y') = c ,'
.

^
;- .^

(3-18)



Now, consider the second variation in Eq. (3-4)

»
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F = y0(y'), Fy = 0(y'), Py7 = o

Fy, =y0'(y'). Fyy. =0'(y'). Fy.y. =yjz5"(y')

Substituting in Eq. (3-4) yields

f\ r

Jx, L

Integrating j (6y)(Sy')0'(y')cbc by parts, let

(3-19)

V^'(yO="; (Sy')clx=^ (^/Jc/x-»q/v

«
J
dv = Sy

^Then, du = #^[^7^'(y')] ^^ V

Therefore

J"'s/ 5/ tV') dx - (sy)=<f Vy')
I y^

-
J^'

iy^^ [sr<(>'H
'"'

or

X

(3-20)

X, 7. X, Ai

psy sy' ^'V^cix = i(Sy)"<f>'(yO
*

- j[ ('«y)^/c^'(y')d)<

Note

^+'(r)-^,+V)^'ax 'r ^x
/>"(y')

(3-21)

(3-22)



^'WS*- ';-
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Substitution of Eqs. (3-21) and (3-22) in Eq. (3-19) gives

Sl =
r"^

4'Vy') iiiy'f - y i^yf Jy ^ i(^yff\y')
y,

(3-23)

Since A and B are fixed end points, the last term vanishes. Then

r^

6'l-z- (ffcyO /(syf-y'C6yf
X|

dx
(3-24)

In general, I is a maxinrnm if 5*1 <0 and I is a miniimim if ^ >o. Further,

from Eq. (3-18),

y
<j>(y')-y'f'(r'>

(3-25)

r =
cA \^^(y) -y'f(y)]

-c[y"<^'(y')- /^(/O - rr<^'(y')\

— = -!»

\4(y') -yfcy^r [i>(y')
- y'<p'(r)\

= C
y'y" <?>"(/')

or

^cy) - y'4>'(y';p

[^ryO- y'<pXyi

(3-26)

<^(y')
c y'

It is seen that the sign of 0"(y') is invariable if the sign of y" is invari-

able. For minimum-drag body problems, the ordinate y can be always taken as

positive. If the curve is concave to the x-axis, y"<0. Therefore, the sign of

the quantity inside the bracket in Eq. (3-24) is always positive, and the

integrand will have the same sign as 0"(y')« Then, it is obvious that for a

CTirve concave to the x-axis, a maximum exists if 0" <0 and a minimum exists if

'/»*..'-
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3-5 Isoperimetric Rule of Calculus of Variations. ' ^'
'

The integral I =|f(x, 7, y')dx X^ (3-28)

to be minimized sometimes is subject to a constraint in the form of

J = j'fU, 7, y')dx (3-29)

From previous discussion, we must have

61 = (3-30)

If the constraint is to hold, only those variations gy and Sy' are allowed

such that the variation

,
SJ = (3^1)

Thus

Sl+x8j = :; (3-32)

where A is a constant called the Lagrange multiplier. This means that the

first variation of the integral

I +AJ =J[f(x, y, y) +Ay(x, y, y')] dx (3-33)

must vanish. Now, the problem can be handled as prescribed before and the

Lagrange multiplier A determined from the relation in Eq. (3-28). The tech-

niques of variational calculus outlined in this section will be found very

useful in the analysis of the minimum-drag bodies in Section 4>
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,

'-' SECTION k

J V.
"'

MINIMUM-DRAG BODIES OF REVOLUTION

4-1 Introductory Remarks.

The investigation undertaken in this section is concerned with the shapes

of nonlifting bodies of revolution, having minimum pressure foredrag at high

supersonic airspeeds in contii^uum flow. Methods of the calculus of variations

will be employed, and it is desired to simplify the drag equation insofar as

is practicable, consistent with retainiiag the salient features of the depen-

dence of the pressure drag on the body shape and free stream conditions. The

expression for pressure coefficient from the simple impact theory will be used

to derive. an expression for the pressure drag on a general nonlifting body of

revolution. Once the condition for minimization are given, the calculus of

variations is applied to the specific minimum-drag body problem.
;,

4-2 Fundamental Considerations.

Consider the body of revolution in impact flow at zero angle of attack as

shown in Fig. 4-1. The drag contribution of the base, where the surface does

not "see" the flow is neglected according to Newtonian impact theory. Therefore

the total pressure drag can be found by integrating the local dynamic pressure

over the body length L,

where P denotes the local static pressure and P.o the free stream static

pressure. The pressure-drag coefficient is defined as

•

v:;, .'v
Cj) = 4D/(qjrDB2) '. :,'



in which q is the free stream dynamic pressvire,
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P-

M.
^ 1^ g-»

Fig. 4-1. Body of revolution in impact flow.

Dividing Eq. (4-1) by 4Tq,o > ^^® integral to be minimized becomes

I = D
i-TT^co

(4-2)

where Cp denotes the local pressure coefficient and y' = dy/dx.

According to Eq. (2-20),

Substituting Eq. (4-3) into Eq. (4-2) yields

(4-3)

I

which is in the form of I = ry0(y')d3c

where

^(/') =
/'

H-y^

(4-4)

(4-5)

Differentiating

,

C|.(y.)-
3y/\n-r'J--^y''^ 3y +/'"'"

O + yT (i+y'T

ctVy) _ -^r")(6y'-f4y^) -4yT-3y'-^ x^"")_ ^r{i-y')

(4-6)

(4-7)



25

Substituting Eqs. (4-5) and (4-6) in Eq. (3-25) gives

where c^^ = -c/2 s- since ya-O and y' =- 0. Differentiating

(4-8)

XII
(4-9)

It is seen from Eq. (4-9) that for y' >fT, y" > 0, the meridian curve is

convex to the x-axis; for y*-<y3, y" < 0, the meridian curve is concave to the

X-axis. Furthermore, from Eq. (4-7), 0"(y') >0 when y'< 3- Therefore,

according to the concluding remarks at the end of Art. 3-4, the integral and

hence the forebody pressure drag has a minimum for a surface concave to the

X-axis, for which y' <:J3'

Now, let us return to Eq. (4-9), Note that y" = dy/dx = y'(dy»/d3c)

Y'

Since y' = dy/dx, the general expression for the x coordinate is

'^r= "
:;

'ly
. .

(WO)

^^fd/
J y

Substituting Eq. (4-10) in Eq. (4-11) and integrating.

= c
t

A. , , 3
{---.--Ah'
r r y
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or
X = c. lay'+-. ^T^.\ + <^^

-hy (4-12)

(4-8)

The generating curve for the minimum-drag body terminates at fixed points.

Therefore the body surface is actually a zone of surface of revolution. Theo-

retically, elimination of the parameter y' between Eqs. (4-12) and (4-8) vfill

result in an equation between x and y, and the constante C;i_
and 03 can be

determined from the boundary conditions at the twp fixed points.

The body profile thus obtained is not for least drag but for a minimum

drag, i.e., the resistance experienced by the body profile of the solution

will be a relative minimum rather thaa an absolute minimum. According to the

concept of strong variations, the resistance can be made as small as desired

by a zigzag line for the generating curve (Ref. 3). One can not pass from the

body shape curve as obtained from the continuous solution to a zigzag line

since the change in y' would not be infinitesimal. Actually, the zigzag body

configuration is a violation against Newton's law of resistance since there

will be an infinite n\imber of places in which air is trapped.

4-3 Discontinuous Solution for Minimum-Drag Body—Given Fineness Ratio.

From the continuous solution obtained in Art. 4-2, it is seen that for

the minimum-drag body of revolution, the shape must be concave to the x-axis,

and y'<y3". In the case where the given fineness ratio requires that the

straight line joining A and B is inclined to the x-axis at an angle greater

than 60°, the continuous solution is not applicable. It is necessary that y'^O

at all points at the surface. A blunt nosed body, as shown in Fig. 4-2, is
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considered as a discontinuous solution to this problem.

y

C(0,y^)

B(^^,7^)

Fig. 4-2. Minimum-drag body for given fineness ratio.

The flat portion AC is normal to the free stream direction, therefore its

pressure drag is . —
.

DAc=iry/(P-Po.) (4-13)

D.

^ - ^ ^ /o^
-

i-
cp // = T(^^-^7o-)/; - y; (4-14)

^n^ 2- %^ 2. ^ '" 2.

For the curved portion CB, the pressure drag is

DCB = 2T (P - P«,)yy'dx

Xa

(4-15)

(4-16)

Adding Eqs. (4-1/f) and (4-16), the integral for the total pressure-drag to be

minimized becomes •,•,

D.
^-1^-''^]. ^f'''^

Xl

(4-17)

From Eq. (4-3),



'~Wi;i?T<'^"»<vr."
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Cp = 2y'2/(i + yi2)

Substituting in Eq. (4-17),

1= Xo
-^^

ry^ yy,
dx (4-18)

The second term on the right side is of the same form as in Eq. (4-4) but

twicw as large, i.e.,

F(y, y') = 2yJZl(y) (4-19)

where '
'

'

<^(r) = y
^

i+y ii
(4-20)

Differentiating Eq. (4-19),

Fy=2jZ((y') Fvt = 2y0'(y')

Sustituting in Eq. (3-10), and noting the additional first order term resxilting

from (y^ + SYq) » o^® obtains

5 1 = 2/, iy^+2y sy 4>'(y')|
^^

+
^J \<^(y)

"^ [v «*V')]

]

^y dx
^^^^^

For a minimum to exist, the Euler equation must be satisfied, i.e., that part

of Si under the integral sign in Eq. (4-21) must vanish. Evaluation of the

upper and lower limits on the second term on the right side of Eq. (4-21)

gives
6I = 2y, 1 -iz5'(y')

yo
SJq (4-22)

since B is a fixed point. From Eq. (4-6),

Substituting in Eq. (4-22),

(4-23)

3YJ +y:
^t

(4-24)
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Again, for a minimum to exist, this remaining part of 61 must also

vanish. Since C is a point at the comer of the blunt nose, y 9^ 0, Sy 9^ 0.
o o

Therefore,

=
(4-25)

/; = I
(4-26)

which means that the meridian cuirve must intersect the y-axis at an angle of

45°. Now, consider the second variation to ascertain that the solution found

is a minimum. Referring to Eq. (3-23), and noting the additional second order

term (Sj )^ res\ating from (y +6y )2, one obtains

^ I =(^yJ + 4> (r) Y (^yf - y
" (irS c|x -^ (^yff^y)

From Eq. (4-25), we see

From Eq. (4-7),

-fy5

.xl

cf)Vy') i{sy)'-/(^yf Jix (4-27)

(4-28)

I

_
^\y.)

-"/o

Substituting in Eq. (4-27),

sj- r'

"f^[r(¥-r'<^rr]^>^ >0

(4-29)

(4-30)

since the body cxuve is concave to the x~axis and the initial slope at point

C (the greatest on the cvirve CB) y^' = l<f3. Therefore, the body shape thus

obtained is a profile of minimum drag.
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4-4 Parametric Equations for Minimizing Curve—Given Fineness Ratio.

The pcirametric equations for the meridian cvirve of a minimum-drag body of

given fineness ratio have been obtained in Art. 4-2> namely

X = c,

/ = c,

f-G

At point C, X = o, y = yQ and y' = 1, thus

=(yo/4)(l + 3/4) + cg, Cg = -7yo/l6

Substituting values of c^^ and C2 in Eqs. (4-12) and (4-8)
j

X =
i-

UyV yi "^4y'+ 4_

At point B, X = Xg = L, y = y_ = Dg/2, thus

L = io
i^7>^^-^4^-J

(4-12)

(4-8)

(4-31)

(4-32)

(4-33)

_1 (m-/
B 2 y'^

(4-34)

Dividing Eq. (4-33) by Eq. (4-34) gives the fineness ratio
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_ _L _ y.^' [in. y;^ T ^ ^y:' ~ ^-1 (4-35)

10 T\

as y ' = 1, Fn = 0, vfhich implies zero length;

y I -». 0, F„-^oo, which implies infinite length.

Therefore, there exists some real value : of y^' betvreen and 1 such that Eq.

(4-35) is satisfied for given fineness ratio. Once the slope of the curve at

the rear end point is knovm, the value of y^ can be obtained from Eq. (4-34)

.

For example, given the fineness ratio F^^ = 3.09 and unit chord, i.e.,

L = 1, at point B: v^' = 0.12, §^= arctan 0.12 = 6°51'

at point C: j^ = 0.0012, 5„ = 45°

The local tangent changes from 45° at the nose to 6'^51' at the base.

It can be seen that over the major portion of the body surface, the local

slope is very small in comparison with that at the nose. That is, for given

fineness ratio, the pressure drag is minimized by accepting higher pressures

on a relatively small area of large slope near the nose and achieving lower

pressures on a large area of small slope near the base.

Since high-speed missiles will operate at both low and high supersonic

speeds, it is of particular importance to compare the minimum-drag body shapes

detemined by the linearized theory with those determined by using the simple

impact theory. Tito minimizing curves of given fineness ratio determined by

the respective methods are plotted in Fig. 4-3. The comparison shows that the

shapes are sijnilar, although the minimum-drag body for low supersonic speeds

is generally the flatter of the two.
,

^:
.

.'>
.u' 'f'"''

'
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Simple impact theory

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Body axial coordinate, x/L

Fig. 4-3. Comparison of minimum-drag bodies of given fineness ratio. (After

Eggers, at al., NACA)

4-5 3/4 Power Body Approximation.

In Ref . 2, the minimum-drag body shape given by the parametric equations

Eqs. (4-31) and (4-32) was found to be approximated very closely by

Y
(f)

V4 (4-36)

This is known as the 3/4 power body. V/hen the effects of centrifugal forces

are neglected, results obtained from (4-36) are in good agreement with those,

from Eqs. (4-31) and (4-32), particularly for large fineness ratio. Body curves

obtained from the exact solution and the 3/4 power approximation are plotted

in Fig. 4-4 for coirparison. .

,
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.s^

4*

t
o 1.0
o
o

•H

I
0.8 -

0.6

0.4

0.2

Simple impact theory
Eqs. (4-31) & (4-32)

3/4 power approximation

0.4

(a) Fjj = L/Dg = 3

1.0

Simple impact theory
Eqs. (4-31) & (4-32)

3/4 power approximation

0.8 1.00.2 0.4 0.6

•

;

(h) F^ = L/Db= 5

Body axial coordinate, x/L

Fig. 4-4. Minimu-drag dodies of revolution for given fineness ratio. (After

Eggers, et al., NACA)
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4-6 Modified Theory—Given Fineness Ratio.

It was shown in Art. 2-5 that when the centrifugal force effects of flow

over curved siirface at hypersonic speeds are taken into consideration, the

local pressure coefficient is the sum of the pressure coefficient behind the

the shock and the pressure coefficient due to cvurvatxire. From Eq. (2-34)*

yf^.L\A^--< (^-37)
C = 25in^6^|(|-^)f-^S

Again, we take the case of a discontinuous solution for the mi n imum-drag

body of given fineness ratio. The integral to be minimized is mainly the same

as in Eq. (4-17), i.e.,

'""'

(4-38)

^-A^'-^sy^''^'

However, due to the centrifugal forces about the comer at C(0, y ), an addi-

tional terra call the "leading edge thrust" shovild be included in Eq. (4-38).

Considering forces over the ring element of infinitesimal thickness aroTind the

comer of the nose, the leading edge thrust is

j^r..=.jM^L]
rt^^ v-z

By using the mean value theorem.

where y^, -^<y-'y + ^ • Since 6 ->•



lo-f)=f('-^)
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y// , Y.

Sir.'%-i-'4-]

y//, y.
=j'('-^;(5.VS.-l)=-f(|- ^)c«'5. (4^)

since ^o^^O". Letting

<^(y)—^\\- ^)C06-S (4-41)

Eq. (4-40) can also be written as

r^2

4(y.) =- -i4.Cy) dx
v^O <^^

(4-^)

since

-|''^<i'(y} jx =-J4>fy,;-ta^ = ^(/.)

Now, adding Eq. (4-42) to Eq. (4-38),

J=>'-^J Kr^/-dt^^^^J
dx (4-43)

The integrand function to be minimized can be written as

F(7, y') = Cpyy' -35^(7) (4-44)

The necessarj condition for a minimum to exist is that the Euler equation

be satisfied. The integrand function F is independent of x, therefore, accord-
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ing to Eq. (3-16),

Since

one obtains

y'F ,
- F = c

7'

5in S
==

y
) + /'

co^S =
+ V'

Substituting in Eq. (4*^) gives

/^, X\ d <•

.-^"'^^iO-t)^^'"'«_

Differentiating Eq. C4-A1)

Subtracting Eq. (4-49) from (4-48) gives

F^>/'^=5W'^|-H)=^^'(-
3 y

+ f V

/'

(4-45)

(4-46)

(4-47)

(4-48)

(4-49)

(4-50)

(4-51)
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Substitution of Eqs. (4-50) and (4-51) in Eq. (4-45) yields

or

V^=,^^0^^^^)=^ = -^'y

2/^
'

Cid + y^j^

y
,3

= o

(4-52)

Y =
y.

;lVi + i^(i-ytJ
(4-53)

At end point B, ^ ^ '^2' ^' ^ ^2'* ^^°^ ^' (^"52)» the constant c-^ is

Substituting in Eq. (4-53 )j

y=l i
+

1^// (Ij7i)'_

{\n'S r'
(4-55)

(4-56)

'X.

From Eq. (4-43), ^ =
^o^

"^
f

^^^^^ ^'^^

For a minimum to exist, the remaining part besides the Euler equation must

vanish. Referring to Eq. (3-10) , it can be vnritten as

X.

2/.^/o+F,S/ =(2/.-F, )S/= (4-57)

Xo • /.

where the upper limit vanishes since 5'y = at B. From Eq. (4-51)
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F-/

Substituting in Eq. (24.-57),

y. (1+1 v^)

ay'
2. "1

+ y/ (i+/5_
= o

Therefore
y • = 1 (4-58)
o

That is, the meridian curve intersects the y-axis at an angle of 45°. By

substituting y^' = 1 in Eq. (4-55), it is seen that

7o>0 (4-59)

Fig. 4-5 shows the minim^m-drag body of fineness ratio Fr = 6.18 vrith

results obtained from both the simple impact theory(Eqs.4-31 and 4-32) and the

modified impact theory (Eqs. 4-55 and 4-56). It is seen that the body curve

determined by taking centrifugal force effects into consideration is more

blunt and has more curvattire in the nose section.

4-7 2/3 Pov;er Body Approximation.

For the simple impact theory, it was noted that the minimum-drag body of

large fineness ratio was closely approximated by the 3/4 power body shape. In

the present case of modified theory v^here centrifugal forces are taken into

account, it is further noted that the 2/3 power body

y ^fA.)^^ (^-60)

I>./2

provides a good approximation to the exact solution given by Eqs. (4-55) and

(4-56). In fact, the plot of Eq. (4-60) for ?^ = 6.18 falls on top of the



curve determined by the modified theory in Figi 4-5.
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.t^

.8
OJ

.s

t .6

Modified theory
Eqs. (4-55) &
(4-56)-

Simple impact theory
Eqs. (4-31) & (4-32)

Fjj = 6.18

1 I I L

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Body axial coordinate, x/L

Fig. 4-5. Comparison of miniraum-drag body for sin?)le and modified theory.
(After Eggers et al., NACA)

4-8 Minimum-Drag Body—Given Surface Area and Base Diameter.

Following the same procedure in Art. 4-3 » i.e., assuming a blunt nose for

a general form, the pressure drag parameter to be minimi zed is

Ip= A +
'"'-'''

d.
(4-61)

l + y

,Z

However, the solution is subject to a constraint

Since length is not given, we can take yQ = 0. By the isoperimetric rule

in Eq. (3-33), '

1=
\j7r ^^y^^^^J

Jx (4-63)

where X is the Lagrange multiplier. The integrand function takes on the form



F(y, y) =yi^(y')

in which

According to Eq. (3-18),

y0(y') - yy'0(y') = c

Differentiating Eq. (4-64)

j

(1 + /'^) h^y

(1 1 r)' JTTy^

Substituting Eqs. (4-64) and (4-66) in Eq. (4-65),

40

(4-64)

(4-65)

(4-66)

y

/

r 2/^

Ll + y

A

7:^^^iv+y'
2. _

<^y'^ + 2y'^ \y'^ 1

(in'')' a/)T7^J
= C

^r
3 ~i

,3\^
= c

J]T^ + y^)'

Since the curve must meet the x-axis, c = 0. Thus

A =

or

IT! 4f
y^ ]^u

(1 +rr^ ^\\+r'i

1
+y/^ , ^.V3

r
= (^)

dl
^ ^X ;(4/A)^^-|

(4-67)

(4-68a)

(4-68b)
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Integrating

y
X

JiVA)'^' -
(4-69)

where the constant of integration is seen to be zero, since x = 0, 7 = 0. The

generating curve is a straight line, therefore, the required minimum-drag body

of given surface and base diameter is a right circular cone, vrith the slope

7' = 7/x = 70/^2 = constant, the surface area is given b7

^ = ZTr YJi-f-y'^ dx

= 2K
1
+7'""

-/,

y/* J
(4-70)

or
f/»

I
+ y" 13

Substituting in Eq. (4-68a),

>-^(^)
(4-71)

To ascertain that the solution found in Eq. (4-69) is a minimum, let us

consider the second variation of the integral in Eq. (4-63). Referring to Eq.

(3-24), since 7" = for the cone, therefore

fl-
'Xi

/(5y'f4>V^^ (4-72)

the sign of which depends solely on ^"(7'). Differentiating Eq. (4-66),

r(y') = -^(1
-^y^)(6y'4^y'') - V(^y'^+ y^)]

;2\3
ci-^y")

X
.2\V-

Ui + rr^ (i+/'V
M»
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- '^y ^ o (4-73)

since y';>0. Therefore the body profile thus found gives minimum pressure drag,

4-9 Modified Theory—Given Surface Area and Base Diameter.

By taking centrifugal force effects into accoxint, we can treat the problem

in the same way as for given fineness ratio in Art. 4-6, except for the •"'"
ff. i^

addition of the constraint

(4-74)

(4-75)

¥ith the aid of Eqs. (4-43) and (4-44), the new integrand function to be

minimized here is

f = F(y, >•) i-xy/T^^

where, as in Eq. (4-50),

Hence ^yy'

Solution of the Euler equation gives

y'fy. - f = c
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or

Substitution of Eq. (4-52) in Eq. (4-77) yields

3j*

(4-77)

= c

Since 7^ = 0, c = 0. Therefore

A = ^

y-¥
Ai/I + y-^)

3/^

y

Differentiating Eq. (4-79),

jy.2(l
+^.i)i_3(i +y'

7.

x

(4-78)

(4-79)

?7 using table of integrals.

(4-80)
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V^ith y^ = 0, the value of A is determined as follows:

^y^

From Eq. (4-79),

hence

Lit ^1(11^2

7.

S =
ZT
A^

>6 /
37

V/.
A

>3

+Zr^.
Transforming variable, let

3V

Thus

or

/2

-^^ = Z

/S
=

'/3
I 3 (^-2)-Z-/^H'd2

^/3

_ ^l' 11 3

2T
r 2^V-^J
7 2 Jl,V5

(4-81)

(4-82)

;.A'i

(4-63)
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Minimizing curves obtained from both the simple and modified impact theory

are plotted in Fig. 4-6 for comparison. In this case, both bodies have pointed

noses since the length is not fixed. The body shape determined by the modified

theory has curvature in areas behind the nose while that determined by the

simple impact theory has straight sides, i.e., a right circular cone.

o
o
o

•H

om

1.0

.8

.6

.4

.2

Modified Theory
Eqs. (4-79) &
(4-80)

Simple impact theory

Eq. (4-69)

.2 .4 .6 .8

Body axial coordinate, x/L

1.0

Fig. 4-6. Minimum-drag body for given surface area and base diameter determined

by sin?)le and modified impact theory. (After Eggers, et al., NACA)

4-10 Continuous Solution for l-Iinmum-Drag Body—Given Base Diameter and Volume.

B(x2,y2)

A(x^,0) ,

Fig. 4-7. Minimum-drag body for given base diameter and volume, continuous

solution; schemation.
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The expression for the pressure drag on the body surface described by the

generating curve AB in Fig. 4-7 is given by

where the coordinate x^ is not fixed yet. Being 'subject to the auxiliary

condition

^ - s\-anj- (4-85)

the integral to be minimized becomes

with the integrand

zyy'' ^

Since F is independent of x, the solution of Euler equation is

y'Fy, - F = c

Substituting Eqs. (4-87) and (4-89) in Eq. (4-88),

(4-87)

(4-88)

From Eq. (4-87),

.z
, .A\ (4-89)

(4-90)

At point A, y = 0, c = 0. Therefore
,
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(4-92)

where c = 4/\The minimzing body curve can be proved to be a hypocycloid

From the relation y' = tan 0, Equation (4-92) becomes

y = c tan^ O/sec^ = c cos sin-^ (4-93)

then

Hence

=-C i'^6 6^0 3 6 ^6 (4-94)

(4-95)

(4-96)

From Eq. (4-93), note that when y = 0, © = 0, or 90°. Talce the point where

y = 0, = Oas a starting point for the measurement of the arc length.

Integration of Eq. (4-96) gives

or ^0

3= -yC0539
(4-97)

=
^(| -CO536)

To find the volume of the body, substitute Eqs. (4-93) and (4-95) in Eq

(4-85),

^o\^= jd\ oo^Q 5in3a 5la e <i5
(4-98)

where Og is the value of Q at point B {y:^, y^)' ^°^ ^^' (4-93),

» '
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Integrating Eq. (4-98) and substituting for c from Eq. (4-99),

(4-99)

Vo 1.
= 'TTC

(4-100)

or Vol. = - ^y.
•J r-

I (055*e ^ ^C05'6>W4 ^5in^6^) - -I 3.V4 (a)i^6,^5iV e,) + i5\r^%

(4-101)

It is clear that the value of Vol. can be made as large as desired but it

has a lower limit below v^hich the continuous solution is no longer applicable.

The minimum permissible volume can be determined as follows:

Differentiating Eq. (4-101) with respect to Q^'

3 5^<
=.^,;(lt.^^,5e.a..^..^4-f 1^)

-£ y: csce, {-ux+z Ui%-is) (4-102)

40

Setting dVol/d02 = 0, one obtains . .

tan 02=JT, or = 60« (4-103)

since 7 i^ 0, 1^ csc^ Q^^oo , and tan^ Qg = -5 is imreasonable . Therefore

m'n.

Given the base diameter D = 2y , if the required volume is less than the
B <d

value specified above, the problem should be attacked in a different way (see
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discontinuous solution)

.

'

.

Now, to ascertain that the solution thus found is a minijnum, let us

determine the sign of the second variation. According to Eq. (3-4),

From Eq. (4-87)

dx (4-105)

where

Differentiating,

.- . 'V''' -'' ' •

0(y') = y' /(I + y' )> ^^® s^® ^°^ ^^ ^ Eq.(4-5). (4-107)

F = 2X,
yy '

Fyy< = 20'(y), Fy.y. =2y0"(y') (4-108)

where, from Eqs. (4-6) and (4-7),

(n-yO

Substituting Eq. (4-108) in Eq. (4-105),

From Eq. (4-92),

'^ yy=7A
(1 -HV'T

(4-109)

(4-110)

(4-111)

Hence

A (i.y,^;- A (J^r
(4-112)
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Comparing with Eq. (4-110) and sinplying, •
•

_ ,C, A = 20"(y')y" ^'^
.

(4-113)

Substituting in Eq. (4-111) and noting that the first tvro terms of the inte-

grand function in Eq. (4-111) is just the same as that in Eq. (3-19), except

for a factor of 2, one can follovf Eq. (3-23) and write

%

-Xa

si= ^'(y') i(SjUr'(^yy Jx

(4-114)

(4-115)

in which the integrated part has vanished and the sign of the second variation

depends solely on 0"(7')j since the minimizing curve, a hypocycloid, is convex

to the X-axis, and hence y"^0. Eq. (4-110) shows 0"(7')^ when yUj3> i.e.,

0<60°. Therefore, for the continuous solution found for given base diameter

and volume to give a minimum drag, the meridian curve must intercept the base

at an angle no less than 30", which corresponds to the condition of the

minimum permissible volvune. In other words, for given volume not less than

J3 72/5' ^^^ solution found is a minimum.

4-11 Discontinuous Solution for Minimum Drag Body—Given Base Diameter and

Volume. Similar to that for the body of given fineness ratio, the body under

consideration is made up of a curved portion AC and a normal portion CB as

shovm in Fig. 4-8. The integral to be minimized for the pressure drag on the

portion AC is

(4-116)ic-Uf^:^^^)^^

where A is the Lagrange multiplier for the constraint condition of given

v.^^-
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volime. On the portion CB, where the flow direction is normal to the surface,

i.e., S= 90", C = 2, (see Eq. 4-14), the integral to be ndnimized is

ICB = ^2 - ^o^
(4-117)

where the ordinate y is to be determined. Combining Eqs. (4-116) and (4-117)

»

(4-118)

Xi \ '

B(x2,y2)

c(x2,yo)

A(xi,0)
-^^ X

Fig. 4-8. Body curve for given base diameter and volvune, discontinuous

solution; schematic

Note that the integral is the same as in Eq. (4-86). Referring to Eq. (4-92),

the solution of Euler's equation yields

/ = 4 y cyi (119)

P\irthermore, for a minimum to exist, the remaining part of Si must also vanish.

According to Eq. (3-10),

; (4-120)
F,,^y

y.

2% Sx, =

in which the second tezm is the first order term resulting from -(y^ + 57q)'
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Following Eq. (4-106), the integrand of Eq. (4-118) is

F = 2y0(y') +Ay^

where
y

(4-121)

(4-122)

(4-123)

(4-124)

At point A(xi, 0), 5y = 0. Thus, v/ith the lower limit of the integrated part

vanished, Eq. (4-120) becomes
. .

^/.'i'(yJ)^y.-^Wo=

or
i s,/4-

(4-125)

(4-126)

Therefore, 70* " ^ (4-127)

Now, to ascertain that the solution found is a minimum, let us consider

the sign of the second variation. Referring to Eq. (4-114),

fl = ^\y') y{iy!)^y"{Si)
2 \l

.

dx-H (6;) <)>(/'; m (4-128)

v/here -(Sy^) is the second order term arising from the variation of -(y +6yQ)2.

Again, note that the lower limit of the integrated part vanishes. From Eq.

(4-126), the last two terms cancel each other, since

(s/,)>'(y;) - (iy.f = (iy. f- (V.f - o

Hence, Eq. (4-128) becomes

(4-129)
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s'l = r"cb'(y') \yW^-^ r(%yf\ ^x (4-130)

which is of the same form as in Eq. (4-115). Therefore, the concluding remarks

for the continuous solution in Art. 4-10 also hold for the discontinuous

solution here. Since at point C (xg, 7 ), where the curve AC has the steepest

slope with y' = l<y3j the solution found is a minimum.

With all information available from the continuous and the discontinuous

solutions, the range of volume can be determined as follov;s.

At point C (xn y^), y ' = 1. Substituting in Eq. (4-119),
*

^ ^j o o

Substituting 6 = 45° for O^ in Eq. (4-101), the given volume becomes

v=i-Ty,Vo-jk-|)=5f^y»'^ (4-132)

Since y-^yo, the greatest admissible volume is

:^
:

vi.1. =sf T^^i.3U)^' a-133)

From the findings in Articles 4-10 and 4-ll> the choice betv;een the

continuous and discontinuous solutions for least resistance""" body of revolution

of given voltmie and base diameter can be made as follovj's:

(1) If the given volume is less than J$T7^/^i the discontinuous solution

must be taken. The continuous solution is not applicable.

3 3
(2) If the given volume lies between J3ry2 /5 ^^ 13ffy2 /30, discontinous

^ The body curve found for minimum drag is also for least drag if the

restriction that the slope be of the same sign at all points is imposed.

A zigzag line can not be taken as a minimizing curve in this case.
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solution should be taken as it gives the least resistance (Ref. 4).

(3) If the given volume is greater than ISTTyp-^/SO, the continuous solution

must be taken. The discontinuous solution is not applicable.

These rules can be summarized as

Volume Range "* 3 '^
>i

'^ ^ do "^ ^^ *"

Type of Solution Discontinuous Discontinuous Continuous

4-12 Parametric Equations for Minimizing Curve—Given Base Diameter and Volume.

The equation for y has been found in Eq. (4-119),

Differentiating,

Substituting in the genereil fonii of the parametric equation for x.

Integrating,

.4-2-
2. )" +3)"

Given the base diameter and volume, the value of the tangent to the body

curve at the base, y^' can be calculated by trial and erixjr from Eq, (4-101).

Thus, the Lagrange multiplier can be calculated from Eq. (4-134),



•if^:-

x = ^ K
y. (It//)

Substituting in Eqs. (4-134) and (4-137),

X

Y

2. /;^ {HT^T

= /.

/'

55

(4-138)

(4-139)

(4-140)

The above result is plotted in Fig. 4-9 together with four other curves

for different given conditions where the fineness ratio is 5 for all bodies

with the ordinate to an expanded scale to better indicate the individual

profiles.

Given diameter and
surface

Given diameter and
volume—

I

1 1 I

1.0.1 .2 .3 .4 .5 .6 .7 .8 .9

Body axial coordinate, x/L
Fig. 4-9. Comparison of minimum-drag bodies for simple impact theory (After

Eggers, et al., NACA)
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4-13 Modified Theory—Given Base Diameter and Volvune.

By taking the centrifugal force effects into consideration, the problem

can be solved in the same way as in Art. 4-9 except for a new constraint of

given volvune

Vol. = 7T y^dx = constant (4-141)

The integrand function to be minimized here is

f = F(y, y') +>y^ .(4-142)

in which according to Eq. (4-50),
r .v

F= "'(-!^,

'r = ^y

jr 's equation gives

7 'f - f = c

y 'F
y'

- F - Ay^ = c

(4-143)

i.e., yiF, _F-Ay =c ::; (4-144)

Substituting Eq. (4-52) in Eq. (4-144),

Since the curve intercepts the x-axis, i.e., y = 0, c = 0.

Rearrsmging

^~
^:^i(i±y;f_2 . (4-147)
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from which

X (4-14S)

At point B, y = y , y' = y '
• Substituting in Eq. (4-146),

Xy =^ (4-149)
,2\;i

(i^)-;)-

For fineness ratio Fjj>l/2, y =0, y ' =0. From previous eaqperience in Art.

4-10 (see Eq. 4-103), the practical range of y ' is

Hence from Eq. (4-149),

O^y^'^iJ

O,s:A0r2^15 3/16

4-14 Minimum-Drag Body—Given Length and Volume.

B(x2, y^)

C(0,y )
o

^^- X

Fig. 4-10. Minimum-drag body for given length and volvime.

Since the length is specified, it can be expected that the body shape

* The value found by the author of this report is different from the result
given on P. 145 of Ref . 1.
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assumes a blunt nose as shovm in Fig. 4-10. From previous knowledge, the

pressure-drag parameter to be minimized is

i-'>r(f^'^^'-)*
(4-150)

Note that the integrand function

(4-151)

is the same as that in Eq. (4-86), leading to the solution of the Euler's

equation in Eq. (4-90),
'

:2/V^(3y^-)-y-^j 2/y'_.^_
(Ky'7

Xy"=c

which reduces to

(4-152)

The constant c can be expressed in terms of the comer coordinate y in the

following way. Note

F = F(y, y') (4-153)

Referring to Eq. (3-10), for a minimum to exist, the integrated part of Si

plus the additional first order term must also vanish, i.e..

2X.^y, + F/5y = (4-154)

Further, in order to meet the boundary conditions, the upper and lower limits

should vanish independently. Since S7q t^ 0, Sy2 ^ 0, it follows that

= (4-155)
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2y - F =

From Eq. (4-89),

Y (i + y^r

72- =0

substituting in Eq. (4-155 )>

Substituting Eq. (4-157) in Eq. (4-156) gives

2/^
3y:% y;^

(i+y;)^ J

=

yo'=i

° = ^o - -^^o^

Substituting in Eq. (4-152),

Hence, Eq. (4-152) becomes

3

Av^- -^^ y ^- y - ^7^= Q

Solving for y.

y

^y''

AO^-yT

^y 3 n

Xn-y'^-

Y« ->yo

r>
X= Jy

J
%

(4-156)

(4-157)

(4-158)

(4-159)

(4-160)

(4-161)

(4-162)

(4-163)

(4-164)

An inspection of Eqs. (4-163) and (4-164) reveals that the values of /\

and 7 can be determined from the conditions of given length ax)d volume.

According to Ref . 1, the range of A is
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A — -co as L^O

A -* as L^*^ , i. e., F^ — oo

-oQ<.?\ -< ^ L <oo

R

(4-165)

(4-166)

(4-167)

At point C(0,y ), y ' = 1. Substituting y and y • in Eq. (4-163),

^0 2A J4A^
/o -AX"

A

or (4-168)

The "-" sign on the right side is a trivial solution. This is the reason why

only the "+" sign was used in front of the square root in Eq. (4-163). Hence,

(4-169)2Ay^ = 1

For given volume, it can be reasonably assumed that
^

as L-^oo (Fjj-*<»),

-c L < 00, CO

and hence ^^^ iO

oo A-*-o

0<-\^'^

(.h'170)

(4-171)

(4-172)

Further more, substitution of Eq. (4-169) in Eq. (4-163) yields

3

y
4y.y'

-h

(i+y'r rJ[i\^rO\

A%r 2. 2

-^ML

^r'/o ±Z
O^fy^'^^^lii^y'))

(4-173)

* The result fovmd by the author of this report is different from Ref . 1,

P. 143.



61

4-15 Modified Theory—Given Length and Voltune.

Figure 4-10 shows a schematic configiiration of the body shape for this

case. Centrifugal force effects are considered here. Referring to Eq. (4-50),

the pressure drag expression to be minimized csin be vrritten as

I = y^^ + (F + Xy^)dx

where
+ 1^

F-yr(2-V^)
The new integrand function here is

f = F +\y^

fy, = Fy,

Solution of the Euler's equation yields

y'fy, - f = c

or y'Fy, - F -Xy2 = c

Substituting Eq. (4-52) for y'Fyi - F in Eq. (4-177),

)-Xy^=C
(1

2yy'^ / 3 y

Rearranging,

,

yVay / -c(i+)"')=o

which results in

y =
-y^ ^ J r''+ c o^y^r [(3ryyj-x{i^rr

3v% - A()+/.^;-

rv
X = d/

J
/. /

(4-174)

(4-175)

(4-176)

(4-177)

(4-178)

(4-179)

(4-180)
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Since the base diameter is not given, from Eq. (4-155),

(4-181)

With the aid of Eqs. (4-176) and (4-51), one obtains

^% z - ^
2 1+// )

= ^

Simplifying,

&

y^' = 0.274

From Eq. (4-156),

2yo - ^r
=

Substituting Eq. (4-51) for F , in Eq. (4-184) gives
•7

1
2y'^

;^^ = ^

from which

i.e., the body curve intercepts the y-axis at 45°.

Now, let us rewrite Eq. (4-179) in the form of

yo'=i

(4-182)

(4-183)

(4-184)

(4-185)

or

y =

y

-y-vyr'^("/yJ(Ky'y[3y'^-Ay,(i-hy-TJ .. (4-186)

3V'^-Ay^(ity'^)" y.

HVl-X^l3-Ay.^)-]
3- >/^ {i±r!I"

X

//3

(4-187)



At point B (xg, 72), 72* = 0.274,

d+x'^)
'

X
,3

= 56. les

Substituting in Eq. (4-187),

63

4 - 56. l88Ay^ =^1 -h 56.lg8Cc/y^)(3- SG.iaSXXz)

y_j^~ 55 , 1 88 (3- 56. 1 88 A/2

)

(4-188)

Substitution of Eq. (4-188) in Eq. (4-187) yields

7 = y20(y'»A72^

By using the relation in Eq. (4-189), the length becomes

(4-189)

L =
7 /

^ ' ';.^V=/.^c-)i)y <Jy

and the volume is given by

Vol.=Tl Vdx=T)fr'^,^dy'
'

Combination of Eqs. (4-190) and (4-191) yields

r Vol

(4-190)

(4-191)

(4-192)

Given Vol. and L, the value of >\y2 can be determined from the P and <5' functions

.

Thereby, we can calculate the values of c/y2 and yg from Eqs. (4-188) and
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(4-190) or (4-191), respectively. Values of y_, Ay and c/y thus obtained

serve the parametric equations Eqs. (4-180) and (4-186) for the calculation of

the minimum-drag body shape of given volume and length. Eggers, et al.,(Ref.2)

gives numerical values of the 5 ^^^ ^ functions which are obtained for the

various values of Xj that mal<:es the relation of Eq. (4-192) hold for given

volume and length for interpolation.

4-16 Minimum-Drag Body—Given Length and Surface Area.

As in Art. 4-8, the pressure-drag parameter to be minimized can be

written as .„..

1=7-*-
X 3

2 r^2 2yy'

i+y
<\y. (4-193)

which is subject to an auxiliary condition

According to the isoperimetric rule of the calculus of variations, the

integral to be minimized becomes

(4-194)

(4-195)

where the integrand function F is exactly the same as in Eq. (4-63), which has

led to the solution (see Eq. 4-67), '
'

.

y
X 47'

JW? (in'')\

= c, (4-196)



Therefore

and

x=

y== {' ii

rVo

Since the base diameter is not given, it is required that

Fv

/:.

Hence, from Eq. (4-66),

F/

/^

2(3 /; + //)
,

^^
(MtT J /+/'•

_

=

7^-"
or

.. N^/^

from which 72' ^^^ ^® determined uniquely in terms of A.

Also, fromEqs. (4-156) and (4-195),

(-^>-)ro-%-o
.

With the aid of Eq. (4-66),

(2fA) - =
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(4-197)

(4-198)

(4-199)

(4-200)

(4-201a)

(4-201b)

(4-202)

(4-203)

Now, let us determine the range of \ . For given sxxrface area, when the

length approaches zero, or when L is fixed at a very small value, the body

shape assumes a blunt nose. From previous knowledge, the meridian curve

* The value found by the author is different from Ref . 1, P. 145 but agrees
with the slope of the curve of given length and surface area in Fig 4-9.
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intercepts the y-axis at an angle of 45°, i.e., y^' =1. Substituting in Eq.

(4-203),
A =

On the other hand, when the length approaches infinity, y = and y ' = for

fixed stirface area. From Eq. (4-203),

X =-2 ^

To sura up, A — as L-^0

^ -* -2 as L— oo

For bodies of ordinary lengths, the practical range of is

-2-^ A ^

and = 7 '^7 '^1
<c O

(4-204)

(4-205)

(4-206)

(4-207)

where y ' depends on X .

4-17 Modified Theory—Given Length and Surface Area.

Referring to Art. 4-9, we see the problem can be attacked in the same way

except for different terminal conditions. From Eq. (4-78), we obtain

2)
'^ X

) -C = o

3Y"f^

_(i+r'r /r^N

zy'^-A(i^y0^1yJ-cy.(i-»-r)'=o ^

Therefore,

(4-208)

or

'^kf'"-2 ± \^,±^fL^^
y^ r^

(4-210)
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From Eqs. (4-76) and (4-51),

x>7^v/V / 3y\ >^/ 3yN_^^/'

(4-211)

d+y'
(4-212)

According to Eq. (4-199), the terminal condition is

=
'r T2

I.e. AX'

I ;fe^ - 2 ^ -^ = ^

From Eq. (4-202), another terminal condition can be found as

y,
- (2 ^^):^o = °

x.e.

=

(4-213)

(4-214)

From Eq. (4-210), one can determine the value of c/y^ ^ terms of X and y '

by letting y = y • Also, from Eq. (4-213) it is seen that y ' can be expressed

in terms of J\ . Therefore, the value of c/y^ depends on A only., and Eq.

(4-210) can be written as

7 = 725^(3^^-^^ (4-215)

At the same time, it is seen that y ' also depends on A. Then the given
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length and surface area can be expressed as

7. ^>'>>

(4-217)

Combination of Eqs. (4-216) and (4-217) gives

j5_ ^ S! (4-218)

;.- As in Art. 4-15, the values of 5 and a functions can be obtained by

numerical integration for various values of A to allo^^r interpolation for the

value of A that makes f^/^= S/(27rL2). The corresponding values thus found

for A , 5^/3 satisfy the given length and surface area requirements and yield

values of yg and c/y2 for Eqs. (4-210) and (4-211) to plot the minimizing

curve

.
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4-18 Resiilts and Discussion.

Analysis carried out in this section reveals two characteristics v;hich

are common in minimum-drag body shapes. V/hen the body length is fixed, the

body is found with a blunt nose; whereas, when the body length is not fixed,

(i.e., no restriction) the body is found ^^th a sharp nose. This may be

attributed to the fact that with the restriction on the length, reduced drag

is achieved by accepting higher pressures on a comparatively small area of

large slope near the nose, and thus maintaining lower pressures over a large

area of small slope near the base. However, if the restriction on length is

relaxed, the body can be made more slender with a sharp nose, and the pressure

drag is reduced.

For the convenience of a quantitative comparison, typical meridian curves

calculated with the simple ijnpact theory have been plotted in Fig. 4-9 on the

basis of the same fineness ratio Fj^ = 5 with the ordinates to an expanded

scale to better indicate the individual profiles. It is seen that for mimjnum-

drag, the body shape of given length and surface area assumes the maximum

bluntness, while the body shape of given base diameter and volume has the

maximum sharpness (i.e., a cusp nose). From Fig. 4-9, it is noted that the

flat-nosed portions of the three meridian curves for the given length bodies

are in all cases very small. As expected, the degree of bluntness increases

when the fineness ratio decreases.

It is also of interest to compare minimum-drag body shapes determined by

linear theory with those determined by the simple impact theory, i.e., bodies

particTilarly designed for flight at low and high supersonic speeds respective-

ly. Such meridian curves are plotted in Fig. 4-3 for given fineness ratio. It

is seen that the minimum-drag body for supersonic speeds is generally flatter
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thaxi the irdi-Uimm-drag body for hj'personic speeds but the shapes are sdmlar in

spite of the narked difference in laws governing the surface pressures.

All the analysis in this section has been based on the assumption that

the air flow at hypersonic speeds can be approximated by the Nevrtonian-type

flov/. Several calculated body shapes of fineness ratio 3 and 5, including

those minimum-drag bodies for given length and base diameter and for given

base diameter and surface area, were tested at Mach numbers from 2.73 to 6.28

at NACA Ames Aeronautical Laboratory by Eggers et al., in 1955- Test results

showed that these body shapes are good approximations to correct profiles for

minimum-drag (Ref. 2). ' ;;
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SECTION 5 .',-•'_;.

CONCLUSION

It has been undertaken in this report to present a method for the deter-

mination of the shapes of nonlifting bodies of revolution having minimum

pressure drag at hypersonic speeds. Problems for the various combinations of

conditions of given length, base diameter, s\irface area and volume have been

solved by means of Newton's impact theory and the calculus of variations. It

is noted that the minimum-drag body found generally has a blunt nose if the

length is fixed, as in Newton's classical problem, and a sharp nose if the

length is not fixred

.

At moderate hypersonic Ifech numbers, effects of curvature in the stream

direction have been investigated by a simple modification of the Nevrtionian

impact theory. Calculation of body shapes have also been carried out for the

same conditions as stated above. Comparison of results indicates that shapes

thus found are blimter at the nose section and have more curvature in the

region downstream of the nose. Also, a slight reduction in the pressure drag

is noticed.

Several bodies of revolution of fineness ratios 3 and 5, calculated

according to the simple impact theory for given length and base diameter and

for given base diameter and surface area, were tested at Mach numbers from

2.73 to 6.28 at NACA Ames Aeronautical Laboratory by Eggers et al., in 1955.

Test results showed that the calculated body shapes were good approximations

to correct profiles of the corresponding conditions for minimum-drag.
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Shapes of minimum-drag bodies at zero angle of attack in the hypersonic

flow are determined by means of Newton's impact theory and the calculus of

variations. The investigation is carried out for various combinations of

conditions of given body length, base diameter, surface and volume.Usually,

the optimum body shape assumes a blunt nose when the length is fixed; whereas,

a sharp nose when the length is not fijced. Due to curvature of flow over the

surface, the bluntness of the meridian curve is increased in the nose section

of the body. According to the theoretical investigation, these modifications

show only a slight reduction in the pressure drag.

Several bodies of revolution of fineness 3 and 5 were tested at Mach

numbers from 2.73 to 6.28 at Ames Aeronautical Laboratory by Eggers et al.,

in 1955. A comparison of the theorectical and experimental findings showed

that the calculations were reasonable approximations to the correct shapes for

minim-urn drag at hypersonic airspeeds.


