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Abstract

In the present stud y, a set of 63 accessions of Aegilops
tauschii, the D-g enome donor of bread wheat,  was
evaluated f or marker -trait association using SSR marker s
and biotic and abiotic stress tolerance . Five accessions
of Ae. tauschii (TA1644, TA1642, TA1695, TA2452 and
TA2473) were resistant to Hessian fl y whereas se ven
(TA1649, TA2460, TA2450, TA2541, TA2470, TA2397 and
TA749) were resistant to leaf rust pathog en. However one
accession TA1695 was also resistant to pest green b ug.
Significant associations acr oss D-g enome re vealed that
chromosome 2D is associated with resistance to se veral
stress factor s. Two alleles at Xgwm296 locus were
associated with resistance to leaf rust,  Septoria leaf b lotc h,
green b ug, and salt tolerance . Another locus Xgwm261
detected association f or resistance to leaf rust,  Septoria
leaf b lotc h and Hessian fl y. The existence of a QTL f or
tolerance to high salt concentration was also detected
thr ough association with marker Xcfd11, located on this
chromosome . Fur thermore association anal ysis also
detected tw o SSR marker s, Xgwm261 and Xgdm35, each
with a fra gment amplified in the leaf rust resistant
accessions while lac king in the susceptib le accessions.
This stud y reveals the potential of association anal ysis in
identifying the g enomic regions ha ving str ong influence
on useful traits.  Thr ough association mapping the
germplasm collections can be initiall y screened and
characteriz ed to identify candidate g enetic stoc ks and
genomic regions.  Subsequentl y, bi-parental cr osses can
be initiated f or fine g enetic mapping of g enes or QTLs
thr ough linka ge analysis.
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Intr oduction

A gradually declining rate of genetic improvement in

yield potential of crop plants is the reflection of their
narrow genetic base which needs to be reversed through
rigorous use of wide germplasm in breeding programs.
The wild relatives of crop plants have been reported to
provide unique genes for enhancement of yield in rice
[1], sorghum [2], oats [3] and fruit size in tomato [4].
Unfortunately the phenotypes of wild relatives of
cultivated plants are a poor indicator of potentially useful
genes present in them especially for agronomically
important quantitative characters like yield, quality, and
adaptation. Hence, special techniques of discovery and
exploitation of novel gene complexes from wild species
in the form of advanced backcross QTL analysis has
been proposed by Tanksley and Nelson [5]. But equally
important and challenging is the identification of
desirable genes available in existing germplasm pools
being maintained as land races, obsolete varieties and
elite genetic stocks. Though genetic and geographic
diversity of such stocks is the key guiding factor for
selecting potential donors of new genes for crop
improvement, even then the number of accessions so
identified is too large to be accommodated in routine
breeding programs. A number of attempts have thus
been made to characterize genetic diversity with the
help of easily observable molecular markers for precise
identification and utilization of exotic germplasm through
marker assisted selection. RAPD markers associated
with five quantitative traits in rice have been reported
[6]. These markers could reliably predict the
performance of other samples of germplasm for these
characters. Such an association of molecular markers
with quantitative traits has also been reported in other
crops [7-9].
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Recently association mapping approach has been
used in different plant species to identify markers and
genes associated with a variety of phenotypes. Marker-
trait associations in wheat have already been worked
out for a number of traits including high molecular weight
glutenin [10], late maturity α-amylase activity [11], milling
quality, seed size/seed shape [12], and resistance to
Stagonospora nodorum blotch [13], leaf rust [14], and
Fusarium head blight [15]. A number of major genes for
resistance to diseases and insect pests are known in
Ae. tauschii. A saturated molecular map and a collection
of wide germplasm representing all major geographic
areas of diversity are also available. The present study
thus reports the scope and present status of gametic
phase linkage disequilibrium (GLD) based association
analysis to discover useful genes from germplasm pools
of Tausch’s goat grass Ae. tauschii Coss.

Materials and methods

Germplasm

A set comprising 63 genetic stocks from an initial
collection of 546 accessions of Ae. tauschii being
maintained by the Wheat Genetic Resource Center,
Kansas State University, Manhattan was selected on
the basis of their divergent reaction to diseases, insects,
and salt tolerance. For this study, the accessions were
evaluated for resistance to leaf rust, Septoria tritici
blotch, tan spot, green bug, Hessian fly, nematode
infestation, and high salt concentration. The selected
accessions represented all the sub-species of Ae.
tauschii i.e. typica, anathera, strangulata and meyrii,
collected from different geographic regions including Iran
(21 entries), Afghanistan (14), Azerbaijen (7), Turkey
(3), erstwhile USSR (2), Pakistan (3), Japan (3), China
(1), Armenia (4), Georgia (3), and Turkmenistan (2).
Fifteen germplasm stocks of hard winter wheat, T.
aestivum, with known genes for resistance to diseases
and Hessian fly introgressed from Ae. tauschii along
with recipient parental lines were also included in the
study to verify the association of markers and genes
through a comparison of marker profile of donor
accessions with corresponding germplasm stocks.

Trait evaluation

The seedlings of all the accessions were evaluated for
reaction of leaf rust (Puccinia triticina Eriks.) using the
system of Browder and Young [16]. A line was
considered resistant if associated with an infection type
with a sporulation rating of 0, 1 or 2 on a scale of 0-9.
The accessions were evaluated for reaction to Septoria
tritici blotch (Mycosphaerella graminicola (Fuckel) J.

Schröt. in Cohn). The data were recorded in terms of
different categories of 0-10, based on percentage of
leaf area infected. The accessions with score of 1 or
less were categorized as resistant. For tan spot
screening the seedlings were inoculated with conidia
of Pyrenophora tritici-repentis (Died) Drechs., by the
methods of Riaz et al. [17]. Tan spot symptoms were
recorded on 1-5 scale and accessions with score of 1
were categorized as resistant. The method described
by Thomas and Conner [18] was used to determine the
reaction of accessions to wheat curl mite. The
accessions were classified as resistant or susceptible
based on curling and trapping of the leaves. The reaction
to Hessian fly (Mayetiola destructor Say) was
determined by the methods of Cartwringht and Lahue
[19]. The plant reaction was determined about fifteen
days after infestation and individual plants were
classified as resistant or susceptible. Susceptible plants
were stunted and dark green. Resistant plants were not
stunted; they were yellowish green and showed a high
level of antibiosis in that all larvae died in the first instar.
For reaction to green bug (Schizaphis graminum Rond),
ten apterous adult green bugs were placed on each
plant at 2-3 leaf stage as per the method described by
Harvey et al. [20]. Susceptible plants began to show
generalized chlorosis after 5-7 days and were easily
distinguished from dark green resistant plants. The Na
and K concentration in most expanded leaves of each
accession was measured from 26 days old plants which
had been growing in 150 Mol–3 NaCl for 16 days.

The accessions were selected as to ensure
representation of all geographic regions of diversity and
comparable number of entries in resistant and
susceptible categories for each of the above mentioned
diseases and insects. The reaction with respect to
nematode resistance had been recorded as number of
white females per plant, which ranged from 0.8 to 50.0.
Similarly for salt tolerance (Na+ and K+) also the
magnitude of salt concentration in leaves was measured
on a continuous scale. For these three characters the
stocks were taken to represent entire range of variation
in the collection.

DNA extraction and PCR amplification

Total genomic DNA was isolated from seedlings of 63
accessions of Ae. tauschii and fifteen germplasm lines
of T. aestivum with known genes for resistance.  The
molecular profiling was conducted with thirty-five
microsatellite primers specific to D genome and covering
all the seven D-genome wheat chromosomes [21]. The
polymerase chain reaction assays were carried out in
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25ul reactions as described by Röder et al. [21] in a MJ
Research thermocycler [Watertwon, MA, USA].
Products were separated on 2.3% Meta Phor agarose
gels (FMC Bioproducts) in 0.5 X Tris-borate buffer. Gels
were stained with ethidium bromide and visualized with
UV light.

Data analysis

The sequence amplified by each primer pair was
considered as a locus with each variant fragment as an
allele. The presence or absence of each fragment was
coded as 1 and 0 respectively to generate a binary data
matrix. The association between the phenotypic
performance and remaining 102 polymorphic fragments
was tested by chi-square test with the Q-Gene software
[22]. Fisher’s exact test was performed for marker-
character combinations where any of the cells in 2x2-
contingency table had a count of less than five units.
Single marker analysis for metric traits was also
performed with Q-Gene to detect association of markers
with resistance to nematode and salt concentration. The
extent of association among microsatellite markers
themselves was computed through chi-square test of
all possible, 5151, pairs of markers through Q-Gene by
coding the markers in the form of categorical data. The
Type I error rate from the above analyses was adjusted
by division of the probability values with the number
(102) of simultaneous tests.

Results and discussion

Unlike for human populations the linkage analysis can
easily be performed in plant populations to identify
molecular markers linked to the genes for their use in
marker-assisted selection. But here again the
requirement of  mapping population makes linkage
analysis difficult and inappropriate for molecular tagging
of all desirable genes available in large germplasm
pools. The concept of GLD based association analysis
in germplasm has been exploited to establish linkage
of desirable genes with molecular markers for use in
crop improvement. Some of the applications in rice [6];
barley [7, 8], and oats [9] suggest that a part of the
observed trait-marker associations in germplasm pools
also are created by physical linkage of corresponding
genes and markers.

SSR marker polymorphism and its association with
phenotypic performance

The total number of alleles at 35 SSR loci and
chromosomal location of these markers is given in Table
1. The number of alleles ranged from 2-6 with an

Table 1. List of markers, their chromosomal location and
number of alleles generated

S.No. Marker Alleles Chromosome

1 Xcfd21 3 1D

2 Xcfd20 3 1D

3 Xcfd27 2 1D

4 Xgdm35 4 2D

5 Xgwm296 3 2D

6 Xgwm261 3 2D

7 Xgwm515 3 2D

8 Xcfd11 4 2D

9 Xcfd44 5 2D

10 Xcfd53 4 2D

11 Xgdm8 4 3D

12 Xgwm314 3 3D

13 Xgwm645 3 3D

14 Xgwm383 3 3D

15 Xcfd4 3 3D

16 Xgdm72 4 3D

17 Xgdm125 4 4D

18 Xgdm129 2 4D

19 Xgwm194 2 4D

20 Xgwm192 3 4D

21 Xcfd19 3 4D

22 Xcfd10 4 5D

23 Xcfd358 2 5D

24 Xgdm193 3 5D

25 Xgdm68 2 5D

26 Xcfd49 4 6D

27 Xcfd5 4 6D

28 Xcfd37 3 6D

29 Xgdm141 2 6D

30 Xgdm132 5 6D

31 Xgwm469 2 6D

32 Xgwm111 6 7D

33 Xgwm428 2 7D

34 Xgwm44 2 7D

35 Xcfd31 2 7D

average of 2.9 alleles per locus. The number of alleles
showing significant association with each of the traits
investigated at unadjusted P=0.01 and P=0.05 is given
Table 2. In all 46 marker-character combinations were
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associated at 1 percent and 111 at 5 percent level of
significance. The number of alleles associated at P=0.01
ranged from none for tan spot to 17 for leaf rust
resistance with an average of 5.2 alleles per character
as compared to expectation of 1.02 to be associated
by random chance, at 1 per cent level of significance.
About one third i.e. 18 of 46 at P = 0.01 and 32 of 111 at
P = 0.05 involved resistance to leaf rust. The
conservative test of significance, however, identified
only one marker-character combination as significant.
This only significant case also involved leaf rust
resistance to be associated with marker Xgdm35-180
located on chromosome 2D. Of the three quantitative
characters one QTL was detected for nematode
resistance and one allele at Xcfd11 locus showed
association with resistance to high salt (Na+ and K+)
concentration with a LOD score of 2.5.

A significant magnitude of linkage disequilibrium
was observed for pairs of microsatellite markers evenly
distributed throughout the genome. Lubers et al. [23]
also reported high levels of linkage disequilibrium
between loci in a sample of germplasm collection of
Ae. tauschii. The germplasm pool of many local
collections from different geographic regions is thus
expected to harbor such equilibrium. A relatively large
number of marker pairs in disequilibrium involved
chromosomes 2, 3 and 6 which could be the result of
preferential segregation already reported to be operative
in this species [24]. In light of this disequilibrium it would
thus be expected to find at least fitness related loci to
be associated with markers. Furthermore the markers
included in this study categorized accessions on the
patterns of their evolutionary history and expected
divergence. All the accessions with resistance to leaf

rust were clustered in a group largely represented by
stocks from Iran where resistance to this disease is
expected to have evolved. The diverse collections from
Iran were present in both of the two major groups
whereas relatively related stocks from Afghanistan and
Pakistan clustered in one group. It thus is apparent that
these markers represent parts of chromosomes, which
can be expected to show association with functionally
important segments of the genome of this species.

Comparative mapping in donor accessions and
derived germplasm lines

The markers associated with each character along with
the probability of observed chi-square is given in Table
3. It is apparent that out of 46 cases significant through
usual level of significance only one is significant after
the adjustment of probability for multiple tests. The
location of resistance genes on specific chromosomes
and their association with the markers located on same
chromosome detected through usual level of
significance i.e., P = 0.01 is given in Table 4. The sample
of germplasm included in this investigation is known to
carry at least three genes for resistance to leaf rust and
four to Hessian fly but still only one case of marker-
character association attained statistical significance
through conservative test. Only one of the known major
genes Lr39 was declared to be associated with marker
Xgdm35 through conservative test. The donor
accessions of resistance genes along with recipient
parents and germplasm lines of winter wheat developed
by transferring the specific resistance genes were also
assayed to check the marker allele similarity in
germplasm resources and the donor lines. Five
accessions of Ae. tauschii (TA1644, TA1642, TA1695,
TA2452 and TA2473) were resistant to Hessian fly
whereas seven (TA1649, TA2460, TA2450, TA2541,
TA2470, TA2397 and TA749) were resistant to leaf rust
pathogen. However one accession TA1695 was also
resistant to pest green bug. The presence of specific
marker allele in germplasm lines and donor accessions
in contrast to the recipient variety of wheat would
suggest the association of resistance gene, at least with
such coexisting marker allele. The DNA fragment
amplified using marker Xgdm35, which shows the
strongest association with leaf rust resistance, is present
in donor accession, TA2460 and has been added to
wheat variety to produce WGRC10. Likewise the
fragments amplified with primer pair Xgwm261-200
show exact correspondence between donor and
respective germplasm lines but remain undetected
through conservative test in spite of adequate
polymorphism at marker and disease controlling loci.

Table 2. Number of markers with significant association
with each character

Character P = 0.01 P = 0.05

Leaf rust resistance 18 32

Septoria tritici blotch resistance 6 17

Tan spot resistance - 2

Green bug resistance 4 7

Hessian fly resistance 4 11

Wheat curl mite resistance 5 9

Nematode reaction 3 13

K+ concentration 3 11

Na+ concentration 3 9

Total 46 111
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Ae tauschii accessions used in this study are
known to be donor of at least three Lr genes, out of
which only one Lr39 to be a candidate and already
reported tightly linked with marker Xgdm35 [25]. The
accessions in present investigation were categorized
as resistant and susceptible non-specifically i.e. without
any identity of corresponding resistance gene for
diseases and insects. Each resistant group for leaf rust
or Hessian fly, as an instance, represents the effect of
several independent genes e.g. three for leaf rust and
four for Hessian fly which apparently dilutes the
association of a marker with the effect of gene actually
linked with the marker. It is due to this genetic
heterogeneity that even the pairs of markers and genes
known to be located on the same chromosomes could
reach only low level of significance that would normally
remain ignored at conservative level of significance. It
is a strong indicator of the influence that genetic
heterogeneity can have on the detection and precise
location of genes controlling quantitative characters
which are supposed to be influenced by several loci.
Locus and allelic heterogeneity which are common in
complex diseases can produce drastic reduction in
power to detect linkage disequilibrium [26, 27].

Distribution of marker alleles in germplasm pool

Out of all possible 5151 pairs of marker alleles, 76 pairs
showed correlated distribution even with the
conservative test of significance with adjusted
probability. Forty of 76 significantly associated pairs of
alleles at conservative test at one-percent level of
significance involved a block of more than two markers.
Two alleles at locus Xgwm296 and one at Xgwm383
showed GPD with a combination of four alleles. A
greater frequency of pairs in disequilibrium involved
markers located on chromosome 2, 3, and 6 of D-
genome. The cluster analysis revealed two major
clusters and all the collections from Afghanistan and
Pakistan falling in one group. The accessions from Iran
were distributed in both the groups confirming wide
diversity among Iranian collections. Twenty of the 25
accessions with leaf rust resistance genes were
clustered in group predominated by collections from Iran
where genes for leaf rust resistance are expected to
have evolved. Both the clusters, however, had
comparable frequency of resistance genes with respect
to resistance to Septoria tritici blotch, green bug and
Hessian fly.

The present investigation provides indirect
evidence suggesting the existence of many biologically
pertinent maker-gene associations that, in fact,

Table 3. Markers with significant [P=0.01]  association
for each character

Character Marker P-value Chromo-
some

Leaf rust Xgdm35 (180) 0.00008 2D
resistance Xgwm 383 (190) 0.0007 3D

Xcfd4 (270) 0.0025 3D
Xgwm 645 (300) 0.0010 3D
Xgwm 192 (150) 0.0032 4D
Xgwm 261 (200) 0.0027 2D
Xgwm 515 (120) 0.0037 2D
Xgwm 192 (170) 0.0028 4D
Xcfd19 (250) 0.0069 4D
Xcfd19 (300) 0.0076 4D
Xgwm 296 (120) 0.0085 2D
Xgwm 296 (150) 0.0091 2D
Xgwm 358 (170) 0.0099 5D
Xgwm 645 (150) 0.0115 3D
Xgdm132 (250) 0.0116 6D
Xgdm125 (120) 0.0133 4D
Xcfd53 (180) 0.0134 2D
Xgwm 111 (200) 0.0179 7D

Septoria tritici Xgwm296 (120) 0.0019 2D
blotch Xgwm296 (150) 0.0020 2D
resistance Xcfd53 (220) 0.0025 2D

Xgdm35 (300) 0.0043 2D
Xgwm314 (190) 0.0083 3D

Green bug Xgwm296 (120) 0.0058 2D
resistance Xcfd49 (300) 0.0057 6D

Xcfd10 (300) 0.0093 5D
Xgwm111 (130) 0.0089 7D

Hessian fly Xcfd19 (250) 0.0070 4D
resistance Xgwm261 (200) 0.0023 2D

Xcfd4 (250) 0.0043 3D
Xgwm192 (180) 0.0133 4D

White curl Xgwm314 (150) 0.0009 3D
mite Xcfd49 (180) 0.0041 6D
resistance Xgwm314 (190) 0.0044 3D

Xgwm383 (200) 0.0045 3D
Xcfd 31 (200) 0.0144 7D

Nematode Xgwm192 (150) 0.0030 4D
resistance Xgwm645 (300) 0.0053 3D

Xgwm192 (170) 0.0078 4D

K+ concentration Xcfd11 (220) 0.0009 2D
Xgdm125 (120) 0.0139 4D
Xgdm125 (150) 0.0142 4D

Na+ concen- Xcfd11 (170) 0.0010 2D
tration Xgdm193 (130) 0.0029 5D

Xgwm296 (120) 0.0143 2D

Amplified fragment size is given in parentheses



276 Sukhwinder-Singh et al. [Vol. 72, No. 3

remained statistically undetected. Significantly
associated marker Xgdm35 to Lr39, other markers viz.
Xgwm261 represented a fragment (allele) each of which
was amplified in donor accessions and the
corresponding germplasm line, though these were
absent in recipient susceptible varieties. Based on our
study, comparative distribution of associations across
D genome shows chromosome 2D is associated with
resistance to several stress factors. Fine genetic
mapping of defense-related loci in this species observed
clusters of defense-related genes on 2D chromosome
[28]. About 1/3 of total loci mapped on 2D chromosome
were defense related, the most among all
chromosomes. The association analysis thus not only
provided a probable location of resistance genes but
also suggested the conserved distribution of defense
related genes. A detailed analysis of chromosome 2D
may reveal the mechanism of evolution and operation
of resistance genes in wheat.

Most of the marker-gene associations could, in
fact, be detected only through usual error rate of five
percent. But even at this level of significance, a particular
chromosome 2D was identified to be associated with
multiple resistance which also is supported by fine
genetic mapping of defense-related genes in this
species. Existence of clusters of QTL on different
chromosomes for many quantitative characters have
been reported [8]. Ford-Lloyd et al. [29] also observed
the existence of co-adaptive gene complexes in rice
which showed association with blocks of markers being
maintained on different chromosomes. The analysis has

thus potential use in identification of such regions of
genome that might play key role in the expression of
quantitative traits. The concept of association mapping
in plant populations may not, as yet be useful for marker
assisted selection but can serve the purpose of initial
screening and categorization of germplasm for at least
extracting appropriate germplasm accessions for crop
improvement.
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