APPROXIMATE INFERENCE OF BAYESIAN NETWORKS
THROUGH EDGE DELETION

by
JULIE ANN THORNTON
B.S., Kansas State University, 2003
A THESIS
submitted in partial fulfilment of the
requirements for the degree
MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2005

Approved by:

Major Professor
William Hsu

ABSTRACT

Bayesian networks are graphical models whose nodes represent random variables
and whose edges represent conditional dependence between variables. Each node in a
Bayesian network is equipped with a conditional probability function that exprésses t
likelihood that the node will take on different values given the values of its parents. A
common task for a Bayesian network is to perforfarenceby computing the marginal
probabilities of each possible value for each node. In this thesis, | introducedinee
algorithms for approximate inference of Bayesian networks that use eldgern

techniques.

The first reduces a network to its maximal weight spanning tree using the
Kullback-Leibler information divergence as edge weights, and then runs Pearl’s
algorithm on the resulting tree. Because Pearl’s algorithm can perfterarice on a
tree in linear time, as opposed to the exponential running time of all genastal exa

inference algorithms, this reduction results in a tremendous speedup in inference.

The second algorithm applies triangulation pre-processing rules that are
guaranteed to be optimal if the original graph has a treewidth of four or less, and then
deletes edges from the network and continues applying rules so that the resulting
triangulated graph will have a maximum clique size of no more than five. Theojuncti
tree exact inference algorithm can then be run on the reduced triangulated gragh. Whil
the junction tree algorithm has an exponential worst-case running time inele ghe
maximum clique in the triangulated graph, placing a bound on the clique size efyective

places a polynomial time bound on the inference procedure.

The third algorithm deletes edges from a triangulation of the original netwo
until the maximum clique size in the triangulated graph is below a desired bound, Aga
the junction tree algorithm can then be run on the resulting triangulated graphe and t

bound on the maximum clique size will also polynomially bound the inference time.

When tested for efficiency and accuracy on common Bayesian networks, these
three algorithms perform up to 10,000 times faster than current exact and approximate

techniques while achieving error values close to those of sampling techniques.

TABLE OF CONTENTS

LIST OF FIGURES ...ttt e et e e e e e et e e e e e e eana e e eaeees
I S IO e N = I P i
CHAPTER ONE: INtrOQUCLIONuuiiiiieie ettt e e e e e e e e
1.1 BAYESIAN NEIWOIKScieiiiiiiiiiis i e s ceeeeeet e e s s e e e e e e et e e e et a e e e e e eaeeaaeeeeeeeeassbaaa e seeeeeaaeeeesnnnnnes 4
1.1.1 General DeSCriptioN @N0 USES......... e e eeeeaaaiiiiiitiisiieereeeteataaaaeeesaaaaasnnssesrsssseseeeeeees 5
1.1.2 Definitions and TNEOTEMS..........cciiimmmmeme e e ettt ettt e et e e e e e e s asnnneeeees 5
O I =T 0] o[RO RPT TR
1.2 Bayesian Inferencecccccceeeiiu
1.2.1 EXACE INFEIENCE ...eeiiiiii ittt e e st e e e e e aebeas
Pearl’s AlGOItNML.eiiiii e e s e e e e e e e st e e e e e
Exact Inference Complexity
Lauritzen-Spiegelhalter (LS) AlGOrithm. ... 15
1.2.2 ApproXimate INFEIENCEooii i 16
S F= 1001 o] {1 0o TR TP PP PUPPUPPPPPTR 16
Lo (o D= 1= 1 o] o USSR 19
Approximate Inference COMPIEXILY.iommerrruiiiiiiiiieeie e e e 20
RSN €] =T o] o I I o[To] V2 TP TP OPPRTRTPTP 20
1.3.1 Definitions and TNEOIEMSciiiiimeeem ettt eb e e e e saeeeas 20
1.3.2 Common Triangulation TEChNIQUES.ceueiiriiiiiiiiiiee e 22
Maximum Cardinality SEArch (MCS).tummmeee sttt 22
Pre-Processing RUIES. ...t 23
1.3.3 Constructing a Clique-Tree from a TriangudaBFaphcccoooiiiiiiiiiiiiiiiieismeeeeeeen 24
1.3.4 Complexity of THANGUIALION..........oiiiiieeiiiii e 25
1.4 INfOrmation TREOKYcoiiiiiiie e e e e e e e e e e e e eaaeeee e e e eaatbaa e seeaeeaaeaaeennnn 26
1.4.1 Kullback-Leibler DIVEIQENCE.t ccceceiie et e e e e e e e e 26
1.4.2 Optimized Kullback-Leibler DIVEIgENCE ...caaaiiiiiiiieeiee it 27
CHAPTER TWO: Related RESEAICHcccoiiiiiiiiiiii ittt
2.1 Kjaerulff's Edge Deletion TEChNIQUESccuueeiiiiiiiiiiiieiiice e 29
2.2 van Engelen’s Edge Deletion TEChNIQUES .ceeeomiviiiiiieiiiieeeee et 30
2.3 Bodlaender’s Triangulation Pre-Processing TEREES ... e 31
CHAPTER THREE: MethOdOlOgyccevuuiiiiiiiiiiiiiee e e et e e e e e e e aneeaaeennnnes 34
3.1 REAUCHION 10 POIYIIEEeeiiiieiiite e e e et e e e e e nenees 34
3.1.1 AIGOrithim DESCHPLIONeeiiiiiiiiiiie s ceeee ettt e e e s eabaeeee s 35
I 2 = {0 11 o N N 1 = O PP PPPRPPR PP 36
3.1.3 Algorithm WalKthroughoooiiii e 38
3.2 Bounding Clique Sizes With Pre-ProCeSSING. cemu . viieiiiiiiiiee ittt 41
3.2.1 AlQOrithm DESCHPLION ...cciiiiieiie ettt e e e e 42
G T U]] a1 T N T2 1 45
3.3 General Bounding ClIQUE SIZES........coieiiiiee ittt bbb 48
3.3.1 AlQOrithm DESCHPON ..ccceiiiiiiieiei ettt e e 49
TR F2A W] o] 11 T R T2 1 51
3.3.3 Algorithm WalKthroUgh........coooiii e e s 53
3.4 Comparisons of New Algorithms to Past TeChrBqUe.............ooovviiiiiiiiiiiiiieeeev e 58
3.5 EXPEriMENLAl DESIGN ...eiiiiiiiiiiiie ettt e et e e e s e e e e anres 59
3.5.1 NEIWOIKS USEA.....eeiiiiiiiiiiiiie ettt e e e e e s et e e e e e e aanaeeas 59
3.5.2 AIGOTNMS TESIEA. ... eeeiiiiiiiiie et crree et e e e rebareeaeeas 60

3.5.3 EVAlUALiON TECHNIGUES.......cciii ittt ettt ettt e sttt e e e s sane e e st e e e s s ennneeee s 61

CHAPTER FOUR: Error Bounds and Pathological Cases.........cccccoveevviiiiiiiiieiiiiiiiinee,
B = To [Tox i o) g IR (o TN 0] 1Y (== 65
4.2 Bounding Clique SizesS TEChNIQUEScceeeeeiiiiiiiiei e 68
CHAPTER FIVE: RESUILS.....oiiiiiiiiii ettt e e e e e e eeeaeees
5.1 Total TIME COMPATISONSceeiiiiiiiiie ettt et e e e e e e aaeeaa s s babbb bbb e eneeeeeeeaaeas 72
5.2 Inference TimMe COMPAIISONS.uu ittt e e e e e e e e e e e e et rr e e e e e e e aaaaeaaaaaesasaaaaane 75
5.3 Root-Mean-Squared Error COMPATISONSccceeeaeuriiiiiiiiieiiaaaaeaeaaa e e riiinre e e e e e aaaaaaae e 81
5.4 Master Table Of RESUITSooii i et 82
CHAPTER SIX: Discussion and FUtUre WOrK............ccooiiiiiiiieiiiiiieisie e e e e e eeeeeeeeeeennnnnns
6.1 Interpretation Of RESUILSooii i 85
6.1.1 TIME RESUIS DISCUSSION.....eueeiiiiis e e e et e e tessseeeeettereeeeereeeeeeeeeeesensannnnnnrenransaeeereees 85
6.1.2 Accuracy ReSUILS DISCUSSION........ccieeeeiei i e e e e e e e 89
6.1.3 Standard Deviation DISCUSSIONuceeerreeiiiiiiiieee e e e s st e e e s srrrre e s e e e e e e eenees 91
6.2 ConClUSION and FULUIE WOTK........ccciimmmece sttt ettt e e s e e e s sinnee e e e e 92
BIBLIOGRAPHY .ottt e e e e e e e e e e
APPENDIX .t e e e e e e e e e e ern s
A.1 Walkthrough of Pearl’s AlQOIthmMcummeeieie e eeeaeeeees 97
A.2 Walkthrough of the Lauritzen-Spiegelhalter Afomeuvviiiiii e 103
A.3 Walkthrough of the Maximum Cardinality Searclydrithmcccccovviiiiiii i, 107
A.4 Example Calculation of Optimized KL DIVEIgENCEoocuviiiieiiriiiiiee et 111
A.5 Walkthrough of Triangulation Pre-Processingé@ul.............cccvveieiiiiiiiiiiei i e 113

LIST OF FIGURES

Figure 1. The Sprinkler-Rain Bayesian NetWOrKccooiiiiiiiiiiiiiiiiiiiis e 9
Figure 2. Reduction to polytree pSEUdOCOUE.cviiiiiiiieiieeeie e 36
Figure 3. Summarization of running time for reduction to polytree.........c...cccocevvvvvnnnnnnn. 38
Figure 4. The Asia Bayesian network for reduction to polytree walkthrough................ 38
Figure 5. KL divergence values each edge in the Asia network............ccccceeeveiiiiiiiennnn. 39
Figure 6. The maximal spanning tree for the Asia network, using KL divergence values
from Figure 3 as edge WeIghtS.........cooo i 40
Figure 7. The posterior probabilities for Asia from reduction to polytree technique..... 41
Figure 8. Bounding clique sizes with pre-processing pseudocodeccoeeevevviiiiieenennnns 43
Figure 9. Summarization of running time for bounding clique sizes with pre-processing
... 48
Figure 10.General bounding clique sizes pSeUdOCOdEuuuuuiiiiiiiiiiiiiiieeeeeeeeeee 50
Figure 11.Summarization of running time for general bounding clique sizes................ 53
Figure 12 The moralized graph for the Asia Bayesian networkccccccivviiinnnne. 54
Figure 13. The triangulation of Asia using maximum cardinality search........................ 55

Figure 14. Triangulated graph after step 1 in general bounding clique sizes algoBthm..
Figure 15. The posterior probabilities for Asia using general bounding clique sizes...... 58

Figure 16. Pathological example for reduction t0 POIYLree..........cccvvvieiieiiiiiiiiiiieeeeiinns 67
Figure 17.Pathological example for both bounding clique sizes algorithms.................. 69
Figure 18. Total time comparison between all algorithms. Time scale is logarithmic,

AN JOWET IS DELLET. .. 73
Figure 19.Total time comparison of general bounding clique sizes with different desired

cliqgue bounds. Time scale is logarithmic, and lower is better.ccooiiiiiins 74
Figure 20. Inference time comparisons between all algorithms. Time scale is

logarithmic, and IOWer IS DELEr.i i 76
Figure 21.Inference time comparison of general bounding clique sizes with different

desired cligue bounds. Time scale is logarithmic, and lower is better. 78
Figure 22. Comparison of total time for 100 runs of each algorithm. Time scale is

logarithmic, and IOWer IS DELEr.i i 80
Figure 23. Total time for 100 runs using general bounding clique sizes with different

desired cligue bounds. Time scale is logarithmic, and lower is better. 80
Figure 24. Small Sprinkler-Rain network for the walkthrough of Pearl’s algorithm 97
Figure 25.The Asia Bayesian network for the walkthrough of LScccccooeiiiiinnnnnn. 103
Figure 26.The moralized graph for the Asia NEtWOIK..........ccccceeviiiiiiiiiiiiiiiee 104
Figure 27. A triangulation of the Asia Bayesian network...........cccccceveiiviiiiiiieeeiiinn, 105
Figure 28.The clique-tree for the Asia NEtWOrK............cccciiiiiiiiiiiiieeee e 106
Figure 29. The triangulation of the Asia network using MCS...........c..ooooviiiiiiieneennnnnn, 110
Figure 30. Sprinkler network with edge (Cloudy, Rain) deletedSprinkler'............ 111
Figure 31.The remaining graph in Asia after step 5 in the triangulation pre-processing

L1 =SS 113
Figure 32: The remaining graph in Asia after step 7 in the triangulation pre-processing

L1 =SS 114
Figure 33. The triangulation of the Asia network using pre-processing rules............... 115

LIST OF TABLES

Table 1.Higher-clique sets for computing the maximum clique in Asia’s triangudib

Table 2.Unnecessary moral edges for candidate edges for deletionccceeennn. 56
Table 3. Summary of Bayesian networks used in experiment..........ccccceeeeeeeveiiiinieeeeennnnn. 60
Table 4. Standard deviation percentage of total times for all algorithms (stddev/avg
L4130 01) PP PPPPRRRPPRRRR 73
Table 5. Standard deviation percentage of total times for general bounding clique sizes
(Stddev/avg tIME*L00)iiiiiiiiie e e e e e e e e e e e e aa 75
Table 6. Standard deviation ratio of inference times for all algorithms (stddev/avg
L[4 T= 301) PP PPPPRPRPRRRRR 77
Table 7. Standard deviation ratio of inference times for general bounding clique sizes
(Stddev/avg tIME*L00)iiieiiiii e e e e e e e e 78
Table 8.RMSE comparison of all approximate algorithms. Lower is better.................. 82
Table 9. RMSE for general bounding clique sizes with different clique bounds. Lower is
0= 1= 82
Table 10.Master table with total time, inference time, time for 100 runs, and RMSE for

AL AIGOMTNMIS . et a e e e e e e e e e eaeas 84

Table 11.The fill-in construction on the Asia network using an ordering from MCS.. 110

Approximate Inference of Bayesian Networks through
Edge Deletion

CHAPTER ONE: Introduction

Bayesian belief networks in artificial intelligence are powerfulgdolsimulate
and approximate real situations. For example, the Pathfinder Bayesianknstused in
a commercial product called Intellipath to diagnose lymph-node pathology.i@ayes
networks are directed acyclic graphs whose nodes represent a certain stats ior the
situation being modeled, such as the symptoms of a patient. Dependencies between
nodes, or states, are represented by edges, and each node has a conditional probability
function that represents the probability that the node will take a certain value (for
example, true or false for a binary node representing whether an event hgppEnt)e
values of the nodes on which it is dependent. Bayesian networks can help predict
outcomes in the situations they model when the values of certain nodes are given, for
example, if a node in Pathfinder corresponds to HIV-status and it is known that the

patient is HIV-positive. Such nodes that can be measured are called the efodénee

network. Many exact and approximation algorithms exist to infer the stattes of

remaining nodes, hence simulating the real situation.

Unfortunately, both exact inference [Cooper90] of Bayesian networks and
approximate inference [DagumLuby93] within a given error bound&bard for
general networks, so finding fast approximate inference algorithmpeaHarm well in
practice is very important. While there are several exact inferégmeatlams that
perform fairly quickly on some networks, these algorithms have an exponenti&l wors

case running times.

While all existing exact inference algorithms for general Bayesetworks do
have exponential running times, inference can be performed in linear time on agpolytre
using Pearl’s algorithm [Pearl88]. Thus if a network could be approximated by a
polytree, inference could be performed very quickly. Furthermore, while thigojpinc
tree algorithm is one of the most popular algorithms for exact inference e$iBay
networks, its running time is exponential in the size of the biggest clique in the
triangulated graph. However, if the cliques in the triangulated graph cogldabanteed
to be within a certain bound, then the running time of the junction tree algorithm would

be polynomially bounded.

| propose three new algorithms for approximate inference of Bayesiaorketw
that use edge deletion techniques to reduce the complexity of the network and enforc
structural constraints on the reduced network that guarantee a polynomial time bound on
the inference step. While the technique of edge deletion to reduce the coygdlexit

Bayesian network before performing inference is not a new one, no researchrhas bee

directed towards using edge deletion to constrain the structure of a networkritoorde

enforce a polynomial time bound on inference.

The first of these algorithms, called “reduction to polytree”, computes the
maximum weight spanning tree of a Bayesian network using Kullback-Leildlgr (K
information divergence as a weight for each edge. Because KL diverganpetes the
distance between two probability distributions (in this case, between the original
distribution and the approximate distribution that results from removing an edge), the
resulting spanning tree is the polytree that is a good approximation of thelorigina
network. After reducing a network to a polytree, Pearl’s algorithm candaktos

perform inference in linear time.

The second algorithm, called “bounding clique sizes with pre-processing’, doe
not reduce a network all the way down to a polytree structure, but instead dejetesoed
guarantee that the maximum clique size in the triangulated graph is less thaaldoe
five. This algorithm first employs a set of pre-processing rules torgulating Bayesian
networks [BodlaenderQ1] that remove vertices (and sometimes add edges) io order t
determine a perfect elimination scheme for the network. If the treewidtle ofiginal
graph is no more than four, these rules are guaranteed to reduce the origimad gine
empty graph — and, consequently, learn the complete perfect elimination schémee for
network. After applying these rules, | delete edges from the original rie¢amd the
corresponding edges in the reduced graph) in order to continue applying the pre-
processing rules. Eventually, the original graph will be reduced to the emplyagd a
perfect elimination scheme for the entire network will be learned. Consequeratty

run the junction tree algorithm on the fill-in triangulation of the perfect elitimna
3

scheme and be guaranteed a polynomial time bound on the inference, since the maximum

clique size of the triangulation will be bounded by five.

The final new algorithm, called “general bounding clique sizes”, also deletes
edges in order to place a bound on the maximum clique size of the triangulated graph.
This algorithm is given an initial perfect elimination scheme for the netvwsowed as a
desired bound on the maximum clique. It then removes edges from the original network
until the fill-in triangulation of the given perfect elimination scheme isajuaed to not
have a clique that is bigger than the desired bound. Just as for “bounding clique sizes
with pre-processing”, the junction tree algorithm can then be run on the resulting
triangulated graph, and again the bound on the clique sizes will force a polynoraial i

bound on the inference stage.

In later chapters, | will provide implementation details for these three new
approximate inference algorithms, as well as results for how their acanmd®@fficiency
compare to existing exact and approximate inference techniques. In this chapter
however, | will describe the necessary elements of graph theory and intorriegory,
as well as a formal description of Bayesian networks and common inferengthaig,
that are needed as background information.

1.1 Bayesian Networks

In this section, | will first give a general background on Bayesian networks
Specifically, | will describe what they model and when they are used. Neidtglwe a
more formal definition of a Bayesian network and also introduce other common

definitions and theorems associated with Bayesian networks. | will cligsgetttion

with an example, which will explain why the model is useful and what sorts of thaags w
can learn from it.
1.1.1 General Description and Uses

As was mentioned above, a Bayesian network is essentially a directad acycl
graph where each node represents a random variable, together with a set of cbnditiona
probability functions. If two nodasandv are connected by a directed edge, then
conditionally dependent an If two other nodes are not connected by a directed edge,

then they are said to be conditionally independent.

Each node also has an associated conditional probability function that describes
the probability that the node will take on its different values (for example, tifia¢ser
for a binary random variable) given the values of its parents. Bayesian netaorks
general, have nodes that represent continuous random variables. However, éicy speci
example of a Bayesian network in this document will be assumed to have nodes that
represent discrete random variables. In this case, we refer to thtessoanditional

probability function as a conditional probability table.

Bayesian networks are used in a variety of settings, and can be useful in any
situation that requires making predictions based on a known model of related variables.
Specifically, Bayesian networks are commonly used in medical diagnoftiaee,
spam filtering, and in targeted marketing on the Internet.

1.1.2 Definitions and Theorems
In this section, | give several definitions and theorems pertaining to iBayestworks,

including a formal definition of a Bayesian network itself. The terms and thdwekaw

will be referenced throughout the remainder of the paper. Many of these defiargons

taken from [Neapolitan04].

Theorem 1.1.(Bayes’ Theorem)Given two event& andF such thaP(E) # 0 andP(F)

+ 0, we have that

_ P(F|E)FE)
P(E|F) = 25570

Furthermore, given mutually exclusive and exhaustive eveB{skE,, ..., E, such that

P(E) # O for alli, we have for Zi<n,

d _ P(F|E;\P(E;)
P(Eu:-) - P(F|E1)P(E1)+P(F|E2)P(E2)+...+P(F|Ey)P(Ey)"

Definition. Let X andY be random variables with possible valuemdy, respectively.

Then thgoint probability distributionof X andY isP(X=x, Y =y).

Definition. LetX andY be discrete random variables with possible vakeasdy.

Suppose we have a joint probability distributle(X = x, Y=y). Then
PX=X) =>yP(X=Xx,Y=Yy),
andP(X =) is called thanarginal probability distributiorof X.

Definition. LetA, B, andC be sets of random variables defined on the same probability
space. Then sefsandB are said to beonditionally independergiven the seC if, for

all values of the variables in the saf¥, andc, whenevelP(c) # 0, the eventé& =a and

B = b are conditionally independent given the ev@ntc. That is, eitheP(alc) = 0, or

P(blc) =0, orP(alb,c) = P(alc).

Definition. Suppose we have a joint probability distribut®of the random variables in
some seV and a directed acyclic grah= (V, E). We say thatG, P) satisfies the
Markov conditionif for each variabl&X[V, {X} is conditionally independent of the set of

all its nondescendents given the set of all its parents.

Theorem 1.2. Let a directed acyclic grafgh be given in which each node is a random
variable, and let a discrete conditional probability distribution of each node giversval
of the parents G be specified. Then the product of these conditional distributions
yields a joint probability distributio® of the variables, and3 P) satisfies the Markov

condition.

Definition. LetP be a joint probability distribution of the random variables in some set
V, and letG = (V, E) be a directed acyclic graph. We c&l P) aBayesian network

(G, P) satisfies the Markov condition. Furthermore, if we specify a directediacy

graphG and any discrete conditional distributions, we obtain a Bayesian network. (This

is the common way for defining a Bayesian network.)

Definition. LetB = (G, P) be a Bayesian network. We cBlapolytreeif and only ifG

has no undirected cycles.

Definition. Let (G, P) be a Bayesian network, and ¥iV. We defindPa(X) = {Y] (Y,

X) O A} to be the parent set &f.

Theorem 1.3. Let (G, P) be a Bayesian network, and suppé@se{Xi, Xz, ..., Xn}. Then

we have that thpint probability of V is

P =x1.0 =x5,...%, =x,) = [| P(x:|Pa(x;)).
i=1
This property is called thehain rulefor random variables.

Definition. LetB=(G=(V, E), P) be a Bayesian network, and é&f] V be a set of
evidence nodes. Then tmeportance functioror B giveneis a new probability

distributionP’ such that for each nod€ 1V with possible value;, P(X=x|e) = P’(X=x).

1.1.3 Example

Figure 1 contains an example of a simple Bayesian network. This network has

four nodes — Cloudy, Sprinkler, Rain, and WetGrass — each of which are binary random

variables. Furthermore, it can be seen by the network that the value of Sprinkler is
conditionally dependent on the value of Cloudy, that the value of Rain is conditionally
dependent on the value of Cloudy, and that the value of WetGrass is conditionally
dependent on the values of Sprinkler and Rain. All other variables are conditionally
independent. Finally, the tables of probabilities next to each node in the network
represent the conditional distributions of each node. (Since each variable i®dibere

functions can be represented as tables.)

Sprinkler

Cloudy | false true
false | 20.0% | Z0.0%
true 20.0% | 80.0%
WietGrass
) _Sprinkler false true
Rain false true false true
false 100.0% | 10.0% 10.0% 1.0%
true 0.0% 00.0% 00.0% 09.0%

Figure 1. The Sprinkler-Rain Bayesian network

Suppose we wanted to calculate the probability that it is cloudy, the sprinkler is

off, it is raining, and the grass is dry. We would need to apply the chain rule for random

variables, and would make the calculation:

P(Cloudy = T, Sprinkler = F, Rain = T, WetGrass = F)

= P(Cloudy = T)*P(Sprinkler = F|Cloudy = T)?(Rain = T|Cloudy = T)

*P(WetGrass = F|Rain = T, Sprinkler = F)

We can find these probabilities by consulting the conditional probability thdyleach

node in the network. When we do this, we get that the probability of the above situation

is 0.5*0.9*0.8*0.1 = 0.036, or 3.6%.

1.2 Bayesian Inference
One of the most common things to do with a Bayesian network is to perform

inference which computes the marginal probabilR@v = v) for each nod& and each
possible instantiation. What inference does is give us an idea of how likely cases for a
specific random variable are, using the information in the Bayesian netwoekerioé

can also be done on a Bayesian network when we know the values of some nodes (as
evidencgand wish to compute the likelihood of values of other nodes. This is called
computingposterior probabilitiesbecause we are trying to filfV = v|e) for each node

V and each possible instantiatigrgiven the evidence valge

There are two types of inference on Bayesian networks: exact and appeoximat
As the name suggests, exact inference algorithms compute the exact vahads of e
marginal or posterior probability, while approximate inference algorigamsgfice some
accuracy of the probabilities to report results quickly. The following twoasescwill
discuss common exact and approximate inference algorithms in more detail.
1.2.1 Exact Inference

The goal of an exact inference algorithm is to report the exact valugishier the
marginal P(V =V)) or posterior probabilitied(V = v|e)) for each instantiation of each
nodeV, possible given some evideneef other node values. Below, | will discuss two
common exact inference algorithms — Pearl’s algorithm and the Laufiegelhalter
algorithm. A walkthrough of both algorithms appears in the appendix. | will also
provide some insight into the complexity of exact inference on general Bayesia

networks.

10

Pearl’s Algorithm.
Pearl’s algorithm is a linear-time algorithm that computes the parster

probabilities of each node given evidence of singly-connected networks. Thehatgorit
itself is fairly complicated, but the general idea is to separateritienee for each node
into the evidence “above” the node and the evidence “below” the node. This is only
possible in a singly-connected network. Pearl introduced the notéXenx) for the
diagnostic supporof a nodexX with valuex, which is the probability of evidence belotv
given thatX = x. He also used the notatia(X = x) for thecausal supporof a nodeX

with valuex, which is the probability thaX = x given the evidence aboYe Using these
values, we have th&(X = x|e) = a* A(X = X)* z(X =X), wherea is a normalizing constant

to ensure that the necessary probabilities add to one [Pearl88].

To calculate theseandr values, Pearl introducedandz messages. The
messages are passed from child to parent and give the probability of the eindéiece
child’s subtree given that the paréhhas valux. = messages are passed from parent to
child and give the probability that the par&ithas value given the evidence in the

parent’s subtree [Pearl88].

Thel andz messages aridandz values are calculated as follows:

/ messagelf B is a child ofA, B hask possible valuesh hasm possible values, aril
has other paren3,, D...., D,, each withn; possible valued(, ... dn) , then for I<j <

m, theA message froB to A is

11

"y nl Fiy
AplA= aj) = z z z np(D1 =dip,) (D = dip,) % ... x WB(Dy = dip,)
p=lp=l p=l
I's
Kl: P[B: -EJJ'|J‘1 = HJ'..DI = f?r]_p-_ 5 ---..D_l' :-ﬁ"ypr) . }..l:_B - _-FJf:I:I

i=1

z messagelf B is a child ofA andA hasm possible values, then for<lj<m, thex

message from to B is given by

1 if A 1s mstantiated to a;.
ng(d=a;) =10 if 4 1s mstantiated but not to aj.
Pllj.-.l:ﬂ'e: i

Tali=a;) if 4 15 neot mstantiated.

z value: If B hask possible values and parewts A,, ..., Am, €ach withn; possible

values, then for ¥ j< k, thex value ofB is given by

o Mz My
nB=>bj)= Y Y .. Y P(B=bjld1=ay,....Am = aj,)up(4d1 = a;)
=1

n=lia=1 iy=

W TE,E' (s‘im = -fh',_.!:'

J value: If B hask possible values arfdB) is the set oB’s children, then for ¥ i<k,

the/ value ofB is

n Ac(B=b;) 1if B 1s not mnstantiated,

c= 5B
MB=0bi)= {4 if B is instantiated to b,
1] if B is instantiated but not to b;.

Posterior probability:If B hask possible values, then for<li< k, P’(by;), the conditional

probability ofb; based on the variables thus far instantiated (the evidence), is given by
P'(B=b) = a* A(B=h)* z(B =h)

12

Using these calculations, Pearl then described the following algorithm to eathput
posterior probabilities of each node. (The algorithm below is taken from

[Neapolitan04].)

Initialization:

1) Set alll values/ messages, andmessages to 1

2) For all rootsA, if A hasm possible values, then for<lj< m, set
n(A=a) = P(a)

3) For all rootsA and for all childrerB of A, do

Post a newt message t8 (this will start a propagation flow)

Updating Rules:

1) If a variableB is instantiated tdy;, then
- SetP’(B=bj) =1, and foii #j, setP’(B=h;) =0
- Computel(B)
- Posti messages tB’s parents
- Postr messages tB's children
2) If B receives d message from a child and is not instantiated

- Computei(B)

13

- ComputeP’(B)
- Postl messages tB’s parents
- Postr messages tB's other children
3) If B receives & message from a pareit
a) If B is not instantiated
- Computer(B)
- ComputeP’'(B)
- Postr messages tB's children
b) IfA(B) # (1, 1, ..., 1)

- Postl messages tB's other parents

Exact Inference Complexity.

While Pearl’'s algorithm performs exact inference in linear time gre&lan
networks that are polytrees, the same running time is not possible for Bayesiarkset
in the general case. Exact inference has been showriNiB-bard for Bayesian
networks, using a reduction fraBaSAT[Cooper90]. Because of this, all exact inference
algorithms that work on general Bayesian networks must have an exponential running
time in the worst-case, unleBs= NP. However, there are still several general exact

inference algorithms that perform quite well in practice.

14

Lauritzen-Spiegelhalter (LS) Algorithm.
The Lauritzen-Spiegelhalter (LS) algorithm [LauritzenSpiegedh@8] is an exact

inference algorithm for Bayesian networks that works on all models. A synohtre

algorithm is given below:

1) Moralize the network by adding edges between common parents and removing
the directionality of the edges. The purpose of the moral edges is to ensure that
the resulting undirected graph does not contain any conditional independence

relations that are not expressed in the original network.

2) Triangulate the graph by adding edges so that there are no induced subdgaphs t

are simple cycles of length four or greater
3) Construct a tree of cliques from the triangulated graph

4) Initialize clique potentials using the conditional probabilities in each clique’s

nodes

5) Propagate diagnostic and causal support messages through the clique-tree using as

in Pearl’s algorithm. These messages will update the clique potentials.

6) Marginalize the final clique potentials to determine the posterior proledifdr

each node

Section 1.3.3 contains a detailed description of how to construct a tree of cliques from the
triangulated graph. An example of building the clique tree for a Bayesmaorkedlso

appears in the appendix.

15

The LS algorithm performs very well on average, but its running time is
exponential in the size of the biggest clique in the clique tree. Thus if theedelect
triangulation algorithm adds many more edges than were necessary| b& wvary
slow. However, the problem of finding a triangulation for a graph that minirthizes
maximum clique size in the clique tree is a®-hard [Arnborg87].

1.2.2 Approximate I nference

Because all exact inference algorithms for Bayesian networks nugsaha
exponential worst-case running time unlBssNP, there has been much research
devoted to finding efficient approximate inference algorithms. By design, apatex
inference algorithms sacrifice accuracy in order to deliver estimatéerioos
probabilities sooner — in some cases, these inference algorithms can detivee an
results. Below, | will discuss two of the most common types of approximateno&re
algorithms — sampling-based and edge deletion techniques. | will also discuss the
complexity of using an approximate inference algorithm to achieve a sgkerfor
bound for the posterior probabilities.

Sampling.

Sampling algorithms are the simplest and most widely used approximate
inference algorithms. While there are many sampling variants, the undedga is to
randomly instantiate each node in the Bayesian network in topological order to produce a
single “sample”. Samples are gathered until a specified number has aeeadrer a
certain amount of time has passed, and then posterior probabilities for each node are
computed by looking at the frequency of each possible instantiation of each node in all of

the samples. Below, I give a brief summary of the two most common sampling

16

algorithms — forward sampling and likelihood weighting. | also describe thehadlapt

importance sampling algorithm, which is the most accurate sampling algdoittiate.

Forward Sampling:
Forward sampling is one of the first and simplest approaches to sampling. In this

algorithm, we start with a topological ordering of the nodes, values for desidehe®i
variables, and a maximum number of sampleg§This algorithm can easily be modified
to use a maximum time bound instead of a maximum number of samples.) Then, the

following steps are repeatedimes:

1) Randomly instantiate each non-evidence variable based on the values of its
parents and the conditional probability function for that variable (the order of

instantiation is determined by the topological ordering of the nodes)
2) Instantiate each evidence node to the desired value
3) Store the current instantiation of all nodes as a new sample

Oncen samples have been gathered, the posterior probd®ty x) is computed for
each nod& and each possible valudy summing the number of samples in whicis

instantiated tox and dividing byn. [Henrion88]

Likelihood Weighting:
Likelihood weighting is similar to forward sampling, except each samplsds a

given a weight. Suppose a Bayesian network has evidence EBgd@gs..., Ex, which

are instantiated to the values e, ..., &, respectively. Then the weight of a sangle

would beP(E; = e |Pa(ey)) * P(E; =& |Pa(ey)) * ... * P(Ex = & | Pa(&)). In other

words, the weight would be the product of the probability that each evidence node has its

desired value given the value of its parents in the sasnpgincen samples have been
17

gathered and weighted, the posterior probald{ly = x) is computed for each node
and each possible valudy summing the weight of the samples in whxcis

instantiated tox and dividing by the total weight of allsamples. [10, 17]

For example, consider again the Sprinkler-Rain Bayesian network in Figure 1.
Suppose we have as evidence that WetGrass is true and that Cloudy is false. Suppose
further that we randomly select the value of Sprinkler to be true and the valuayptdra
be false. Then the weight for the sample {Cloudy = false, Rainy = falsaktep = true,
WetGrass = true} i®(Cloudy = false) *P(WetGrass = true | Rainy = false, Sprinkler =

true}, which is 0.5*0.9 = 0.45.

Adaptive Importance Sampling:
Adaptive importance sampling (AIS) is not as widely used as forward sampling or

likelihood weighting, but it is considered by many to be the most accurate sampling
algorithm — particularly for Bayesian networks with unlikely evidence val#é¢S uses
initialization heuristics that help unlikely values be picked more and thas teget
conditional probability of the parents of unlikely evidence nodes to a uniform
distribution. AIS also introduces the notion ofiarportance functionwhich is the ideal
conditional probability table of each node given the evidence values. Because the
importance function for some nodes in a network with unlikely evidence nodes is often
very different than the original conditional probabilities, the initializatiearistics help

start a search for the importance function away from a local optimum.

AIS further updates the importance function several times throughout the

sampling process, by considering the most recent batch of samples, the oldriogporta

18

function, and the current rate that the importance function is being learned. Fbeher, t

weight for a samplsis given by

FPris)

k
" x Prifels)

wherePr(s) is the joint probability o using the original conditional probability
functions,Pr(e | s) is the likelihood weight of using the current importance functions,
andw" is a monotonically increasing weight function. Although it is more complicated,
AIS still follows the same steps as likelihood weighting -- a batch of smnapé

generated and weighted, and then the posterior probabilities of each node aa¢echlcul
using the frequency of each node value in the sample and the weight of the samples.
[ChengDruzdzel00]

Edge Deletion.

While sampling is the most common form of approximate inference, many other
methods have been developed. One technique that has been used is to reduce the
complexity of the Bayesian network by deleting some of its edges, and then applying
some exact inference algorithm to the resulting network. Unlike with samplingpan e
bound on the resulting approximate posterior probabilities can often be given based on
which edges are deleted. There are two edge deletion techniques thatdmeesated
for approximate inference: one by Kjaerulff in [Kjaerulff93], and the second by van
Engelen in [vanEngelen96]. Kjaerulff chooses edges for deletion from the tatedyul
graph of a network, while van Engelen chooses edges from the original network. Both

these techniques will be discussed in more detail in Chapter 2.

19

Approximate Inference Complexity.
While approximate inference algorithms are an excellent way to obidin f

accurate estimates of posterior probabilities very quickly, they havdithigations. For
several years after the exact inference problem was proved\te-bard, many

researchers thought that approximate inference could be done in polynomial time.
However, it was soon proved that the problem of approximating posterior probabilities to
within a specified relative error is aldii’>-hard [DagumLuby93]. However, there is still
much room for research on approximate inference algorithms that producedeintgta

results quickly in most Bayesian networks.

1.3 Graph Theory
In Section 1.2, | dismissed the process of triangulation as simply adding chords to

cycles until there was no induced subgraph that was a simple cycle of lengbh four
greater. This section contains a much more detailed background on triangulation, and
discusses two techniques for triangulating a graph — maximum cardirealrthsand
using pre-processing rules. Finally, | will also provide more insight on how to eoinstr
a clique-tree from a triangulated graph in an exact inference algonith@iscuss the
complexity of finding an optimal triangulation.
1.3.1 Definitions and Theorems

Below, | give several definitions and a theorem pertaining to graph tridiogula
The terms and theorem below will be referenced throughout the remainder gb¢ine pa
Also, note that the definitio® = (N, A) refers to a directed graph, while the definit&n

= (V, E) refers to an undirected graph. Furthermore, the edge notatighréfers to an

20

undirected edge, while the arc notatiany) refers to a directed edge with souucand

sinkv.

Definition. LetG = (V, E) be an undirected graph. A set of no8ésE is acliqueif the

following conditions hold.
1) Sis a fully connected subgraph: for each pair of nages! S {u, v} O E
2) Sismaximal: foralk 0V,xO S Oy O Ssuchthat y} OE

Definition. LetG = (N, A) be a directed graph. Th&i = (V, E) is themoralized graph
of Gif V=NandE={x,}:(xy) OA} O{u,v}:uv,wdNO(u,w) OADI(v,w)
A}

Definition. LetG = (V, E) be an undirected graph, andfte¥ - {1, 2, ..., V|} be a one-
to-one correspondence. Thies aperfect elimination schenfer G if for eachvllV, for

all x andy such that ¥, x} JE and {v, y} UE, if f(y) > f(v) andf(x) > f(v), then {, y} CE.

Thus for each vertex, its higher-ordered neighbors form a clique.

Definition. LetG = (V, E) be an undirected grapl® is triangulatedif it does not

contain an induced subgraph that is a simple cycle of length greater than or equal to four.
Theorem 1.4. A graph is triangulated if and only if it has a perfect elimination scheme.

Definition. LetG = (V, E) be an undirected graph, andfte¥ ~ {1, 2, ..., V|} be a one-
to-one correspondence. We can constructilthie triangulation ofG givenf by turning

the set of higher-ordered neighbors of each node into a clique.

21

Definition. Let G = (V, E) be an undirected graph, andflee a perfect elimination
scheme foG. We say that the fill-in triangulation & givenf is anoptimal
triangulationif the size of the biggest clique in the fill-in triangulation is less than or

equal to the size of the biggest clique in any other fill-in triangulation.

Definition. LetG = (V, E) be an undirected graph. Ttieewidthof G is the size of the

biggest clique in the optimal triangulation®fminus one.

Definition. LetG = (V, E) be an undirected graph. A vertekl V is simplicial if all

vertices adjacent toform a clique.

1.3.2 Common Triangulation Techniques
In this section, | will discuss two common triangulation algorithms — maximum

cardinality search and triangulation by pre-processing rules. | wollpatsvide a
walkthrough on the Asia Bayesian network for each algorithm. When triangudatin
Bayesian networB = (G = (N, A), P), G is first moralized to yield an undirected graph
G’. The triangulation of the Bayesian netw@&ks the triangulation of’.

Maximum Cardinality Search (MCS).

Maximum cardinality search is a linear-time algorithm that takespag a
moralized, undirected gragghand outputs a perfect elimination scheea G
[TarjanYannakakis84]. After the perfect elimination scheme has been coedtrihe
fill-in of G givenf can be constructed, yielding the triangulatiolofMCS computes a
weightw(v) for each vertex [V to help calculate the perfect elimination scheme.
Below is a description of the MCS algorithm. A walkthrough of MCS on the Asia

Bayesian network appears in the appendix.
22

MCS Algorithm:

MaximumCardinalitySeardl® = (V, E))
for all verticesv 1V, w(v) < O
fori = V| downto 1
chooseau [J V such thatv(u) >w(x) O x OV
f(u) « i
for ally OV s.t. {y, u}d E andf(y) is undefined

w(y) < w(y) +1

Essentially, the MCS algorithm picks the last vertex for the perfect elimmscheme,
and then increases the weight of all adjacent vertices. Then, until all vertregiseean
“numbered” inf, MCS picks the vertex with the greatest weight, places it in the next-
highest spot iri, and increases the weight of all adjacent vertices. The motivation for this
algorithm is that vertices with many neighbors will tend to have a high orderipgnd
vertices with few neighbors will tend to have a low ordering. Thus, when the &G
givenf is constructed, and an edge must be added between all higher-ordered neighbors
of each vertex, the vertices with high degree will have few higher-ordeigitboes, so
fewer edges will have to be added than would for some arbitrary construction of
Pre-Processing Rules.

Another triangulation technique is to apply a set of pre-processing rules to a
graph, thereby coming up with a partial elimination scheme for the gragte pfé-
processing rules provide an order for each vertex, then the resultimgtfikngulation is

23

guaranteed to be optimal. Otherwise, another triangulation algorithm must (el dppli
the induced subgraph containing the unordered vertices to complete the perfect
elimination scheme. This technique, proposed by Bodlaender in [Bodlaender01], is
guaranteed to produce an optimal triangulation for any graph with treewidth less tha
equal to four. The technique, along with the specific pre-processing rules, will be
discussed in more detail in Chapter 2.
1.3.3 Constructing a Clique-Tree from a Triangulated Graph

Triangulation algorithms are often used in conjunction with Bayesian inference.
For example, in the LS exact inference algorithm, the moralized grapangulated,
and then a clique-tree is constructed from the triangulated graph. Messagg-sass
then performed on the clique-tree to determine the posterior probabilities for each nod

This section will focus on the details in constructing a clique-tree for afacénce.

The first step in constructing a clique-tree is to identify the cliques in the
triangulated graph. L& be the fill-in triangulation of some Bayesian network given a
perfect elimination schenfe The algorithnfindCliquesbelow computes the set of

cliques inG. (Note that this algorithm only computes maximal cliques.)

findCliquegG=(V, E), f)

cliqueSet— I

for eachv O V

cliqgue— {u|{u,v} OE Of(u) >f(v)} O {v}

if O SOcliqueSetcliqued S

24

cliqgueSet— cliqueSet clique

When thdiindCliquesalgorithm terminates, each elementliqueSewill be a set
containing the nodes in one of the cliques in the triangulated Gapturthermore,

every maximal clique i will be contained in some elementdilqueSet

Once the cliques in the triangulated graph have been identified, construction of

the clique-tree is fairly straightforward:
1) Make each clique a node in a graph
2) Connect cliques that have nodes in comnsepdrator nodeswith an edge
3) Weight each edge with the number of separator nodes between the two cliques
4) Find the maximal spanning tree of the clique graph — the clique-tree

Now, message-passing can be performed on the clique-tree to complete IperitSa
1.3.4 Complexity of Triangulation

Like the problems of exact inference and approximate inference fosiBaye
networks, finding the triangulation for a Bayesian network that minimizeszhefthe
maximum clique isNP-hard [Wen90]. Because of this, any currently known
triangulation algorithm will perform very poorly on certain networks — producing
maximum cliques that are nearly the size of the original graph. In thess tdae LS
algorithm for exact inference (which triangulates the graph before propabalief

values with message-passing) will take exponential time. Due to the rmadnes

25

triangulation, algorithms that can bound the maximum clique size or that produce optimal

triangulations for certain types of graphs are very useful.

1.4 Information Theory
In this section, | will discuss one of the fundamental concepts in information

theory — Kullback-Leibler (KL) information divergence, or relative engrophis
measurement provides a distance between two probability distributions, and can be
helpful in determining how well one probability distribution can be approximated by
another (probably simpler) distribution. In Bayesian networks, KL divergemceeatp
determine the distance between a probability distribution containing all irtformaand
another distribution with one of the edges (conditional dependencies) left out. This way,
the importance of the edges in the network can be ranked according to the KL digergenc
obtained by deleting each edge. Both van Engelen [vanEngelen96] and Kjaerulff
[Kjaerulffo3] used KL divergence as a way to choose edges to delete in thexiapie
inference techniques.
1.4.1 Kullback-Leibler Divergence

KL divergence is measured between two probability distributi®asdP’.
Traditionally,P’ is an approximation d?, such as the probability distribution obtained
by deleting an edge in a Bayesian network. While KL divergence is oftensaen a
“distance” between two probability distributions, it is not a distance metcause it is

not symmetric. The formal definition for KL divergence is as follows:

26

Definition. Let X be a set of random variables, andHetndP’ be probability
distributions onX. Let the seinst denote all possible instantiations of the variables. in

Then theKullback-Leibler information divergendeetweerP andP’ is

P(cur)

I(P.P')=) Plcur)x fagm,

cureinst

1.4.2 Optimized Kullback-Leibler Divergence
When computing the KL divergence between the original probability distribution

of a Bayesian network and the probability distribution obtained by deleting ancege
must step through each possible instantiation of the nodes in the Bayesian netaork. If
network has binary nodes, then this i§ Bossible instantiations. Thus, using this
computation as a part of selecting edges to delete in an approximate mf@gordhm

is undesirable. As part of his paper on an approximate inference technique formBayesia
networks using edge deletion, van Engelen (in [vanEngelen96]) proposed an optimized
computation for KL divergence that only needs to look at the parents of the sink node in
the edge being deleted, rather than every node in the network. Below is the formula
the optimized calculation of KL divergence. An example computation of the optimized

KL divergence for an edge in a Bayesian network appears in the appendix.

Definition. LetB = (G = (N, A), P) be a Bayesian network. L&t V [N, for some (J,
V) O A. LetP’ be the probability distribution associated with deleting the ddg¥)(
from B. Finally, letinst be the set of all possible instantiations’afV) [{V}. Then the

optimized KL divergence between P andsP’

27

P(v|par)

I(P.FP) = > P(v|par) x P(par) x fﬂgW.

{V=v,Pa(V)=par}cinst

28

CHAPTER TWO: Related Research

In the previous chapter, | briefly introduced two existing approximate irdere
algorithms that use edge deletion techniques, as well as a triangulatiotinaddbat
uses pre-processing rules to ensure an optimal triangulation for ceresnofypayesian
networks. This chapter will discuss each of these algorithms in greagy aethey
form the basis for my own edge deletion algorithms.
2.1 Kjaerulff's Edge Deletion Techniques

The first edge deletion technique was developed by Kjaerulff in [Kja88)Iff
He proposes selecting edges for removal from the triangulated grajdagésian
network. Any edge in the triangulated graph can legally be removed if the grstph i
triangulated after its removal. Each “legal” edge will necessbelong to only one
cliqgue. To choose edges for removal, Kjaerulff computes the KL diverda@neach
edge. This measures the amount of mutual information between two probability
distributions (the original distribution and the distribution associated with removing a
particular edge), and so it is preferable to remove edges with a low amouwniuaf m
information. (KL information divergence as well as general information theory ptsnce
are discussed much more in Section 1.4 .) Kjaerulff's technique also considéns that t
removal of a single edge from a triangulated graph can cause manyilbthexdges to
become unnecessary, so he removes these newly obsolete edges as well.h&inall
provides the error bound on the posterior probabilities that is introduced by removing a

particular edge.

29

2.2 van Engelen’s Edge Deletion Techniques
A second technique for removing edges to reduce network complexity was

developed by van Engelen in [vanEngelen96]. Instead of deleting edges from the
triangulated graph (which forces the use of a junction tree algorithm fdriefexence),

van Engelen suggests deleting edges from the original network. After a setohesg

been removed, any exact inference algorithm can be run on the modified network to
obtain approximate posterior probabilities. Like Kjaerulff, van Engeles kKike

divergence as a weight for selecting which edges to delete. BecausdingripuKL
divergence takes exponential time and must iterate through all possible valuesy/of e

node in the network, van Engelen also devised a computation of the divergence that only
requires local information. (The details of this local computation are giverciiose

1.4.) Again like Kjaerulff, van Engelen provides an upper-bound on the absolute error of

the posterior probabilities introduced by deleting an edge.

To help place an upper bound on the posterior probabilities, van Engelen proved
that the error for a single posterior probability introduced by deleting edggebounded
by a function of the KL divergence between the original probability distribution and the
new probability distribution after a group of edges have been deletet(PLEt) be the
KL divergence between the original probability distributidofor a Bayesian network and
an approximate distributio® obtained by deleting a group of edges from the network.
van Engelen proved that the absolute bound on the error of the posterior probability for

some nodé&/ with possible valueg is given by

2.3 Bodlaender’s Triangulation Pre-Processing Techniques
The third algorithm directly related to my research is Bodlaendeaisgwiation

algorithm with pre-processing techniques [Bodlaender01]. Bodlaender developed a set of
pre-processing rules for triangulation that ensure the triangulationyf@raph with

treewidth no more than four will be optimal, thereby having a maximum cliqueeof siz

less than or equal to five. These pre-processing rules work by deletingwvertit

possibly adding edges to the original graph. If any vertices remairthedtawles have

been applied, the new, smaller graph is triangulated with another algorithm.eétperf
elimination scheme for the original graph is then constructed by combining tmelr@te

the vertices were removed with the perfect elimination scheme for thgulaion of the

smaller graph.

Throughout this process, a st&gkf eliminated vertices is maintained from
which the perfect elimination scheme can be constructed. A valaable also updated
to contain a lower bound for the treewidth of the original graph. In each update rule, we
modify the current graph, possibly updbiie, and possibly add a new vertex3o
Below, | give a description of each pre-processing rule and the corresponding
triangulation algorithm. A walkthrough of this algorithm on the Asia Bayesiavonle

appears in the appendix.

Simplicial Vertex Rule. Letv be a simplicial vertex of degre®<low. Remover and

setlow to max(ow, d).
Twig Rule. Letv be a vertex of degree one. Remave

Islet Rule. Letv be a vertex of degree zero. Remauve

31

Series Rule. Letv be a vertex of degree two. Ithv > 2, then add an edge between the

neighbors ol and remove.

Triangle Rule. Letv be a vertex of degree three such that at least two of its neighbors
are adjacent. lbw> 3, then add an edge between every pair of non-adjacent neighbors

of vand remove.

Buddy Rule. Letv, w be vertices of degree three with the same set of neighbdosv If
> 3, then add an edge between every pair of non-adjacent neighb@sdfemoves

andw.

Cube Rule. Leta, b, ¢, d, v, w, X be vertices such that b, c, d have degree three. If the
following four conditions hold and lbw > 3, then delete, b, ¢, andd, and add edges/{

w}, {v, x}, and {w, x}.
1) vis adjacent ta andb
2) xis adjacent td andc
3) wis adjacent ta andc
4) dis adjacent t@, b, andc

Pre-Processing Algorithm:

The triangulation algorithm for employing the above pre-processingisuéess

follows (taken from [BodlaenderQ1]):

1) G’is initialized to the result of the moralization and removed directionality of

the original graphG. Initialize valueslow «— 1,S« 1.

32

2)

3)

4)

5)

6)

If a reduction rule can be applied®o, it is executed an@’ is modified
accordingly. Each removed vertex is pushed onto the Stastdlow is
updated as specified by the applied rule. This step is repeated until no

reduction rules can be applied.
If low < 4, therlow < low + 1. The reduction is continued in step 2.

The graphG’ that results from the reduction rules is triangulated, yielding a

perfect elimination schenfe

The perfect elimination scheniées modified by placing all vertices Bat the
beginning off as they are popped off the stack (all other vertices numbered in

f have their numbering increased by one).

The fill-in of f is constructed to yield the triangulation@f

33

CHAPTER THREE: Methodology

In this chapter, | present the details of my three new approximate irderenc
algorithms for Bayesian networks, called “reduction to polytree,” “boundiggecsizes
with pre-processing,” and “general bounding clique sizes”. Each of thesdlalgotises
edge deletion to reduce the complexity of the network before performing irderenc
Below, | provide pseudocode and a detailed description for each algorithro. | als
provide an upper-bound for the running time of each algorithm, as well as an example
walkthrough. In the running time analyses, | use the notatfonthe number of nodes
in a network and the notationfor the number of edges. After each algorithm has been
described in more detail, | will compare and contrast the new algorithms/toysedge

deletion techniques.

| will close this chapter with a discussion of my experimental design r thi
research. This section will include descriptions of what evaluation ciitedhare
accurate measures of the usefulness of an inference algorithm, as we}l lashese
those metrics. | will also discuss which Bayesian networks | plan to usetestayand
which currently existing inference algorithms | will be using as asldfasicomparison.
3.1 Reduction to Polytree

The idea behind the reduction to polytree algorithm is that exact infesddPe |
hard for general Bayesian networks, but takes linear time for singly-connetieuikse
Thus, if we delete edges from a Bayesian network until a polytreeusguemains, then
inference on the resulting polytree can be performed in linear time. In the oadacti
polytree algorithm, | weight each edge with the optimized KL divergeneesbatthe

original distribution and the distribution resulting from deleting that edge them t
34

network. Thus, an edge weight is low if that edge contains little additional iatiorm

and high if the edge holds more information about the network’s distribution. | then use
Kruskal’'s maximal spanning tree algorithm, along with the calculateel wdghts, to
compute the polytree of the Bayesian network that contains the edges whichraostthe
important to the network’s probability distribution. Finally, | run Pearl’s allgorion

the resulting polytree to get approximate posterior probabilities for each node

Note from Section 1.4.2 that computing the optimized KL divergence requires
computingP(par) for some instantiatiopar of the parent nodes of the sink node for the
edge being deleted. Because the exact value(far) can only be found using an exact
inference algorithm (such as LS, whose exponential running time is what theaedaoct
polytree algorithm is trying to simplify), | approximate the value in my immgletation.

To obtain an approximate valuefpar), | sum over all possible joint probabilities of
network instantiations that contain the node instantiatiopainand then divide by the
number of instantiations of the set of nodes nqan

3.1.1 Algorithm Description

Figure 2 contains the pseudocode for the reduction to polytree algorithm. Thithalgor
takes as input a Bayesian netw@rknd outputs approximate posterior probabilities for

each node in the network.

reductionToPolytre@ = (G = (N, A), P))
for each g, v) OA
P’ distribution associated with deleting ¢) from B
weigh{u, v) < optimized KL divergence betweénh P’

G’ « result of Kruskal’s maximal spanning tree algorithm rurGamsing

35

theweightfunctionas edge weights
B’ — (G’, P"), whereP” is the distribution associated with deleting|all
edges not i’ from B
run Pearl’'s algorithm on B’
report the posterior probabilities for each node

Figure 2. Reduction to polytree pseudocode

3.1.2 Running Time

In this section, | consider the running time for the reduction to polytree algorit
described in the previous section. For simplicity, | assume that the input network to the
algorithm has binary nodes. The first step in the algorithm assigns a veeggitit edge
(u, v) that corresponds to the optimized KL divergence between the original prgbabilit
distribution,P, and the probability distribution associated with deleting)from the
network,P’. Recall from Section 1.4.2 that computing the optimized KL divergence
betweerP andP’ requires iterating through each possible instantiation the nodes in the
set {v, Pa(v)}. Because the computation depends on the number of parents of each node
in the input network, | denote the maximum number of parents for any ndtle Tye
optimized KL divergence must be computed for each edge, so the step of finding the

weights for each edge takes ti@am*2°*).

The next step in the algorithm is to run Kruskal’s algorithm on the underlying
graph of the Bayesian network, using the previously computed optimized KL divergence
values as edge weights. Kruskal’'s algorithm runs in @fme*log m). Next, each edge
not in the maximal spanning tree must be deleted from the original Bayesiarknahd
the probability distribution of the original network must be updated to reflect thedlelet

edges. Because all trees havk edgesm-n+1 edges must be deleted from the network
36

— each deletion can be done in constant time. Updating the probability distribution for
each deleted edge is slightly more difficult, as the conditional probabiiitiehe sink

node of each edge must be averaged to reflect that the corresponding source node is no
longer its parent. For each deleted edge, this requires stepping through eact possibl
instantiation of the sink node and its parents, and averaging the probabilities for those
instantiations that are the same except for the value of the source node. This takes a

mostO(2“*Y) time, so to complete this process for all deleted edges takes time
O((m-n)*2°*Y),

Finally, Pearl’s algorithm is run on the resulting singly-connectec&ay
network, and the corresponding posterior probabilities for each node are reportéd. Pear
algorithm runs in linear time, so this takeg + m) time. Overall, the running time for
the algorithm i€O(m*2°*Y). Even though the running time is exponential, the reduction
to polytree algorithm performs very well in practice. Because most @&l-®ayesian
networks do not contain any nodes with more than five parents (which is this case of all
networks used in this paper), the expor@nt is normally no more than six. Figure 3

contains a summarization of the running time analysis for the reduction to polytre

algorithm.
reductionToPolytre® = (G = (N, A), P))
O(mr2°*Y for each g, v) O A
02 P’ distribution associated with deleting ¢) from B
02 weigh(u, v) < optimized KL divergence betweénh P’
O(m*log m) G’ « result of Kruskal's maximal spanning tree algorithm
run onG using theweightfunctionas edge weights

37

B'— (G’, P”), whereP” is the distribution associated

O((mn)*2°")
with deleting all edges not @' from B
O(n + m) run Pearl’s algorithm on B’
O(n) report the posterior probabilities for each node

Total running timeO(m*2*%)
Figure 3. Summarization of running time for reduction to polytree

3.1.3 Algorithm Walkthrough
Consider the Asia Bayesian network in Figure 4. This section will go through a

walkthrough of the reduction to polytree algorithm on this network.

@ Smoking
Wisit 1.0% Smoker 50.0%
Novisit | 99.0% MNonSmoker | 50.0%
Tuberculosis Cancer &m
Yisithsia Yisit MNowisit Smaking | Smoker [WonSmoker|Smoking | Smoker |MonSmoker
Fresent [5.0% 1.0% Fresent 10,0% 1.0% Fresent 60.0% 30.0%
Absent | 95.0% 09.0% Abzent o0.0% 09.0% Abzent 40,0% 70.0%
Thorca
Tuberculosis Present Absent
Cancer Present | Absent | Present | Absent
True 100.0% | 100.0% | 100.0% 0.0%
False 0.0% 0.0% 0.0% 100.0%
Dysphnea
Thorca True False Bronchitis Present Absent
el 95 0% 5:0% ThOrCa True False True Falze
Normal | 20% | 95.0% Present | 90.0% | 70.0% | 80.0% | 10.0%
fbsent | 10.0% | 30.0% | 20.0% | 90.0%
Figure 4. The Asia Bayesian network for reduction to polytree walkthrough

The first step in the reduction to polytree algorithm is to compute the optimized KL

divergence for every edge in the network. We can compute this weight for every edg

38

using the same technique described in Section 1.4.2. (An example of computing the
optimized KL divergence for a single edge appears in the appendix.) The Asiaknetwor
with weight labels on each edge corresponding to the computed KL divergence appears

in Figure 5.

Tuberculosis

Figure 5. KL divergence values each edge in the Asia network

The next step in the reduction to polytree algorithm is to run Kruskal’s maxinralisga
tree algorithm, using the KL divergence values above as edge weightseeifem

Figure 5 that to convert the Asia network to a polytree, we need to delete an edge from
the undirected cycle {Smoking, Cancer, TbOrCa, Dyspnea, Bronchitis, Smoking}. We
see that the lowest KL divergence weight for any edge on that cycle is 0.0224 for the
edge (Smoking, Cancer). Figure 6 shows the maximal spanning tree that results f

Kruskal’s algorithm, as well as the new conditional probability tables fdr rade that
39

were modified to no longer hold information about the deleted edges. Note that the only

edge not including in the spanning tree is (Smoking, Cancer).

visit | 1.0% “Smoker | 50.0%

MNowisit [99.0% NonSmoker | 50.0%

wisithsia | wisit Movisit

Present | 5.0% 1.0%
Absent | 95.0% | 99.0%

Cancer
Present | 5.5%
Ahsent | 94.5%

Bronchitis

Sroking | Smoker |NonSmoker

Present 60.0% 30.0%
Absent 40.0% 70.0%

Thorca

Tuberculosis Present Ahsent

Cancer Present | Absent | Present | Absent

True 100.0% | 100.0% | 100.0% 0.0%
False 0.0% 0.0%. 0.0% 100.0%:
Dyspnea
ThOrCa True False Bronchitis Present Absent
sbnormal | 98.0% 5.0% ThOrCa True False True False
Mormal | z.0% | 95.0% Present | 90.0% | 70.0% | 80.0% | 10.0%
Absent 10.0%: 30.0% | 20.0% 90.0%

Figure 6. The maximal spanning tree for the Asia network, using KL divergence values
from Figure 3 as edge weights

Finally, the last step in the reduction to polytree algorithm is to run Pelgdstam on

the resulting polytree (in this case, the maximal spanning tree shown in &jdare

obtain posterior probabilities on each node. If we run Pearl’s algorithm on the @atytre
Figure 6 as described in Section 1.2.1, we get the posterior probabilities shoguren Fi

7.

40

wisit 1.0% Smoker 30.0%

MoWisit | 99.0% NonSmoker [50.0%
@ Cancer
Present | 1.0% Present | 5.5% Bronchitis

Absent Ahsent | 94.5% Present | 45.0%

Absent [55.0%

Thorca

G.5%
93.59%

Dyspnea
Present | 40.1%

Ahnormal | 11.0%

Mormal 29.0% Absent [99.9%

Figure 7. The posterior probabilities for Asia from reduction to polytree technique

3.2 Bounding Clique Sizes with Pre-Processing
My second new approximate inference algorithm, bounding clique sizes with pre-

processing, also employs edge deletion techniques to simplify the complekigy of t
Bayesian network, but it does not reduce the original network all the way to a polytree.
Instead, the algorithm chooses edges for deletion before triangulatiggagteand

running the LS exact inference algorithm to obtain posterior probabilitieadbrreode.
Edges are chosen in such a way that the triangulated graph has a maximusizgigde

no more than five. Because the LS algorithm has a worst-case exponentiad timei

in terms of the sizes of the cliques in the junction tree, placing a bound on the maximum

clique size consequently places a polynomial time bound on the LS algorithm.

In this algorithm [first run Bodlaender’s pre-processing rules [Bodlaéafieo

get a partial perfect elimination scheme for the vertices. If thevittdeof the original

41

graph is less than or equal to four, then the pre-processing rules are guacaredade

the original graph to the empty graph. In this case, the perfect eliminatemaavill

simply be the order in which the vertices were eliminated. If nodes renthiopse

edges for deletion from the original and reduced graph, as well as any moral etiges tha
are no longer needed because of an edge’s removal, and continue applying thekimplic
vertex rule to eliminate vertices of degree four or less. Finally, | cangtre fill-in
triangulation of the original graph given the perfect elimination schemeuparttie LS

exact inference algorithm on the junction tree corresponding to the triarbgiaph.

In this section, | provide pseudocode for the bounding clique sizes with pre-
processing algorithm. | also discuss the running time for the algorithm. | do nateprovi
a walkthrough for this algorithm because it behaves identically to Bodigeatgorithm
until the original network has a treewidth of at least five, which usually only orcurs
large real-world networks. Section 2.3 describes Bodlaender’s pre-pngcess
triangulation rules, and the appendix provides an example walkthrough of the rules on the
Asia Bayesian network.
3.2.1 Algorithm Description
Figure 8 contains the pseudocode for the bounding clique sizes with pre-processing
algorithm. This algorithm takes as input a Bayesian netB@Rkd outputs approximate

posterior probabilities for each node in the network.

boundCliqueSizéB = (G = (N, A, P))
G’ = (V, E) <« moralized graph o&
run Bodlaender’s triangulation algorithm Gh
letSbe the stack of eliminated vertices

letG” = (V’, E’) be the remaining graph

42

while G” is not empty
choose an edgei{v} [E’ or (u, v) O E for deletion
letE «— E\{u, v}, E' — E’\{u, v}
remove fronE, E’ any unnecessary moral edges
apply simplicial vertex rule (degree < 5), if possibleGto
updates G”

fori « |N| downto 1

f(i) < pop(S

construct the fill-in triangulation @&’ givenf
construct the junction tree for the fill-in triangulation
run LS on the junction tree

report the posterior probabilities for each node

Figure 8. Bounding clique sizes with pre-processing pseudocode

Before continuing to a description of the running time for this algorithm| | wil
provide more details about several steps in the algorithm. Consider the step that removes
“unnecessary” moral edges frdin(and the corresponding edgebh if it exists) after the
selected edgau(Vv) has been removed. | define a moral edge{as unnecessary if the

following four conditions hold:
1) {u,x} OE --the moral edge is in the moralized graph
2) (u,x) OA, (x, u) 0A-the moral edge is not part of the original graph

3) (u,v) OAand & Vv) OA-the moral edge is necessary to join common

parentsu andx

43

4) OwON,w#v, if (u,w) OA, then {u,w} OE, and if & w) OO A, then {, w}
[0 E — the moral edge does not serve as a moral edge for any other common

parents

Finally, consider the step in the algorithm that picks an aggg from the
original edges i3, and then deletes that edge fr@mandG”. This step can be
performed in a variety of ways, using a different heuristic to seledgafer deletion.
One must be careful to not delete an edge that was not part of the originabgsajuin
as a moral edge), or an edge from the original graph that behaves as a ne(slieklg
as if the edgesu(w) and ¢, w) also exist in the original graph, ang) serves as a
moral edge for them). Recall from Section 1.2.1 that moral edges areangaelsen
using LS for exact inference because they prevent additional conditional indegende
relations from being added when making the graph undirected. Keeping these

considerations in mind, however, any selection criterion may be used.

In my implementation aboundCliqueSizes first try to select the edge,(v) for
deletion that is in both the original gra@hand the reduced gra@i’ whose deletion
renders the most moral edges unnecessary. If no edge in the reduce@d’'graph
available for deletion that satisfies the requirements given in the previaggaan, then
any satisfactory edge @ whose deletion maximizes the number of unnecessary moral
edges is chosen. In this case, | do not delgtd from the reduced subgra@i’, but |

do remove fronG” andG any unnecessary moral edges.

44

3.2.2 Running Time
In this section, | consider the running time for the bounding clique sizes with pre-

processing algorithm described above. Consider the first step of moralizidgythsian
network. We must examine each possible pair of nodes to see if a moral edge should be

added between them. Thus moralization takes @né).

Next, we must consider the time required to run Bodlaender’s triangulation
algorithm with pre-processing techniques. According to Bodlaender, attemptimglyo a
the simplicial vertex rule to every node in the graph can be done iOfme). Every
other pre-processing rules can be tested on every node in the g€x(oh time
[Bodlaender0l]. Because a single iteration through Bodlaender’s algoritien agiplies
a pre-processing rule or attempts every possible pre-processing rule ynaewith
no luck, a single iteration takes at m&§h°m) time. Furthermore, iterations through the
algorithm continue until theow variable is greater than four, or until the original network
has been reduced to the empty graph. However, we can igndogvthariable in the
running time analysis because it represents a constant number of itaratudmsh no
rules might be applied. Thus, we can assume that in the worst case a sinigle rule
applied each iteration, resulting in the removal of one vertex, until the originanketw
has been reduced to the empty graph. This yreltdsations, and an overall running

time of O(n°m) for Bodlaender’s triangulation algorithm.

Next, we come to the while loop in the algorithm that chooses an edge for
deletion, removes that edge from the reduced and original graphs, and removes any
newly unnecessary moral edges from the reduced and original graphs. In theasmrst c

this loop could delete a single edge from both graphs until both the original and reduced

45

graphs were empty — thus, the loop can iterate at muoetes. The first step inside the
loop is to choose an edge for removal from the original network. Each iteratiomvee
the edge in the reduced graph (that is also in the original graph) that rendeosthe
moral edges unnecessary. If no such edge exists, then | remove the edge imtde orig
graph that makes the most moral edges unnecessary. In each case, hanthee t

chosen edge does not serve as a moral edge between two vertices.

Essentially, | must examine each edge in the graph (possibly twiaxafdine
an edge once because it is in the reduced graph and again because it is in the original
graph), and check that it does not serve as a moral edge between two vertices and obtain a
score on the number of moral edges that would be unnecessary if it was deletést The
check requires looking to see if both the sink and the source of the selected edge have a
common child, which can be done in ti®ém). Computing the score for the selected
edge (, v) requires examining each other childf u for the edge and determining if all
of the four properties described in Section 3.3.1 are satisfied. The first threeipsopert
can be examined in tim@(m), and the fourth property can be determined in @{ran).
Since these properties must be evaluated for each othexdtilg computing the score
for (u, v) takes timed(mrf) in the worst case. Thus evaluating a single edge for possible
removal can be performed in tirmrf), and evaluating all edges can be done in time
O(n’n?). Determining the best score among all examined edges taked(timeso the

entire step of choosing an edge for deleting takes @(mén?).

Once an edge is chosen for removal, that edge and all unnecessary moral edges
must be deleted from the original graph, which can be do®émtime. After

removing the moral edges, | must attempt to apply the simplicial vertexorelety
46

node in the reduced graph, which takes tge’m) [Kjaerulff93]. Thus, a single

iteration of the loop takes tim@®(m’n?), and so the entire loop takes ti@em°n?).

After completing the loop, we construct the perfect elimination schemlegfor t
original graph by popping each vertex off the st8cke by one, which tak€3(n) time.
The next step in the algorithm constructs the fill-in triangulation of the otiBengesian
network given the perfect elimination scheme. Computing a fill-in triangualatvolves
examining each pair of nodes and determining if a fill edge needs to be addeehbetwe
them, which can be done in tif¥n®). Next, we must construct a junction tree (or tree
of cliques) for the triangulated graph. ldentifying the cliques in the junciertdkes
time O(m+n) [LauritzenSpiegelhalter88], and constructing the junction tree from the

cliques can be done using Kruskal's algorithm, which req@(eslog m) time.

The last step in the algorithm is the inference portion which runs LS on the
constructed junction tree. This involves message-passing, as in Pearl’'sialgorit
between each clique in the junction tree and then calculating the posterior ltiebalbi
each node by marginalizing the probabilities assigned to each clique (catatigis}.

The message-passing and marginalization is exponential in the sizebafgast clique

in the junction tree [LauritzenSpiegelhalter88]. Because all cliques inrtbhggn tree

are no bigger than five, this step in the algorithm (and hence the entire algorithmm) runs i
time O(max{m’n, p°}), wherep® is the polynomial bound for the LS algorithm and
O(m®n?) is the worst-case running time for the remainder of the algorithm. A
summarization of the running time analysis for the bounding clique sizes algorithm

appears in Figure 9.

47

boundCliqueSizéB = (G = (N, A, P))
o(n’) G’ = (V, E) < moralized graph o6

o(n°*m) run Bodlaender’s triangulation algorithm i
let Sbe the stack of eliminated vertices
letG” = (V’, E’) be the remaining graph

o(m’n?) while G” is not empty
o(n’n?) choose an edgei{v} O E’ or (u, v) O E for deletion
O(m) letE «— E\{u,Vv}, E' < E"\ {u, v}
Oo(m) remove fronE, E’ any unnecessary moral edges
Oo(n’m) apply simplicial vertex rule (degree < 5), if possibleGto
updates G”
O(n) fori « |N| downto 1
f(i) — pop(9
o) construct the fill-in triangulation @&’ givenf
O(mlogm) construct the junction tree for the fill-in triangulation
o(p°) run LS on the junction tree
O(n) report the posterior probabilities for each node

Total running timeO(max{m*n?, p°})

Figure 9. Summarization of running time for bounding clique sizes with pre-processing
3.3 General Bounding Clique Sizes
My third algorithm extends the idea of bounding the maximum clique size of the
triangulated network to allow the user to input a desired clique bound. The algorithm
takes as input a Bayesian network, a desired maximum clique bdanthe

triangulated network, and a perfect elimination scheme for the nodes in the néiatork t

48

is obtained from some (exact or approximate) triangulation algorithm. Thetlahgori

will then output the Bayesian network with a set of edges removed such that the
triangulation of the modified Bayesian network will have a maximum cliqeeddino

more tharb when triangulated using the fill-in of the given perfect elimination scheme.
Again, because LS has a worst-case exponential running time in terms of shaf sinee
cliques in the junction tree, placing a bound on the maximum clique size consequently

places a polynomial time bound on the LS algorithm.

In this section, | provide pseudocode for the general bounding clique sizes
algorithm. 1 also discuss the running time for the algorithm, and provide a vaaigthr
of its execution on the Asia Bayesian network.
3.3.1 Algorithm Description

Figure 10 contains the pseudocode for the general bounding clique sizes
algorithm. The inpuB is the initial Bayesian networkjs a perfect elimination scheme
for B, andb is the desired bound for the maximum clique size of the fill-in triangulation

of B givenf.

generalBoundCliqueSizgs= (G = (N, A, P), f, b)
G’ = (V, E) « moralized graph o6
Fillln < the fill-in triangulation ofG’ givenf
maxClique— the set of nodes in the maximum cliqud-dfin

while sizeofmaxClique> b
pick an edgeu, v) O A
G «— (V,EMu,v})
remove unnecessary moral edges f@m

Fillin < the fill-in triangulation ofG’ givenf

49

maxClique— the set of nodes in the maximum cliqud-dfin

reportFillin as the triangulation &&’ with max clique no greater thdn
run LS on the junction tree f&illin

report the posterior probabilities fG&f computed by LS

Figure 10.General bounding clique sizes pseudocode

Before discussing the running timegdneralBoundCliqueSizelsprovide more
details on several of the less straightforward steps in the algorithm. Gdirsidbe
step that determines the set of nodes in the maximum clidu#lof This can be
accomplished by iterating through each nodgilin and creating a set with that node
and its higher-ordered neighbors, called that node’s “higher-clique set”. After Iaking

each node, the largest set contains the nodes that form the maximum chdile.in

Next, consider the step that removes “unnecessary” moral edge&frafter the
selected edgeu(Vv) has been removed. A moral edge is considered unnecessary if it
satisfies the four conditions described in Section 3.2.1. Finally, consider the gtep i
algorithm that picks an edge, /) from the original edges i@, and then deletes that
edge fromG'. This step can be performed in a variety of ways, using a different heuristi
to select an edge for deletion. Just as for the pre-processing bounding ckgue siz
algorithm, one must be careful not to select a moral edge for deletion — butextipsel

criterion that satisfies this condition is acceptable.

In my implementation ofeneralBoundCliqueSizekdid preliminary testing on a
variety of heuristics for selecting which edge to delete next. | triedtsey edges with

the minimum KL divergence, edges whose deletion caused the greatest redutigon in t

50

number of edges in tHéllin graph, and a combination of the two. For all three of these
approaches, | tried selecting edges from the entire graph or only onesatjasmmne
node in the maximum clique. However, the heuristic that performed the best in my
preliminary tests was to select the edge adjacent to some node in the makaquem c
whose deletion renders the most moral edges unnecessary. If no edge &olpmeet
node in the maximum clique is available for deletion, then any satisfactoryvboge
deletion maximizes the number of unnecessary moral edges is chosen.
3.3.2 Running Time

In this section, | consider the running time for the general bounding clicese siz
algorithm described above. The first step of moralizing the Bayesian netkesktitae
O(n?), as was described in Section 3.2.2. The next step of computing the fill-in
triangulation of the moralized graph given the inputted perfect eliminatiomsdhakes
time O(n?), which was also described in Section 3.2.2. The last step in the initialization
phase is to compute the set of nodes that form the maximum clique in the fill-in
triangulation, using the process described in Section 3.3.1 above. This process requires
iteration through each node in the network, constructing the higher-clique set for each
node, and then determining which higher-clique set contains the most nodes. Computing
the higher-clique set for a single node requires examining the node’s set of neighbor
and adding to the higher-clique set all neighbors with a higher ordering than the node
itself — which can be done @(n) time. Repeating this process for each node and then
selecting the biggest higher-clique set as the maximum clique for thgulaged graph

brings the total time for determining the nodes in the maximum clique @mth

51

Next, we consider the time needed to execute each step inside the while loop in
the algorithm. The first step inside the loop is to choose an edge for removal from the
original network, and then to remove that edge. The criteria for removing edlges is
same as for bounding clique sizes with pre-processing, so this step takegnmd
(see Section 3.2.2). Once an edge is chosen for removal, that edge and all unnecessary
moral edges must be deleted from the original graph, which can be done @(tne
again according to Section 3.2.2. Finally, to complete a single iteration of thdaaple
we must re-compute the fill-in triangulation of the new network (given tvataleedges
have been deleted) and determine the new maximum clique in the triangulation. As was
described previously in this section, these steps both také(ime Thus the time

required for a single iteration of the while loopdgn?).

The while loop in the algorithm continues iterating until the size of the maximum
clique is less than or equallio Each iteration removes at least one edge from the
original graph, so this loop cannot continue for more thaterations. Thus the entire

while loop can be executed in tirfd¢m’n?).

Finally, we must construct a junction tree for the triangulated graph, run LS on
that junction tree, and report the posterior probabilities computed by LS. As was
described in Section 3.2.2, constructing a junction tree can be done @(tmeg m),
and running LS is exponential in the size of the largest clique in the junction tree. Thus
this step of the algorithm is polynomially bounded with degyresnd the entire algorithm
runs in timeO(max{m°n?, p?}), wherep® is the polynomial bound for the LS algorithm.

A summarization of the running time analysis for the general bounding clique sizes

algorithm appears in Figure 11.
52

generalBoundCliqueSizgs= (G = (N, A, P), f, b)
o(n?) G’ = (V, B) « moralized graph o5
o(n? Fillln < the fill-in triangulation ofG’ givenf
o(n?) maxClique— the set of nodes in the maximum cliqud=dfin

o(m’n?) while sizeofmaxClique> b
o(n’n?) pick an edgey(v) O A
O(m) G «— (V,EMu, v}
Oo(m) remove unnecessary moral edges fem
o(n?) Fillin « the fill-in triangulation ofG’ givenf
o(n? maxCligue— the set of nodes in the maximum cliqud-dfin

o(n? reportFillin as the triangulation &&’ with max clique no greater thdn
o) run LS on the junction tree f&illin
O(n) report the posterior probabilities fGf computed by LS

Total running timeO(max{m°n?, p%})

Figure 11. Summarization of running time for general bounding clique sizes
3.3.3 Algorithm Walkthrough

Consider again the Asia Bayesian network in Figure 4. This section will go
through a walkthrough of the general bounding clique sizes algorithm on this network.
Assume that the algorithm is given as input a desired maximum clique bound of three and
the perfect elimination schem@roduced by running maximum cardinality search on
Asia. (For a walkthrough of maximum cardinality search on Asia, consult the appendix

The values of are:
f(1) = VisitAsia, f(2) = Tuberculosis,
f(3) = Cancer, f(4) = TbOrCa,

53

f(5) = Smoking, f(6) = Bronchitis,

f(7) = Dyspnea, f(8) = XRay.

Initialization:

First, we must moralize Asia by adding edges between co-parents andmgithe
directionality of the edges. This requires adding the edges {Tuberculasisei¢ and

{TbOrCa, Bronchitis}. The moralized graph for the Asia Bayesian network appears i

Figure 12 below.

Figure 12 The moralized graph for the Asia Bayesian network

Next, we must compute the fill-in triangulation of the moralized graph diven
Thus for each node we must turrv's higher-ordered neighbors into a clique. This

process is shown in detail in the maximum cardinality search walkthrough in the

54

appendix, and requires adding the edges {Smoking, TbOrCa}, {XRay, Bronchitis},
{Smoking, XRay}, {Smoking, Dyspnea}, and {XRay, Dyspnea} The triangulation of

Asia given f appears in Figure 13 below.

Figure 13. The triangulation of Asia using maximum cardinality search

Finally, we must determine the set of nodes in the maximum clique of the
triangulated graph. This can be done by computing the higher-clique set for eaal node
the graph, which is the set of higher-ordered neighbors (and the node itself) of each nod

A list of each node and its higher-clique set appears in Table 1.

55

Node Name Higher-Clique Set
VisitAsia {VisitAsia, Tuberculosis}
Tuberculosis {Tuberculosis, Cancer, TbOrCa}
Cancer {Cancer, TbOrCa, Smoking}
TbOrCa {TbOrCa, Smoking, Bronchitis, XRay,
Dyspnea}
Smoking {Smoking, Dyspnea, Bronchitis, XRay]
Bronchitis {Bronchitis, Dyspnea, XRay}
Dyspnea {Dyspnea, XRay}
XRay {XRay}

Table 1.Higher-clique sets for computing the maximum clique in Asia’s triangulati

From consulting Table 1, we can see that the maximum clique in Asia’s

triangulation is {TbOrCa, Smoking, Dyspnea, Bronchitis, XRay} and has size five.

Main step 1, max cligue size = 5:

Now we begin the main loop of the algorithm, which continually selects edges for

deletion from the original Bayesian network until the desired maximum clique bound of

three is reached. To select an edge for deletion, we must determine fodgach e

adjacent to some node in the maximum clique the number of moral edges that would

become unnecessary if that edge were deleted. Table 2 below shows each edge in the

original Bayesian network that is adjacent to some node in the maximum clique, and

which moral edges would become unnecessary if that edge was deleted.

Candidate Edge Unnecessary Moral Edge

[72)

(TbOrCa, Dyspnea) {TbOrCa, Bronchitis}

(Cancer, TbOrCa) {Tuberculosis, Cancer}
(TbOrCa, XRay) none

(Tuberculosis, TbOrCa){Tuberculosis, Cancer}
(Smoking, Cancer) none

(Smoking, Bronchitis) | none

(Bronchitis, Dyspnea) | {TbOrCa, Bronchitis}

Table 2.Unnecessary moral edges for candidate edges for deletion

56

By consulting Table 2, we learn that choosing four different edges forareleti
would each cause one moral edge to be unnecessary. We choose the edge (TbOrCa,
Dyspnea) for deletion since it is the first edge we examined that woulel @ameral
edge to be unnecessary. We thus remove (TbOrCa, Dyspnea) and the moral edge
{TbOrCa, Bronchitis}, and reconstruct the fill-in triangulation giferemembering that
the moral graph of Asia now has two fewer edges. The new fill-in triangulagipears

in Figure 14 below.

@ amoking
Come 5 <>

Figure 14. Triangulated graph after step 1 in general bounding clique sizes algorithm

By applying the same technique as in the initialization phase (constructinggher*

clique sets” for each node) we learn that there are several cliques imtireangulated

graph that have size three, but that there is no clique that is bigger than three. Thus, afte
choosing one edge for deletion from the original graph, we have achieved our desired

maximum clique bound of three.

57

Now, we can construct a junction tree from the triangulated graph in Figure 14
and run LS on that junction tree to obtain the posterior probabilities for each node, as
described in Section 1.2.1. The resulting posterior probabilities appear in Figure 15
below. Note that the edge (TbOrCa, Dyspnea), which was present in the original
network, is missing in Figure 15 below. This is because to get the clique size down to

three in the fill-in triangulation graph, this edge had to be deleted.

Wisit 1.0%

Mavfisit [99.0%

Present

Ahsent

Smaking
Smoker 50.0%

NonSmoker | 50.0%

Bronchitis
Prezent | 435.0%
Ahsent | 55.0%

Cancer
Present | 5.99%
Ahsent

ThOrCa

65.9%

93.5%

Dyspnea
Present | 60.8%
Mormal | 89.0% Shsent | 39.2%

Abnormal | 11.0%

Figure 15. The posterior probabilities for Asia using general bounding clique sizes

3.4 Comparisons of New Algorithms to Past Techniques
Chapter 2 presented two previous techniques that used edge deletion — the first by

Kjaerulff in [Kjaerulff93] and the second by van Engelen in [vanEngelen96]. Both
Kjaerulff and van Engelen emphasized the fact that many Bayesian netaotii c
edges that add a lot to the complexity of the network but add little information to the

probability distribution. They also both focus on deleting edges to stay withitaancer
58

bound of the exact posterior probabilities. However, neither of these techniques
addressed the speedup associated with deleting edges with low information.
Additionally, neither author considered deleting edges to enforce structurabaussin

the modified network that would place a polynomial time bound on inference.

The three new algorithms in this thesis also use edge deletion, and the reduction
to polytree algorithm uses KL divergence to select edges for deletionkgugjdierulff
and van Engelen. However, my techniques focus on deleting edges to either force the
modified network to be a polytree or to ensure that the triangulation of the modified
network has clique sizes within a certain bound. The goal of these new algositioms i
provide polynomial-time approximate inference, while the goals of Kjaemnidffvan
Engelen are to delete edges while remaining within a certain error bound.
3.5 Experimental Design

This section contains the criteria for evaluating the usefulness of an impgai®Xx
inference algorithm for Bayesian networks. It describes which Bayesitworks will be
used in testing and why they are good choices. In this section, | also discusstésiw t
the speed and accuracy of an approximate inference algorithm, including wirehtly
existing algorithms are good bases for comparison.
3.5.1 Networks Used

Table 3 below describes the ten Bayesian networks selected to help tpsethe s
and accuracy of my approximate inference algorithms: Sprinkler, Asia, Alarm
Insurance, Water, Alarm, Barley, CPCS-54, Hailfinder, and CPCS-179. These networks
were chosen for the experiment because they represent a large range- iincsizéur

nodes and four edges up to 179 nodes and 239 edges. Each of these networks is either a
59

“toy” network commonly used in examples in Bayesian network research, orngla ha
constructed real-world network that models a specific domain. Each network is als

freely available in the public domain, and as such is commonly used for testing.3Table

also includes the maximum clique size for each network when triangulatetherit

maximum cardinality search (MCS) algorithm. Recall that the speed oftlesdct

inference algorithm is exponential in the size of the maximum clique in émgtiated

graph.
Network Name | Number of Nodes| Number of Edges| Max Clique Size (MCS)
Sprinkler 4 4 3
Asia 8 8 4
Alarm-13 13 14 4
Insurance 27 52 10
Water 32 66 12
Alarm 37 46 5
Barley 48 84 9
CPCS-54 54 108 18
Hailfinder 56 66 6
CPCS-179 179 239 9

Table 3. Summary of Bayesian networks used in experiment

3.5.2 Algorithms Tested
| will perform speed and accuracy tests on LS, AIS, reduction to polytree,

bounding clique sizes with pre-processing, and general bounding clique sizes.etidecid
to use LS and AIS for comparison because LS is a version of the standard junction tree
algorithm, and AIS is often regarded as the best approximate inferencehatgokitlo

not provide any comparison between the techniques of Kjaerulff [Kjaerulff93] and van
Engelen [vanEngelen96] because they are both error-bounding techniques for reducing

network complexity and not actual inference algorithms. Their researclefoons

60

proving that removing a particular set of edges would not introduce error beyond a

desired bound, not on inference speedup.

Because the general bounding cligue sizes algorithm can be run with angt desire
clique bound, | will test this algorithm multiple times with different bounds. | supgel
general bounding clique sizes algorithm with the initial perfect elimonacheme from
MCS, which is also the triangulation algorithm used in the implementation of wil. |
supply the general bounding clique sizes algorithm with the different clique bolids
5, 6, 8, 10, and 12. These bounds allow for a range of edges to be deleted from each
network, given the initial maximum clique sizes in Table 3. However, the general
bounding clique sizes will always be given a clique bound of five when it is to bdydirect
compared to the bounding clique sizes with pre-processing algorithm. This is bbeause
bounding clique sizes with pre-processing algorithm also forces the maxilguen size

in the triangulated graph to be five or less.

The AIS algorithm, like all sampling algorithms, is designed to be giveniredes
number of samples to take of the network, and then to report the estimated posterior
probabilities based on those samples. While allowing AIS to take a very large rafmber
samples usually yields more accurate results than taking a smalleobatmples, this
process can make AIS run slower than LS. In order to keep the time needed to run AIS
similar to the time required to run the other inference algorithms, | will theinumber
of samples taken by AIS to 2,000 for each of the tests.

3.5.3 Evaluation Techniques
This subsection describes what specific evaluation techniques will be used on the

new approximate inference algorithms to determine how fast and accusateelses
61

compared to currently existing algorithms. The reduction to polytree techmdue a
bounding clique sizes with pre-processing will be performed as describedionSec

3.1.1 and 3.2.1, while the general bounding clique sizes algorithm described in section
3.3.1 will be tested with several different bounds on the maximum clique size: 4, 5, 6, 8,
10, and 12. The results of running each new inference algorithm -- the first two
algorithms and the general bounding clique sizes algorithm with each diffenenuma
clique size bound -- for the Bayesian networks in Table 3 appear in the results section i

Chapter 5.

Speed Evaluation:

An important factor for determining the usefulness of any approximation
algorithm or heuristic is its speed. Because approximation algorithmsyustcailice
results with at least some error, it is important that they make up for logemwhation

by being considerably faster than an exact technique.

In Bayesian network inference, however, the speed of the entire algorigsa is
important than the speed of the inference portion of the algorithm. Each new
approximate inference algorithm involves a lengthy pre-processingdataggngulating
the graph and/or determining which edges to delete. However, this pre-procstage
need only be done once -- whereas the inference portion would need to be repeated again
and again with different node values as evidence. Thus | will report the irdenercas

well as the total time for each algorithm when a test is run.

In order to give an accurate speed comparison for how these algorithms will be

used in practice, | will also determine the total time to run each algorithmmes +

62

which is significantly fewer times than an algorithm is likely to be rueminsed in a
practical setting like a medical diagnostic system. However, the to@for running an
algorithm 100 times will begin to show the trends of which algorithm will be fagtar

the long run. The total time for 100 runs of some algorithm will be computed as the sum
of the pre-processing time for the algorithm (determining which edges te dal#/'or

building the junction tree) and the time required to run the inference portion of the
algorithm 100 times. Note that in the case of the AIS algorithm, which has no pre-
processing step, the total time for 100 runs will just be 100 times the total tithe for
algorithm. Again, the results for each of these tests on the networks listdalér3Ta

appear in the results section in Chapter 5.

Accuracy Evaluation:

While the speed of an approximation algorithm is the most important factor for
determining that algorithm’s usefulness, it is certainly not the onlgrfaabrth
considering. If an approximation algorithm returns results that are coatsligldifferent
than an exact algorithm for the same problem, then that approximation algorithm is
useless — no matter how fast it can run. To evaluate the accuracy of my approximate
inference algorithms, | plan to compare the posterior probabilities for eachepmieed
by the approximate algorithm to the posterior probabilities reported by ahadgarithm
(namely, LS) by calculating the root mean-squared-error (RMSE) betthe two sets of

probabilities. The formula for RMSE is:

63

n instif)
RMSE = | o 3. Y, [P(6) — P(8y)]
i=1 j=1
wheren is the number of nodemmst(i) is the number of possible values for nodetal is
inst(1)+Hnst(2)+...Hnst(n), P(¢;) is the posterior probability reported by LS for ihe
instantiation of node andP’(6;) is the posterior probability reported by an approximate

inference algorithm for thg instantiation of node

For comparison, | will also compute the RMSE of AIS, where AIS is run with
2,000 samples of the network. In the Chapter 5, | will report the RMSE for each new

approximate inference algorithm and AIS on each network in Table 3.

64

CHAPTER FOUR: Error Bounds and Pathological Cases

In Chapter 5, we will see the results of the three new approximate inference
algorithms when run on ten different real-world Bayesian networks. Whilelthpter
will be devoted to experimental results that show how fast and accurate thtéhalgori
are in practice, this chapter will focus on how accurate the algorithms tueory.
Because the reduction to polytree algorithm is the only technique that chogsesg$ad
deletion based on a measurement (KL divergence) that reflects how well thedreduc
network approximates the original network, it is the only algorithm for whoam|
provide a guaranteed bound on how different the approximate posterior probabilities will
be from the exact values. However, this chapter does provide pathologicabcades f
three algorithms for which they will be very inaccurate. Again, just because the
algorithms perform poorly on these example cases does not mean that suchecases ar
likely to arise in practice — instead, they provide us with an idea of how bad the
algorithms can be. We will see in the results section in Chapter 5 that alllguetnms
produce accurate results on real-world networks.
4.1 Reduction to Polytree

Because the reduction to polytree algorithm uses the KL divergence measurem
when choosing edges for deletion, we can take advantage of the same error-bounding
properties on the posterior probabilities proved by van Engelen in [vanEngelen96].
Recall from Section 2.2 that if we I€P, P’) be the KL divergence between the original
probability distributionP for a Bayesian network and an approximate distribu®on
obtained by deleting a group of edges from the network, then the absolute bound on the

error of the posterior probability for some nodwith possible value is given by

65

r r -]. T
Because neither the absolute value expression on the left-hand side nor the sqoare root

the right-hand side will ever be less than zero, we can derive that

[P(V =v)—P(V =v)) < 3I(P.P).
Because this inequality holds for all nodéand each possible node valyeve can add
all possible forms of this inequality (for all nodes and node values) to get

p inst(i) . o f
Y Y [P(0y) - P(6;)]> < 1P
i=1 ;=1

W

wheren is the number of nodemmst(i) is the number of possible values for nodetal is
inst(1)+Hnst(2)+...Hnst(n), P(¢;) is the posterior probability reported by LS for ihe
instantiation of node andP’(6;) is the posterior probability reported by an approximate

inference algorithm for thg instantiation of node

Next, by dividing both sides by total and taking the square root, we get

Y Y [POy) P (0,)P < \/H(PP).

i=1 j=1

[a—

3|

Notice now that the right-hand side of the inequality is the RMSE formula prdsente
Section 3.5.3. Thus the RMSE between the approximate posterior probabilities and the
exact result is bounded by a function of the KL divergence between the original
probability distribution and the approximate distribution that results from delediges:

66

—
RMSE < \/3I(P:F').

This result suggests that we can calculate an upper bound for the RMSE aftergsale

set of edges for deletion by calculating the KL divergence betweenigeabr

distribution and the distribution resulting from deleting that set of edges. Thuswe ¢
determine an upper bound on the error introduced by the reduction to polytree technique

without having to run an exponential-time exact inference algorithm to ceropar

results.

Because the reduction to polytree techniqgue must delete edges until thel reduce
network has a polytree structure, it may have to delete as mahy-&s- 1) edges for a
complete network. Furthermore, the approximate distribution that results flenmgle
single edge is computed by averaging entries in the sink node’s probability tbthe

entries in the table that are averaged are very different, then the appeodistidoution

will lose information.

v
True [100.0%
False | 0.0%
v2 | \ SR
vl True False vl True False
True | 100.0% | 0.0% v2 True False True False
Fal=e | 0.0% | 100.0% True | 100.0% | 0.0% 0.0% | 100.0%
False [0.0% 100.0% | 100.0% [0.0%
wd
vl True Falze
ve True False True False
w3 True False True False True False True False
True | 100.0% | 0.0% 0.0% 100.0% | 0.0% 100.0% | 100.0% 0.0%
. False | 0.0% 100.0% | 100.0% 0.0% 100.0% 0.0% 0.0% 100.0%
v
¥l True False
we Trug False Trug False
w3 True Falze True Falze True Falze True Falze
W True False True False True False True False True False True False True False True False
True | 100.0% 0.0% 0.0% 100.0% 0.0% 100.0% | 100.0% 0.0% 100.0% | 0.0% 0.0% 100.0% 0.0% 100.0% | 100.0% 0.0%
False | 0.0% 100.0% | 100.0% [0.0% 100.0% | 0.0% 0.0% 100.0% | 0.0% 100.0% | 100.0% [0.0% 100.0% 0.0% 0.0% 100.0%

Figure 16. Pathological example for reduction to polytree

67

Consider the example network in Figure 16. Notice that this network is a
complete graph, with edges between each pair of ngaeslv;, wherei <j. Also note
that the conditional probability tables are constructed so that if any edgetéesidtie
entries that would need to be averaged are either 100% or 0% -- so that the resulting
average will be as close to 50% (and as far away from the original prabapais

possible.

When the reduction to polytree algorithm is run on this network, it deletes the
edges\e, Vi), (V2, Va), (V3, V), (V3, V), (Va, V5), and {1, vs) when turning the network into
a polytree. The KL divergence between the original probability distributioéor
network and the approximate probability distribution that results from deletingethat
edges is 2.08, using the formula in Section 1.4.1. Thus according to the error bound
computed above, the RMSE should be no more than 1.02. An RMSE value is generally
considered acceptable if it is below 0.1, so this error bound suggests that the posterior
probabilities computed for this network by reduction to polytree will not be very
accurate. Indeed, the actual RMSE produced by the algorithm is 0.387 — making this
particular approximation unusable in practice.
4.2 Bounding Clique Sizes Techniques

While reduction to polytree picks edges for deletion with minimal KL divergenc
values, both bounding clique sizes algorithms (bounding clique sizes with pre-prgcessin
and general bounding clique sizes) choose edges for deletion that maximize the number
of moral edges rendered unnecessary. Because the score for eligisléesdupged on

structural properties instead of on information loss, no error bound can be placed on the
68

bounding clique sizes techniques. However, because both bounding clique sizes
algorithms ignore information loss in favor of removing more moral edges, &ney c
make the mistake of deleting a single edge that is very important to the overall

probability distribution just because its deletion causes several moral edgesnebe

unnecessary.
vl
True | 20.0%
v False | 20.0% w3
vl True False vl True False
True | 100.0% 0.0% True | 100.0% 0.0%
False| 0.0% |100.0% False [0.0% | 100.0%
v
vl True Falze
v2 True False True False
¥3 True False True Falze True False True False
True | 100.0% 0.0% 0.0%: 100.0% | 100.0% 0.0% 0.0%: 100.0%
False | 0.0% 100.0% | 100.0% 0.0% 0.0%: 100.0% | 100.0% 0.0%

Figure 17.Pathological example for both bounding clique sizes algorithms

Consider the example network in Figure 17. Note that becausenaieb/;
are co-parents of nodg, a moral edge would need to be added between npdeslvs,
thus making the network a complete four-node graph. First, assume that this network
was given to the general bounding clique sizes algorithm with a desired clique bound of
three. The algorithm would only need to delete one edge from the network to batisfy t
desired clique bound. However, when examining eligible edges for deletion, the general
bounding clique sizes would notice that edgesw) and {3, v4) would both cause moral
edge ¥, v3) to be unnecessary, while edgeg {4) would not cause any moral edges to be

unnecessary. (Edges,(v2) and {1, v3) would not be eligible since they serve as moral

69

edges.) If the algorithm chose edgg Y.) for removal, however, the resulting RMSE is

a poor 0.345.

Note in Figure 17 that nodg is conditionally independent of its paremt
because R{=T| v, Vo, v3) = P{4=T| v, v3). Thus if we had instead deleted the edgge (
v3) to reduce the maximum clique size to three, no information would have been lost and
the RMSE would have been 0.0. Thus the general bounding clique size’s strategy of
always removing the edge that renders the most moral edges unnecessbamsys

wise — especially when the network contains edges with no information.

While this example was designed for the general bounding clique sizes algorithm
the result would have been the same for the bounding clique sizes with pre-processing
algorithm. If the network in Figure 17 was the reduced network after running the pre-
processing rules in the bounding clique sizes with pre-processing algorithm, the
algorithm would have been trying to delete edges from that reduced network $o that i
could continue applying the simplicial vertex rule. The bounding clique sizes with pre-
processing algorithm also choosing edges for deletion based on which edge/alrem
will maximize the number of unnecessary moral edges, and so it would also have chosen
edge ., Vs) for deletion instead of the extraneous edggevg). Thus this algorithm

would also have unnecessarily increased the inference error.

70

CHAPTER FIVE: Results
This chapter contains the results of running the reduction to polytree algorithm,
bounding clique sizes with pre-processing algorithm, the general boundingsiiqae
algorithm (with clique bounds 4, 5, 6, 8, 10, and 12), LS, and AIS (with 2,000 samples)
on each of the 10 Bayesian networks described in Table 3. Comparisons of the total time,
inference time, and error (using RMSE measurement) are provided for earcthiadg
according to the experimental design specification provided in Section 3.5.3.

Interpretation of these results appear in Chapter 6.

In these experiments, each algorithm was run five times on each network. The
total times and inference times reported for each algorithm are thgewdrénose five
runs. The RMSE values for the three new approximate inference algori¢dust{on to
polytree and the two different bounding clique sizes methods) are not averaged over the
five runs, because these algorithms have no randomness and will execute in legactly t
same way every time they are run. Consequently, they will produce identitaiqros
probabilities with every run. The RMSE values reported for the AIS algorithm, hgweve
are averaged over five runs, because AlS randomly samples the networkmesntypt
learn the posterior probabilities. In the graphs and tables in this sectsmtHe
abbreviation “RP” for reduction to polytree, “BCS-P” for bounding clique sizds pvi-

processing, and “G-BCS” for general bounding clique sizes.

Each experimental run was performed on a PC with a 3.0 GHz Pentium 4
processor with 1 GB of RAM. A maximum heap size of 1 GB was allocated for the Java
Virtual Machine during each experiment. The total times and inferencerecwmsled

below were measured using the Java current time method.
71

5.1 Total Time Comparisons
The total time of running an inference algorithm on a Bayesian network includes

any pre-processing time (such as choosing edges for deletion or building tienjunc
tree) as well as the time for inference. In the case of samplingtalg@uch as AlS, the
total time is the same as the inference time because there is no pretpgostegs Total
time measurements are important because they measure the amount of teddmeed
perform the entire process. However, because the pre-processingestegdo be run
only once before running the inference portion multiple times with different esdenc
values, the total time measurement is not as helpful as the inference tinerminiaet
how efficient an algorithm will be in practice. This section provides aveosgeime
measurements for LS, AIS, and each of the three new inference algoritichadi(ig all

six possible clique bounds for the general bounding cliques algorithm).

Figure 18 shows a comparison of the average total times required for LS, AlS,
reduction to polytree, bounding clique sizes with pre-processing, and general bounding
clique sizes with a bound of five on each of the ten networks described in Table 3. Note
that the scale for the total time required in each instance is logarithmic. Ceatpge
of standard deviation of the total time over each of the five runs appears in Table 4. This
table reports standard deviation values for the total time of LS, AIS, reduction to
polytree, bounding clique sizes with pre-processing, and general bounding clique sizes
with a bound of five. The percentage standard deviation is calculated by taking the
standard deviation of the total time for the five runs divided by the averageatichéhen

converting to a percent.

72

Total Time Comparison

» 100000000
£ 10000000 - @ Reduction to Polytree
o 1000000
IS 100000 - . .
[10000 - B Pre-Processing Bounding
= 1000 - Cliques
(3 100 - o
2 10 - O General Bounding Cliques
0 1A (bound =5)
S I N o & A9 OAIS
N e & @A
Q\\Q v\(&@ 6\;&‘ & S ¢§§ cf’:\/
S o S RE L mLS

Network

Figure 18. Total time comparison between all algorithms. Time scale is logarithmic,
and lower is better.

Network LS RP BCS-P| G-BCS AIS

(bound = 5)
Sprinkler | 6.53% 3.51% | 5.24% 4.98% 1.74%
Asia 5.06%| 15.25%)| 6.27% 0.0% 2.84%

Alarm-13 | 5.19% 0.0% | 5.06% 4.28% 4.88¢4
Insurance | 1.13% 3.65% | 2.40% 4.94% 4.68¢
Water 0.16% 0.61% | 1.79% 3.33% 5.121
Alarm 5.77%| 2.48% | 4.24% 2.20% 3.46f
Barley 1.25% 0.70% | 0.59% 3.29% 19.7¢
CPCS-54 | 0.90% 0.92% | 0.60% 0.83% 9.424
Hailfinder | 2.03%| 1.28% | 0.0% 2.97% 4.654
CPCS-179 0.68%| 0.25% | 1.73% 1.29% 5.37%
Table 4. Standard deviation percentage of total times for all algorithms (stddev/avg
time*100)

oY oY o~ O~ o o O

Figure 19 shows a comparison of the average total time required for tmalgene
bounding clique sizes algorithm using the different clique bounds of 4, 5, 6, 8, 10, and 12.
Recall that the general bounding clique sizes algorithm is given an initietper
elimination scheme for the network and then deletes edges so that the given node
ordering obeys the desired clique bound. In my implementation, | used maximum

cardinality search (MCS) to generate the initial perfect elininaicheme. The
73

maximum clique sizes for each network using MCS are given in Table 3. For some of
the executions of the general bounding clique sizes algorithm, the maximum cjue si
of the initial triangulation is already smaller than the desired bound. k& thsss, the

total running time is about the same as the total running time for LS. Notkehat t

system time scale for this graph is also logarithmic.

The percentage of standard deviation of the total time over each of the five runs
appears in Table 5. This table reports standard deviation values for the totaltti@e of
general bounding clique sizes algorithm with desired clique bounds of 4, 5, 6, 8, 10, and
12. The percentage standard deviation is calculated by taking the standard deviation of
the total time for the five runs divided by the average time, and then converting to a
percent. In this table, the notatibni refers to a run of the general bounding clique sizes

algorithm with a desired clique boundiof

Total Time Comparison of General Bounding Clique

Sizes
‘% 100000000
g 10000000
- 1000000
e 100000 =
E 00000 1 E Bound = 4
£ 1000 W Bound=5
O] |
2 100 1 O Bound = 6
Q 10
N 1 - O Bound =8
\PQ} ?9@ N & {zr@\ \Q;\@ &\@\ &> .qu} '\/’\Cb B Bound = 10
Q’&\ \,&«6\ %\\}"” N\ SR QOCO ,'0&\\ & @ Bound = 12
2 RIS O e
Network

Figure 19.Total time comparison of general bounding clique sizes with different desired
clique bounds. Time scale is logarithmic, and lower is better.
74

Network | b=4 | b=5| b=6 | b=8 |b=10|b=12
Sprinkler | 0.39% 4.98%| 0.39%] 4.98%| 0.0% | 5.13%
Asia 0.39%| 0.0% | 4.66% 4.75%)| 5.99%| 0.32%
Alarm-13 | 0.35%] 4.28%| 4.49%| 4.46%| 0.29%| 0.29%
Insurance | 2.24%4.94%| 2.66%| 1.65%| 0.87%| 0.75%
Water 3.40% 3.33%| 1.00%| 1.23%| 0.26%| 1.22%
Alarm 3.28%| 2.20%| 3.58%| 4.32%| 0.22%| 0.0%
Barley 1.19%) 3.29%| 1.49%]| 0.87%)| 0.76%| 0.21%
CPCS-54 | 1.14%0.83%| 0.93%]| 0.90%| 0.81%| 0.39%
Hailfinder | 1.86%]| 2.97%)| 5.47%| 1.93%| 1.89%| 6.14%
CPCS-179 0.09%| 1.29%| 1.24%)| 1.95%| 1.80%| 5.09%
Table 5. Standard deviation percentage of total times for general bounding clique sizes
(stddev/avg time*100)

5.2 Inference Time Comparisons
The “inference time” for running an inference algorithm is the time redjtire

compute the posterior probabilities for each node, excluding any pre-processethate
can be reused for multiple executions of the inference algorithm. For example,
construction of the junction tree only needs to be done once, and then the message-
passing phase to compute the posterior probabilities can be repeated for mulspé
the inference algorithm. Note that the message-passing does need to tael y&peause
if the algorithm is run with different evidence values, the values of the messdlgee

different. Evidence values do not, however, have any effect on pre-procespsig st

This section reports comparisons between inference time for LS, reduction to
polytree, bounding clique sizes with pre-processing, and general bounding clique sizes
(with each of the six different clique bounds) when run on each of the ten networks in
Table 3. For each algorithm, the inference time does not include choosing whesh edg

to delete or building the junction tree. The inference time does include the message-

75

passing phase of Pearl’s algorithm (for the reduction to polytree technique) lsBdfof
each of the other algorithms). Note that AIS is not included in these comparisons

because its total time is the same as its inference time, as it has nogess|ng step.

Figure 20 shows a comparison of the average inference times required for LS,
reduction to polytree, bounding clique sizes with pre-processing, and general bounding
clique sizes with a clique bound of five on each of the ten networks described in Table 3.
Note that the scale for the total time required in each instance is thogatitThe
percentage of standard deviation of the inference time over each of the fivppaassa
in Table 6. This table reports standard deviation values for the inference tirgeAlS,
reduction to polytree, bounding clique sizes with pre-processing, and general bounding
clique sizes with a bound of five. The percentage standard deviation is calculated by
taking the standard deviation of the inference time for the five runs divided by the

average time, and then converting to a percent.

Inference Time Comparison
% 100000000 .
é 10000000 O Reduction to Polytree
o 1000000
£ 100000 B Pre-Processing Bounding
= 10000 Cliques
£ 1000
% 100 - O General Bounding Cliques
& 18 1 (bound = 5)
X QD @ A QS XSO mLS
IS I S AR NI > S YN
S ?B \(\6 CJQ ‘2"062
Network

Figure 20. Inference time comparisons between all algorithms. Time scale is
logarithmic, and lower is better.

76

Network LS RP | BCS-P| G-BCS AIS

(bound = 5)
Sprinkler | 0.50% 0.0% | 0.0% 5.87% 1.749
Asia 5.67%]| 56.0%| 5.87% 5.50% 2.849

Alarm-13 | 11.7%) 91.4%| 7.15% 5.58% 4.889
Insurance | 1.19%3.51%| 6.28% 14.86% 4.689
Water 0.169q 137% | 6.38% 0.0% 5.129
Alarm 14.4%| 3.56%| 0.0% 6.48% 3.469
Barley 1.25% 2.72%| 3.41% 3.99% 19.79
CPCS-54 | 1.06% 38.2%| 8.54% 6.38% 9.429
Hailfinder | 2.96%]| 3.51%| 0.0% 4.64% 4.659
CPCS-179 0.89%]| 16.3%| 7.79% 0.26% 5.37%
Table 6. Standard deviation ratio of inference times for all algorithms (stddev/avg
time*100)

SN of ©F °©% S

oY oY oY O

Figure 21 below shows the inference time required for the general bounding
clique sizes algorithm using the different clique bounds of 4, 5, 6, 8, 10, and 12. Again,
remember that the general bounding clique sizes algorithm is supplied withfeéwt per
elimination scheme from MCS, and then deletes edges from the original network so tha
the given node ordering will satisfy the required clique bound. The maximum clique
sizes for each network using MCS are provided in Table 3 — in some cases, these values
are smaller than the desired clique bound, so the resulting inference time wililae s

to the inference time for LS.

The percentage of standard deviation of the inference time over each of the five
runs appears in Table 7. This table reports standard deviation values for the inference
time of the general bounding clique sizes algorithm with desired clique bounds of 4, 5, 6,
8, 10, and 12. The percentage standard deviation is calculated by taking the standard

deviation of the inference time for the five runs divided by the average time, and then

77

converting to a percent. In this table, the notabminrefers to a run of the general

bounding clique sizes algorithm with a desired clique bound of

Inference Time Comparison of General Bounding
Clique Sizes

g 100000000

g o @ Bound =4

= 10000 =

g |‘ | | B Bound =5

2 MENHTANN ©sound=s

@ O Bound =8
B Bound = 10
O Bound = 12

Network

Figure 21.Inference time comparison of general bounding clique sizes with different
desired clique bounds. Time scale is logarithmic, and lower is better.

Network b=4 b=5 b=6 b=8 b=10 b=12
Sprinkler 0.0% 5.87% 5.50% 5.87% 0.0% 5.50%
Asia 5.87% 5.50% 5.87% 0.0% 0.09 0.09%
Alarm-13 0.0% 5.58% 0.0% 0.0% 0.0% 0.0%
Insurance 5.58% 14.9% 0.39% 3.51% 0.92% 0.75%
Water 5.50% 0.0% 4.46% 1.00% 0.23% 1.23%
Alarm 5.58% 6.48% 5.13% 6.27% 5.58% 5.19%
Barley 2.65% 3.99% 2.32% 0.86% 0.76% 0.21%
CPCS-54 6.87% 6.38% 0.41% 7.59% 0.0% 3.77%
Hailfinder 4.98% 4.64% 2.99% 3.05% 3.05% 3.90%
CPCS-179 6.39% 0.269% 3.57% 1.35% 1.41% 1.47%

Table 7. Standard deviation ratio of inference times for general bounding clique sizes
(stddev/avg time*100)

While measuring inference time is very important because it tells howtong a
algorithm will take to report the posterior probabilities in a traditional e, it does

not provide a completely accurate comparison between different inferehogtees

78

because it ignores any pre-processing steps the algorithm might make. t\ighiled

that the pre-processing phase only needs to be done once, it could be that the pre-
processing phase takes several days (or even years, for a large netwom)lete —

which would make the algorithm unusable even if the inference stage was sjuite fa
Because of this, it is also important to consider the amount of time required to compute
runs for the algorithm, adding the pre-processing tinrettmes the inference time to get

the total time fon runs. Figure 22 shows the amount of time required for each algorithm
— LS, AIS (with 2,000 samples), reduction to polytree, bounding clique sizes with pre-
processing, and general bounding clique sizes with a bound of five — to run each network
100 times. If we lelT be the inference time for an algorithm antbe the total time for

an algorithm, then the amount of time required to run the algorithm 100 times would be
(TT—IT) + 100AT.

Again, remember that AIS has no pre-processing step, sbEhRakT. Also, note that the

system time scale is logarithmic.

79

Total Time for 100 Runs
7 10000000000
£ 100000000 @ Reduction to Polytree
[}
£ 1000000 . .
= B Pre-Processing Bounding
% 10000 - Cliques
@ 100 - O General Bounding Cliques
n 14 (bound = 5)
O AIS
S XD @ & & &N D> & O
& ¥ & F 3t T &S
& PR A SN
) Lol o R & mLS
Network

Figure 22. Comparison of total time for 100 runs of each algorithm. Time scale is
logarithmic, and lower is better.

Figure 23 below shows a comparison between the time required for 100 runs on
each network using the general bounding clique sizes algorithm with each ofehendif

clique bounds: 4, 5, 6, 8, 10, and 12. Again, the system time scale is logarithmic.

Comparison of Total Time for 100 Runs Using
General Bounding Clique Sizes

é 10000000000
o 100000000
.E 1000000 - B Bound = 4
= 10000 - B Bound =5
‘Z 10C1) 1 OBound =6
n . O Bound = 8
‘ \0‘156 B Bound = 10
QQJ\ O Bound = 12

Network

Figure 23. Total time for 100 runs using general bounding clique sizes with different
desired cliqgue bounds. Time scale is logarithmic, and lower is better.

80

5.3 Root-Mean-Squared Error Comparisons

The purpose of gathering root-mean-squared error (RMSE) metrics isitasee
approximate inference algorithm can produce a sufficiently accurateagstof the
posterior probabilities, as compared to the exact posterior probabilities proguaed b
algorithm such as LS. RMSE statistics were gathered for each netwbaklie 3 for the
reduction to polytree algorithm, the bounding clique sizes with pre-processinghatgori
the general bounding clique sizes algorithm (with maximum clique bounds of 4, 5, 6, 8,
10, and 12), and AIS with 2,000 samples. In each case, the RMSE was computed using
the formula in Section 3.5.3 by comparing the posterior probabilities of the given

approximate inference algorithm to the posterior probabilities computed by LS.

Table 8 below shows the RMSE values computed for the reduction to polytree
algorithm, the bounding clique sizes with pre-processing algorithm, the gboaraling
clique sizes algorithm with a maximum clique bound of five, and AIS. The AIS error
values include the percentage of standard deviation over the five runs, computed by
stddev/avg RMSE * 100. The other algorithms do not have standard deviation values
reported because they have no random element and therefore perform exactlygthe sam

way every time.

Network RP BCS -P G-BCS AlS
(bound = 5)
Sprinkler 0.02430 0.0 0.0 0.01022 +/- 40.3%
Asia 0.00118 0.0 0.0 0.00785 +/- 22.9%
Alarm-13 0.03125 0.0 0.0 0.00744 +/- 46.7%
Insurance 0.05497 0.0829)7 0.03267 0.00921 +/- 3.30%
Water 0.02098 0.17720 0.19147 0.00588 +/- 10.6%
Alarm 0.18992 0.0 0.0 0.01978 +/- 15.4%

81

Barley 0.01637 0.02213 0.01870 0.12508 +/- 0.41
CPCS-54 0.03032 0.03098 0.02889 0.03010 +/- 6.4
Hailfinder | 0.00891 0.02196 0.00797 0.00947 +/- 3.05
CPCS-179| 0.09519 0.13863 0.08954 0.00508 +/- 14.

%

3%

%

0%

Table 8.RMSE comparison of all approximate algorithms. Lower is better.

The general bounding clique sizes algorithm was executed on each network with

six different inputs for the bound for the maximum clique: 4, 5, 6, 8, 10, and 12. Table 9

below shows the RMSE values for the general bounding clique sizes algorithm for each

network in Table 3 and for each of the six possible clique bounds. The inputted clique

bound is abbreviated lyin the table.

Network b=4 b=5 b=6 b=8 b=10| b=12
Sprinkler | 0.0 0.0 0.0 0.0 0.0 0.0
Asia 0.0 0.0 0.0 0.0 0.0 0.0
Alarm-13 | 0.0 0.0 0.0 0.0 0.0 0.0
Insurance | 0.041630.03267| 0.00858| 0.00499| 0.0 0.0
Water 0.22122 0.19147| 0.19136| 0.00246| 0.00245| 0.0
Alarm 0.00379 0.0 0.0 0.0 0.0 0.0
Barley 0.01962 0.01870| 0.03028| 0.01075| 0.0 0.0
CPCS-54 | 0.029040.02889| 0.02875| 0.02896| 0.02898| 0.02968
Hailfinder | 0.01468 0.00797| 0.0 0.0 0.0 0.0
CPCS-179 0.10694| 0.08954| 0.06093| 0.00041| 0.0 0.0

Table 9. RMSE for general bounding clique sizes with different clique bounds. Lower is

5.4 Master Table of Results
The previous sections in this chapter presented results for the total timeyaafere

better.

time, and error values for reduction to polytree, bounding clique sizes with pre-

processing, and general bounding clique sizes. They also compared the three new

algorithms to the existing exact inference algorithm LS and approxiimi@rence

algorithm AIS. Because evaluating the efficiency/accuracy tragedifficult when

82

looking between different charts on time and error values, this section will contain a

“master table” of all time and accuracy values for each algorithm.

Total Time

BN LS AlIS RP BCSP b=4 b=5 =6 =8 b=10 b=12
Spr 135 394 16 128 141 137 140 137 141 138
Asia 138 722 44 134 141 141 144 144 146 141
Al13 138 2122 | 109 137 156 160 159 153 156 156
Ins 1487 | 1.2e4| 472 365 300 288 278 434 1519 1516
Witr 1.9e5 | 8.9e4| 7950 722 734 709 716 1166 5044 1.9e5
Alm 147 9519 | 284 169 222 203 200 197 203 208
Brly 2.6e7 | 8.4e5| 1.5e§ 1475 1684 2084 3731 2.be5 2.6e7.6e72
C54 5091 | 1.7e4| 1538| 3388 3550 3462 33%9 320 3216 2906
Hail 331 3.3e4| 1234| 522 462 434 384 372 378 385
C179 4653 | 1.4e5| 2.3e4 1.9e4 3584 19e4 13e4 5906 545%k616

Inference Time

BN LS AlIS RP BCSP b=4 b=5 =6 =8 b=10 b=12
Spr 109 394 0 125 125 122 122 122 125 122
Asia 113 722 12 122 122 122 122 125 125 125
Al3 113 2122 9 119 125 128 125 125 125 125
Ins 1459 | 1.2e4| 16 112 128 138 141 313 1456 1453
Witr 1.9e5| 8.9e4| 6 112 122 125 153 837 4750 1.9e5
Alm 110 9519 | 15 125 128 131 138 131 128 138
Brly 2.6e7 | 8.4e5| 247 200 253 729 2469 2.5e5 2.6€7 2\6e7
C54 5053 | 1.7e4| 19 103 106 112 109 115 125 184
Hail 287 3.3e4| 16 125 137 181 288 287 287 281
C179 4528 1.4e5| 44 141 134 172 241 4475 4628 4669

Ratio of Total Time to LS Total Time

BN LS AlS RP BCSP b=4 b=5 =6 b=8 b=10 | b=12
Spr 1.0 | 2.93 0.12 0.95 1.04 1.02 1.04 1.0p 1.05 1.02
Asia 1.0 | 5.25 0.32 0.98 1.02 1.03 1.05 1.0% 1.0¢ 1.02
Al3 1.0 | 154 0.79 1.0 1.13 1.16 1.16 1.11 1.18 1.13
Ins 1.0 | 7.94 0.32 0.25 0.20 0.19 0.19 0.29 1.0p 1.02
Witr 1.0 | 0.48 0.04 0.004 0.004 0.004 0.004 0.006 0.03 1.01
Alm 1.0 | 64.7 1.93 1.15 151 1.38 1.36 1.34 1.3B 1.38
Brly 1.0 | 0.03 0.006| 5.7e-5 6.5e-5 8e-5 1.4e-4 0.01 0.99 0,99
C54 1.0 | 3.27 0.30 0.67 0.70 0.68 0.66 0.64 0.68 0.57
Hail 1.0 | 98.5 3.73 1.27 1.40 1.31 1.16 1.12 1.14 1.16
C179 1.0 | 29.1 4.97 4.14 7.55 4.06 2.83 1.27 1.1/ 1.21

RMSE

BN LS AlS RP BCSP b=4 b=5 b=6 b=8 b=10 | b=12
Spr 0 .010 .024 0 0 0 0 0 0 0
Asia 0 .008 .001 0 0 0 0 0 0 0
Al13 0 .007 .031 0 0 0 0 0 0 0
Ins 0 .009 .055 .083 .042 .033 .009 .005 0 0
Witr 0 .006 .021 177 221 .19 191 .002 .00p 0
Alm 0 .020 .190 0 .004 0 0 0 0 0

83

Brly 0 125 .016 .022 .020 .019 .030 011 0 0
C54 0 .030 .030 .031 .029 .029 .029 .029 .030 .03
Hail 0 .009 .009 .022 .015 .008 0 0 0 0
Ci79 | O .005 .095 139 107 .090 .061 0004 O 0

Table 10.Master table with total time, inference time, time for 100 runs, and RMSE for
all algorithms

Table 10 contains results for the total time, inference time, ratio of to@kdim
LS total time, and RMSE for LS, AIS, reduction to polytree, bounding clique sigtes w
pre-processing, and general bounding clique sizes (with desired clique bounds 4, 5, 6, 8,
10, and 12). The ratio of total time to LS total time for an algorithm is the alg&ithm
total time divided by LS’s total time. This ratio will be close to zero if therahm is
much faster than LS, close to one if the algorithm takes about the same amouatas tim
LS, and bigger than one if the algorithm is slower than LS. Note that this tablaaises t
abbreviation b=i" for the general bounding clique sizes algorithm with a desired clique
bound ofi. Finally, the names of each network are shortened to allow this table to fit on
the page. For the full names of each network, see Table 3. Each time and RMSE value
in the table is averaged over five runs, and all time values are in milliseconds.

Essentially, this table combines the results in Figures 18-21 and Tables 8 and 9.

84

CHAPTER SIX: Discussion and Future Work

Chapter 5 presented results on the speed and accuracy comparisons between
reduction to polytree, bounding clique sizes with pre-processing, general bourglieg c
sizes (with desired clique bounds 4, 5, 6, 8, 10, and 12), LS, and AIS (with 2,000
samples). The total time, inference time, and time required for 100 runs wegyaredm
for each algorithm. This chapter interprets each chart and table of speed aadyaccur
comparisons, and discusses what those results say about the usefulness of tee/three n
algorithms. The chapter closes by summarizing the contents of this thedigiand t
discussing what future research is motivated by the results described here
6.1 Interpretation of Results

This subsection will comment on each chart and graph of the speed and accuracy
results presented in Chapter 5.
6.1.1 Time Results Discussion

This section contains commentary on the speed results from Chapter 5.
Specifically, it discusses the total time comparison, inference time csmpaand time

for 100 runs for each algorithm.

Total Time Discussion:

Consider first the graph for total time comparison between LS, AIS, reduction to
polytree, bounding clique sizes with pre-processing, and general bounding clique sizes
(with a clique bound of 5) in Figure 18. The total time for reduction to polytree and both
bounding clique sizes techniques is less than that of AIS for every network. In some

networks, the difference is striking. For Water, reduction to polytree finislg%% iof

85

the time for AIS, and both bounding clique sizes techniques finish in each of the three
new algorithms finish in 0.8% or less of the time it takes AlIS. For Barley,treduo
polytree finishes in 18% of the time needed for AIS and the two bounding clique sizes

techniques finish in 0.2% or less of the time for AlIS.

Unlike for AIS, the three new algorithms do not always perform faster than LS.
For Hailfinder and CPCS-179, LS performs faster than all three algorithhogugh
these algorithms have the largest number of nodes of any of the networks testack they
not nearly as complex as the Water and Barley networks. Even on these net®orks, L
does not perform more than five times faster than the three new algorithms, laiodl eac
the new algorithms still finish in 25 seconds or less. By comparison, reduction to
polytree finishes in 4% of the time required for LS on the Water network, and the two
bounding clique sizes algorithms finish in 0.4% or less of the time for LS on Water.
Furthermore, LS requires 7.5 hours to run the Barley network, while the reduction to
polytree technique finishes in 0.6% of that time and the two bounding clique sizes

techniques only require 0.008% of the LS time.

Total Time for General Bounding Cligue Sizes Discussion:

Next, consider the total time comparison of the general bounding clique sizes
algorithm (for cliqgue bounds 4, 5, 6, 8, 10, and 12) in Figure 19. Notice that for some
networks (namely, Sprinkler, Asia, Alarm-13, Alarm, CPCS-54 and Hailfinderg ther
little difference between the total times with different clique bounds. Thiscsuse the

initial maximum clique size using MCS for these networks was alread{skesvTable

86

3), and so the general bounding clique sizes algorithm did not need to delete more edges

as the clique bound got smaller.

For Water and Barley, however, there is a significant difference betivedime
required for a clique bound of eight and the time required for a clique bound of 10 or 12.
For Barley, the time required for a clique bound of eight is 1% the time reqairad f
cliqgue bound of 10. For Water, the time required for a clique bound of eight is 23% the
time required for a clique bound of 10 and 0.6% of the time required for a clique bound
of 12. For both the Water and Barley networks, the chart in Figure 19 shows how the

total time is exponential in the size of the maximum clique.

Inference Time Discussion:

Consider the inference time comparison between reduction to polytree, bounding
clique sizes with pre-processing, general bounding clique sizes (with a clique bound of
five), and LS in Figure 20. (Recall that AIS was not included in this comparison becaus
it did not have a separate inference phase.) In this chart, LS is either cteegaivalent
to the three new algorithms on all networks. The difference is again most raahk
Water and Barley networks. For the Water network, reduction to polytree finishes i
0.003% of the time required for LS, and the two bounding clique sizes techniques finish
in at most 0.06% of the time for LS. For Barley, all three algorithms finish irostt m
0.003% of the time required for LS. While LS takes 7.5 hours to complete inference on

Barley, the three new algorithms take at most 7 seconds.

87

Inference Time for General Bounding Clique Sizes Discussion:

The comparison of the inference time required for the general bounding clique
sizes algorithm (with different clique bounds 4, 5, 6, 8, 10, and 12) appears in Figure 21.
Again, notices that several networks have no difference in inference timeshetwe
different clique bounds. This is because the initial maximum clique size provides to t
algorithm by MCS was already close to the minimum clique bound of four — hence the
algorithm performs similarly on different clique bounds for those networks. However,
notice that Insurance, Water, Barley, and CPCS-179 all have noticeable ddferenc

between the inference time with a clique bound of four and a clique bound of 12.

For the Water and Barley networks, the general bounding clique sizeshaigorit
still performs significantly faster than LS even with a larger ddsitique bound (see
Figure 20 for the inference time of LS). For Water, the algorithm witlgaecbound of
eight still completes inference in 0.45% of the time required for LS; foegagkeneral
bounding clique sizes with a clique bound of eight completes inference in 0.96% of the

time for LS.

100 Runs Time Discussion:

Consider the time values for 100 runs of reduction to polytree, bounding clique
sizes with pre-processing, general bounding clique sizes (with a clique bound,of five)
LS, and AIS presented in Figure 22. Recall that the time to run an inferencéhaigori
100 times is computed by adding the pre-processing time to 100 times the infanence
As was true for inference time, the three new algorithms are fasteottleguivalent to

AIS and LS over 100 runs for every network. Again, Water and Barley show the most

88

significant differences between the techniques. On Water, the new algacdhmiete
100 runs in at most 0.07% of the time needed for LS, and at most 0.15% of the time
needed for AIS. For Barley, each of the three algorithms completes 100 runsast at

0.0009% of the time needed for LS, and at most 0.2% of the time needed for AlS.

100 Runs Time for General Bounding Cligue Sizes Discussion:

Finally, consider the chart in Figure 23 that compares the time for 100 runs of the
general bounding clique sizes algorithm (with desired clique bounds 4, 5, 6, 8, 10, and
12). Notice that for the networks Insurance, Water, Barley, and CPCS-179, there is a
significant difference between the time for 100 runs at a lower cliqué¢osibe time at a
higher clique size. However, even a more generous clique bound can produce savings
over LS (see Figure 22 for the time to run LS 100 times on different networks). For
Water, the time for 100 runs with a clique bound of eight is 0.45% the time needed for
LS. For Barley, the time for 100 runs with a clique bound of eight is 0.96% the time
needed for LS.

6.1.2 Accuracy Results Discussion

This section contains commentary on the accuracy results from Chapter 5. |
discusses the RMSE values shown in Chapter 5 for each approximate infererittenalg
— AIS, reduction to polytree, bounding clique sizes with pre-processing, and general

bounding clique sizes.

RMSE Discussion:

Consider the RMSE values for the approximate inference algorithmsicetiaect

polytree, bounding clique sizes with pre-processing, general bounding cligsiéveithe

89

a clique bound of five), and AIS presented in Table 8. The first notable charactdristic
the RMSE values is that AIS does produce smaller or similar error valueddahaie
three of the new algorithms on all networks except Barley. However, A&wseen

three and 500 times slower (and usually closer to the higher end) than the three new
algorithms on every network, and the error values for the three new algorithms a

generally no more than ten times higher than those of AIS.

Furthermore, the reduction to polytree algorithm produces a poor RMSE value of
0.1 or higher on only one out of ten networks (Alarm). The general bounding clique sizes
also only produces a poor RMSE value on one network (Water), and the bounding clique
sizes with pre-processing algorithm has poor accuracy on only two networks @neite
CPCS-179). Perhaps more importantly, the RMSE values for Barley are qu{i0@&
or lower) for each of the three new algorithms, while AIS produces a poowvatuerof
0.125. Recall that the two bounding clique sizes techniques compute inference for Barley

in 0.2% of the time for AIS and in 0.008% of the time for LS.

Lastly, note that several RMSE values are 0.0 for the two bounding clique sizes
techniques. This occurs when the maximum clique size in the original MCS taaogul
is less than the desired clique bound of five. In this case, no edges need to be deleted to

reach the bound, so the bounding clique sizes algorithms perform just like LS.

RMSE for General Bounding Clique Sizes Discussion:

Finally, consider the RMSE values for the general bounding clique sizes
algorithms (with clique bounds of 4, 5, 6, 8, 10, and 12) in Table 9. Most of the results in

this table are unsurprising — generally, as the allowed clique sizasesighe RMSE

90

slightly decreases. However, the one interesting network in this tableeas. ViRecall
that Water was the only network on which the general bounding clique sizes algorithm
(with a clique bound of five) was fairly inaccurate — with an RMSE of 0.19. This
algorithm continues to perform inaccurately with a clique bound of six, but the RMSE
drops to a very low 0.00246 with a clique bound of eight. Furthermore, running this
algorithm with a clique bound of eight on Water still takes 0.6% of the time for LS.
6.1.3 Standard Deviation Discussion

Consider Tables 4-7, which report the percent standard deviation for the average
total time and average inference time over five runs of LS, AIS, bounding cliease siz
with pre-processing, and general bounding clique sizes (with desired clique bodnds of
5, 6, 8, 10, and 12). These results were reported simply to show that the standard
deviation of algorithm time was disinteresting. Indeed, because evenytlalyori
(including the three new ones) except AIS has no random element and hence rilys exac
the same way every time, any variance at all in system time would aaeelt of the
algorithm. These tables do report some high percent standard deviation values for the
algorithms (such as 137% for the inference time of reduction to polytree on te Wa
network), but these high values are a result of the Java current time measu@ment
being accurate enough. In the case of reduction to polytree on the Wateknetwor
inference time for each of the five runs was either 15 ms or 0 ms. This isd#oaus
Java current time measurement is unable to accurately measure such aibdedffpe

time.

The percent standard deviation values for AIS are a bit more interestingsdeca

AIS does perform differently each time it is run (due to the random samplp)g ste
91

However, AIS has relatively low percent standard deviation values (less thdar6%)
time on most networks. On the two networks it has slightly higher percent standard
deviation values (Alarm-13 and Alarm), AIS finished in an average time of 113 ms.
Since this is still a relatively low total time, the higher standard dewiatn again be
blamed on the coarse measurements of Java current time.
6.2 Conclusion and Future Work

In conclusion, the reduction to polytree, bounding clique sizes with pre-
processing, and general bounding clique sizes algorithms showed promising results.
They were no slower than either LS or AIS in the 100 run test on all netword, taxst
ran up to 10,000 times faster for a single run on the more complex networks.
Furthermore, the error introduced by these two techniques was minimal — reduction to
polytree and general bounding clique sizes had RMSE values under 0.1 for nine out of
ten networks, and bounding clique sizes with pre-processing had low RMSE values for
eight out of ten networks. Furthermore, the general bounding clique sizeshatgoaid
RMSE values below 0.1 for all ten networks if the appropriate maximum clique size

bound was used.

The results of the general bounding clique sizes algorithm when run with wliffere
desired cligue bounds showed that even when the desired clique bound got as high as
eight, its time for 100 runs was no slower than LS and again, often much faster. For
example, Water still performed 160 times faster than LS with a clique bourghtftaut
had a much lower RMSE value when allowed the more relaxed clique bound. It appears
that even a slight reduction in the original maximum clique size for a networkiltan st

yield a tremendous speedup from LS.
92

As future research, one could examine how to predict which clique bound to give
the bounding clique size algorithm, based on network properties, that would yield the
best compromise between speedup and introduced error. As part of researching these
network properties, one might develop a “complexity metric” for a networkakest
into account properties such as number of nodes, number of edges, size of probability
tables, and other factors to determine how complex a network is. While exact inference
algorithms such as LS are exponential in the size of the maximum clique, kg Bar
network (with 48 nodes and a maximum clique size of 8) takes much longer to run than
CPCS-54 (with 54 nodes and a maximum clique size of 18). A complexity score could
help to appropriately determine how hard inference is for a particular networkowdd ¢
be the first step in determining the best clique bound. It would also be useful to compare
the three new algorithms presented here with a larger set of exact and rappgoxi
inference algorithms, including several different implementations of L% whe
triangulated with optimized triangulation algorithms. Finally, one could tgshree
algorithms with different initial evidence values to see how they performumiikely

evidence values.

Another point that should be addressed in the future is the experimental design for
the comparison of my three new algorithms with AIS. | always tested A2y000
samples — a number | chose so the AIS running time would be similar to the runming tim
of my new techniques. However, the AIS running time is always slower than the new
techniques, while its RMSE values are lower. Clearly, 2,000 was not a good choice for
the number of samples. A better experiment would be to let AIS run for the samitam

of time as my techniques, and then to compare the error values between the algorithms
93

with that fixed amount of time. | did a few preliminary tests where |dichihe AIS time
to the time required by my algorithms, and in those cases the AIS error valees we

higher than for my techniques.

The techniques of reducing a network to a polytree or bounding the clique sizes in
a junction tree are novel approaches to creating efficient approximatnicger
algorithms for Bayesian networks. As such, there is much room for research in

constraining the structure of a network in order to speed up the inference process.

94

BIBLIOGRAPHY

[Amir01] E. Amir. Efficient approximation for triangulation of minimum treeviidt
Uncertainty in Artificial Intelligence (UAI2001pp. 7-15. Morgan Kaufmann, 2001.

[Arnborg87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding
embeddings in &tree. SIAM Journal on Algebraic and Discrete Methpagsl. 8, pp.
277-284, 1987.

[Bodlaender01] H. Bodlaender, A. Koster, F. van den Eijkhof, and L. van der Gaag. Pre-
processing for triangulation of probabilistic networkéncertainty in Artificial
Intelligence (UAI2001)pp. 32-39. Morgan Kaufmann, 2001.

[CanoMoral94] A. Cano and S. Moral. Heuristic Algorithms for the Triangulation of
Graphs. Irinternational Conference on Processing and Management of Uncertainty in
Knowledge-Based Systems, Advances in Intelligent Compppng8-107, 1994.

[ChengDruzdzel00] J. Cheng and M. Druzdzel. AlIS-BN: An adaptive importance
sampling algorithm for evidential reasoning in large Bayesian netwddkgnal of
Artificial Intelligence Researglvol. 13, pp. 155-188, 2000.

[Cooper90] G. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networksArtificial Intelligence vol. 42, pp. 393-405. Elsevier Science
Publishers, 1990.

[CoverThomas91l] T. Cover and J. Thom&sements of Information Theoryohn
Wiley & Sons, Inc., New York, 1991.

[DagumLuby93] P. Dagum and M. Luby. Approximating probabilistic inference in
Bayesian belief networks is NP-harArtifiical Intelligence vol. 60, pp. 141-153.
Elsevier Science Publishers, 1993.

[Dasgupta99] S. Dasgupta. Learning polytrédacertainty in Artificial Intelligence
(UAI1999) Morgan Kaufmann, 1999.

[Diestel00] R. Diestel.Graduate Texts in Mathematics: Graph TheoBpringer, New
York, 2000.

[FungChang88] R. Fung and K. Chang. Weighing and integrating evidence for stochas

simulation in Bayesian networks. Uncertainty in Artificial Intelligencevol. 5, pp. 209-
219. Elsevier Science Publishers, New York, 1988.

95

[Henrion88] M. Henrion. Propagating Uncertainty in Bayesian Networks by Pribiabil
Logic Sampling. InJncertainty in Artificial Intelligencevol. 2, pp. 149-163. Elsevier
Science Publishers, New York, 1988.

[Kjaerulffo3] U. Kjaerulff. Approximation of Bayesian networks through edgeonals.
Technical Report IR-93-2007, Department of Mathematics and Computer Science,
Institute for Electronic Systems, Denmagkigust 1993.

[LauritzenSpiegelhalter88] S. Lauritzen and D. Spiegelhalter. Local cotignstavith
probabilities on graphical structures and their application to expert syskamnsal of
the Royal Statistical Societypl. B 50, pp. 253 - 258, 1988.

[Murphy98] K. Murphy. A Brief Introduction to Graphical Models and Bayesian
Networks 1998. Retrieved December 16, 2004, from
http://www.ai.mit.edu/~murphyk/Bayes/bayes.html.

[Neapolitan04] R. NeapolitarLearning Bayesian Network$rentice Hall, Upper
Saddle River, NJ, 2004.

[Pearl88] J. PearlProbabilistic reasoning in intelligent systemBlorgan Kaufmann,
San Mateo, CA, 1988.

[SchachterPeot90] R. Shachter and M. Peot. Simulation approaches to general
probabilistic inference on belief networks.Umcertainty in Artificial Intelligencevol. 5,
pp. 311-318. Elsevier Science Publishers, New York, 1990.

[TarjanYannakakis84] R. Tarjan and M. Yannakakis. Simple linear-time tilgwmito
test chordality of graphs, check acyclicity of hypergraphs, and sellgcteduce acyclic
hypergraphs. 1I8IAM Journal of Computingol. 13, pp. 566-579, 1984.

[vanEngelen96] R. van Engelen. Approximating Bayesian belief networks by arc
removal. Technical Report TR-96-15, Department of Computer Science, Leiden
University, the Netherlanddune 1996.

[Wen90] W. Wen. Optimal decomposition of belief networkdJhrcertainty in Artificial
Intelligence pp. 245-256, 1990.

96

APPENDIX
This appendix contains detailed walkthroughs of some of the algorithms presented
in the background section in Chapter 1. Included in this section are walkthroughs of
Pearl’s algorithm, the Lauritzen-Spiegelhalter algorithm, the maxicandinality search
triangulation algorithm, a computation of the optimized Kullback-Leibler infaomat
divergence for an edge in a Bayesian network, and Bodlaender’s triangulgtiotne
with pre-processing rules.

A.1 Walkthrough of Pearl’s Algorithm
Below | provide a walkthrough of Pearl’s algorithm on a small example.

Sprinkler
false | 70.0% false | 50.0%

true | 30.0% true | 50.0%

Wetiarass

Sprinkler false true

Fain false true false true

false 100.0% | 10.0% 10.0% 1.0%
true 0.0% 90.0% | 90.0% | 99.0%

Figure 24. Small Sprinkler-Rain network for the walkthrough of Pearl’s algorithm

Consider the Bayesian network in Figure 24 above. First, suppose there is no evidence.
Then Pearl’s algorithm would compute the posterior probabilities for each node as

follows. For simplicity, | will denote the node Sprinkler &, ‘the node Rain asR’,

97

and the node WetGrass a&™ | will also denote the value false as “F” and the value

true as “T".
Initialization:

1) Set alll valuesA messages, andmessages to 1:

AS=T) =1, AS=F) =1
MR=T) =1, MR=F) =1
AW=T) =1, MAW=F) =1

TwW(S=T) =1, TwW(S=F) =1
rw(R=T) =1, zw(R=F) =1
Iw(S=T) =1, AIW(S=F) =1
IWR=T) =1, IWMR=F) =1
2) For all rootsA, if A hasm possible values, then for<li< m, setz(A = &) = P(aj):
7(S=T) =0.3, 7(S=F) =0.7
z(R=T) = 0.5, z(R=F) =0.5
3) For all rootsA and for all childrerB of A, post a newt message t8:
w(S=T) =0.3, zw(S=F) =0.7

tw(R=T) =05, =zwR=F) =05

98

Main Flow:
1) Wreceives a message fror (note that the new message frorRRis still (1, 1)):
a(W=T)=PW=TS=T,R=T)zwW(S=T)zwW(R=T)
+P(W=TS=T,R=F)zwW(S=T)7wWR=F)
+P(W=T[S=F,R=T)zW(S=F)zw(R=T)
+P(W=T|S=F,R=F)zW(S= F)zw(R=F)
=0.99*0.3*1+0.9*0.3*1+0.9*0.7*1+0*0.7*1 = 1.197
x(W=F)=P(W=F5=T,R=T)zwW(S=T)zwW(R=T)
+PW=FB=T,R=F)zw(S=T)zwR=F)
+PW=FB=F,R=T)zw(S=F)zwR=T)
+P(W=FB=F,R=F)zwW(S=F)zwR=F)
=0.01*0.3*1+0.1*0.3*1+0.1*0.7*1+1*0.7*1 = 0.803
P(W=T)=0*1*1.197 = 1.19%
P(W=F) =0*1*0.803 = 1.19%
Normalizing, we geP’'(W=T) = 0.5985P’(W = F) = 0.4015.
2) Wreceives a message frorR:
r(W=T)=PW=TS=T,R=T)zwW(S=T)zwW(R=T)
+PW=TS=T,R=F)zwW(S=T)zwWR=F)

+PW=TS=F,R=T)zwW(S=F)zwW(R=T)

99

+PW=T[S=F,R=F)zwWS=F)zwWR=F)
= 0.99*0.3*0.5+0.9*0.3*0.5+0.9*0.7*0.5+0*0.7*0.5 = 0.5985

x(W=F)=P(W=F5=T,R=T)zwW(S=T)zwW(R=T)
+P(W=FB=T,R=F)zw(S=T)zWR=F)
+PW=FB=F,R=T)zw(S=FzwR=T)
+P(W=FB=F,R=F)rW(S=F)zwWR=F)
=0.01*0.3*0.5+0.1*0.3*0.5+0.1*0.7*0.5+1*0.7*0.5 = 0.4015

P(W=T) =a*1*1.197 = 0.598%

P(W=F) =0*1*0.803 = 0.401%

Normalizing, we geP’'(W=T) = 0.5985P’(W = F) = 0.4015.

3) There are no more messages to send, so propagation ends. Since no messages were
sent to R or S, their posterior probabilities are the same as their prior pitezabiThus

we have that:
P(S=T)=0.3, P(S=F)=0.7
P(R=T)=0.5, P(R=F)=05

P(W=T) =0.5985, P\V=F)=0.4015

Continuing the walkthrough above, consider next that the node WetGrass is instantiated
to false. Pearl’s algorithm would then calculate the new posterior proilestiitit each

node given this new evidence as follows:
100

1) Wis instantiated to F:
P(W=T)=0, P(W=F)=1

AW=T) =0, AW=F) =1
Send. messages to S and R:
AwW(S=T) =z WR=T)[PW=TR=T,S=T)A(W=T)
+P(W=FR=T,S=T) (W= F)]
+7rw(R=F)¥[P(W=TR=F,S=T)A(W=T)
+P(W=FR=F,S=T) (W= F)]
= 0.5*[0.99%0 + 0.01*1] + 0.5*[0.9*0 + 0.1*1] = 0.055
Aw(S=F) =z w(R=T)PW=TR=T,S=F)AW=T)
+P(W=FR=T,S=F)4(W=F)]
+7w(R=F)*[P(W=TR=F,S=F)AW=T)
+P(W=FR=F,S=F)XW= F)]
= 0.5*[0.9%0 + 0.1*1] + 0.5*[0*0 + 1*1] = 0.55
AWR=T) =z W(S=T)[PW=TR=T,S=T)A(W=T)
+P(W=FR=T,S=T) (W= F)]
+7w(S=F)P(W=TR=F,S=T)A(W=T)
+P(W=FR=F,S=T) (W= F)]

= 0.3*[0.99*0 + 0.01*1] + 0.7*[0.9*0 + 0.1*1] = 0.073

101

Jw(REF) =rw(S=TPPW=TR=T,S=F)A(W=T)
+P(W=FR=T,S=F)A(W= F)]
+7W(S=F)[PW=TR=F,S=F)AW=T)
+P(W=FR=F,S=F)A(W= F)]
= 0.3*[0.9*0 + 0.1*1] + 0.7*[0*0 + 1*1] = 0.73
2) Sreceives d message froriV:
A(S=T)=Aw(S=T)=0.055
MS=F)=1wW(S=F)=0.55
P'(S=T) =0*0.055*0.3 = 0.0164
P(S=F) =0*0.55*0.7 = 0.38%
Normalizing, we geP’'(S=T) = 0.0411P’(S=F) = 0.9589.
3) Rreceives d message frori:
M(R=T)=AwW(R=T)=0.073
MR=F)=AW(R=F)=0.73
P(R=T) =¢*0.073*0.5 = 0.036&
P(R=F) =a*0.73*0.5 = 0.36%
Normalizing, we geP’(R=T) = 0.0909P’(R = F) = 0.909.

4) There are no more messages to send, so propagation ends. The posterior probabilities

(gathered in the steps above) are as follows:

102

P(S=T)=0.0411, P(S=F)=0.9589
P(R=T) =0.0909, P’(R=F)=0.909

P(W=T)=0, P(W=F)=1
A.2 Walkthrough of the Lauritzen-Spiegelhalter Algorithm

Because the message-passing portion of LS is very similar to Regollghm, |
will only go through an example of creating a clique tree from a Bayestwork here.

For a more detailed description of LS, see [LauritzenSpiegelhalter88].

Tuberculosis

Figure 25.The Asia Bayesian network for the walkthrough of LS

In Figure 25 above is our original Bayesian network, called Asia. This “toy”
network is used as an example in many Al textbooks and papers. The first stejpSn the
algorithm is to moralize the graph by adding undirected edges between common parents
and removing directionality of the edges. In Asia, the nodes Tuberculosis and &ancer

both parents of the TbOrCa node, so an edge is added between them. Also, the nodes

103

TbOrCa and Bronchitis are both parents of the Dyspnea node, so an edge is added

between them.

Tuberculosis Cancer

Figure 26.The moralized graph for the Asia network

Figure 26 above shows the result of adding the undirected edges {Tuberculosis,

Cancer} and {TbOrCa, Bronchitis} to moralize the graph.

The next step in the LS algorithm is to triangulate the moralized graph. A graph
is triangulated if and only if it contains no induced subgraph of that is a simpleofycle
length at least four. Triangulation algorithms are covered in detail iro8dc8, but for

now we can examine the graph visually and add the necessary edges.

Notice that in the moralized graph in Figure 26, the cycle {TbOrCa, Cancer,
Smoking, Bronchitis} has length 4. Thus, we must add a chord to break this cycle. If we

add the edge {Cancer, Bronchitis}, then the graph will be triangulated. However,

104

because of the triangulation algorithm that | used to model this examplegthe ed
{Tuberculosis, Bronchitis} is also added. (Note that if unnecessary edges are@dded t
triangulated graph, the resulting graph will still be triangulated. Tha eges,

however, may increase the size of the largest clique.)

Tuberculosis

Cancer
5

Branchitis
1=5] =2

&%
I=7 I=3

Figur 27. A triangulation of the Asi Bayesian network

Figure 27 above shows the Asia network after triangulating the moralaged g
by adding the chord {Cancer, Bronchitis} and the additional edge {Tuberculosis,

Bronchitis}.

Finally, we must identify cliques and construct a clique-tree from themin Ama
detailed description appears in Section 1.3 on how to identify cliques in a triangulated
graph, but for now we will pick them out visually. By looking at the graph in Figure 27,

we can pick out the cliques {TbOrCa, Dyspnea, Bronchitis}, {TbOrCa, Bronchitis,

105

Tuberculosis, Cancer}, {TbOrCa, XRay}, {Bronchitis, Cancer, Smoking}, and
{VisitAsia, Tuberculosis}. Once we have identified the cliques, we must plageitha
clique-tree. Two cliques in a clique-tree can only be connected by an elagyg lilatve at
least one node in common. The clique-tree must also maximize the total number of
“separator” nodes that are common between cliques. Essentially, we buildjtiectotie
by first making a graph with the different cliques as nodes and with all possibés
between cliques. Each edge is weighted with the number of separator nodes that a
common between the two cliques on that edge. The clique-tree is then the maximal

spanning tree of the constructed graph of cliques.

1 ThOrCa,Dyspnea,Bronchitist

{ThorCa,xRay

f . -_E_
{TbOrCa,E.rc:nu:hlt|5,Tuberc:uIDS|54,Ea_r"|_c:_e_rj>

{%isitasia, Tuberculosis ¢

{Bronchitis, Cancer, Smoking

Figure 28.The clique-tree for the Asia network

Figure 28 above shows the construction of the clique tree from the five cliques in

the triangulated graph that maximizes the number of separator nodes. LS would now
106

initialize the clique potentials by using the conditional probabilities of eade in a
clique, perform message-passing to update each clique potential to refledttece
above and below it, and then to extract the posterior probabilities of each node by
marginalizing the final clique potentials.
A.3 Walkthrough of the Maximum Cardinality Search Algorithm

Consider again the moralized graph for the Asia network in Figure 26. Assuming
that the directionality of each edge has been removed, a walkthrough of he MC
algorithm on the undirected, moralized version of Asia appears below. Note thaixa verte

v is consideredinnumberedf f(v) is undefined.

Initialization: for all verticesy 'V, w(v) < 0

w(VisitAsia) < 0, w(Smoking)« 0,
w(Tuberculosis}— 0, w(Cancer)— 0,

w(Bronchitis)« 0, w(TbOrCa)« 0,
w(XRay) « 0, w(Dyspnea)— 0.

Main step 1, i = 8:
choose = VisitAsia, seff(VisitAsia) = 8
VisitAsia’s unnumbered adjacent vertices include {Tuberculosis}:
w(Tuberculosis}— 1.
Main step 2,i=7:

choose = Tuberculosis, sé{Tuberculosis) = 7

107

Tuberculosis’s unnumbered adjacent vertices include {Cancer, TbOrCa}:

w(Cancer)— 1, w(TbOrCa)« 1.

Main step 3, i = 6:

choosez = Cancer, sd(Cancer) = 6

Cancer’s unnumbered adjacent vertices include {TbOrCa, Smoking}:

wW(TbOrCa)« 2, w(Smoking)« 1.

Main step 4, i = 5:

choosez = ThOrCa, sef(TbOrCa) =5

TbOrCa’s unnumbered adjacent vertices include {XRay, Dyspnea, Bronchitis}:

w(XRay) « 1, w(Dyspnea)— 1, w(Bronchitis)— 1.

Main step 5, i = 4:

choosez = Smoking, sef(Smoking) = 4

Smoking’s unnumbered adjacent vertices include {Bronchitis}:

w(Bronchitis)« 2.

Main step 6, i = 3:

choosez = Bronchitis, set(Bronchitis) = 3

Bronchitis’s unnumbered adjacent vertices include {Dyspnea}:

w(Dyspnea)— 2.

108

Main step 7, i = 2:

choosez = Dyspnea, sd{Dyspnea) = 2

Bronchitis has no unnumbered adjacent vertices.
Main step 8, i = 1:

choosez = XRay, sef(XRay) =1

XRay has no unnumbered adjacent vertices.
MCS algorithm ends.

Next, we must compute the fill-in of the graph givday stepping through each vertex

and adding edges so that its higher ordered neighbors form a clique. Table 11 below
shows the current vertex in each step of the fill-in, its neighbors, its higheedrde

neighbors, and the new edges that must be added to the graph to make its higher-ordered
neighbors form a clique. Note that a node’s neighbors at a given stage iroteisspr

might include a neighbor added in a previous step.

Node Current Neighbors Higher- New Edges Added
order Vertex Ordered
Neighbors

1 VisitAsia Tuberculosis Tuberculosis none

2 Tuberculosis | VisitAsia, Cancer, none (edge {Cancer,
Cancer, TbOrCa | TbOrCa TbOrCa} already

there)

3 Cancer Tuberculosis, Smoking, {Smoking, TbOrCa}
Smoking, ThOrCa
TbOrCa

4 TbhOrCa Tuberculosis, Bronchitis, {Bronchitis, XRay},
Cancer, Smoking, {Smoking, XRay},
Bronchitis, XRay, {Smoking,
Smoking, XRay, | Dyspnea Dyspnea}, {XRay,
Dyspnea Dyspnea}

109

5 Smoking Cancer, Bronchitis none
Bronchitis,
TbOrCa

6 Bronchitis Smoking, Dyspnea none
TbOrCa, Dyspnea

7 Dyspnea TbhOrCa, none none
Bronchitis

8 XRay TbOrCa none none

Table 11.The fill-in construction on the Asia network using an ordering from MCS

If we add the edges from the table above to the original graph, we get therfgllowi

result:

Tuberculosis

Figure 29. The triangulation of the Asia network using MCS

Figure 29 above shows the result of the moralized, undirected Asia network after
triangulation with the MCS algorithm. Triangulation resulting in adding thesdg

{Smoking, TbOrCa}, {XRay, Bronchitis}, {Smoking, XRay}, {Smoking, Dyspnea}, and
110

{XRay, Dyspnea} to the moralized, undirected graph, which yields a maximguorecli
size of five in the triangulated graph. (Note that this triangulation of theBssiasian
network is different than the triangulation given in Figure 27 as part of the LS
walkthrough because the nodes were initially chosen in a different order inothe tw
triangulations.)
A.4 Example Calculation of Optimized KL Divergence

Consider the Sprinkler Bayesian network in Figure 1. Suppose that we want to
compute the KL divergence between the original probability distribution and the

probability distribution that results from deleting the edge (Cloudy, Rain).

false | 50.0%
50,0%
Sprinkler
Rain
Cloudy | false true
false | S0.0%
false 50.0% a0,.0%
true | 50.0%
frue 50.0% 10.0%:
WetGrass
Sprinkler false true
Fain false true false true
false 100.0% | 10.0% 10.0% 1.0%
true 0.0%: a0.0% a0.0%: a9, 0%

Figure 30. Sprinkler network with edge (Cloudy, Rain) deletedsprinkler’

Figure 30 above shows the network (now called Sprinkler’ with probability distribution

P’) and corresponding probability distribution that results from deleting edgad|

111

Rain) from the Sprinkler Bayesian network. Now, to compute the optimized KL
divergence between the probability distribution for SprinklerRnave must step

through each possible instantiation of the parents of Rain and Rain itself. This nreeans w
must step through each instantiation of {Cloudy, Rain}. To save space, | willoefer t

Cloudy as C and Rain as R:

P(Rain =T | Cloudy = T) P(Cloudy =T) *
log(P(Rain = T | Cloudy = T) P'(Rain = T) +

P(Rain = F | Cloudy = T) P(Cloudy = T) *
log(P(Rain = F | Cloudy = T)P'(Rain = F) +

P(Rain =T | Cloudy = F) P(Cloudy = F) *
log(P(Rain = T | Cloudy = F)P'(Rain = T) +

P(Rain = F | Cloudy = F) P(Cloudy = F) *
log(P(Rain = F | Cloudy = F)P’(Rain = F)

By looking up the appropriate values for the probabilities in Figures 22 and 1, the above

formula becomes the following:
0.8*0.5*l0g(0.8/0.5) + 0.2*0.5*log(0.2/0.5) +
0.2*0.5*log(0.2/0.5) + 0.8*0.5*log(0.8/0.5)

which is 0.1927. By comparing this number with the KL divergence for deleting other
edges in the Sprinkler network, we can determine which edges contain the most

information. If deleting an edge yields a comparatively high KL divergehea it is

112

more important to the network. If it yields a comparatively low KL divergehes, that

edge is less important to the network.

A.5 Walkthrough of Triangulation Pre-Processing Rules
Consider again the moralized graph for the Asia network in Figure 26. Assuming that

the directionality of each edge has been removed, a walkthrough of the pre-pgcessi

algorithm on the undirected, moralized version of Asia appears below.
1) Initialize valuesiow «— 1,S« {}.
2) VisitAsia is a twig, so it is removeds < {VisitAsia}.
3) XRay is a twig, so it is removed — {XRay, VisitAsia}.
4) No more reduction rules can be appliedleso— low + 1 = 2.

5) The series rule can be applied to Dyspnea. Since its only neighbors, TbOrCa and
Bronchitis, are already adjacent, no edges need to be a8dedDyspnea,

XRay, VisitAsia}.

Tuberculosis

Figure 31.The remaining graph in Asia after step 5 in the triangulation pre-processing
rules

113

6) The modified graph at this point in the algorithm appears above in Figure 31. The
series rule can now be applied to Tuberculosis. Since its only neighbors, Cancer
and TbOrCa, are already adjacent, no edges need to be &lddduberculosis,

Dyspnea, XRay, VisitAsia}.

7) The series rule can be applied to TbOrCa. Its neighbors, Cancer and Bspnchiti
are not adjacent, so the edge {Cancer, Bronchitis} must be added to the graph.

S— {TbOrCa, Tuberculosis, Dyspnea, XRay, VisitAsia}.

Bronchitis

Cancer
_:—//j

Figure 32: The remaining graph in Asia after step 7 in the triangulation pre-processing
rules

8) The modified graph at this point in the algorithm appears above in Figure 32. The
series rule can now be applied to Cancer. Since its only neighbors, Smoking and
Bronchitis, are already adjacent, no edges need to be a8deflCancer,

TbOrCa, Tuberculosis, Dyspnea, XRay, VisitAsia}.

9) Smoking is a twig, so it is removeds <— {Smoking, Cancer, TbOrCa,

Tuberculosis, Dyspnea, XRay, VisitAsia}.

10) Bronchitis is a twig, so it is removedS — {Bronchitis, Smoking, Cancer,

TbOrCa, Tuberculosis, Dyspnea, XRay, VisitAsia}.
114

11) All vertices have been removed, so the reduction rules stop. Also, since all
vertices have been removed, the perfect elimination schén#he original

graph is given by:

f(VisitAsia) = 1, f(XRay) = 2,
f(Dyspnea) = 3, f(Tuberculosis) = 4,
f(TbOrCa) =5, f(Cancer) = 6,
f(Smoking) = 7, f(Bronchitis) = 8.

12)The fill-in of the original moralized graph givéms now constructed, just like it
was in the MCS algorithm in Table 3. (The only edge added in the fill-in stage is
{Cancer, Bronchitis}.) The resulting triangulated graph appears below ume=ig

33.

Bronchitis

Tuberculosis

Figure 33. The triangulation of the Asia network using pre-processing rules

115

