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Abstract 

The adoption of Remote Sensing (RS) in agriculture have been mainly utilized to 

inference about biological processes in a scalable manner over space and time. In this context, 

this work first explores two non-traditional approaches for rapid derivation of plant performance 

under field conditions. Both approaches focus on plant metrics extraction exploiting high spatial 

resolution from Unmanned Aerial Systems (UAS). Second, we investigate the spatial-temporal 

dynamics of corn (Zea mays L.) phenology and yield in the corn belt region utilizing high 

temporal resolution from satellite. To evaluate the impact of the adoption of RS for deriving 

plant/crop performance the following objectives were established: i) investigate the 

implementation of digital aerial photogrammetry to derive plant metrics (plant height and 

biomass) in corn; ii) implement and test a methodogy for detecting and counting corn plants via 

very high spatial resolution imagery in the context of precision agriculture; iii) derive key 

phenological metrics of corn via high temporal resolution satellite imagery and identify links 

between the derived metrics and yield trends over the last 14 years for corn within the corn belt 

region. For the first objective, main findings indicate that digital aerial photogrammetry can be 

utilized to derive plant height and assist in plant biomass estimation. Results also suggest that 

plant biomass predictability significantly increases when integrating the aerial plant height 

estimate and ground stem diameter. For the second objective, the workflow implemented 

demostrates adequate performance to detect and count corn plants in the image. Its robustness 

highly dependends on the spatial resolution of the image, limitations and future research paths 

are further discussed. Lastly, for the third objective, outcomes evidenced that for a long-term 

perspective (14 years), a lengthened reproductive stage significantly correlates with high yield 

for corn. When considering a shorter-term period (last 4 years) mainly characterized by optimal 



  

growth conditions, early season green-up rate and late season senescence rate positively describe 

yield trend in the region. The significance of the variables changed according to the time-span 

considered. It is noticed that when optimal growth conditions are met, modern-hybrids can 

capitalize by increasing yield, due to primarily a faster (green-up) rate before flowering and on 

senescence rate better describes yield under these conditions. 

The entire research project investigates opportunities and needs for integrating remote sensing 

into the agronomic-based inference process. 
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Abstract 

The adoption of Remote Sensing (RS) in agriculture have been mainly utilized to 

inference about biological processes in a scalable manner over space and time. In this context, 

this work first explores two non-traditional approaches for rapid derivation of plant performance 

under field conditions. Both approaches focus on plant metrics extraction via high spatial 

resolution from Unmanned Aerial Systems (UAS). Second, we investigate the spatial-temporal 

dynamics of corn (Zea mays L.) phenology and yield in the corn belt region utilizing high 

temporal resolution from satellite. To evaluate the impact of the adoption of RS for deriving 

plant/crop performance the following objectives were established: i) investigate the 

implementation of digital aerial photogrammetry to derive plant metrics (plant height and 

biomass) in corn; ii) implement and test a methodogy for detecting and counting corn plants via 

very high spatial resolution imagery in the context of precision agriculture; iii) derive key 

phenological metrics of corn via high temporal resolution satellite imagery and identify links 

between the derived metrics and yield trends over the last 14 years for corn within the corn belt 

region. For the first objective, main findings indicate that digital aerial photogrammetry can be 

utilized to derive plant height and assist in plant biomass estimation. Results also suggest that 

plant biomass predictability significantly increases when integrating the aerial plant height 

estimate and ground stem diameter. For the second objective, the workflow implemented 

demostrates adequate performance to detect and count corn plants in the image. Its robustness 

highly dependends on the spatial resolution of the image, limitations and future research paths 

are further discussed. Lastly, for the third objective, outcomes indicate that lengthened vegetative 

and reproductive stages, green-up and senescence rate metrics describe yield increase between 

2003 and 2017. Both the spatial and temporal components of the model were significant to 



  

describe yield trend. Moreover, when including the temporal component, the model receives 

lower penalization as an indicator of superior fit on describing yield trend in the region. Overall, 

the outcomes indicate that in the last 14 years, a significate trend in both space and time on 

lengthened seasons, faster green-up and senescence rates significantly describe USDA NASS 

increase on yield in the region. 

The entire research project investigates opportunities and needs for integrating remote sensing 

into the agronomic-based inference process. 
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Preface 

Remote sensing is the acquisition of information about an object without making physical 

contact with the object. The carrier of information in remote sensing is electromagnetic radiation, 

which travels in vacuum at the speed of light in the form of waves of different lengths. Remote 

sensing can significantly contribute to providing inference about biological processes in 

agriculture with the advantage of being suitable for gathering information either over small or 

large areas with high spatial and temporal resolutions. The overall dissertation objective was to 

investigate and report applications of remote sensing with significant contribution on crop 

monitoring at different scales. 

The primary objectives for each chapter are as follows: 

1. to examine the relationship between plant height data collected from UAS at critical 

developmental stages and the final biomass estimation of corn hybrids under different 

fertilizer nitrogen (N) management and planting densities (Chapter 1);  

2. to develop a reliable, timely, and unbiased method for identifying and counting corn 

plants based on ultra-high resolution imagery acquired from UAS to automatically scout 

fields using real field conditions (Chapter 2);  

3. to derive key phenological metrics for corn over the US corn belt via high temporal 

resolution MODIS vegetation index, benchmark these phenology metrics against ground-

truth and CPCRs data at the ASD level, and identify the links between the phenological 

metrics and yield trends over the last 14 years (Chapter 3). 
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Chapter 1 - Spatio-temporal evaluation of plant height via 

Unmanned Aerial Systems. 

Varela, S., Assefa, Y; Prasad, P. V. V., Peralta, N. R., Griffin, T, W., Sharda, A., Ferguson, A., Ciampitti, I, A. 

(2017). Spatio-temporal evaluation of plant height via Unmanned Aerial Systems. J. of Applied Remote Sensing 

11(3). doi:10.1117/1.JRS.11.036013  

 

 ABSTRACT 

Detailed spatial and temporal data on plant growth are critical to guide crop management. 

Conventional methods to determine field plant traits are intensive, time-consuming, expensive, 

and limited to small areas. The objective of this study was to examine the integration of data 

collected via unmanned aerial systems (UAS) at critical corn (Zea mays L.) developmental 

stages for plant height and its relation to plant biomass. The main steps followed in this research 

were (1) workflow development for an ultrahigh resolution crop surface model (CSM) with the 

goal of determining plant height (CSM-estimated plant height) using data gathered from the 

UAS missions; (2) validation of CSM-estimated plant height with ground-truthing plant height 

(measured plant height); and (3) final estimation of plant biomass via integration of CSM-

estimated plant height with ground-truthing stem diameter data. Results indicated a correlation 

between CSM-estimated plant height and ground-truthing plant height data at two weeks prior to 

flowering and at flowering stage, but high predictability at the later growth stage. Log–log 

analysis on the temporal data confirmed that these relationships are stable, presenting equal 

slopes for both crop stages evaluated. Concluding, data collected from low-altitude and with a 

low-cost sensor could be useful in estimating plant height.  

Keywords: unmanned aerial systems; structure from motion; corn; imagery.
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 INTRODUCTION 

Use of unmanned aerial systems (UAS) to evaluate crop growth, development, and 

performance is a promising new area of agricultural research (Hunt et al., 2005; Lee et al., 2010; 

Peña et al., 2013; Primicerio et al., 2012). Because piloted aircraft and satellite imagery are either 

prohibitively expensive or not easily available to the required spatio-temporal resolution, the use 

of UAS has been presented as an alternative (Herwitz et al., 2004).  

The flexibility of UAS to conduct low-altitude flight and facilitate high-resolution 

imagery has proven useful for site-specific weed management (Torres-Sanchez et al., 2013); to 

evaluate crop nutrient requirement (Hunt et al., 2005), soil water status (Ryo et al., 2007), and 

crop water stress (Zarco-Tejada et al., 2011); and to monitor vegetation growth (Berni et al., 

2009). Plant height is one of the major indicators of plant growth and development. Plant height 

is positively correlated with plant grain yield (Law et al., 1978; Shrestha et al., 2002; Yin et al., 

2011) plant biomass, and soil nitrogen (N) supply (Yin et al., 2013; Gul et al., 2015). Most 

cereals attain maximum plant height and yield potential at the onset of the reproductive stage 

(Mourtzinis et al., 2013), with approximately half of biomass and N accumulated relative to 

maturity (Freeman et al., 2007; Ciampitti and Vyn, 2012). Therefore, early-season estimation of 

yield potential in cereals can be generated when the plant attained its maximum height (at 

flowering) or right before this point (1 or 2 weeks before flowering). Specifically for corn (Zea 

mays L.), plant height is needed for biomass estimation via stem volume calculation (measured 

via the cylindrical formula based on plant height and stem diameter both determined at 

comparable phenological stages). Previous researchers documented a high degree of correlation 

between ground-truthing based stem volume calculation and plant biomass at flowering in corn 
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(Miles, 1993; Vega et al., 2000; Borras et al., 2003; Maddonni and Otegui, 2004; Pagano and 

Maddonni, 2007; D’Andrea et al., 2008; Ciampitti et al., 2012a).  

Application and process involved in plant height measurement conducted using UAS 

platforms were discussed by few researchers (Anthony et al., 2014; Grenzdörffer, 2014; Bendig 

et al., 2015). The process involves (i) collecting aerial data imagery from a camera mounted 

onboard in UAS, (ii) generating ultrahigh resolution crop surface models (CSMs), and (iii) 

determining plant height from the CSM (Bendig et al., 2013), herein, defined as CSM-estimated 

plant height. However, studies validating CSM-estimated plant height via ground-truthing 

measurements to predict field crop yields are scarce in the scientific literature. Early- or even 

mid-season crop production forecasts assist producers to make informed decisions regarding 

crop and nutrient management, yield estimation, marketing, storage, and transportation (Hammer 

et al., 2001; Raun et al., 2005; Kantanantha et al., 2010; Franzen et al., 2014). Various models 

have been used to make such predictions but current applications of most of these models are 

only for large-scale (regional- or state-level) production systems. As crop management 

progresses from large-scale uniform management to site-specific using precision agriculture 

technologies, evaluation of within-field variation and more accurate yield forecasts should be 

pursued. Following this rationale, plant height relates not only to plant growth during the 

vegetative stages, but this plant trait can also be used to improve the relationship between active 

optical sensor readings and yield estimates (Raun et al., 2005; Franzen et al., 2014). Therefore, 

accurate and rapid plant height prediction could facilitate and improve yield forecast in corn. The 

overall objective of this study was to examine the relationship between plant height data 

collected from UAS at critical developmental stages and the final biomass estimation of corn 

hybrids of different maturity groups under different N management and planting densities. 
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 MATERIALS AND METHODS 

 Study area and dataset 

During the 2015 growing season, four corn experiments were established in 1.2 hectares 

at Ashland Bottoms Farm, Manhattan, Kansas (39.13°N, −96.6°E, 314 m above sea level) (Fig. 

1.1). The nitrogen experiment (NE) was implemented in 9.1 m × 10.6 m plots, with five N 

fertilization levels using urea ammonium-nitrate ranging from 0 to 200 kgNha−1, in 50 kgNha−1 

intervals. The plant density experiment (PE) and plant density gap experiment (PGE) were 

conducted in 6.1 m × 10.6 m plots, whereas the hybrid experiment (HE) was planted in 6.1 m × 

12.2 m plots. All experiments were evaluated in randomized complete block design with five 

replications. Across all studies, row spacing was 0.76 m. Target plant density was 8.4 plantsm−2 

in NE and HE, and a range between 4.4 and 10.4 plantsm−2 for the PE and PGE. Corn hybrid 

used in NE, PE, and PGE was DK61-88 (Dekalb®, Monsanto) 111 days commercial relative 

maturity (CRM). For the HE, corn hybrids evaluated were DK61-88, DK63-55 (113 CRM), 

DK64-69 (114 CRM), and P1105 and P1151 (111 CRM; Dupont Pioneer®). All four corn trials 

were used as a base line to generate spatio-temporal variability of plant height, biomass, and 

yield to evaluate UAS and structure from motion under different plant height scenarios. 

 Platform, sensor and ground-truthing  

An UAS platform (S800, DJI, Shenzhen, China) was used to collect aerial imagery. This 

platform includes the Wookong-Monboard autopilot system and GPS v2 unit (S800, DJI, 

Shenzhen, China). Flight missions and parameter settings were assigned using UgCS ground 

station software (SPH,2013). The platform sensor included in each flight was Alpha ILCE 

A5100 RGB Sony (Tokyo, Japan), mounted with a Sony SELP1650 PZ 16-50 mm lens (sensor 

resolution is 6000 × 4000 pixels). Aperture and exposure time were adjusted manually prior to 



5 

 

each flight mission considering the ground speed of the UAS and light conditions at the time of 

flights. In both flights, camera setting was performed using manual exposure control; shutter 

speed was set to 1∕4000 s, aperture to f5, and ISO to 640 and 16 mm focal length configuration. 

Two UAS missions were performed (17 and 29 July). Highly visible yellow and black (1 m×1 

m) cross-centered plastic ground targets were used as ground control points (GCPs). In this 

project, 14 yellow and black cross-centered plastic (1 m×1 m) GCPs were used as main sources 

for imagery geolocation. The GCPs were distributed on the borders and internal alleys of the 

experiments following the (Gomez-Candon et al., 2014) recommendations. The average distance 

between GCPs was 42 m in both missions. Two critical corn growth stages were identified as 

target candidates for UAS missions: (1) the late vegetative herein termed as pre-flowering and 

(2) onset of reproductive or flowering stage (Ritchie et al., 1996). These UAS mission timings 

were relevant because of the importance of the aforementioned corn growth stages to determine 

if plant height estimates can populate crop yield forecasting models. The goal of this step was to 

overlay CSMs from UAS with ground-truthing data then check goodness-of-fit of CSMs to 

capture spatio-temporal change of plant height at both stages. The ground-based data collection 

was divided into destructive biomass sampling and nondestructive in situ plant height 

measurements. GCPs and plant samples were georeferenced by implementing a Global 

Navigation Satellite System-Real-Time Kinematic survey for spatial and temporal monitoring. 

The data layer containing the geolocated plant positions was overlaid with the orthomosaic and 

CSMs using ArcMap (ArcGIS v10.3, Environmental System Research Institute Inc.) (ESRI, 

2014). Absolute plant height, field ground-truthing, was measured via a centimeter resolution 

wooden ruler. Field sampling procedures define absolute plant height as the vertical distance 

between the base of stem and the top region of the plant where leaves reach maximum height 
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without any external intervention (n = 331 plants measured 2 weeks before flowering and n = 

331 plants determined at flowering). Stem diameter (n = 331 measured) was determined at the 

base of the plant following the procedure described by Ciampitti et al.20 The field measurement 

performed 2 weeks before flowering was separated by 5 days from the UAS mission; thus plant 

height was adjusted to the date of the UAS mission using the observed plant height change rate 

computed between flowering and 2-weeks prior. This adjustment did not modify the proportion 

of variation accounted for the aerial imagery but significantly reduced the bias in the final 

observed plant height values, with lower plant height values for the ground-truth data (adjusted 

by 5 days within the period of height growth). For biomass determination, each individual plant 

was cut at the stem base and fresh weight was collected in situ. Both stem diameter and plant 

biomass were measured only at flowering time. 

Data Processing Workflow: Crop Surface Model, Orthomosaic Generation, and 

Plant Height 

The UAS missions were conducted at 65-m altitude to achieve a ground sampling 

distance, expressed as the distance between the centers of two consecutive pixels measured on 

the ground, of 0.015 m. An overlapping and side lapping of 80% was employed in accordance 

with Photoscan manual recommendations for successful CSM reconstructions [Fig. 1.2 (A)] 

(Agisoft, 2016). Ground speed setting of the UAS was 7 ms−1 obtaining one image per 1.8 s to 

achieve the expected overlapping on the track of the UAS. A total of 265 images were collected 

per mission. The GCPs and UAS imagery data set were integrated and processed for true color 

[red, green, and blue (RGB)] orthomosaic and CSMs for plant height. A workflow for CSMs 

reconstruction was implemented using Photoscan [Fig. 1.2 (A)]. Processing steps included: 

feature matching, solving camera intrinsic, and extrinsic orientation parameters, reconstructing 
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of the dense point cloud (DPC), and texture mapping. Parameter setting for imagery alignment 

presented the following characteristics: low accuracy and referenced pair preselection, tie and 

key points limited to 0 and 40000. The Photoscan imagery alignment algorithm detects points in 

the source images, which are stable under changing viewpoints and lighting conditions. Then, 

Photoscan software generates a descriptor for each point based on its local neighborhood. These 

descriptors are used to detect correspondences across the images. Later the software estimates 

the camera intrinsic and extrinsic orientation parameters using the internal bundle-adjustment 

algorithm to approximate accurate camera locations. The distance between all GCPs was 

comparable and located along the image data set to minimize horizontal and vertical geometrical 

error. The DPC was reconstructed by Photoscan by implementing the height-field algorithm 

based on pairwise depth map computation. Moreover, the quality value for the DPC 

reconstruction was set to medium for optimizing the computation time and data set size 

following Photoscan manual recommendations. The DPC reconstruction achieved 2550 and 

2765 points∕m2, respectively, for each mission timing. A spatial interpolation procedure, via 

inverse distance weighting (IDW), was applied to the DPC to generate the CSM. Orthomosaic 

and CSM native Photoscan spatial resolutions were 1.0 and 2.0 cm∕pixel for data sets from both 

missions.  The absolute plant height estimation was solved as the difference between the CSM 

and a digital terrain model (DTM) of bare ground surface [Fig. 1.2 (B)]. The DTM was 

reconstructed from the flowering RGB orthomosaic (captured 2-weeks prior) and CSM data 

sets.26 The first step includes the ground class segmentation in the RGB orthomosaic [Fig. 1.2 

(B)]. A support vector machine (SVM) classification was implemented in ENVI (Exelis, 2010) 

to solve the ground class segmentation [Fig. 1.2 (B)]. The training data set included 4000 pixels 

and iterated in “vegetation,” “bare soil,” and “shadow” classes. In the iteration phase, a linear 
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discriminant was explored with unsatisfactory results (over all accuracy = 0.55). Thus, a 

nonlinear classification approach was implemented on the decision surface hyperplane and a 

radial kernel function was utilized for discrimination between classes. The gamma in kernel 

function was set to 0.25, the inverse of the number of computed attributes, (Oyewole et al., 2015; 

Hsu et al., 2003) and the penalty parameter was set to 95 (Hsu et al., 2003). The overall accuracy 

of the nonlinear SVM classification on the three classes was 0.79. The “bare soil” raster was 

exported from the CSM with bare soil areas into ArcMap and the DTM solved by using the 

overlapping CSM vertical and horizontal determined from the bare soil over the bare soil class 

data from segmented ground class regions. Ground class regions utilized in the IDW 

interpolation included the borders and alleys of the trials, considering an average distance of 12 

m between adjacent alleys. The absolute plant height estimated data were obtained by a map 

algebra subtraction between the CSM and the DTM over 0.08-m cylinder radius length assigned 

to each plant center location [Fig. 2(b)]. Estimated plant height was assigned to upper mean 

quintile CSM pixels in the cylinder area assigned to each plant. 

 Plant Height Validation and its Relationship with Stem Volume and Biomass 

Plant height data extracted from UAS imagery analysis and collected from field 

measurements (ground-truth data) were linearly regressed using the GraphPad Prism software 

(Motuslky and Christopoulos, 2003). The proportion of variation accounted by the fitted model 

at each developmental stage was evaluated. In addition, a linear relationship between plant 

biomass and stem volume calculation was examined; whereas an exponential model was fitted 

for the plant biomass and plant height obtained via CSM. Both fits were performed using the 

GraphPad Prism software. For plant height validation, model fit was calculated by determination 

of the root mean square error (RMSE, measurement of estimated versus observed values). 
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Outlier detection was executed via the robust standard deviation of the residuals (Motulsky and 

Brown, 2006). An allometric evaluation was performed for plant height data extracted from UAS 

imagery and within-field measurements. Thus, reduced major axis was performed with the 

Standardized Major Axis Estimation and Testing Routines (SMATR) contributed package 

(Warton et al., 2012) to R development software (R Development Core Team, 2017). For the 

different phenological timings, slopes were tested to compare independent fit versus a shared fit 

for this parameter (if slopes are equal or not). Parameters were log10 transformed (Y = αXβ → 

log Y = log α þ β log X) prior to the analysis (Niklas, 2006) and normal distribution of residuals 

was verified. 
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 RESULTS AND DISCUSSION 

 Crop Surface Model and Orthomosaic generation 

Early process of CSM construction is presented in (Fig. 1.3). The UAS images taken at 

different sections were stitched together using GCPs as a reference (Fig. 1.3) in PhotoScan 

software. The importance and the number of GCPs necessary to ensure accuracy of UAS image 

construction have been previously discussed by other researchers (Tahar et al., 2012; Tahar, 

2013; Prajwal et al., 2016). In terms of geometric quality, the accumulated horizontal and 

vertical error was 0.7 cm∕pixel in orthomosaic and CSM from 2-weeks prior to flowering, and 0.5 

cm∕pixel for the flowering raster products. Furthermore, a woody table (dimensions = 0.8 m 

length × 0.4 m wide × 0.6 m height) was used for non-vegetation geometric evaluation. A total 

of six local GCPs were implemented along the top of the table to evaluate the vertical 

displacement between the original GCPs and the same one located in the CSM reconstruction. 

The vertical error in this case was 0.6 cm∕pixel.  

 Plant Height from Unmanned Aerial Systems Versus Ground-Truth Plant 

 Trait 

A strong positive correlation was obtained between CSM-estimated plant height and 

ground-truth data collected when corn plants were at flowering stage (R2 = 0.79, RMSE = 0.09 

m, n = 331, and mean = 1.84 m) [Fig. 1.4 (B)]. The correlation between CSM and ground-truth 

data measured two weeks prior to flowering (R2 = 0.63, RMSE = 0.11 m, n = 331, and mean = 

1.05 m) was relatively weaker (lower R2) and with a slightly higher RMSE [Fig. 1.4 (A)]. The 

RMSE to mean plant height ratio prior to flowering was 14%, close to threefold higher compared 

to the ratio estimated at flowering time (5%). For the pre-flowering measurement, the lower 

proportion of the variation accounted for the CSM-estimated plant height was primarily due to 
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lack of uniform development within the corn canopy and plants emerging at different timing due 

to soil–weather factors (e.g., saturated soil areas, low residue with less temperature). At 

flowering, maximum plant height was attained (Ciampitti et al., 2016), corn canopy become 

more uniform with less heterogeneity (lower RMSE to mean plant height ratio) and better 

prediction power (higher R2). A correlation obtained between measured and CSM-estimated 

plant height is consistent with previous findings for corn (Anthony et al., 2014), ( Grenzdörffer, 

2014) (Geipel et al., 2014) barley (Hordeum vulgare L.), and rice (Oryza sativa L.) (Bendig et 

al., 2015) (Tilly et al., 2014). A significant correlation between plant height measurements at 

flowering stage support the conclusion drawn by (Geipel et al., 2014) that imagery taken at end 

of stem elongation is better correlated with ground-truth data. Few researchers have studied the 

corn growth stage that UAS imagery should be taken to improve plant height estimation (Geipel 

et al., 2014; Sharma et al., 2016; Shi et al., 2016). Other studies not using UAS imagery to 

evaluate the relationship between actual plant height and remotely sensed plant height (Sharma 

et al., 2016) also concluded that late vegetative stage sensor-based plant height measurements 

correlated with actual plant height. Additionally, plant height measurements at late stage of corn 

were found to correlate with grain yield (Warton et al., 2012). 

It is worth noting that at both corn stages plant height was underestimated, similar to the 

findings presented by (Grenzdörffer, 2014) and (Shi et al., 2016). For understanding the stability 

of the plant height estimation, two evaluations were executed. The first one was done by 

comparing the linear regression slopes (for equality) of the estimated- and observed-plant height 

relationship [Figs. 1.4 (A) and 1.4 (B)] between the two growth stages evaluated to understand 

the stability of the estimation between dates and across plant height class (log–log transformation 

analysis) [Fig. 1.4 (C)]. Results showed similar slopes across classes for both mission timings. A 
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second evaluation was performed to understand the absolute and relative magnitude of the plant 

height estimation for both dates. Ground-truth plant height data were divided into three equal 

classes for each crop stage. Prior flowering ground-truth mean plant height data classes were low 

1.22 m, medium 1.52 m, and high 1.71 m. For the 2 weeks before flowering timing, within the 

low plant height group, 22% of the data in this class were underestimated by the CSM-estimated 

plant height trait; while for the high plant height group, this analysis resulted in 24% of the plant 

height observations being underestimated. At flowering, only 10% of the data on plant height 

across all classes (low 1.77 m, medium 2.12 m, and high 2.24 m) were underestimated by the 

CSM-estimated plant height trait. Synthesizing, this analysis allowed us to conclude that there 

was a better prediction of plant height due to a lower underestimation at flowering, which was 

also related to lower plant heterogeneity within the corn canopy. 

 Unmanned Aerial Systems Based Plant Height Relation with Biomass 

Since ground-truth plant height was better estimated at flowering, the biomass data 

collected at the same growth stage were utilized to better understand the relationship between 

plant height and plant biomass. Plant biomass and CSM-estimated plant height exhibited a 

statistically significant correlation at flowering [Fig. 1.5 (A)]. However for the plant biomass 

trait, the proportion of the variation accounted by the CSM-estimated parameter alone was low 

(R2 = 0.31, n = 332, and P < 0.05). Examination of Fig. 1.5 (A) shows substantial variation 

present in the data, and possibly nonlinear behavior at greater plant height values. Plant biomass 

estimation substantially improved (R2 = 0.79, n = 332, and P < 0.05) when the stem diameter 

(determined at equal growth stage and for the same plants as the plant height trait) was 

considered as a part of the stem volume calculation [Fig. 1.5 (B)]. Allometric equations were 

previously utilized in corn to predict biomass with different levels of success depending on the 
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variation of the data (genotype by environment by management interaction) and the timing of the 

sampling (Mourtzinis et al., 2013; Pordesimo et al., 2004; Barten, 2013). More accurate biomass 

estimation performed via utilization of allometric models could be utilized as a tool to forecast 

corn yields. Last, improvements of biomass prediction for corn after flowering stage were 

documented when the apical ear shoot diameter (maximum diameter of the ear organ) was 

included in the stem volume calculation (Pagano and Maddonni, 2007). Thus, improvement in 

corn biomass prediction will be of a great challenge for the remote sensing discipline because the 

reproductive organs (ears) are placed at varying positions within the corn canopy. In a simplified 

approach, a combination of various data layers collected from multiple sensors [e.g., plant 

height, stand counts, normalized difference vegetation index (NDVI) (Vergara-Diaz et al., 2016)] 

in a spatio-temporal fashion might allow to adjust in real-time corn yield estimations based not 

only on plant size but also considering plant nutrient status and the complex interaction with the 

environment. For corn crop, a correlation between ground-truth plant height measured at late 

vegetative or early reproductive and plant biomass has been previously documented (Yin et al., 

2011; Mourtzinis et al., 2013). For the current study, plant height was adequately predicted for 

both corn growth stages: 2-weeks before (with more variation detected) and at flowering. 

Similarly, a significant positive relationship between corn plant height measured late-vegetative 

using sensors, mounted on satellite or run manually, with biomass or yield was reported 

(Freeman et al., 2007; Bach, 1998). Not many UAS based results are available for corn (Geipel 

et al., 2014; Shi et al., 2016) but our results on the relationship between plant height measured by 

UAS platform with biomass is in agreement with previous research reported for other field crops 

(Bendig et al., 2015; Tilly et al., 2014). Last, the relationship documented in this study for corn 

crops between stem diameter and plant biomass is in line with findings previously presented by 
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(Mourtzinis et al., 2013). A nondestructive way of measuring stem diameter from images 

mounted on UAS and other ground-truth sensors remains as a critical research gap for improving 

plant biomass prediction and the potential for yield forecasting purposes. From a remote sensing 

standpoint, different vegetation indices and multi/hyperspectral sensors can be investigated to 

improve plant biomass prediction and yield forecast procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 CONCLUSIONS 

Spatial-temporal correlation between CSM-estimated versus ground-truthing plant height 

trait suggested that the CSM integration could assist in biomass estimation. Both dates evidence 

plant height underestimation but with higher departure for this trait for the pre-flowering stage. 

Imagery overlapping and plant height heterogeneity become critical factors in the plant height 

estimation process. At flowering stage, plant biomass and yield prediction could still be used for 

late management practices, such as nutrient fertilization and fungicide/insecticide protection. 

Nonetheless, accurate corn yield prediction at early growth stage (before flowering) remains a 

topic needing additional research. The evidence suggests that both plant traits such as stem 

diameter and/or nutrient content estimation should be targeted to increasing reliability of 

forecasting yield procedures. Future research should also look into the integration of UAS and 

spectral remote sensing data into ultrahigh spatial-resolution analysis for crop growth modeling. 
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Figure 1.1 (A) Study area with four corn experiments evaluating: (i) hybrids, (ii) fertilizer 

N rates, (iii) plant densities, and (iv) plant density gaps and (B) photo of the UAS S800 DJI 

hexacopter mounted with RGB sensor.  

 

A B 



25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. (A) Workflow data integration between UAS and Photoscan and (B) Photoscan–

ENVI– ArcMap data workflow.  
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Figure 1.3. CSMs for estimated absolute plant height on top of the corn canopy: (A) 2-

weeks prior to flowering and (B) flowering time. Upper part: 3-D view and; lower part: 2-D 

perspectives for corn plant height. Note: The blue color represents ground and low 

vegetation, the yellow refers to short medium corn plants, and the brown and red colors 

represent taller plants within the corn canopy. 
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Figure 1.4. Plant height estimation via UAS imagery collection (A) 2-weeks prior, (B) at 

flowering, and (C) log–log linear regression of estimated- to observed-plant height 

(determined from the ground base to the top of the canopy). RMSE, root mean square 

error. 
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Figure 1.5. Per-plant biomass (dry basis, expressed in g pl−1) versus (A) plant height trait 

estimated via CSM and (B) stem volume estimated via implementation of the volumetric 

cylinder equation (including plant height estimated via CSM, CSM-estimated plant height) 

all parameters determined at flowering. 
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Chapter 2 - Early-season stand count determination in corn via 

integration of imagery from Unmanned Aerial Systems and 

supervised learning techniques   

Varela, S., Reddy Dhodda, P., Hsu., W. H., Prasad, P. V.V., Assefa, Y., Peralta, N, R., Terry, G., Ajay Sharda, A., 

Ferguson, A and Ciampitti I. A. Remote Sensing. 2018, 10, 343. doi: 10.3390/rs10020343 

  

 ABSTRACT 

Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season 

uniformity. The most common method to determine number of plants is by visual inspection on 

the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead 

to less profitable decisions by farmers. The objective of this study was to develop a reliable, 

timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery 

acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real 

field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a 

plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels 

from the background, then rows and inter-row contours were identified and extracted. A scalable 

training procedure was implemented using geometric descriptors as inputs of the classifier. 

Second, a decision tree was implemented and tested using two training modes in each site to 

expose the workflow to different ground conditions at the time of the aerial data acquisition. 

Differences in performance were due to training modes and spatial resolutions in the two sites. 

For an object classification task, an overall accuracy of 0.96, based on the proportion of 

corrected assessment of corn and non-corn objects, was obtained for local (per-site) 

classification, and an accuracy of 0.93 was obtained for the combined training modes. For 
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successful model implementation, plants should have between two to three leaves when images 

are collected (avoiding overlapping between plants). Best workflow performance was reached at 

2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were 

gradually penalized. The latter was coincident with the larger number of detected green objects 

in the images and the effectiveness of geometry as descriptor for corn plant detection. 

Keywords: unmanned aerial system; supervised learning; corn; farm management; precision 

agriculture.
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 INTRODUCTION 

Corn (Zea mays L.) is one of the most responsive grain crops to agronomic management 

practices including planting pattern and plant density (Lauer and Rankin, 2004; Ciampitti and 

Vyn, 2011). Corn has a limited capacity to compensate for missing plants within a row, 

consequently penalizing grain yield per unit land area at the end of the season (Weiding et al., 

2004; Nielsen, 2001; Nafziger and Carter, 1991). One of the most frequent practices to determine 

the final number of emerged plants is by visual inspection on the ground (De Bruin and 

Pedersen, 2004). This is a labor-intensive, time-demanding, and cumbersome activity for farmers 

or researchers. Therefore, there is a need to find alternative and novel techniques to quantify 

plant stands. The novel process should also include quick data processing and data analyses so 

that the outcomes can help for efficient planning of operations (e.g., re-planting decisions) on the 

farm (Nielsen, 2003).  

Recent advances in ground sensors and computer vision have provided new insights into 

plant counting via proximal sensing (Nakarmi and Tang, 2012; Nakarmi and Tang, 2014). The 

proximal sensing method can provide potential applications of automation and mechanization, 

which substantially reduces the cost of field scouting (Shi et al., 2013). Shertha et al. 2005 

reported the use of the size and shape of corn plants to estimate plant density and row spacing via 

video frame sequencing, segmentation, and object classification using ground vehicles. In the 

same context, ground laser line-scanning was adopted to automatically locate stalk and interplant 

spacing (Shi et al., 2013). Ground vehicles are used to mount proximal sensors or cameras to 

document images and videos. However, the use of ground vehicles is limited to small areas and 

often dependent on good trafficable conditions to successfully implement a programmed task. 
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To overcome this, implementation and the use of remote sensing using aerial or satellite 

images and data is gaining importance. Thorp et al. 2008 reported the use of aerial hyperspectral 

data and principal components analysis (PCA) for estimating densities of plants in corn fields. 

From the same authors, the best performance for the proposed method was reported at the later-

vegetative stage (R2 = 0.79) using 6-m resolution imagery. Early-season estimation of plant 

densities was significantly limited due to the dominant soil background signal when using meter 

level resolution imagery (Thorp et al., 2008; Thorp et al., 2004). The use of small unmanned 

aerial systems (UAS) fills the gap of information between proximal ground sensing and meter 

spatial resolution platforms.  

The UAS platforms deliver unprecedented ultra-high spatial resolution imagery and 

flexible revisit time and offer high versatility under adverse weather conditions (Torrez-Sanchez 

et al., 2015; Salami and Barrado, 2014). In this context, the use of UAS has been reported in 

agriculture for crop and weed detection (Peña et al., 2015; Lottes et al., 2016; Lopez-Granados, 

2011; Torres-Sanchez et al., 2014). For weed management, detailed knowledge on the spatial 

distribution of crops and weeds can significantly reduce the impact of agrochemicals on the 

environment by using site-specific interventions (Lottes et al., 2016). Moreover, early detection 

of crop and weeds aligns with best practices to maximize the effectiveness of agrochemical 

applications and yield potential (Lottes et al., 2016). Perez-Ortiz et al., 2016 reported the use of a 

support vector machine (SVM) classifier, utilizing color intensity and geometrical information as 

input features for weed and crop mapping. The spatial resolution was critical in the performance 

of the classifier as also identified by Peña et al. 2015. In general, the implementation of UAS in 

agriculture has been focused on the extraction of information at the “canopy scale” for further 

biophysical and yield prediction (Geipel et al., 2014; Zhou et al., 2017). This approach has been 
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extensively reported via integration of UAS and sensors: RGB, multi-spectral, hyperspectral, and 

thermal imagery had been used to estimate biomass (Bendig et al., 2013), LAI (Bendig et al., 

2013; Mathews et al., 2013; Yao et al., 2017; Haboudane et al., 2004; Pölönen et al., 2013; 

Potgieter et al., 2017), canopy height (Geipel et al., 2014; Bendig et al., 2013; De Souza et al., 

2017;Iqbal et al., 2017), nitrogen (Pölönen et al., 2013; Caturegli et al., 2016; Clevers and 

Kooistra, 2012), chlorophyll (Clevers and Kooistra, 2012; Uto et al., 2013), and temperature 

(Gomez-Candon et al., 2016; Gonzalez-Dugo et al., 2013; Berni et al., 2009). Recently, Jin et al. 

2017 estimated plant density in wheat from UAS observations using a RGB sensor, ultra-high-

resolution imagery, and a support vector machine classifier.  

Modern approaches on smart farming typically need detailed knowledge of the current 

status of crops in the fields. The earlier the yield-limiting factors are identified at the field level, 

the greater the chances to understand the causes and identify potential farming solutions (Lottes 

et al., 2016). However, most of the studies on plant density estimation have been implemented 

via utilization of RGB sensors and computer vision via ground vehicles (Nakarmi, 2012; 

Nakarmi and Tang, 2014; Guo et al., 2013; Montalvo et al., 2012). Scarce attention has been 

focused on counting and segmenting individual plants in real field conditions via UAS. Recently, 

(Gnädinger and Schmidhalter, 2017) implemented a digital counting procedure using a 

decorrelation stretch contrast enhancement in the RGB feature space domain via UAS. The 

developed method utilizes the color differences between young and old leaves to estimate plants 

of different age groups in the image, with an R2 of 0.89 between ground-truthing and estimated 

plant count. However, the challenge of image thresholding techniques is that they may be prone 

to misclassification due to the similar spectral response of target and non-target vegetation in the 

image (Baxes, 1994; Savitzky and Golay, 1964). The current work aims to contribute to the 
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transition from passive and time-delayed workflows into more automatized, reactive, and 

integrated systems of managing information on monitoring crop performance on farmers’ fields 

(Tokekar et al., 2016; Hale Group, 2014; Henry, 2015) by developing a tool for quantifying 

early-season stand counts for corn. Briefly, the present work has been implemented using ultra-

high-resolution imagery for plant metric extraction and the workflow was developed by applying 

the following steps: (i) identify green and non-green regions, (ii) perform a row detection 

procedure, (iii) extract geometric descriptors of the green objects, and as a last step, (iv) train a 

decision tree classifier to retrieve information on count and location of the corn plants. 
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 MATERIALS AND METHODS 

 Experimental Sites 

          Two fields were included to test the workflow under different field conditions such as crop 

residue, soil backscatter, and crop growth stages. Farmers’ fields sites were located in the NE 

region of Kansas (KS), US (Fig. 2.1). Site 1 was located at Atchison County, KS 

(39°33′14.84″N, 95°33′46.07″W). Site 2 was located at Jefferson County, KS (39°3′23.60″N, 

95°23′19.70″W). Both fields were managed in a soybean-corn rotation. The size of the field in 

site 1 was 18 hectares, managed under rainfed conditions. The size of the field in site 2 was 64 

hectares, under irrigation. The plant density in both the fields was 7.5 plants m−2 and inter-row 

distance 0.75 m. 

Platform, sensor, and field data collection 

     A UAS octocopter platform (S1000, DJI, Shenzhen, China) was utilized to collect the 

aerial images and data. The platform included the A2 flight controller and Global Positioning 

System (GPS) units used to set up flight missions (S1000, DJI, Shenzhen, China). The flight 

parameters setting was controlled using UgCs ground station software (UgCs, Riga, Latvia). A 

PX4 Pixhawk autopilot (Meier et al., 2015) was installed in the same platform for full control of 

the intervalometer of the sensor via Mission Planner ground station, an open-source software 

developed by Michael Osborne (http://planner.ardupilot.com). Nine sample areas of 0.2 hectares 

were randomly selected and marked in each field prior to the growing season to account for 

varied spatial conditions from existing residues and non-corn objects. Flights used an automatic 

setting pattern of 4 parallel lines with a time-lapse of 4 s between images, targeting 25–30 

images in each sample region of the field. Side lapping and overlapping were set to 20%, 
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targeting a consistent distribution of sample images in each sample area. The low overlapping 

requirement increases the efficiency of the flight and post-processing time compared to other 

data collection approaches (orthomosaic stitching) to analyze UAS data. The platform, camera 

orientation, and flight direction were set parallel to the direction of the rows. UAS flight 

autonomy was set for 15 min; 2 and 3 flights were needed to cover the nine sample areas for sites 

1 and 2, respectively.  

    The platform sensor included was an Alpha ILCE A5100 RGB Sony camera (Tokyo, 

Japan), mounted with a Sony SELP1650 PZ 16-50 mm lens (sensor resolution is 6000 × 4000 

pixels). The aperture and exposure time was adjusted manually prior to each mission considering 

the ground speed of the UAS and light conditions at the time of flights. In all flights, the camera 

settings used manual exposure control; shutter speed was set to 1/3000 s, aperture to f5, ISO to 

400 and 16 mm focal length configuration. One flight in each site was performed between May 

and June with full sun and 2–3 m s−1 wind conditions (Table 1). On the date of the flights, sites 

1 and 2 were at 2 and 2–3 visible leaves growth stage, respectively. Higher soil temperatures and 

adequate soil moisture conditions during the planting–emergence period in site 2 explained 

similar growth stages encountered in both locations on the date of the flights, despite a late 

planting date in site 2. The flight altitude was set to 10 m reaching a spatial resolution of 2.4 mm. 

 Data processing 

           The following workflow including five steps (Fig. 2.2) was developed and implemented 

after the images were collected from the fields: (1) images were converted into excess greenness 

(ExG)–vegetation index, (2) row detection and contours were delineated, (3) geometric 

descriptors were built from contours, (4) classifier training, and (5) classifier testing.  
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Steps 1, 2, and 3 were implemented via OpenCV Python modules (Laganiere, 2014), steps 4 and 

5 were implemented via Sklearn Python modules (Pedregosa et al., 2011). For each site, image 

data sets were randomly divided into training (60%) and testing (40%) data sets. The training 

data set was used to predict the value of a target class by learning the decision rules inferred from 

the geometric descriptors of that class (corn or non-corn objects). The trained decision rules were 

then evaluated in a new data set (testing) to evaluate the performance of the model exposed to an 

independent data set. 

 Vegetation detection 

           In the training data set, the images were first utilized to classify vegetation and 

background pixels. The excess green index (ExG) (Meyer and Neto, 2008) helps stretch the 

contrasting intensity response between green and background pixels. In addition, a bilateral filter 

was applied to decrease the noise intensity of each channel while preserving the edges of the 

green objects (Baxes, 1994). 

 

 ExG = 2 × Green − Red – Blue    (1) 

 

           A morphological operation was implemented to facilitate the isolation of green contours 

in the image by computing the corresponding intensity between contours and background. It 

includes both erosion and dilation transformations by utilizing a predefined kernel size to 

preserve the integrity of the green objects in the image (Baxes, 1994). An Otsu threshold 

procedure was adopted to transform the ExG grey scale into a binary image by using a 

discriminant criterion in the ExG scale. The method automatically finds an optimal threshold 
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value between both green and background classes (Otsu, 1979)  by minimizing the intra-class 

variance as much as possible.  

 σ2w(t) = ω0(t)σ20 (t) + ω1(t)σ21 (t)    (2) 

 

ω0 and ω1 are the probabilities of the two classes and σ20 and σ21 are the variances of these two 

classes. “t” is the desired threshold that minimizes weighted sum of variances of these two 

classes. The binary transformation assigns a value of 1 to green pixels and 0 to background. 

Small non-target green contours, <400 connected pixels, are eliminated using a conditional rule. 

 Row detection 

            First, canny edge detection was implemented to map structures with contrasting ExG 

intensity in the image. Edges are mostly related to the transitional regions between green objects 

and background pixels (Baxes, 1994). Hough transformation was adopted to define the 

orientation angle of the images (Hough, 1962). The solution to the angle rotation was solved by a 

voting process of all possible angles between the Hough lines and the reference horizontal axis 

of the image. The angle that received more votes was chosen as the solution for the entire image 

rotation. 

          The ExG intensity was projected to the vertical axis of the image. The Savitzky–Golay 

(Savitzky and Golay, 1964) filter was utilized to smooth local-maxima peaks to better target the 

candidate areas for rows location (Fig. 2.3). A relative threshold value defines the peaks that 

define the rows in the vertical projection of the image as follows: each peak must reach one third 

of the previous one, ExG intensity to be assumed as rows in the vertical axis. The selected peaks 

represent the rows of the crops in the image. In the same manner, the width of each row was 

equal to the width of the crest at the thresholding region. The process does not require external 
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user supervision (automated process) to define an optimal threshold to locate the rows, allowing 

massive scaling of this step. 

 

  IA=    IA                  if Ii≥ Ii−1/3              (3) 

 Ii                           if Ii< Ii−1/3  
 

IA denotes the threshold that defines whether a peak is a crop row. Ii is the sum of intensities of 

pixels in ith peak. The equation is from i = 2 to n where n is the number of peaks found. 

Feature descriptors 

            All contours were extracted from the row and inter-row areas of the image and labeled as 

corn and non-corn contours, respectively. This approach enables the scaling of the training as no 

manual tagging of classes is needed. The procedure assumes all contours in the inner region of 

the row belong to “corn class” and all inter-row contours belong to “non-corn class”. Each 

contour is characterized by a set of 10 geometric descriptors. This step explores the potential of 

different geometries to efficiently characterize corn and non-corn objects. 

Geometric descriptors were evaluated using the feature importance procedure based on the mean 

decrease of impurity (Guyon and Elisseeff, 2003). Features decreasing the impurity have more 

importance in the selection, which accounts for potential collinearity between features by 

penalizing collinear features. According to the feature selection, aspect ratio, axis–diameter ratio, 

convex area, thinness, and solidity were found as significant contributors to characterize the two 

types of objects in the training data set. 

Classifier training 

            A decision tree (DT) classifier was implemented using the information of the geometric 

descriptors in each class as input features (Alaydin, 2004; Patel, 2012). A 6-fold, cross-validation 
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(CV) procedure was implemented by leaving one out cross validation (LOOCV). It was utilized 

as a first approach as to how the classifier may generalize to the new independent data set 

(testing), and to identify potential overfitting of the model (Alydin, 2004) (Table 2). The DT was 

trained to relate the descriptors to the labeled corn and non-corn objects. Due to unbalanced sizes 

between classes, decision nodes were differently weighed to prevent class overfitting in the 

classifier. The 6-fold CV was used as an intermediate checkpoint of the classifier performance 

evaluation. The goal of this step was to create a model that predicts the value of a target class by 

learning the decision rules inferred from the geometric descriptors of that class. A model-

selection procedure was used to determine the DT structure by finding a non-dominated solution 

representing a trade-off between the classifier performance and the computational cost following 

(Patel, 2012; Breiman et al., 1984) recommendations. Bottom-up pruning of the tree was 

implemented via a cost-complexity curve (Patel, 2012) removing statistical non-significant 

nodes, preventing overfitting, and saving the computational cost of the classifier (Eastwood et 

al., 2012). The optimal structure that minimized computation time without penalizing the 

classifier performance had a tree depth of 10 levels and 20 sample leaves. 

           Ground-truthing was implemented via visual inspection of individual plants on the testing 

data by accounting for: matching, non-matching, and non-detected plants, differences between 

the labeling output of the classifier, and the visual inspection of the contours. To evaluate the 

scalability of the classifier, two training modes were considered: (a) local training and local site 

testing (LTLT) in each site, and (b) combined or joint training and local site testing (JTLT). The 

LTLT utilizes the site n training data set in training and evaluates the workflow using the site n 

testing data set. The JLTL utilizes the site n + m training data set in training and evaluates the 

workflow using the site n testing data set, and later the same evaluation in site m testing data set. 
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Classifier performance evaluation 

Precision: for x class is the number of true positives (Tp), the number of objects correctly 

labeled as belonging to the x class divided by the total number of (Tp) plus false positives (Fp) as 

elements labeled as belonging to the x class but actually were part of class y. 

Precision = Tp/(Tp + Fp)     (4) 

Recall: for x class is the number of (Tp) divided by the total number of objects that 

actually belong to the x class false negatives (Fn), including the (Tp). 

Recall = Tp/(Tp + Fn)    (5) 

Accuracy is a global evaluator of the classifier performance for n classes evaluated. The 

number of objects of n classes have been corrected classified (Tp) and true negatives (Tn) 

divided by all the objects have been classified. 

Accuracy = (Tp + Tn)/(Tp + Tn + Fp + Fn   (6) 
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 RESULTS AND DISCUSSION 

 Evaluation metrics: training modes 

    The classifier ability to discriminate classes was evaluated by elaborating receiver 

operating characteristic (ROC) and precision-recall curves (Powers, 2011; Fawcett, 2006). The 

performance of the classifier was accounted for at the plant-level basis, predicted object versus 

ground-truthing findings. A random selection of images was implemented in JLTL to account for 

a balanced training size and comparison between training modes (Fig. 2.4). The JLTL recall 

outperforms LTLT in site 1, 0.92 to 0.97. The LTLT better targeted the classification of corn 

plants (ground-truthing) by reducing “false negatives”, non-corn class (ground-truthing) 

classified as corn objects. Contrarily, LTLT outperforms JTLT in site 2, recall decreases from 

0.95 to 0.93, JTLT presents lower power to correctly classify ground-truth non-corn objects 

‘’false negative” as non-corn objects. A higher number of ground-truth corn plants were 

misclassified as non-corn class objects. Precision slightly decreases when using JTLT, from 0.97 

to 0.94 in site 1. A lower performance of the classifier on the “false positive” detection was 

documented due to a higher number of ground-truth non-corn objects classified as corn. 

Precision remained stable (0.96–0.97) in site 2 as an indication that “false positive” detection 

remained stable across training modes. Nevertheless, the overall accuracy followed a decreasing 

trend between sites when transitioning from LTLT to JTLT mode as noticed in the area under the 

curves (AUC) (Fig. 2.5). The LTLT reached an accuracy of 0.96 in both sites and decreased for 

JTLT to 0.92 for site 1 and 0.93 for site 2. The penalization was mainly due to a lower 

performance of the JTLT classifier on “false positives” detection, a slightly higher 

misclassification of ground-truth non-corn objects as corn. Outcomes of the LTLT are in 
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accordance with (Lottes et al., 2016) findings, reporting an accuracy of 0.96, recall of 0.99, and 

precision of 0.97 between crop and weed objects detection. 

Evaluation metrics: spatial resolution 

     A data downscaled resolution was simulated to evaluate the sensitivity of the workflow on 

plant detection by recreating degraded resolutions of increasing flight altitudes. The original 

resolution of 2.4 mm in site 1 was resized to 4.8, 9.6, and 19.2 (Fig. 2.6), simulating 20, 40, and 

80 m flight altitudes, respectively. For downscaling the data, simple linear kernels were 

implemented: 2 × 2, 4 × 4, 8 × 8 mean values of the original pixels scale values into the resulting 

downscaled pixel. All workflow steps were fully re-implemented at each downscaled resolution. 

Manual tuning of the pixels row size was utilized to prevent losing and incorrectly accounting 

for row and inter-row green objects during the training of the downscaled data set. The classifier 

accuracy was consistently penalized when the spatial resolution was degraded. Original 

resolution reached the highest accuracy of 0.96, and decreased to 0.89, 0.85, and 0.68 for each 

2.4, 4.8, 9.6, and 19.2 mm resolution, respectively (Fig. 2.6). The P/R curve was penalizing the 

downscaling following the same trend. Consequently, the overall performance of the classifier 

was penalized due to a lower sensitivity of geometry as efficient descriptor to differentiate corn 

and non-corn classes of objects. 

    It should be noticed that downscaled resolution penalizes the ExG binarization step, and 

consequently, the ability of the workflow to distinguish objects in the image. The departure 

between ground-truth objects and the classifier detection assists with a metric on the sensitivity 

of the workflow to detect green objects in the image. A total of 15 images were selected for this 

analysis. The departure from ground-truthing (Fig.2.7) represents the relative distance between 

the number of true detected objects and the ones reported by the classifier when analyzing the 



44 

 

images. When using the original 2.4-mm resolution, the penalization on the sensitivity to detect 

green objects remains very low (1.5%). When downscaled to 4.8, 9.6, and 19.2 mm, the 

penalization increases to 6%, 12%, and 42%, respectively. Downscaled spatial resolution 

increases the ground sampling distance (GSD), meaning that a larger area on the ground is 

sensed per pixel unit. Thus, it becomes critical for transitional (green objects borders-

background) areas of the image for quality contours delineation in the image. An increasing 

number of double objects by unit of contour due to “mixed signals” was progressively found 

when transitioning from finer to downscaled data generating an underestimation of the total 

number of contours (green objects) (Fig. 2.7). 

     Current methods propose the use of ground vehicles or satellite data to estimate detailed 

information of plant status at the fields. The first one evidenced limitations by only being able to 

cover small areas and depending on good trafficable conditions. The second one does not 

provide the needed spatial resolution and the performance on this kind of task remains weak. The 

proposed workflow exploits synergistically the versatility of UAS platforms and a supervised 

learning procedure to identify crops and non-crops in the field enabling the differentiation 

between corn plants and weeds early in the season. In addition, the proposed workflow allows 

the identification and mapping of plants at a very early time in the season using real farm 

conditions and balancing the classifier performance between both corn and non-corn objects. 

    A few limitations from the tested method include: (i) late within-growing-season flights 

are prone to plant overlapping degrading the workflow performance and causing underestimation 

in the plant count; and (ii) plant density was not evaluated at field-scale since (1) the focus of this 

project remains in the evaluation of the classifier performance by itself corn plant identification, 

and (2) accurate field-scale plant density estimation needs accurate and precise ground scaling of 
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the individual imagery via RTK (Real Time Kinematic) or PPK (Post Processed Kinematic) 

global navigation satellite systems (GNSS). An opportunity for delivering large scale, more 

efficient, and faster models can be pursued by collecting UAS data using a sub-sampling 

imagery strategy and spatial analysis. The latter appears as a potential solution for saving 

computational costs of processing data and preventing a degraded resolution from the original 

imagery when building an orthomosaic via the stitching procedure. 

    The main contribution of this paper is related to the development of a procedure to detect 

corn plants to better guide early season operations for farmers. The foundation of the method 

relies on the combination of traditional imagery and a supervised learning procedure. The 

outcome of the workflow allows the digital counting of plants using a low-cost UAS and RGB 

camera contributing to quantify early-season data of crop performance at on-farm conditions.  

    Future work should (a) study the potential of spectral and texture descriptors for classes 

delineation, (b) explore the potential of including multiclass non-corn objects by reducing the 

internal variance of non-corn objects, and (c) investigate the penalization of high wind conditions 

in the geometric descriptors and classifier performance. 

.  
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 CONCLUSIONS 

       In this work, a workflow to identify corn plants in real field conditions was implemented 

using vegetation detection, feature extraction, and classification using aerial images by 

exploiting geometric descriptors information. The developed workflow utilizes the spatial 

arrangement of crops to scale up the training of the classifier. The proposed approach was 

implemented and tested with imagery data collected via UAS at two farm fields to evaluate the 

upscaling robustness of the workflow and the potential applications on farm operations. Even 

though the combined sites’ training (0.92 and 0.93) performed lower than local site training 

mode (0.96), the combined training mode is still robust for scaling up the processes and, most 

importantly, to save computational time when dealing with massive amounts of data in the post-

processing steps. The original 2.4 mm resolution portrayed the best performance to detect corn 

objects. Downscaled spatial resolutions gradually negatively impacted the workflow 

performance at two levels: (i) evidencing a lower sensitivity to detect green contours in the 

image due to an increased mixed signal (soil background-green objects) that degraded the 

contours delineation and (ii) decreasing the power of the classifier itself due to a degraded power 

of the geometry as an effective descriptor to differentiate both classes of objects. Results suggest 

that the optimal growth for accurate estimation for a field setting of corn plants is between two 

and three leaves.
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Figure 2.1. Left: On-farm fields located in the northeast region of Kansas. Top-right: Site 

1, Atchison, KS; bottom-right: Site 2, Jefferson, KS. Purple squares = field sampled areas. 
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Figure 2.2 Workflow for plant estimation via unmanned aerial systems (UAS). (A) data 

pre-processing, (B) training, (C) cross-validation, and (D) testing.
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Figure 2.3. Diagram of the Excess Greenness (ExG) index projection, local-maxima 

smoothing, and thresholding for rows location. 
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Fig. 2.4. Left: RGB, center: ExG, right: classifier output on testing data in site 1, green 

contours: corn objects, red contours: non-corn objects.  
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Figure 2.5. Receiver operating characteristic (ROC) curves (A) and positive rate (PR) plots 

(B) based on testing data for each site. 

 

 

 

Figure 2.6. ROC curves (A), and PR plots (B) of downscaled testing data set in testing 

resolutions. 
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Table 2.1. Information about sites and flights during the 2017 growing season. 

 

 

 

Table 2.2 Data sets used for training and testing of the classifier. 
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Chapter 3 - Monitoring phenological footprint of corn in the Mid-

western USA via MODIS time-series 

 ABSTRACT 

Monitoring crop phenology is a fundamental proxy to understand crop adaptation over 

large regions. 250-m daily time-series of Moderate Resolution Imaging Spectroradiometer 

(MODIS) Normalized Difference Vegetation Index (NDVI) was utilized for screening relevant 

transition growth stages in corn (Zea mays L.) development. The spatial and temporal dynamic 

of phenology and yield was investigated via Hierarchical Bayesian Spatiotemporal Modeling 

(HBSTM) to link the timing of growth stages of the crop and yield in the United States (U.S.) 

corn belt between 2003 and 2017. The robustness of MODIS -based phenology metrics was 

evaluated at two levels: i) in-season ground truth (GT) via an extensive field survey in Kansas, 

and ii) with data obtained from the Crop Progress and Condition Report (CPCR) from the U.S. 

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) during the 

2006-2017 time period. A threshold value of 20% and 35% of relative amplitude of the time-

series profile reported the best agreement with GT and CPCR emergence and physiological 

maturity dates, respectively. A root-mean square error (RMSE) of 16 days for start of the season, 

14 days for the vegetative-reproductive transition, and 17 days for the end of season on metrics 

extraction was reported.  The length of vegetative and reproductive stage, green-up and 

senescence rates were positively related to the increase on yield. MODIS-based phenology 

metrics significantly describe the increase on yield over both, space and time in the region during 

the last 14 years. 

Keywords: MODIS, phenology, corn, time-series, spatial-temporal. 
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INTRODUCTION 

 Monitoring crop phenology is a key component of studies related to crop adaptation 

(Sahu and Bakar., 2012; Zheng et al., 2002; Tao et al., 2006), yield forecasting (Bolton et al 

2013; Fang et al., 2011), crop mapping (Zhong et al., 2016) and growth modeling (Moulin et al., 

1997; Fang et al., 2011). The spatio-temporal dynamics of phenology can reveal adaptation over 

extensive regions at reduced cost (Yusoff et al., 2017; Estel et al., 2015). In United States, the 

Department of Agriculture (USDA) generates weekly Crop Progress and Condition Reports 

(CPCRs) between March and November each year. The CPCRs are field surveys-based reports 

describing crop condition and progress of major crops in the country. For the CPCRs, the 

reported information is weighed by county crop acreage and summarized at the agriculture 

statistical district (ASD) and state level by the regional field offices of the National Agricultural 

Statistics Service (NASS). These reports had been used as input for governmental agencies, 

policy-makers, industry, and universities. Private stakeholders and insurance companies use 

these reports for early-season diagnosing of overall crop productivity, short-term price and future 

market negotiation. Past researchers have been using this information as to track long-term 

trends over the past several decades related to changes in planting date and phenology (Sacks 

and Kucharik, 2011; Kucharick, 2006; Shen and Liu, 2015).  

 Tracking the occurrence of key crop growth and development stages via remote sensing 

(RS) time-series had been previously reported. For example, using Advanced Very High 

Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) researchers developed operational land surface spatio-temporal data for global 

phenology monitoring (Moulin et al., 1997; Zhang et al 2003). However, monitoring annual 

crops implies significant challenge due to the high spatial and temporal dynamics of this type of 
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vegetation (Zheng et al., 2002). Wardlow et al. 2006 derived green-up onset dates for corn (Zea 

mays L.), soybean (Glycine max L.), and sorghum (Sorghum bicolor L.) in Kansas using 16-day 

MODIS Normalized Difference Vegetation Index (NDVI) data. The same authors compared 

MODIS-derived green-up onset dates with the USDA CPCRs data finding large inconsistencies 

across ASDs. Sakamoto et al. 2010 developed a two-step filtering (TSF) method to detect 

phenological stages of corn and soybean using time-series Wide Dynamic Range Vegetation 

Index (WDRVI) derived from MODIS, data from a 6-yr period. Their RS-based metric outcomes 

were consistent with ground-based observations for two irrigated and one rainfed sites in 

Nebraska. This crop phenology detection method, however, has not yet been examined on a large 

geographical scale and using a longer-term data, more than 10 years. On a broader scale, (Ren et 

al. 2017) reported the extraction of RS-based phenology parameters (start and end of season) at 

state level in the US corn belt region, but quantification of in-seasonal stages of the crop has 

been scarce or not yet reported. At ASD scale, it is still unclear whether there is a robust 

relationship between in-season RS-based metrics and ground truth-based estimates, especially 

for extensive field crops such as corn in the US corn belt region. Although CPCRs have their 

own uncertainties reflecting non-biased observations, they are the most widely accepted source 

of information and statistics relative to crop phenology in the US. Furthermore, the potential of 

daily-based satellite imagery for detecting short-term anomaly/change on canopies have not been 

fully exploited (Zhao et al., 2012). However, it is a challenge to generalize such algorithms to a 

broad-scale, agricultural landscape and for relatively long-term periods with varying weather 

conditions. Broad-scale identification and monitoring of phenological dynamics of crops over 

extensive time can help to better understand the drivers of adaptation and performance of modern 

hybrids over extensive regions. 
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 Information reporting the timing and transition of corn phenology such as start of the 

season (SOS), vegetative-reproductive transition (VRT) and end of the season (EOS) and further 

derivation of each of the phenology phases is scarce. (Sacks and Kucharik, 2011) reported the 

relevance of seasonal length and crop phenology for crop adaptation in Mid-western US between 

1981 and 2005. They reported that the period between corn planting to maturity was about 12 

days longer around 2005 than it was in 1981. A larger driver of this change was a 14% increase 

in the number of GDD (Growing Degree Days) needed for corn to progress through the 

reproductive period, probably reflecting the adoption of longer season cultivars. New insights 

that unveil the connection between the timing of the season, development and yield in the crop 

are needed to better understand crops adaptation and management practices in different regions. 

 The overall goals of this work were to: i) derive key phenological metrics for corn over the US 

corn belt via high temporal resolution vegetation index, ii) benchmark these phenology metrics 

against ground-truth and CPCRs data at the ASD level, and iii) identify the links between the 

phenological metrics and yield trends over the last 14 years in the corn belt region.   
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MATERIALS AND METHODS 

Data Processing 

 The region of the study involved the US states of Kansas, Missouri, Iowa, and Indiana, 

characterized as a relevant corn producing region for the country (Fig. 3.1). The abovementioned 

US states have in combination an overall production of 335 million tonnes representing 41.4% of 

the total corn production at the country level according to USDA NASS (USDA, 2017). 

 NDVI is the most widely adopted vegetation index for crop monitoring (Wardlow et al., 

2006). It denotes high sensitivity in the red and near-infrared regions of the electromagnetic 

spectrum, particularly relevant to detect vegetation onset, plant growth, fraction of 

photosynthetic active radiation (fPAR), and leaf area index (LAI) as bio-physical parameters.  

 

NDVI = (NIR -Red)/(NIR +Red)       (1) 

  

 MODIS Terra Surface Reflectance Daily L2G Global 250-m SIN Grid V006 

(MOD09GQ) product was utilized  as primary input in the process. Imagery data for this study 

were acquired from the National Aeronautics and Space Administration (NASA) 

(https://e4ftl01.cr.usgs.gov/) from 2003 to 2017. Processing was first implemented via 

MODIStsp R package (Bussetto et al., 2016), including download of MODIS (h09-h11, v04-v5) 

extent tiles, extract, mosaic, project (Albert Equal Area Conic), generate and stack daily NDVI 

layers for further processing. For the 2003-2017 period, 12,460 MODIS scenes were included in 

the analysis. Corn cropland masks were generated from Crop Data Layer (CDL) produced by 

USDA NASS (Boryan et al., 2011). Complete CDL coverage for the states involved in the 

analysis were available since 2003. Multi-year USDA NASS CDL layers were included as key 

https://e4ftl01.cr.usgs.gov/
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inputs in our workflow to locate/extract pixels of corn fields (2003-2017) for the entire region. 

CDL corn pixels were sampled using area weight sample via “GridSample” (Tatem et al., 2017) 

contributed package to R [R Core Team, 2017] to prevent geographical bias when validating 

versus CPCRs. Point samples geolocation were imported back to “MODIStsp” R and used as 

centroids for the extraction of time-series profiles using only pixels fully contained within fields 

of corn. Raw time series contain pixels with unreliable values. Although MOD09GQ contains 

some data quality information, it lacks pixel quality information that MOD09GA (Vermote and 

Wolfe, 2015) has stored. The MOD09GA contains binary-coded cloud state, cloud shadow, 

sensor zenith angle, solar zenith angle information useful for contaminated pixel filtering. The 

MOD09GA quality data layers have 500m resolutions and are re-sampled to match the 250m 

reflectance data layers. The binary-coded quality information is then interpreted into various 

quality statuses for filtering purpose. The pixel validation status, cloud state and cloud shadow 

were used as the criteria for filtering cloud contaminated and low-quality pixels. A second step 

includes a data smoothing procedure via SG (Savitzky-Golatz) (Savitzky and Golay, 1964) to 

improve the signal to noise ratio but at the same time preserve in the signal critical inflexion 

regions related to phenological transitions in the season. SG filter is utilized as low pass filter to 

better characterize corn seasonal dynamic and for extraction of phenological metrics (Chen et al., 

2004). The SG filter applies a moving window and fits a quadratic polynomial function to the 

raw time-series and estimates new values for the center point of each moving window. 

Smoothing of daily MODIS NDVI was implemented using “savgol” function in “Prospectr” R 

package (Stevens, 2013). The SG function was set to third order polynomial and two consecutive 

rolling fits were utilized using first a window of 30 days to reduce larger peaks followed by a 

second 16 days window accounting for small peaks as final smooth. This two-step procedure 
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reported the best performance to denoise NDVI time-series signal and preserve key temporal 

features (local minimum, inflection points and local maximum) of the profile during the growing 

season (further details in Fig. 3.2). 

 Final metrics extraction was implemented in R via self-designed code considering the 

following definitions for phenology metrics (Table 3.1). MODIS-based phenology parameters 

(SOS, VRT, EOS) were evaluated at two levels (Fig. 3.2). First, implementing an extensive field 

survey including with five revisited times of 290 fields across Kansas during the 2017 growing 

season. The timing of summer crop field operations and physiological growth stages vary across 

Kansas. The southeast region has earlier planting dates, ahead from the Northeast and Western 

regions. This is mainly due to soil temperatures warming earlier with more growing degree 

(GDU) accumulation from southern to northern parts of the state and with an increasing gradient 

on precipitation from West to East. Second, MODIS-based phenology was compared using a 

large collection of CPCRs between 2006-2017 period for the designated US states. The CPCRs 

of crop development stages reported as percentages of completed phenological phases in the 

weekly reports (emergence, silking/tasseling, dough, maturity) were used as benchmark for 

metric extraction for this larger region (Fig. 3.3, portrays pictures of corn stages). 

A reduced time window (April-November) was utilized following (Ren et al., 2017) 

recommendations in order to enhance polynomial smoothing and metrics extraction. Decreasing 

this window reduces the percent of snow in a given pixel for that period reducing the noise signal 

in the time series profile. Farmers in the Northcentral US corn belt region typically start planting 

corn around mid-April and complete harvest by early November. Unfavored early season 

conditions (e.g., cold temperatures and drought) could negatively impact farm operations, delay 

crop development and negatively impact yield potential. Therefore, corn SOS, VRT and EOS 
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detection can be focused within the analytical window of early-April to end-October for the 

states located in the Northcentral US corn belt region (e.g., Kansas, Iowa, Missouri, and 

Indiana). The phenology metrics extracted from the field centroids within each county were 

averaged and assigned to the county scale and matched to year-based yield (USDA, NASS) for 

further comparison and modeling.  

HBSTM (Hierarchical Bayesian Spatiotemporal Modeling) was implemented to account 

for the spatial and temporal structure between MODIS-based phenology metrics and yield at the 

county level in the region. Bayesian methods allows to reduce uncertainty in inference 

statements that arise from joint space-time modeling (Cressie and Wikle, 2011). They become 

popular because of their ability to combine information from different sources over long-length 

time series data (Bakar and Sahu, 2013). It is process-based inference and incorporates random 

spatial and temporal process in the outcome statements. In this paper, a Bayesian hierarchical 

spatio-temporal model was proposed to analyze the data. 

spTimer contributed package (Bakar and Sahu, 2013) in R environment was utilized for 

HBSTM implementation. The package incorporates the derived phenology metrics as 

covariables of the explanatory (yield) that vary in both space and time. The Bayesian spatio-

temporal models can be represented in a hierarchical structure, where, according to (Gelfand, 

2012), we specify distributions for data, process and parameters in 

three stages: 

First: [data| process, parameter] 

Second: [process| parameter] 

Third: [parameter] 



68 

 

In the second stage, the process can add different levels, for example in Gaussian process 

models (Cressie and Winkle, 2011), we have true underlying process in the first level and the 

spatio-temporal random effect in the second level of the hierarchy. In the third stage of the 

hierarchy we introduce the prior distribution of the hyperparameters.  

We first explore an independent GP (Gaussian Process) approach which considers a 

hierarchical nugget effect together with an independent GP (Gaussian Process) model at each 

time point. The Gaussian process implies a spatio-temporal random effect that captures the 

space-time interactions (Cressie and Wikle, 2011). Overall, this model parallels the spatial 

random effect model in “spatial only” data analysis and naturally provides a very simple starting 

model where successive events in time are considered independent. GP can be specified as 

follows: 

 

Zlt = Olt + ϵlt    (2) 

Olt = Xltβ + ηlt    (3) 

 

Let Zlt (s1, t) denote the observed point referenced data and Olt(s1, t) be the true value 

corresponding to Zlt (si, t) at site si, i = 1, ..., n at time denoted by two indices l and t. Let Zlt = 

(Zlt (s1, t), ...,Zlt (sn, t))′ and Olt = (Olt(s1, t), ...,Olt (sn, t))′. Let N = nrT be the total number of 

observations to be modeled. Throughout, the notation Olt = (Ol (s1, t), ..., Ol (sn, t))′ will be used to 

denote the so called nugget effect or the pure error term assumed to be independently normally 

distributed N(0, σ2ε In) where σ2ε is the unknown pure error variance and In is the identity matrix 

of order n. The spatio-temporal random effects will be denoted by ηlt = (ηl (s1, t), ..., ηl (sn, t))′ 

and these will be assumed to follow N(0,Ση) independently in time, where Ση = σ2ηSη, σ2η is the 
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site invariant spatial variance and Sη is the spatial correlation matrix obtained from the general 

Matern correlation function (Matern, 1996). We assume that there are p covariates, including the 

intercept, denoted by the n × p matrix Xlt. Some of these covariates may vary in space and time. 

The notation β = (β1, ..., βp) will be used to denote the p×1 vector of regression coefficients. 

We further implement a hierarchical AR (Auto-Regressive) model for space-time with an 

explicit auto-regressive term where the underlying true spatio-temporal process is assumed in a 

hierarchical set-up that includes the overall nugget-effect (Sahu and Bakar, 2012). The main 

objective was to explicitly identify and valuate the “temporal” autoregressive component in the 

structure of the data and understand the temporal dependency in the data. The model can be 

specified as follows:  

 

Zlt = Olt + ϵlt    (4) 

Olt = ρOlt−1 + Xltβ + ηlt,  (5)  

 

for all l and t; where, ρ denotes the unknown temporal correlation parameter assumed to 

be in the interval (−1, 1). Obviously, when ρ = 0, these models reduce to the GP models. We 

continue to assume the Gaussian distributions, introduced, for ϵlt and ηlt for all values of l and t. 

The significance of variables (phenological metrics) parametrization on yield response 

was evaluated via trace, autocorrelation, and density plots for further interpretation of the model 

convergence (Fig. 3.7). The quality of the GP and AR models’ fit is evaluated via predictive 

model choice criteria (PMCC), (Gelfand and Ghosh, 1998) which is given by, 

 

 (6)  
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where, Zl(si, t)rep denotes a future replicate of the data zl(si, t). The first term in the 

PMCC assesses the goodness of fit and second term is a penalty term for model complexity. The 

PMCC, justified using a squared error loss function, is most suitable for comparing Bayesian 

hierarchical models that involve a first stage Gaussian model. 
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RESULTS AND DISCUSSION 

Threshold selection and MODIS -derived metrics selection at regional scale 

 A first evaluation of the extraction of SOS metric utilizing full-year images sequence as 

input and varying thresholds ranging from 10 (0.1) to 50% (0.5) of the relative NDVI amplitude 

of each time-series profile, with a root mean-square error (RMSE) in the range of 23–53 days for 

the entire region (Fig. 3.4). However, the corresponding coefficient of determination (R2) for the 

linear relationship between MODIS-derived SOS dates and CPCR dates was weak (R2 = 0.18). 

The effect of snow in the winter signal generated biased, lack of SG smoothing fit, thus, low 

performance in the extraction of the phenological metrics. Using partial year images as input, 

RMSE values were in the range of 16-28 days. For SOS, the best performance was obtained 

using a threshold value of 20% for SOS detection, reporting a R2 of 0.67, evidencing a RMSE 16 

days and an average delay of 9 days between the expected and estimated values. The coefficient 

of determination increased with the threshold value (Fig. 3.5), however, MODIS-derived SOS 

values were displaced out from the 1:1 line in (Fig. 3.5). 

 For tasseling (VRT) detection, NASS CPCR weekly reports silking and/or tasseling 

depending on each regional NASS office. Thus, we assumed synchronized silking and tasseling 

when validating MODIS-derived metrics versus CPCRs. The detection of tasseling (VRT) is 

assumed to be the maximum observed NDVI value in the time-series profile and considered as 

the end of the green-up period. Tasseling reported a RMSE of 13.9 days with a delay bias of 10 

days. When estimating EOS, the best outcomes were obtained when utilizing a threshold value of 

35% of the relative amplitude of the time-series profile reporting a R2 of 0.48, RMSE of 16.9 

days and a delay of 4 days (Fig.4). Overall, SOS and EOS detection had reasonable agreement 
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with CPCR data, as documented by Wardlow et al., 2006 for the state of Kansas, and with Ren et 

al. 2017 at state level in the corn belt. 

MODIS-Derived EOS Metrics and ground-truth validation 

 Ground truth validation was carried out between May-October in 2017. Overall, SOS, 

VRT and EOS metrics outperformed the regional validation. They reported lower RMSE, higher 

coefficient of determination and equivalent average delay. Overall, it is noted that lower RMSE 

and higher R2 can be imputed to a different scale of control of geographical weight uncertainty. 

CPCRs summarize information at ASD scale, and certain geographic bias may occur, which 

differs from the direct ground-truth validation where field location and its corresponding time-

series profile are directly matched and evaluated. Thus, this uncertainty is reduced when 

coupling local Kansas ground-truth data and time-series from known field locations. Differences 

on RMSE between Kansas and regional validation are mainly due to: 1) subjective interpretation 

and unbalanced area weight of weekly CPCRs. 2) Broader soil moisture and texture conditions at 

regional scale early in the season may affect the ratio between background and vegetation thus, 

the sensitivity of NDVI to consistently detect consecutive increases of NDVI assigned to plant 

emergence. 

Spatial-temporal patterns of the MODIS-based metrics and yield 

 A threshold value of 20 and 35% of the relative amplitude of the time-series profile 

reported the most robust SOS and EOS metrics. The annual SOS, VRT, and EOS derivation were 

utilized to investigate the spatial patterns. From ground-truth and CPCR validation, annual mean 

over the 2003-2017 time period was further investigated in each county for all metrics.  

The visual array for mean SOS and VRT follows an increasing pattern from the South to North 

region. Earlier SOS emergence in the SE region of Kansas, SE of Missouri and South of Illinois. 
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 The mean EOS follows the same geographical pattern, but its distribution appears more 

compacted in the calendar. The length of vegetative, reproductive and full length is shorter in 

regions with high yield potential, Central and Northern of Iowa and Illinois, North East and 

South West regions of Kansas. Mean length of the season does not evidenced positive correlation 

with mean yield across the region.  

The implementation of robust derivation of phenological metrics clearly depends on 

temporal and spatial resolution of the satellite. Other relevant aspect influencing the consistent 

estimation is the smoothing algorithm, we utilized Savitzy-Golatz since main priority was to 

preserve critical temporal features related to SOS, EOS and VRT. That later allows us to extract 

information and assign phenological metrics in both vegetative and reproductive periods. Using a 

reduced time window through the year significantly benefit the metrics extraction. 

 Threshold values used to detect SOS and EOS were also important (Zhao et al., 2004; 

Boryan et al., 2011; Tatem et al., 2017). For a large study area such as the Midwest US, we were 

searching for a threshold applicable to the entire region, rather than variable thresholds across the 

region. Compared to a 50% seasonal amplitude as the default threshold, a 20% value appeared to 

be better associated with CPCR 50% emerged dates at ASD level. We used daily MODIS time-

series data to derive estimates and exploit the added value of very short-term temporal sensitivity 

to capture rapid changes on the canopy of the region. We also conducted additional analysis to 

examine how the use of different vegetation indices EVI and NDVI affects SOS detection. For 

each pair of NDVI-derived SOS and EVI-derived values, we conducted a correlation analysis 

and found high correlation R2 =0.92. We further investigated the spatial and temporal relation 

between the derived satellite seasonal and phenological metrics and yield at two date frames. The 

length of the reproductive stage was significant retained in the model on describing yield trend 
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between 2003-2017.  These results were in accordance with the one reported by (Sacks and 

Kucharik ,2011) for the region between 1981-2005. Most traditional modelling techniques (e.g. 

multiple linear regression) do not consider any spatio-temporal correlations, and hence are less 

appropriate to describe a data set that exhibits a spatial and temporal correlation structure, or 

random effects (Clark and Linzer 2015). In order to quantify the presence of spatial dependency 

in the data, we calculate the Moran’s I statistic (Moran, 1950) through a permutation test. 

Moran’s I statistic can be used only to test spatial autocorrelation at a single time point. Moran’s 

I statistic was computed for all fourteen yield time points. All fourtheen time points indicated 

strong spatial autocorrelation for yield (Table 3.2). This motivates to include the spatial and 

temporal autocorrelations into the modelling hierarchy, which could capture and account for the 

spatial and temporal dependencies between the derived phenolical metrics and yield over the last 

14 years in the region.  

During HBSTM implementation, the best stability of variables parametrization was found 

at 7000 iterations, sampling autocorrelation was rapidly reduced. After Monte Carlo integration 

convergence of variables parameters were evaluated via density plots, trace and autocorrelation 

graphs (Fig. 3.7 and 3.8) [Hadfield, 2012; Martin et al., 2012). Results indicated significant 

parameter retention of length of the vegetative and reproductive stages, green-up and senescence 

rates (Table 3.3).  

 All four variables were significant (confidence interval of the coefficient outside 0 value) 

in the MCMC parametrization for both, GP HBSTM (Fig. 3.7) and AR HBSTM (Fig. 3.8). And, 

there were positively related to the increase on yield trend in the last 14 years. In GP HBSTM 

model, the spatial component was significant given by sigma2eta value (Table 3.3). This 

outcome confirms that the spatial structure between the phenological metrics and yield was 
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significant. But in addition, AR HBSTM confirmed that the spatial and temporal component 

(rho) were significant on describing yield. Moreover, when comparing the goodness of fit via 

PMCC, AR HBSTM outperforms GP HBSTM, meaning that the inclusion of the temporal 

component reduces the penalization (lower PMCC) of the model to describe yield.  Overall, the 

outcomes indicate that a spatial but also a temporal trend that positively links the increase of the 

length of the vegetative, reproductive stages, faster green-up and senescence rates with yield is 

reported for the region in the last 14 years. 

 The significance of a higher green-up and senescence rate reported should be considered 

in the context of management practices. Higher plant population is increasingly utilized by 

farmers to maximize yield (Assefa et al., 2018). Higher plant density can lead to faster rate to 

reach full canopy cover/soil background prior to flowering and senescence speed rate before 

maturity. The lengthening outcomes are in accordance with last trends on yield improvement 

documented in the US corn belt region, an extended length of the vegetative and reproductive 

stages as one of the factors positively impacted yield gain (Sacks and Kucharik, 2011). The 

authors reported that a large driver of this change was a 14% increase in the number of GDD 

(Growing Degree Days) needed for corn to progress through the reproductive period, probably 

reflecting an adoption of longer season cultivars.  
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CONCLUSION 

 We implemented a workflow using 250-m MODIS NDVI time-series to derive critical 

SOS, VRT, EOS temporal metrics. We compared our approach with both an extensive field 

campaign and with CPCR at 50% for each indicator evaluated. We apply a reduced window time 

to decrease winter signal noise (“denoising”) and for facilitate the metric extraction procedure. 

We evaluate several threshold levels in order to find the best combination for each region of the 

time series profile. Best combination was threshold 20% and 35% or SOS and EOS, respectively. 

The outcomes unveil that lengthened duration of the vegetative and reproductive stages (full  

season), increase on green-up and senescence rates positively describe yield trend on both space 

and time for the region in the last 14 years.  
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Figure 3.1. (A): Study area: states of Iowa, Illinois, Missouri and Kansas. (B): Extent, 

location and (C): USDA-NASS ASDs (Agriculture Districts) code in the area of study. 
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Figure 3.2. Workflow process for phenological metrics extraction. (A) Data downloaded, 

MOD09GQ rasterstacks and CDL corn layer extraction. (B) Generation of MOD09 NDVI 

rasterstack, clipping of CDL corn and MOD09 NDVI pixels. (C) Extraction of NDVI time-

series profiles, using selected geo-locations on MOD09 NDVI rasterstack. (D) Spatio-

temporal model linkage. Down: (C.1) = start of season, (C.2) = green-up rate, (C.3) = 

tasseling (maximum NDVI value), (C.4) = browndown rate (senescence), (C.5) = end of 

season. 
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Figure 3.3. Phenology transition during 2017 field growing season, left panel: start of the 

season (SOS), center panel: tasseling (VRT), right panel: end of the season (EOS). 

 

 

 

 

 



86 

 

 

 

Figure 3.4. Impact of threshold value on RMSE and coefficient of determination on: (A) 

start of season (SOS) and (B) end of season. 
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Figure 3.5. Top panel: MODIS derived metrics versus CPCRs in the region of study: (A) 

start of the season (SOS), (B) vegetative-reproductive transition (VRT), (C) end of the 

season (EOS) across the states (Indiana, Kansas, Missouri, and Illinois) data between 2006 

and 2017. Bottom panel: MODIS derived metrics versus ground-truth data from field 

surveys in the state of Kansas during the 2017 growing season: (D) SOS, (E) VRT, (F) EOS 

all relative to MODIS-derived phenology metrics. 
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Figure 3.6. Maps of derived phenology metrics means (2003-2017). (A) start of the season 

(SOS), (B) vegetative-reproductive transition (VRT), (C) end of the season (EOS), (D) 

Length of vegetative stage, (E) Length of reproductive stage and (F) Length of season, (G) 

green-up, (H) senescence, (I) yield. 
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Figure 3.7. (A) Left panel: Trace evaluation of variables in GP HBSTM parametrization 

and (B) Monte Carlo integration, variables parameter distribution, confident interval 

approximation for length of vegetative and reproductive stages, green up, senescence and 

parameters of the model (sig2eps, sig2eta, phi).   
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Figure 3.8. a=Left panel: Trace evaluation of variables in AR HBSTM parametrization and 

b= Monte Carlo integration, variables parameter distribution, confident interval 

approximation for length of vegetative and reproductive stages, green up, senescence and 

parameters of the model (rho, sig2eps, sig2eta, phi).  
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Table 3.1. Phenology metrics defined and extracted from time-series profile description. 

 

 

 

 

 

 

 

 

 

Phenology metrics Description 

Start of season (SOS) 
Beginning of growing season, time which NDVI start to increase, 20% of 

time-series relative amplitude 

Green-up rate 
Calculated as the difference between the NDVI between 30-and-70 % of 

the time-series relative amplitude over time 

Vegetative -Reproductive transition 

(VRT) value 

Largest NDVI value for the fitted function. Approximation for tasseling in 

corn 

Vegetative -Reproductive transition 

(VRT) time 

Time during the growing season when the maximum NDVI peak occurs 

 

End of season (EOS) 
End of growing season, time which NDVI ends to decrease, 35% of time-

series relative amplitude after maximum peak. 

Vegetative length 
Time from the start of the growing season to tasseling 

 

Reproductive length 
Time from tasseling to physiological maturity 

 

Seasonal Length 
Time from the start to the end of the growing season 

 

Browndown rate 
Calculated as the difference between the NDVI between 30-and-70% of 

the senescence process (decay phase of NDVI seasonal curve) over time 

Amplitude 
Difference between maximum and base NDVI level  
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Table 3.2. Spatial autocorrelation of USDA-NASS yield via Moran I test at the county level for the region. 

Metric 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Moran I 0.62 0.58 0.63 0.49 0.50 0.57 0.66 0.85 0.91 0.44 0.83 0.83 0.76 0.90 0.82 

 

- Expectation = -2.4e-3, Variance = 8.0e-4, p-value = 2.2e-16 
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Table 3.3. Inference of the GP and AR models parameters (i.e. median and statistical 

significance from Markov chain Monte Carlo samples) in the region between 2003-2017. 

 

Phenological metrics: GP Model AR Model 

Length of Vegetative 1.460E-02* 1.00E-02* 

Length of Reproductive 1.670E-02* 9.70E-03* 

Green-up rate 1.460E-02* 8.20E-03* 

Senescence rate 1.880E-02* 1.04E-02* 

Other parameters in the models:   

Intercept 3.55E+00* 6.16E-01 

Spatial white noise (sig2eps) 5.00E-03* 5.00E-03* 

Spatial correlation (sig2eta) 6.00E+01* 3.78E+01* 

Spatial decay (phi) 1.00E-04* 1.00E-04* 

Temporal correlation (rho) -- 6.06E-01* 

PMCC 3.00E+05 1.49E+05 

  *Statistically significant considering 95% Bayesian credible interval. 
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Chapter 4 - General discussion 

 Conclusions and implications for agriculture 

A strong positive correlation was obtained between CSM-estimated plant height and 

ground-truth data collected when corn plants were at flowering stage (R2 = 0.79, RMSE =0.09 

m). The correlation between CSM and ground-truth data measured two weeks prior to flowering 

was penalized (R2 = 0.63, RMSE = 0.11 m). For the pre-flowering measurement, the lower 

proportion of the variation accounted for the CSM-estimated plant height was primarily due to 

lack of uniform development within the corn canopy and plants emerging at different timing due 

to soil–weather factors in the season. At flowering, maximum plant height was attained, corn 

canopy become more uniform with less heterogeneity (lower RMSE to mean plant height ratio) 

and better prediction power (higher R2). The correlation obtained between measured and CSM-

estimated plant height is consistent with previous findings for corn and other crops. A significant 

correlation between plant height measurements at flowering stage support the conclusion that 

imagery taken at end of stem elongation is better correlated with ground-truth data. Plant height 

estimate reported a stable response through heights on both dates, slopes of the linear regression 

slopes between dates were no significant different. We also report that there was a better 

prediction of plant height at flowering due to a lower underestimation, which is also related to 

lower plant heterogeneity within the canopy.  Spatial-temporal correlation between CSM-

estimate and biomass suggested that digital photogrammetry can be implemented to assist plant 

biomass estimation. But plant biomass predictability is not strong; however, predictability 

significantly increases when joining CSM-derived plant height and stem diameter measured on 

the ground. 
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In Chapter 2, the developed workflow integrates traditional color thresholding and supervised 

learning to detect corn plant in the images with the objective of proposing a solution to move 

from a manual to an automatized and unbiased process. Real farm field conditions were utilized 

for collecting data, implementation and validation steps. Even tough combined sites training 

performed slightly weaker (0.93), the implementation of a prior-trained classifier in a new site 

evidenced potential with the benefit of reducing the computational cost in large datasets. Overall 

performance significantly dependens on the flight altitude/spatial resolution, best outcomes were 

reached in the lower flight altitude (10 m) imagery. Degraded spatial resolutions gradually 

penalizes the outcomes due to the lower sensitivity to detect green contours (mixed signal 

between vegetation and soil background) and by depleting the significance of “geometry” as a 

meaningful descriptor to differentiate between green contours classes.  

In chapter 3, a scalable approach was proposed to first screens key phenological metrics of 

corn via satellite data, in a second step these metrics were utilized to understand the spatial and 

temporal dynamics of the crop phenology and yield over an extensive region for 14 years. 

Outcomes indicate that lengthened vegetative and reproductive stages, faster green-up and 

senescence rates positively describes yield. In addition, the positive linkage between satellite-

based phenology metrics and yield trends were significant in space but also in time for the 

region. 
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 Contribution to science 

The present research contributes to the knowledge on the adoption of remote sensing in 

the context of agriculture enabling scalable inference over biological processes that in general 

evidence site, space and time dependencies. The utilization of digital aerial photogrammetry is 

still novel in agriculture, and literature on the adoption of this approach for crop metrics 

derivation is scarce. The outcomes demonstrate that the technique can be a valid low-cost 

alternative to derive allometric plant metrics in the context of precision agriculture and plant 

breeding. 

The second research proposes an alternative to shift from a traditional manual biased 

operation into an automatized procedure to derive early season crop performance. But, strictly in 

the arc of science, it attempts to leverage previously reported color threshold approaches highly 

dependent on local site conditions, prone to miss-classification and limited on scalability. In this 

context, the proposed method relies in a novel integration of the UAS, color thresholding, and 

supervised learning. The proposed workflow reported less local site-dependency and higher 

performance than previous works reported in the literature. The main contribution of this paper is 

related to the development of a procedure to detect corn plants to better guide early season 

operations for farmers. The outcome of the workflow allows the digital counting of plants using 

a low-cost UAS and RGB camera contributing to quantify early-season data of crop performance 

at on-farm conditions. 

For the third research, even though vegetation phenology via satellite imagery had been 

widely studied globally, not much attention had been focused to better understand the links 

between the spatial and temporal dynamics of crops phenology and yield. To the best of our 

knowledge, this is the first attempt to understand these dynamics over an extensive region in the 
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last 14 years. The outcomes allow to identify the most significant phenology indicators 

describing yield trend. The results can help to better understand crop adaptation in a context of a 

large-scale interpretation. Identify the links between phenology and yield across latitudes, varied 

weather conditions, across regions with contrasting yield potentials enables better screening of 

crop adaptation and decision-making processes of farmers. 

 Future research 

New questions arose when addressing the objectives of each chapter. In the case of the 

adoption of digital photogrammetry, future work should account for the impact of early season 

Digital Terrain Models on plant height estimate. This will likely evidence the prior-site 

magnitude dependency of the technique that will help to better understand the trade-off between 

precision of the estimate and the cost of its operations. Another line of work should investigate 

the viability of digital photogrammetry on deriving “canopy” metrics linked to yield prediction 

in corn. In this context, new insights on the relation between volume estimates and actual 

biomass are needed. Lastly, but not less relevant is the study of potential integration between 

digital photogrammetry. multi and hyperspectral domains, but also the redundancy of the 

approaches should be further studied and identified. For the second research, future work should 

investigate the integration of geometry, spectral and texture descriptors for classes delineation on 

leveraging overall performance. To explore opportunities of integrating multiclass non-corn 

objects to reduce the internal high variance of non-corn objects class boosting overall 

performance. To investigate the penalization of changing environment conditions (wind, clouds) 

in the geometric descriptors and classifier performance requires further insights.  

In the third study, further insights are needed to better understand the relevance of the length 

of stay-green post-flowering stage. This is not considered in the current design on metrics 
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extraction, since the  estimation includes the full length of the reproductive stage. However, it is 

a significant aspect from a physiology stand point, since this metric may represent a valuable 

contribution of selection in modern hybrids to leverage yield. In addition to that, there is a clear 

need to integrate satellite phenology estimates into predictive models, our outcomes evidenced 

this potential. There is a synergistically opportunity to integrate the high spatial resolution and 

large area coverage of satellites with the precision of local weather station estimates based on 

temperature to improve phenology predictability. 
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