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Abstract 

If climate change scenarios include higher variance in weather variables, this can have important 

effects on pest and disease risk beyond changes in mean weather conditions.  We developed a 

theoretical model of yield loss to diseases and pests as a function of weather, and used this model 

to evaluate the effects of variance in conduciveness to loss and the effects of the color of time 

series of weather conduciveness to loss.  There were two qualitatively different results for 

changes in system variance.  If median conditions are conducive to loss, increasing system 

variance decreases mean yield loss.  On the other hand, if median conditions are intermediate or 

poor for disease or pest development, such that conditions are conducive to yield loss no more 

than half the time, increasing system variance increases mean yield loss.  Time series for weather 

conduciveness that are darker pink (have higher levels of temporal autocorrelation) produce 

intermediate levels of yield loss less commonly.  A linked model of decision-making based on 

either past or current information about yield loss also shows changes in the performance of 

decision rules as a function of system variance.  Understanding patterns of variance can improve 

scenario analysis for climate change and help make adaptation strategies such as decision 

support systems and insurance programs more effective. 

 

Keywords: climate change; climate variability; colored noise; cropping systems; decision-

making under uncertainty; decision support systems; disease; early warning systems; 

environmental variability; insurance; livestock; pests; time series 
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1. Introduction 

Understanding and managing the effects of agricultural pests and diseases are major 

challenges. As a world-wide average, the potential crop yield loss to animal pests and pathogens 

has been estimated at 18% and 16%, respectively (Oerke, 2006).  In livestock, total losses to 

trypanosomosis alone are estimated at US$1.3 to 5 billion (McDermott and Coleman, 2001).  

Thus, effective management of pests and pathogens is key for making efficient use of natural 

resources, maintaining income and assets for farmers by reducing losses, and keeping food prices 

affordable enough to maintain food security.  The best form of management is often use of 

disease and pest resistant varieties or breeds, where development of a new crop variety typically 

requires a decade and development of new livestock breeds is much slower; benefits of research 

may take 40 years to be realized (Alston et al., 2009; Pardey et al., 2006). Where inadequate or 

no sources of resistance have been found in established crop germplasm, other forms of crop 

protection are needed to keep pests under control. The development and implementation of new 

integrated pest management (IPM) strategies are time consuming and the resulting time lag in 

response to pest and disease problems is one motivation for understanding how climate change 

will influence pest and disease risk.  Several biological features of pests and diseases increase the 

challenges of predicting the effects of climate change, including the potential for more frequent 

weather extremes to have particularly strong effects (Coakley, 1979; Rosenzweig et al., 2001). 

 1.1. Changes in variability and the color of weather time series 

Climatic variability and climate extremes have direct effects on crop yield (Challinor et al., 

2007; Orlandini et al., 2008; Porter and Semenov, 2005; Trnka et al., 2011; Wheeler et al., 2000).  

They also have an effect on diseases and pests beyond the effect of changes in mean weather 

variables (Chaves et al., 2012; Coakley, 1979; Kriss et al., 2012; Rohr and Raffel, 2010; Scherm 
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and van Bruggen, 1994; Scherm and Yang, 1995).  More common occurrence of climate 

extremes, or potentially new extremes, can also cause a range of problems (Rosenzweig et al., 

2001).  If extremes become more common, new models may be necessary, if the observed trend 

of climate change is completely different from climatological averages.  ‘Non-analog climates’ 

are climatic conditions that do not presently exit (Fitzpatrick and Hargrove, 2009). In this 

context, forecasting future distributions of diseases and pests from current known species climate 

relationships is highly problematic. This is because the observed distribution of diseases and 

pests alone provides no clear information about how the species might respond under completely 

novel environmental conditions (Fitzpatrick and Hargrove, 2009). Thus, model outputs based on 

extrapolations may lead to substantial errors in managing disease and pest invasions and climate 

change impacts.  

Because of the spatial and temporal correlation imposed by pests and diseases, the effects of 

climate extremes can extend well beyond the season in which they occur; for example, the 

inoculum load remaining at the end of a season often strongly affects the inoculum load at the 

beginning of the next season.  For pests or pathogens whose range expansion is limited by 

conditions for initial establishment, extreme conditions can make new leaps possible.  Long 

distance transport is an important factor in the introduction of new pests and pathogens, and in 

the annual migrations that many pests or pathogens such as rust fungi make each year to reinvade 

areas where they cannot overwinter (Li et al., 2010).  Extreme storm events that spread 

pathogens more rapidly will have long-lasting effects.   Extremely favorable conditions may also 

'unleash' new pests/diseases that normally only have minor effects, in addition to making typical 

pests/diseases more problematic.  From managers’ perspectives, there is a qualitative difference 
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in adjusting to greater pressure of a known pest or disease compared to preparing to manage a 

new pest/disease. 

El Niño events, which are similar but likely even more extreme than expected mean 

temperature changes under climate change, have had a great impact on the abundance and 

severity of pests and disease in South America. For example, during the 1997 El Niño 

phenomenon in Peru, mean temperature on the Peruvian coast increased by about 5 ºC above the 

annual average. While infestation of potato by the leafminer fly (Liriomyza huidobrensis) 

decreased, the abundance and infestation severity of all other pests (e.g., the bud midge, 

Prodiplosis longifila; potato tuber moth, Phthorimaea operculella; white fly, Bemisia tabaci) 

increased in all agricultural and horticultural crops. The farmers’ only adaptive strategy to cope 

was applying high doses of pesticide every 2-3 days (Cisneros and Mujica, 1999). It can be 

expected that climate change consequences and farmers’ future needs for adaptation in other 

parts of the tropics will be quite similar to such effects observed during El Niño (Kroschel et al., 

2010). 

Pathogen responses to environment often provide good examples of the importance of 

climatic extremes and weather, rather than climate per se.  Anthrax and Foot and Mouth Disease 

(FMD) both have a near-worldwide distribution, but episodes of climate variation may prompt 

sudden emergence or spread.  The causative bacteria of Anthrax, Bacillus anthracis, form spores 

that may remain infective for 10-20 years (Baylis and Githeko, 2006).  Heavy rainfall stirs up the 

spores, and a proceeding drought event often triggers disease outbreaks (Parker et al., 

2002).  FMD in dry regions of Africa spreads almost entirely by direct contact (Sutmoller et al., 

2003), but can travel several kilometres given cool and humid conditions; wind-borne spread is 

an essential component in epidemiologic models where such conditions exist (Garner et al., 
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2006; Rubel and Fuchs, 2005; Sørensen et al., 2000).  The economically important viral disease 

Peste des Petits Ruminants (PPR) appears to be most prevalent immediately prior to seasonal 

peaks of rainfall (Wosu et al., 1992) which may reflect optimal conditions for viral survival 

(Baylis and Githeko, 2006).  

 The color of an environmental time series refers to how strongly correlated a variable is 

in time, and whether the correlation is positive or negative.  White noise has no correlation in 

time, such that an environmental variable would have no correlation from one time to another.  

Blue noise has a negative correlation from one time to the next and so will tend to have high 

frequency oscillations.  Increasing positive correlations between time points yield pink, red, and 

brown noise, with a tendency to have lower frequency oscillations (examples in Fig. 1).  Some 

degree of positive correlation is often realistic for many variables such as temperature, depending 

on the resolution and extent considered (Rohani et al., 2004; Vasseur and Yodzis, 2004).  

Positive correlation will also tend to be more common for epidemic and other population 

processes, even in a constant environment, especially in the absence of complicating factors such 

as induced resistance.  The color of an environmental time series and associated population time 

series may logically be related (García-Carreras and Reuman, 2011; Ruokolainen et al., 2009; 

Wilmers et al., 2007).   García-Carreras and Reuman (2011) concluded that climate variables 

have become relatively bluer over the past century (on an annual basis), such that higher 

frequency oscillations may also be observed for populations affected by weather. 

1.2 Early warning systems / decision support systems 

The potential for within-season decision-making by farmers has been a driver for the 

development of many models of pest and disease risk.  Early warning systems (EWS) or decision 

support systems (DSS) are used to advise farmers when the risk is high or low for a particular 
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pest or disease vector at a specific period of the year. Weather variables are an important part of 

most EWS and DSS (Table 1).  When information about risk is available to farmers (particularly 

when made available through participatory means, combining analytical and experiential 

learning (Marx et al., 2007)), they can decide on appropriate actions to be taken, such as making 

an insecticide application or not, deciding what type of chemical to use, and determining when to 

spray. Hence, EWS data are used as a tool to judge the relative risk that farmers may experience 

in the near future and when that risk is likely to occur. Early detection tools in this context can be 

subdivided in distinct groups depending on the information used for developing the EWS. 

Within-season forecasting models can also be rescaled for application at greater spatial extents, 

such as in climate change scenario analysis (Sparks et al., 2011).   

The expected increase in climate variability in many regions can increase the need for early 

warning systems to support agricultural decision makers (Dury et al., 2011; Giorgi et al., 2004; 

Haylock and Goodess, 2004; Meinke and Stone, 2005; Rosenzweig et al., 2001; Rowell, 2005; 

Seneviratne et al., 2006). Larger differences among consecutive years, as well as among different 

weeks of the same year, can make decision-making more difficult and can reduce the value of 

previous experience. The use of models can support warning systems, especially when they are 

based on mechanistic approachs describing the physiological relationships between pest/disease 

and host. Models tend to be of the greatest utility when conditions are neither consistently 

conducive nor consistently non-conducive to pests and disease.  As a result, decision makers who 

do not have access to robust and reliable model output are likely to experience more difficulty 

under higher variability.  Higher variability in environmental conditions may also make it less 

likely that farmers adopt resistant varieties if consistent benefits cannot be readily observed 

(Garrett et al., 2011) as for drought tolerance (Lybbert and Bell, 2010). 
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1.3. Decision-making for pest and disease management 

 When models of productivity, and productivity losses to diseases or pests, are applied in 

future scenario analyses, another important source of uncertainty is how well people will manage 

diseases and pests.  Higher pest and disease risk imposes greater demands on all people involved 

in agricultural production, from plant breeders, entomologists and plant pathologists to extension 

agents and farmers.  The demands will be higher on farmers in systems where support from 

research and extension is not readily available.  The question remains whether effective 

management will be widely implemented, and whether management can be formulated so that it 

does not substantially reduce profitability or reduce other ecosystem services.  Behavioral 

models of decision-making at the farm level for the context of fragile environments are not yet 

well developed (Hertel and Rosch, 2010).  Moreover, the spatial and temporal correlation 

resulting from potential pest and disease spread means that decisions made by some parties will 

influence pest and disease problems experienced by other parties. 

The study of risk assessment, perceptions, communication, and management, developed 

in response to challenges presented by increasingly technologically-oriented societies 

(Covello, 1983; Kates and Kasperson, 1983; Slovic, 1987), has provided insight into how 

people make decisions under risk and uncertainty. Risk perception rather than actual risk is 

relevant to decision-making (Gent et al., 2011; McRoberts et al., 2011; Slovic and Weber, 

2002).  Farmers base their crop and livestock decisions on local knowledge systems, resulting 

from years of observations, experiences, and experiments (Bharara and Seeland, 1994; Gilles 

and Valdivia, 2009; Marx et al., 2007).  In Argentina, farmers faced with uncertainty and risk 

in a La Niña event were able to handle at most one adaptation decision (Hansen et al., 2004).  

The degree of dread, fearfulness or gut feeling of angst, in response to hazards such as pests 



Agricultural and Forest Meteorology (2012) in press - 9 
 

and diseases is an important factor.  Andean farmers in three regions of the Andes 

experiencing climate variability and change had different responses to their sense of dread to 

hazards, even within communities.  This was a function of the resources they had or could 

access and of the geographical location (Valdivia et al., 2010).  It is possible to quantify and 

predict risk perception in terms of the amount of dread a risk produces, and the amount of 

knowledge about risks (Hinman et al., 1993; Marks, 2001; Slovic, 1987) and how culture 

shapes risk perceptions (Gobel, 2002; Johnson and Covello, 1987).  People assess risks using 

rules based systems and association/experiential based systems (Marx et al., 2007; Slovic and 

Weber, 2002).   When the results of these are in conflict, people tend to rely on the 

associational since past experiences are often more memorable and dominant (Slovic et al., 

2002). This is specially the case when the dread of an event is high.   

Marx et al. (2007) discuss how decision makers use different types of information.  There 

is a tendency to weight recent experience, such as the last five years.  If rare events have not 

occurred recently, they are given less weight, while people may overreact to recent rare 

events.  This response may be adaptive if the system is changing in a directed manner.  People 

tend to respond to vivid events rather than to statistical information.  The ‘availability 

heuristic’ makes people tend to assume that the future will be similar to what they have 

experienced so far. 

1.4. Objectives 

Scherm and van Bruggen (1994) have previously shown how increasing amplitude in a 

weather variable such as temperature, compared to a constant temperature, can result in a 

substantially different pathogen growth response.  Models of human diseases have also evaluated 

the effect of weather variability (Chaves et al., 2008; Dobson, 2009; Pascual et al., 2008a; 
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Pascual et al., 2008b). Here we design a generic model of disease/pest responses to weather 

variability to address related fundamental questions about the role of variability and extremes in 

disease/pest management scenarios.  It is not designed to be a realistic model for any given 

system, but we have tried to incorporate many of the most important features of a range of 

systems, both animal and plant (Borer et al., 2012; Wilkinson et al., 2011), to produce general 

results.  We use the model to provide insights into the following questions and generate 

hypotheses about these relationships.   

A. How are losses to diseases/pests affected by changing variability in weather conduciveness, 

and by changing the color of noise associated with weather conduciveness? 

B. How does a decision-maker’s choice of current versus past information affect losses and 

profit in these different types of environments? 

These weather scenarios can inform the construction of ensemble models, where predictions 

from several models are pooled, by providing different types of variation, and illustrating the 

effects of variation on disease/pest impacts. 

 

2. A model of the effects of climate variation 

2.1. Effects of climate variation on yield loss to diseases and pests 

2.1.1. How are losses to diseases/pests affected by changing variability in weather 

conduciveness, and by changing the color of noise associated with weather conduciveness? 

Weather conduciveness to diseases/pests is a function of a number of weather variables (Table 

1).  This models starts at the point where the set of relevant weather variables has already been 

converted to a single measure of conduciveness.  In this weather model, the time series model for 

‘general weather conduciveness to a disease/pest’ Rt corresponds to 
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Rt = mt + Zt, (1) 

where mt captures the trend associated with weather conduciveness. A constant mean weather 

conduciveness is captured by setting mt to a constant. Alternately, linear or polynomial trends 

can be used to reflect expected weather conduciveness as a function of time t. If mt takes a higher 

positive value, conducive conditions such that Rt > 0 become more common; if mt is a lower 

negative number, conducive conditions become rarer.  Zt is the stationary residual that can be 

modeled as an autoregressive or moving average process to capture the correlation between 

weather conduciveness at different times. For example, a first order autoregressive model for Zt 

corresponds to  Zt = aZt-1 + (1-a)Wt, where |a| < 1and Wt is normally distributed mean zero white 

noise with variance σ2.  Zt is a colored noise series when a is nonzero and white noise when a is 

zero (Fig. 1). 

The time series for weather conduciveness is converted to a time series of cumulative yield 

loss (Yt) due to the disease/pest, using a logistic growth model.  The logistic model incorporates 

an increase in growth rate over time, until the yield loss begins to approach the maximum 

possible. 

 

Y0 = 1 

          (2) 

where 1 is the starting yield loss condition, 100 is the maximum loss, and the weather 

conduciveness variable functions as a rate parameter.  In the context of livestock, this model 

would be relevant where ‘cumulative yield loss’ indicates the proportion of a herd that is infected 

with a disease burden above a certain threshold.  The burden could be due, for example, either to 
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pathogens, such as trypanosomes, or to internal parasites, such as helminths.  Just as the weather 

conduciveness variable subsumes a number of processes, so too does the cumulative yield loss 

variable: the many processes that lead to pathogen/pest reproduction and the effects of that 

reproduction on host productivity.  Note that the cumulative yield loss can become smaller over 

time if conditions do not support pest/pathogen development, which would be realistic for 

scenarios where hosts can recover and compensate for earlier losses.  For systems where 

recovery from yield loss is not realistic, we also include a no-yield-recovery model variation 

where values of Rt < 0 are set to 0 (Fig. 1). 

It is clear from equation (2) that the yield loss is also a stochastic process as it depends on the 

weather conduciveness at each time instant. By analyzing the statistical behavior of the Yt 

process, we can obtain insights into how the mean and the variance of weather conduciveness 

impact the expected yield loss and its variance. Because of the recursive relationship in (2), 

analytical derivation of the distribution of Yt becomes intractable as t increases. However, the 

mean and variance of Yt can be derived analytically for small values of t with the algebraic 

complexity of this derivation growing with t. From these derivations (along with an inspection of 

equation (2)), we observe an expected behavior – i.e., increasing the mean and variability of the 

weather conduciveness increases the mean and variability of the yield loss process. However, the 

exact relationship between the means and the variances is not trivial. In fact, it is easy to show 

that the mean of the yield loss process at time t (t > 1) actually depends both on the mean and the 

variance of the weather conduciveness process! Furthermore, thanks to the recursive relationship 

in equation (2), we observe that the variance of the yield loss process keeps growing with time t. 

That is, the variability of the weather conduciveness creates larger variability in the model 

predicted yield loss for higher values of t. Since analytical derivations of the distribution as well 
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as means and variance get prohibitively complex with increasing t, we used Monte Carlo 

simulations to characterize the mean and variance of Yt.  

We evaluated the effects of varying σ2, the variance of the Wt, across values from near 0 to 9 

crossed with the effects of varying m, the mean of Rt, from -2 to 2 for 20 time steps in 1000 

simulations at each combination of values using the R programming environment (R 

Development Core Team, 2011).  R script generating the analyses in the figures in this paper is 

available at http://hdl.handle.net/2097/13786.  We also crossed the different values for σ2 and m 

with a range of values for the coefficient a to compare the effects of a white noise (a = 0), light 

pink (a = 0.5), and a darker pink (a = 0.9) series.  The values of Wt were generated using the 

normal random number generator rnorm in R.  The first term of the series was assigned a normal 

random variable with mean m and variance σ2, and the first 100 values of Zt were discarded 

before the Rt were generated.  The length of the potentially-conducive season, in terms of the 

number of generations, may change because the actual number of days increases or because the 

generation time changes as a function of changing climate.  We interpret the length of the season 

and the potential yield loss broadly, not necessarily in terms of yield in a single field/herd, but 

for a location as a whole, where for example there might be multiple overlapping generations of 

annual crop hosts in different nearby fields. 

 

2.2. Effects of climate variation on farmer decision-making 

2.2.1. How does a decision-maker’s choice of current versus past information affect losses and 

profit in these different types of environments? 

In the above analyses, yield losses are presented without explicit consideration of 

management to reduce effects.  Here we incorporate the effects of decision-making by managers 

http://hdl.handle.net/2097/13786
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in a model that compares the results for different types of information managers might choose to 

use.  Suppose a manager must decide whether or not to impose a type of management (such as 

crop tillage, biocontrol application, or pesticide application) in the middle of a season, in the 

context of a 10-generation model.  The management has a cost to the manager equivalent to 20% 

of the yield.  Its benefit is to reduce Rt to 0 for three time steps.   

In this model, the manager can draw on two types of information.  First, the final yield loss 

from three previous years is one form; the decision rule associated with those three years is ‘If 

final yield loss exceeded 20% in two or more of the three previous years, then management 

should be applied this year.’  (For simplicity, we assume that the management treatment was not 

applied mid-season during those three years.  Thus, interpreting high yield loss is complicated by 

lack of information about whether use of management would have been a good choice to reduce 

yield loss, or whether conduciveness was so high that management would have been wasted.)  

Second, the current midseason (t=5 out of 10) yield loss (Y5) is observed; the decision rule 

associated with the current yield loss is ‘If current yield loss is greater than or equal to 5% but 

less than 80%, then management should be applied this year.’  Note that these management rules 

are not optimized for the available information, and the optimal rules could change with the 

underlying model parameter values.  But we use these rules to examine the effects of different 

levels of weather variation on the relative success of these rules. 

The success of a management decision was evaluated by comparing (a) the end of season 

yield loss (Y10) without the management, to (b) the end of season yield loss with the 

management, and whether the benefit of management was greater than the cost of management.  

If the management decision resulted in a great enough reduction in yield loss, then it was a 

correct decision from the standpoint of optimizing profit (though not necessarily from a broader 
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ecosystem services standpoint (Cheatham et al., 2009)).  We emphasize that the decision rules 

are the same for all scenarios, and thus have not been optimized for each scenario, but serve to 

illustrate general properties of the scenarios. 

We compared the success of the current versus past information for management decision 

models in 1000 simulated sets of four seasons per parameter combination, where the final season 

was evaluated both with and without the management treatment.  We evaluated this for 

parameter combinations described above. 

 

3. Model results 

3.1. The effects of variance and the color of time series on yield loss to diseases and pests 

The variance of the Wt and the color of the Zt, determined by a, both influence yield loss 

(Fig. 2, generated using the R function smoothScatter).  When the mean rate of yield loss, mt, 

is -2 or 0, higher variance results in higher yield loss.  Figure 2 presents the ‘no-yield-recovery’ 

model, where the mean -2 and the mean 0 case are somewhat more similar, because values of the 

rate Rt < 0 are replaced by 0 so that the cumulative yield loss is monotonic increasing.  When the 

mean rate is 2, increasing variance in Wt decreases yield loss.   

When a is 0, Zt is a white noise process.  As a becomes larger, Zt becomes a light pink 

and then darker pink series.  For darker pink series, the ‘less typical’ yield loss results may 

become less common compared to the white noise series when the mean mt is high (Fig. 2).  For 

mt = 2 after 10 time steps the yield loss tends to be near 100% for a white noise series, and for 

darker pink series the yield loss is rarely near zero when the variance is low.  For lower values of 

the mean mt, moving from white noise to pink noise results in zero yield loss becoming more 

common, even for higher variance (Fig. 2). 



Agricultural and Forest Meteorology (2012) in press - 16 
 

3.2. The effects of variance and the color of time series on farmer decision-making.  For the 

lower mean conduciveness, such that disease or pest conducive conditions are relatively rare, 

increasing the system variance increases the rate of incorrect decisions after ten time steps (Fig. 

3).  False negative decisions, such that management is not applied when it would have been 

profitable, become more common with increasing variance, but then can decline again for white 

noise.  False positive decisions, such that management is applied and results in a reduction in 

profit, become more common with increasing variance, though the rate of increase declines with 

higher variance.  For system mean = 0, the likelihood of false positive reactions becomes higher 

for the rules based on the past.  For system mean mt = 2, conditions are typically conducive 

enough that for low variance the rules are not optimized and typically result in false positive 

responses that are not enough to reduce yield loss adequately.  As variance increases, the 

performance of both types of decision rules improves as scenarios where they can provide 

benefits become more common.  One important advantage of the decision rule based on current 

conditions is that it includes scouting to determine whether yield loss is already so high by the 

middle of the season that use of management is a lost cause.  Darker pink noise decreases the 

effect of variance for the lower mean conduciveness cases.  For the higher mean conduciveness 

case, darker pink noise reduces the effect of variance on the rate of false positive decisions for 

the rule based on current or past information. 

 

4. Discussion 

4.1. General results and variations on the model 

Climate variability may have important effects on yield losses, independent of changes in 

mean conditions.  This simple model shows how changing variance in weather conduciveness to 
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yield loss due to disease or pests (a function of multiple weather variables (Table 1)) can change 

the mean yield loss.  If conditions are highly conducive to diseases/pests, increasing variance 

leads to a decrease in mean yield loss. For the highly conducive conditions, increasing variance 

also leads to more successful use of decision rules, in that decision rules can prove useful under 

higher variance while they rarely do under the consistently highly conducive conditions.  

Increasing variance for scenarios of low conduciveness to disease/pests leads to increases in the 

mean yield loss and poorer performance of decision rules.  Additional forms of variation could 

also be explored, such as weather conduciveness with a distribution other than normal, where 

other distributions could have varying higher statistical moments such as skewness (a measure of 

asymmetry) and kurtosis (a measure of distribution ‘flatness’, or heaviness of distribution tails) 

(Chaves et al., 2012) (Table 2). 

The decision scenario presented in the paper is meant to serve as an example of how one may 

use a generic model and extract useful information from it. The model in its current form is used 

to capture a natural phenomenon such as weather conduciveness and its direct impact on yield 

loss. Based on the model for the physical system, one can design an information, command and 

control system that serves as the decision maker. If we want to capture the effect of the decision 

process on the physical system, it is possible to update either Rt or Yt with an additional “control” 

term Ut. The control term can be designed to capture the impact of complex decision processes.  

Zt models a part of weather conduciveness that is not captured by the trend component. In 

practice, the exact model for Zt will be dependent on the epidemic of interest. Our goal in this 

model was to present a generic framework and while simulations are presented for an 

autoregressive model with one time lag (AR(1)) for Zt, the model could readily be modified to 
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evaluate more general autoregressive and/or moving average models (ARMA(p,q)) or even non-

stationary time series models for Zt. 

The general framework presented here can be modified to operate on multiple spatial and 

temporal scales. For example, the time index in the weather conduciveness time series Rt could 

indicate days, months, seasons or even years, where an oscillating component could represent 

seasonality in conduciveness and the changing probability of successful overwintering or 

oversummering.  We did not explore the effects of neighboring locations on yield loss at a 

particular location.  This could be evaluated using more mechanistic network models of pathogen 

or pest movement through space (Moslonka-Lefebvre et al., 2011), and potentially network 

models for the movement of opinion that modifies decision-making (Garrett, 2012). 

Alternatively, a relatively simpler two- or three-dimensional autoregressive model for yield loss 

might be used, where one dimension could be time.  An important trait of pests and pathogens is 

the spatial correlation that they produce through their spread.  Spatial autocorrelation can also 

influence patterns of yield loss, another influence to make loss similar across space and to buffer 

changes in loss over time (Margosian et al., 2009).  In cases where there is increased variation in 

climate variables and associated increased variation in pathogen or pest populations, local 

extinction may also become more common (García-Carreras and Reuman, 2011; Ruokolainen et 

al., 2009; Wilmers et al., 2007), so that future disease loss at any given location will depend on 

the spatial structure of conditions suitable to reintroduce pathogens or pests.  Similarly, decision-

making may also be correlated in space, as farmers compare results for purposes of decision-

making, or where a single farmer has responsibility for a number of different fields.  Drawing on 

the results of multiple processes can result in more informed decisions, but conformist social 

learning can cause group losses in variable environments (Whitehead and Richerson, 2009). 
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EWS and DSS are needed when a system is variable: if a pathogen or pest is always a 

problem, or never a problem, there is no need for predictions.  The number of cases with yield 

loss between the bounds 0 and 100 (in the absence of management) increases as the variance 

increases in the yield loss model (Fig. 2).  Good EWS and DSS will be particularly important if 

the variance in weather conduciveness increases as part of climate change.While it is desirable to 

minimize both false positives and negatives, in practice one comes at the cost of the other. So, 

typically, decision rules are designed such that one of the two metrics is minimized while 

constraining the other to be less than some reasonable acceptable level. This is the basis of 

Neyman Pearson decision rules where false negatives are minimized subject to a constraint on 

false positives (Poor, 1994). For example, in the case of EWS, one may decide on the relative 

level of importance for the two metrics. Based on that, the decision rule thresholds can be 

adjusted to meet the expected EWS performance.  Under the illustrative decision rules evaluated 

here, false negative decisions are less frequent than false positive decisions, and the false positive 

decisions show a strong response to system variance.  It would also be possible to incorporate 

other aspects of decision-making making in this modeling framework, such as optimization for a 

particular level of variance or response to dread, to evaluate the effects of changing variance on 

performance. 

4.2. Addressing pest and disease problems under changing climate variability 

Scenarios where weather variance increases will often make good DSS and EWS more 

important.  It would be very useful to have forecasts across a season and beyond, but there are 

limits to the quality of such long range forecasts.  Useful links may be made between epidemic 

disease emergence (such as Rift Valley Fever) and specific climate events (such as heavy 

rainfall).  Advance forecasts of ENSO events have been used to provide early warning of 
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epidemics.  EWS, once established, can be used to (1) direct sentinel surveillance programs, (2) 

make efficient use of pesticide stores, and (3) target vaccination programs (e.g. Ephemeral Fever 

in cattle).  Farmers with more commercial opportunities may be in a position to invest  and use 

forecasts (Hansen et al., 2004) while others (Patt et al., 2005) find that information that includes 

alternative strategies also allows vulnerable farmers to adjust.  Many management techniques 

depend on reducing the local level of inoculum, while temporal and spatial correlation in both 

weather conduciveness and pathogen population size will cause local inoculum levels to be 

strongly influenced by regional levels.  These management techniques, such as the use of variety 

mixtures, may be less useful during El Niño years compared to La Niña years, for example, if 

regional inoculums loads become saturated (Garrett et al., 2009).  Management strategies, 

themselves, may need to be altered to adjust to new scenarios.  Global agricultural research is 

needed to support such adaptation of pest and pathogen management to climate change 

(Chakraborty and Newton, 2011; Juroszek and von Tiedemann, 2011; Luck et al., 2011; Pautasso 

et al., 2010; Savary et al., 2011; Shaw and Osborne, 2011). 

    Understanding the behavioral characteristics of farmers is crucial if appropriate 

management practices are to be developed to manage pests and diseases (Mumford and Norton, 

1984). Mumford and Norton call for obtaining information early on about farmers’ perceptions, 

the constraints they face and their objectives, especially for the development of pest control 

research and extension.  An interdisciplinary research program on adaptation to change in the 

Altiplano (Valdivia et al., 2010) hypothesized that if results of traditional and expert forecasts 

were in conflict, farmers would use the traditional assessment model (Slovic et al., 2002).   In 

this assessment, dread of pests and disease was high, as were concerns with the changing climate 

in the northern region.  While local perceptions of the climate trends were similar to observed 
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trends in the last fifty years (Seth et al., 2010), there were also key differences. Perceptions of 

decreases in rainfall were actually related to faster evapotranspiration due to increased 

temperatures as well as shifts in the timing of rainfall, and not reduction in total rainfall.  

Farmers in fragile environments where there is spatial and temporal variability, such as 

mountainous regions, may have little confidence in forecast information generated outside of 

their community or neighborhood (Gilles and Valdivia, 2009).    

 Insurance introduces another realm of decision-making, for those considering purchase and 

for those public or private groups considering how to offer insurance (Hazell and Hess, 2010).  

Traditional crop insurance programs have been functioning in developed countries for decades, 

and the potential has been studied in developing countries.  Recently pilot programs have been 

tested to determine when and how these may be feasible (Norton et al., 2011; Osgood and 

Warren, 2007; Smith and Watts, 2009).  Several studies point to institutional constraints in the 

implementation of programs in developing countries (Hazell, 1992), and the search for 

alternative approaches to make insurance viable (Skees et al., 1999).  The key is to prevent 

farmers’ loss of assets due to drought or other weather-related risks in Africa, Asia, and the 

Andes, if ENSO events occur, for example.   If farmers don’t lose their assets they will be able to 

invest and recover from the shock, and with insurance incorporate more costly and higher 

yielding technologies.  Traditional index insurance insures against drought, for example (Osgood 

and Warren, 2007), though new programs are also exploring index insurance for disease and 

pests (e.g., (Norton et al., 2011; Richards et al., 2006)).  Approaches are being pilot tested in 

Malawi where the microlending projects actually support the ability to lend during shock events 

so farmers don’t lose their assets.  This is an on-going area of research that could develop 

alternatives that would reduce dread.  A limiting factor for weather-based index insurance is the 
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need for very good estimates of the relationship between weather variables and loss, where 

consideration of autocorrelation may be necessary in some cases.  A model such as the one 

presented here may be useful for exploring payout scenarios in weather-based insurance schemes 

for loss to disease and pests. 

 The utility of EWS also depends upon two basic facilities: 1) the infrastructure required 

to disseminate the warning, and 2) the capability to take appropriate preventive action.  In the 

case of livestock disease, veterinary support and other extension services may be required, and 

some degree of planning in advance of a disease outbreak warning is necessary in order to 

identify the most economically expedient response, which is likely to vary between 

localities.  Prior assessments must balance the cost of vaccination and/or treatment against the 

value of livestock both in an economic and intrinsic sense so that immediate decisions can be 

made.  

4.3. Biological adaptation 

Models designed to predict the future distribution and/or prevalence of pests and pathogens do so 

primarily by simulating current physiological and phenological behaviour in relation to climate, 

then applying these simulation models to new climate scenarios.  This approach has a significant 

limitation (beyond that of extrapolating empirical relationships past unidentified thresholds, after 

which the relationship changes), which is that it assumes that the phenotype of the target 

organism remains constant.  In reality, responses to environmental change are likely to take the 

form not only of demographic and distribution changes that track the altered distribution of 

optimal conditions, but also of adaptation to new conditions.  Such phenotypic responses have 

been reported in various taxa (e.g. (van Heerwaarden and Hoffmann, 2007; Yom-Tov et al., 

2006), but it is often unclear whether observed changes are due to phenotypic plasticity or 
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microevolution (i.e. adaptation).  Phenotypic plasticity is the term given to the phenomenon of 

different phenotypes (physical, physiological or behavioural) expressed by different individuals 

that share the same genotype, whereas microevolution denotes adaptive shifts in the distribution 

of genotypes within populations (Visser, 2008).  Apparently adaptive microevolution has been 

observed in Drosophila spp. (Etges and Levitan, 2008; Umina et al., 2005), and phenotypic 

plasticity is well-documented in tsetse flies (Glossina spp.), which are vectors of trypanosomiasis 

(Terblanche et al., 2006).  Rates of microevolution and degrees of plasticity, respectively, will 

dictate the ability of these two mechanisms to allow species to respond to climate change, and 

some mismatches between phenotype and environment have already been observed (Memmott et 

al., 2007).  For soilborne disease, adaptation of soil microbes to new climate scenarios has the 

potential to modify risk both directly and by changing environmental traits such as soil organic 

matter (Sierra et al., 2010).  Variability and autocorrelation in weather conduciveness to disease 

and pest reproduction modifies the form of selection pressure.  More realistic simulation models 

should, where possible, take into account known degrees of phenotypic plasticity and rates of 

microevolution when producing forecasts for future climatic scenarios.   

4.4. General conclusions 

This model illustrates how mean yield losses can change even when mean conduciveness to 

loss does not.  The roles of variance and the color of weather time series, and probably other 

statistical features such as skewness and kurtosis (Chaves et al., 2012), also need to be 

considered for formulating strategies in response to climate change (Table 2), by farmers and 

other decision makers.  While farmers and agricultural scientists are the decision makers most 

commonly considered in the context of pest and disease risk modeling, there are a number of 

other stakeholders who need to anticipate pest and disease impacts.  Understanding likely effects 



Agricultural and Forest Meteorology (2012) in press - 24 
 

of climate change on agricultural productivity can benefit corporations in terms of their decisions 

about where to invest.  In the public sector, universities and other institutions need to prioritize 

their investments in agricultural research, teaching and extension.  Scenario analysis can also 

identify potential problems that will lead to larger scale issues, such as human migration and 

unregulated movement of animals and plant materials.  Development agencies and institutions 

also need to make decisions about prioritization of development investments to support 

adaptation strategies.  Scales matter when addressing the human dimensions of adaptation in the 

context of socio-ecological systems (Ostrom, 2007; Ostrom, 2009).  Small holder farmer 

adaptation takes place in a larger context, not only of climate and ecology, but social systems 

(Valdivia et al., 2010). Decisions made at the local scale (field, farm household) are shaped by 

the institutions (markets, policies, research and extension, private and public) at larger scales of 

governance (Valdivia et al., 2010). 

We modeled two simple types of observations farmers might use for decision-making.  

Farmers do access and incorporate a broader range of new knowledge in their decisions  

(Bebbington, 1991; Valdivia et al., 2010).  Use of information often depends on the degree of 

trust between the decision maker and the risk messenger (Krimsky and Plough, 1988; Slovic, 

1993).  Two-way participatory communications can enhance trust (Wilkins, 2001) and 

contextualize the message (Marx et al., 2007).  Two-way processes such as participatory research 

support the inclusion of new knowledge to enable action that is adaptive (Hayward et al., 2004; 

Howden et al., 2007; Valdivia et al., 2010). These processes are especially critical when the level 

of uncertainty about future events will increase, and when markets don’t function well 

(information is limited, inputs are not available at all or on a timely basis, or are too expensive, 

and institutions are unreliable) and rural households lack safety nets.  Processes that support  
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understanding of the nature of variability in weather and pest risk, and that strengthen rural 

community capacities for this purpose, are critical to building resilience at the local and at the 

macro levels.   

Variability in future climate scenarios offers challenges for policy makers.  A more 

parsimonious approach than attempting to draw a single conclusion about future scenarios will 

be to present the full range of envisaged outcomes and allow policy to be drafted in the form of a 

response to a set of possible scenarios instead of a single prediction (Stirling, 2010).  A practical 

strategy would then be a general preparedness for all likely eventualities, or at least a hedged 

compromise in which most potential outcomes could be managed and none would be 

disastrous.  This general ethos is best served by stochastic models wherein parameter values are 

not fixed, but chosen from an appropriate probability distribution.  And rather than treating each 

time point as an independent draw, taking into account autocorrelation may be important in 

understanding risk and how to adapt decision-making. 
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Table 1.  General effects of weather/climate on livestock and crop productivity (in the absence of 

pests and disease), disease impacts, and arthropod pest impacts. 

 

 Livestock Crop Pathogen Arthropod 

Weather 

variables 
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Temperature Will affect water 

requirements and 

health due to 

heat stress 

Affects 

assimilation rate 

and phenological 

phases 

Important for 

determining the 

rate of infection 

or development 

processes 

Broadly 

important for 

development, 

survival and 

reproduction  

Precipitation Indirect through 

importance for 

growth of 

pastures 

Important for 

growth 

Proxy for surface 

wetness and 

responsible for 

spore spread in 

the environment 

Affects 

population 

dynamics and is 

key for 

development of 

mosquitoes, 

midges 

 

Photoperiod 

Indirect through 

importance for 

growth of 

pastures 

Important for 

vegetative and  

generative crop 

development  

Affects 

development of 

some pathogens 

Affects insect 

development 

Solar radiation  Affects plant 

growth and 

phenotype  

Affects survival 

of pathogens, 

particularly 

wind-dispersed 

spores 

Influences 

survivorship and 

egg reproduction 

and herbivory in 

plant insect 

interactions 

Surface wetness Will affect foot  Key for many  
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health from non-

communicable 

diseases 

foliar diseases 

(high resolution 

often used) 

Relative 

humidity 

Will affect water 

requirements 

Important for 

evapotranspiration  

Proxy for surface 

wetness 

Important for 

survival and 

activity of ticks 

and insects 

especially 

parasitoids 

Soil moisture  Broadly important Key for many 

soilborne plant 

diseases 

Important for 

insects pupating 

in soil; may 

affect tick 

response to air 

humidity 

Speed of 

response to 

weather shifts 

and extremes 

Managers’ 

change to better 

adapted breeds 

may be very 

slow 

Change to 

resistant varieties 

or species be slow 

Rapidly take 

advantage of 

conducive 

extremes 

Rapidly take 

advantage of 

conducive 

extremes 

     

Resolution for 

decision support 
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models 

Spatial Typically farm-

scale, with 

potential for 

scaling up 

From field to 

regional and 

global scale 

From field to 

regional and 

global scale 

From field to 

regional and 

global scale 

Temporal Medium- to 

long-term 

Daily or monthly Hourly or daily Daily or weekly 

     

Autocorrelation     

Spatial Low Low Potentially high Potentially high 

Temporal Higher for long-

lived animals 

Higher for 

perennials 

Potentially high Potentially high 

     

Model 

longevity/ 

portability/ 

generality  

(without need for 

changes in 

parameters) 

    

Spatial Medium Medium Low (affected by 

the hourly 

temporal 

Lower 
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resolution) 

Temporal Longer Longer Potentially 

extremely short 

Shorter 

     

Typical farmer 

knowledge level 

High High Moderate Lower 
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Table 2.  The effects of changes in the probability distribution of weather conduciveness to pests, 

disease, and impacts. 

 

Change in trait of 

weather 

conduciveness to 

pests and disease 

Impact for pests and diseases Impact for decision makers 

Mean Increasing mean weather 

conduciveness leads to higher 

mean potential yield losses 

Increasing mean weather 

conduciveness may make a 

crop or breed uneconomic to 

produce 

Variance Increasing variance in weather 

conduciveness leads to higher 

mean potential yield losses if 

mean is low, and leads to lower 

mean potential yield losses if 

mean is high 

Increasing variance in weather 

conduciveness increases the 

importance of good models 

(good decision rules) for 

decision makers 

Color of noise Darker pink, red, or brown 

noise results in longer strings of 

conducive or non-conducive 

conditions 

Management decision-making 

can be more successful when 

conditions are more consistent 
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Figure Captions 

 

Figure 1.  Examples of the time series generated by the yield loss model.  When a = 0, the Zt 

series is white noise.  When a = 0.5 or a = 0.9, the Zt series is lighter pink and darker pink noise.  

As a increases, the greater level of temporal autocorrelation produces a smoother series Zt.  In 

the no-yield-recovery model, the Rt series of ‘weather conduciveness to yield loss from pests or 

diseases’ (from equation 1) has 0 as a minimum value.  The resulting cumulative yield loss series 

(from equation 2) also tend to be smoother for higher a.  The examples shown here are for m = 0 

and σ2 = 1 in the no-yield-recovery model. 

 

Figure 2. Percentage yield loss (smoothed) for different values of a and m for the ‘no-yield-

recovery’ model for 10 time steps (generations).  When a = 0, there is no temporal correlation, 

and temporal correlation increases with increasing a.  When m is low, weather conduciveness to 

disease development is low.   

 

Figure 3.  Proportion incorrect decisions based on two different decision rules about use of mid-

season management.  When a = 0, there is no temporal correlation, and temporal correlation 

increases with increasing a.  When m is low, mean weather conduciveness to disease 

development is low.  Circles indicate performance of decision-making based on current 

information through the fifth of ten generations; squares indicate performance of decision-

making based on past information from three previous years.  Filled symbols indicate false 

negative decisions, such that management was not applied when it would have increased profit.  
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Open symbols indicate false positive decisions, such that management was applied when it 

decreased profit. 


