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The governing equation is ut= �a�x�ux�x, 0�x�1, t�0, u�x ,0�=0, u�0, t�=0,
a�1�u��1, t�= f�t�. The extra data are u�1, t�=g�t�. It is assumed that a�x� is a
piecewise-constant function and f �0. It is proved that the function a�x� is uniquely
defined by the above data. No restrictions on the number of discontinuity points of
a�x� and on their locations are made. The number of discontinuity points is finite,
but this number can be arbitrarily large. If a�x��C2�0,1�, then a uniqueness theo-
rem has been established earlier for multidimensional problem, x�Rn ,n�1 �see
A. G. Ramm, Multidimensional inverse problems and completeness of the products
of solutions to PDE, J. Math. Anal. Appl., 134, 211 �1988�� for the stationary
problem with infinitely many boundary data. The novel point in this work is the
treatment of the discontinuous piecewise-constant function a�x� and the proof of
Property C for a pair of the operators ��1 ,�2�, where � jª−�d2 /dx2�+k2qj

2�x�, j
=1,2, and qj

2�x��0 are piecewise-constant functions, and for the pair �L1 ,L2�,
where Ljuª−�aj�x�u��x���+�u, j=1,2, and aj�x��0 are piecewise-constant func-
tions. Property C stands for completeness of the set of products of solutions of
homogeneous differential equations �see A. G. Ramm, Inverse Problems �Springer,
New York, 2005��. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3155788�

I. INTRODUCTION

Let

u̇ = �a�x�u���, 0 � x � 1, t � 0, u� ª
�u

�x
, u̇ ª

�u

�t
, �1�

u�x,0� = 0, u�0,t� = 0, a�1�u��1,t� = f�t� � 0, �2�

u�1,t� = g�t� . �3�

Problems �1� and �2� describe the heat transfer in a rod, a�x� is the heat conductivity, a�1�u��1, t�
is the heat flux, g�t� is the measurement, the extra data.

The inverse problem �IP� is as follows.
IP: Given f�t� and g�t� for all t�0 , find a�x�.
Assumption A: a�x� is a piecewise-constant function, a�x�=aj, xj �x�xj+1, x1=0, xn+1=1,

0�c0�aj �c1, 1� j�n.
This assumption holds throughout the paper and is not repeated. The set of piecewise-constant

functions with finitely many discontinuity points is denoted by �.
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If a�x��C2, then the uniqueness of the solution to some multidimensional IPs has been
proved in Ref. 6 �see also Ref. 5�. Problems �1�–�3� with a�x��C2��0,1�� has been studied in
Refs. 8 and 9. The treatment of discontinuous piecewise constant a�x� is of interest in applications.
A different inverse problem for the heat equation was studied in 10.

In Ref. 4, Eq. �1� with the conditions u�0, t�=u�1, t�=0, u�x ,0�=g�x�, was studied, and the
measured �extra� data were the values u��m , t�, ∀t�0, 1�m�M, 0��m�1, where M =3n and n
is the number of the discontinuity points of a�x�. It was assumed in Ref. 4 that minj�xj −xj+1� is not
too small. Under these assumptions, the uniqueness theorem for the IP was proved in Ref. 4 and
an algorithm for finding a�x� was proposed. The stability of this algorithm with respect to pertur-
bations of the data was not studied in Ref. 4.

There is a large literature on IPs for the heat equation. We mention Refs. 1–3 and references
therein.

In our paper, the extra data �3� consist of measurement, taken at one point, rather than at 3n
points, and we impose no restrictions on minj�xj −xj+1�. Under these assumptions, which are much
weaker than in Ref. 4, we prove the uniqueness of the solution to IP.

One of our main results is as follows.
Theorem 1: The IP has at most one solution.
Remark 1: The IP is ill-posed: small variations in the data �f�t� ,g�t�� in the C�0,�� -norm

may lead to large variations in the coefficient a�x� or may lead to a problem that has no solution.
We assumed that the data are known for all t�0. If one assumes that f�t�=0 for t�T, where T
�0 is an arbitrary fixed number, then the solution u�x , t� is an analytic function of t in the region
t�T. Therefore the data �f�t� ,g�t��, known in the interval �0,T+��, where ��0 is an arbitrary
small fixed number, determine uniquely the data for all t�0. Thus, if f�t�=0 for t�T, then the
uniqueness theorem for the solution to IP remains valid if the data are known for t� �0,T+��.

Let us formulate IP in an equivalent form.
Take the Laplace transform of Eqs. �1�–�3�, denote

v�x,�� ª Lu ª 	
0

�

e−�tu�x,t�dt ,

and get

�v − �a�x�v��� = 0, 0 � x � 1, v�0,�� = 0, �4�

a�1�v��1,�� = F���, v�1,�� = G��� , �5�

where FªLf and GªLg.
The IP can be reformulated as follows.
IP: Given F��� and G��� for all ��0, find a�x�.
Let us transform Eqs. �4� and �5� to yet another equivalent form.
Let a�x�v�ª	. Then �4� and �5� can be replaced by the following problem:

− 	� + �a−1�x�	 = 0, 	�1,�� = F���, 	��0,�� = 0, �6�

	��1,�� = �G��� . �7�

The IP can be reformulated as follows.
IP: Given G��� and F���, find a−1�x�ªq2�x�.
Let

�	 ª − 	� + k2q2�x�	 = 0, � ª k2, q2�x� ª a−1�x�, c1
−1 � q2�x� � c0

−1. �8�

Consider the following problems:
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� j	 j = 0, � j ª −
d2

dx2 + k2qj
2�x�, 	 j��0,k� = 0, 	 j�0,k� = 1, j = 1,2. �9�

Our second main result is as follows.
Theorem 2: The sets �	1�x ,k�	2�x ,k��∀k
0 and �v1��x ,��v2��x ,���∀�
0, kª�1/2, are dense in

the set � of piecewise-constant functions on �0,1�.
Remark 2: Theorem 2 says that if h�x��� and

	
0

1

h�x�	1�x,k�	2�x,k�dx = 0, ∀ k � 0, �10�

then h=0. Similar conclusion holds if 	 j�x ,k� is replaced by v j��x ,�� in (10). Such a property of
the pair of the operators ��1 ,�2� is called Property C.5,7

Clearly, if the set �	1�x ,k�	2�x ,k��∀k
0 is dense in the set �, then the set of products
�v1��x ,��v2��x ,���∀�
0 is dense in the set �.

In Sec. II proofs are given.

II. PROOFS

A. Proof of Theorem 1

Proof: We prove this theorem for problems �4� and �5�. Suppose there are v j and aj ��, j
=1,2, which solve problems �4� and �5�, and let wªv1−v2. Then

�w − �a1w��� = �pv2���, p ª a1�x� − a2�x� , �11�

w�0,�� = 0, w�1,�� = 0, a1v1��1,�� = a2v2��1,�� . �12�

Multiply �11� by v1, a solution to Eq. �4� with a=a1, and integrate over �0,1� and then by parts to
get

	
0

1

p�x�v2�v1�dx = pv2�v1�0
1 + a1w�v1�0

1 − a1wv1��0
1 = 0, ∀ � � 0, � = k2, k � 0, �13�

where we have used the conditions w�0,��=w�1,��=0 and a1�1�v1��1,��=a2�1�v2��1,��. Note that
v2�x ,�� can be considered as an arbitrary solution to Eq. �4� up to a constant factor. The set
�v1��x ,��v2��x ,��� is dense in � by Theorem 2. Since a1�x�−a2�x�ªp�x���, it follows from �13�
that p�x�=0. So a1=a2. Theorem 1 is proved. �

B. Proof of Theorem 2

Proof: Let us prove completeness of the set of products �	1�x ,k�	2�x ,k��∀k
0. Assume that
h�� and �10� holds. The function 	 j�x ,k�, j=1,2, are entire functions of k. This follows from the
integral equation for 	 j, which is an immediate consequence of Eqs. �8� and �9�,

	 j�x,k� = 1 + k2	
0

x

�x − s�qj
2�s�	 j�s,k�ds, x 
 0, j = 1,2. �14�

Equation �14� implies that for any fixed k, one has 	 j�x�ª	 j�x ,k�
1, ∀x� �0,1�, j=1,2, that
	 j��x ,k�
0, 	 j��x ,k�
0, and �m	 j�x ,k� /�km
0 for all m=0,1 ,2 , . . .. Consequently, 	 j�x�, j
=1,2, are convex functions of x on the semiaxis x�0. Since 	 j�x ,k�, j=1,2, are positive, it
follows from �14� that 	 j�x ,k�, j=1,2, are increasing functions with respect to both x and k. So we
have

	 j�x,k� � 0, 	 j��x,k� � 0, 	 j��x,k� � 0, ∀ k � 0, j = 1,2. �15�
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Assume that 0�x11�x12� ¯ �x1N1
�1 and 0�x21�x22� ¯ �x2N2

�1 are discontinuity
points of a1�x� and a2�x�, respectively.

To derive from (10) that h=0, it is sufficient to prove that h�x�=0, ∀x� �x0 ,1�, where x0

ªmax�x1N1
,x2N2

�, because then one can prove similarly, in finitely many steps, that h=0 on the
whole interval �0,1� using the assumption h��. We have

	 j��x,k� = k2qjNj

2 �x�	 j�x,k�, ∀ k � 0, ∀ x � �x0,1� , �16�

where qjNj
is the value of qj on the interval �x0 ,1�. From �16� one gets

	 j�x,k� = aj�k�ekqjNj
�x−x0� + bj�k�e−kqjNj

�x−x0�, ∀ k 
 0, j = 1,2. �17�

It follows from �15� and �17� that

	 j�x0,k� = aj�k� + bj�k� � 0, 	 j��x0,k� = kqjNj
�aj�k� − bj�k�� 
 0 �18�

and

2aj�k� = 	 j�x0,k� +
	 j��x0,k�

kqjNj

� 	 j�x0,k� . �19�

This implies that

aj�k� 
 �bj�k�� 
 0, ∀ k � 0, j = 1,2. �20�

Since h��, one may assume without loss of generality that

h�x� = C 
 0, ∀ x � �x0,1� . �21�

It follows from �10� that

− 	
0

x0

	1�x,k�	2�x,k�h�x�dx = 	
x0

1

	1�x,k�	2�x,k�h�x�dx, ∀ k � 0. �22�

From �15�, �17�, and �20�, one gets

1 � 	 j�x,k� � 	 j�x0,k� � 2aj�k�, 0 � x � x0, ∀ k � 0, j = 1,2. �23�

Therefore,


	
0

x0

	1�x,k�	2�x,k�h�x�dx
 � 4a1�k�a2�k�	
0

x0

�h�x��dx . �24�

From �15�, �17�, and �20� one obtains

	 j�x,k� 
 aj�k��ekqjNj
�x−x0� − e−kqjNj

�x−x0��, x � �x0,1�, j = 1,2. �25�

Take an arbitrary y� �x0 ,1� and fix it. One has 	 j�x ,k�
	 j�y ,k� , ∀x� �y ,1�. Therefore,

	
x0

1

	1�x,k�	2�x,k�h�x�dx 
 C�1 − y�	1�y,k�	2�y,k�, ∀ k � 0. �26�

Thus �22�–�24� imply the following inequalities:

� � 4	
0

x0

�h�x��dx 
 C�1 − y�
	1�y,k�	2�y,k�

a1�k�a2�k�
, ∀ k � 0. �27�

It follows from �25� that
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lim
k→�

	 j�y,k�
aj�k�

= � . �28�

Let k→� in �27� and use �28� to conclude that C=0 and, therefore, h�x�=0 for x� �x0 ,1�.
Similarly, one proves that h�x�=0 for all x� �0,1�.

Theorem 2 is proved. �
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