ROTATIONAL AND IRROTATIONAL FLOW IN CGRTAIN GAS DYNAMICS PROBLEMS

by

CHENG-CHIEN CHOU

B. S., Cheng Kung University, Taiwan, China, 1957

A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1963

TABLE OF CONTENTS

INTRODUCTION 1
NOMANCLATURE 7
NORMAL SHOCK 9
Physical Equations 9
Irrotationality of Normal Shock 9
POTENTIAL VORTEX 11
Squation of Notion 11
Irrotationality of the Potential Vortex Motion 11
PRANDTL-MEYER EXPANSION 22
Characteristic Equations 22
Rotationality of Frandtl-Meyer Expansion 26
OBLIQUE SHOCK 35
Governing Equations 35
Rotationality of Flow Passing Through an Oblique Shock. 37
CONCLUSION 52
ACKNOWLEDGMENT 54
REFERCNCES 55

INTRODUCTION

The material involved in this report is a discussion of the rotationality of the normal shock, the potential vortex, the Prandtl-Meyer expansion and the oblique shock. In the investigation of oblique shock, some expressions involving the relationship between the entropy change and the angle of rotation have been developed.

All problems investigated in this report are based on the following basic hypotheses:
(1) The compressible fluid flow field is two-dimensional.
(2) The fluid is a perfect gas with $k=1.4$.
(3) All analyses concerning the compressible fluid motions are governed by the four basic laws which are:
(a) the law of conservation of mass
(b) Newton's second law of motion
(c) the first law of thermodynamics
(d) the second law of thermodynamics.

Some theoretical concepts and governing definitions which relate to the work of this report are described in the following pages.

Circulation

Definition of Circulation. (1) ${ }^{1}$, (2), (3). The circulation Γ is defined as the line integral of the velocity vector taken

[^0]around a certain closed curve C enclosing a surface within a fluid region. Referring to Fig. 1, this is
\[

$$
\begin{equation*}
\Gamma \equiv \oint_{c} V \cos \phi d \ell \tag{1a}
\end{equation*}
$$

\]

In vector notation it is

$$
\begin{equation*}
\Gamma=\oint_{c} \bar{v} \cdot d \bar{r} \tag{1b}
\end{equation*}
$$

where \bar{V} is the velocity vector and \bar{r} the radius vector from a certain origin.

Circulation Per Unit Area in Two Dimensions (1). Consider the circulation $d \Gamma_{z}$ around a small square element in the $x, y-$ plane as shown in Fig. 2. The circulation is

$$
d \Gamma_{z}=u d x+\left(v+\frac{\partial v}{\partial x} d x\right) d y-\left(u+\frac{\partial u}{\partial y} d y\right) d x-v d y
$$

or simplifying,

$$
\begin{equation*}
d \Gamma_{z}=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d A_{z} \tag{2}
\end{equation*}
$$

The circulation per unit area in the $x, y-p l a n e$ will then be given by

$$
\begin{equation*}
\frac{d \Gamma_{z}}{d A_{z}}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{3}
\end{equation*}
$$

Rotational and Irrotational Fluid Flow

Definition of the Fluid Rotation of a Particle at a Point (1). "The fluid rotation at a point is the mean angular velocity of two

Fig.1. Illstration of the concept of circulation.

Fig. 3. Fluid rotation at a point.

Fig.2. Circulation for elementary closed curve.

Fig. 4. Pressure force and velocities for an elementary fluid particle in a streamline coordinate system.
infinitesimal and mutually perpendicular fluid curves instantaneously passing through the point."

Rotation in Two Dimensions (3). In order to find an analytical expression for the fluid rotation at a point in a two-dimensional flow, the rotation component of a fluid particle about an axis through itself, say parallel to the z-axis, will be considered. The symbol ω_{z} is used to indicate this component of rotation.

Referring to Fig. 3, two line segments $d x$ and dy passing through the point P are chosen parallel to the x - and y-axes, and they must be at right angles to each other. The particle is at $P(x, y, z)$ and has the velocity components u and v in the $x, y-$ plane. If the components of velocity at A and B are different from that at P, the segments $P A$ and $P B$ will rotate to the relative positions $P A^{\prime}$ and $P B^{\prime}$, respectively, during a certian time interval $d t$. Then the angular velocity of the $d x$ segment is

$$
\frac{v+\frac{\partial v}{\partial x} d x-v}{d x}=\frac{\partial v}{\partial x} \quad \mathrm{rad} / \mathrm{sec}
$$

and the angular velocity of the dy segment is

$$
\frac{u+\frac{\partial u}{\partial y} d y-u}{d y}=-\frac{\partial u}{\partial y} \quad \mathrm{rad} / \mathrm{sec}
$$

using counterclockwise rotation as positive.
Hence, by definition, the rotation of a fluid particle at a point in a two-dimensional flow field is

$$
\begin{equation*}
\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \tag{4}
\end{equation*}
$$

Relationship Between Circulation and Fluid Rotation. Referring to Eqs. (3) and (4), the circulation per unit area is twice the average rotation of a fluid particle, i.e.,

$$
\begin{equation*}
\frac{d \Gamma_{z}}{d A}=2 \omega_{z}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{5}
\end{equation*}
$$

The Connection Retween the Rotation and the Thermodynamics Properties of the Flow (1). A system of curvilinear coordinates comprising the streamlines and the system of lines normal to the streamlines are taken for a steady and frictionless flow as shown in Fig. 4.

The rotation of the chosen element $A B C D$ is

$$
d \Gamma_{z}=\operatorname{Vrd} \theta-\left(V+\frac{\partial V}{\partial r} d r\right)(r+d r) d \theta=-\left(r \frac{\partial V}{\partial r}+V\right) d \theta d r
$$

or

$$
\begin{equation*}
2 \omega_{z}=\frac{d \Gamma_{z}}{d A_{z}}=\frac{d \Gamma_{z}}{r d \theta d r}=-\frac{\partial V}{\partial r}-\frac{V}{r} \tag{6}
\end{equation*}
$$

The force balance in the normal direction gives

$$
\left(p+\frac{\partial p}{\partial r} d r\right)(r+d r) d \theta-p r d \theta-2\left(p d r \frac{d \theta}{z}\right)-(p r d \theta d r)\left(\frac{v^{2}}{r}\right)=0
$$

which yields

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\frac{\rho v^{2}}{r} \tag{7}
\end{equation*}
$$

The combination of Eq. (6) and (7) reduces to

$$
\begin{equation*}
2 \omega_{z}=-\frac{\partial V}{\partial r}-\frac{1}{\rho V} \frac{\partial p}{\partial r} \tag{8}
\end{equation*}
$$

The first law of thermodynamics gives the stagnition enthalpy as

$$
h_{0}=h+\frac{v^{2}}{2}
$$

Its partial derivative with respect to the normal displacement is

$$
\begin{equation*}
\frac{\partial h_{0}}{\partial r}=\frac{\partial h}{\partial r}+V \frac{\partial V}{\partial r} \tag{9}
\end{equation*}
$$

Since

$$
T d s=d h-\frac{1}{P} d p
$$

the partial derivative of enthaply h with respect to the normal displacement is

$$
\begin{equation*}
\frac{\partial h}{\partial r}=T \frac{\partial s}{\partial r}+\frac{1}{p} \frac{\partial p}{\partial r} \tag{10}
\end{equation*}
$$

Eq. (9) and (10) together yield

$$
\begin{equation*}
\frac{\partial p}{\partial r}=-\rho T \frac{\partial s}{\partial r}+\rho \frac{\partial h_{0}}{\partial r}-\rho V \frac{\partial V}{\partial r} \tag{11}
\end{equation*}
$$

Substituting Eq. (11) into Eq. (8), an expression for the relationship between the fluid rotation and the thermodynamic properties of the flow is

$$
\begin{equation*}
\omega_{z}=\frac{1}{2 V}\left(T \frac{\partial s}{\partial r}-\frac{\partial h_{O}}{\partial r}\right) \tag{12}
\end{equation*}
$$

The result of Eq. (12) shows that the fluid rotation depends on the rates of change of the entropy and the stagnation enthalpy normal to the streamlines.

NOMENCLATURE

A flow area
A* choking area of flow at Niach Number unity
c speed of sound
c* critical speed of sound for adiabatic flow
c_{p} specific heat at constant pressure
h enthalpy per unit mass
ho stagnition enthalpy
k ratio of specific heats
l . length
m mass
M Mach Number
$M^{*} \quad V / C *$
p pressure
r radius
$\bar{r} \quad$ radius vector
R gas constant
s entropy per unit mass
t time
T absolute temperature
u velocity component in x-direction
v velocity component in y-direction
V velocity
$\overline{\mathrm{V}}$ velocity vector
α Mach angle
β angle
Γ circulation
$\delta \quad$ wall angle for oblique shock
θ angle
1 angle
p density
σ angle of oblique shock to incoming flow
$\phi \quad$ angle
ω defined by Eq. (17a)
ω_{z} angular rotation or rate of angular rotation about z-axis

NORMAL SHOCK

Physical Equations (1)

Steady-flow Energy Equation:

$$
h_{x}+\frac{v_{x}^{2}}{2}=h_{y}+\frac{v_{y}^{2}}{2}=h_{0}
$$

Equation of Continuity:

$$
P_{x} V_{x}=P_{y} V_{y}
$$

Momentum Equation:

$$
p_{x}+p_{x} V_{x}^{2}=p_{y}+p_{y} V_{y}^{2}
$$

where subscripts x and y denote the conditions before and after the shock, respectively (Fig. 5).
Irrotationality of Normal Shock

Consicler the square control volume ABCD passing through a normal shock as shown in Fig. 6. Since there is no velocity component along the shock, it shows clearly that the circulations around both of the control volumes are zero, i.e.,

$$
\Gamma_{\mathrm{ABCD}}=-V_{\mathrm{x}} \ell_{\mathrm{AB}}+V_{\mathrm{x}} \ell_{\mathrm{CD}}=0
$$

and

$$
\Gamma_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=-V_{y} \ell_{A^{\prime} B^{\prime}}+V_{y} \ell_{C^{\prime} D^{\prime}}=0
$$

According to the definition of the rotation of a particle at a point ("The fluid rotation at a point is the mean anrular velocity of two infinitesimal and mutually perpendicular fluid

Fig.5. Normal shock discontinuity.

Fig.6. Two-dimensional control volume in normol shock.

Fig. 7. Potential vortex.
curves instantaneously passing through the point."), Fig. 6 shows that the control volume $A B C D$, in moving through the shock to position $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, underwent no rotation at its four corners. Also since $\beta_{1}=\beta_{2}$, the rotation at the center of the control volume (E to $\mathrm{L}^{\text {' }}$) is zero. Hence, it is concluded that the normal shock process is irrotational. However, the process is not reversible, and it is shown by this example that reversibility is not a criterion for irrotationality.

POTENTIAL VORTEX

 Equation of MotionThe two-dimensional potential vortex is formed by streamlines which are concentric circles, and the tangential velocity along any streamline is inversely proportional to the radius of the streamline, i.e.,

$$
V r=C
$$

where C is a constant.

Irrotationality of the Potential Vortex Motion

Irrotationality Based on the Concept of Circulation around a Closed path. Consider the circulation around the element $A B C D$ in Fig. 7. Since the line integral is zero along the sides $A B$ and $C D$, the circulation around this element is

$$
\begin{aligned}
d \Gamma_{A B C D} & =(V+d V)(r+d r) d \theta-V r d \theta=(V d r+r d V) d \theta \\
& =[d(V r)] d \theta=[d(C)] d \theta=0
\end{aligned}
$$

Thus the circulation of any element in the potential vortex motion not enclosing the origin is zero.

Irrotationality Based on the Concept of the Rotation of a Particle. Consider the area 1234 of Fig. 8 located within a potential vortex. The lines $1-3$ and $2-4$ are straight, mutually perpendicular, intersect at point P, and are inclined at 45 degrees to the x-axis. The rotationality of the point F moving with the element 1234 is investigated as follows:

Referring to Fig. 8, let the coordinates of the points 1,2 , 3 and 4 be $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ respectively, and the radii of the circles passing through the points $1,2,3$ and 4 be r_{1}, r_{2}, r_{3} and r_{4}, respectively.

$$
\begin{aligned}
\text { since } & r_{1} & =r_{2} & \text { and }
\end{aligned} \begin{array}{ll}
-\theta_{1}=\theta_{2}=\frac{\Delta \theta}{2}, \\
x_{1} & =x_{2}
\end{array} \text { and } \quad-y_{1}=y_{2} .
$$

Also

$$
\begin{aligned}
& \tan \theta_{2}=\frac{y_{2}}{x_{2}}=\frac{\left(r-x_{2}\right) \tan 45^{\circ}}{x_{2}}=\frac{r-x_{2}}{x_{2}} \\
& x_{2}=x_{1}=\frac{r}{1+\tan \theta_{2}}=\frac{r}{1+\tan \frac{\Delta \theta}{2}} \\
& y_{2}=-y_{1}=\left(r-x_{2}\right) \tan 45^{\circ}=r-x_{2}=r\left(1-\frac{1}{1+\tan \frac{\Delta \theta}{2}}\right)
\end{aligned}
$$

$$
=\frac{r \tan \frac{\Delta \theta}{2}}{1+\tan \frac{\Delta \theta}{2}}=\frac{r}{1+\cot \frac{\Delta \theta}{2}}
$$

and

$$
\begin{aligned}
r_{2}=r_{1} & =\frac{y_{2}}{\sin \theta_{2}}=\frac{r \tan \frac{\Delta \theta}{2}}{\sin \frac{\Delta \theta}{2}\left(1+\tan \frac{\Delta \theta}{2}\right)} \\
& =\frac{r}{\sin \frac{\Delta \theta}{2}}+\cos \frac{\Delta \theta}{2}
\end{aligned}
$$

Let $l_{2 p}=$ length from point 2 to $P=\frac{Y_{2}}{\sin 45^{\circ}}$

$$
\begin{aligned}
= & \frac{1}{\sin 45^{\circ}} \cdot \frac{r \tan \frac{\Delta \theta}{2}}{1+\tan \frac{\Delta \theta}{2}} \\
r_{3-r_{2}} & =\frac{\ell_{2 p}}{\cos \angle 324}=\frac{1}{\sin 45^{\circ}} \cdot \frac{r \tan \frac{\Delta \theta}{2}}{1+\tan \frac{\Delta \theta}{2}} \cdot \frac{1}{\cos \left(45^{\circ}+\frac{\Delta \theta}{2}\right)}
\end{aligned}
$$

in which
$\sin 45^{\circ} \cos \left(45^{\circ}+\frac{\Delta \theta}{2}\right)=\sin 45^{\circ}\left[\cos 45^{\circ} \cos \frac{\Delta \theta}{2}-\sin 45^{\circ} \sin \frac{\Delta \theta}{2}\right]$

$$
=\frac{1}{2}\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)
$$

$$
\begin{aligned}
r_{3}-r_{2} & =\frac{r \tan \frac{\Delta \theta}{2}}{1+\tan \frac{\Delta \theta}{2}} \cdot \frac{1}{\frac{1}{2}\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right.} \\
& =\frac{2 r \tan \frac{\Delta \theta}{2}}{\left(1+\tan \frac{\Delta \theta}{2}\right)\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)} \\
r_{3} & =r_{2}+\frac{2 r \tan \frac{\Delta \theta}{2}}{\left(1+\tan \frac{\Delta \theta}{2}\right)\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)} \\
& =\frac{y_{2}}{\sin \theta_{2}}+\frac{2 r \tan \frac{\Delta \theta}{2}}{\left(1+\tan \frac{\Delta \theta}{2}\right)\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{r \tan \frac{\Delta \theta}{2}}{\left(1+\tan \frac{\Delta \theta}{2}\right) \sin \frac{\Delta \theta}{2}}+\frac{2 r \tan \frac{\Delta \theta}{2}}{\left(1+\tan \frac{\Delta \theta}{2}\right)\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)} \\
& =\frac{r \tan \frac{\Delta \theta}{2}\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}+2 \sin \frac{\Delta \theta}{2}\right)}{\left(1+\tan \frac{\Delta \theta}{2}\right)\left[\sin \frac{\Delta \theta}{2}\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)\right]} \\
& =\frac{r \tan \frac{\Delta \theta}{2}\left(\cos \frac{\Delta \theta}{2}+\sin \frac{\Delta \theta}{2}\right)}{\left(1+\tan \frac{\Delta \theta}{2}\right)\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right) \sin \frac{\Delta \theta}{2}} \\
& =\frac{r\left(\cos \frac{\Delta \theta}{2}+\sin \frac{\Delta \theta}{2}\right)}{\left(\cos \frac{\Delta \theta}{2}+\sin \frac{\Delta \theta}{2}\right)\left(\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\right)} \\
& =\frac{r \cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}}{r}=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& x_{3}=x_{4}=r_{3} \cos \theta_{3}=r_{3} \cos \frac{\Delta \theta}{2}=\frac{r}{1-\tan \frac{\Delta \theta}{2}} \\
& y_{3}=y_{4}=r_{3} \sin \theta_{3}=r_{3} \sin \frac{\Delta \theta}{2}=\frac{r}{\cot \frac{\Delta \theta}{2}-1}
\end{aligned}
$$

and the coordinates of point P are

$$
\begin{aligned}
& x=r \\
& y=0
\end{aligned}
$$

When the motion proceeds in the counterclockwise direction, and when point 1 reached the original position of point 2 , the corresponding new coordinates of points $1,2,3,4$ and P, which are $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$ and P^{\prime}, can be found. Let Δt be the required time interval for this displacement and $\Delta \phi_{1}, \Delta \phi_{2}, \Delta \phi_{3}, \Delta \phi_{4}$ and $\Delta \phi$ be the corresponding angular displacements for points 1,2 , 3, 4 and P respectively.

Since $V r=C$
the arc displaced along any circular path during the motion
$=r \Delta \phi=V \Delta t=\frac{C \Delta t}{r}$
$\therefore \Delta \phi=\frac{C \Delta t}{r^{2}}$
For a given time interval,

$$
\Delta \phi=\frac{C_{I}}{r^{2}}
$$

where C_{1} is a proportionality constant.
Given $\Delta \phi_{1}=\Delta \theta$ and $r_{1}=r_{2}$, then $\Delta \phi_{2}=\Delta \phi_{1}=\Delta \theta$
Also $\quad \frac{\Delta \phi_{3}}{\Delta \phi_{1}}=\left(\frac{r_{1}}{r_{3}}\right)^{2} \quad$ and $\quad r_{3}=r_{4}$
$\left.\begin{array}{rl}\therefore \Delta \phi_{3}=\Delta \phi_{4} & =\left(\frac{r_{1}}{r_{3}}\right)^{2} \Delta \phi_{1}=\left(\frac{r}{\sin \frac{\Delta \theta}{2}+\cos \frac{\Delta \theta}{2}}\right. \\ \cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}\end{array}\right)^{2} \Delta \theta$
For the same reason,

$$
\Delta \phi=\left(\frac{r_{1}}{r}\right)^{2} \Delta \phi_{.1}=\left(\frac{r}{\sin \frac{\Delta \theta}{2}+\cos \frac{\Delta \theta}{2}}\right)^{2} \Delta \theta=\frac{\Delta \theta}{1+\sin \Delta \theta}
$$

The new position angles are

$$
\begin{aligned}
& \theta_{1}^{\prime}=\Delta \phi_{1}+\theta_{1}=\Delta \theta-\frac{\Delta \theta}{2}=\frac{\Delta \theta}{2} \\
& \theta_{2}^{\prime}=\Delta \phi_{2}+\theta_{2}=\Delta \theta+\frac{\Delta \theta}{2}=\frac{3 \Delta \theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{3}^{\prime}=\Delta \phi_{3}+\theta_{3}=\frac{(1-\sin \Delta \theta) \Delta \theta}{1+\sin \Delta \theta}+\frac{\Delta \theta}{2}=\frac{(3-\sin \Delta \theta) \Delta \theta}{2(1+\sin \Delta \theta)} \\
& \theta_{4}^{\prime}=\Delta \phi_{4}+\theta_{4}=\frac{(1-\sin \Delta \theta) \Delta \theta}{1+\sin \Delta \theta}-\frac{\Delta \theta}{2}=\frac{(1-3 \sin \Delta \theta) \Delta \theta}{2(1+\sin \Delta \theta)} \\
& \theta^{\prime}=\Delta \phi+\theta=\frac{\Delta \theta}{1+\sin \Delta \theta}
\end{aligned}
$$

Hence the new coordinates of points $1,2,3,4$ and P after time Δt are

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}^{\prime}=r_{1} \cos \theta_{1}{ }^{\prime} \\
y_{1}^{\prime}=r_{1} \sin \theta_{1}^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{2}{ }^{\prime}=r_{2} \cos \theta_{2^{\prime}} \\
y_{2}^{\prime}=r_{2} \sin \theta_{2}^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{3}{ }^{\prime}=r_{3} \cos \theta_{3^{\prime}} \\
y_{3^{\prime}}=r_{3} \sin \theta_{3^{\prime}}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{4}{ }^{\prime}=r_{4} \cos \theta_{4^{\prime}} \\
y_{4^{\prime}}=r_{4} \sin \theta_{4^{\prime}}
\end{array}\right.
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
x^{\prime}=r \cos \theta^{\prime} \\
y^{\prime}=r \sin \theta^{\prime}
\end{array}\right.
$$

They are all in terms of r and $\Delta \theta$.
In general the position angles for the n-th position after a time interval of $n(\Delta t)$ are

$$
\begin{aligned}
& \theta_{1}^{(n)}=n \Delta \phi_{1}+\theta_{1} \\
& \theta_{2}^{(n)}=n \Delta \phi_{2}+\theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{3}^{(n)}=n \Delta \phi_{3}+\theta_{3} \\
& \theta_{4}^{(n)}=n \Delta \phi_{4}+\theta_{4} \\
& \theta^{(n)}=n \Delta \phi+\theta
\end{aligned}
$$

The new coordinates of points $1,2,3,4$ and P will then be

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}(n)=r_{1} \cos \theta_{1}(n) \\
y_{1}(n)=r_{1} \sin \theta_{1}(n)
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{2}(n)=r_{2} \cos \theta_{2}^{(n)} \\
y_{2}(n)=r_{2} \sin \theta_{2}^{(n)}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{3}(n)=r_{3} \cos \theta_{3}^{(n)} \\
y_{3}(n)=r_{3} \sin \theta_{3}^{(n)}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{4}(n)=r_{4} \cos \theta_{4}^{(n)} \\
y_{4}(n)=r_{4} \sin \theta_{4}^{(n)}
\end{array}\right.
\end{aligned}
$$

and $\left\{\begin{array}{l}x^{(n)}=r \cos \theta(n) \\ y^{(n)}=r \sin \theta^{(n)}\end{array}\right.$
At any instant the coordinates for the points which origirally lay along the lines $1-3$ and $2-4$ (lines which were originally perpendicular and intersected at P) can be obtained by use of the procedure given above. Therefore, it will be possible either to plot or to set up equations for the curved lines $1^{\prime}-P^{\prime}-3^{\prime}$ and $2^{\prime}-P^{\prime}-4^{\prime}, 1^{\prime \prime}-P^{\prime \prime}-3^{\prime \prime}$ and $2^{\prime \prime}-P^{\prime \prime}-4^{\prime \prime}$, etc. for different intervals of time. Then, by employing the definition of fluid rotation, the
rotationality at the point P can be studied by examining the slopes of the tangents of the curvilinear lines passing through P, which were originally perpendicular.

A numerical example, to show that the potential vortex motion is irrotational, is given below, in which the motion is described in the time interval Δt.

Let $r=1$ and $\Delta \theta=12^{\circ}$, then

$$
\begin{aligned}
& \theta_{1}=\theta_{4}=-6^{\circ} \\
& \theta_{2}=\theta_{3}=6^{\circ}
\end{aligned}
$$

$r_{2}=r_{1}=\frac{r}{\sin \frac{\Delta \theta}{2}+\cos \frac{\Delta \theta}{2}}=\frac{r}{\sin 6^{\circ}+\cos 6^{\circ}}$
$=\frac{1}{0.10453+0.99452}=\frac{1}{1.09905}=0.909876$
$r_{3}=r_{4}=\frac{r}{\cos \frac{\Delta \theta}{2}-\sin \frac{\Delta \theta}{2}}=\frac{1}{\cos 6^{\circ}-\sin 6^{\circ}}$

$$
=\frac{1}{0.99452-0.10453}=\frac{1}{0.88999}=1.123608
$$

and

$$
\begin{aligned}
\theta_{1}^{\prime} & =\frac{\Delta \theta}{2}=60 \\
\theta_{2}^{\prime} & =\frac{3 \Delta \theta}{2}=18^{\circ} \\
\theta_{3}^{\prime} & =\frac{(3-\sin \Delta \theta) \Delta \theta}{2(1+\sin \Delta \theta)}=\frac{3-\sin 12^{\circ}}{1+\sin 12} \times 6^{\circ}=\frac{3-0.20791}{1+0.20791} \times 60 \\
& =\frac{2.79209}{1.20791} \times 60=13.869024=13^{\circ} 52.14144^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{4}^{\prime} & =\frac{(1-3 \sin \Delta \theta) \Delta \theta}{2(1+\sin \Delta \theta)}=\frac{1-0.62373}{1+0.20791} \times 60=\frac{0.37627}{1.20791} \times 60 \\
& =1.869029=1^{0} 52.14174^{\prime} \\
\theta^{\prime} & =\frac{12^{\circ}}{1+\sin \Delta \theta}=\frac{12^{\circ}}{1.20791}=9.934515=9^{\circ} 56.07090^{\prime}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& x_{1}^{\prime}=r_{1} \cos \theta_{1}^{\prime}=(0.909876) \cos 6^{0}=(0.909876)(0.99452) \\
&=0.904890 \\
& y_{1}^{\prime}=r_{1} \sin \theta_{1}^{\prime}=(0.909876) \sin 6^{0}=(0.909876)(0.10453) \\
&=0.0951184 \\
& x_{2}^{\prime}=r_{2} \cos \theta_{2}^{\prime}=(0.909876) \cos 18^{0}=(0.909876)(0.95106) \\
&=0.865347 \\
& y_{2}^{\prime}=r_{2} \sin \theta_{2}^{\prime}=(0.909876) \sin 18^{0}=(0.909876)(0.30902) \\
&=0.281170 \\
& x_{3}^{\prime}=r_{3} \cos \theta_{3}^{\prime}=(1.123608)(0.970850)=1.090855 \\
& y_{3}^{\prime}=r_{3} \sin \theta_{3}^{\prime}=(1.123608)(0.239701)=0.269330 \\
& x_{4}^{\prime}=r_{4} \cos \theta_{4}^{\prime}=(1.123608)(0.999468)=1.123010 \\
& y_{4}^{\prime}=r_{4} \sin \theta_{4}^{\prime}=(1.123608)(0.032611)=0.036642 \\
& x^{\prime}=r \cos \theta^{\prime}=\cos \theta^{\prime}=0.984956 \\
& y^{\prime}=r \sin \theta^{\prime}=\sin \theta^{\prime}=0.172520
\end{aligned}
$$

Let the equation of the curve passing through the points 1^{\prime}, P^{\prime} and 3^{\prime} be

$$
y=a x^{2}+b x+c
$$

Then, the three constants in the equation can be determined by
substituting the coordinates of the points $1^{\prime}, \mathrm{F}^{\prime}$ and 3^{\prime} into it. There is obtained

$$
\begin{aligned}
0.0951184 & =a(0.904890)^{2}+b(0.904890)+c \\
& =a(0.818826)+b(0.904890)+c \\
0.172520 & =a(0.984956)^{2}+b(0.984956)+c \\
& =a(0.970138)+b(0.984956)+c \\
0.269330 & =a(1.090855)^{2}+b(1.090855)+c \\
& =a(1.189960)+b(1.090855)+c
\end{aligned}
$$

The solution of these three simultaneous equations for the constants a and b is

$$
\left\{\begin{array}{l}
a=-0.284851 \\
b=1.505052
\end{array}\right.
$$

Hence the slope of the tangent of the line $1^{\prime}-\mathrm{P}^{\prime}-3^{\prime}$ passing through Pr^{\prime} is

$$
\begin{aligned}
\tan \phi_{t 1} & =\frac{d y}{d x}=2 a x+b=2(-0.284851)(0.984956)+1.505052 \\
& =0.943921 \\
\phi_{t 1} & =43^{\circ} 20.856^{\prime} \\
\beta_{1} & (\text { the clockwise angle of rotation at } \mathrm{P})=2^{\circ} 39.144^{\prime}
\end{aligned}
$$

Let the equation of the curve passing through the points $2^{\prime}, P^{\prime}$ and 4^{\prime} be

$$
y=a^{\prime} x^{2}+b^{\prime} x+c^{\prime}
$$

which results in

$$
\begin{aligned}
0.281170 & =a^{\prime}(0.865347)^{2}+b^{\prime}(0.865347)+c^{\prime} \\
& =a^{\prime}(0.748825)+b^{\prime}(0.865347)+c^{\prime} \\
0.172520 & =a^{\prime}(0.984956)^{2}+b^{\prime}(0.984956)+c^{\prime} \\
& =a^{\prime}(0.970138)+b^{\prime}(0.984956)+c^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
0.036642 & =a^{\prime}(1.123010)^{2}+b^{\prime}(1.123010)+c^{\prime} \\
& =a^{\prime}(1.261151)+b^{\prime}(1.123010)+c^{\prime}
\end{aligned}
$$

The solution of these three simultaneous equations for the constants a^{\prime} and b^{\prime} is

$$
\left\{\begin{array}{l}
a^{\prime}=-0.294526 \\
b^{\prime}=-0.363414
\end{array}\right.
$$

Hence the slope of the tangent of the line $2^{\prime}-P^{\prime}-4^{\prime}$ passing through $\mathrm{P}^{\text {: }}$ is

$$
\begin{aligned}
\tan \phi_{t 2} & =\frac{d y}{d x}=2 a^{\prime} x+b=2(-0.294526)(0.98456)-0.363414 \\
& =-0.943404 \\
\phi_{t 2} & =47040.083^{\prime} \\
\beta_{2} & \left(\text { the counterclockwise angle of rotation at } F^{\prime}\right) \\
& =2^{0} 40.083^{\prime}
\end{aligned}
$$

The results show that β_{1} nearly equals β_{2}, and that, with fairly good accuracy, the fluid rotation at the point P is shown to be zero.

PRANDTL-MEYER EXPANSION

Characteristic Equations (1)

Flow with pressure waves of one family is known as simplewave flow, corner-type flow or Frandtl-Meyer flow. Figure 9 shows a case of Prandtl-Meyer flow in which a left-running Mach wave turns the flow through the negative angle $d \theta$, with corresponding infinitesimal changes in all stream properties. Consider $d \theta$ to be an infinitesimal increment. It follows from the geometry of the figure that

Fig. 9. Infinitesimal Mach wave.

Fig. IO. Construction of streamlines for Prandtl-Meyer flow.

$$
\begin{aligned}
& d v=-V d \theta \\
& d u=d V \\
& \frac{d u}{d v}=\tan \alpha=\frac{1}{\sqrt{M^{2}-1}}
\end{aligned}
$$

where α is the Mach angle and M is the approaching Mach number. Slimination of $d u$ and $d v$ from this set of equations yields

$$
\begin{equation*}
\frac{1}{V} \frac{d V}{d \theta}=-\frac{1}{\sqrt{M^{2}-1}} \tag{13}
\end{equation*}
$$

From the definition of Mach Number

$$
\begin{aligned}
& V^{2}=C^{2} M^{2}=k R T M^{2} \\
& 2 V d V=k R T d\left(M^{2}\right)+k R M^{2} d T
\end{aligned}
$$

and

$$
\begin{equation*}
2 \frac{d V}{V}=\frac{k R T}{V^{2}} d\left(M^{2}\right)+\frac{k R M^{2}}{V^{2}} d T=\frac{d\left(M^{2}\right)}{M^{2}}+\frac{d T}{T} \tag{14}
\end{equation*}
$$

As

$$
\begin{align*}
& T_{0}=T\left(1+\frac{k-1}{2} M^{2}\right) \\
& \frac{d T}{T}=\frac{\frac{k-1}{2} d\left(M^{2}\right)}{1+\frac{k-1}{2} M^{2}} \tag{15}
\end{align*}
$$

The combination of Eqs. (13), (14) and (15) yields

$$
\begin{equation*}
d \theta=-\frac{\sqrt{M^{2}-1} d\left(M^{2}\right)}{2 M^{2}\left(1+\frac{k-1}{2} M^{2}\right)} \tag{16}
\end{equation*}
$$

The integration of the above equation by standard methods gives

$$
\begin{equation*}
\theta=-\sqrt{\frac{k+1}{k-1}} \tan ^{-1} \sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}+\tan ^{-1} \sqrt{M^{2}-1}+\text { constant } \tag{17}
\end{equation*}
$$

It is often more convenient to work with the dimensionless vclocity $M^{*}=\frac{V}{c} *$ (where c^{*} is the acoustic velocity at Mach Number unity) rather than the Mach Number M. Using the adiabatic
relation that

$$
M^{2}=\frac{\frac{2}{k+1} M_{1} * 2}{1-\frac{k-1}{k+1} M * 2}
$$

Eq. (17) may be put into the form

$$
\begin{equation*}
\theta=-\omega\left(M^{*}\right)+\text { constant } \tag{17a}
\end{equation*}
$$

where

$$
\omega\left(M^{*}\right)=\sqrt{\frac{k+1}{k-1}} \tan ^{-1} \sqrt{\frac{M^{2}-1}{k+1} \frac{M^{*} *^{2}}{k-1}}-\tan ^{-1} \sqrt{\frac{M^{*}-1}{1-\frac{k-1}{k+1} M^{2}}}
$$

It follows that, crossing the same family of waves with a known initial condition,

$$
\theta_{2}-\theta_{1}=-\left(\omega_{2}-\omega_{1}\right)
$$

The streamline shapes can be examined by letting r denote the distance, measured along the Mach line, between a point on the wall and a point on a certain streamline (Fig. 10). Then the distance r^{*} is proportional to the minimum cross sectional area for isentropic flow, and the distance $r(\sin \alpha)$ is proportional to the cross-sectional area for flow at any other section, i.e.

$$
\frac{r \sin \alpha}{r^{*}}=\frac{A}{A^{*}}
$$

Since

$$
\frac{A}{A *}=\frac{1}{M}\left[\left(\frac{2}{k+1}\right)\left(1+\frac{k-1}{2} M^{2}\right)\right]^{\frac{k+1}{2(k-1)}}
$$

and

$$
\sin \alpha=\frac{1}{M}
$$

$$
\begin{equation*}
\frac{r}{r^{*}}=\left[\left(\frac{2}{k+1}\right)\left(1+\frac{k-1}{2} M^{2}\right)\right]^{\frac{k+1}{2(k-1)}} \tag{18}
\end{equation*}
$$

If the initial flow is not at Nach Number unity, the distances along the Mach lines are related by

$$
\begin{equation*}
\frac{r_{2}}{r_{1}}=\frac{M_{2}\left(A / A^{*}\right)_{2}}{M_{1}\left(A / A^{*}\right)_{1}} \tag{19}
\end{equation*}
$$

Rotationality of Prandtl-Meyer Expansion

The Prandtl-Meyer expansion is examined from two viewpoints, one of which describes this expansion as being irrotational while the other describes the flow as being rotational.

Geometry of a Differential Element in the Flow Field.

 Referring to Fig. 10, the following expressions for the differential element in the flow field are developed.$$
\begin{align*}
& \sin \alpha=\frac{1}{M} \\
& \cos \alpha=\frac{\sqrt{M^{2}-1}}{M} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
d \alpha=d\left(\sin ^{-1} \frac{1}{M}\right)=\frac{-d M}{M \sqrt{M^{2}-1}}=\frac{-d\left(M^{2}\right)}{2 M^{2} \sqrt{M^{2}-1}} \tag{21}
\end{equation*}
$$

From Eq. (14) and

$$
\frac{T_{0}}{T}=\left(1+\frac{k-1}{2} M^{2}\right)
$$

$$
\begin{align*}
\frac{d V}{V} & =\frac{1}{2}\left[\frac{d\left(M^{2}\right)}{M^{2}}+\frac{d\left(\frac{T_{0}}{T}\right)}{\frac{T_{0}}{T}}\right]=\frac{1}{2}\left[\frac{d\left(M^{2}\right)}{M^{2}}+\frac{\frac{k-1}{2} d\left(M^{2}\right)}{1+\frac{k-1}{2} M^{2}}\right] \\
& =\frac{d\left(M^{2}\right)}{2 M^{2}\left(1+\frac{k-1}{2} M^{2}\right)} \tag{22}
\end{align*}
$$

As

$$
\begin{align*}
& \nu=\frac{\pi}{2}-(\alpha-\omega) \\
& \mathrm{d} \nu=\mathrm{d} \omega-\mathrm{d} \alpha \tag{23}
\end{align*}
$$

From Eq. 16

$$
\begin{equation*}
d \omega=-d \theta=\frac{\sqrt{M^{2}-1} d\left(M^{2}\right)}{2 M^{2}\left(1+\frac{k-1}{2} M^{2}\right)} \tag{24}
\end{equation*}
$$

From Eqs. (21), (23) and (24)

$$
\begin{equation*}
d \nu=\frac{(k+1) d\left(M^{2}\right)}{4 \sqrt{M^{2}-1}\left(1+\frac{k-1}{2} M^{2}\right)} \tag{25}
\end{equation*}
$$

The logarithmic differentiation of Eq. (18) gives

$$
\begin{aligned}
\frac{d r}{r} & =d \ln \left(\frac{r}{r^{*}}\right)=d \ln \left[\left(\frac{2}{k+1}\right)\left(1+\frac{k-1}{2} M^{2}\right)\right]^{\frac{k+1}{2(k-1)}} \\
& =\frac{\frac{k+1}{2(k-1)} \cdot \frac{k-1}{2} d\left(M^{2}\right)}{1+\frac{k-1}{2} M^{2}}=\frac{(k+1) d\left(M^{2}\right)}{4\left(1+\frac{k-1}{2} M^{2}\right)}
\end{aligned}
$$

From the geometry of Fig. 10, the length $\mathrm{d} \ell$ on the curved path may be expressed by

$$
\mathrm{d} l=\frac{r d \nu}{\sin \alpha}
$$

After suitable substitution and simplification of the corresponding terms, there results

$$
\begin{equation*}
d \ell=\frac{r * M\left(\frac{2}{k+1}\right)^{\frac{3-k}{2(k-1)}}\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{3-k}{2(k-1)}} d\left(M^{2}\right)}{2 \sqrt{M^{2}-1}} \tag{26}
\end{equation*}
$$

Irrotationality Based on the Concept of the Circulation Around a Closed Path. Since the velocity is constant in the direction of flow before and after the Prandtl-Meyer corner flow, the flow in these two regions must be irrotational. The problem now is to examine the circulation around a certain closed path within the Prandtl-Meyer fan. As shown in Fig. 10, the closed path $O C B$ is chosen to be the test element. In accordance with the definition of circulation

$$
\begin{aligned}
d \Gamma_{O C B}= & (V+d V) \cos (\alpha+d \alpha)(r+d r)-V \cos \alpha(r)-\frac{V+(V+d V)}{2} d l \\
= & (V+d V)(\cos \alpha \cos d \alpha-\sin \alpha \sin d \alpha)(r+d r)-r V \cos \alpha \\
& -V d l-\frac{d V d \ell}{2} \\
= & r V \cos \alpha \cos d \alpha+r d V \cos \alpha \cos d \alpha+V d r \cos \alpha \cos d \alpha \\
& +d r d V \cos \alpha \cos d \alpha-r V \sin \alpha \sin d \alpha \\
& -r d V \sin \alpha \sin d \alpha-V d r \sin \alpha \sin d \alpha \\
& -d r d V \sin \alpha \sin d \alpha-r V \cos \alpha-V d \ell-\frac{d V d \ell}{2}
\end{aligned}
$$

When $d \alpha$ is very small, $\cos d \alpha$ approaches unity and $\sin d \alpha$ approaches $d \alpha$. In the mean time, all the terms higher than second order may be neglected. It will be found that

$$
\begin{aligned}
d \Gamma_{O C B} & =r d V \cos \alpha+V d r \cos \alpha-r V \sin \alpha d \alpha-V d l \\
\frac{d \Gamma_{O C B}}{r V} & =\frac{d V}{V} \cos \alpha+\frac{d r}{r} \cos \alpha-\sin \alpha d \alpha-\frac{d \ell}{r} \\
& =\frac{d V}{V} \cos \alpha+\frac{d r}{r} \cos \alpha-\sin \alpha d \alpha-\frac{\frac{r d \nu}{\sin \alpha}}{r} \\
& =\frac{d V}{V} \cos \alpha+\frac{d r}{r} \cos \alpha-\sin \alpha d \alpha-\frac{d \nu}{\sin \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d\left(M^{2}\right)}{2 M^{2}\left(1+\frac{k-1}{2} M^{2}\right)} \frac{\sqrt{M^{2}-1}}{M}+\frac{(k+1) d\left(M^{2}\right)}{4\left(1+\frac{k-1}{2} M^{2}\right)} \frac{\sqrt{M^{2}-1}}{M} \\
& -\frac{1}{M} \frac{-d\left(M^{2}\right)}{2 M^{2} \sqrt{M^{2}-1}}-M \frac{(k+1) d\left(M^{2}\right)}{4 \sqrt{M^{2}-1}\left(1+\frac{k-1}{2} M^{2}\right)} \\
& =\frac{2\left(M^{2}-1\right) d\left(M^{2}\right)+M^{2}\left(M^{2}-1\right)(k+1) d\left(M^{2}\right)+2\left(1+\frac{l-1}{2} M^{2}\right) d\left(M^{2}\right)-M^{4}(k+1) d\left(M^{2}\right)}{4 M^{3} \sqrt{M^{2}-1}\left(1+\frac{k-1}{2} M^{2}\right)} \\
& =\frac{\left[2 M^{2}-2+M^{4}(k+1)-k M^{2}-M^{2}+2+1 M^{2}-N^{2}-M^{4}(k+1)\right] d\left(M^{2}\right)}{4 M^{3} \sqrt{M^{2}-1}\left(1+\frac{k-1}{2} M^{2}\right)} \\
& =0
\end{aligned}
$$

The result shows that the circulation around a closed path in the Prandtl-Meyer fan is also zero.

Rotationality Based on the Concept of the Rotation of a Fluid Particle that Passed Throurh the Pranctl-Meyer Fan. Consider the two-dimensional, square, control volume aebcfd of Fig. Il which passes through the Prandtl-Neyer fan to position $a^{\prime} e^{\prime} b^{\prime} c^{\prime} f^{\prime} d^{\prime} . ~ L e t ~ V$ be the velocity at any time along a certain streamline in the flow passage. Then $V=\frac{d \ell}{d t}$ and also

$$
V=M c=M \sqrt{k R^{\prime} T}=M \sqrt{\frac{k R T_{0}}{\frac{T_{0}}{T_{1}}}}=M \sqrt{\frac{k R T_{0}}{1+\frac{k-1}{2} M^{2}}}
$$

The combination of the above two relations gives

$$
d t=\frac{d \ell}{M \sqrt{\frac{l \cdot R^{\prime} T_{0}}{1+\frac{k-1}{2} M^{2}}}}=\frac{\sqrt{1+\frac{k-1}{2} M^{2}} d \ell}{M \sqrt{k R T_{0}}}
$$

Where $d f$ can be replaced by the expression from Eq. (26), hence

$$
\begin{align*}
d t & =\frac{r *\left(\frac{2}{k+1}\right)^{\frac{3-l c}{2(k-1)}}\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{1}{k-1}} d\left(M^{2}\right)}{2 \sqrt{k R I_{0}}} \sqrt{M^{2}-1}
\end{aligned} \quad \begin{aligned}
& =C_{1} \times \frac{\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{1}{k-1}} d\left(N^{2}\right)}{\sqrt{M^{2}-1}}
\end{align*}
$$

where

$$
C_{1}=\frac{\left(\frac{2}{1 \mathrm{k}+1}\right)^{\frac{3-k}{2(\mathrm{k}-1)}}}{2 \sqrt{k R}} \cdot \frac{r^{*}}{T_{0}}
$$

$$
\begin{gather*}
\text { For } \mathrm{l}=1.4 \text { and } R=1716 \quad f t-1 b_{f} / \operatorname{slug}_{\mathrm{g}} \circ_{F}, \\
C_{1}=7.0847 \times 10^{-3} \frac{r^{*}}{\sqrt{T_{0}}} \tag{28}
\end{gather*}
$$

The integration of Eq. (27) yields (4)

$$
\begin{align*}
t & =C_{1}\left\{\sqrt{M^{2}-1} \sqrt{1+0.2 M^{2}}\left[\frac{1}{3}\left(1+0.2 M^{2}\right)^{2}+\frac{1}{2}\left(1+0.2 M^{2}\right)+0.9\right]\right. \\
& \left.+\frac{1.08}{0.2} \ln \left[\sqrt{0.2\left(M^{2}-1\right)}+\sqrt{1+0.2 M^{2}}\right]\right\}+ \text { constant } \tag{29}
\end{align*}
$$

which is the time required for a particle to travel from the upstream side of the Prandtl-Meyer fan, having an approach Mach Number of unity, to any other position in the fan.

As the general solution of the rotation of a fluid particle, that has passed through the Prandtl-Meyer fan, is complicated, a numerical example is presented below to show how Eq. (29) can be used to determine the rotation of a fluid particle as it passes
through the Prandtl-lieyer fan.

$$
\text { Given } \begin{aligned}
r^{*} & =1 \mathrm{ft}, \quad \mathrm{l}=1.4, \quad \mathrm{~T}_{0}=1,000^{\circ} \mathrm{R} \\
\mathrm{M}_{1} & =\text { Initial Nach Number }=1.0 \\
\mathrm{M}_{2} & =\text { Final Nach Number }=2.1339
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{r}{r^{*}} & =\left[\left(\frac{2}{k+1}\right)\left(1+\frac{k-1}{2} w^{2}\right)\right] \frac{k+1}{2(k-1)} \\
& =\left[\left(\frac{2}{2.4}\right)\left(1+0.2 \mathrm{~m}^{2}\right)\right] \frac{2.4}{2(0.4)} \\
& =\frac{\left(1+0.2 \mathrm{M}^{2}\right)^{3}}{1.728}
\end{aligned}
$$

and $\nu=\frac{\pi}{2}-(\alpha-\omega)$, the flow patterns are plotted on Fig. 11 by employing the data in Table 1.

Table 1. Calculation data for the streamline configuration in Prandtl-Meyer fan.

M	\vdots	r / r^{*}	\vdots	ω	\vdots	α	\vdots
1.0000	1.00000	0	90	0			
1.2565	1.31821	5	52.7383	42.2617			
1.4393	1.63718	10	44.1770	55.8230			
1.6047	2.01234	15	38.5474	66.4526			
1.7750	2.50677	20	34.2904	75.7096			
1.9503	3.15888	25	30.8469	84.1531			
2.1339	4.03682	30	27.9451	92.9451			

Substituting the given conditions into Eqs. (28) and (29) and performing appropriate calculations, the results are

$$
C_{1}=2.240377
$$

and $t_{d m}$ (the time for point d to traverse the Prandtl-Meyer fan) $=2.179539 \times 10^{-3}$ seconds

It follows that

$$
\begin{aligned}
& t_{f p} \text { (the time for point } f \text { to traverse the Prandtl-Meyer fan) } \\
& \quad=1.5 t_{d m}=3.269383 \times 10^{-3} \text { seconds } \\
& t_{c n} \text { (the time for point } c \text { to traverse the Prandtl-Meyer fan) } \\
& \quad=2 t_{d m}=4.359178 \times 10^{-3} \text { seconds }
\end{aligned}
$$

Since

$$
V=M \sqrt{\frac{k R T_{0}}{1+\frac{k-1}{2} M^{2}}},
$$

the corresponding velocity for $M_{1}=1.0$ and $\mathrm{N}_{2}=2.1339$ are $V_{1}=1414.92$ and $V_{2}=2392.81$ feet per second. Hence $t_{b c}=t_{e f}=t_{a d}=\frac{1}{1414.92}=0.706753 \times 10^{-3}$ seconds
and $t_{b b}$ (the time for point b to traverse the Prandtl-Meyer fan)

$$
=t_{c n}+t_{b c}=5.065913 \times 10^{-3} \text { seconds }
$$

Let $\ell_{\text {nc }}, \ell_{p f} \prime, \ell_{m d} \prime, \ell_{p e}$ and $\ell_{m a}$ be the distances traveled beyond the Prandtl-Meyer fan by the points c, f, d, e and a, respectively, in time $t_{b b}$. They are

$$
\begin{aligned}
\ell_{\mathrm{nc}} & =\frac{\mathrm{V}_{2}}{V_{1}}=\frac{2392.81}{1414.92}=1.69114 \mathrm{ft} . \\
\ell_{\mathrm{pf}}{ }^{\prime} & =\left(t_{\mathrm{bb}} \prime^{\prime}-t_{\mathrm{fl}}\right) V_{2}=(5.065931-3.269383) \times 10^{-3}(2392.81) \\
& =4.29880 \mathrm{ft} .
\end{aligned}
$$

Fig. Ila. Angle of rotation for Prandtl-Meyer flow.

Fig. 12. Oblique shock.
$\ell_{\mathrm{md}}:=\left(t_{\mathrm{bb}}:-t_{\mathrm{dm}}\right) \mathrm{V}_{2}=6.90647 \mathrm{ft}$.
$\ell_{p c^{\prime}}=\left(t_{b b^{\prime}}-t_{f p}-t_{e f}\right) V_{2}=2.60766 f t$.
and
$\ell_{\mathrm{ma}}:=\left(\mathrm{t}_{\mathrm{bb}}:-\mathrm{t}_{\mathrm{dm}}-t_{\mathrm{ad}}\right) \mathrm{V}_{2}=5.21533 \mathrm{ft}$.

Referring to Fig. 11, the rotation of the points a, b, c, d, e and f after traversing the Prandtl-Meyer fan is

$$
\omega_{z}=\frac{1}{2}\left(\phi-\theta_{2}\right)
$$

Consider the triangle $a^{\prime} \mathrm{mb}^{\prime}$ as shown in Fig. Ila.

$$
\begin{aligned}
\tan \beta & =\frac{(4.03682) \sin 27.0549^{\circ}}{5.21534-(4.03682) \cos 27.0549^{\circ}}=1.133215 \\
& =48034.45^{\circ}
\end{aligned}
$$

and

$$
\phi=\frac{\pi}{2}-\theta_{2}-\beta=11^{\circ} 25.55^{\circ}
$$

Finally, the angle of rotation for all points is $\omega_{z}=-9^{\circ} 17.225^{\circ}$ (in the clockwise direction)

OBLIQUE SHOCK

 Governing iqquations (Fig. 12) (1)Equation of Continuity.

$$
\begin{equation*}
P_{1} V_{n 1}=P_{2} V_{n 2} \tag{30}
\end{equation*}
$$

Momentum Equations.

$$
\begin{gather*}
\left(\rho_{1} v_{n 1}\right) V_{t 1}=\left(\rho_{2} V_{n 2}\right) V_{t 2} \text { in tangential direction } \\
\therefore V_{t 1}=V_{t 2} \tag{31}\\
p_{1}-p_{2}=\rho_{2} V_{n 2}^{2}-\rho_{1} V_{n 1}^{2} \text { in normal direction } \tag{32}
\end{gather*}
$$

Energy Rquation.

$$
\begin{equation*}
c_{p}\left(T_{I}-T_{2}\right)=\left(V_{2}^{2}-V_{1}^{2}\right) / 2 \tag{33}
\end{equation*}
$$

Ratio of Downstream to Upstream Density.

$$
\begin{equation*}
\frac{\rho_{2}}{\rho_{1}}=\frac{\tan \sigma}{\tan (\sigma-\delta)} \tag{34}
\end{equation*}
$$

Ratio of Domstream to Upstream Pressure.

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\left(\frac{k+1}{k-1} \frac{\rho_{2}}{\rho_{1}}-1\right) /\left(\frac{k+1}{k-1}-\frac{\rho_{2}}{\rho_{1}}\right) \tag{35}
\end{equation*}
$$

Ratio of Downstream to Upstream Velocity.

$$
\begin{equation*}
\frac{V_{2}}{V_{I}}=\frac{\cos \sigma}{\cos (\sigma-\delta)} \tag{36}
\end{equation*}
$$

Entrony Change Across Oblique Shock.

$$
\begin{equation*}
\frac{\Delta S}{R}=\frac{1}{k-1}\left(\ln \frac{P_{2}}{P_{1}}-\ln \ln \frac{\rho_{2}}{\rho_{1}}\right) \tag{37}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Rotationality of Flow Passing } \\
& \text { Through an Oblique Shock }
\end{aligned}
$$

Irrotationality Based on the Concept of Circulation Around a Closed Path. Since the velocity is constant in the direction of flow before and after the shock, the flow therefore must be irrotational. Now, consider a case when part of the control volume ABCD (Fig. 15) has passed through the shock. Referring to Fig. $13, A_{1}, B_{1}, C_{1}$ and D_{1} are the corresponding new position of the points A, B, C and D when the flow proceeds a certain distance $\Delta \%$. First, consider circulation around the closed path $\mathrm{BB}_{1} \mathrm{PC}$.

$$
\Gamma_{\mathrm{BB}_{1} \mathrm{PC}}=\left(\mathrm{V}_{1} \cos \sigma\right)\left(\frac{\Delta x}{\cos \sigma}\right)-V_{1} \Delta x=0
$$

Secondly, consider circulation around the closed path $C_{P C}$.

$$
\begin{aligned}
\Gamma_{\mathrm{CPC}_{1}}= & V_{2} \ell_{1}+V_{2} \cos \left[\frac{\pi}{2}-(\beta+\delta)\right] \ell_{2}-V_{2} \cos (\sigma-\delta) \frac{\Delta x}{\cos \sigma} \\
= & V_{2} \ell_{1}+V_{2} \ell_{2} \sin (\beta+\delta) \\
& -V_{2} \cos (\sigma-\delta)\left[\ell_{1} \cos (\sigma-\delta)+\ell_{2} \sin (\sigma+\beta)\right] \\
= & V_{2} \ell_{1}+V_{2} \ell_{2} \sin (\beta+\delta)-V_{2} \ell_{1} \cos ^{2}(\sigma-\delta) \\
& -V_{2} l_{2} \cos (\sigma-\delta) \sin (\sigma+\beta) \\
= & V_{2} \ell_{1}+V_{2} \ell_{2} \sin (\beta+\delta)-V_{2} \ell_{1}\left[1-\sin ^{2}(\sigma-\delta)\right] \\
& -V_{2} l_{2} \cos (\sigma-\delta) \sin (\sigma+\beta) \\
= & V_{2} l_{2} \sin (\beta+\delta)+V_{2} l_{1} \sin 2(\sigma-\delta) \\
& -V_{2} l_{2} \cos (\sigma-\delta) \sin (\sigma+\beta) \\
= & V_{2} \ell_{2} \sin (\beta+\delta)+V_{2} \sin (\sigma-\delta)\left[l_{2} \cos (\sigma+\beta)\right] \\
& -V_{2} l_{2} \cos (\sigma-\delta) \sin (\sigma+\beta) \\
= & V_{2} l_{2} \sin (\beta+\delta)-V_{2} \ell_{2}[\sin (\sigma+\beta) \cos (\sigma-\delta) \\
& -\cos (\sigma+\beta) \sin (\sigma-\delta)] \\
= & V_{2} l_{2} \sin (\beta+\delta)-V_{2} l_{2} \sin (\beta+\delta)=0
\end{aligned}
$$

Finally, the circulation around $A_{1} B_{1} C_{1} D_{1}$ is

$$
\begin{aligned}
\Gamma_{A_{1}} B_{1} C_{1} D_{1}= & V_{1}(a-\Delta x)+V_{2} l_{1}+V_{2} \sin (\beta+\delta) \ell_{2}-V_{1} a \\
= & -V_{1} \Delta x+V_{2} l_{1}+V_{2} l_{2} \sin (\beta+\delta) \\
= & -V_{1} \Delta x+V_{2} l_{1}+V_{2} l_{2} \sin [(\sigma+\beta)-(\sigma-\delta)] \\
= & -V_{1} \Delta x+V_{2} l_{1}+V_{2} l_{2}[\sin (\sigma+\beta) \cos (\sigma-\delta) \\
& -\cos (\sigma+\beta) \sin (\sigma-\delta)] \\
= & -V_{1} \Delta x+V_{2} l_{1}+V_{2} l_{2} \sin (\sigma+\beta) \cos (\sigma-\delta) \\
& -V_{2}\left[l_{2} \cos (\sigma+\beta)\right] \sin (\sigma-\delta)
\end{aligned}
$$

$$
\begin{aligned}
= & -V_{1} \Delta x+V_{2} \ell_{1} \cos ^{2}(\sigma-\delta) \\
& +V_{2} \ell_{2} \sin (\sigma+\beta) \cos (\sigma-\delta) \\
= & -V_{1} \Delta x+V_{2}\left[\ell_{1} \cos ^{2}(\sigma-\delta)\right. \\
& \left.+\ell_{2} \sin (\sigma+\beta) \cos (\sigma-\delta)\right] \\
= & -V_{1} \Delta x+\frac{V_{1} \cos \sigma}{\cos (\sigma-\delta)}\left[\ell_{1} \cos ^{2}(\sigma-\delta)\right. \\
& \left.+\ell_{2} \sin (\sigma+\beta) \cos (\sigma-\delta)\right] \\
= & -V_{1} \Delta x+V_{1} \cos \sigma\left[l_{1} \cos (\sigma-\delta)+\ell_{2} \sin (\sigma+\beta)\right] \\
= & -V_{1} \Delta x+V_{1} \cos \sigma \cdot \frac{\Delta x}{\cos \sigma}=0
\end{aligned}
$$

Thus the circulation around each subarea of total area $B B_{1} E C_{1} C$ is zero, and the circulation around the total area is likewise zero.

Rotationality Based on the Concent of the Rotation for a Fluid Particle. Referring to Fig. 13, the rotationality of a square control volume $A B C D$ in the two-dimensional flow passage passing through an oblique shock will be investigated. In accordance with the definition of fluid rotation at a point, the only case for which the rotation at the points A, B, C etc. after the shock equals to zero is that $\beta=\delta$ as shown in the figure.

Let $V_{1}=$ the velocity before the shock

$$
V_{2}=\text { the velocity after the shock }
$$

Since $t_{B A^{\prime}}=t_{C D}$ '

$$
\frac{\ell_{B A A^{\prime}}}{V_{1}}=\frac{\ell_{C 1}{ }^{\prime}}{V_{2}}
$$

inc.

$$
\ell_{C D} \prime=\ell_{B A^{\prime}} \frac{V_{2}}{V_{1}}
$$

It follows that

$$
\begin{aligned}
& \operatorname{cotlows} \text { that } \\
& \cot = \frac{\ell_{C B}-\ell_{C D} \cdot \sin \delta}{\ell_{B A^{\prime}}-\ell_{C D} \cdot \cos \delta}=\frac{\ell_{B A^{\prime}} \tan \sigma-\ell_{B_{A}} \cdot \frac{V_{2}}{V_{1}} \sin \delta}{\ell_{B A^{\prime}}-\ell_{B A^{\prime}} \cdot \frac{V_{2}}{V_{1}} \cos \delta} \\
& \frac{\tan \sigma-\frac{V_{2}}{V_{1}} \sin \delta}{1-\frac{V_{2}}{V_{1}} \cos \delta}
\end{aligned}
$$

The elimination of V_{1} / V_{2} from Eq. (36) yields

$$
\begin{align*}
\cot \beta & =\frac{\tan \sigma-\frac{\cos \sigma}{\cos (\sigma-\delta)} \sin \delta}{1-\frac{\cos \sigma}{\cos (\sigma-\delta)} \cos \delta} \\
& =\frac{\tan \sigma \cos (\sigma-\delta)-\cos \sigma \sin \delta}{\cos (\sigma-\delta)-\cos \sigma \cos \delta} \\
& =\frac{\tan \sigma(\cos \sigma \cos \delta+\sin \sigma \sin \delta)-\cos \sigma \sin \delta}{\cos \sigma \cos \delta+\sin \sigma \sin \delta-\cos \sigma \cos \delta} \\
& =\frac{\sin \sigma \cos \delta+\frac{\sin \delta}{\cos \sigma}\left(\sin ^{2} \sigma-\cos ^{2} \sigma\right)}{\sin \sigma \sin \delta} \\
& =\cot \delta+\frac{2 \sin ^{2} \sigma-1}{\sin \sigma \cos \sigma}=\cot \delta-2 \cot (2 \sigma) \tag{38}
\end{align*}
$$

Equation (38) shows that there are two cases for which all fluid particles in the control volume $A B C D$ undergo no rotation in passing through the shock wave:
(I) $\cot 2 \sigma=0$, which means $\sigma=45^{\circ}$, and
(2) the trivial case of $\delta=0^{\circ}$.

For cases in which $\beta \neq \delta$, the oblique shock will cause a rotation such that
$\omega_{z}=$ angle of rotation after the oblique shock $=\frac{1}{2}(\delta-\beta)$
where ω_{z} can be positive or negative. Positive ω_{z} gives a counterclockwise rotation while negative ω_{z} gives a clockwise rotation.

Working Charts.
(1) Angle of rotation ω_{z} for known shock angle σ and wall angle δ :

By employing Eqs. (38) and (39), the ordinate ω_{z} was plotted against the abscissa σ, for various values of δ, on Fig. 14. A sample calculation is given below:

Assume $\sigma=15^{\circ}$ and $\delta=5^{\circ}$. From Eq. (38), $\cot \beta=\cot 5^{\circ}-2 \cot 30^{\circ}=11.430-2(1.7321)=7.9658$ $\therefore \beta=7.15730$
Hence, the angle of rotation as obtained from Eq. (39) is

$$
\omega_{z}=\frac{5-7.1573}{2}=-1.07856^{\circ} \text { (in the clockwise direction) }
$$

(2) Entropy change $\frac{\Delta s}{R}$ across shocks with different shock angle σ and wall angle δ : By employing data for $\frac{p_{2}}{P_{1}}$ and $\frac{P_{2}}{P_{1}}$ for oblique shocks as given in Keenan and Kaye's "Gas Tables " (5) (and employing eqs. (34) and (35) for $\delta>30^{\circ}$, as Keenan and Kaye did not tabulate data beyond $\delta=300$), values of $\frac{\Delta s}{R}$ were calculated from Eq. (37) and plotted on Fig. 15. A sample calculation is given below: Assume $\sigma=15^{\circ}$ and $\delta=5^{\circ}$. From Tables 56,58 and 59 , Keenan and Kaye's Gas Tables, the following data were found to be

(13

$\mathrm{Mi}_{1}=$ upstream Mach Number $=5.032$

$$
p_{2} / p_{1}=1.812 \text { and } P_{2} / P_{1}=1.502
$$

Then, the numerical value of $\frac{\Delta s}{R}$ was obtained by substituting the above data into eq. (37), i.e.

$$
\frac{\Delta s}{R}=\frac{1}{1.4-1}[\ln (1.812)-(1.4) \ln (1.520)]=0.02063
$$

Since each constant δ curve in the figure shows that a certain minimum entropy exists at a certain value of σ, it will be convenient to set the partial derivative of $\frac{\Delta S}{R}$ with respect to σ equal to zero and plot the locus of minimum entropy at constant δ. Eq. (37) gives

$$
\frac{\Delta s}{R}=\frac{1}{k-1}\left(\ln \frac{P_{2}}{P_{1}}-\ln \frac{2}{1}\right)
$$

$\therefore \frac{\partial\left(\frac{\Delta s}{R}\right)}{\partial \sigma}=\frac{1}{k-1}\left[\frac{p_{1}}{P_{2}} \frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}-k \frac{P_{1}}{P_{2}} \frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}\right]$
$\frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}$ can be obtained from iq. (35)

$$
\frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}=\frac{\left(\frac{k+1}{k-1}-\frac{P_{2}}{P_{1}}\right)\left(\frac{k+1}{k-1}\right) \frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}+\left(\frac{1 k+1}{k-1} \frac{P_{2}}{P_{1}}-1\right) \frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}}{\left(\frac{1+1}{k-1}-\frac{P_{2}}{P_{1}}\right)^{2}}
$$

The combination of the above two equations shows that when

$$
\frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}=0, \quad \frac{\partial\left(\frac{\Delta s}{R}\right)}{\partial \sigma}=0
$$

Consequently, the result shows that when $\frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}=0, \frac{\Delta s}{R}$ will be a minimum. From Eq. (34)

$$
\frac{P_{2}}{P_{1}}=\frac{\tan \sigma}{\tan (\sigma-\delta)}
$$

$$
\frac{\partial\left(\frac{\rho_{2}}{\rho_{1}}\right)}{\partial \sigma}=\frac{\tan (\sigma-\delta) \sec ^{2} \sigma-\tan \sigma \sec ^{2}(\sigma-\delta)}{\tan ^{2}(\sigma-\delta)}=0
$$

The above expression yields $\frac{\sin (\sigma-\delta)}{\cos \sigma}=\frac{\sin \sigma}{\cos (\sigma-\delta)}$ The only solution of this equation has to be

$$
\begin{equation*}
\frac{\sin (\sigma-\delta)}{\cos \sigma}=\frac{\sin \sigma}{\cos (\sigma-\delta)}=1 \tag{40}
\end{equation*}
$$

The final result is $2 \sigma-\delta=\frac{\pi}{2}$
The locus of $\left(\frac{\Delta S}{R}\right)_{\text {min }}$ for constant δ were plotted on Fig. 15 by using Eq. (40).

For $\mathrm{l}_{\mathrm{k}}=1.4$, Eq. (35) yields

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{6\left(\frac{P_{2}}{P_{1}}\right)-1}{6-\frac{P_{2}}{P_{1}}} \tag{HI}
\end{equation*}
$$

When P_{2} / ρ_{1} approaches $\sigma, P_{2} / p_{1}$ approaches infinity.
This will cause the entropy $\frac{\Delta s}{R}$ to approach infinity, also. Thus when $P_{2} / p_{1}=6$, Eqs. (34) and (35) result in $\sigma=67.80^{\circ}$, which is the asymptote of the locus of $\left(\frac{\Delta s}{R}\right)_{\min }$.
(3) Constant ω_{z} lines on $\left(\frac{\Delta s}{R}\right)-\sigma$ coordinates: From Eqs. (38) and (39), there is obtained
$\cot (2 \sigma)=\frac{1}{2}\left[\cot \delta-\cot \left(\delta-2 \omega_{z}\right)\right]$
The substitution of Eqs. (34) and (41) into Eq. (37) yields

$$
\begin{equation*}
\frac{\Delta s}{R}=2.5 \ln \left[\frac{\sigma \tan \sigma-\tan (\sigma-\delta)}{6 \tan (\sigma-\delta)-\tan \sigma}\right]-3.5 \ln \left[\frac{\tan \sigma}{\tan (\sigma-\delta)}\right] \tag{43}
\end{equation*}
$$

The entropy change $\frac{\Delta s}{R}$ can be defined then by the known angle of rotation ω_{z} and δ. Therefore, the constant ω_{z} line can be plotted on $\left(\frac{\Delta s}{R}\right)-\sigma$ coordinates as show in Fig. 15. A sample calculation is show below:

Given $\omega_{z}=-1^{\circ}$ and $\delta=20^{\circ}$
$\cot 2 \sigma=\frac{1}{2}\left[\cot 20^{\circ}-\cot 22^{\circ}\right]=\frac{1}{2}(2.7475-2.4751)$

$$
=\frac{1}{2}(0.2724)=0.1362
$$

$$
\therefore \quad \sigma=41.12^{\circ}
$$

Hence $\quad \frac{\Delta s}{R}=2.5 \ln \left[\frac{\sigma \tan \left(41.12^{\circ}\right)-\tan \left(21.12^{\circ}\right)}{6 \tan \left(21.12^{\circ}\right)-\tan \left(41.12^{\circ}\right)}\right]$

$$
-3.5 \ln \left[\frac{\tan \left(41.12^{\circ}\right)}{\tan \left(21.12^{\circ}\right)}\right]=0.174 .7
$$

since $\cot \delta-\cot \left(\delta-2 \omega_{z}\right)=\frac{\sin \left(\delta-2 \omega_{z}\right) \cos \delta-\cos \left(\delta-2 \omega_{z}\right) \sin \delta}{\sin \delta \sin \left(\delta-2 \omega_{z}\right)}$

$$
=\frac{\sin \left[\left(\delta-2 \omega_{z}\right)-\delta\right]}{\sin \delta \sin \left(\delta-2 \omega_{z}\right)}=\frac{-\sin 2 \omega_{z}}{\sin \delta \sin \left(\delta-2 \omega_{z}\right)}
$$

The above equation combined with Eq. (42) yields

$$
\cot 2 \sigma=\frac{-\sin 2 \omega_{z}}{2 \sin \delta \sin \left(\delta-2 \omega_{z}\right)}
$$

which, when rearranged is

$$
\begin{aligned}
\tan 2 \sigma \sin 2 \omega_{z} & =-2 \sin \delta \sin \left(\delta-2 \omega_{z}\right) \\
& =-2 \sin \frac{3}{2}\left[2\left(\delta-\omega_{z}\right)+2 \omega_{z}\right] \sin \frac{1}{2}\left[2\left(\delta-\omega_{z}\right)\right. \\
& \left.=\cos 2\left(\delta-\omega_{z}\right)-\cos 2 \omega_{z}\right] \\
\therefore \quad \delta & =\omega_{z}+\frac{1}{2} \cos ^{-1}\left(\cos 2 \omega_{z}+\tan 2 \sigma \sin 2 \omega_{z}\right)
\end{aligned}
$$

The partial derivative of δ with respect to σ is

$$
\begin{equation*}
\left(\frac{\partial \delta}{\partial \sigma}\right)_{\omega_{z}}=-\frac{\sin 2 \omega_{z} \sec ^{2}(2 \sigma)}{\sqrt{1-\left(\cos 2 \omega_{z}+\tan 2 \sigma \sin 2 \omega_{z}\right)^{2}}} \tag{44}
\end{equation*}
$$

where

$$
\begin{aligned}
1 & -\left(\cos 2 \omega_{z}+\tan 2 \sigma \sin 2 \omega_{z}\right)^{2} \\
= & 1-\cos ^{2}\left(2 \omega_{z}\right)-2 \cos 2 \omega_{z} \tan 2 \sigma \sin 2 \omega_{z} \\
& -\tan ^{2}(2 \sigma) \sin ^{2}\left(2 \omega_{z}\right) \\
= & \sin ^{2}\left(2 \omega_{z}\right)\left[1-\tan ^{2}(2 \sigma)\right]-2 \cos 2 \omega_{z} \sin 2 \omega_{z} \tan 2 \sigma \\
\left(\frac{\partial \delta}{\partial \sigma}\right)_{\omega_{z}}= & +\frac{\sec 2 \sigma}{\frac{\sin ^{2}\left(2 \omega_{z}\right) \frac{\cos ^{2}(2 \sigma)-\sin ^{2}(2 \sigma)}{\cos ^{2}(2 \sigma)}}{\sin ^{2}\left(2 \omega_{z}\right)}-\frac{1}{\cos ^{2}(2 \sigma)}} \\
= & \pm \frac{\cos 2 \omega_{z} \sin 2 \omega_{z} \frac{\sin 2 \sigma}{\cos 2 \sigma}}{\cos 2 \sigma \sqrt{\cos 4 \sigma-\cot 2 \omega_{z} \sin 4 \sigma}}
\end{aligned}
$$

where the positive sign will be chosen for negative values of ω_{z}, while the negative sign will be chosen for positive ω_{z}.

Then, let $\frac{\partial\left(\frac{\Delta s}{R}\right)}{\partial \sigma}=0$, and the locus of minimum $\left(\frac{\Delta s}{R}\right)$
for constant angle of rotation ω_{z} can be found. Employing
eq. (43), the expression for
$\partial\left(\frac{P_{2}}{P_{1}}\right)$
$\frac{1}{\partial \sigma}$ for ω_{z} constant is
$\frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}=\frac{\tan (\sigma-\delta) \sec ^{2} \sigma-\tan \sigma \sec ^{2}(\sigma-\delta)\left(1-\frac{\partial \delta}{\partial \sigma}\right)}{\tan ^{2}(\sigma-\delta)}$
Since it has been show before that the condition for

$$
\frac{\partial\left(\frac{\Delta s}{R}\right)}{\partial \sigma}=0
$$

$$
\frac{\partial\left(\frac{P_{2}}{P_{1}}\right)}{\partial \sigma}=0
$$

the above expression becomes

$$
\tan (\sigma-\delta) \sec ^{2} \sigma-\tan \sigma \sec ^{2}(\sigma-\delta)\left(1-\frac{\partial \delta}{\partial \sigma}\right)=0
$$

From which

$$
\frac{\sin (\sigma-\delta)}{\cos (\sigma-\delta) \cos ^{2} \sigma}=\frac{\sin \sigma}{\cos \sigma \cos ^{2}(\sigma-\delta)}\left(1-\frac{\partial \delta}{\partial \sigma}\right)
$$

and

$$
\frac{\sin 2(\sigma-\delta)}{\sin 2 \sigma}=1-\left(\frac{\partial \delta}{\partial \sigma}\right)_{\omega_{z}}
$$

where $\left(\frac{\partial \delta}{\partial \sigma}\right)_{\omega_{z}}$ is given by Eq. (44).
The loci so formed are plotted on Fig. 15.
(4) Constant $\frac{\Delta s}{R}$ lines on $\omega_{z}-\sigma$ coordinates: The lines of constant entropy change in Fig. 14 are plotted by using the

Fig. 16. Fraction of area possing through a shock when the flow proceeds.

Fig. 17. Percentage of rotation vs. percentage of trovelling time.
corresponding data from Rig. 15, except that the line of $\frac{\Delta s}{R}=\infty$ is found from the equation

$$
\frac{P_{2}}{P_{1}}=\frac{\tan \sigma}{\tan (\sigma-\delta)}=6
$$

(5) Constant upstream Mach Number (M_{1}) lines and the locus of minimum M_{1} for constant δ : These lines are plotted on Fig. 15 from data obtained from Chart 2-1, Dailey and Wood's "Computation Curves for Compressible Pluid Problems" (6). The locus of minimum \mathbb{N}_{1} for constant δ distinguishes the strong and weak shocks. The region to the right of this line is the domain of strong shocks, while that to the left is the domain of weak shocks. This locus of minimum M_{I} for constant δ is the locus of the common tangents of the constant M_{1} and constant δ lines (see Chart 2-1, Reference 6).
(6) Percentage of rotation vs. percentage of time for a square control volume passing through oblique shocks: Since the flow pattern taken is two-dimensional, the percentage of rotation for a control volume, which is the shape of square before reaching the chock wave, is proportional to the fraction of mass (or area) which passes through the shock. Since the upstream velocity V_{1} is constant, the traveling time is proportional to the distance traveled in the direction of flow. Let

```
A
A = the area passed through the shock at time t
x = the distance traveled by the control volume in time t
```

$x_{0}=$ the distance traveled by the control volume when it entirely passes the shock
$t_{o}=$ the total time required for the control volume to pass the shock

Referring to Fig. I6, the following expressions are found from the geometry of the figure:
(a)

$$
\frac{A}{\hat{A}_{0}}=(1+\csc 2 \sigma)\left(\frac{x}{x_{0}}\right)^{2}
$$

when

$$
\sigma>\frac{\pi}{4}
$$

and
$0 \leqq \frac{x}{x_{0}} \leqq \frac{1}{1+\tan \sigma}$
or when

$$
\sigma<\frac{\pi}{4} \quad \text { and } \quad 0 \leqq \frac{x_{0}}{x_{0}} \leqq \overline{1+\cot \sigma}
$$

(b) $\quad \frac{A}{A_{0}}=(1+\cot \sigma)\left(\frac{x_{2}}{x_{0}}\right)-\frac{\cot \sigma}{2}$
when

$$
\begin{aligned}
& \sigma>\frac{\pi}{4} \quad \text { and } \frac{1}{1+\tan \sigma} \leqq \frac{x}{x_{0}} \leqq \frac{1}{1+\cot \sigma} \\
& \frac{A}{A_{0}}=(1+\tan \sigma)\left(\frac{x}{x_{0}}\right)-\frac{\tan \sigma}{2}
\end{aligned}
$$

when

$$
\sigma<\frac{\pi}{4} \quad \text { and } \quad \frac{1}{1+\cot \sigma} \leqq \frac{x_{0}}{x_{0}} \leqq \frac{1}{1+\tan \sigma}
$$

(c)

$$
\frac{\Lambda}{\Lambda_{0}}=1-(1+\csc 2 \sigma)\left(1-\frac{x}{x_{0}}\right)^{2}
$$

when

$$
\sigma>\frac{\pi}{4} \quad \text { and } \quad \frac{1}{1+\cot \sigma} \leqq \frac{\because}{\because 0} \leqq 1
$$

or when

$$
\sigma<\frac{\pi}{4} \quad \text { and } \quad \frac{1}{1+\tan } \leqq \frac{x}{x_{0}} \leqq 1
$$

The percentage rotation of the control volume $=\frac{A}{\Lambda_{0}} \times 100$ and the percentage of traveling time $=\frac{x}{x_{0}} \times 100$. Hence, the curves in Fig. 17 , for five different shock angles, are plotted by employing the above analytical expressions (Table 2).

Table 2. Calculation clata for percentage of rotation vs. percentage of traveline time.

σ	Percentage of Traveling Time	Fercenta ge of Rotation
$15^{\circ}\left(75^{\circ}\right)$	10.0	3.00
	20.0	12. 0
	21.2	13.35
	78.9	86.65
	80.0	88.00
	90.0	97.00
$30^{\circ}\left(60^{\circ}\right)$	10.0	2.14
	20.0	8.60
	30.0	19.30
	36.6	29.05
	53.4	70.95
	70.0	80.70
	80.0	91.40
	90.0	97.86

CONCLUSION

The definition of circulation and fluid rotation in twodimensional flow state that if the circulation around a closed path in a certain ragion is zero the rotation at any point over that region should also be zero. This is snom to be true in the two cases of the normal shock and the potential voriex. But, the work done in this report has shown, on a numerical basis, that the circulations everywhere in Frandtl-Meyer flow and in
oblique shock flow are zero while the fluid particles passing throuch those regions in a certain time interval undergo angular rotations. The reason for the contradiction has not been found. The author recommencis that the problem needs further investigation.

ACKNOWLEDGNIENT

The author wishes to extend his hearty thanks to Dr. Wilson Tripp for his advice, direction and correction during the worl of this report.

1. Ascher 1 . Shapiro, "The Dynamics and Thermodynamics of Compressible Fluic Mlorv', Vol. I, The Ronald Fress Company, New York, N.Y., 1953.
2. H. W. Iiepmann ancl A. Roshko, "Plements of Gasciynamics", John wiley \& Sons, Inc., liew Yoric, N.Y., 1957.
3. Victor L. Streeter, "Fluid Dynamics", Nirst cdition, NcGraw-Hill Book Company, New Yorle, N.Y., 1948.
4. Charles D. Hodgman, "Mathematical Tables from Handbook of Chemistry and Physics", Sleventh edition, Chemical Rubber Publishing Company, Cleveland, Ohio, 1960.
5. Joseph H. Keenan and Josenh Kaye, "Gas Tables", John Wiley \& Sons, Inc., New York, N.Y., 1948.
6. C. I. Dailey and ت. C. Wood, "Computation Curves for Compressible Fluicl Iroblems", John lilley \& Sons, Inc., New York, N.Y., 1949.

CHENG-CHIEN CHOU

B. S., Chemg Kung University, Taiwan, China, 1957
\qquad

AN ABSTRACT OF
A MASTER'S RSPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The purpose of the work in this report is to investigate the rotationality of the flow for the normal shock, the potential vortex, the Prandtl-keyer flow and the oblique shock. The fluid considered in all cases is a perfect gas. Some expressions to show the relationship between the entropy change and the fluid rotation have been cleveloped for the case of flow passing throuch oblique shocks.

The rotationalities for these four problems are examined from two viewpoints, one of which is based on the concept of the circulation around a closed path in the flow while the other is based on the concept of the fluid rotation of a particle at a point in the flow. The definitions of circulation and fluid rotation in two-dimensional flow state that if the circulation arounci a closed path in a certain region is zero the rotation at any point over that region should also be zero. This has been show to be true in the cases of the normal shock and the potential vortex. However, the work done in this report has also shown, on a numerical basis, that when the circulations everywhere in Prandtl-Meyer flow and in flow passing through oblique shock are zero the fluid particles traveling in those regions in a certain time interval really involve angular rotations.

The reason for the contradiction has not been found.

Date Due

[^0]: $1_{\text {Number }}$ in parentheses designates References at end of paper.

