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INTRODUCTION

The material involved in this report is a discussion of the

rotationality of the normal shock, the potential vortex, the

Prandtl-Meyer expansion and the oblique shock. In the investi-

gation of oblique shock, some expressions involving the

relationship between the entropy change and the angle of rotation

have been developed.

All problems investigated in this report are based on the

following basic hypotheses:

(1) The compressible fluid flow field is two-dimensional,

(2) The fluid is a perfect gas with k = 1.4,

(3) All analyses concerning the compressible fluid motions

are governed by the four basic laws v/hich are:

(a) the law of conservation of mass

(b) Newton's second law of motion

(c) the first law of thermodynamics

(d) the second law of thermodynamics.

Some theoretical concepts and governing definitions which

relate to the work of this report are described in the following

pages.

Circulation

Definition of Circulation. (1)^, (2), (3). The circulation

r is defined as the line integral of the velocity vector taken

^Number in parentheses designates References at end of
paper.



around a certain closed curve C enclosing a surface within a

fluid region. Referring to Fig. 1, this is

r = <> V cos 6 di (la)
Jc T

In vector notation it is

r*= Jc ^ ' ^^ ^^^^

where V is the velocity vector and r the radius vector from a

certain origin.

Circulation Per Unit Area in Two Dimensions (1), Consider

the circulation d f^ around a small square element in the x,y-

plane as shown in Fig. 2. The circulation is

d r^ = udx + (v + -1^ dx)dy - (u + 2J1 dy)dx - vdyz ax ay

or simplifying,

dr„ = (^ - .lii)dxdy = (-|Z - .Ui) dA^ (2)
2 9x ay ax ay ^

The circulation per unit area in the x,y-plane will then be

given by

dPz _ a

V

_ 3u
d Ag ^x 37 ^^^

Rotational and Irrotational Fluid Flow

Definition of the Fluid Rotation of a Particle at a Point (1).

"The fluid rotation at a point is the mean angular velocity of two
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on elementary fluid particle in a

streamline coordinate system.



infinitesimal and mutually perpendicular fluid curves instanta-

neously passing through the point."

Rotation in Two Dimensions (3). In order to find an

analytical expression for the fluid rotation at a point in a

two-dimensional flow, the rotation component of a fluid particle

about an axis through itself, say parallel to the z-axis, will

be considei*ed. The symbol 60 2 is used to indicate this component

of rotation. 1

Referring to Fig. 3, tv;o line segments dx and dy passing

through the point P are chosen parallel to the x- and y-axes,

and they must be at right angles to each other. The particle is

at P(x,y,z) and has the velocity components u and v in the x,y-

plane. If the components of velocity at A and B are different

from that at F, the segments PA and PB will rotate to the relative

positions PA' and PB', respectively, during a certian time

interval dt. Then the angular velocity of the dx segment is

V + -—— dx - V ^9x _ 3 V
- rad/sec

dx ^^

and the angular velocity of the dy segment is

u + -^ dy - u
ay

^ _ J^ rad/sec
dy ^y

using counterclockwise rotation as positive.

Hence, by definition, the rotation of a fluid particle at a

point in a two-dimensional flow field is



03 = i (-LZ - -SU) (4)
2 2 a X ay

Relationship Between Circulation and Fluid Rotation.

Referring to liqs. (5) and (4), the circulation per unit area is

twice the average rotation of a fluid particle, i.e.,

d Tz d V au
= 20^2 ^ -TZ ' ~^ ^^^

dA ^^ ^y

The Connection Eetween the Rotation and the Thermodynamics

Properties of the Flow (1). A system of curvilinear coordinates

comprising the streamlines and the system of lines normal to the

streamlines are taken for a steady and frictionless flow as

shown in Fig, 4.

The rotation of the chosen element ABGD is

d Tz = Vrde - (V + -1^ dr)(r ^ dr)d0 = -(r -iZ + V)d dror 9 r

or

d Pz d Tz a V V
2(0 = -L^ = 5— = (6)

2 dA_ rd 6 dr 3 r r

The force balance in the normal direction gives

a
(p + 4^ dr)(r-»-dr)d0 - prd - 2(pdr M-) - ( Prdedr)(^)=0

d r 2 ' r

which yields

3r r ''•'



The combination of Cq. (6) and (7) reduces to

2W, = -l^- -i--|£ (8)

The first law of thermodynamics gives the stagnition enthalpy

as

T^o = ^ * ~

Its partial derivative with respect to the normal displacement is

3^o - ah ^ ^ _3V
(9)

a r a r ar

since

Tds = dh - -^ dp

the partial derivative of enthaply h with respect to the normal

displacement is

.£IL = T-^ + -L -i^ (10)ar 3r p ar

Eq. (9) and (10) together yield

jL^=-PT-^+ r
^^Q-PV ^^ (11)

ar 'ar'ar'ar
Substituting i£q. (11) into Eq, (8), an expresf;ion for the

relationship between the fluid rotation and the thermodynamic

properties of the flow is

60_ = -i- (T 4^ - 4-^) (12)^ 2V arar^
The result of Eq. (12) shows that the fluid rotation depends

on the rates of change of the entropy and the stagnation enthalpy

normal to the streamlines.



NOMENCLATURE

A flow area

A* choking area of flow at Mach Nijmber unity

c speed of sound

c* critical speed of sound for adiabatic flow

Cp specific heat at constant pressure

h enthalpy per unit mass

h.Q stagnition enthalpy

k ratio of specific heats

S. . length

m mas s

M Mach Number

M* V/c*

p pressure

r radius

r radius vector

R gas constant

s entropy per unit mass

t time

T absolute temperature

u velocity component in x-direction

V velocity component in y-direction

V velocity

V velocity vector

^ Mach angle

^ angle

f circulation
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S wall angle for oblique shock

angle

-^ angle
i

P density
I

C angle of oblique shock to incoming flow

4? angle
i

60 defined by tCq. (17a) !

i

60 2 angular rotation or rate of angular rotation about z-axis



NORKiAL SHOCK

Physical Equations (1)

Steady-flow Energy Squation ;

h^ 4- -^ = hy -^ -^ = ho

Equation of Continuity :

PxVx = PyVy

Momentum liquation ;

Px *- PxVx^ = Py ^ PyVy^

where subscripts x and y denote the conditions before and after

the shock, respectively (Fig. 5),

Irrotationality of Normal Shock

Consider the square control volume ABGD passing through a

normal shock as shown in Fig, 6. Since there is no velocity

component along the shock, it sV.ows clearly that the circulations

around both of the control volumes are zero, i.e.,

TaBCD = - V^ J?AD ^ V^ J?GD =

and

rA'li'G'D' ^ " ^y-^A'B' "* ^y-^C'n' = ^

According to the definition of the rotation of a particle at a

point ("The fluid rotation at a point is the mean angular

velocity of two infinitesimal and mutually perpendicular fluid
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Fig. 5. Normal shock discontinuity.

NORMAL SHOCK

Fig. 6. Two-dimensional control volume in

normal shock.

V-hdV

Fig. 7. Potential vortex.
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curves instantaneously passing through the point."), Fig. 6

shows that the control volume ABGD, in moving through the

shock to position A'B'G'D', underwent no rotation at its four

corners. Also since Pi = P2» the rotation at the center of

the control volume (iZ to Z^) is zero. Kence , it is concluded

that the normal shock process is irrotational. However, the

process is not reversible, and it is shown by this example that

reversibility is not a criterion for irrotationality.

POTSOTIAL VORTliLX

liquation of Motion

The two-dimensional potential vortex is formed by stream-

lines which are concentric circles, and the tangential velocity

along any streamline is inversely proportional to the radius of

the streamline, i.e.,

Vr = G

where C is a constant.

Irrotationality of the Potential Vortex Motion

Irrotationality Based on the Concept of Circulation around

a Closed Path. Consider the circulation around the element ABGD

in Fig. 7. Since the line integral is zero along the sides AB

and CD, the circulation around this element is

d TaBCD = (V+dV)(r-»-dr)de - Vrde = (Vdr-^rdV)d0

= [d(Vr)Jde = [d(G)J d0 =
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Thus the circulation of any element in the potential vortex

motion not enclosing the origin is zero.

Irrotationality Based on the Concept of the Rotation of a

Particle. Consider the area 1234 of Fig. 8 located within a

potential vortex. The lines 1-3 and 2-4 are straight, mutually

perpendicular, intersect at point P, and are inclined at 45

degrees to the x-axis. The rotationality of the point P moving

with the element 1234 is investigated as follows:

Referring to Fig. 8, let the coordinates of the points 1, 2,

3 and 4 be ix-j^fY-^)^ (x2,y2)» (x3»y3) and (x4,y4) respectively,

and the radii of the circles passing through the points 1,2, 3

and 4 be r-]_ , r2, r3 and r^, respectively.

'j^ = r^ and ~ di - 02Since r, = r^ and - d -i = 0^ = -^

xi = X2 and -y^ = y2

Also
y2 (r - X:)) tan 45° r - xo

tan ^ = —- = = ^
^ X2 X2 3C2

X2 = x^
1 + tan 9 1 + tan -AL^ 2

y2 = - yi = (r - x^) tan 45° = r - x^ = r(l -
1

1 * tan J^

r tan4i

1 . tan ^ 1 . cot 4^

and
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^2 = ^1
^2

r tan
2

sin 6 2 sin 4^ (1 * tan -^)
2 2

£^esin ^Q + cos
2 2

Le t J22p = Length from point 2 to P =
^2

sin 450

r tan ^e

sin 450 1 + tan -£il
2

r3-r2 =
.2P r tan ^9

cos ii 324 sin 45° 1 + tan 4J- cos (45° + 4^)

in which

^ein 450 cos (450 + —-) = sin 45° Fcos 45° cos 4l- - sin 45° sin -^1
2 ^ 2^^ 2 J2

= - (cos —r;- - Sm -j-)

r tan /^e

^3-^2 =

1 + tan ^& i(cos ^ - sin ^

2r tan ^e

(1 ^ tan .^)(cos -M. - sin -^^)
2 2 2

2r tan
A8

^3 =
^ ""

(1 ^ tan -^)(cos -^ - sin -^)

72 2r tan /ie

sin e
"^ (1 + tan -M.)(cos -AL - sin -^^)

^
2 2 2



i:)

r tan —~- 2r tan -=^

(1 + tan -^^) sin ^^^ (1 > tan ^^)(cos ^^ - sin -M.)
2 2 2 2 2

r tan -M. (cos ^^ - sin -^ - 2 sin -^ )

2 2 2 2

(1 + tan ——) s±n —— (cos —— - sm )

2 L p 2 2 J

r tan -=^ (cos —^ + sm -2—)

(1 . tan 4A)(cos ^ - sin 4^) sin ±1

r (cos ^ -^ sin ^)
(cos ^0. ^ sin -^)(cos -M. . sin^
cos -M. _ sin -^ = ^^

Hence

,

A Q r
xa = r3 cos 8 z = r^ cos —rr- = aQ^ ^ 2 i_tan4l-

73 = 74 = r3 sin 83 = r^ sin -^ =
2 cot ^^ - 1

and the coordinates of point P are

X = r

y =

\\/hen the motion proceeds in the counterclockwise direction,

and when point 1 reached the original position of point 2, the

correspond in,'? new coordinates of points i, 2, 5, A and P, which

are 1', 2', 3', 4' and P', can be found. Let ^ t be the required

time interval for this displacement nnd A<j)^ ^^2' ^4*x» ^^ z^.
^^^

A^ hQ the corresponding Angular displacements for points i, 2,

5, 4 and P respectively.
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Since Vr = G

the arc displaced along any circular path during the motion

= rA<^ = V At = -^^^

.'. A^ = CAt

r2

For a given time interval.

where C-j_ is a proportionality constant.

Given ^<^-^ = AO and ^1=^2, then A<t>2 = ^^1 =^6

^^3 ^1 ^

Also —r^ = ( ) and r3 = ta
A<^1 r3

•*• "^^3 = ^^4 = C-7~) ^t.
=

r, 2 / sm —^5— + cos —2-

Ae . Ae
cos —o— - sm —TT-

cos -^ - sm -^- \ ^ / 1- sin A9 \ ^.
aQ Ae p^t^ ~

V 1+ sin £^Q Jsm -~- + cos -^ / ^ ^ /

For the same reason,

/r-,x2 / sin-~- + cos A^ \ ^ a 9<\ • ^^I^O <^

r ' ' -^
I ^ / 1+ sin Ae

The new position angles are

Ae a9
e^'= Ac(>^ +0^ = ^0.

62*= A(j)2 +62 = ^^ +

2 2

a9_ 5a9

2 2
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e '= zi<j> ^ B ^ (l-sin^6)A6 ^ ^^e _ (5-sin^e)A6
1 + sin AG 2(1 + sinAG)

fl , A^ a
(l-sinAe)A9 a9 _ (1-5 sin A9 )a9

2 2(1 + sin A0)

e
' = A(t) ^ 6 = 37T

aB
sm ^9

Hence the new coordinates of points 1, 2, 3, 4 and P after time At

are

= rjL cos 9i*

= rj_ sin 6i'

^1

^2

^2

y3

^4

= r2 cos 8 2

= r2 sin 02

= r3 cos 63

= r3 sin 83

= r4 cos 0^

= r^ sin 9^

and r X •= r cos '

I y '= r sin 9

'

They are all in terms of r and AG

.

In general the position angles for the n-th position after

a time interval of n( At) are

e
(n)

n Act)^ +62
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03*^^^ = n^c(>3 ^- 3

64^^^ = n A()>4 -H 4

The new coordinates of points 1, 2, 3, 4 and P will then be

fxi^^^ = ri cos 01^^^

(yi^^^ = ri sin 03.<^^>

r
(n) . (n)

1 72 ^ = r2 sin 02^^^

r
(n) Q (n)

I

X3 ~ ^3 ^os 63

1
73^^^ = r3 sin 03^^>

(n)
fl

(n)
X4 = r^ cos 04

74^^^ = r^ sin Q^Cn)

and r x^^^ = r cos 6^^^

\ y<^^^ = r sin <^^>

At any instant the coordinates for the points which origi-

nally lay along the lines 1-3 and 2-4 (lines which were originally

perpendicular and intersected at P) can be obtained by use of the

procedure given above. Therefore, it will be possible either to

plot or to set up equations for the curved lines l'-P'-3' and

2'-P'-4', l"-P"-3" and 2"-P"-4", etc. for different intervals of

time. Then, by employing the definition of fluid rotation, the
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rotationality at the point P can be studied by examining the

slopes of the tangents of the curvilinear lines passing through

P, which v;ere originally perpendicular.

A numerical example, to show that the potential vortex

motion is irrotational, is given below, in which the motion is

described in the time interval At.

Let r = 1 and ^0 = 12°, then

61= 64 = -60

So = e, = 6°

^2 - ^1 - sin -^^ + cos J^ ~ sin 6^ + cos 6°
2 2

^ = 0.909876
0.10453 + 0.99452 1.09905

Tx = r,. =
4 cos A^ - sin -^ cos 6^ - sin 6<

= 1.125608
0.99452 - 0.10455 0.88999

and

e3_' = -^ = 6o

62'= ^4^-= 18°

e
' = (3-sin ^6) ^e ^ 3-sin 12^ ^ gO _ 3 - 0.20791 ^ go

^ 2(1 + sin aB) 1 -^sin 12° " 1 "^ 0.20791

=
I'lly^l

X 60 = 13.869024 = 13° 52. 14144»
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fl
• _ (1 - 5 sin^e )A9 ^ 1 - 0.62373 go = 0.37627 ^o

^4 - 2(1 + sin AS) 1 + 0.20791 1.20791

= 1.869029 = 1° 52.14174'

12^ ^ 12Q
1 + sm a8 1.20791e^= 1 . Zir. .« =

1 ;n7Qi = 9.934515 = 9° 56.07090'

Hence ,

^1 = ^1 cos
0JL*

= (0.909376) cos 6^ = (0.909876)(0.99452)

= 0.904890

yi* = r^ sin Q^ = (0.909876) sin 6° = (0.909876)(0.10453)

= 0.0951184

X2* = r2 cos 02 = (0.909876) cos 18° = (0.909876)(0. 95106)

= 0.865347

72 = r2 sin 62 = (0.909376) sin 18° = (0.909876)(0.30902)

= 0.281170

X3' = r3 cos 85 = (1.123608)(0. 970850) = 1.090855

y3*= r^ sin 03 = (1.123608)(0. 239701) = 0.269330

X4 = r4 cos 84 = (1.123608)(0. 999468) = 1.123010

74 = r^ sin 84'= (1.123608)(0. 032611) = 0.036642

x' = r cos e* = cos 8
' = 0.984956

y' = r sin 9' = sin 8' = 0.172520

Let the equation of the curve passing through the points 1',

P' and 3' be

y = ax^ + bx + c

Then, the three constants in the equation can be determined by
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substituting the coordinates of the points 1', P' and 3' into it.

There is obtained

0.0951184 = a(0. 904890)2 f b(0. 904890) »- c

= a(0. 818826) + b(0. 904890) -t- c

0.172520 = a(0. 984956)2 + b(0. 984956) + c

= a(0. 970138) + b(0. 984956) + c

0.269330 = a(l. 090855)2 + b(l. 090855) + c

= a(l. 189960) + b(l. 090855) + c

The solution of these three simultaneous equations for the

constants a and b is

' a = - 0.284851

b = 1.505052

Hence the slope of the tangent of the Line l'-P'-3' passing

through P ' is

1 dv
tan (j)^^ =

dx = 2ax + b = 2(-0. 284851)(0. 984956 ) + 1.505052

= 0.943921

<t>tl = ^3° 20.856'

/Si (the clockwise angle of rotation at P) = 2° 39.144'

Let the equation of the curve passing through the points

2
'

, P ' and 4
' be

y = a'x2 + b'x + c'

which results in

0.281170 = a'(0. 865347)2 + b'(0. 865347) + c'

= a'(0. 748825) + b'(0. 865547) -^ c'

0.172520 = a'(0. 984956)2 i- b'(0. 984956) + c'

= a'(0. 970138) + b'(0. 984956) + c'
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0.056642 = a'(l. 123010)2 + b'(l. 123010) + c'

= a'(l. 261151)+ b'(l. 123010) + c'

The solution of these three simultaneous equations for the constants

a* and b' is

a' = - 0.294526

b' = - 0.363414

Hence the slope of the tangent of the line 2'-P'-4' passing

through P' is

tan 9t2 = dx " ^^*^ + b = 2(-0.294526)(0. 98456) - 0.i363414

= -0.943404

4)^2 = ^^^ 40.083*

^2 (the counterclockwise angle of rotation at P')

= 2^ 40.083'

The results show that ^-^ nearly equals P 2'* ^^^ that, with

fairly good accuracy, the fluid rotation at the point P is shown

to be zero.

PRAlvTXCL-MSYiiR liXPANSION

Characteristic Equations (1)

Flow with pressure waves of one family is known as simple-

wave flov;, corner-type flow or Prandtl-Meyer flow. Figure 9

shows a case of Prandtl->'?eyer flow in which a left -running Mach

wave turns the flow through the negative angle d0 , with

corresponding infinitesimal changes in all stream properties.

Consider d0 to be an infinitesimal increment. It follows from

the geometry of the figure that
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MACH LINE

^/////////y

Fig. 9. Infinitesimal Mach wave.

Fig. 10. Construction of streanrilines for Prandtl-Meyer

flow.
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dv = - Vd9

du = dV

Jti = tan 0< = -=4=

where cX is the Mach angle and M is the approaching Mach number,

iilimination of du and dv from this set of equations yields

1 dV _ 1

From the definition of >lach Number

V2 = C^M^ = kRTH2

2VdV = kRT d(M2) + kRM^ dT

and
4V ^ kRT ^(j,2) ^ kRM£ dT = i^ * ^ (14)
V y2 v2 m2 T

As

To = T(l + ^ " -*•

m2)

dT ¥ ^ (>^')

(15)T
1 . ^ m2

The combination of £qs. (13), (14) and (15) yields

dQ =^-MIL,A^]^ (16)
2M2 (1 ^. ^ m2)

The integration of the above equation by standard methods gives

6= - /li^ tan"-"- rpErTM^Ti)" + tan"^ JVi^-l + constant
'v/ k-1 V k+i

(17)

It is often more convenient to work with the dimensionless

V
velocity M* = Q-k (where c* is the acoustic velocity at Mach

Kumber unity) rather than the Mach Number M, Using the adiabatic
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relation that

m2=-J^
M*2

i - ]^zl v*2
k+l

'-

Eq. (17) may be put into the form

= - CO (M*) + constant

where

0) (M-) = fiir tan-i I ff - ^

-Jk-l k+1 _ ..^2

J k-1 ^*

(17a)

- tan-1 M*2 _ 1

1
k-1
k+1

M*2

It follows that, crossing the same family of waves with a known

initial condition,

$2 - Qi = - (^2 -a)i)

The streamline shapes can be examined by letting r denote

the distance, measured along the Mach line, between a point on

the wall and a point on a certain streamline (Fig. 10). Then

the distance r* is proportional to the minimum cross sectional

area for isentropic flow, and the distance r(sino() is

proportional to the cross-sectional area for flow at any other

section, i.e.

r sin c< A
A*

Since

i = ^ [^i^><^^¥^'^)]

k+l_
2(k-l)

and

sin cK = —
M
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If the initial flow is not at Mach Niomber unity, the distances

along the Mach lines are related by

~ = -^

—

r,—— (19)

Rotationality of Prandtl-Keyer Expansion

The Prandtl-Meyer expansion is examined from two viewpoints,

one of which describes this expansion as being irrotational while

the other describes the flow as being rotational.

Geometry of a Differential i£lement in the Flow Field .

Referring to Fig. 10, the following expressions for the

differential element in the flow field are developed.

sin cX = i
M

cos o( = ^^^ " ^ (20)
M

and

do< = d(sin-l 1) = -dM = 'dO^^)
(21)

From l£q. (14) and

J

^ = (1 * ^ m2)
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dV 1

V " 2
d(r:2) ^ d( T )

m2 To
T

d(M2)

i

2

2m2 (1 ^ k-1 ^2)

k-i
d(K2)d(H2) ^ ^

m2 1 + lizi H-

(22)

As 4/ =-I^ - (a-u;)

dV = da) - da

From Eq. 16

da)= -d9 =
:;

T—.—-
2M2 (1 ^ iizi m2)

From Eqs. (21), (23) and (24)

d7/ =
(k+1) d (m2)

47h^-1 (1 + ^ >'^^)'

The logarithmic differentiation of Eq. (18) gives

k+l
2(k-i)

k-1 d(M2)

1 ^ ^ M2

(k-*-l) d (m2)

4(1 ^ ]S|i m2)

(23)

(24)

(25)

From the geometry of Fig. 10, the length dj^ on the curved

path may be expressed by

d^ =- rdV
sino<

After suitable substitution and simplification of the corresponding

terms, there results

3-k 3-k

^^^, ( 2 )2Tkrry (1 ^ k^ M2)2Tkrry ^^^^2)

djl=
'^

,

^ (26)
2 J m2 - 1
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Irrotationality Based on the Concept of the Circulation

Around a Closed Path. Since the velocity is constant in the

direction of flow before and after the Prandtl-Keyer corner flow,

the flow in these two repions must be irrotational. The problem

now is to examine the circulation around a certain closed path

within the Prandtl-Meyer fan. As shown in Fig, 10, the closed

path OGB is chosen to be the test element. In accordance with

the definition of circulation '

dPocB = CV+dV) cos (o<+do< )(r+dr) - Vcoso<(r) ^ ^^LUiXl^H dJL

= (V+dV)(cosc< cos dc< - sin o^ sin dcx )(r+dr)- rV cos ex

. Vdi - ^X^
2

= rV cos c< cos d (X + rdV cos o< cos do< + Vdr coso<cos do(

+ drdV cos o( cos dcx - rV sin 0( sin d o<

- rdV sin 0^ sin d (X - Vdr sin CX sin d<X

- drdV sin 0< sin d 0( - rV cos o< - Vdj^ -
2

When d CX is very small, cos d (X approaches unity and sin d 0^

approaches dO< . In the mean time, all the terms higher than

second order may be neglected. It will be found that

d pQCB ~ '^^^ cos cX + Vdr cosO< - rV sin CX d CX - Vd i

^ ' OGB = ^ coscX + ~ coso( - sincx do< - ^
dV dr . , ,

smcx
-TT- cos CX + —- COS o< - sincXdO(
V r r

dz^

V r '
' sincx

= ^ COS CX + ^ COS oi - sin cX d o( -
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d(M-) JM^-1 ^ (Ic-i-DdCM^) JH^-l

2m2(1+ ^- H^) 4(1+ — lvl2)

1 -d(M2) ^ (k+l)d(l-:2)
- M

^^^ -^ 4 JH^-I (1+ ^^-i
2

2(M2-l)d(M2)+M2(H2-l)(k+l)d(M2)+2(l+ i^M2)d(K2)-M4(k+l)d(M2)

4M^ Ai^-l (1+ ^ M^)

_ [2M2~2+I-l^-(k+I)-l<I'l2,M2+2+kM2-.>l2_|..-4(^+;L)] dCM^)

4M^ JH^-l (1+ ~i M-)

=

The result shows that the circulation around a closed path

in the Prandtl-Heyer fan is also zero.

Rotationality Based on the ConceDt of the Rotation of a

Fluid Particle that Passed Throu^^h the Prandtl -Meyer Fan .

Consider the two-dimensional, square, control volume aebcfd of

Fig. 11 which passes through the Prandtl-Meyer fan to position

a'e 'b'c 'f 'd ' . Let V be the velocitj^ at any time along a certain

dH
streamline in the flow passage. Then V = —;— and also

dt

r.
,
kRTo kRT^

V = i-lc = HjkRT = M —^ = M ' °
k-1 9

1+ ^ M^

The combination of the above two relations gives

dt =

"n.-^M^
^-^-'-^'o MjkRT,
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wliere d j^ can be replaced by the e^qpression from 2q. (26), hence

5-lc 1

.^^^-^^l-y a . ^ k2)1.-1 ^0,2)r
dt = -

2 JlcRTo Jy^ -1

1

(1 . ^ yh''-^ d (m2)
^ ^= Gj_ X

^
(27)

Vk^T

v/here 3-k

Gl =

. 2 >,2(k-l)
r*

2 ykR Tq

For Ic = 1.4 and R = 1716 ft-lbf

.-3

/c-i,,^ Oislug "F,

Gj^ = 7.0847 X 10"^ -^^— (28)

The integration of 2q. (27) yields (4)

t = Gi
I
Jyi--1 Jl+0.2 m2 [^(1-^0.2 m2)^ + ^(1+0.2 M^) + 0.9]

+ Li03 In [Jo.2(m2-1) + Jl+0.2 m2j
[
+ constant (29)

0.2 ^

which is the tine required for a particle to travel from the

upstream side of the Prandtl-Meyer fan, having an approach Mach

Number of unity, to any other position in the fan.

As the general solution of the rotation of a fluid particle,

that has passed through the Prandtl-Meyer fan, is complicated, a

numerical example is presented belov; to show how i^Iq. (29) can be

used to determine the rotation of a fluid particle as it passes
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through the Prandtl-Meyer fan.

Given r^ = 1 ft , k = 1.4, Tq = 1,000Or

M]_ = Initial Mach Kumber = 1.0

M2 = Final Mach Number = 2.1339

Since

lc+1

r _= [(_|_)(i . iizi K^)] 2n^

2.4

= [(^)(1 . 0.2 k2)] ^^^^^

(1 -v 0.2 K^)^
1.728

and •j/=5^- (o<-60), the flow patterns are plotted on Fig. 11

by employing the data in Table 1,

Table 1, Calculation data for the streamline configuration
in Prandtl -Meyer fan.

M :: Vr* : 00
•

: o(
m

: ^
•

1.0000 1.00000 90

1.2565 1.31821 5 52.7383 42.2617

1.4393 1.63718 10 44.1770 55.8230

1.6047 2.01234 15 38.5474 66.4526

1.7750 2.50677 20 34.2904 75.7096

1.9503 3.15888 25 30.8469 84.1531

2.1339 4.03682 30 27.9451 92.9451
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Substituting the given conditions into Eqs. (28) and (29)

and performing appropriate calculations, the results are

Ci = 2.240377

and t^^ (the time for point d to traverse the Prandtl-Meyer fan)

= 2.179539 X 10"^ seconds

It follov7s that

to (the time for point f to traverse the Prandtl-Meyer fan)

= 1.5t^^ = 3.269383 x 10"^ seconds

^cn ^^^^ time for point c to traverse the Prandtl-Meyer fan)

= 2tcim = 4.359178 x 10"^ seconds

Since

V = M
J

kRT
£L.

k-1 o
1 + ~r^ m2

the corresponding velocity for Mi = 1,0 and M2 = 2,1339 are

Vi = 1414.92 and V2 = 2392,81 feet per second. Hence

the = tpf = tad = = 0.706753 x 10""^ secondsDC e£ aa 1414.92

and t|^|^i (the time for point b to traverse the Prandtl-Meyer fan)

= t^^ + t^c = 5.065913 X 10-^ seconds

^^ finc'» J?pf'» J?md'» J!pe' ^^^ JZma» ^^ "^^^^ distances

traveled beyond the Prandtl-Meyer fan by the points c, f, d, e

and a, respectively, in time t^^^i. They are

L .= X2 = 2392^^ ^^,^^^^ ^^^
'^nc' v^ 1414.92

J!pf'= ^^bb'- tfi^)V2 = (5.065931 - 3.269383) x 10-^(2392.81)

= 4.29880 ft.
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Fig. I la. Angle of rotation for Prandtl -Meyer flow,

///////////

Fig. 12. Oblique shock.
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i^md' = ^^bb' - tdm)V2 = 6.90647 ft.

ipC = <Vd' - t£p - tef)V2 = 2.60766 ft.

and

-8ma» = (t^b' - t^^ - ta^)V2 = 5.21535 ft.

Referring to Fig. 11, the rotation of the points a, b, e,

d, e and f after traversing the Prandtl-^feyer fan is

Consider the triangle a'mb* as shox-m in Fig. 11a.

. (4.03682) sin 27.0349^ ^ , i^^oist^^ /3 = 5.21534 - (4.03632) cos 27.0549"
^--^^^^-^^

= 48° 34.45*

and
t = 2" 02-/3 = 11° 25.55'

Finally, the angle of rotation for all points is

^ ^ = - 9^ 17.225' (in the clockwise direction)

OBLIQUE SHOCK

Governing iCquations (Fig. 12) (1)

Equation of Continuity.

PlVnl = P2Vn2 (30)

Momentum Equations

.

( Pl^nl^^tl ~ ( P2^n2^^t2 ^^ tangential direction

•"• Vti = Vt2 (31)
'-) -)

Pi " P2 ~ ?2^vl2 - Pl^nl "^^ normal direction
(32)
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2
p(Ti - T2) = ^'^2 - Vi'')/2 (33)

Ratio of Do^-mstream to Upstream Density,

?2 _ tan cr

^1 tan( (T - S )

Pi vc-1 Pi V ^^^-^
" /'J

Ratio of Dox^mstream to Upstream Velocity .

V2 cos (T

Vi cos ( or - 5 )

Entropy Change Across Oblique Shocic

.

(34)

Ratio of Do^^mstream to Upstream Pressure,

-^/m-4^] (35)

(36)

AS _ 1 ., P2 , , P2. ,,„x— - kTI ^^^^ - ^'^m —

)

(37)

Rotationality of Flow Passing
Through an Oblique Shock

Irrotationality Based on the Concept of Circulation

Around a Closed Path. Since the velocity is constant in the

direction of flow before and after the shock, the flow therefore

must be irrotational, l-Iow, consider a case when part of the

control volume ABGD (Fig. 13) has passed through the shock.

Referring to Fig. 13, A]_ , B}., C^ and D-^^ are the corresponding

new position of the points A, B, C and D when the flow proceeds

a certain distance Ax. First, consider circulation around the

closed path BBiPC.
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Secondly, consider circulation around the closed path CPG]^.

s(Trcpcr ^2^1 - V2 cos
[| -(y3-^)]j^2 " '^2 ^°^ ^^"^^ ^

= V2 ^1 + V2 i?2 sin (y6 + 6 )

- V2 cos ( cr - <$ ) [j!i cos ( <T - S ) + ^2 ^^^ ^ ^ * i^ ^]

= V2i!i + V2JJ2 sin (^ + 6) - V2J!iCOs2 (CT-S)

- V2 i 2 ^°2 ( 0- - 6 ) sin ( (T + ^ )

= V2 JI;L
" ^2 J^2 sin ( ^+6 ) - V2 Jli [1 - sin2 ( o* - 6 )]

- V2 ^2 cos ( (J - 5 ) sin ( a + /3 )

= V2 J!2 sin (
fi

+ S ) + V2 $.1 sin^ ( cr - S )

- V2i!2 cos ( cr - 6 ) sin C (T + ^)

= V2 J^2 2^^ (/3 + 6) + V2 sin (cr-6) [^2 cos ( C + ^ )]

- V2 ^2 cos ( cr - S ) sin ( 0" +^ )

= V2 ii2 sin (^ + 6 ) - V2 JZ2 [sii^ (a + ^) COS (<r-6)

- COS (or + yS) sin ( 0" - ^ )]

= V2 J? 2 sin
( yS + i) ) - V2 i^ 2 sin ( ^ + 5 ) =

Finally, the circulation around AiB]_GxDi is

rAiEiGiDi = ^1^^ - ^>^> -^ '^2 -^1 -^ V2 sin (^ ^5 ) ^2 - ^i^

= - Vj_ A X •*- V2 ix * '^2 -^2 sin ( ^ + 5 )

= -Vi ^x + V2J^3_ + V2j22sin[(0'+/S) - (cr-6)]

= - Vi Ax + V2 J! ]_
+ V2 i! 2 [sin C a + jS) cos ( cr - S )

- cos (0" + ^) sin ( 0" - 5 )]

= - Vi^:^x + V2 Jii + V2 JJ2 sin (C * /S) cos ( 0" - ^ )

- "^2 [^2 <=°s ( CT + yS ) 1 sin ( C - <S )



39

= - Vi Zi X + V2 J^l cos^ ( cr - cS )

+ V2 J?2 sin (cr+yS) cos ( or - 5 )

= - Vi A X + V2 [ J!i cos2 ( 0" - 5 )

+ J?2 sin ( cr + /S ) cos ( C - 5 )]

Vi cos CT r
f)

^
f.

= - ^1^^ •*•

cos (cr-nL^^ cos-(cr-c^)

+ ^2 sin ( cr + yS ) cos iCT - S )]

= - Vj^ A X + V]_ cos cr [J?2^ cos ( cr - S ) + J22 sin ( CT + yS )1

= - V3_ Ax + Vj_ cos cr • ^^ =
cos (J

Thus the circulation around each subarea of total area

BB2^PCj_C is zero, and the circulation around the total area is

likewise zero.

Rotationalit^^ Based on the Concept of the Rotation for a

Fluid Particle. Referring to Fig. 13, the rotationality of a

square control volume ABGD in the txvo-dimensional flow passage

passing through an oblique shock will be investigated. In

accordance with the definition of fluid rotation at a point,

the only case for which the rotation at the points A, B, G etc.

after the shock equals to zero is that ^=6 as shown in the

figure.

Let Vj_ = the velocity before the shock

V2 = the velocity after the shock

Since t^^, = t^^x a jL\ ' _ J^GIV

Vi V2

'•"•
J?GD' = JJbA' XZ

V1
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It follows that

cot B
J?CB - j?QQ, sinS

" ^BA- J2cD' cos§

tan cr •

^2
. c

,, sm h

1 - - cosS

V2

^BA' tan (T - ig^. y^ sinS

'^RA' - ARA' TT- COS SV1

The elimination of V1/V2 from Eq. (56) yields

tan cr - ^Qf
^

^ sin S
cot ^ = cos C (T

- S^
cos C c

1 _ cos o
COS ( C - S )

= tan (3" cos ( (J - <$ ) - cos cT sin S

cos (. (T - S ) - cos cr cos 5

tan (T (cos cT cos ^ + sin cT sin 5 ) - cos cr sin S
"" cos c cos 5 + sin cr sin 5 - cos c cos ,S

sin cr cos S +
^"^^

( sin2 cT - cos2 cr )

= cos (T

sin cr sin S

= cot 6 + 2 sin cr - 1 = cot S - 2 cot (2 (T ) (38)sm cr coscr

Equation (58) shows that there are two cases for which all

fluid particles in the control volume ABCD undergo no rotation in

passing through the shock wave:

(1) cot 2 CT = 0, which means (J = 45*^, and

(2) the trivial case of £= 0°.

For cases in which ^ dip £ , the oblique shock V7ill cause a

rotation such that

60^= angle of rotation after the oblique shock = ^C S
-fi )

(39)
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where 60 can be positive or negative. Positive CO ^ gives a

counterclockwise rotation while negative CO^ gives a clockwise

rotation,

V/orkinq; Chart s

.

(1) Angle of rotation Wg foj^ known shock angle d and wall

angle 5 :

By employing £qs . (38) and (39), the ordinate UJ ^ "was

plotted against the abscissa CT , for various values of <$ , on

Fig. 14. A sample calculation is given below;

Assume 0"= 15^ and S= 5°. From Eq. (38),

cot ^ = cot 5° - 2 cot 30O = 11.450 - 2(1.7321) = 7.9658

/. /S = 7.15730

Hence, the angle of rotation as obtained from i^q, (39) is

^2 = —~^—' ~ -1.07856° (in the clockwise direction)

(2) Entropy change —^ across shocks with different

shock angle 0" and wall angle S : By employing data for -P~

?> ^^
and ——^ for oblique shocks as given in Keenan and Kaye's

"Gas Tables " (5) (and employing clqs. (34) and (35) for <S^30°,

as Keenan and Kaye did not tabulate data beyond §= 30^)^ values

A Sof were calculated from Zq, (37) and plotted on Fig. 15. A
R

sample calculation is given below:

Assume C= 15° and 6= 5°, From Tables 56 , 58 and 59,

Keenan and Kaye's Gas Tables, the following data were found

to be
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Ml = upstream Mach Number = 5.052

P2/P2^ = 1.812 and P2/ Pi = 1.502

Then, the numerical value of f^.^-. was obtained by substituting
R

the above data into £q. (37), i.e.

-^ = 3_^4^,
j_
[in (1.812) - (1.4)ln (1.520)] = 0.02063

Since each constant S curve in the figure shows that a

certain minimum entropy exists at a certain value of 0"
, it will

be convenient to set the partial derivative of AS
R

with respect

to C equal to zero and plot the locus of minimum entropy at

constant S . £q, (57) gives

As
R ~T- ^ l^L ~r Ic In

.-1 P2_

3(-^)
R

Ic-l

Pi

L '^2

^2

- k
P2

a(A^^ Pi

a <T

D.

ao-
can be obtained from li^q. (3d)

D.

a(~) (

ao-

k+i

k-1
-r^; ( ) •*• U-1 p^
Pi k-1 acr ^ r-î

- ^^ ^^77^

acr

(
k-M f.,.
1^-1 Pi

The combination of the above two equations shows that when

a cr

=
acr

=
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Consequently, the result shows that when = 0, ,_,

will be a minimura. From I^q. (34)

tan C?2 _

r 1 tan ( <r- S )

rl _ tan ( c - 5 ) sec cr - tan cr sec''' (. C - S ) = q

^^ tan2 (cr-S )

.^. , . . , , s in ( C - 5 ) _ s in cr
The above expression yieias -

cos cr cos (cr- S )

The only solution of this equation has to be

sin ( <J - S ) _ sin 0" _ -^

cos <J cos ( a - S )

The final result is 2 0" - 6 = -^ (40)

The locus of (—r— ) . for constant d were plotted on
R. nin

Fig. 15 by using £q. (40).

For Ic = 1.4, i:q. (35) yields

P2
=

M-^f...
Pi Po

(41)

o - ^
Pi

hes infinity.vi/hen Po / approaches 6 , p-, / aporoacr

This V7ill cause the entropy —^ to approach infinity, also.

Thus when P2/ P - ^f -^qs. (34) and (35) result in CT = 67.80°,

which is the asymptote of the locus of (-^-^)
R '>^^^
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(5) Constant 60 „ lines on ( -)- d coordinates: From

Eqs. (58) and (39), there is obtained

cot (2cr) = ^ \_cotS - cot ( S - 2 0)^)] (42)

The substitution o^ Sqs, (34) and (41) into 3q. (37) yields

-^ = 2 5lnP'^^-^^ " ^''' ^^-^>1
- 3.5 In r ^^^ ^

^1

Jt^ 16 tan ( or- S ) - tancr -I l-tan (cr - S )-^

(43)

The entrop^T- change -^r^ ^^''^ ^'^ defined then by the kno^vrn

angle of rotation (0^ and S . Therefore, the constant CU^

line can be plotted on (-A^)- c coordinates as sho^-Tn in Fig. 15,

A sample calculation is sho^'/n below:

Given 60^ = - 1° and S = 20°

cot 2 cr =
-i- [cot 20° - cot 22°] = i-(2.7475 - 2.4751)

= •|-(0.2724) = 0.1362

.-. c = 41.12°

Hence ^^ = 2 . 5 In f^ tan (41.12°) - tan (21.12°) !

^ Latan (21.12°) - tan (41.12°)-J

.3.5 m rtan (41.12°) 1 ^ q^^^.^^
Ltan (21.12°)-1

^. ^^ . c . /r o/n ^ - sin C S -2 Cx) ^)cos S - cos( 6 -2a)2)sin6
Since cot b - cot ( 6 - 2CU2) = ^

sin S sin( S - 2 0)^)

sin [ ( S -2 00^) - 6 ] _ si^-^ 2 {x)
"t;

sin 6 sin ( 5 - 2^2) ^^^ ^ ^^^ ^ ^ " ^^z^

The above equation combined with Zq, (42) yields
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- sin 2 60 „
cot 2cr = 2

2 sin 5 sm ( 5 - 2 60 2)

which, when rearranged is

tan 2 cr sin 2 U) ^ = - 2 sin <$ sin (5-2 COg)

= - 2 sin i-[2CS 'U)^)-r2U)^ sin •§-[2(^-002)

= cos 2 (S -UJ„) - cos 2li)„

S = (0^ + i cos"-'- (cos 2aJ^ + tan 2 0" sin 2a)„)

The partial derivative of S with respect to O* is

^ V 1 - (cos 2 60^ V tan 2 0" sin 2 O) „)^z

V7here

1 - (cos 2 OJ 2 + tan 2 O" sin 2 CO ^^^

= 1 - 003^(20)2) - 2 cos 20^2 tan 2o'sin 2CO2

- tan^ (2 a) sin^ (2 60 2)

= sin^ (2602) [ 1 - tan2(20' )] - 2 cos 20)2 sin 20)2 tan 2(f

/ 3$ \ _ 4. sec 2 <J

^
' 2/0,, N cos'-(2cr )-sin'-(2cr ) sin 2<r

3n.n2(2a)2) 2 cos 2 0)^^ sin 2a;z ^^J^^
cos"^ (2 0") ^ ^_^

sin2(2a)^) ; sin^(2aJ„)
cos^ (20- ) cos^ (2 0-

)

= +

cos 2 <J J cos 4cr - cot 2 (jO^ sin 4(r

where the positive sign will be chosen for negative values of ^ ^,

while the negative sign will be chosen for positive CO 2-
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Then, let ~— = 0, and the locus of minimiim C-^-^)
da- R

for constant angle of rotation 60 ^ can be found, ICmploying

JlQ, (45), the expression for

P2

' 1
for CO constant is

ac

P2

Pi tan ( cr - 5 ) sec^ cf - tan (f sec" ( CT - 5 ) ( 1 - r-r )— go
^^

tan^ (a - S)

Since it has been shown before that the condition for

a (4^) ^ ^-p7^
-^ = is LJ^ = 0,

dc a cr

the above expression becomes '

tan (cr - S ) sec"^ a - tan oT sec^ ( cT- S )(1 --^) =

From which

sin(o'-J) _ sin 0*
( 1 - a^ \

cos ( cr - S ) cos^ cr cos a cos ( cr - 5 ) ^^

and

;in 2(cr - 5 ) _ ^ / aS \

sin 2 cr ^ ao" ^^z

where
("aJ")^

is given by Zq, (44).

The loci so formed are plotted on Fig. 15.

(4) Constant -— lines on 0)^ - cr coordinates: The lines

of constant entropy change in Fig. 14 are plotted by using the
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Fig. 16. Fraction of area passing through a shock

when the flov/ proceeds.

100

10 20 30 40 50 60 70 60
PERCENTAGE OF TRAVELLING TIME

90 100

Fig. 17. Percentage of rotation vs. percentage of travelling time.
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corresponding data from l^g, 15, except that the line of

=00 is found from the equation
R

^2 tan (T

Pi tan ( (T- 5 )

(5) Constant upstream Mach Number (M]^) lines and the locus

of minimum M]_ for constant S • These lines are plotted on Fig, 15

from data obtained from Chart 2-1, Dailey and >>Jood's "Computation

Curves for Compressible Fluid Problems" (6), The locus of

minimum li-^ ^^"^ constant S distinguishes the strong and weak shocks.

The region to the right of this line is the domain of strong

shocks, while that to the left is the domain of weak shocks. This

locus of minimum M-j. ^^^ constant 6 is the locus of the common

tangents of the constant Mi and constant 8 lines (see Chart 2-1,

Reference 6 )

,

(6) Percentage of rotation vs. percentage of time for a

square control volume passing through oblique shocks : Since the

flow patteim taken is two-dimensional, the percentage of rotation

for a control volume, which is the shape of square before

reaching the chock wave, is proportional to the fraction of mass

(or area) which passes through the shock. Since the upstream

velocity V-^ is constant, the traveling time is proportional to

the distance traveled in the direction of flov7. Let

Aq = the area of the square control volume

A = the area passed through the shock at time t

X = the distance traveled by the control volume in time t



51

X = the distance tmveied by the control voliome when it

entirely passes the shock

tQ = the total time required for the control volume to

pass the shock

Referring to Fig. 16, the following expressions are found

from the geometry of the figure:

= (1 + c.^c 2(7 )(-^^)(a) A _ "2
^o X,

v/nen rr > 5 and ^ —;r" =a-> ^ ana u =— = i + tan c

or V7hen C < ? and ^ -~ = i + rn
Zl ^^r\ -^ T^ t^vJ

O
)t a

^^) A _ /T ^ a. ^ N/_^> cotcr
—7; (1 -f- cota )(—:r") - —o

—

*'o ^-o

when cr > ? and . ^ ^ ^ ^—
4 1 + tano* — X - 1 + cot a

^ = (1 -. tancr )(-4-) -
''='''''

Aq '

>'>o'^
" 2

when cr < ? and
1 + cotcr :: 1 + tan C

^^> -A_ = 1 - (1 -. CSC 2cr )(l--^}2
Aq ^o

when C > r ^^^ - ~^~ = 1^ 1 -i- cot cr ->'o

or when q- ^ ZL and i ^ -^ ^ i^ I + tan >'o
~
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The percentage rotation of the control volume = -^-^ x 100
\)

and the percentage of traveling time = -^ :: 100. Hence, the
^o

curves in Fig, 17, for five different shock angles, are plotted

by employing the above analytical expressions (Table 2),

Table 2, Calculation data for percentage of rotation vs.
percentnp:e of traveling time.

Q- Percentage of Fercenta ge of
Travelinc; Time R.otation

10.0 3.00
20.0 12.^0
21.2 15.35

150(75°) 78.9 86.65
80.0 88.00
90.0 97.00

10.0 2.14
20.0 8.60
30.0 19.30
36.6 29.05

300(60°) 63.4 70.95
70.0 80.70
80.0 91.40
90.0 97.86

CONCLUSION

The definition of circulation and fluid rotation in two-

dimensional flow state that if the circulation around a closed

path in a certain region is zero the rotation at any point over

that region should also be zero. This is shov/n to be true in the

two cases of the normal shock and the potential vortex. But,

the work done in this report has" shown, on a numerical basis,

that the circulations everyv/here in Prandtl-Hej^er flov/ and in

i



53

oblique shock flow are zero v/hile the fluid pn.rticles passing

throup;h those regions in a certain tine internal undergo

angular rotations. The reason for the contradiction has not

been found. The author recomnends that the problem needs

further investigation.
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The purpose of the v7ork in this report is to investigate

the rotationality of the flov; for the normal shock, the potential

vortex, the Prandtl-Meyer flow and the oblique shoclc. The fluid

considered in all cases is a perfect gas. Some expressions to

shov7 the relationship between the entropy change and the fluid

rotation have been developed for the case of flow passing

through oblique shocks

.

The rotationalities for these four problems are examined

from two vie\v7points , one of which is based on the concept of the

circulation around a closed path in the flow while the other is

based on the concept of the fluid rotation of a particle at a

point in the flow. The definitions of circulation and fluid

rotation in two-dimensional flow state that if the circulation

around a closed path in a certain region is zero the rotation

at any point over that region should also be zero. This has been

shown to be true in the cases of the normal shock and the potential

vortex. However, the work done in this report has also shown,

on a n^erical basis, that when the circulations every\-;here in

Prandtl-Keyer flow and in flow passing through oblique shock are

zero the fluid particles traveling in those regions in a certain

time interval really involve angular rotations.

The reason for the contradiction has not been found.
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