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ABSTRACT 

 Poor water properties, use of concentrated bicarbonate, and biofilm growth in pipes 

and storage tanks often cause dialysis water and dialysate contamination with bacteria and 

endotoxins. High-flux dialysis with bicarbonate may favour endotoxin transfer from the 

dialysate into the blood exposing patients to serious short and long term side effects. 

Ultrafiltration across hydrophobic synthetic membranes effectively remove endotoxins 

from dialysis water by combined filtration and adsorption. However, repeated sterilization 

worsens the membrane separation properties, and limits their use. Ceramic membranes are 

generally more resistant to harsh operating conditions than polymeric membranes, and may 

represent an alternative for endotoxin removal. Previously, we proved that the ceramic 

membranes commercially available at that time were not retentive enough to ensure 

production of endotoxin-free dialysis water. 

 In this paper, we investigated the endotoxin removal capacity of new generation 

commercial ceramic membranes with nominal molecular weight cut-off down to 1,000. In 

dead-end filtration, all investigated membranes produced water meeting, or close to, the 

European standards when challenged with low endotoxin concentrations, but only one 

membrane type succeeded at high endotoxin concentrations. In cross-flow filtration, none 

produced water meeting the European standard. Moreover, sterilization and rinsing 

procedures altered the separation properties of two out of three membrane types. 
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This paper published as: Czermak P., M. Ebrahimi, G. Catapano.  New Generation Ceramic 
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INTRODUCTION 

 At the beginning of the 90’s, investigations in dialysis centers have revealed that a 

large fraction of the centers tested were using dialysis water and dialysate strongly 

contaminated with bacteria and endotoxins [1-4]. Klein et al. [1,2] reported that 53% of 51 

centers investigated in the USA used dialysis water exhibiting bacterial count exceeding 

200 CFU/ml. 35% of the centers used also dialysate with bacterial counts higher than 2000 

CFU/ml. In 12% of the centers, endotoxin level in the dialysate was also above 5 EU/ml 

(i.e., endotoxin units per ml). In Germany, a similar survey in 30 dialysis centers revealed 

that 40% of the centers used dialysis water with bacterial count higher than 200 CFU/ml, 

and that 43% of the centers used dialysate with bacterial count exceeding 2000 CFU/ml. 

Endotoxin levels in dialysis water and dialysate were found to be higher than 5 EU/ml in 

22% and 50% of all centers, respectively [3].  

 Microbial contamination of dialysis water and dialysate is acknowledged to be the 

cause of life-threatening acute and invalidating chronic side effects in patients undergoing 

hemodialysis [4]. To minimize the occurrence of such effects, national authorities have 

issued rules setting the maximum tolerable concentrations of bacteria and endotoxins in 

dialysis water and dialysate. The European Pharmacopoeia sets the maximal values of 

bacterial count and endotoxin concentration in the water used to prepare the dialysate at 

100 CFU/ml and 0.25 EU/ml, respectively [5]. The American Association for the 

Advancement of Medical Instrumentation (AAMI) accepts higher bacterial counts in 

dialysis water with a limit of 200 CFU/ml [6]. However, the AAMI prescribes that bacterial 

count in the dialysate should not exceed 2000 CFU/ml, whereas the European 

Pharmacopoeia does not provide any limit for it. Neither authority sets limits for endotoxin 

concentration in the dialysate. In spite of experimental evidences, and the rules set by 

national authorities, dialysis centers are slowly including processes for endotoxin removal 
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in their water treatment plants on the assumption that the separation properties of dialysis 

membranes make them a safe enough barrier against endotoxins. It is now commonly 

agreed that endotoxins and their fragments do cross dialysis membranes irrespective of 

whether they are low or high flux [7]. Therefore, use of highly purified dialysate (i.e., 

concentration of bacteria < 100 CFU/ml, and endotoxins < 0.25 EU/ml) may be expected to 

improve the biocompatibility of the whole haemodialysis treatment.  

 The main contributors to microbial contamination have been proven to be the water 

used for preparing the dialysate, the bicarbonate concentrate, and the dead spaces in the 

fluid distribution system where a biofilm may develop [4]. Pre-treatment with filters, 

softeners, active carbon cartridges, microfilters, followed by treatment by reverse osmosis 

and/or de-ionization generally yields dialysis water meeting the official requirements. Prior 

to preparing the dialysate, water is generally filtered across sub-micron filters, and then 

treated with ultraviolet radiation [4]. The former remove whole bacteria but cannot clear 

endotoxins and their fragments. Ultraviolet radiations disinfect the water by killing bacteria 

but, by doing so, contaminate the water with bacterial wall fragments (i.e., endotoxins).  

Endotoxin removal from the dialysate is best achieved by on-line ultrafiltration through 

thick hydrophobic membranes (e.g., made of polysulphone or polyamide) that reject and 

adsorb large amounts of endotoxins [8-10]. Several studies clearly show the effectiveness 

of ultrafiltering the dialysate through endotoxin-adsorbing membranes just before it enters 

the hemodialyer [11,12]. However, the polymeric membranes used exhibit poor separation 

properties after repeated disinfection cycles, which limits the time they can be used. 

Ceramic membranes for ultra-/nanofiltration could be a convenient alternative to adsorptive 

filtration across polymeric membranes. In fact, they generally withstand the harsh 

conditions at which membranes are disinfected and heat sterilized better than polymeric 

membranes. Thus, they could be repeatedly used for quite a long time. In a previous 
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investigation, we showed that the ceramic nanofiltration membranes commercially 

available at that time did not effectively remove endotoxins from aqueous solutions [13,14].  

 In this paper, we report our investigation aimed at analyzing the endotoxin removal of 

new commercial ceramic membranes for ultra-/nanofiltration from aqueous solutions when 

they are operated either in cross-flow, or dead-end mode.  

 

MATERIALS AND METHODS 

 We investigated three types of commercial tubular ceramic membranes for ultra- and 

nanofiltration, whose nominal properties are reported in Table 1. They were assembled in 

modules that were installed in the experimental apparatus shown in Figure 1, and were 

challenged with aqueous solutions spiked with endotoxins fed to the membrane lumen. 

Patent membranes were tested in the cross-flow mode, at 3 m/s tangential velocity, 25°C, 

1.5 bar transmembrane pressure for 60 min. In an effort to simulate the worst possible 

conditions under which membranes might actually remove endotoxins, the test solutions 

were also filtered across the membranes in dead-end, single-pass mode for 40 min, at 25°C, 

1.5 bar transmembrane pressure. Experiments where membranes were challenged with 

endotoxins for 5 h were performed after the membranes had undergone at least four 

complete sterilization and rinsing cycles. In each cycle, the membranes were sterilized at 

180º degrees Celsius in a hot air sterilizer (SL600, Memmert, Schwabach, Germany), 

rinsed with 1 M NaOH and 60% ethanol, and rinsed again with highly purified pyrogen-

free water [15].  The whole test equipment was subjected to the same rinsing procedure. 

Two membrane modules of each type were tested at given endotoxin concentration, and 

operating conditions. Change of the permeate flux at the given transmembrane pressure was 

used as an indicator of the occurrence of fouling, or of damages to the membrane selective 

“skin” layer.  
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 Membranes were challenged with endotoxin-containing solutions at concentrations 

ranging from 0 to 2000 EU/ml. Endotoxins from E. coli were used throughout (E. coli 

Serotype 055 B5, Charles River, Kisslegg, Germany). Permeate samples were timely 

collected and assayed for endotoxins. Endotoxin concentration was measured with the 

kinetic turbidimetric Limulus Amoebocyte Lysate (LAL) Test (Charles River Endosafe, 

Kisslegg, Germany), with a micro titer plate reader (Sunrise, Tecan, Austria), and evaluated 

with the Endosafe software (Charles River Endosafe, Kisslegg, Germany). This method 

ensures sensitive detection of bacterial endotoxins, down to 0.125 EU/ml [16]. In this 

investigation, reference is made to the 0.25 EU/ml upper limit set for endotoxin 

concentration in dialysis water by the European Pharmacopoeia [5]. 

 Membranes were generally characterized after their use. Membrane morphology was 

analyzed by scanning electron microscopy, after coating with gold under vacuum. 

Membrane pore size distribution was investigated by mercury intrusion with a AutoPore IV 

9500 (Micromeritics Instrument Co., Norcross GA, USA) porosimeter. The membrane 

rejection coefficient spectrum was characterized by filtering a 0.8 g/l aqueous solution of 

polyethyleneglycols (PEGs) or Dextrans of different molecular weight (MW) (Sigma 

Aldrich, Steinheim, Germany) across the membranes in dead-end mode for 1.5 h at 20 l/m2 

h. Concentration of a given molecular weight solute in permeate, feed and retentate was 

estimated by GPC using a MZ Hema Bio column (MZ Analytik, Mainz, Germany) coupled 

to a refractive index detector (Waters, Milford MA, USA), with reference to PEG 

calibration standards. The rejection coefficient was estimated as R = 1 - (2 Cpermeate / 

(Cretentate + Cfeed )). The molecular weight cut-off was estimated as the molecular weight of a 

solute rejected by the membrane to an extent equal to 90%. 
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RESULTS 

 Figures 2 a-f show that all investigated membranes exhibit a rather thick and 

asymmetric wall with an inner skin layer, supported by a porous layer of granular ceramics. 

The region in the supporting layer closer to the skin is generally made of granules of 

smaller size and has a lower porosity than that farther away. In membranes type #3, the 

granules in the supporting layer is flaky and less orderly distributed than that in the other 

membranes generally causing a lower porosity and the occasional formation of larger-than-

average pores as shown in Figures 2 d-f. Mercury intrusion evidenced only the presence of 

pores in the range from 10 to 0.1 microns, presumably in the supporting layers. In fact, the 

thicker walls and the smaller porosity than those of organic membranes might make it 

difficult for intrusion techniques to detect pores in the skin layer of ceramic membranes.   

 Table 2 shows the endotoxin concentrations detected in the permeate of different 

patent ceramic membranes after 40-60 min from spiking water with the endotoxin bolus. 

When membranes #1 and #2 were operated in the cross-flow filtration mode and challenged 

with 1000 EU/ml endotoxins, neither of them produced water meeting the 0.25 EU/ml 

limit. In fact, endotoxin concentration in the permeated water was consistently higher than 

0.5 EU/ml although lower than 5 EU/ml. Table 2 shows that, when operated in dead-end 

mode and challenged with low endotoxin concentrations, type #2 and #3 membranes 

yielded permeate water containing approximately 0.25 EU/ml endotoxins. Only type #1 

membranes produced water meeting the European standards. When the endotoxin challenge 

was increased by an order of magnitude, only the most permeable membranes type #1 

unexpectedly produced water with by far less than 0.25 EU/ml endotoxins.  

 After at least 4 complete sterilization and rinsing cycles, membranes type #2 and #3 

exhibited altered water permeability. In fact, the permeate flux through type #2 membranes 

decreased to 280 ml/(min m2) from the 1330 ml/(min m2) value for the patent membranes. 
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The permeate flux through membranes type #3 dramatically increased to 5270 ml/(min m2) 

from the 947 ml/(min m2) value for the patent membranes. Type #1 membranes 

consistently yielded a permeate flux of 9500 ml/(min m2). After 1.5 h dead-end filtration of 

a 100 EU/ml endotoxin challenge, all these membranes yielded permeate water with less 

than 0.25 EU/ml. It is noteworthy that membranes type #1 produced water with less than 

0.05 EU/ml endotoxin. After 5 h dead-end filtration, endotoxin concentration in the 

permeate of membranes type #2 and #3 was less than 1.5 EU/ml and ca. 0.5 EU/ml 

respectively, and was less than 0.05 EU/ml in the permeate of membranes type #1. When 

challenged with 1000 EU/ml endotoxins, none of the tested membranes produced water 

meeting the 0.25 EU/ml requirement. In particular, endotoxin concentration in the permeate 

of membranes type #2 and #3 exceeded 5 EU/ml, and was generally less than 0.5 EU/ml in 

the permeate of membranes type #1. The tested membranes generally exhibited a rather 

slanted rejection spectrum after sterilization. Figure 3 shows that the membranes type #3 

exhibited also a 19.500 Da molecular weight cut-off, largely exceeding their nominal 1.000 

Da value. 

 

DISCUSSION AND CONCLUSIONS 

 Endotoxins are cell wall components of gram-negative bacteria whose molecular 

weight is reported to range from 2000 to more than 100,000 [4]. The nominal molecular 

weight cut-off of the membranes used in this investigation (see Table 1) suggests that 

filtration of endotoxin-containing water across these membranes would yield sterile and 

endotoxin-free water meeting the strict European standards. Our results show that, when 

challenged with 100 EU/ml endotoxin in dead-end mode, the tested patent membranes 

produced water close to the 0.25 EU/ml requirement in the permeate. In particular, the 

membranes type #1 consistently produced permeated water with less than 0.05 EU/ml also 
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when challenged with high endotoxin concentrations. Comparison with the performance of 

the membranes tested in our previous investigations [13,14] clearly shows the great 

improvement in the manufacturing techniques of commercial ceramic membranes now 

delivering the expected performance in vitro. 

 The poor endotoxin retention of patent membranes type #1 and #2 when operated in 

cross-flow filtration mode suggests that the accumulation of rejected endotoxins upstream 

from the membrane plays an important role in determining the actual membrane rejection 

towards endotoxins. In fact, in dead-end filtration mode, endotoxins would concentrate at 

the membrane wall and might get trapped in the membrane pores as an effect of the poor 

solute back transport. At low endotoxin concentrations in the bulk, the trapped endotoxins 

would hinder permeation of the free molecules resulting in increased membrane rejection 

towards endotoxins. At high endotoxin concentrations in the bulk, the accumulated 

endotoxin overload would cause concentration polarization that decreases the observed 

membrane rejection towards endotoxins, as it was observed experimentally. Any 

enhancement of endotoxin back transport would decrease membrane rejection and would 

increase endotoxin concentration in the permeate, as it was observed in the cross-flow 

filtration experiments. Endotoxin adsorption at the membrane pore surface may be also 

evoked to explain the good endotoxin rejection of membranes type #1 in spite of their high 

permeability and large mean pore size. In fact, Figures 2d-f suggest that these membranes 

have a rather high specific contact area at least when compared to membranes type #3. 

Lack of information on the actual properties of the ceramics used prevents speculation on 

the existence of specific chemical interactions between endotoxins and membrane material. 

 The inconsistent performance of membranes type #2 and #3 before and after they 

underwent at least four complete sterilization and rinsing cycles brings up an unexpected 

limit to the tested membranes. In fact, the significant change of membrane permeability to 
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water suggests that repeated sterilization and rinsing might have seriously damaged or 

altered the membrane separation layer. Figure 3 confirms that this is indeed the case for the 

type #3 membranes whose molecular weight cut-off increased ca. twenty fold over the 

nominal value, consistent to the change of water permeation flux. Good news is that at least 

membranes type #1 successfully withstood repeated cleaning and sterilization procedures 

and consistently produced permeated water of good purity. 

 We conclude that some commercially available ultra-/nanofiltration ceramic 

membranes have the potential of removing endotoxins from dialysis water. However, poor 

endotoxin rejection in cross-flow filtration and in long-term dead-end mode hinders their 

use in routine hemodialysis at this time. Better understanding of the mechanisms leading to 

endotoxin removal, further improvement in membrane actual rejection properties and 

chemical stability should still be pursued to exploit some of their advantageous 

characteristics in the near future. 

 

ACKNOWLEDGEMENTS 

 The Authors thankfully acknowledge the assistance of Prof. Mathias Ulbricht, 

University Duisburg-Essen, Essen, Germany, in the solute analysis from rejection 

experiments. 



New ceramic membranes for endotoxin removal 12

REFERENCES 

 

1. Klein E, Pass T, Harding GB, Wright R, Million C. Microbial and Endotoxin 

contamination in water and dialysate in the central United States. Artif Organs 1990; 14: 

85-94. 

 

2. Harding GB, Klein E, Pass T, Wright R, Million C. Endotoxin and bacterial 

contamination of dialysis center water and dialysate, a cross sectional survey. Int J Artif 

Organs 1990; 13(1): 39-43. 

 

3. Bambauer R, Schauer M, Jung WK, Vienken J, Daum V. Contamination of dialysis 

water and dialysate, a survey of 30 centers. ASAIO J  1993; 40: 1012-1016. 

 

4. Bonnie-Schorn E, Grassmann A, Uhlenbusch-Körwer I, Weber C, Vienken J. Water 

quality in hemodialysis. Lengerich, Berlin, Düsseldorf, Leipzig, Riga, Scottsdale (USA), 

Wien, Zagreb: Pabst Science Publishers, 1998. 

 

5. European Pharmacopoeia. Haemodialsysi solutions, concentrates, water for diluting. 

1997. 

 

6. AAMI Standards and recommended practices. Volume 3: Dialysis. Published by the 

Association for the Advancement of Medical Instrumentation, Arlington, VA, 1990. 

 



New ceramic membranes for endotoxin removal 13

7. Urena P, Herbelin A, Zingraff J, Lair M, Man NK, Descamps-Latscha B, Drueke T. 

Permeability of cellulosic and non-cellulosic membranes to endotoxin subunits and 

cytokine production during in vitro hemodialysis. Nephrol Dial Transplant 1992; 7: 16-28. 

 

8. Bambauer R, Walther J, Meyer S, Ost S, Schauer M, Jung WK, Gohl H, Vienken J. 

Bacteria- and endotoxin-free dialysis fluid for use in chronic hemodialysis. Artif Organs 

1994; 18: 188-92. 

 

9. Erley CM, von Herrath D, Hartenstein-Koch K, Kutschera D, Amir-Moazami B, 

Schaefer K. Easy production of sterile, pyrogen-free dialysate. ASAIO Trans 1988; 34: 

205-207. 

 

10. Ikonomov V, Haase G, Stefanidis I, Melzer H, Mann H. Filtration of dialysis fluid for 

hemodialysis treatment. Int J Artif Organs 2002; 25: 379-385 

 

11. Schindler R, Lonneman G, Schaeffer J, Shaldon S, Koch KM, Krautzig S. The effect of 

ultrafiltered dialysate on the cellular content of interleukin-1 receptor antagonist in patients 

on chronic hemodialysis. Nephron 1994; 68: 229-233. 

 

12. Frinak S, Polaschegg HD, Levin NW, Pohlod DJ, Dumler F, Saravolatz LD. Filtration 

of dialysate using an on-line dialysate filter. Int J Artif Organs 1991; 14:691-697. 

 

13. Bender H, Pflänzel A, Czermak P, Vienken J. Endotoxin- Rückhalt mit  keramischen 

Membranen. Preprints 7. Aachener Membran Kolloquium, Verlag Mainz Aachen 1999; 99:  

237-240, 



New ceramic membranes for endotoxin removal 14

 

14. Bender H, Pflänzel A, Saunders N, Czermak P, Catapano G, Vienken J. Membranes for 

endotoxin removal from dialysate: considerations on feasibility of commercial ceramic 

membranes. Artificial Organs 2000; 24(10): 826-829. 

 

15. Anspach FB, Deckwer WD, Petsch D. Endotoxin: Maßnahmen zur Prävention einer 

Kontaminierung und Methoden zur Detoxifikation von Proteinlösungen während der 

Feinreinigung von Proteinlösungen, Extended Abstracts zur Vortragstagung „Sterilisation, 

Sterilhaltung, Virusinaktivierung“ Baden-Baden, V9 1-6, VDI GVC – Dechema Mai 1998 

 

16. Booth C. The limulus amoebocyte lysate assay - a replacement for the rabbit pyrogen 

test. Dev Biol Stand 1986; 64: 271-275. 

 

 



New ceramic membranes for endotoxin removal 15

 

Membrane Identity Membrane #1 Membrane #2 Membrane #3 
Geometry Single channel Single channel Multiple channels 
Number of channels 1 1 3 
Material Al2O3/TiO2/ZrO2 Al2O3/TiO2/ZrO2 Al2O3/TiO2/ZrO2 
Length 250 mm 250 mm 250 mm 
Nominal MW Cut-
Off, NMWCO 20 nm1,2 5 kD1 1 kD1 

  
Table 1.  Properties of the ceramic membranes used in this investigation: 

 1 as indicated by the manufacturer; 2 average pore size 
 
 

 

 

 

 

 

 

 
Operating Endotoxin challenge Membrane #1 Membrane #2 Membrane #3 

mode EU/ml     20 nm 5 kD 1 kD 
Cross-flow 0 0* 0* NA 
Filtration 1000 <5* <5* NA 

  0 0 0 0 
Dead-end 100 <0,05 ≤0,25 ≤0,25 
Filtration 1000 <0,05 <0,5 NA 

  2000 NA NA <0,5 
 
Table 2. Endotoxin concentration, EU/ml, in the permeate water across patent  
 ceramic membranes after 40-60* min from the endotoxin challenge:  
 NA: not available. 
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Figure Captions 
 
 
Figure 1.  Schematic of the experimental apparatus: BPV - back pressure valve;  
 DV - discharge valve; M - manometers; MM - test membrane module;  
 MU - muffler; P - pump; PD - pulse dampener; R - reservoir;  
 T - thermometer; V – valve. 
 
Figure 2. SEMs of the the investigated membranes.  
 Cross-section of: a - membranes type #1; b – membranes type #2;  
 c – membranes type #3. 
 Magnification of the wall of : d - membranes type #1;  
 e – membranes type #2; f – membranes type #3. 
 
Figure 3. Rejection coefficient vs. molecular weight curve for type #3 membranes after  
 sterilization. Membranes tested with an aqueous solution of PEGs of different  
 molecular weight. See Materials and Methods for details. 
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