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Abstract 

Outliers in the data impair traditional estimators of location, variance, and regression 

parameters so researchers tend to look for robust estimators, i.e., estimators that aren’t sensitive 

to outliers. These robust estimators can tolerate a certain proportion of outliers. Besides 

robustness, efficiency is another desirable property. Researchers try to find estimators that are 

efficient under standard conditions and use them when outliers exist in the data. In this study the 

robustness and efficiency of a class of estimators that we call nCk estimators are investigated. 

Special cases of this method exist in the literature including U and generalized L-statistics. This 

estimation technique is based on taking all subsamples of size k from a sample of size n, finding 

the estimator of interest for each subsample, and specifying one of them, typically the median, or 

a linear combination of  them as the estimator of the parameter of interest.  

A simulation study is conducted to evaluate these estimators under different distributions 

with small sample sizes. Estimators of location, scale, linear regression and multiple regression 

parameters are studied and compared to other estimators existing in the literature. The concept of 

data depth is used to propose a new type of estimator for the regression parameters in multiple 

regression. 
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robustness, efficiency is another desirable property. Researchers try to find estimators that are 

efficient under standard conditions and use them when outliers exist in the data. In this study the 

robustness and efficiency of a class of estimators that we call nCk estimators are investigated. 

Special cases of this method exist in the literature including U and generalized L-statistics. This 

estimation technique is based on taking all subsamples of size k from a sample of size n, finding 

the estimator of interest for each subsample, and specifying one of them, typically the median, or 

a linear combination of  them as the estimator of the parameter of interest.  

A simulation study is conducted to evaluate these estimators under different distributions 

with small sample sizes. Estimators of location, scale, linear regression and multiple regression 
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data depth is used to propose a new type of estimator for the regression parameters in multiple 
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CHAPTER 1 - nCk  ESTIMATORS 

1.1 U-statistics 
 

Estimators that aren’t sensitive to outliers are called robust. The sample median is a 

robust estimator. The sample mean and variance are examples of nonrobust estimators. Robust 

estimators aren’t sensitive to outliers if the proportion of outliers in the data is below some 

specified value. This value is called the breakdown value or the breakdown point of the 

estimator. High-breakdown value estimators are usually sought because they resist outliers.  

Hoeffding (1948) proposed a general method of estimation by deriving a general class of 

estimators called U-statistics. The idea is to define a kernel, h, which is a symmetric real-valued 

function from kR  to R  such that θ=)),. ,(( 1 kxxhE  where .. θ  is a parameter of interest. It cou

be a parameter describing the location or scale of the model, or it could be a regression paramete

in the linear model. After collecting the data, nXXX ,...,, 21 , we take all possible samples of size 

k from the data, find the value of h for each subsample and co

ld 

r 

nstruct the statistic 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
∑

k
n

XXh
U k

k
ii

ii

n
),...,( 1

1
),...,(

 

which is an unbiased estimator for θ . 
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1.2  Generalized L-statistics 
 

Serfling (1984) derived a class of statistics related to the U-statistics called generalized L-

statistics or GL-statistics. After taking all subsamples of size k from the original sample, 

 and finding the value of h for each subsample, we sort the ⎟
⎠

⎞
⎜
⎝

⎛
=

n
 values of hnXXX ,...,, 21 ⎟⎜k

N , 

call those sorted values nNnn WWW ::2:1 ...,, , take a linear combination of those ordered values using 

certain weights, n:Nn:2n:1 c...,c,c ,  and form the statistic ∑
=

=
N

n:iin,n WcT . This class of estimators  is 

G 1−

f 

n ombination of the order statistics of the 

sample g reg i d ribution:  

The density of  )X,...,X,h(X k21 , Fg pξ  i.e. 0)(ξg pF >   

1i

called generalized L-statistic. This statistic estimates the quantile, (p),F  of the random variable 

),...,( 1 kXXh  where 10 << p  and FG  is the distribution function of this random variable. I

xh(x) = , T  is called an L-statistic which is a linear c

. Under the followin it ons nT  has an asymptotic normal istularity cond

1. , exists and is positive at 

2. ∞<≤= })X|ξ)X,...,X,(P{h(X0 1pk21Xp 1
 

FF

 nT . 

Under the regularity conditions mentioned 

n l

Varζ<

3. ∞<−∫ dy(y))]G(y)(1[G 1/2  

The first two conditions are necessary so that the asymptotic variance of the estimator is defined. 

The next Theorem from Choudhury and Serfling (1988) states the asymptotic distribution of

Theorem 1.2.1  (Choudhury and Serfling 1988) 

)
)(ξ

ζk

p
2

p
2

 
g

N(0,)ξ(Tn d
pn ⎯→⎯−above T  has an asymptotic norma  distribution: 

 2



 where })X|)X,...,X,X(h{P(Var 1pk21Xp 1
ξζ ≤=  and )g(ξ p  is the pdf of )X,...,X(h k1  

evaluated at the population quantile, (p).Gξ 1
Fp
−=  The parameter pξ  is what is estimated by nT  

and pζ  is the variance of the conditional probability which is the probability that the function 

),...,X(h k1  is less than pξ  given 1X .  X

 

Example 1.2.1  If 1=k and xxh =)( , then X
XXh

n

i
i

n

i

n ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑
=11

1

)(
p

21 ix

U i=
∑
= . This is a sim le case 

nn

of a U-statistic. nU  estimates the population mean. 

 

Example 1.2.2  If k=2 and 
21
),( iii xxxh = , then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

21

n
U

n

n . In this case, nU  estim

()()( µµµ ==== XEXEXXEUE  which is the second mom

 

Example 1.2.3  troduced as estimator of |)(| XXmed −  which 

is a GL-statistics that estimates a measure of spread of the distribution. The estimator comes has 

||
21 ii xx −=  and estimates (0.5)Gξ 1

F0.5
−= , the median of the distribution of 

e random variable, .||
21 ii XX −  

Example 1.2.4  In the simple linea ii10i εxβ

∑
),(

21
XX

ii
ii

ates 

2)()
2121 iiiin

21 ii

the kernel ),(
21 ii xxh

ent of the distribution. 

Bickel and Lehmann (1979) in

th

 

r regression model, βY ++= , ni ,...,1= , where s'iε  

are i.i.d. with distribution F  and the predictor, X , is random variable, we may estimate the 
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⎟
⎟slope by 
⎠

⎞
⎜
⎝

⎛

−

−

21 ii

ii

XX
YY

find the slope for each subsample, and take the median of those slopes. This is the well-kno

⎜
21med , 21 ii < . We take all subsam

ator of the slope (Thiel 1950).  

1.3   Estimators
 

t 1 ,XX f  a

ctor. The idea of forming an kn C  estimator is similar to 

constructing a U or a GL-statistics. We take all subsamples of size k from the original random 

⎟⎟
⎠

⎞
 estimates of (obtained 

from the ⎟⎟
⎞

⎜⎜
⎛

=
n

N  subsamples) according to magnitude in the univariate case or some technique 

=1i
kn

e 

propose using data depth to do the ordering as discussed later. 

 

ples of size 2 from the paired observations, 

wn 

Thiel estim

 

nCk  

Le  be a random sample rom  univariate or multivariate distribution 

)(f θX;  where θ  is a constant or 

n2 ,...,X

ve

sample, find an estimate of ple, order thθ  for each subsam e ⎜⎜
⎝

⎛
=

k
n

N θ

⎠⎝k

for ordering vectors in the multivariate case, take a linear combination of those ordered values  

using certain weights, n:Nn:2n:1 c...,c,c  and form the statistic ∑=
N

n:iin,c WcT . If θ  is a vector, w

Example 1.3.1  The slope estimator, ⎟
⎟

⎜
⎜

−
21 ii

XX
med , 21 ii

⎠

⎞

⎝

⎛ −

21 ii

YY
< , is an nCk estimator whether or not 

the Xi’s are random whereas the GL-statistic assumes random Xi’s. .  
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In Chapter 2 a small-sample simulation stu nducted  study the effici

Generalized Hodges-Lehmann estimator under different distributions. Results are compare

results existing in the litera re. A mptotic and finite breakdown values of the estimator are 

given. 

In Chapters 3 and 4, a robust kn C  estimator of the variance is introduced. In Chapter 3, 

we  study this estimator under normal distribution. We adjust the estimator for bias, give its 

asymptotic distribution, asymptotic and finite breakdown values, and look at its simulated 

efficiency with respect to the sample variance. In Chapter 4 we study this variance estimator 

under exponential and double exponential dis

 dy is co to ency of the 

d to 

sy

tributions. We adjust the estimator for bias and give 

tu

its efficiency with respect to the sample variance.  

In the simple linear regression model, ii10i εxββY ++= , ni ,...,1= , where s'iε  are 

identically independently distributed with a continuous distr  with median 0, interest 

lies in es m ters 0β  and 1β , predicting the dependent variable Y aking 

ean of Y given X = xi.  In Chapter 5, an kn C  robust estimator of the 

regression param ple linear regression are introduced and compared to other existing 

estim lation. When we ples of size k from the data in 

the simple linear regression model, we may estimate the intercept either at the end after 

estimating the slope or we may estimate them simultaneously using data depth to order the 

vector of coefficients that we get when taking all subsamples of size k. 

In Chapter 6, robust kn C  estimators of the regression parameters are introduced and 

compared to other existing estimators in the lite

choose the estimate of the regression parameters.

ibution F

timating the para e ,and m

confidence intervals on the m

eters in sim

ators in the literature by simu take all subsam

rature by simulation. Data depth is used to 
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CHAPTER 2 - ESTIMATING THE MEDIAN OF A SYMMETRIC 

DISTRIBUTION 

2.1  Location Model 
 

Let nXX ,...,, 21  be identically independently distributed continuous random var

with symmetric probability density function f(x) and median 

X iables 

θ . Estimators of θ  with high 

breakdown values are always sought because they resist outliers in the data. In this chapter, I will

consider a class of robust 

 

rs for nCk estimato θ . 

2.2  Generalized Hodges-Lehmann Estimator 
 

 

Example 2.2.1  (Hodges and Lehmann 1963) The Hodges-Lehmann estimator of θ  is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

2
XX

med 21 ii
1i ual 

21 i<

, 2i≤ . This is the median of the pair-wise averages and the individ

observations. We will define the median of all subsamples of size 2 from the original sample 

only for i  (sampling without replacement), find the average for each sample, and take the 

median of those averages. This is asymptotically equivalent to the HL estimator proposed by 

Hodges and Lehmann 1963. 
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Example 2.2.2  The Generalized Hodges-Lehmann (GHL) estimator is obtained by taking all 

subsamples of size k without replacement, finding the mean for each subsample, and taking the 

median of those averages. The estimator is )
X...X

k2 ii

k
X

(medˆ 1i
k

+++
=θ

Serfling (1984). In general, we take all subsamples of size k from the data, find 

, 1,...,3 −= nk , 

k
xx

k1 ik ),...,(h   for each subsample, let W1

x...xx
k21 iii +++

= nNnn WW ::2: ...,,  be the ordered 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
n

N  values of ),...,(h
k1 ik xx , and find the linear combination ∑

=

=
N

1i
n:iin,c WcT

kn
 where 

n:Nn:2 c re cho weights. In the case of the median the weights are  n:1 ...,c,c  a sen 

⎪⎩ otherwise0,

⎪
⎨
⎧ +

=
=

 for
2

1Ni 1,
c in, if N is odd 

and         
⎪⎩

⎪
⎧ +=

otherwise

1for

0,

N,Ni0.5,
in,

 

⎨= 22c if N is even. 

Serfling stated in Saleh (1992) that “the use of the median operation, after smoothing the data by 

taking a function of several observations at a time, over all subsets of the data, leads to a statistic 

which has a favorable combination of efficiency and robustness, i.e., smoothing followed by 

taking the median yields both efficiency and robustness”.  
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2.3  Asymptotic Properties 
 

 This class of robust estimators is a special case of the general case introduced in Section 

1.2. It is a generalized L-statistic with kernel 
kk1 ik

x...xx
xx k21 iii +++

=),...,( . Under certain h

regularity conditions the random variable θ)θ(n −ˆ , where k )
X...XX

(medˆ k21 iii +++
=θ , 

has an asymptotic normal distribution with mean zero and variance 

kk

2c
1  where the constant c is 

called the efficacy of the estimator and has the form 

))X|
k

X...XXX(P(Var

)/kg(

1
k321

X1
θ≤

++++
θ . 

where g  is the density of 
k

X...XXX k321 ++++
 evaluated at θ . This follows from Theorem 

1.2.1 (Choudhury and Serfling 1988). For the GHL estimator sampling is done without 

replacement, but asymptotically sampling with and without replacement are equivalent. The 

following is a table of the estimators and their corresponding efficacy for different values of k. 

For k=2 the efficacy simplifies to dxxf∫ )(12 2  (Hettmansperger and Mckean 1998). 
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Table  2-1  Efficacy of GHL estimator 

Estimator Efficacy 

X
σ
1  

)(Xmed  )0(2 f  

2θ̂  dxxf∫ )(12 2  

 

))X
X...XX

(P(Var

)/kh(

1
k321

X1
θ≤

+++

 

kθ̂  

|
k
X+
θ  

 

 

Choudhury and Serfling (1988) conducted a comparative study in which they showed that 

taking the median after averaging is highly efficient for k=2, 3, 4, 5 especially for heavy-tail 

distributions. Table 2-2 contains the asymptotic efficiencies of the GHL estimator with respect to 

ean under different distributions (Choudhury and Serfling 1  

and logistic distributions there is a nonmonotonic pattern in the efficiency as k increases. 

the sample m 988). For the uniform

 9



 

 

Table  2-2 Asymptotic efficiencies of GHL estimator with respect to the sample mean 

(Choudhury and Serfling 1988) 

Distribution k=1 k=2 k=3 k=4 k=5 

Normal 0.637 0.955 0.981 0.989 0.993 

Uniform 0.333 1.000 0.849 0.906 0.919 

Logistic 0.822 1.097 1.103 1.083 1.077 

D. Exp 2.000 1.500 1.321 1.238 1.190 

 

 

2.4  Breakdown Point 
 

Definition 2.4.1  (Hettmansperger & Mckean 1998) Estimation Breakdown. Let x = 

represent a realization of a sample and let ),...,,,...,( 1
**

2
*
1

)(
nmm

m xxxxx +=  represen

the corruption of any m of the n observations. We defin  the bia

),...,,( 21 nxxx x t 

e s of an estimator θ̂  to be  

|)(θ)(sup),θbias(m; (m) xxx ˆˆˆ −= , 

)(mx

θ|

where the supremum is taken over all possible corrupted samples . Note that we corrupt the 

first m observations only and keep the others fixed. If the bias is infinite, we say the estimate has 

broken down and the finite-sample breakdown is given by 

⎭⎩ n ⎬
⎫

⎨
⎧ ∞== ),ˆ;(:min* xθε mbiasm

n . 
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The asymptotic breakdown value of θ̂  is the limit of *
nε  as n goes to infinity and it denoted by 

*ε .  

 

The asymptotic breakdown value *
kε  of kθ̂  is the proportion of arbitrarily large 

observations (corrupted or outlying) that the estimator can handle before giving an infinite bias 

(breaking down) when n is large. For example, one observation guarantees the breakdown of the 

sample mean. Thus the asymptotic breakdown value of the mean is the limit of 
n
1

Another example is the median where half of the observations need to be corrupted to break 

 as n goes to 

infinity which is zero. This is why we say ean has zero asymptotic breakdown value. 

down the estimator. Thus the bre it of the ratio 

the m

akdown value of the median is the lim
n

n/2

goes to infinity. This limit is 0.5 which is the asymptotic breakdown value of the median.  

The estimator k

 as n  

θ̂  is a median of  ⎟⎟
⎞

⎜⎜
⎛

=
n

N  averages. If the proportion of outli
⎠⎝k

ers in the 

data is  then the proportion of clean observations is ε ε−1 . The ith average based on the ith 

e ith subs

not contaminated. For large samp ximately )1( ε−  since for large n and k << n, 

the subsamples behave essentially as if they were independent observations. The probability 

ortion of nonc

e s

the N  averages satisfies 5.0)1( k ≤ε− . Let *
kε  be the smallest 

subsample is called nonconatminated if it  doesn’t contain any outliers. The probability that the 

ith average is noncontaminated is the probability that all observations in th ample are 

k

k)1( ε−  can be considered as the prop ontaminated averages among the N  

averages. The estimator will breakdown if th  proportion of noncontaminated average  among 

les this is appro

ε  such that 5.0)1( k ≤ε− . This 

 11



smallest proportion of the data will break down the estimator. Thus k
1

* )5.0(−=ε . Th

probability argument is based on la

k 1 is 

rge sample (Rousseeuw and Leroy 1987). Thus *
kε  is the 

asymptotic breakdown value of kθ̂ . Values of ε  for k=2, 3, 4 are in Table 2-3. The asymptotic *
k

breakdown value of kθ̂  decreases substantially as k increases.  

Som es researchers like to use the estimator fo ples, and they need to know 

the number of corrupted observations that breaks *

etim r small sam

 down the estimator. Let m  be of the number 

d observ r small of corrupte ations that the estimator can handle before giving an infinite bias. Fo

sample the ratio 
n

 is the finite sample breakdown value of the estimator. The estimator k
m*

θ̂  is

⎞⎛n

 a 

median of ⎟⎟⎜⎜=N  averages and will br

*

⎠⎝k

contaminated. Given n, interest lies in finding 

eak down if half or more of those averages are 

m , the number of outliers that will make half of 

those averages really large.  

To find the finite breakdown value of kθ̂  for any k, one has to find the minimum number 

of observations needed to be corrupted so that the bias goes to ∞ . Because the estimator kθ̂  is a 

median of  ⎟⎟
⎞

⎜⎜
⎛

=
n

N  averages, to break down k
⎠⎝k

θ̂ , at least half of those averages must be 

corrupted. For any k, when m observations are corrupted, the number of averages not containing 

those corrupted m observations is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
k

mn
. The total number of contaminated averages is 

⎞⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ mn
k
n

⎟⎟
⎠

⎜⎜
⎝

−
k

. The estimator kθ̂  breaks down if the total number of contaminated averages is at 
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least equal to half of the total averages, i.e., 2/
k
nm
⎟⎟
⎞

⎜⎜
⎛

≥⎟⎟
⎞

. This is equivalent to 

0
mn

2/
n

≥⎟
⎠

⎞
⎜
⎝

⎛ −
−⎟

⎠

⎞
⎜
⎝

⎛
. For a given k and n, finding the finite breakdown value of 

k
n

k
n

⎠⎝⎠
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

kk ⎟⎜⎟⎜ kθ̂ is equivalent 

 finding the smallest m such that 
n
⎟⎟
⎞

⎜⎜
⎛

to 0
k

mn
2/

k
≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

⎠⎝
. Let *m  be the number of observations 

that breaks down the estimator. The ratio 
n

m*

 is the finite breakdown value of kθ̂ . There is no 

closed form for *m  but it can be found if n and k are given. Given n and k, we find the function 

⎟⎟
⎠

⎜⎜
⎝

−⎟⎟
⎠

⎜⎜
⎝ k

2/
k

 for m=1, 2, 3,…., n-2, and observe when it changes its sign from negative to 

positiv 0
⎞⎛ −

⎟⎟
⎠

⎞⎛ mnn

the estimator. This was done for several sample sizes. The values of n, *

⎞⎛ −⎞⎛ mnn

e or find the smallest m such that ≥⎟⎟
⎠

⎜⎜
⎝

−⎜⎜
⎝ k

/2
k

. This value of m will break down 

m , and 
n

m*

Table 2-4 for k=2, 3, 4. 

If we take large n and find n , results should be consistent with the asymptotic 

breakdown derivation. For n=200

 are given in 

*ε

0 and k=2, *m =586 and thus 293.0
2000
586

n

*

== . For m*
n =ε

n=2000 and k=3, .206.0
2000nn ===ε  For n=2000 and k=4, 413m*

* .159.0
2000
318

n
m*

n ===  

This matches the result of the previous derivation of the asymptotic breakdown value. 

Finit ple breakdow

*ε

e sam n values of kθ̂ , denoted by *
nε

en the sample size is small and outliers ex

, are given in Table 2-4 for 

different values of n and k. Wh ist in the data 

researchers can use Table 2-4 to decide which value of k would give a more robust estimator. For 
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example if n=25 and there are 4 ou s in the data, one would avoid using 4θ̂  and could use 2θ̂  tlier

or 3θ̂  because 4 outliers guarantee to break down 4θ̂  whereas  2θ̂  or 3θ̂  breaks down if there are 

at l r  outl r  in the da  res ely.  

 

Table  2-3  Asymptotic breakdow  e  
*
kε  

east 8 o 5 ie s ta pectiv

n of GHL stimator

k 
1 0.50 
2 0.29 
3 0.21 
4 0.16 
5 0.13 
6 0.11 
7 0.09 

0.5 0.00 n  k >
 

Table  2 inite do of G s tor

k

-4  F  break wn HL e tima  

=2 k=3 k=4 
n  *m   *

nε  *m  *
nε  *m  *

nε  
7 2 2 0.29 1 0.14 0.29 
8 3 2 0.25 1 0.12 0.38 
10 3 2 0.20 2 0.20 0.30 
15 5 0.33 3 0.20 3 0.20 
25 8 0.32 5 0.20 4 0.16 
30 9 0.30 6 0.20 5 0.17 
35 11 0.31 7 0.20 6 0.17 
40 12 0.30 8 0.20 7 0.18 
50 15 0.30 10 0.20 8 0.16 
60 18 0.30 12 0.20 10 0.17 
70 21 0.30 14 0.20 11 0.16 
80 24 0.30 16 0.20 13 0.16 
85 25 0.29 18 0.21 14 0.16 
90 27 0.30 19 0.21 15 0.17 
95 28 0.29 19 0.20 15 0.16 
100 30 0.30 21 0.21 16 0.16 
200 59 0.30 42 0.21 32 0.16 
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2.5  Simulation Study 
 

A small sample simulation study was conducted to evaluate the Generalized Hodges-

Lehmann estimators under standard normal, uniform on [  and double exponential distribution 

with mean zero and variance 2, for k=1, 2, 3, 4, 5. Two sample sizes, 15, and 25 with outliers in 

the data were considered. The number of outliers, 1 , considered is 1, 2, or 3. For the normal 

distribution, outliers were randomly selected from normal with mean=6 and variance=1. For the 

uniform distribution, outliers were selected from uniform[ , and for double exponential 

outliers were selected from shifted double exponential with mean 6. Efficiencies are ratios of 

empirical mean square error of the GHL estimator to the mean square error of sample mean. 

Results are reported in Tables 2-5 to 2-8. Table 2-9 contains efficiencies for the sample sizes 25, 

and 100 when there the percentage of outliers is 20%. The first five columns in each table are for 

n=15 and the second five columns are for n=25.  

]1,0

k

]6,5

First consider Table 2-5 when there are no outliers in the data. Efficiency increases as k 

increases for normal and uniform distribution. For the normal distribution when there are no 

outliers the increase in efficiency isn’t substantial as k goes from 3 to 5 compared to k=2. For the 

uniform distribution, the increase in efficiency is very little as k goes from 4 to 5. Therefore for 

the uniform distribution k=4 is the best choice. The GHL estimator is less efficient for the 

uniform  distribution. For the double exponential distribution taking a larger k will decrease the 

efficiency and k=1, the median, is the most efficient. 

Next consider Table 2-6 through 2-9 in which outliers are present. Generally when 

outliers exist in the data the GHL is more efficient. This is clear by comparing Table 2-5 to other 
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Tables (Table 2-6 to Table 2-9). However, the efficiency is smaller if the proportion of outliers is 

larger than the finite breakdown value of the estimator, and in this case it is not recommended.     

 Comparing 1k =1 to 1 =2, there is an increase in the efficiency but it depends on the 

distribution. The improvement in the efficiency is larger for the uniform distribution than the 

normal especially for k=1, 2, 3. For the double exponential distribution the improvement isn’t 

very large especially as k increases and attains its maximum at k=1. Generally the estimator is 

better when there are two outliers than when there is one outlier in the data. 

k

1k

1k

 When =3, n=15 and k is larger than 2, the estimator loses its efficiency because the 

proportion of outliers exceeds the finite breakdown value of the estimator. On the other hand 

when 1 =3, n=25 and k is larger than 2, the estimator has efficiency bigger than 1 because the 

finite breakdown value isn’t reached. Comparing =2 to =3 when n=15, improvement in 

efficiency occurs only at k=1. Comparing =2 to =3 when n=25, improvement in efficiency 

occurs only at k=1, 2, 3. When =3, n=25, k=2 is very efficient for heavy-tail distributions, and 

for double exponential k=1 is the most efficient. 

1k

k

1k 1k

1k

 Generally for the normal distribution k=2 is the best choice unless the number of outliers 

is large and in this case we might want use the median. For the uniform distribution k=1 or k=2 

are the best choices, and we decide based on the number of outliers and the sample size. For 

double exponential distribution, we recommend k=1 as it shows the highest efficiency whether 

outliers exist in the data or not.  
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Table  2-5  Simulation results for n=15, 25.  No outliers are in the data. Efficiencies of the 

GHL estimator with respect to the sample mean 

=1k 0  n=15  n=25 

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

N(0,1) 0.68 0.99 1.00 1.00 1.01 0.60 0.99 1.00 1.00 0.99 

U(0,1) 0.36 0.86 0.90 0.95 0.97 0.36 0.87 0.88 0.93 0.95 

D.exp 1.56 1.30 1.19 1.11 1.07 1.48 1.31 1.21 1.15 1.10 

 

 

Table  2-6  Simulation results for n=15, 25 with k1=1. Efficiencies of the GHL estimator 

with respect to the sample mean 

1=1k  n=15  n=25 

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

N(0,1) 0.97 2.56 2.27 1.99 1.73 1.37 2.04 1.95 1.86 1.74 

U(0,1) 6.90 14.06 13.46 12.33 10.76 4.54 9.81 9.52 9.46 9.00 

D.exp 2.43 1.99 1.66 1.42 1.27 2.38 2.01 1.70 1.53 1.40 

 

 

Table  2-7  Simulation results for n=15, 25 with k1=2. Efficiencies of the GHL estimator 

with respect to the sample mean 

2=1k  n=15  n=25 

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

N(0,1) 4.79 4.10 2.66 1.54 0.90 3.30 3.78 3.07 2.52 2.11 

U(0,1) 20.96 29.81 20.83 9.68 0.56 14.45 25.62 21.34 17.86 14.57 

D.exp 4.75 2.77 1.73 1.28 1.01 4.69 3.04 2.18 1.74 1.51 
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Table  2-8  Simulation results for n=15, 25 with k1=3. Efficiencies of the GHL estimator 

with respect to the sample mean 

3=1k  n=15  n=25 

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

N(0,1) 6.60 3.70 0.99 0.92 1.03 5.35 4.62 3.10 2.10 1.60 

U(0,1) 35.88 29.71 0.50 0.72 1.01 25.95 33.77 23.74 15.31 8.15 

D.exp 6.54 2.29 1.09 1.01 1.05 7.08 3.52 2.14 1.54 1.39 

 

 

Table  2-9  Simulation results for n=25, 100 with 20% proportion of outliers. Efficiency of 

the GHL estimator with respect to the sample mean 

 n= =   )1 20=25 5)(k1 n=100(k  

F k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

N(0,1) 8.07 4.07 1.27 1.00 1.11 12.29 5.05 1.58 1.10 1.15 

U(0,1) 41.66 30.92 0.57 0.74 1.04 54.32 35.94 9.23 0.77 1.05 

D.exp 8.97 2.66 1.22 1.08 1.13 14.11 3.44 1.39 1.17 1.17 
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CHAPTER 3 - VARIANCE ESTIMATION UNDER NORMAL 

DISTRIBUTION 

3.1  Introduction and Model 
 

When outliers exist in the data, they have serious effects on the sample variance. To solve 

this problem there are two traditional solutions. The first one is to remove the outliers and use the 

usual estimators, and the second one is to look for robust estimators. Using robust estimators is 

potentially a better solution since outliers don’t have to be identified. In this study a robust 

estimate of the variance will be considered and compared to some robust estimators existing in 

the literature. The number of outliers need not be specified for our proposed nCk  estimators. 

However we should make sure that they are below the breakdown value. 

There are a number of situations in which variance might be important. A chemist might 

be interested in estimating the variance of the copper concentration in plants. Calcium 

concentration variability in mammalian blood needs to be below certain level to avoid severe 

disturbances in blood coagulation (Milton 1999).. In quality control, producers are usually 

concerned about controlling the variability of the production process, and thus estimating the 

variance is a vital problem. A researcher might be interested in estimating the mean or the 

variance in weight of ringed seal in different study zones (Lohr 1999). When conducting tests 

about location parameters, sometimes we have to find a good estimate of the variance to be able 

to conduct the test. These are some examples on the importance of the variance estimation 

problem. 
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Assume we have a random sample, nXX ,...,, 21 , from a population with variance 2σ . 

Interest lies in estimating the population variance, 2σ . In this and the following chapter, we w

consider a robust estimator of the variance based on the generalized L-statistic. In this chapter w

restrict attention to the normal distrib

X

ill 

e 

ution. 

),...,Sˆ 2
Nk

2
k2

2
k1

2
k = k

nXXX ,...,, 21 S f 

3.2  Robust Estimator of Variance 
 

Let σ  where we take all subsamples of size  from the 

random sample , find the variance for each subsample 2
ik , and take the median o

those variances. If the data comes from normal distribution, it is known that 

,Smed(S

2
)1k(

2
k2 ~S1k

−χ
σ
−

kσ̂

. 

This implies that for large n relative to k, 2  is estimating )(med
1k

2
1k

2

−χ
−
σ ,. Therefore  

)(med
ˆ)1k(

2
)1k(

2

−χ
σ− 2k  is a consistent and approxim ator of σ  when the data have 

normal

22
kk,n )ˆd σ=σ . For large n and k sma

roxim

ately unbiased estim

 distribution and n is large.  

For general samples sizes, we need to adjust 2ˆ kσ  to get an unbiased estimate of the 

variance.  Let k,nd  be the factor such that  (E ll, the proposed 

adjustment factor is app ately the asymptotic value .
)(med

d 2
)1k(

k,
−

∞ χ
1k −

= k  

standar nd 

 To determine ,nd

in general, we simulated the value of )ˆ(E 2
kσ  by taking 500 random samples of size n from 

d normal distribution, finding 2
kσ̂  for each sample, taking the mean of the ,s'ˆ 2

kσ a

computing k,nd  as 
)σE( 2

kˆ
. This adjustment factor is the same regardless of the population σ 2
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variance. For the standard normal distribution simulated values of k,nd for n=15 0, an

125 are presented in Table 3-1 along with k,d∞  in the last column. Table 3.1 indicates  that 

∞→n , dd → . In this ch

, 25, 75, 10 d 

as 

k,k,n ∞ apter we will give the asymptotic distribution of this estimator 

σd  and study it under standard normal distribution.  

Table  3-1  Simulated values of nd value  ,kd∞ (in t ht colum normal 

distributions. Number of simulations=500.  n=15, 25, 75, 100, 125 

2
kk, ˆ∞

n,kd  a s of he rig n)for 

k n=1 n=2 n=7 n=10 n=12 n=
2 1.99 2.09 2.16 2.18 2.18 2.20
3 1.32 1.38 1.42 1.43 1.43 1.44
4 1.17 1.22 1.25 1.26 1.26 1.27
5 1.10 1.15 1.17 1.18 1.18 1.19
6 1.06 1.11 1.13 1.14 1.14 1.15

 

ation 
 

The estimator kσ̂  is a generalized L-statistic based on kk1 s)x,...,h(x = , and under 

certain regul d ion of  

3.3  Asymptotic Approxim

2 2

arity con it s it has an asymptotic normal distribution. The asymptotic variance 

2
kσ̂  is 

)(ξng
ζk 2

0.52 here )}X|S(P{Var 15.0
2
kX5.0 1

ξ≤= , 2
kS  is the sample varianc  based o

0.5F

 w ζ e n k 

observations, 5.0ξ  is the m k F k

0.5 . Thus, 

edian of the distribution of 2S , and g  is the density of 2S  which is 

assumed to be positive at ξ )ξdσ(dn 0.5k,
2
kk, ∞∞ −ˆ  has an asymptotic normal 

distribution with mean 0 and variance .
)(ξg

ζkd
2

0.5k,∞  Note that 2
0.5k, σξd =∞ .  

                                                                

22

0.5F
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3.4  Asymptotic and Finite Breakdown Points 
 

 Both the sample mean and variance have a breakdown value of zero because one outlier 

in the data can take the bias to infinity. The GHL estimator is a median of N averages and the 

estimator 2
kσ̂  is a median of N variances. Therefore, the finite and asymptotic breakdown value 

f the GHL estimator is as the same as those of 2
kσ̂ . From Table 2-3 we can see that the 

asymptotic breakdown value decreases substantially as k increases.  

 

 

h 

le variance under normal distribution with and without outliers. Efficiency 

was

re 

tliers 

 dis

o

3.5  Efficiencies 
 

In this section we simulated the efficiency of the proposed variance estimator wit

respect to the samp

 determined as the ratio MSE of the sample variance divided by the MSE of the 

estimator, 2
kkn, σ̂d . 

From the standard normal distribution 500 random samples of size 15, 25, and 100 we

generated to evaluate the estimator 2
kkn, σ̂d  and the efficiency of the estimator was recorded 

for k =2, 3, 4, 5, 6 and 1k =0, 2, 4 where 1k  is the number of outliers in the data. The ou

were chosen from a normal tribution with mean 0µ =3 or 0µ =6 and variance 1. The 

efficiencies are presented in Table 3-2. The first two columns of Table 3-2 are the bias 

adjustment factors, k,nd  and k,d∞ . We simulated efficiencies of the estimators with bo

adjustment factors when there are no outliers in the data to see wh ch gives higher effic

th 

i iency. 
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Columns 3 and 4 of Table 3-2 shows that the estima 2
kk,n σ̂ , outperforms the estimator 

2
kk, σ̂d∞  especia

tor, d

lly for small samples, and as k increases the efficiency of 2
kk,n ˆd σ  with respect 

kk,∞ kk,n  

2n,2 st 

efficiency, and as k increases, the efficiency of the estimator, 2
kk,n ˆd σ , goes down because  

taking a larger subsample means outliers are more likely to appear in the subsamples and ruin 

the estimator. Generally when 1k  increases, the change in the efficiency depends on n and k. 

The smaller the value of k relative to n, the better the estimator, 2ˆd σ . The estimator 2σ̂d  

 contains the efficiencies of the estimator 2
kk,n ˆd σ  with respect to the sample 

variance when the proportion of outliers is 0.20 using the sample sizes, n=25, 100. The 

efficiency of the estimator appears to depend on the proportion of outliers not on the number 

of outliers in the sample.  

to the sample variance gets closer to 1 faster than that of 2σ̂d . Therefore we used 2ˆd σ  in

all other simulations.   

 Table 3-2 shows that if there are outliers in the data, the estimator 2σ̂d  has the highe

kk,n 2n,2

is the most efficient besides the fact it has the highest breakdown value.  

 Table 3-3
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Table  3-2  Columns 2 and 3 are the values of  and the simulated values of n,k . 

Other columns contain the efficiency of the estim 2
kkn, σd ˆ  and for , 2

k,kσd ˆ∞   

relative to the sample variance. Data is generated from standard normal distribution. 

he outliers, 1k =0, 2, 4, are taken from normal distribution with mean, 0µ =3 or 0µ =6 

and variance 1. Number of simulations=500. k =2, 3, 4, 5, 

,kd∞ d

ator,  1k =0

T

6. n=15, 25,100 

 Bias adjustment 

factors 

Efficiencies 

1k  =0 k kd ,∞ kd  

kd  knd ,

k

0

  n,

,∞  

1  =2 

µ =3 

1  =4 k

0µ =3 

1  =2 k

0µ =6 

1  =4 k

0µ =6 

n=15 

2 2.20 1.99 0.51 0.78 1.77 1.14 12.70 5.51 
3 1.44 1.32 0.53 0.83 1.70 0.75 9.91 0.60 
4 1.27 1.17 0.58 0.89 1.42 0.76 5.76 0.79 
5 1.19 1.10 0.61 0.95 0.85 0.81 0.55 0.97 
6 1.15 1.06 0.64 0.95 0.88 0.88 0.68 1.08 

n=25 

2 2.20 2.09 0.64 0.84 1.99 1.69 17.30 11.88 
3 1.44 1.38 0.64 0.84 1.99 1.47 17.30 7.01 
4 1.27 1.22 0.64 0.84 1.83 1.10 14.78 0.68 
5 1.19 1.15 0.70 0.93 1.61 0.93 10.84 0.61 
6 1.15 1.11 0.70 0.93 1.38 0.86 7.46 0.67 

n=100 
2 2.20 2.18 0.70 0.70 1.55 2.27 14.12 25.49 
3 1.44 1.43 0.70 0.70 1.55 2.65 14.12 25.49 
4 1.27 1.26 0.70 0.70 1.55 2.27 14.12 25.49 
5 1.19 1.18 0.70 1.06 1.55 2.27 14.12 22.66 
6 1.15 1.14 1.06 1.06 1.55 1.99 14.12 18.54 
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Table  3-3  Entries are the efficiencies of the estimator 2
kkn, σ̂  relative to the sample 

variance. Data is generated from standard normal distribution. The outliers, k = 5 when 

=25 and k =20 when n=100, are taken from normal distribution w h mean  µ =3 or

µ =6 and variance 1. Number of simulations=500. k =2, 3, 4, 5, 6. n

d

1

n it , 0  

=25, 100 

1

0

k 1k

0

  =5 

µ =3 

1k  =5 

0µ =6 

1k =20 

=3 

1k  =20 

00µ µ =6 

 n=25 n=100 
2 1.46 8.55 1.57 4.30
3 1.13 1.53 1.20 0.29
4 0.91 0.53 0.98 0.32
5 0.84 0.61 0.90 0.32
6 0.82 0.70 0.88 0.31

 

 

3.6  Discussion and Comparison with Other Estimators 
 

The estimator  is the best in small samples if ally distributed and 

 outliers. One has to m oportion of outliers is less than the 

breakdown point of this estim  the values of k=5, 6 give 

introduced in the data as in Table 3-5, larger eans faster breakdown for the estimator 

and since th ator d s other estimator. 

Johnson, Mcguire, and Milliken estimators of variance in 

presence of outliers including *
kV  which proved to be the best one in that paper. They assumed 

2
2n,2σ̂d  data are norm

there are some ake sure that the pr

ator 0.29. From Table 3-4 we saw that

higher efficiency under normal distribution and no outliers; however, when outliers were 

2

value of k m

e estim 2n,2σ̂  has the highest breakdown, it outperform

 (1978) introduced several 

1
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2k  of the observations come from normal distribution with mean, µ , 2 , and 1k  

of the observations, the number of outliers, come from normal with mean, 

and variance, σ

λµ + , and variance, 

2σ . Deriving *V it he sample varian
1k  is based on wr ing t ce as 

)1(2 −nn
, defining 

|| jiij xxu −= , for nji ,...,3,2

)(
1 1

2−∑∑
= =

xx
n

i

n

j
ji

=< , and sorting the suij '  as )()2()1( ... Nuuu ≥≥ , where 
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⎛ nnn

outlier and the rema

=⎟⎜=N . If there is one outlier in the data, we expect the n-1 differences between the 

er than other differences. Thus they removed 

those differences from the sum of squares and based the estimator on the differences not 

tlier. When there 

ining observations to be larg

including the ou are 1k  outliers in the data, the estimator 

1))(kk1)(k(k 2211
k1 −+−

and scale it by )/σ(VEv 2
k0λk ==  to get the unbiased estimator kkk /vVV =∗ . Note that th

estimator is based on specifying the number of outliers, k . 
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Lax (1985) presented several robust scale estimates for long-tailed symmetric 

distributions. These estimates included trimmed standard deviation, the median absolute 

deviation, M-estimates of scale, and A-estimates of scale. He compared 17 of those estimators 

ted normal disunder normal, long-tail Cauchy, and contamina tributions. According to his 

simulation study, the following estimate of scale was selected 

⎥
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where MAD is the median absolute deviation, 
cMAD
X

u i
i

( −
= , M is the sample me ian and c is a 

 ro ma

rob m , Vms  

⎩ >100n973.0
1(

The large choice of c increases the efficiency of the scale estimate and the shrinkage f

reduces bias for the variance estimate (Mehrotra 1995). 

The estimator 2σ̂d pared to *V , V , and  for k=2, 3, 4, 5 and 

M )
d

specified positive constant. Lax used c=2.1 which was specified by Gross (1976). Mehrotra 

(1995) recommended using c=2.6 and adjusted the above bust esti te of scale to get the 

ust esti ate of variance )S(k 2
msn= , where 

⎨
⎧ ≤+−+

=
−−− 1 0nn091.3n)0686.3n)10(353.3973.0

k
2/3372/36

n  

kkn, 1k ms

n=15,25,100 using different number of outliers 1k   and different values of  

0

actor, nk , 

 was com 2S

σ
λ , 0, 1.5, 3, 6.  0 

Monte Carlo sim

simulated from normal distribution. There were 1kn

ulations with 500 repetitions for each sample size were used. Data were 

−  simulated observations from standard 

norma 1k  simulated  observations, the number of outliers, from normal with 

n

 

n, 1k en

(n

1

outliers are more than three standard deviations from the mean of the data using 2n,2σd  is a 

l distribution and 

mean λ  and variance 1. Efficiencies of the estimators with respect to the sample variance are 

presented in  are presented in Tables 3-4 and 3-5.  

 After examining Table 3-4 and 3-5, it is no surprise that the sample varia ce is the 

best estimator when there are no outliers in the data. The estimator msV  isn’t very efficient if

outliers exist in the data and competition exists between 2σ̂d  and *V . Wh  n is small 

=15, 25) if we correctly specify the number of outliers and they are one to two standard 

deviation from the mean of the data, using *
kV  is a good choice. When n is small and the 

2ˆ

kk
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good choice. If n is large (n=100) and we know the number of outlier in addition to the fact 

that they are less than three standard deviations from the mean of the data, then *
1kV  is as good 

as 2
kkn, σ̂d , k=3, 4, 5. If we don’t know the number of outliers and n is large, then using 

2
kkn, σ̂d , k=3, 4, 5, is really efficient. The advantage of using 2

kkn, σ̂d , k=3, 4, 5,  is that we are 

allowing  outliers to remain in the data without affecting the estimator, and we don’t have to 

specify their number. For n=100, k=2 gives an efficiency a little lower than the efficiency 

when k=3, 4, 5. Considering the computation cost for k=3, 4, 5, we would recommend using 

k=2.  
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Table  3-4  Entries are efficiencies of the estimator with respect to the sample variance. 

n=15, 25 

1k  
σ
λ  

*
1V V  *

3V 2σ̂d  3, σnd 2
44σ̂d  2

5d *
2  2

2,n
2
3ˆ  ,n 5, σ̂n  msV  

 
n=15 

0 0 0.93 0.87 0.81 0.76 0.81 0.87 0.93 0.81 
1 1.5 1.00 0.95 0.90 0.86 0.95 1.00 0.82 0.86 
1 3 1.69 1.79 1.79 1.74 1.91 1.79 1.30 1.24 
1 6.0 8.11 12.09 13.35 12.82 15.26 13.64 8.55 5.43 
2 1.5 1.00 1.00 0.97 0.88 0.97 0.93 0.88 0.82 
2 3 1.34 1.69 1.82 1.77 1.69 1.42 0.85 1.14 
2 6.0 1.71 7.77 11.72 12.70 9.91 5.76 0.55 3.53 
3 1.5 1.00 1.00 0.97 0.90 0.93 0.90 0.90 0.83 
3 3 1.07 1.30 1.49 1.52 1.04 0.84 0.81 0.97 
3 6.0 1.02 1.88 6.16 7.99 0.60 0.55 0.65 1.89 

n=25 
0 0 0.89 1.00 0.89 0.80 0.80 0.80 0.89 0.89 
1 1.5 1.00 1.00 1.00 0.85 0.92 0.92 0.92 1.00 
1 3 1.44 0.94 1.63 1.44 1.53 1.53 1.44 1.30 
1 6.0 7.12 0.87 11.75 11.19 12.37 12.37 10.68 6.53 
2 1.5 1.07 1.07 1.00 0.88 0.88 0.94 0.94 0.94 
2 3 1.48 0.92 2.00 2.00 2.00 1.79 1.55 1.42 
2 6.0 2.26 0.66 13.33 17.30 17.30 14.52 10.04 6.45 
3 1.5 1.06 1.06 1.00 0.90 0.90 0.90 0.86 0.95 
3 3 1.27 0.87 1.82 1.87 1.79 1.48 1.13 1.30 
3 6.0 1.39 0.35 8.42 15.25 13.14 7.31 1.05 4.48 
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Table  3-5  Entries are efficiencies of the estimator with respect to the sample variance.  

n=100 

σ
λ  

*
1V V  *

3V 2
22σ̂d  2

3, σ̂nd d  2
55, σ̂nd V1k   *

2  ,n 3  2
44, σ̂n  ms  

0 0 1.00 1.00 1.00 0.50 0.67 0.67 1.00 0.13 
1 1.5 1.00 1.00 1.00 0.50 0.67 0.67 0.67 0.13 
1 3 1.33 1.33 1.33 1.00 1.33 1.33 1.33 0.31 
1 6.0 4.25 5.67 5.67 4.25 5.67 5.67 5.67 1.31 
2 1.5 1.50 1.50 1.50 0.75 1.00 1.00 1.00 0.21 
2 3 1.20 1.50 1.50 1.20 1.50 1.50 1.50 0.55 
2 6.0 2.80 7.00 9.33 11.20 14.00 14.00 14.00 5.60 
3 1.5 1.00 1.00 1.00 0.75 0.75 1.00 1.00 0.23 
3 3 1.25 1.67 1.67 1.43 2.00 2.00 2.00 1.25 
3 6.0 1.98 4.25 8.50 17.00 19.83 19.83 19.83 14.88 
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CHAPTER 4 - VARIANCE ESTIMATION UNDER 

EXPONENTIAL   AND DOUBLE EXPONENTIAL 

 

4.1  Introduction 
 

In this chapter we will study the estimator  under exponential and double 

exponential distributions. The exponential distribution represents a skewed distribution and the 

double exponential represents a heavy-tail distribution. 

2
k

w e 

21

kn, σ̂d

 

   4.2  Bias Adjustment for Exponential and Double Exponential 
 

4.2.1  Exponential k=2 

 

The adjustment factor k,∞  depends on the median of the distribution o 2
kS . First 

consider the case of exponential distribution when k=2. Note that 2
21 )X(X −= 5.0S2

2 . No

data comes from exponential distribution, XX

d f 

if th

−  has double exponential distribution, and si

the absolute value of double exponential random variable is exponential random variable, 

|| XX −  has exponential distributi n write the term 2)( XX  in the variance  

5.0/1|)(| XX −  w s a W ibull distribution with 5.0

nce 

on. We ca as 

hich ha

21 21 −

21 e =γ  and 1=β .  dian of The me
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Weibull  w distribution ith 5.0=γ  and 1=β  is 2))2(ln( . Therefore 

16.4))2(ln(2))(5.0(med/1)S(med/1d 222
22, ==−== −

∞ 21 XX . When data are from double 

xponential we couldn’t derive the distribution of le variance thus we left the last cell in 

Table 4-1 blank. 

 

 

es used to simulate those values of k,nd  are 15, 25, 

75,100, and 125. For n=100 and 125, 5000 subs ate k,nd  for all 

values of k . Table 4-1 has simu

e  the samp

4.2.2  Other Cases 

For other cases, we used simulation to approximate the adjustment factor as described in 

Section 3.1 of Chapter 3 except that data were simulated from exponential and double 

exponential instead of normal. The sample siz

amples were used to approxim

lated values. 
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Table  4-1 Simulated values of n,k  for exponential and double exponential distributions

Number of simulations=500.  n=15, 25, 75, 100, 125 

d . 

k  Exp. D. exp. 

n=15 
2 3.31 2.52 
3 1.91 1.6 
4 1.62 1.34 
5 1.22 1.2 
6 1.23 1.14 

n=25 
2 3.64 2.74 
3 2.05 1.72 
4 1.63 1.44 
5 1.44 1.3 
6 1.33 1.22 

n=75 
2 3.99 2.9 
3 2.25 1.84 
4 1.79 1.56 
5 1.6 1.42 
6 1.48 1.32 

n=100 
2 4.02 2.92 
3 2.26 1.86 
4 1.83 1.56 
5 1.63 1.42 
6 1.5 1.32 

n=125 
2 4.05 2.96 
3 2.29 1.88 
4 1.85 1.58 
5 1.65 1.42 
6 1.52 1.34 

∞=n  
2 4.16  
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4.3  Efficiencies 
 

To investigate the efficiency of the variance estimate, d , 500 random samples of 

size 15,25,100 were generated from the exponential and double exponential distributions. 

Estimators were computed for k=2, 3, 4, 5, 6. The number of outliers were 1 =0, 2, 4 which 

were chosen from the original distribution with shift 

2
kkn, σ̂

k

0µ . 

 Efficiencies of the estimator 2
kk,n σ̂  relative to the sample variance are presented in 

Table 4-2. Efficiency is the ratio of the MSE of 2S  divided by the MSE of 2ˆd σ . The 

2

comes from double exponential. The estimator, 2n,2σ̂d , does better than others. We just hav

to make sure that the proportion of outliers is smaller than the breakdown value of 0.29. 

Table 4-5 suggests that the 

d

kk,n

estimator kkn, σ̂d  does a better job when data comes from exponential than when the data 

2 e  

efficiency of the estimator depends on the proportion of outliers 

not on the number of outliers for large samples. 
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Table  4-2 Entries are the efficiencies of d  with respect to the sample variance.  n=15, 

25,100 

2
kk,n σ̂

1k k=0        1 =2,     60 =µ  1 =4,     k 60 =µ  k  

Exp. D. Exp. Exp. D. Exp. Exp. D. Exp. 

n=15 
2 1.04 0.97 17.44 1.61 3.92 0.77 
3 0.95 1.03 3.13 0.96 0.40 0.32 
4 0.95 1.08 2.89 0.81 0.63 0.43 
5 0.75 1.05 0.54 0.47 0.77 0.53 
6 0.83 1.05 0.73 0.53 0.81 0.59 

n=25 
2 1.02 1.07 33.41 1.49 20.83 1.48 
3 0.98 1.07 16.71 1.25 3.81 0.75 
4 0.95 1.06 6.63 0.95 0.56 0.44 
5 0.93 1.07 2.88 0.70 0.60 0.43 
6 0.89 1.04 2.31 0.64 0.76 0.48 

n=100 
2 1.43 1.06 3.56 0.48 15.02 0.99 
3 1.27 1.06 5.34 0.46 23.37 0.91 
4 1.26 1.05 6.41 0.45 26.29 0.82 
5 1.20 1.03 8.01 0.43 21.03 0.74 
6 1.20 1.06 8.01 0.43 16.18 0.70 

 

 

Table  4-3  Entries are the efficiencies of 2
kk,n σ̂  with respect to the sample variance. 

Proportion of outliers=0.20.

d

 n= 25,100 

k 1k  =5 

0µ =6 

1k

0

 =20 

µ =6 

                 n=25 n=100 
 Exp. D. Exp. Exp. D. Exp. 
2 12.62 1.66 25.51 1.94 
3 1.13 0.53 1.13 0.56 
4 0.50 0.43 0.47 0.40 
5 0.68 0.52 0.64 0.45 
6 0.80 0.62 0.76 0.54 
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CHAPTER 5 - SIMPLE LINEAR REGRESSION 

5.1 Introduction 
 

In the simple linear regression model iii ε10 xββY ++= , ni ,...,1= , where s'iε  ar

identically and independently distributed wi  distribution F  with median 0, interest lies in 

estimating t e para eters 0β  and 1β , predicting the dependent variable Y , and making 

confidence interval on the mean of Y  using the predictor

e 

th

h m

 X . The dependent variable might be

the attention span of a child in minutes and the predictor the child’s IQ score. In a study of the 

body’s ability to absorb iron and lead, data might be collected on percentage lead absorbed (

and percentage iron absorbed (

 

Y ) 

X ), and we might want to predict the percentage lead absorbed 

using the percentage iron absorbed ( Milton 1999). Y  might be the annual m an temperature ane d 

X  the elevation or location expressed by latitude and longitude. 

2)∑∑
==

−−=
n

1i
i10i

n

1i

2
i xββ(Yε

We are concerned with estimating the parameters of the model in this chapter and will 

compare the proposed method to some methods existing in the literature. 

 

5.2 Existing Methods 
 

Least square estimation, which is based on minimizing the residual sum of squares 

, is one of the common ways to estimate the parameters of the model. 

The least square estimates aren’t robust when outliers exist in the data. Least square estimation is 

the most efficient when data comes from normal distribution, but the method may do poorly 
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when outliers are present or when the error distribution is heavy-tailed. A lot of methods exist in 

the literature to estimate the parameters of the linear model. Since we are studying robust 

estimators in this study, we chose some of the most efficient and robust methods existing in the 

literature to compare to our method.  

Consider minimizing the convex function |ε|b
n

−  where  b  is a weight function ε ji
ji

ij∑
<

ij

and iε  is the ith residual (Naranjo and Hettmansperger 1994). If  1=ijb  the estimate that 

minimizes the convex function is called Wilcoxon rank-based estimate (Jaeckel 1972). The 

asymptotic relative efficiency of Wilcoxon rank-based estimates is 0.955 relative to least square 

estimates under normal distribution. For heavy-tail distributions the asymptotic efficiency is 

much higher (Hettmansperger and McKean 1998). Wilcoxon rank-based estimates have bounded 

influence function in the y-space and not in the x-space.  

Naranjo and Hettmansperger (1994) considered generalized rank-based estimates (GR) 

by using weights that depend on the x values. These GR estimates desirable robustness 

properties as discussed in  (Naranjo and Hettmansperger 1994). Chang et el (1999) chose 

weights that depend on the residuals and the x-values and showed that the estimates based on 

these weights have a breakdown values as high as 50% and called them

re talk out kn C  estimation in regression, we need to introduce 

concepts in data depth. 

 high-breakdown rank 

estimates (HBR).  Befo ing ab
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5.3 Data Depth  
 

Data depth is a statistical analysis technique that assigns a numerical value to every poin

in a data set based on the centrality of this point relative to the data set (Hugg et al 2005). This 

idea gives a center-outward ordering or ranking of data points for multivariate data. Points that 

are close to the center receive a higher depth than points that are on the boundary. The center of 

the data set is defined by certain depth function. Examples of depth functions are halfspace dep

(Tukey 1975), simplicial depth (Liu 1990), and simplicial volume depth and projection dept

(Zuo and Serfling 2000a). This enables us to choose location and scale estimators based on 

different depth functions (Zou, Cui, and He 2004). Data depth is a nonparametric techniqu

doesn’t need any distributional assumptions about the data.  I

t 

th 

h 

e that 

 this study we will on e 

concern

n ly b

ed with location estimators derived from data depth. 

The halfspace depth (HD) of a point x  in dR  with respect to probability measur  P  on 

d

e

R  is defined as the minimum probability m ss carried by any closed halfspace containing 

x (Zuo and Sefling 2000), that is,  

H:

a

dRxHxhalfspaceclosedHPPxHD ∈∈= },,)(inf{),( . 

Let’s look at the univariate case 1=d  to understand the idea of halfspace depth. Given 

random sample nXXX ,...,, 21  with a distribution function, F , all values below iX  form an ope

alfspace, and all values less than or equal iX  form a closed h fspace. Similarly all values 

greater than iX form an open halfspace and all values greater than or equal iX  form a closed 

halfspace. For an t, there are two associated closed halfspaces. Tukey’s halfspace dep

ix  is defined as the mi imum of )( ixF  and )(1 −− ixF , i.e., the smallest probability associated 

a 

n 

h al

y poin th of 

n

with the two closed halfspaces formed by ix  (Wilcox 2005). Given a data set, nxxx ,...,, 21 , we 

 38



find the proportion of points less than or equal to ix  and the proportion of po nts greater than

equal to ix . The sample Tukey halfspace depth of ix , )(ˆ
ixH   is the

i  or 

 smaller of those two values. 

ix

 

Example 5.3.1  Consider the data set, 1, 3, 5, 2, 11, 13, 20, 27, and 23. The proportion of points 

less than or equal to 3 is 0.33 and the proportion of points greater than or equal to 3 is 0.78. The 

halfspace depth of the point 3 is the minimum of 0.33 and 0.78, which is 0.33. Table 5.1 below 

shows the halfspace depth of each point in this data set. We can see that 11 has the maximum 

halfspace depth in this example. If we sort the data as in the third row of Table 5-1 and look at 

the depth of each point we can see as points get closer to the center their depth increases and as 

they get farther away from the center (on the boundary) their depth decreases. 

 

Table  5-1  Halfspace Depth Example 

 1 3 5 2 11 13 20 27 23 

)ixH (ˆ 0.11 0.33 0.44 0.22 0.56 0.44 0.33 0.11 0.22

)(ix  1 2 3 5 11 13 20 23 27 
)ˆ

)(ixH ( 0.11 0.22 0.33 0.44 0.56 0.44 0.33 0.22 0.11
 

Tukey median is defined as the point with maximum halfspace depth. In the previous 

example, the point 11 is the Tukey median. It turns out that Tukey median is the sample median 

in the univariate case (Wilcox 2005). If more than one point has the maximum depth then the 

average of those points is the Tukey median. In bivariate or multidimensional case, the average 

is the center of gravity of those points with the maximum depth (Rousseeuw and Ruts 1998), i.e., 

the x-coordinate of the Tukey median is the average of the x-coordinates of the points with the 

highest Tukey depth, the y-coordinate of the Tukey median is the average of the y-coordinates of 

the points with the highest Tukey depth.  
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For the bivariate case, for any line, the points on or above the line form a closed 

halfspace, as do the points on or below the line. Given a data set ( , we 

find the depth of each point by  

),(),...,,(),, nn2211 yxyxyx

1. Looking at every line passes through that point. 

2. Counting the proportion of points on or above the line and the proportion of points on or 

below that line and recording the minimum of those two proportions. 

3. Recording the minimum over all lines. This minimum is the Tukey halfspace depth of 

that point. 

In bivariate case the data is a scatter of points in the xy-plane. Points on the boundary will 

have small depth and those close to the center of the scatter plot will have higher depth. 

 

Example 5.3.2  Consider the data set (1, 3), (1, 5), (2, 1), (2, 4), (2, 6), (2.5, 4.5), (3, 2), (4, 5). 

Figure 5-1 is a scatter plot of the data. It is clear from the scatter plot that the point (2, 4) is the 

center of the data. The Tukey halfspace depth of these points is 0.125, 0.125, 0.125, 0.5, 0.125, 

0.25, 0.125, and 0.125 respectively. The point (2, 4), Tukey median of the data, has the largest 

depth.  

 

Example 5.3.3  Consider the data set (1, 2), (1, 5), (2, 1), (2, 3), (2, 4), (2, 6), (3, 2), (3, 5). 

Figure 5-2 is a scatter plot of the data. The halfspace depth of these points is 0.125, 0.125, 0.125 

0.5, 0.5, 0.125, 0.125, and 0.125 respectively. It is clear from the scatter plot that the two points 

(2, 3) and (2,4) represent the center of the scatter plot. Those two points have the highest Tukey 

depth. Therefore the Tukey median of this data set is the average of those two points, 0.5(2, 3) 

+0.5(2, 4), which is (2, 3.5). 
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 Data depth simply assigns high depth values for points closer to the center and low depth 

values for points on the boundary. Figure 5-3 gives a picture of deep points which are closer to 

the center and low depth points which are on the boundary in a scatter plot (Hug et el 2006). 

Depth contours, nested contours that enclose regions of increasing depth, provide a tool to 

visualize data sets (Figure 5-4). The contour of the sample th central region is defined as t

convex hull containing the most central fraction of 

α he 

α  sample points (Hugg et el 2006).  

  In the three dimension case, for any plane, the points on or above that plane form a 

closed halfspace, as do the points on or below the plane (Wilcox 2005). Tukey median in the 

multidimension case is the average of all points having the maximum depth. The data can be 

pictured as a cloud of points and the points on the boundary have lower depth than points closer 

to the center of the cloud of the data.  The Tukey median in multidimension has a breakdown 

point that can’t exceed 
1d +

he 

kn C  estimator in linear regression.  

1   ( Donoho and Gasko 1992). We used Tukey median to choose t
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Figure  5-1  Example on Halfspace Depth. Unique Tukey Median 
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Figure  5-2  Example on Halfspace Depth. Averaging the two points with highest depth to 

get Tukey Median 
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Figure  5-3  An Illustration of Data Depth (Hug et el 2006). 
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Figure  5-4  Depth Contours. The region Enclosed by the Contour of Depth α  is the Set of 

Points such that D(x) α  ( Hugg et el 2006).≥    
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5.4   nCk  Estimation in Simple Linear Regression 
 

Given a paired data, )Y,),...(xY, nn11 , we want to eralize the kn C  estimation idea

introduced in previous Chapters to simple linear regression. Experimental units or pairs are 

sampled. The following are the ste s to find the n C

(x gen  

p k  estimators of 0β  and 1β : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
n

N

a. f β a this estim

iY −

. 

For k=2, the estimator GTβ̂  is Theil estimator of the slope. For k=3, 4, 5,…,n-1, we 

call the estimator GTβ̂  the generalized Thiel (GT) estimator.  

b. Estimate )β,(β 10  by the Tukey median of )β,β),...(β,β( 1N0N1101
ˆˆˆˆ .  Thus we have the 

 

1. Take all possible samples of size k, k=2,3,4,…,n, without replacement from the n 

pairs. There are  subsamples. 

2. Find the least square estimators for each subsample. Call these estimators 

)β,β),...(β,β( 1N0N1101
ˆˆˆˆ . 

3. We considered two ways to choose the estimator from step 2: 

Estimate the slope 1β  by the median o  1N11 ,...β ˆˆ  and c ll ator GTβ̂  where 

GT stands for generalized Thiel; estimate 0β  by 0β̂   where )ˆˆ
iGT0 xβmed(β = , 

Ni ,...,1= . Thus we have the estimator )β,β( GT0
ˆˆˆ

1 =β  for the intercept and the slope

estimator )β,β( 1TM0TM
ˆˆˆ

2 =β . We will refer to this estimator as Tukey median (TM). 
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Note that for the first method when k=2 the slope estimator is the median of 

∑

∑
=

−

−−

2
2

2

1j
iijiij

)XX(

)YY)(XX(
 where Ni ,...,1=  and ijx  is the jth observation from the ith subsample. 

Simple algebra shows that 

=1j
iij

)XX(
2i1i

2

2

1j

−
= . Thus when k=2, the estimator 

is the median of  

)YY(

)XX(

)YY)(XX(

2i1i

1j

2
iij

iijiij −

−

−−

∑

∑

=

=

)XX(
)YY(

2i1i −
− 2i1i . This is the Thiel estimator of slope if the predictor is random 

(Thiel 1

⎟⎜

asymptotic breakdown value is 0.29, 0.21, 0.16, 0.13 and 0.11 for k=2, 3, 4, 5 respectively. The 

e ncreases.  

 size p+1, found the least square 

estimator for each subset, and took the m

950). Other values of k, 3, 4, 5,…, n-1 are generalization of the Thiel estimator. This 

estimator is a median of ⎟
⎠

⎞
⎜
⎝

⎛
k
n

 terms where each term has zero breakdown value. Thus its 

breakdown value of TM is also expect d to decrease as k i Thus we study the estimators

for small values of k. 

Oja and Niinimmaa (1984) generalized the Thiel estimator to multiple linear regression. 

When there are p independent variables, they took all subsets of

edian of the N estimates for each parameter.  

It is desired for regression estimators to be affine equivariant, i.e.,  

bx,...,xAbAxb,...,Ax n1n1 +=++ )(T)(T  where T is the estimator, A  is a nonsingular matrix, 

b is any vector and )( n1 x,...,x  is the data. This property is desired because reparametriza

the space of the ix  should not change the estimate (Wilcox 2005). Thus it might not be 

tion of 
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appropriate to use the marginal medi arameter separately since this estimator 

isn’t affine equivariant.  

an to estimate each p

edian 

 

 

 

hich 

is diffe e 

 

In multiple linear regression for k=p+1, p+2,…., n-1, we propose using the Tukey m

to choose the estimator because it is a multivariate analong of the usual median. For simple 

linear regression the range of k is 2, 3, 4…., n. Small values of k are considered here because as 

k increases the breakdown point of the estimator decreases substantially. Note that each 

estimator based on a subsample of size k is an unbiased estimator of the true parameters, and 

when we take the Tukey median of )β,β),...(β,β( 1N0N1101
ˆˆˆˆ , we are trying to find the closest one to

the true parameter or the deepest point in the scatter plot.   

5.5 Simulation Study under Different Distributions 
 

Chang et el (1999) conducted a simulation study in the simple linear regression model to 

compare Wilcoxon rank-based, GR, and HBR under different distributions for the predictor and 

the response. The proposed kn C  regression estimators are compared to those estimators under 

the same model considered in Chang et el (1999). The model they used for simulation is

ii10i εxββY ++= , 1,...,30i = , where 0β = 1β =0. The sample size used in this section is 30 w

rent from the sample sizes in other parts of this study because this will give us the chanc

to compare our results to theirs. We compared the kn C  estimators to the most efficient estimators 

in their study. Partial results of their simulation study are in Table 5-2. The distributions for the

X’s and Y’s in the regression model are of four types, Normal (N), Uniform (U), double 

exponential (D. exp), and contaminated normal (CN). The contaminated normal distribution 

),( 2σεCN  is defined as contaminated standard normal distribution with ε  the proportion of 
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contamination and σ  the ratio of standard deviations between the contaminated and 

noncontaminated parts.  

The first combination (normal for the error and uniform for the predictor) represents a 

standard situation when there are no outliers in the data. The second combination (normal for the 

error and CN(0.25, 100)  for the predictor) represents a contamination in the x-space. The las

two cases represent symmetric distribution with outliers for the error under uniform and 

contaminated normal for the predictor. Double exponential distribution was considered becau

t 

se 

it has a

ts 

d 

n the 

 

relation

 

o better when k=3 than k=2 except for when Y has double exponential 

distribution and X has uniform distribution. Comparing the nCk estimators, GT with k=3 gives 

 variety of application (Johnson et el 1994, p.201). Results based on 500 simulations are 

summarized in Table 5-3. Entries are relative efficiency which is the ratio of the MSE of the 

slope estimate relative to the MSE of the least square estimator based on 500 simulations.  

Our efficiencies for the HBR estimates in Table 5-3 are a little different from the resul

in Table 5-2 from Chang et el (1999) because the way the HBR estimates are calculated is base

on HBR weights which depend on initial location and scale estimates, tuning constants, and 

residuals from initial estimate. These weights are calculated using Fortran routines that might be 

different than some of the built-in R routines (Jeff Terpsta, 2007, personal communication).  

The GT estimator with k=3 shows a higher efficiency than all other estimates whe

response is normal and the predictor is uniform. The Wilcoxon rank-based is the most efficient in

 to the LSE whenever the x-values are contaminated. For the contaminated normal 

distribution, CN(0.25, 100), GT with k=3 outperforms the HBR estimate. If the response has 

double exponential distribution and the predictor is uniformly distributed, Theil estimator and 

TM with k=3 have high efficiency but not better than the rank-based and HBR estimates. We can

also see that GT and TM d
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the hig

on 

e to 

the LSE for each method. It is clear that Wilcoxon rank-based is more efficient under heavy-tail 

tarts to 

g

The only case where we might recommend nCk is when the response has normal 

distribution a  has un  distribution w  outliers. We recommend GT 

e  with as a bre n value of 0.21 and we don’t have to remove the 

nCk estimators are less efficient that the other estimators 

T e E  to t 1999). n=30 

tribution Y and X a

hest efficiency with respect to the LSE except for when Y has double exponential 

distribution and X has uniform distribution in which Thiel estimator has the highest efficiency

The  

.  

nCk estimation was also compared to Wilcoxon rank-based under the t-distributi

with 3 degrees of freedom. Table 5-4 contains the relative efficiency of the estimate relativ

distributions. We also notice that the efficiency of both GT and TM goes up at k=3 and s

o down as k decreases.  

nd the predictor iform ith few

stimator  k=3 since it h akdow

outliers from the data. Generally  

. 

able  5-2 Efficiency of th stimates Relative he LSE (Chang et el 

Dis  of Type of estim tor 
Y X Rank HBR 
N U 0.93 0.78 
N CN(0.25,100) 0.93 0.22 
D. exp U 1.34 1.42 
D. exp CN(0.15,16) 1.14 0.87 

 

Table  5-3  Efficiency of the Estimates Relati SE. Wilcoxon Rank-Based and HBR vs. 

Others. n=30 

Dis tion d Rank-based type nCk  of estima

ve to L

tribu  of Y an  X  Type tor 
Y Rank Thiel(k=2) GT(k TM(k=2)  (k=3) X HBR =3) TM
N 0.95 0.92 0.97 0.67 0.91 U 0.94 
N CN(0.25,100) 0.98 0.57 50 0.58 0.24 0.40 0.
D. exp U 1.39 1.36 1.32 1.15 1.35 1.40 
D. 0.15 1.27 1.00 1.03 0.78 0.91 exp CN( ,16) 1.25 
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Table tion w 5-4  Efficiency to LSE under t-Distribu ith df=3. n=15, 25 

n=15 
 k=2 k=3 k=4 k=5 Rank 

Int 1.44 1.52 1.47 1.40 1.55 GT 
Slope 1.54 1.61 1.54 1.45 1.66 
Int 1.27 1.59 1.54 1.46 1.55 TM 
Slope 1.30 1.69 1.61 1.51 1.66 

n=25 
 k=2 k=3 k=4 k=5 Rank 

Int 1.78 1.75 1 68 1.80 . 1.82 GT 
Slope 1.85 1.85 1.71 1.71 1.85 
Int 1.51 1.80 1.72 1.65 1.82 TM 
Slope 1.60 1.85 1.85 1.71 1.85 

 

In this simulation study we considered the normal distribution with outliers. The response 

was simulated from the model ii10i εxββY

5.6 Simulation Study under Normal Distribution with Outliers 
 

++= , n1,...,i = , where 0β =2 and 1β =1. We used 

,.1(=x

5, 65, 

ook’s distance 

combin

)n..,  i.e. fixed values from 1 to n. This model was used in simulation by Morton-Jones 

and Henderson (2000).  

For n=15 and n=25 after simulating data from the above model outliers were placed on 

the xy-direction by replacing the x-values of 1k  pairs by the 1k  values from (30, 40, 45, 5

75) beginning with x=4. This will create outliers with high Cook’s distance. C

es leverage and standardized residual into one overall measure of how unusual an 

observation is. 

For n=15 and n=25 after simulating data from the above model outliers were placed on 

the y-direction by replacing the y-values of 1k  pairs by 1k  values from (30, 40, 45, 55, 65, 75) 
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beginning with the pair with x=4. We only replace the y-values by these outlyi g points and keep

the x values unchanged. T

n  

his will create outliers with high standardized residuals. Large 

standar

igh 

than 

dized residuals imply the observation has an unusual response value.

For n=15 and n=25 outliers were placed on the x-direction by replacing the x-values of 

1k  pairs by 1k  values from (30, 40, 45, 55, 65, 75) beginning with the pair with x=4 and 

simulating y-values from the model using these x-values. This will create outliers with h

leverage values. The leverage value of an observation tells whether an observation has an 

unusual predictor which will result in a large influence on the regression coefficient. If it is larger 

 

n
2

The following facto

 the observation is considered influential. 

e changed: sample size n, subsample size k , and number of 

outliers , 

 to 

frequen

the 

t 

in relation to the LSE. When there are 4 outliers in the xy-direction, TM with k=2 gives the 

rs wer

 1k  as shown in Table 5-5. Outliers were placed once in the x-direction, the y-direction

and xy-direction. We studied the estimators GT and TM from section 5-4 and compared them

HBR and Wilcoxon rank-based estimates. As k increases, the outliers will appear more 

tly in the subsets we are taking and the estimator is expected to breakdown easily for 

large values of k so we focused on small values of k. Entries are relative efficiencies which i

ratio of the MSE of the LSE estimate (for intercept and slope) relative to the MSE of the 

estimator. For the LS estimate column, entries are the MSE’s. Results based on 500 simulations 

are in Tables 5-6 to 5-10.  

s 

When outliers are in the y-or xy-direction the efficiency of GT and TM is the highest 

most of the time when k=2, 3, and as k increases the efficiency decreases substantially. Thus 

attention should be paid to k=2, 3 when comparing GT and TM to other estimators. 

When n=15 and there are two outliers in xy-direction, HBR estimator is the most efficien
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highest efficiency, and when there are six outliers, GT with k=2 gives the highest efficiency. For

n=25 w

 

utlier n, HBR is the most efficient whearas when n=25 

and the

s are 

 Table 5-10 ator is higher than that of GT, 

TM, or

enerall s are in the xy-direction the HBR estimator is the most efficient, 

stimator) estimators 

m e

 outliers and the 

 

ith  two or four o s in the xy-directio

re are six outliers, TM with k=2 is the most efficient. 

When n=15, 25 with two outliers are in y-direction, rank-based estimator is the most 

efficient and if there are four or six outliers, GT with k=2 is the most efficient. When outlier

in the x-direction, the LSE is the best method because outliers give perfect fit to the line in this 

case as seen in . The efficiency of the rank-based estim

 HBR in this case. When there are 4 or 6 outliers GT or TM with k=3 are better than the 

HBR.  

G y when outlier

and when outliers are in the y-direction, rank-based or GT with k=2 (Thiel e

are the ain comp titors. Generally GT and TM don’t show much improvement over other 

existing methods but could be used in some special cases based on the number of

sample size.  

Table 5-11 contains the user computation time in hours for the MSE of the GT and TM

estimators for each k. The computation time increases substantially as k increases. 

 

Example 5.6.1  A random sample of size 10 was generated from the model ii10i εxββY ++= , 

n1,...,i = , where 0β =0 and 1β =2 where )10,...,1(=x . The x-values were changed for three 

to generate outliers in the xy-direction. The data set is (1, 1.5), (2, 4.0), (20, 7.0), (23, 8.2)

(27, 9.8), (6, 13.4), (7, 13.5), (8, 14.5), (9, 18.7), (10, 20.6). Figure 5-5 shows a scatter plot of the

data. We want a procedure that fits most of the data without being affected too much by the 

pairs 

,  

 

utlying observations (20, 7.0), (23, 8.2), (27, 9.8). For k=2 the GT estimate is (6.95, 0.40) and o
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the TM is (6.5, 1.0). The TM estimates are much closer to the true parameters than the GT. 

re  bivariate plot of the slope and intercept estimates for k=2. In this situation 

taking the Tukey median of both the intercept and slope is more appropriate than taking the 

median of the slopes and then estimating the intercept at the end (GT). The intercept is a 

nuisance parameter but the way it is estimated affect the efficiency of getting a good estimate of 

the slope. This explains the improvement of TM over GT when outliers are in the xy-direction. 

 

Figure  5-5 Example when outliers are in xy-d

       

Figu  5-6 shows a

irection     
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Figure  5-6  Bivariate Plot of the Slope and Intercept Estimates for k=2, n=10 

 
 

Table  5-5  Factors Changed in Normal Simulation 

Factor Levels 
Sample size 15, 25 
k  2, 3, 4, 5, 8 
# of outliers, 1k  0, 2, 4, 6 
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Table  5-6  Normal distribution. Efficiency Relative to LSE. Outliers are in xy-direction. 

n=15 

 k=2 k=3 k=4 k=5 k=8 Rank HBR LSE* 

Int 0.84 0.88 0.91 0.92 0.94 0.87 0.86 0.29  

GT Slope 0.90 0.95 0.97 0.97 1.00 0.95 0.92 0.00 

Int 0.68 0.88 0.94 0.97 0.99 0.87 0.86 0.29 

 

0=k  1
 

TM Slope 0.69 0.88 0.92 0.97 1.00 0.95 0.92 0.00 

Int 43.64 35.63 13.25 0.96 0.93 0.95 87.49 55.54  

GT Slope 45.20 36.79 14.24 1.03 0.99 1.02 100.96 0.91 

Int 40.23 37.00 22.29 13.28 1.03 0.95 87.49 55.54 

21 =k  

 

TM Slope 57.51 45.66 25.31 14.54 1.02 1.02 100.96 0.91 

Int 2.00 1.20 1.09 1.04 1.02 0.84 1.51 68.15  

GT Slope 1.82 1.12 1.05 1.02 1.02 0.96 1.43 1.03 

Int 8.69 2.71 1.01 0.99 1.00 0.84 1.51 68.15 

4k  1 =

 
 

TM Slope 12.40 3.40 1.01 1.00 1.00 0.96 1.43 1.03 

Int 7.10 1.49 1.14 1.06 1.05 0.91 1.11 63.26  

GT Slope 1.20 1.05 1.02 1.01 1.01 0.99 1.03 1.00 

Int 0.65 0.96 0.98 0.99 1.01 0.91 1.11 63.26 

61 =k  

 
 

TM Slope 0.98 1.00 0.99 1.00 1.00 0.99 1.03 1.00 

 

*Entries are mean square errors for the LSE. 
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Table  5-7  Normal distribution. Efficiency Relative to LSE. Outliers are on xy-direction. 

n=25 

 k=2 k=3 k=4 k=5 k=8 Rank HBR LSE* 

0.78 0.82 0.84 0.84 0.85 0.79 0.79 Int 0.17  

GT Slope 0.88 0.88 1.00 1.00 1.00 0.88 0.88 0.00 
1 =0 k

0.66 0.89 0.94 0.97 0.99 0.79 0.79 0.17 Int  

0.70 0.88 1.00 1.00 1.00 0.88 0.88 0.00 Slope TM 
108.63 107.11 91.93 72.41 0.87 46.76 149.24 49.10 Int  

GT Slope 149.48 143.73 120.55 93.43 1.13 60.27 219.82 0.37 
Int 97.53 100.12 81.94 62.02 20.39 46.76 149.24 49.10 

21 =k  

 

169.86 149.48 109.91 77.85 21.98 60.27 219.82 0.37 Slope TM 
76.96 47.06 1.20 0.98 0.94 1.00 194.04 142.48 Int  

GT Slope 73.56 46.60 1.27 1.03 0.99 1.05 178.02 0.89 
Int 91.95 57.65 27.15 12.98 1.09 1.00 194.04 142.48 

4k  1 =

  

127.16 70.09 30.28 14.13 1.08 1.05 178.02 0.89 Slope TM 
10.66 1.28 1.16 1.12 1.07 0.99 28.15 193.59 Int  

GT Slope 9.96 1.20 1.09 1.05 1.01 0.96 25.42 1.08 
Int 33.75 10.25 0.93 0.96 0.99 0.99 28.15 193.59 

61 =k  

  

43.38 12.66 1.03 1.00 1.00 0.96 25.42 1.08 Slope TM 
 

*Entries are mean square errors for the LSE. 
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Table  5-8  Normal distribution. Efficiency Relative to LSE. Outliers are on y-direction. 

n=15 

 k=2 k=3 k=4 k=5 k=8 Rank LSE* 

Int 94.48 54.80 29.00 3.81 1.90 95.34 88  

GT Slope 63.19 34.03 16.61 2.13 1.06 64.03 0.49 
Int 57.68 37.63 15.98 4.80 1.07 95.34 88 

2k  1 =

 
Slope 39.89 30.99 14.53 4.59 1.06 64.03 0.49 TM 
Int 164.73 16.61 3.43 2.35 2.41 141.86 336  

GT Slope 108.13 9.04 1.86 1.27 1.30 91.01 1.27 
Int 35.18 1.85 1.12 1.07 1.03 141.86 336 

41 =k  

  
Slope 23.56 1.38 0.97 0.98 1.01 91.01 1.27 TM 
Int 342.91 11.47 5.31 4.29 4.31 170.74 597  6

GT Slope 154.65 3.14 1.42 1.14 1.15 68.74 0.8 
Int 0.58 0.40 1.06 0.98 

1 =k  

0.99 170.74 597   

TM Slope 0.18 0.13 0.92 0.90 0.98 68.74 0.8 
 

Table  5-9  Normal distribution. Efficiency Relative to LSE. Outliers are on y-direction. 

n=25 

 k=2 k=3 k=4 k=5 k=8 Rank LSE* 

Int 103.74 79.58 64.38 50.61 1.69 99.85 50.40  

GT Slope 80.82 59.74 45.80 35.23 1.04 80.82 0.14 
Int 91.75 77.16 54.01 34.53 3.32 99.85 50.40 

21 =k  

 

TM Slope 65.43 59.74 44.32 29.87 3.24 80.82 0.14 
Int 170.34 66.41 4.58 1.71 1.44 144.56 248.34  

GT Slope 142.07 50.07 3.27 1.22 1.03 115.26 0.61 
Int 138.15 56.84 18.40 2.54 1.22 144.56 248.34 

4k  1 =

  

TM Slope 111.07 50.07 17.26 2.45 1.20 115.26 0.61 
Int 183.61 6.61 2.25 1.68 1.32 114.95 666.89  

GT Slope 160.88 5.07 1.73 1.29 1.02 94.38 1.42 
Int 90.82 13.61 1.74 1.25 1.07 114.95 666.89 

61 =k  

  

TM Slope 75.30 12.06 1.60 1.17 1.04 94.38 1.42 
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Table  5-10  Normal distribution. Efficiency Relative to LSE. Outliers are on x-direction. 

n=15 

 k=2 k=3 Rank HBR LSE* 

Int 0.63 0.71 0.75 0.65 0.14  

GT Slope 0.50 0.67 0.95 0.70 0.00 
Int 0.55 0.81 0.75 0.65 0.14 

2k  1 =

 
Slope 0.26 0.40 0.95 0.70 0.00 TM 
Int 0.70 0.78 0.76 0.66 0.12  

GT Slope 0.67 0.67 0.89 0.62 0.00 
Int 0.63 0.93 0.76 0.66 0.12 

41 =k  

  

TM Slope 0.40 0.67 0.89 0.62 0.00 
Int 0.69 0.79 0.78 0.70 0.13  

GT Slope 0.42 0.86 0.92 0.71 0.00 
Int 0.59 0.93 0.78 0.70 0.13 

6=k  1

 

TM Slope 0.24 0.76 0.92 0.71 0.00 
 

*Entries are mean square errors for the LSE. 

 

Table  5-11  Computation Time in Hours for MSE of GT and TM estimators. Number of 

Simulations=500 

 k=2 k=3 k=4 k=5 k=8 

n=15 0.45 1.98 6.26 15.48 28.97 

n=25 1.32 11.41 29.28 31.30 78.02 

n=30 1.91 22.19    

 

* No runs were done for k=4, 5 when n=30. 

 

 59



 

CHAPTER 6 - MULTIPLE LINEAR REGRESSION 

6.1 Introduction 

 

We will consider the multiple regression model εxβ...xβxββY pip2i21i10i +++++= , 

i ,...,1= here si 'ε  are identically independently distributed with distribution function F . The 

model can be written in εXβY

n , w

 the form, +=  where Y  is the vector of responses, X  is an n by 

p+1 matrix and β  is a p+1 vector of parameters, and ε  is the vector of errors. Multiple linear 

regression can be used to predict the boiling point of a hydrocarbon using the number of carb

atoms of a hydrocarbon and the molecular weight of that hydrocarbon. It can also be used to 

predict city’s future weekly fuel consumption using the average hourly temperature and the c

index as independent variables. The chill index measures weather-related factors such as th

wind velocity and the cloud co

on 

hill 

e 

ver. 

n

 form  

⎥

⎥

⎥

⎦

⎤

⎢

⎢
⎡ p1111

.....

X.XXY

 

atrix corresponds to 

experimental units of size k from the n experimental units, find the least square estimates using 

The following procedure defines an kC  estimator of β . The data can be written in a 

matrix

21

⎥
⎥

⎥

⎢
⎢

⎢

⎣ pn2n1nn

p222122

X.XXY
.....

X.XXY

Each row of the above m one experimental unit. We take all possible 

⎢
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each subsample, and take the Tukey median of those estimates Tβ̂  of pβββ ,..., 21 . The intercept

is estimated by )ˆy(med '− βx  where x  is the ith column of the design matrix. Note that to 

 

ii Τ i

estimate the p+1 parameters, k must be greater than or equal to p+1. The breakdown value of Τβ̂  

won’t exceed  1/(p+1), and as k increases the breakdown value will decrease since the outliers 

are more likely to appear in the su oose small values of k to 

estimate β . 

 with the sam

of parameters was set to 0  and errors are i.i.d. normal.  

 The first design is the Sphere (S). In this design the columns of the design matrix 

are randomly sampled from a )I,0(N  distribution. The second design is Vslash (V). The 

columns of the design matrix are randomly sampled from a )I,0(N  distribution and each was 

divided by a randomly selected uniform univariate. This design tends to produce a sprinkling of 

isolated very remote vectors (Hawkins and Olive 2003). The third design is Disk and Axle (DA). 

In this design each vector x  of the design matrix is divided into two subvectors, 1x  ([0.8n] by 1) 

and 2x ([0.2n] by 1).  The first component of x  is )N(0,ε2  and the rest are chosen from )I,0(N . 

om 

bsamples. Thus it is favorable to ch

 

6.2 Designs and Simulation 

 

 We considered different designs from Hawkins and Olive (2003) to study the 

performance of the proposed estimation procedures ple sizes n=15, 25. The vector 

1

The first component of the second subvector 2x  is a scaled chi-squared of p-1 degree of freed
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and the rest of the subvector was chosen from )I,0( 2εN . This gives a 20% contamination in the 

x-values. The value of epsilon used here is 4. 

 After constructing the design matrix as described above, we placed outliers on th

response vector randomly (R) or badly (B). For the randomly placed case, 0.2n outliers were 

placed on a randomly selected observation in the response vector. For the badly-placed optio

outliers were placed corresponding to the x-outlying cases. The badly-placed option applies only 

for the last design (DA) only because the first two designs have no x-outlying cases. 

e 

 

gn rando

a  

ire . 

data from the previous all combinations to get nine designs. Table 6-1 

contains the efficiency of each of the three estimators 210 β,β,β ˆˆˆ  with respect to the LSE. Table 6-

2 conatins results for n=25. Efficiency is the ratio of the MSE of the LSE relative to the MSE of 

the estimator. The methods compared are kn C  estimator, described in previous section, for k=3, 

4, LSE, Wilcoxon rank-based, and HBR estimates. The third and fourth column represent kn C  

for different values of k. 

n, 

 We also considered the outlier size. For the outlying cases, we added 6 to the y

value and called this plus (+) or we add +6 or -6 (the si mly determined) to the outlying 

cases and called this plus/minus (+/-). Since the vector of parameters, β , is zero, the outlier 

placement is applied directly to the y. We lso considered DA without placing any outliers on the

response vector to see the performance of the estimators when outliers are only in the x d ction

We simulated 
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Table  6-1  The efficiency of each of the estimators ( 210 β̂,β̂,  ) relative to LSE for k=3, 4. 

Number of simulations=500. n=1

β̂

5, p=2   

Design Est k=3 k=4 Rank HBR LSE* 

0β̂  3.53 3.41 3.69 3.70 1.65 

1β̂  1.60 1.44 1.72 1.74 0.64 
 + S R  

2β̂  1.63 1.46 1.68 1.81 0.61 

0β̂  3.94 3.54 3.91 3.89 1.54 + V R 

1β̂  1.48 1.37 1.70 1.69 0.63 

2β̂  1.44 1.31 1.71 1.72 0.58 

0β̂  4.42 4.05 4.79 5.68 1.58 

1β̂  0.87 0.92 1.53 1.18 0.16 
+ DA R 

2β̂  0.94 1.00 1.70 1.15 0.16 

0β̂  2.69 2.75 2.10 2.38 0.59 + DA B 

β̂  1.71 1.77 1.10 1.08 0.36 
1

2β̂  2.18 2.20 1.06 1.21 0.35 

0β̂  2.30 2.24 2.21 2.58 0.60 

1β̂  2.05 1.77 1.85 2.28 0.76 
+- S R 

2β̂  1.94 1.63 1.91 2.38 0.77 

0β̂  2.31 2.30 2.42 2.48 0.65 

1β̂  1.87 1.61 1.83 2.17 .79 
+- V R 

2β̂  1.84 1.62 1.64 1.93 .77 

β̂ 2.18 2.21 2.45 2.62 0.67 
0  

1β̂  

+- DA R 
1.02 1.04 1.55 1.26 0.21 

2β̂  1.02 1.05 1.50 1.46 0.19 

0β̂  1.86 1.90 1.30 1.58 0.37 

1β̂  2.08 2.10 1.13 1.28 0.44 
+- DA B 

2β̂  2.20 2.18 1.24 1.32 0.43 

β̂  0.55 0.65 0.59 0.57 0.07 
0

1β̂  

DA 
0.46 0.59 0.93 0.61 0.03 

2β̂  0.45 0.60 0.92 0.63 0.02 
 

* For the LSE MSE’s of β̂,β̂,  are in the last colum210β̂ n. 
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Table  6-2  The efficiency of each of the estimators (β  ) relative to LSE for k=3, 4. 

Number of simulations=500. n=25, p=2   

210 β̂,β̂,ˆ

Design Est k=3 k=4 Rank HBR LSE* 

0β̂  6.33 5.71 6.43 6.58 1.52 

1β̂  1.90 1.58 2.15 2.11 0.36 
 + S R  

2β̂  1.71 1.49 2.10 2.07 0.33 

0β̂  6.78 6.28 6.91 6.84 1.47 + V R 

β̂ 1.86 1.63 2.12 2.16 0.32 
1  

2β̂  1.71 1.53 2.16 2.20 0.33 

0β̂  5.98 5.70 7.08 7.65 1.50 

1β̂  0.88 0.84 1.80 1.35 0.08 
+ DA R 

2β̂  0.97 0.91 1.70 1.47 0.08 

0β̂  4.39 4.47 3.90 4.19 0.85 

1  β̂ 1.84 1.75 0.91 0.83 0.18 
+ DA B 

2β̂  1.86 1.74 0.95 0.94 0.20 

0β̂  2.61 2.56 2.59 2.69 0.32 

1β̂

+- S R 
1.89 1.66 2.18 2.40 0.42  

2β̂  1.94 1.73 2.57 2.90 0.36 

0β̂  2.64 2.64 2.68 2.79 0.38 

1  β̂ 2.00 1.75 2.31 2.60 0.35 
+- V R 

2β̂  1.95 1.74 2.26 2.45 0.37 

0β̂  2.97 3.16 3.05 3.26 0.36 

1β̂  1.07 1.05 1.77 1.79 0.08 
+- DA R 

2β̂  0.99 0.96 1.66 1.62 0.07 

0β̂ 2.30  2.27 1.79 2.09 0.26 

1  β̂ 2.32 2.14 
+- DA B 

1.02 1.19 0.25 

2β̂  2.11 1.98 1.00 1.07 0.25 

0β̂  0.53 0.57 0.56 0.50 0.04 

1β̂  0.47 0.53 0.98 0.59 0.01 
DA 

2β̂  0.47 0.54 0.95 0.63 0.01 
 

* For the LSE MSE’s of β  are in the last column. 210 β̂,β̂,ˆ
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A careful look at those designs showed that designs +SR,+VR, +-SR, and +-VR have 

outlying observations in the y-space.  Designs +DAR and +-DAR have some observations with 

extreme response values and others with extreme predictor values. Designs +DA B and +-DA B 

have large Cook’s distance. Design DA has outlying observations only in the x-space. For the 

designs +DA B and +-DA B, 2C  gives best results. The outliers in this design are badly placed

i.e., outlying y values were placed on the experimental units with outlying x- values. This is 

consistent with the results obtained from the simple linear regression when outliers are in the xy-

direction and the percentage of contamination is between 0.20 and 0.30 because  method 

(Tukey median, k=2) was more efficient than other methods. For design DA, the outliers are only 

in the x-direction and this makes LSE give perfect fit.  

n , 

kn C

kn C

n

, 

kn

kn

and goes down as the percentage of contamination increases.  

For designs +SR,+VR, +-SR, and +-VR, HBR is the best method. In these designs, 

outliers are in the y-direction  In designs +DAR and +-DAR, the Wilcoxon rank-based is more 

efficient than  and HBR because there are outliers in the x-values that have some 

contamination. This is consistent with the results of Chang et el(1999). 

The improvement in kC  is when data comes from the designs +DA B or +-DA B. For 

both designs outliers are badly placed so one might look at different contamination percentage 

for one of them. The design +DA B was studied under different the contamination percentage

0.05, 0.10, 0.15 and 0.20 when the sample size n=25 and k=3. The efficiencies with respect to 

the least square estimator are in Table 6-3. For 0.20 contamination the efficiencies are from 

Table 6-2. Table 6-3 shows that C outperforms other methods for those four contamination 

percentages. It is good to note that the efficiency of C  is the highest for 0.10 contamination 
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Table  6-3 Efficiencies for the design + DA B with different contamination percentage. n=25 

Design + DA B Est k=3 Rank HBR LSE* 

0β̂  1.43 1.17 1.27 0.12 

1β̂  2.76 1.49 1.80 0.19 
05.0=ε

β̂  

 

2
3.09 1.54 1.95 0.21 

0β̂  2.51 2.03 2.17 0.25 

1β̂  3.18 1.29 1.81 0.23 
10.0=ε

β̂  

 

2
3.20 1.35 1.72 0.24 

0β̂  3.58 2.79 2.97 0.50 

1β̂  2.68 1.05 1.20 0.22 
15.0=ε

β̂  

 

2
2.51 1.06 1.21 0.22 

0β̂  4.39 3.90 4.19 0.85 

1β̂  1.84 0.91 0.83 0.18 
 

2β̂  1.86 0.95 0.94 0.20 

20.0=ε

 

* For the LSE MSE’s of β  are in the last column. 210 β̂,β̂,ˆ
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CHAPTER 7 - SUMMARY AND CONCLUSION 

 

In Chapter 2 we considered estimators of the median of a symmetric distribution. We 

conclude that the GHL estimator doesn’t show much improvement over the HL estimator. The 

increase in the computation cost of the GHL estimator as k increases is another drawback. The 

robust and efficient HL estimator can be used to estimate location parameter of the model except 

for the double exponential distribution where the sample median should be used to estimate the 

population median.  

When deriving nCk estimate of the variance in Chapters 3 and 4 we had to obtain bias 

adjustment factors that depend on n, k, and the underlying distribution. In Chapter 3 we 

considered the normal distribution. We concluded that if the data are normally distributed and 

there are some outliers in the data, we can use the estimator 2
2n,2σ̂ . Comparing this estimator to 

other estimators in the literature showed an improvement in efficiency with respect to the sam

variance. For Chapter 4 when data comes form exponential or double exponential distribution the 

estimator  showed high efficiency with respect to the sample variance. The estimator 

2σd ˆ  is robust because it has high breakdown value of 0.29 and efficient as seen in the 

simulation results of Chapter 3 and 4. This estimator is recommended when outliers exist in 

normal data or data have exponential distribution or double expone

d

ple 

2
2n,2σd ˆ

2n,2

ntial distribution. 

kn C

In simple linear regression, the efficiency and robustness of the estimator depends on the 

number of outliers and their direction in the data. Generally for small samples the  

estimation didn’t show too much improvement over rank-based and HBR estimation in the 
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simple linear regression model except in one special case i.e. when the sample size is 25 and 

there are 6 outliers in the xy-direction. Here TM with k=2 outperforms other estimators. 

In multiple linear regression we used the concept of data depth to order the possible nCk 

estimators and took the Tukey median as the actual estimator. The problem with this approach is 

the computation time and the complication of programming, but it appears to be efficient in one 

case i.e. when there are observations with outliers in both x-values and y-values i.e. outliers with 

high Cook’s distance.  

The use of nCk estimators in conjunction with data depth is a new idea that may be useful 

if computational issues can be dealt with. Generally this technique showed some improvement 

over other methods especially for k=2. Larger values of k will give a higher chance for the 

outliers to appear in the data, and thus the estimator would break down faster. Over the class of 

problems considered here, the nCk estimators generally seem to do better for smaller k. In 

particular k=2 often gave the best efficiency among the nCk estimators. This is fortunate because 

k=2 is less computationally intensive than larger k. The nCk technique is quite general and may 

be used both in univariate and multivariate cases. 
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Appendix A - R-programs 

R code needed for simulation results is in the attached zip file. There are several folders 

named by the chapters and inside each folder, files are named either by the Table number, the job 

it does or both. Here are also the code for Chapter 2 simulations and some of the main functions 

used in the dissertation. Whenever  is larger than 5000, 5000 subsamples were taken 

without replacement and this is as efficient as taking all subsamples of size k. All simulation 

results can be reproduced using the seed 2010. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
n

N

N

placement were taken using the function 

“sample(x, k ,replace=F LSE)“  to find the variance estimator. 

orks in S or R 

, 0) else 

 r-1, v[-1])), 

            Recall(n-1, r, v[-1])) 

 

ann estimator 

                   

                 
 

=median(means)                      # the median of  

The following subset function takes the sample size, n, the subset size, k, and the vector 

of observations, v as input. It calculates all subsets of size k given v. For n=15, it was used for 

any k. For n=25, it was used only for k=2,3 only because for other values of k, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
n

 is huge 

(12650 for k=4) so 5000 samples of size k without re

A

 

subsets <- function(n, r, v = 1:n) # w

  if(r <= 0) vector(mode(v)

     if(r >= n) v[1:n] else { 

    rbind(cbind(v[1], Recall(n-1,

    

}

 
GHn15=function(x,k){                      # Generalized Hodges-Lehm
                                                           # for n=15. 

f A=round(subsets(length(x),k,x),4)   # all subsets o
                                                           # size k are in 
                                                           # rows of A. 

       means=apply(A,1,mean)               # mean function.
                                                      #applied to rows.     

     ans
    

 74



   ans 
   } 

es-Lehmann estimator 

                   
 

                 
 

ans=median(means)                      # the median of  

 
   } 

funct n(x, k =5000  {   le size. 

           re 
S      

ut 

         #original data.  S here replaces  (n choose k). 

 A=lapply(1:S, function(i) sample(x,k,replace=

   
             # A contains several resamples. 

 t <- do.call('rbind',A)  

x.  
             #    resamples are in rows. 

median(round(means,4)) 
s 

} 

d Hodges-Lehmann estimator to sample mean 

tions, one has to change the pdf function. 
 Sample size=15. 

  
 
 
GHn25=function(x,k){                      # Generalized Hodg
                                                           # for n=25. k=2,3. 
 A=round(subsets(length(x),k,x),4)   # all subsets of
                                                           # size k are in
                                                           # rows of A. 
     means=apply(A,1,mean)               # mean function.  
                                                           #applied to rows.
     
    
   ans
  
 
 
GHsam= io ,S ) # can be used for any samp
              # This is for n=25  k=4,5. 

     # only change k and S he
             # we take random  
             #samples witho
             # replacement 
             # each of size k from the  

    
   set.seed(2010) 
  FALSE)) 
 
              
  
 
  myma
 
               # to convert a list to a matri
  
 
   means=apply(mymat,1,mean) 
   ans=
   an
  
 
#########Comparing generalize
# under normal distribution ###. 
# For other distribu
#
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set.seed(2010) 
B=500  # Number of simulations. 

es=lapply(1:B, function(i) rnorm(n)) 

stmean=sapply(res,mean,simplify=T)# sample mean for each resample. 

arm=var(estmean)     # variance of the sample mean. 

msem=(mean(estmean))^2+var(estm
 # MSE of the sample mean. 

sts=sapply(res,median, simplify=T) 

ar1=var(ests) 

se1=(mean(ests))^2+var(ests) 

ias1=mean(ests) 

ff1=varm/var1 

###*****#######************ 

sts=sapply(res,function(x) GHn15(x,k), simplify=T) 

ar2=var(ests) 

se2=(mean(ests))^2+var(ests) 

ias2=mean(ests) 

ff2=varm/var2 

**#######************ 

sts=sapply(res,function(x) GHn15(x,k), simplify=T) 

ar3=var(ests) 

k1=0 
n=15 
 r
 
 
e
 
v
 

ean)  

 
k=1 
e
 
v
 
m
 
b
 
ef1=msem/mse1 
e
 
 
#
 
k=2 
e
 
v
 
m
 
b
 
ef2=msem/mse2 
e
 
#***
k=3 
e
 
v
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mse3=(mean(ests))^2+var(ests) 

ias3=mean(ests) 

ff3=varm/var3 

######*#######************ 

sts=sapply(res,function(x) GHn15(x,k), simplify=T) 

ar4=var(ests) 

se4=(mean(ests))^2+var(ests) 

ias4=mean(ests) 

ff4=varm/var4 

######*#######************ 

sts=sapply(res,function(x) GHn15(x,k), simplify=T) 

ar5=var(ests) 

se5=(mean(ests))^2+var(ests) 

ias5=mean(ests) 

 #eff based on MSE. 

d Hodges-Lehmann estimator to sample mean 

tions, one has to change the pdf function. 

k we use the function “GHn25” and for large k we use  

############### 
(2010)  

 
b
 
ef3=msem/mse3 
e
 
####
k=4 
e
 
v
 
m
 
b
 
ef4=msem/mse4 
e
 
####
k=5 
e
 
v
 
m
 
b
 
ef5=msem/mse5 
eff5=varm/var5 
ef1  
ef2 
ef3 
ef4 
ef5 
#########Comparing generalize
# under normal distribution ###. 
# For other distribu
# Sample size=25. 
#For small 
# GHsam. 
#############
set.seed
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B=500 

=25 

es=lapply(1:B, function(i) round(rnorm(n),4)) 

stmean=sapply(res,mean,simplify=T)        # sample mean for each resample. 

arm=var(estmean)               # variance of the sample mean. 

sem=(mean(estmean))^2+var(estmean)    # MSE of the sample mean. 

######################### 

sts=sapply(res,median, simplify=T) 

ar1=var(ests) 

se1=(mean(ests))^2+var(ests) 

ias1=mean(ests) 

ff1=varm/var1 

*****#######************ 

sts=sapply(res,function(x) GHn25(x,k), simplify=T) 

ar2=var(ests) 

se2=(mean(ests))^2+var(ests) 

ias2=mean(ests) 

ff2=varm/var2 

#*****#######************ 

sts=sapply(res,function(x) GHn25(x,k), simplify=T) 

ar3=var(ests) 

k1=0 
n
 
 
 r
 
 
e
 
v
 
m
 
####
k=1 
e
 
v
 
m
 
b
 
ef1=msem/mse1 
e
 
####
k=2 
e
 
v
 
m
 
b
 
ef2=msem/mse2 
e
 
####
k=3 
e
 
v
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mse3=(mean(ests))^2+var(ests) 

ias3=mean(ests) 

ff3=varm/var3 

######*#######************ 

sts=sapply(res,function(x) GHsam(x,k), simplify=T) 

ar4=var(ests) 
 
mse4=(mean(ests))^2+var(ests) 
 
bias4=mean(ests) 
 
ef4=msem/mse4 
eff4=varm/var4 
 
##########*#######************ 
k=5 
ests=sapply(res,function(x) GHsam(x,k), simplify=T) 
 
var5=var(ests) 
 
mse5=(mean(ests))^2+var(ests) 
 
bias5=mean(ests) 
 
ef5=msem/mse5 
eff5=varm/var5 
 
 
##  The varnoc function finds the estimate of the variance without adjustment ## 

  varnoc=function(x,k) { 

     A=round(subsets(length(x),k,x),2)  # all subsets of                   

                                                               # size k are in 

                                                              # rows of A. 

     varian=apply(A,1,var)                     # variance function                  

                                                           #applied to rows. 

     ans=median(varian)                     # the median of  

 
b
 
ef3=msem/mse3 
e
 
####
k=4 
e
 
v
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                                                          #variances. 

     ans 

     } 

 

 

# vard function to calculate the variance estimator from Johnson, Mcguire, and 

Milliken(1978). 

       # This function calculates Vk*. 

       # Assuming there are k1 outliers in the data and. 

   vard=function(x,k1) { 

# this function calculates Vk*. 

# note that it is for n=15,25, 100 

      # Assuming there are k1 outliers in the data and  

     # it is not neccessary equal to the true # of outliers. 

   pairs=pairup(x)  

  n=length(x) 

  k2=n-k1 

 # vk=(n-k1-1)/(k1*(k1-1)+k2*(k2-1)) 

  if (n==15)      vk=switch(k1,'1'=0.5913,'2'=0.4071,'3'=0.2953)  

   if (n==25)       vk=switch(k1,'1'=0.6995,'2'=0.5418,'3'=0.4339) 

  if (n==100)       vk=switch(k1,'1'=0.8823,'2'=0.8045,'3'=0.7421)   

  diff=pairs[,1]-pairs[,2]       # find all pairs Xi-Xj 

  u=rev(sort(abs(diff)))         # find the Uij 

         #  sort from largest to smallest. 

  a=u^2                  

  term1=sum(a)                 

  term2=sum(a[1:(k1*k2)])     # the second expression in Vk. 

 

  ans=(term1-term2)/(k1*(k1-1)+k2*(k2-1)) 

   ans=ans/vk # scaling as in the paper. 

  ans 
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  } 

 

 

 

# pairup function finds all pairs from the given vector# 

pairup=function(x,type="less") { 
 x=as.matrix(x) 
 n=dim(x)[1]  
i=rep(1:n,rep(n,n)) 
 j=rep(1:n,n)  
c1=apply(x,2,function(y){rep(y,rep(length(y),length(y)))}) 
 c2=apply(x,2,function(y){rep(y,length(y))}) 
 ans=cbind(c1,c2)  
ans=switch(type, less=ans[(i<j), ], leq=ans[i<=j, ], neq=ans)  
ans }  
 

## Function to calculate M-estimate of the variance##. 

Vms=function(x){ 

 n=length(x) 

k=0.973+3.353*(10^(-6))*(n^(1.5))-3.686*(10^(-7))*(n^3)+3.091*(n^(-1.5)) 

# if  n>100  k=.973. 

 const1=n*2.6*mad(x)/sqrt(n-1) 

 u=(x-median(x))/(2.6*mad(x)) 

  

 num=ifelse(abs(u)<=pi,(sin(u))^2,0)       # finding ui's such that abs(ui)<=pi 

                                                           # This for the expression in num. 

 num=sqrt(sum(num))                       # the sum in the numerator . 

 den=ifelse(abs(u)<=pi,cos(u),0)       # finding ui's such that (ui)<=pi 

                                                      # this is for the expression in the den. 

 den=abs(sum(den))                     # the sum in the denominator. 

 const2=atan(num/den) 

  sms=const1*const2 

 v=k*(sms)^2 

 v 
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 } 

 

 

 

##########################################************####### 

### The function “design “ generates data from the designs in Chapter 6.### 

### One has to specify the design and choose the right character value for ”method” and 

“out”.  For exam om design 3 with n=10 and two independent 

variables, we 10, 3, method=”DA”, eps=4, out=”PR”). 

 

design=function(n, p, method, eps=4,out){ 

#out takes four character values: 

# Design:  + S  R   method="S" out="PR" 

# Design:  + V  R   method="V" out="PR" 

# Design: + DA R   method="DA" out="PR" 

# Design: + DA B   method="DA" out="PB" 

# Design: +/-  S  R   method="S" out="PMR" 

# Design: +/-  V  R   method="V" out="PMR" 

# Design: +/-  DA R   method="DA" out="PMR" 

# Design: +/-  DA B   method="DA" out="PMB" 

 

 method=as.character(method) 

 out=as.character(out) 

 mu=rep(0,p) 

 mu=as.vector(mu) 

 sigma=diag(p) 

 a=runif(p) 

 k1=0.8*n 

 k2=0.2*n 

  if(method=="S")  X=mvrnorm(n,mu,sigma) else 

 if(method=="V") { X=mvrnorm(n,mu,sigma); apply(X,2,function(x){x/runif(1)}) } else  

ple if we need data fr

 call the function by design(
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 if(method=="DA")  

 X=rbind(rnorm(p,0,eps^2),mvrnorm(k1-1,mu,sigma),rchisq(p,p-

1)/sqrt(2*p),mvrnorm(k2-1,mu,eps^2*sigma)) 

 

if(out=="PR"){ y=rnorm(n);  

i=sample(seq(1:n),k2,replace=FALSE); 

y[i]=y[i]+6 } 

 

 

if(out=="PB") { 

y=rbind(as.matrix(rnorm(1)+6), 

as.matrix(rnorm(k1-1)), 

as.matrix(rnorm(1)), 

as.matrix(rnorm(k2-1)+6)) } 

 

if(out=="PMR") { 

y=rnorm(n); 

i=sample(seq(1:n),k2,replace=FALSE); 

ran=sample(c(-1,1),k2,replace=TRUE); 

y[i]=y[i]+ran*6 

} 

if(out=="PMB") { 

y=rbind( as.matrix(rnorm(1)+sample(c(-1,1),1)*6), 

as.matrix(rnorm(k1-1)), 

as.matrix(rnorm(1)), 

as.matrix(rnorm(k2-1)+sample(c(-1,1),k2-1,replace=TRUE)*6)  ) 

 } 

 

Z=cbind(y,X) 

Z 
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} 

 

###########################################********############### 

# The function “design9” generate data  for design “DA” the last design in Chapter 6. 

design9=function(n,p,eps=4){ 

library(MASS) 

 mu=rep(0,p) 

 mu=as.vector(mu) 

 sigma=diag(p) 

 a=runif(p) 

 k1=0.8*n 

 k2=0.2*n 

  X=rbind(rnorm(p,0,eps^2),mvrnorm(k1-1,mu,sigma),rchisq(p,p-1)/sqrt(2*p) 

,mvrnorm(k2-1,mu,eps^2*sigma)) 

 Z=cbind(rnorm(n),X) 

 Z 

 } 

### The function “betanck1” calculates the generalized form of Thiel estimator as 

explained in Chapter 5. It takes a matrix with the first column as the response and the 

second column as the predictor. ### 

 betanck1=function(X){  # Y is a vector of responses. is the first column of X. 

                         # X1 is a vector of values for the predictor. It is the 

 second column of X. 

   n=length(X[,1]) 

        N=choose(n,k) 

       a=seq(1:n) 

       S=5000 

       numbers=subsets(n,k,a) 

       # to take all N rows of size k from 

       #the matrix, I do that for the indexes 

       # then apply it to the rows of A 
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       # to get all matrices of size k. 

 g=function(mat) { # X is a submatrix containing nck responses and 

        # nck values of the predictor. 

        ans=lm(mat[,1]~mat[,2])$coef 

         ans=ans[2] 

         ans } 

    if (N<=5000) res=lapply(1:N, function(i) X[numbers[i,],]) else 

   res=lapply(1:S, function(i) X[sample(n,k,replace=FALSE),]) # When N>5000. 

      betam=sapply(res,g, simplify=TRUE) # No problem at all. 

     est=median(betam,na.rm=T) 

     int=median(X[,1]-est*X[,2]) # intercept estimate. 

    ans=matrix(c(int,est)) 

    ans 

       } 

####################################################### 

###The function “betanck2” finds the regression estimates in the simple linear regression 

using Tukey median approach ####### 

 betanck2 

function(X){  # Y is a vector of responses which is the first column of X. 

 # X1 is a vector of values for the predictor which is the second column of X. 

   n=length(X[,1]) 

    # Will give an nck estimate of beta based on halfspace depth. 

     # After centering Y and X  fit regression line. 

        N=choose(n,k) 

       a=seq(1:n) 

       numbers=subsets(n,k,a) 

       # to take all N rows of size k from 

       #the matrix, I do that for the indexes 

       # then apply it to the rows of A 

       # to get all matrices of size k. 

g=function(mat) { # X is a submatrix containing nck responses and 
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                # nck values of the predictor. 

              ans=lm(mat[,1]~mat[,2])$coef 

              ans } 

    S=5000 

    if(N<=5000)  res=lapply(1:N, function(i) X[numbers[i,],]) else 

    res=lapply(1:S, function(i) X[sample(n,k,replace=FALSE),] ) 

      betam=sapply(res,g, simplify=TRUE) # No problem at all. 

      betams=t(betam) # transpose because dmean receives a matrix 

                     # of vectors each in a row. 

                     # vectors must be in the rows of the matrix. 

    est=dmean.for(betams,tr=0.5)      # dmean(,0.5) will  give the Tukey 

    est=matrix(est) 

    est       } 

 

###################################****########**** 

####The function “betanckm” calculates the regression estimates using Tukey median in 

multiple linear regression ###### 

 

## Data Depth functions: 

 

###The function dmean.for calculates Tukey median on unix machine. 

## This function needs eight Fortran functions. They are “depth2.for”, 

“depth3.for“,“fdepth.for“,“fdepthv2.for“,“depth2.o“,“depth3.o“,“fdepth.o“, and 

“fdepthv2.o“.  The functions ending with  “ .o “  must to be stored in the directory where 

R is being run. The functions ending with “.for” need to be sourced. These functions are 

also saved in the Folder R functions under “data depth functions” and under unix files. 

Note that for “dmean.for” to calculate Tukey median the trimming proportion should be 

0.5, “tr=0.5”, and it takes a matrix with observations in rows #### 

 

 dmean.for 

function(m,tr=.2,v2=T,center=NA){ 
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# Compute multivariate measure of location 

# using Donoho-Gasko method. 

# v2=T, use slower but more accurate approximation 

# of halfspace depth. 

# v2=F, use only projection based on lines through center 

# and each of n points. 

if(is.list(m))m<-matl(m) 

if(!is.matrix(m))stop("Data must be stored in a matrix or in list mode.") 

if(ncol(m)==1){ 

if(tr==.5)val<-median(m) 

if(tr>.5)stop("Amount of trimming must be at most .5") 

if(tr<.5)val<-mean(m,tr) 

} 

if(ncol(m)>1){ 

m<-elimna(m) 

if(ncol(m)==2)temp<-depth2.for(m,plotit=F) 

if(ncol(m)==3)temp<-depth3.for(m) 

if(!v2 && ncol(m)>3)temp<-fdepth.for(m,center=center) 

if(v2 && ncol(m)>3)temp<-fdepthv2.for(m) 

mdep<-max(temp) 

flag<-(temp==mdep) 

if(tr==.5){ 

if(sum(flag)==1)val<-m[flag,] 

if(sum(flag)>1)val<-apply(m[flag,],2,mean) 

} 

if(tr<.5){ 

flag2<-(temp>=.2) 

if(sum(flag2)==0)flag2<-flag 

if(sum(flag2)==1)val<-m[flag2,] 

if(sum(flag2)>1)val<-apply(m[flag2,],2,mean) 

}} val } 
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Appendix B - Programs Checks 

Small data sets were used to verify that the functions are right. I find the estimator by 

hand and use the program to find it.  For example if n=5 and we have the observation, 4, 7, 2, 

and 8, then all subsample of size 3 are }8,2,7{},8,2,4{},8,7,4{},2,7,4{ and the variances of each 

subsample are 6.333, 4.333, 9.333, and 10.333 respectively. The median of the variances is 

7.833. The program  varnoc gives 7.833 for k=3. 

For the efficiency calculation in section 5.5, the values of the efficiencies are consistent with the 

efficiencies calculated in Chang et el (1999).  

In the regression model, I also tried the programs for small data sets. The Tukey median 

of the data set (1,1) ,(1,4),(4,1),(4,4), and (3,3)  is (3,3). “dmean.for(x,0.5)=(3,3)”. The program 

gives this value too. 
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