
AN ANALYSIS OF CHANGES DURING
MAINTENANCE OF A C SOFTWARE SYSTEM

by

KYUNG HEE AN
* r

B.S., Korea University, 1977

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Appro^ved by:

Major Professor

A11ED7 305015

TABLE OF CONTENTS

LISTS OF TABLES ii

Chapter 1. OVERVIEW 1

Chapter 2. DATA COLLECTION AND ANALYSIS 4

2.1 Developing Definitions 4

2.2 Choosing C Modules 5

2.3 Writing Programs 6

2.4 Analyzing Data by Using the Statistic Packages 6

Chapter 3. DATA ANALYSIS 9

Chapter 4. THE RESULTS 14

4.1 Lines of Code 16

4.2 Weight 17

4.3 Average Nesting Level 19

4.4 Module Changes 20

4.5 Predictors 22

Chapter 5. CONCLUSIONS 23

Chapter 7. FUTURE WORK 27

REFERENCES 28

APPENDIX A. SHELL PROGRAMS 30

APPENDIX B. RAW DATA(123 cases and 18 variables) 35

APPENDIX C. STATEMENT TYPES 38

i

LISTS OF TABLES

1. The Data Analysis Table 10

2. Changes in Lines of Code 16

3. Changes in Weight 17

4. Changes in Average Nesting Level 19

5. Changed versus Not Changed Modules 20

6. Predictor Table 22

ii

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. David A.

Gustafson for his dedicated assistance in the preparation of

this thesis, and to my parents, Dalsoo & Jeungsul An, who

supported me while studying in the United States.

Chapter 1. OVERVIEW

Software maintenance of computer systems is an essential

task. Maintenance is a difficult and expensive activity; more

time and money are spent in software maintenance than in software

development. Current demands require the development of good

tools for evaluating software during maintenance. The

maintenance tasks would be simplified by knowing which modules

are most susceptible to change and which ones should be

rewritten.

Literature Survey

The maintenance process has not been sufficiently well

explored. Some methods exist for predicting development

characteristics of the maintenance process. No single technique

can hope to solve the maintenance problem which will remain a

challenge to produce greater flexibility and longer life-

cycles[PARR:Pa79] . By given explicit attention to characteristics

of both software quality and requirements for long-term

maintenance we can produce significant savings in software

lifecycle costsCBROWN:Bo76 and GILB:Gi79]. Application of

improved development techniques has emphasized the need for

improved techniques for requirements analysis and specification.

The use of these techniques and their relationship to each other

are not often clear[FREEMAN:Fr 79] , and the need for continuing

maintenance and change of software is not primarily due to a lack

of foresight or to poor planning[LEHMAN:Le79] . An understanding

1

of the maintenance process might be based on working with real

software by improving the efficiency of the maintenance [PARR:

Pa79]. The quantitative approach provokes us to ask better

questions about the known effects of the various technological
»

alternatives[GILB:Gi79]

.

There are two different approaches for assessing software

maintainability. One is based on the extent that program

difficulty represents the sum of the difficulties of its

constituent elements of sof tware[BERNS :Be84 and HALSTEAD:E176]

.

The other is based on a quantitative evaluation of software

quality by collecting experience data in a form suited to our

future and common needs[GILB:Gi79 and BOEHM:Bo76]. In the former

case, the elements of software are quantified by attributes and

interrelationships for checking the program difficulty or

understandability rather than usability, reliability, and

modif lability. In the latter case, the collection of empirical

data from ongoing maintenance processes in order to measure the

nature of the software is needed. The nature of maintenance work

suggests that empirical analyses are the most appropriate in

leading us to a greater understanding of the structure of large

software systems [PARR:Pa79 and HENDERSON: He79]. These analyses

may form one of the formal methodologies for the development of

quality software[A B Marmor -Squires :Ma79]

.

This research is based on the development of a maintenance

measure which was specified in the software measures research by

Dr. Gustafson. The research has two fields of study. One is to

develop a maintenance theory of changes and derive the method of

2

predicting changes from the theory. The other is to develop a

maintenance measure that depends upon the empirical data of

software changes. The empirical data will be obtained from the

source code. This study uses the latter approach. The maintenance

measure of this study could help the maintenance tasks.

We conducted an experiment to investigate changes between

Systems and Systems of Unix. The Systems is the older version,

and the Systems is the newer version which was created from

Systems. The experiment was to analyze the differences between

the two versions. All the C modules were processed by our

analysis programs. The differences were studied as changes to

the older version. The changes were analyzed using several

statistical packages to find relationships among the changes. The

results support the development of a maintenance tool that could

be used to predict the modules most likely to be changed. The

ability to predict where changes will occur during maintenance

and enhancement could minimize the extent of changes and reduce

the maintenance cost.

This thesis includes an explanation of the data collection

and analysis, discussion of results, an interpretation of

results, a statement of conclusions, and suggestions for future

extensions

.

3

Chapter 2. DATA COLLECTION AND ANALYSIS

The first step of our research was to analyze the relation

of changes between the C modules of Unix Systems and Systems.

The analysis performed in this research was aimed at better

understanding maintenance and at developing predictive methods

for the maintenance process. The sequence of the analysis was as

followings; First, definitions about changes were developed.

Second, 123 pairs were chosen, consisting of 35,464 lines of code

in System3 and 46,023 lines of code in Systems. Third, programs

were written to collect all the information. Forth, the empirical

data were analyzed by using several statistical packages.

2 . 1 Developing Definitions

Some specialized definitions were developed for the analysis

according to the software measures research. The definitions for

the possible changes of the modules were developed and evaluated.

The chosen definitions are given below:

1) changes[type] : number of statements of specified type that
have been changed.

2) change percent [type] : percentage of type that has changed.

change percent = (changes [type] / total number) * 100

3) average nesting level : the average level of nesting for
the statements in a module.

average nesting level = (SUM {i =0 to n} of i*nli) / LOC

nli : the number of statements at nesting level i

LOC : lines of code
SUM : summation

4) weight[type] : the number of statement changes for each
statement type for initial study[Gu8S].

4

weight = SUM {i =0 to k} of (weight [type] * xi

)

xi : the number of occurrence of statement type

5) weight / LOG : the number of statement changes per line.

Those terms were used to assess the modules for our

empirical data in terms of the lines of code (LOG) , weight, weight

per line, and average nesting level. The lines of code shows how

many lines a module has or how big it is. The weights represent

the change percentages for the program statements in each module.

The weight[type] of each statement type was measured in the

original research paper[Gu85] for seeing what statement types are

most likely to be changed. The weight is quantified by the number

of each statement based upon the change percent. So the weight

was used as a possible measure for predicting further changes.

The average level of nesting for the statements in a module is

determined by the indented tabs of each line. The average nesting

level represents the indented levels per line for checking how

much a module is nested.

2 . 2 Ghoosing C Modules

All the G modules between System3 and System5 which had the

same names in both directories were processed. Other modules were

considered as improvements or changes of the system capabilities

and not as merely maintenance. The total number of G modules in

each system was 140. 123 modules were chosen among those for our

empirical study. The other seventeen modules in Systems did not

have counterparts in Systems.

5

2 .

3

Writing Programs

For the analysis, several programs were written as shell

programs in Unix. The programs were designed to collect the

information for the different stages of each module; First, the

indentation program [Appendix A.l] counts tabs of each line and

calculates the average tabs which is defined as an average

nesting level. Each line is classified into level zero to six

based on the number of tabs. Second, the program[Appendix A. 2]

for nesting levels searches all the program reserved words and

gathers the word counts for each module. The other part of the

program[Appendix A. 3] quantifies the weight according to the

counts. The main program generates the lines of code, weight, and

weight per line. A processing time of five hours was needed to

execute the two whole directories of Unix with these programs.

2.4 Analyzing Data by Using the Statistic Packages

Three statistical packages were used to analyze our

empirical data which obtained from the C modules between System3

and Systems. We used three steps to start the analysis of the

data. The processing steps are as followings:

First step; The possible relations of our specialized terms

were expanded and all the values were calculated by

the shell programs. 18 variables and 123 cases were

created for the next processing. The empirical data

were manipulated by the Excel system which is an

advanced worksheet package for the Macintosh.

Second step; We used the Macspin for finding what sort of

relations exist. Macspin is a statistical analysis

6

tool which is designed for high performance

interaction with multivariate data. We checked all

the relations with our statistical data by using

graphical displays. We could find some relations

and estimate the patterns through the three

dimensional scatterplots of the data. The second

processing step gave us the possible relationships

that were quantified in step three.

Third step; The 18 variables and 123 cases (modules) were

analyzed by Statfast which is a general

statistical package. The package performed the

statistical procedures such as t-test, student F-

test, correlations, and multiple regression. The

multiple regression was used to perform relative

analyses on the data. This analysis allowed us to

see the means, standard deviations, and the

correlation matrix. The matrix of correlations were

displayed as a table with 18 by 18 variables. We

could observe the minimum relationships with the

table. Performing the stepwise regression analyses,

F-test for one dependent variable and t-test for

several independent variables were evaluated based

on the hypothesis tests to determine whether or not

we can be reasonably confident that variables are

related. The multiple regression analysis was used

to know which variables will be strong predictors

among several independent variables by the tests.

7

We obtained valuable results by repeating this step

for different dependent variables. All the results

were processed through the three steps.

Footnotes

* Excel, a registered trademark of Microsoft Corporation, is a

spreadsheet product for Macintosh that provides database and

graphic functions, and designed for numerical processing

applications.

* Macspin, a registered trademark of D2 Software, Inc., Austin,

Texas, is a tool for enable for looking at three and higher

dimensional data and displays abstract multivariate data in a

direct way. Its display can reveal striking patterns and

relationships

.

* Statfast, a registered trademark of StatSoft, Inc., is a high

performance statistical package developed in FORTRAN (MacFor-

tran, Absoft, Inc) and offers the speed for performing

statistical analysis that makes it fully suitable for

scientific and business applications.

* Macintosh, a trademark licenced to Apple Computer, Inc., is a

32 bit micro computer has powerful 68000 CPU.

* UNIX is a registered trademark of AT&T.

8

Chapter 3. DATA ANALYSIS

The data analysis was performed by the three statistical

packages. The source data[Appendix B] were obtained from the

source codes between two directories of Unix. The data were

evaluated by the packages through the specialized capabilities

such as numerical processing, graphical analysis, and statistical

analysis. The dependent variables of Systems were compared with

the independent variables of Systems for the analysis[Table 1].

The relative relations between a dependent and independent

variables were tested by the multiple regression. The hypothesis

test was used to determine whether an independent variable is

acceptable or not. For example, the first dependent variable in

Table 1 is lines of code of the Systems and the independent

variables consist of lines of code, weight, weight per line, and

average nesting level of the systems. The lines of code in

Systems was highly correlated with the lines of code(99.99%) and

weight (88.6%) of System3. The positive relationship for lines of

code and the negative relationship for the weight suggest that we

can predict both relationships. But the low percentage of

significant levels of the weight per line(28.4%) and average

nesting level (57. 4%) imply that we can not predict the

relationships because of the lack of significances. The

explanatory evaluations for each variable are given in the result

section.

9

Table 1 The Data Analysis Table

1 Dependent Variables
|

Independent Variables

1 (123 modules of each)
|

LOG 3 1 WE 3 IWE/L0C3 Av.nst3

Relationships
|

pos 1 neg
1 pos neg

1 confidence:
|

1 99.99% 1

1 correlation: I

1 U • / 44 /
1

Signi f i cance (%)

|

99.99
1 88 .

6

1 28 .

4

57.4

F: 34.2 > 4.95
I

F: 45.6 > 5.78
I

F : 69 . > 7.32
I

99.99
1

99.99
1

yy . yy i

88 .

6

85. 3

y 1 .

7

1 28 .

4

1 12.1
57.4

1 WEd
I Relationships

i pos 1 pos
1

pos neg

1
confidence: |-

1 99.99%
1

1
correlation:

|

0.6623
1

Signi f i cance (%)

I

95.7
1
13.8 23.6 50. 7

F: 21.5 > 4.95
I

F: 43.5 > 7.32
I

F: 87.1 > 11.4
1

95.7
1

99.99
1

yy . yy i

13.8 23.6 50 . 7

47.1

1
WE/L0C5

1 Relationships
| pos

1 pos pos neg

confidence: |-

Significance (%)

j

5.9
1 12.9 99.99 15.8

99.99%
1

correlation:
|

0.8655
1

F: 82.1 > 4.95
I

F:166.5 > 7.32
I

5.9
1 12.9 99.95

1

99.95
1

15.8
15.3

Av nst5
1 Relationships

| pos
1 neg pos

1
pos

confidence: |-

Signif icance(%)

|

93.4
1 82.2 23.4

1 99.99

99.99%
1

correlation:
|

0.9770
1

F:577.2 > 4.95
I

F:776.0 > 5.78
I

93.4 1

95.9
1

82.2
86.4

23.4
1 99.99
99.99

10

(continued)

LOC5-LOC3

confidence

:

90.9%
correlation!

0.2634

Relationships

Significance (%

)

F: 2.050
F: 2.711
F: 3.811

pos

96.2

96.2
97.7
97.6

neg

88.6

88. 6

91.6
91.7

pos

28.4

28.4

neg

57.4

57.4
52.9

(LOC5-LOC3)
/ LOG 3

confidence

:

36.4%
correlation

;

0.1503

Relationships

Significance (%)

pos

75. 7

neg

76.8

F: 0.636
F: 0.705
F: 0.513

75. 7

66.2
64. 7

76.8
68.1
68. 3

pos

48.4

48.4

neg

76.9

76.9
70.1

WE5 - WE3

confidence

:

86.9%
correlation;

0.2485

Relationships

Significance (%)

pos

95.7

neg

88.9

F: 1.809
F: 2.404
F: 3.417

95. 7

97.7
97.6

88.9
92.8
92.9

pos

23.6

23.6

neg

50. 7

50. 7

47.1

(WE5-WE3)
/ WE3

confidence

:

99.99%
correlation

;

0.4470

Relationships

Signif icance(%)

neg

99.4

pos

99.4

F: 6.87 > 4.95
F: 9.22 > 5.78

99.4
99.6

99.4
99.5

neg

99.99

99.99
99.99

neg

16.2

16.2

(WE/L0C5)
-(WE/L0C3)

confidence

:

99.99%
correlation

;

0.4259

Relationships

Signif icance(%)

F: 6.09 > 4.95
F:12.23 > 7.32
F:24.64 > 11.4

pos

6.6

6.6

pos

12.2

12.2

neg

99.9

99.9
99.9
99.9

neg

16.4

16.4
15 .8

[(WE/L0C5)-
(WE/L0C3)]

/ (WE/L0C3)
confidence

:

99.99%
correlation

:

0.5122

Relationships

Signif icance(%)

F: 9.78 > 4.95

neg

99.9

99.9

pos

99.8

99.8

neg

99.99

99.99

neg

17.2

17.2

11

(continued)

(Av_nst5 -

Av~nst3

)

confidence

:

99.8%
correlation

;

0.3843

Relationships
I

pos
1

neg
1

pos
1 neg

Signif icance(%)

I

93.4 1 82.2 1 23.3 1 99.9

F: 4.77 > 4.50 1

F: 6.38 > 5.78 1

F: 8.37 > 7.32 I

93.4 1

95.9 1

96.8
1

82.2
86.4

1 23.3 1 99.9
1 99.9
1 99.9

Relationships
|

pos 1 neg
1

neg
1

neg

Signif icance(%)

|

6.3
1
15.9 1 30.2 1 94.3

F: 1.490 ~
1

F: 2.798 ~
j

F: 5.087 ~
|

6.3
1 15.9 1 30.2

1 52.5
1 94.3
1 95.1
1 97.6

Relationships
| neg

| pos 1 neg
1 pos

Signif icance (%)

|

25. 7 1 5.7 1 57.8 1 80.2

F: 1.192 ~
1

F: 1.881 ~
1

F: 2.379 ~
I

25. 7 1

75.8
1

5.7 1 57.8 1 80.2
1 90.6
1 87.8

(Av_nst5-
Av_nst3)

/ Av . n-s 1

3

confidence

:

79.1%
correlation;

0.2267

LOC5-LOC3
= (8)

LOG 5 -LOG

3

= 1 (115)

correlation:
0.2120

* pos is a positive relation, and neg is a negative relation.

12

(continued)

LOC5-LOC3 vs. WE5-WE3 vs. Av nst5-Av nst3

Dependent Variables
j Independent Variables

(123 modules of each) |

#: Distribution Table
|

WES -WE 3 1

WE/LOGS

WE/L0G3

1 Av nstS

1 Av nst3

LOC5-LOC3 1 Relationships
| pos

1 neg
1 pos

confidence:
I

99.99% I-

correlation:
|

0.9892
1

Signi f icance (%)

|

99.99
1 99.99 1 99.9

F: 1682.35 I

4.95 1

t: 65.821
3.841

t: 6.07
3.84

1 t: 3.39
1 # 3.16

Dependent
LOGS 1

LOG 3 1

WE/LOGS

WE/L0G3

1 Av nstS

1 Av nst3

WES-WE 3 1 Relationships
| pos 1

pos
1 neg

confidence:
|

99.99% I-

correlation:
|

0.9973
1

Significance (%)

|

99.99 1 99.99 1 99.7

F: 1748.12
i

4.95 1

t: 65.821
3.841

t: 6.65
3.84

1 t: 3.03
1 #2.76

Dependent
LOGS 1

L0G3 1

WES-WE3
1 WE/LOGS

1 WE/L0G3

Avnst5-Avnst3

I

Relationships
|

pos 1 neg
1 pos

confidence:
|

99.99% 1-

correlation:
|

0.515 3 1

Signif icance(%)
I 99.9

1
99. 7 1 99.99

F: 13.23
1

4.95
1

t: 3.39 1

3.16
1

t: 3.03
2.76

1 t: 4.89
1 # 3.84

13

Chapter 4. THE RESULTS

The technique of the regression analysis was used to check

on relationships between variables and also to assist in

determining the best set of predictor variables. In order to

evaluate some observed values among several variables, an

hypothesis test was performed first. The alternative hypothesis

is two sided. We tested all the predictors in order to detect

those inversely related to Y axis as well as those directly

related. The null and alternative hypotheses could alternatively

be written in vector notation as

Y = A + BlXl + B2X2 + . . . + BkXk + e

HO : B = (no relationship) : reject
HI : B > (direct relationship) : accept
HI : B < (inverse relationship) : accept

H : hypothesis
Y : linear function of k predictor variables, XI, X2 , ... Xk
A : significance level
B : significance from a regression equation
e : error term

The test showed which was acceptable or rejectable in a given

criteria.

In order to verify the validity of the predictors. The F-

distribution and the student's t-distr ibut ion were used to test

whether there were significant differences between the means of

samples drawn from the normally distributed variables. Therefore,

F-test was performed for a dependent variable among multiple

variables with a confidence level and t-test was performed for

multiple independent variables with several significant levels

for the several variables.

14

If the F value or t_values are acceptable, the relationships

among the several variables exist. So, the regression analysis

was concerned with investigating the relationships among several

variables by showing which variables could be strong predictors

of the response variable.

The experiment was to analyze two versions of Unix between

dependent variables and independent variables. The variables were

chosen among the terms which specified in the software measures

research. The relative relations between a dependent and

independent variables were obtained by the multiple regression

test

.

The percentage of the confidence level and significant level

was used to determine whether the variable is reliable or not.

Usually, the levels with over 75 percent will be considered

reliable by most logicians and mathematicians.

The negative value of t-test implies a negative correlation

between variables, and the positive value implies a positive

correlation between variables. So, the variables were evaluated

by the correlations.

15

4.1 Lines of Code

Dependent Variables I
Independent Variables

(123 modules of each)
|

LOG 3

1

1 WE3 1 WE/L0C3 Av.nst3

LOC5-LOC3 1
Relationships |

pos
1

neg
1

pos neg

confidence: I-

90.9% 1

correlation: I

0.2634 1

Signif icance(%)

I

96.2 1 88.6
1
28.4 57.4

F: 2.050 ~
1

F: 2.711 ~
1

F: 3.811 ~
i

96.2
97.7
97.6

1 88.6
1 91.6
1 91.7

1
28.4 57.4

52.9

(LOC5-LOC3)
1

/ L0C3 I-

confidence: I-

36.4% 1

correlation:
|

0.1503 1

Relationships
|

pos 1
neg

1
pos neg

Signif icance (%)

|

75. 7 1 76.8
[
48.4 76.9

F: 0.636 ~
1

F: 0.705 ~
1

F: 0.513 ~
1

75. 7

66.2
64. 7

i
76.8

1 68.1
1 68.3

1
48.4 76.9

70.1

Table 2 Changes in Lines of Code

The partial results of the multiple regression test for

changes in lines of code are given in Table 2. The dependent

variable is the increase in the number of lines of code and the

independent variables consist of lines of code, weight, weight

per line, and average nesting level of the system3. We

investigated how the lines of code in System5 are related to the

lines of code, weight, weight per line, and average nesting level

of Systems.

The increase in lines of code in System5 was highly

correlated with the lines of code(96.2%) and weight (88.6%) of

System3 with significant levels that were much higher than the

standard cutoff point of 75 percent. The positive relationship

16

for lines of code implies that the larger modules will have

larger increases in lines of code[section S.l.c]. But the

significant levels of the weight per line(28.4%) and average

nesting level(57.4%) of Systems were below the standard cutoff

point. The low percentage of significant level implies that we

can not predict the relationships because of lack of

significance. The relation between the updated lines and weight

is surprising. The negative relation implies that the modules

with higher weighting have smaller changes in lines of

code[section 5.2.b]. Therefore, a module with many high risk

statements will tend to decrease in lines of code during

maintenance or enhancement [section 5.2].

4.2 Weights

1 Dependent Variables | Independent Variables
|

1 (123 modules of each)
|

L0C3 1 WE3 WE/L0C3 Av . nst3

1

i WE5 - WE3 1 Relationships
I pos 1

neg pos neg
|

1 confidence: |-

1 86.9%
1

1 correlation:
|

1 0.2485
1

Signif icance(%)

|

95. 7 1 88.9 23.6 50. 7
1

F: 1.809 ~
1

F: 2.404 ~
|

F: 3.417 ~
1

95. 7

97.7
97.6

1 88.9
1 92.8
1 92.9

23.6 50.7 1

47.1
1

1 (WE/L0C5)
1

1 -(WE/L0C3) I-

1 confidence: |-

1 99.99% 1

1 correlation:
|

1 0.4259
1

Relationships
| pos

1
pos neg neg

|

Signif icance(%)

|

6.6 1 12.2 99.9 16.4
1

F: 6.09 > 4.95
I

F:12.23 > 7.32
I

F:24.64 > 11.4
I

6.6 1 12.2 99.9
99.9
99.9

16.4 1

15.8
1

Table 3 Changes in Weights

17

...IT'"

The dependent variable in Table 3 is the difference of

weight between the two system. The investigation was how weight

changes are related to lines of code, weight, weight per line,

and average nesting level of Systems. The difference of weight

between two system was correlated with the lines of code (95. 7%)

and weight (88 . 9%) of System3 with the significant levels that

were higher than the standard cutoff point. But we did not

consider the relations for the weight per line(23.6%) and average

nesting level(50.7%) of System3 because of their low confidence

levels. The positive relation for the lines of code implies that

larger modules tend to have larger increases in weights[section

5. 2. a]. The negative relation for the weight implies that modules

with higher weighting tend to have decreases in weights[section

5. 4. a]. If the weight of a module is relatively high, it will

tend to decrease during maintenance[section 5.4].

18

4» 3 Average Nesting Level

1 Dependent Variables | Independent Variables
|

1 (123 modules of each)
|

LOG 3 i WE 3 WE/L0C3 Av.nst3

1

1
(Av nstS -

1

1 Av nst3) I-

1 confidence: |-

1 99.8% 1

1 correlation:
|

1 0.3843
1

Relationships | pos 1 neg
1

pos neg
|

Significance(%) | 93.4 1 82. 2 23.3 99.9
1

F: 4.77 > 4.50
I

F: 6.38 > 5.78
I

F: 8.37 > 7.32 j

93.4
95.9
96.8

1 82.2
1 86.4

1
23.3 99.9

1

99.9
1

99.9
1

1 (Av nstS- 1

1 Av nst3) I-

1 / Av.nstS
1

1 confidence: |-

1 79.1%
1

1 correlation:
|

1 0.2267
1

Relationships
|

pos
1

neg neg neg
|

Significance (%)

|

6.3 1 15.9 30.2 94. 3 1

F: 1.490 ~
1

F: 2.798 ~
I

F: 5.087 ~
|

6.3 1 15.9 30.2
52.5

94. 3 1

95.1
1

97.6 1

Table 4 Changes in Average Nesting Level

The difference of the average nesting level between Systems

and System5 in Table 4 was compared with the lines of code,

weight, weight per line, and average nesting level of Systems.

The significant levels of the lines of code(93.4%),

weight(82.2%) , and average nesting level(99.9%) were very high.

So, the difference of the average nesting level between the two

system was correlated with the lines of code, weight, weight per

line, and average nesting level of Systems. These independents

will be strong predictors. But the weight per line(2S.3%) of

Systems will not be a predictor because of the low significant

level. The relation between difference of average nesting level

19

and lines of code was positive. The positive relation implies

that the larger modules will tend to have larger increases in

nesting level[section 5. 3. a]. In other words, if the size of code

is large, the nesting levels will tend to increase more during

maintenance or enhancement [section 5.3]. The negative relation

for the weight implies that modules with higher weighting will

have smaller increases or even decreases in average nesting

level[section 5. 5. a]. The other negative relation for the

average nesting level implies that modules with higher nesting

levels tend to have decreases or smaller increases in nesting

level[section 5.6.c]. In other words, if the nesting levels are

high, they will tend to be reduced or only slightly increased

during maintenanceCsection 5.6].

4 . 4 Module Changes

1 Measures
1 Changed Modules

1 Not
1

1
Changed Modules

| Total
i

1 Average
1 lines of
1 code

1 279.365 1 417.125 1 288.325
1

1 Average
1 nesting
1 levels

1 68.643 1 51.943 1 67.556
1

Table 5 CHANGED versus NOT CHANGED MODULES

The changed and not changed modules in Table 5 were measured

by quantitative analysis. We investigated which modules will not

be changed and which ones will be changed. One surprise was that

most of the unchanged modules were big. The average lines of

20

code(417.125) of the unchanged modules was greater than the

average lines of code (279 . 365) of the changed modules. These

numbers implies that the average size of a changed module is

usually smaller than the average size of ones not changed[section

5.1. a]. In other words, if a module size is relatively big, it

will tend not to be changed during maintenance[section 5.1.b].

The average nesting levels (68 . 643) of changed modules were

greater than the average nesting levels (51 . 943) of not changed

modules. The low average nesting level of the not changed modules

implies that modules with lower nesting levels will tend not to

be changed[section 5.6.b]. The high average number of the changed

modules implies that the highly nested modules will likely to be

changed during maintenance or enhancement [section 5. 6. a].

Therefore, these results seem to suggest that size and nesting

may be good predictors for maintenance[section 5.1, 5.6].

21

4.5 Predictors

The predictor table consisted of the predictors and

predicted factors which had strong relationships with the lines

of code, weights, and nesting levels between System3 and

Systein5[Table 6]. The relationships were obtained through the all

the analysis process. We could predict program changes in modules

by using this table during maintenance or enhancements.

Table 6 Predictor Table

predicted
|

factors
1

predictors
|

Lines of
code

1
Weights

1
Nesting
levels

1 Modules
1 will be
1
changed or

1 not

Lines

of

code

1
larger

| increase
(5.1.C)

increase
1

(5. 2. a)

increase
1 (5. 3. a)

not change
1

(5.1.b)

1 smaller I change
1

(5.1. a)

Weights

1 higher
| decrease

(5.2.b)
decrease
(5. 4. a)

decrease
(5. 5. a)

1 lower
1 increase

(5.4.b)

Nesting
1 higher

| decrease
(5.3.b)

decrease
(5.5.b)

decrease
(5.6.C)

change
(5. 6. a)

levels 1 lower
1 not change

(5.6.b)

* (5.-.-) represent concluding number.

22

Chapter 5. CONCLUSIONS

The following relationships were assessed from our empirical

data for the predictor variables such as module size, lines of

code, weight, and average nesting level. These variables can be

used to better understanding software maintenance. The

predictors could be evaluated as followings:

5.1 LOC vs. LOC

a) The average size of a changed module is usually smaller than
the average size of ones not changed . [section 4.4]

b) If a module size is relatively big, it will tend not to be
changed . [section 4.4]

c) Larger modules tend to have larger increases in lines of
code. The percentage of updated lines will be increased
too. If the modules are changed, more code will be added,
[section 4.1]

Changes in size of modules during maintenance will be

related to the original size of the modules. We predict that the

smaller modules are more likely to be changed. When a larger

module is changed, it will increase more than the smaller one.

5.2 LOC vs. WE

a) Larger modules tend to have larger increases in weights,
[section 4.2]

b) Modules with higher weighting tend to have smaller increases
in lines of code or decreases of the lines of code. [section
4.1]

More high risk statements will be added to larger modules

when they are updated. A module which has more high risk

statements[in higher weight] will tend to be modified less.

23

5.3 Ave_nest vs. LOG

a) Larger modules tend to have larger increases in nesting
level . [section 4.3]

b) Modules with higher nesting levels tend to have smaller
increases or even decreases in lines of code. [section 4.1]

Average nesting levels will increase in larger modules when

they are maintained. A module which has higher nesting level will

tend to be modified less.

5.4 WE vs. WE

a) Modules with higher weighting tend to have smaller increases
or even decreases in weight . [section 4.2]

b) Modules with lower weighting tend to have larger increases in
weight . [section 4.2]

Modules which have more high risk statements will tend to

decrease those statements when they are maintained.

5.5 WE vs. Ave.nst

a) Modules with higher weighting tend to have decreases in
average nesting level . [sectin 4.3]

b) Modules with higher nesting levels tend to have smaller
increases or even decreases in weight . [section 4.2]

Modules which have more high risk statements will tend to

decrease in average nesting level when they are maintained.

5.6 Ave_nst vs. Ave nst

a) The highly nested modules will likely to be changed during
maintenance . [section 4.4]

b) If nesting levels are low, a module will tend not to be
changed. [section 4.4]

c) Modules with higher nesting levels tend to have smaller
increases or even decreases in nesting level . [section 4.3]

Modules which have higher average nesting level will tend to

decrease in average nesting level during maintenance or

enhancement

.

24

Currently, the process of maintaining software is not well

understood. The maintenance task will be helped by knowing which

modules are susceptible and which ones should be rewritten. The

significant relationships between the source code and possible

changes will be used to suggest improvements in both the program

development process and the program maintenance process.

What possibilities to improve maintenance?

Our predicted maintenance approach will enable better

planning and management of maintenance work. Making program

modules more easily maintainable could reduce the maintenance

tasks. Our approach would suggest following possibilities:

a) Identifying some types of maintenance work.

b) Identifying modules to be rewritten. (which ones to modify)

The modules that are the most change prone can be
rewritten to improve the future maintainability of the
program.

c) Identifying normal maintenance vs. abnormal maintenance.

What advice to developers?

To solve the maintenance problems the tasks of developing

software must be simplified and automated. The developers might

be able to reduce the maintenance cost by trying to develop

stable modules. Our advice is as following:

a) Stabilize the size of code.

- Larger modules will be increased more than small ones.

- More high risk statements will be added to larger modules.

Nesting levels will increase in larger modules.

Relative smaller modules will be more stable than larger
ones

.

Don't discourage code with higher weighting.

Modules with higher weighting will tend to decrease in
lines of code.

Modules with higher weighting tend to have decreases in
weights

.

Module with higher weighting tend to have decreases in
nesting level.

Modules with higher weighting will tend to be stable.

Don't discourage highly nested code.

Modules with higher nesting levels tend to have smaller
increases in lines of code.

Modules with higher nesting levels tend to have decreases
in weight.

Modules with higher nesting levels tend to have smaller
increases in nesting level.

However highly nested modules will be likely to change.

26

Chapter 7. FUTURE WORK

The results of our analyses suggest five different areas for

future research:

1) the analysis will continue to try to find more relationships

between the source code and the changes,

2) the analysis will be done on other systems in other languages

to try to generalize the conclusions,

3) the relationships will be used to develop a maintenance

measure to predict the possible changes according to the

module size, weight, and nesting level,

4) further comparing the changes to systems during development

and changes to systems during maintenance will be conducted

and,

5) patterns of changes for each of the maintenance activities

defined by Swanson (correct ive, adaptive, and perfective

maintenance) will be developed to aid in analyzing maintenance.

27

REFERENCES

<Yo79> Younger, Mary Sue, Handbook for Linear Regression , Duxbury
press, Wadsworth Inc. , Belmont , California, 1979

.

<Wa86> Wall, Francis J., Statistical Data Analysis Handbook ,

McGraw-Hill Inc., 1986.

<St80> Stoodley, K.D.C., Lewis, T., and Stainton, C.L.S., Applied
Statistical Techniques , Ellis Horwood Series: Mathematics
and Its Application, Halsted Press, 1980.

<To85> Townsend, Carl, Mastering Excel , Sybex Inc., Berkeley,
California, 1985.

<Do85> Donoho, Andrew W. , Donoho, David L. , and Gasko, Miriam,
Macspin User '

s

Manual, D2 Software Inc., Austin, Texas,
1985.

<So85> Sobel, Mark G. , A Practical Guide to UNIX System V, The
Ben jamin/Cummings Publishing Company, Inc., Menlo Park,
California.

<Ri80> Ritchie, Dennis M. , C Reference Manual , Bell Telephone
Laboratories, Murray hTII, New Jersey.

<Ma83> Martin, James and McClure, Carma, Software Maintenance;
The Problem and Its Solutions , Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1983.

<Gi77> Gilb, Tom, "The Measurement of Software Reliability and
Maintainability: Some Unconventional Approaches to
Realiable Software." Computers and People, Sept. 1977, pp.
16-21.

<Gu85> Gustafson, David A., Austin Melton and Chyuan Samuel
Hsieh, "An Analysis of Software Changes During Maintenance
and Enhancement", Conference on Software Maintenance ,

Washington D.C., Nov. 1985.

<Bo76> Boehm, B. W.,J. R. Brown, and M. Lipow, "Quantitative
Evaluation of Software Quality." Proc. IEEE/ACM 2nd Int.
Conf . Software Eng. , Oct. 1976, pp. 592-605";

<Be84> Berns, Gerald M. , "Assessing Software Maintainability."
Communications of the ACM, vol 27, no 1, (Jan. 84), pp.
14-23.

<E176> Elshoff, J. L., "An Analysis of Some Commercial PL/l
Programs," IEEE Transactions on Software Engineering, June
1976, pp. 113-120.

28

<Be85> Berry, R. E., and Meekings, B. A. E. , "A Style Analysis of
C Programs." Communications of the ACM , vol 28, no 1

(Jan. 85), pp. 80-88.

<Br75> Brantley, C. L. , and Y. R. Osajima, "Continuing
Development of Centrally Developed and Maintained Software
Systems." IEEE Computer Society Conference Proceedings
(COMPCON) , Spring 1975, pp. 285-288.

<St75> Stearns, Stephen K. , "Experence with Centralized Maintenance
of a Large Application System." IEEE Computer Society
Conference Proceedings (COMPCON) , Spring 1975, pp. 281-284.

<Fr79> Freeman, P., "A Perspective on Requirements Analysis and
Specification." Infotech State of Art Report , 1979, pp.
41-55.

<Le79> Lehman, M. M. , "The Software Engineering Environment."
Infotech State of Art Report, 1979, pp. 147-164.

<Gi79> Gilb, T. , "Structured Design Methods for Maintainability."
Infotech State of Art Report, 1979, pp. 85-98.

<He79> Henderson, P., Gimson, Pratten, G. D. , and Snowdon, R. A.,
"The Maintenance of Software with Multiple Versions."
Infotech State of Art Report, 1979, pp. 99-115.

<E176> Elshoff, j., "Measuring Commercial PL/l Programs Using
Halstead's Criteria," ACM SIGPLAN Notices, May 1976, pp.
38-46

<Ma79> Marmor-Squires, A. B., "On Methodologies and Programming
Environments to Support the Development of Verified
Software." Infotech State of Art Report, 1979, pp. 165-
176.

<Pa79> Parr, F. N. , "Software Maintenance." Infotech State of Art
Report, 1979, pp. 227-237.

29

APPENDIX A : SHELL PROGRAMS

A. 1 Counting Program for the Nesting Levels

#
#
-#

Indent module : checks the nesting level.
#

awk -s '

{count = 0}

r I {count = 1}

/ / {count = 2}

/ / {count = 3}

/ / {count = 4}

/ / {count =5}
/ / {count
{print count } ' $1

= 6}

A. 2 Statistics for the Nesting Levels

#

Average nesting module;
#

calculates the average nesting levels #

#

awk -s '

BEGIN { printf "Levels
printf "

zero =

one =

two =

three =

four =

five =

six =

sum =

}

/O/ {zero = zero + 1}
/I/ {one = one +1}
/2/ {two = two + 1}
/3/ {three = three + 1}
/4/ {four = four + 1}
/5/ {five = five + 1}
/6/ {six = six + 1}
END { printf "zero

printf

\n" >> "totalO"
\n" >> "totalO"

one
printf "two
printf "three

%6d\n", zero
%6d\n", one
%6d\n", two
%6d\n", three
%6d\n", four
%6d\n", five
%6d\n", six

printf "four
printf "five
printf "six
printf "

zeroave = (zero * 100) / NR
printf "Zeroave = %5.3f\n", zeroave

>>"totalO"
>>"totalO"
>>"totalO"
>> "totalO"
>>"totalO"
>>"totalO"
>>"totalO"

\n" >> "totalO"

>> "totalO"

30

(continued)

oneave = (one * 100) / NR
printf "Oneave = %5.3f\n"
twoave = (two * 100) / NR
printf "Twoave = %5.3f\n"
threeave = (three * 100) / NR
printf "Threeave = %5.3f\n"
fourave = (four * 100) / NR
printf "Fourave = %5.3f\n"
fiveave = (five * 100) / NR
printf "Fiveave %5.3f\n"
sixave = (six * 100) / NR
printf "Sixave = %5.3f\n", sixave
average = 100 * (zero + one*2 + two*3
average += 100 * (four*5
printf "Total average =

sum = zero + one + two +

oneave

twoave

threeave

fourave

fiveave

>> "totalO"

>> "totalO"

>> "totalO"

>> "totalO"

>> "totalO"

>> "totalO"

printf
printf
printf
printf
printf
printf
printf

'Sum =

'Lines of code =

'Sum/Lines :

+ five*6 + six*7) /
%5.3f\n", average

three + four + five
%10d\n", sum
%10d\n", NR
%10.3f\n", (sum/NR)

\n"
\n"
\n"
\n"

+ three*4) /NR
NR
>> "totalO'

+ six
>> "totalO'
>> "totalO"
>> "totalO'
>> "totalO'
>> "totalO'
>> "totalO'
>> "totalO'

A» 3 Weights

^
Weight module: calculates the weight of each source program
^

BEGIN { CommentSw = 0; LineNumber = }

{

#

process all the number of fields in the current record.
#

i = 1

while (i <= NF)
{

if ((LineNumber + 2) <= NR)
{

count ["blanklines "]=count ["blanklines"]+NR-(LineNumber+l

)

LineNumber = NR
}

#

check the comment switch true.
#

if (CommentSw == 1)
{

if ($i == "*/")
CommentSw =

}

31

(continued)

if the comment switch is false.

else {

if ($i == "/*")

{

CommentSw = 1

count ["comments"]++
}

if the current field is not a comment field,
else {

if ((($1 ~ /\:/) II ($2 ~ /\:/)) && ($i == $1))
{

if ($1 ~ /default/) count ["default "]++
else if (§1 1= "case") countC "labels"]++

}

if ($i ~ /\(/)
{

split the source line delimited by "(".

NoOfElement = split ($i. Array, "(")

check functions inside the 'if, while, for...'

count["functions"] = count["functions"] + NoOfElement -

for (k=l; k <= NoOfElement; k++)
{

if (ArrayCk] == "if")
(count [

" i f "]++ count [
" funct i ons "]—

else if (ArrayCk] == "for")
{ count [

" for "]++ count [
" funct ions "]—

else if (ArrayCk] == "while")
{ count C " whi le "]++ count C " funct ions "]—

else if (ArrayCk] == "switch")
{ count C "switch"]++ count C

" functions"]

—

else if (ArrayCk] == "rerturn")
{ count C "return"]++ count C

" functions "
]

—

else if ((ArrayCk] == "getchar") || (ArrayCk] =

{ count C "input "]++ count C " funct ions "]—
else if (ArrayCk] == "scanf")

{ count C" input "]++ countC "functions"]

—

else if ((ArrayCk] == "putchar") || (ArrayCk] =
{ count C " output "]++ count C " functions "]—

else if (ArrayCk] == "printf")
{ count C "output "]++ count C " functions "]—

else if (ArrayCk] == "printw")

^

{countC "output"]++ countC"funct ions"]

—

} # end 'if (§i ~ /\(/)

'

if ($i ~ /\=/)
{

getc"))

'putc")

)

32

(continued)

if (($i i~ /\i=/)&&($i i~ /\==/)&&($i i~ /\<=/)&&($i r /\>
{

count["assignments"]++
}

} # end 'if ($i * /\=/)

'

declarations
if ($i == "int") count

[

"declarations

"

]++
else if ($i == "float") count

[

"declarations

"

]++
else if ($i == "double") count

[

"declarations

"

]++
else if ($i == "struct") count

[

"declarations"]++J * *

else if ($i == "auto") count

[

" declarations

"

else if ($i == "extern") count

[

"declarations

"

]++
else if (?i == "register") count

[

"declarati ons

"

]++
else if ($i == "static") count

[

"declarations

"

]++
else if ($i == "if") { count

[

"if "]++
count

[

" functions" }

else if ($i == "for") { count

[

"for"]++
count

[

" func t i ons " J —

—

}

else if ($i == "while") { count

[

"while"]++
count

[

" functions "
]

—

}

else if ($i == "switch") { count

[

" swi t ch"]++
count

[

" funct ions " 3— }

else if (($i == "return") II ($i == "return :
")

)

{ count

[

"return"]++
if (($i == "return") && { $ (i+1

)

~ /\ (/)

)

/ Will
count r " func t i ons " T—

else if (($i == "getchar") II ($i == "qetc"))
{ count r " inout *' 1++
count

[

" funct i ons "J— }

else if ($i == "scanf") { count [_ "input "]++
count r " funct i ons " 1 —— }

else if (($i == "put char") II ($i == "putc"))
{ count

[

"output"]++
countC "functions"]

—

]

else if ($i == "printf") { count

[

"output "]++
count

[

"functions"]

—

}

else if ($i == "printw") { count

[

"output "]++
count

[

" functions"]

—

}

else if ($i == "else") count

[

"else"]++
else if ($i ~ /\#/) count

[

"preprocessor

"

]++
else if ($i == "case") count

[

"case"]++
else if ($i == "goto") count

[

"goto"]++
else if (($i == "break") II ($i = = "break;"))

count

[

"break"]++
else if {($i == "continue ") II ($ i == "continue;"))

count

[

"continue"]++

}

LineNumber = NR
++i

}

}

33

(continued)

END {

printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf

'File Name :

'for
'while
'if

'else
'switch
'case
'goto
'break
'continue
'assignments
'preprocessor
'comments
'blanklines
'return
'input
'output
' functions
'declarations
'default

FILENAME

%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n
%10d\n

>> "totalO'
"\n" >> "totalO'

=========\n" >> "totalO'
count["for"] >> "totalO'
count["while"] >> "totalO'
count["if"] >> "totalO'
count["else"] >> "totalO'
count["switch"] >> "totalO'
count["case"] >> "totalO'
count ["goto"] >> "totalO'
countC"break"] >> "totalO'
count["continue"] >> "totalO'
count["assignments"] >> "totalO'
count ["preprocessor"] > > "totalO'
count ["comments"] >> "totalO'
countC "blanklines"] >> "totalO'
count["return"] >> "totalO'
count ["input"] >> "totalO'
count["output"] >> "totalO'
count["functions"] >> "totalO'
count ["declarations"]>> "totalO'
count["default"] >> "totalO'

calculate the weights

weights
weights
weights
weights
weights

+=
+=
+=
+=

18.4
7.9
6.8
4.6
2.4

count["declarations"] +
count ["for"] +
count["switch"] +
count["preprocessor"] +
count ["comments"

]

11.4 * count["if"]
8.5 * count["while"]
5.6 * count["case"

]

11.1 * count["goto"

]

printf " \n" >> "totalO"
printf "Weights = %10.5f\n", weights >> "totalO"
printf "Lines of code = %10d\n", NR >> "totalO";
printf "Weights/Lines = %10.5f\n", (weights/NR) >> "totalO";
printf " \n" >> "totalO";

}

34

jj

1 CD
1 ^

"

1
"~~

1

J

w
'J

o ^
J f*^

'

jj

Ctl f*) *J (0 r*^

2 U (0 C ^
II —

' Q C 1 CD

1 ^ |> C
1 sO

il

II > < 1

II in u < 1 >
II U 2 1 <
II O in
11 •J 4J 00

II to c
II U C 1 1 tn
II 2 1>
II > <
U
II

II

II

u 1 V

u
o m u

U 2
a —

u
1 m

in
*n td O
U 3 O
2 I J
in u Ed
U 2 2

u ^ <N rn V m
II ^ ^ ^ ^ ^

U
o

in \
U U
2 2

S8

in > <
•J < I

a I in
c n u
KJ O
5Sd
Q o\ O

(J m
O U
J 2

c in

O U U > Q
- " 2 < 2

^ <N m

oo^O-Hp«i^f*)0^ffl»a»no^»nr^o^o^omoofnfnvOQDOONOtnooo^O'^vOOv-^f^'N
00-^00*aO\i>^'^»nu^ffvCDinr»inp*r'0\fitnfno^£ivno>fiO-^-^0(j^inin**<j*f*irn

0000<NOiO-*Or*r^OO'^0'^*nnOOO<NO-^00-^^0<*>0000(N'^r-^in

OOf^O'^r^r^fnu^CDCDf^'--tO'Hc»»rn\OinoineN^Oinr^0^aDvCinf*>ocD'^o^*fi^OO
OO^O'-<Off»|^-*C0^fl(^^0^»nln(J\ovO^0f^^N^'n^^n^nO'r-HO0^^^lnr^fnln
0OOO'n0^OOr-—<0'-lOOOO(N0OO00O0O0<NO'^00r^O(NfnCNfN^^lllll^lllllltl IfNIIIl^l I III I

0(D^OOO'^-^^*^^^^'^'^»^f^^-H•Hfnr*a^OOGO^^^Nlrl^rllno^ln^OOO^lnr*r*v^fi^n
0'^CNOfNu^ln^fn»-<^^np^r-'^r»«^)0^nOln-HCD'^u^'Hlr^-H^o<J^<NO*^no^^*^CDt^'^

O^ino^a)C0<sOtn0Nw^rnO'^'^^0inoO'^\0fN^r-'^^fNCD\0O'^OV-^fnu-i-H
0000*fi-<'^0^00-^^0000^^0-^'-^0(NOO»C-^0'NOO'VnOO(NfNO
ooooooooooooooooooooooooooooooooooooooo

) I
< > 1 I > I I

O<DOOO'^U^00<^^*u^^rl4n^oa\^^)^n^O^«^«•^*^^)^0CDOln<J^'^VOGDVvC<^<N^0C0

O^OOin^^CDO<NOOO^^V'rC0OOO'*>OO^^r*Of>l^OO*'nO^oi*CM
oa)OOf^'-^f>^*^'^*'^'*>(^c^<N^>lfN^fnO'^<^f*^f*>lnfN4nfno\fn^oofN^O^N'^fN^o

<3) ^ r- fN \e tn (N <N <N oi-4fMrsi(NO^<N«or>'^ ^ -h
< »n \0 tfs in V I ^1

fN

OOCDO'n^o^fno^'*i'*^in<j»<y»f^r«4ov\OO^f^'^^oo\ino'^(N-^«^0'Hr»'j\f*"r»^fn
00<NOCD^'*lCO^-^0^«n<7»CDinCDf**Oir*0-HO'^0»flVfN\OCOf**f**Okn(y»<N>Orno^

oo-^o-^oin-^ov*Noo-<o^<*>a»oo-^cNo-HOfNr*>^fMOOO'^p^in-^'n»ein

OO^OO^^vO'^-H(nr>»-«^»-<^^^.-i^Of>jfS^^f*>iTif>*CNO(N^O*nOO-^'*)«^
m (N ^ I ,

I in r*
I in CD

<n CD <

m 0^ ON •

' r* o
' m CD r*

fninomso^r^^tncD»noDinr*rn
r>oti£vO(X)OinCDfncO<7\(NGDvOO <r\^fnO'*>'^vOinvinTrrM

<^ 00 o
o o Vm >A tn

m 00
m o
.-(CD r*-

fN ^ O

OO'^^0CDOr-fNOOr*r*in^<NPn(Nr»'n^
t£^^GD^O^r^v^<7v^rn^mr»^s0OincD
^^invDmOf*iao^fN(S^9(r^«A^r»x^^
^r*oor^^tninfNVOOfn^-H^^ r- <y\m m ^mmi-«u^«6^r<i ^oo 'noi o

^N0^a)CD(^^^^nr^O^^o
mo<Na'vin\flco>>Of^fno\(^
f^CD a^O-«0^^D^r»O^N
r*r* 00'>O'*>'^^(N<7^^r<'

• r» r- I

I t£ (

•CN^r>o\9tintA^v0r^r>r^u^nr>.Hi<ytvO^OO(NO^r^(n>-«tn^inrNO-^O9^CDO^inr>-itncN^r>«or«s0O9«a)O(sn^mtAom^O^^ON79vi>H^rN
i ^^m'^fftfNa^O'*1^ '^l—tO\|<-4 ^^(N-^ntNCN-^ -N-H r^-HV (Nmr^-^icN-^^cN11 I I I I I I I I I I I I I I I I I I

'•^^0000'^u^'*>00'*>vO^CDr^O^OM^MfnO'ar*'(^or*<^>nr-ininco-HfNP».r»
'^ln^NCD^-^Of^o^(N<^p^O(J^tno^ov<NCN^nfn-^r»oOV*00^*or-<y^^<y^-H^nrn^fi
' O O r«.

' in fN

r* m m
t 0\ m r*

\0 rn o ^vOin»^r'm(ainfn(jseMCDOCD(M'*)0'^<
OsC»i)*^)fn*nfN<Ninin<NO^r*^mcDOi

I fN O >A «0 •

I V CO '

O V '

O r«- r-' (

i»ficNO<^fN\oa)»nor^in'»CD'Hr»fNino\^o-H
ininf»4inff*as^OfnGOO®^'tf-^\OfNOff*oo

O (

(N <

) vfi in
' CO ^ CO CO

r4r>irnr4r4'^(n^r>i^rnrnrnrnrimoimoir^(NnirnrNr«iorn^r4rnr«^ror^r^cNrnm

C3^>©incNfN^-Hr^^r*^ffkvOflDr^*»0.^^-H-^^^^<M^P*(yvr^^(M^pnt^,^,^^Q

<r ^
<Xi \0 (X3

fN *fi (N

m tn m ^ ifj <^ o\ ^ fN o\ ^ ^ rsi r- fN ON fN -H 00 O* CO s m ^.0
<N \0 00 ^ fN 0\ r- o 00 m fN fN in 00 m a> o <A m fN O 00 in a\fn O CD *n ^ ^ ^ ^ O m fn fN m fN fn o in O f>* CO O o\ ^ ^ ^ •*^ in fN fN fN

*0 Q O 9^ CO m in * fN f»» ^ «0 00 o <^ m fN m o in O* r- 00 in o m m ot fN CO^ 00 m O O 0) O m m fN CO CO O OHm
m ^ fN fN (n CO in fN^ fN -4 fN CN ^ »^ •»! ^ ^ *n fN ^ m o» r«> fN in v0 fN

« O r- o »n 00 03 00 fN m ^ o m fN O 0^ in o CD (U 3)4 ^ fN >C fN o 00 r* in ffl S o S CO fx fN m tn ON ^ <T^ in

200'~inn5^00>*\omr-vi»\inin<j\(NCDO(DtNvoi-ior»aja)<NtNvo»'«o\.oa)vino^fN '^^'^om*o»0'^mr>i(Nintn(NOff»r*^incDff^vDiNO^vi^r^a^—ifNnfN

iC!?!!!)^'"2'*^"'"'*'*'"'^"'*'*'^''''''~'''"<I>'^OinO'<f'Tr-OCTllNI~<D<N-i
»o-or»«inoooir)in\oo'^»o>oo«r~o'~'nuio\ini-i5roDaOiA(DtN-"V(~ij3n>oeo

0(D«mr»eoMr)r«oM«.^avo»*noeo»o-H — <DvHOaD»^»r-^a.Hf^^p~or~(n^~ooo
in O ON <ji o in 3) fn ON ON fn s0 in o •o fN in fN fn fN O fN

CO in r— in in fn o fN in in Ov fn in CD fN o 0> <S o O in m O nSr> O fN m
in
T fn in m fN in fN fN fn O in o fN » in 0> o in nS in p^ ^ m nC

fn fN fN

0^ in fN fn in in r* ON fN m O ON ^ ^ O fn o fn ON 00 ON O ON fnO O in O o> O O in in fN fn fn CO in ON ON tn (0 o fN CD in fN fn in CO nS 00 COn fN fN fN fn fn o fN T fn o fN in

a u
a •

M 10 u u w •

u fn
1 a u u 91 >• CI u uc ON fN 1 V m > C 0. • u3 1 B d o o COS

u 1 « o o o m hi 10 CJ 10 nU a 1 Z fn m « A ^ ja u u

U « •

U U ki <

U 4/ ON I

£ j: £ u
U U U (

u u u *J
c u
X B 6 c <J u u

a. B — > Q.£ £ a 0. u u « 3 3 i
u u u u u u u u u u u u

4-1 •

fi

c
u >
V » >u 3
O -D •O 13

U
•

• c
•D
<0 E

U » tl

• 'D i:
> hi k.

c u w
lU 41

55

^^.H^^^^o^OOr^'-^'T'Ha*fnoo^cNOu^CNf^lOO'-^^-^'T<^O^lrlCDO>*fn-^<N^n»^)0-H(NVOO<N

CNO^^0'fOOOO'*iOf^-HininoO'nocNi-s.-H0O00CN^Of^'^'^O'^^-a)fNfnf^-H.M(N(N0Of>i1"I(NIII fMl^l^llllfMt II llll |f*»|l II 1 II
I I

^*lC0Ou^'-^O^^«'l/^O<l)U1(N^n^vCO<y^00Of*I^Nu^OO'*>u^l/t<^Vr^0^^C0<^^N^^>O0^^
O^-^(D<J*ri'-<a\OOOr^p*<irir^(D^Offlr*i^O^OO'-^CNinf*'fl0Or*ioOf^cNni^u^\0u^rs»ifiu^

OfNOfn^O^O^OOOOMO^fnOO'-HCNOO^'-iOOO'HOOOO'^OCNItNO^O'-t^^OOOOOO'-t
OOOOO^OOOOOO'HOOOOOO'HOOOihOOOOOOOOOOOOOOOOOOOOOOOllll I II III II I III

4n CO 0\ ^ ^

otN^m CO i^ocNfn m <n r»*cD

in o» o
in ^ o\ r» ^ a^««inoor>icDO^o^o4C09^aNf*ico^

r*rnlnocoOvo^^lnlnp*^ncNa)<*»»nCD
*i)0^-H<N^OinOOOf^*OfN-^*a'*)f>*f^^'HCD^
CNO^vr**(Nin<j\p*incn^vOO-H(y\fN\or«>-H^»-<.-fCO

' ^ O ^
I ^ ^ 00

OinoO'^»-<r*-4min*o<NV<^rno^ mO-^'^CD^fNr^m^O'.o^inin^-HO^invOsOOcN

I m CO
f*! CD f*) -H

O ^
CO

^ ^ CD <

m o^
tn

in ^ *fi in
fN —< Tf

>,0 fN

I ^a CD ^ O ^
I ^ rn ^ r«. 0\

ff\inoinvorna*nrico—fr-Mr^jnoo
sO<-iro<DOv£>m<nO(N0s-^cooincoat O m CO r4

(N o
0\ in

CDCOfNf^o^-^a^-^fN aD3}Oinr*>cOinintn

in -ir o\ m
< a* r- ^ ^
I (N m \0 o ^
I in n ^ ro (*»

t ^ ^ in (N

'^c0(Dr*f^(y^invflO'^in\acnmfsir'O'i)^(NO
vor*^0'-*^r**r*o\in<yNr*^a\cN'*ivO<*»^f*i'*i
r>'Vincococoo<*iina^^0«A^\OO(SONinco'*>eN
'*>^—i-H<ntna*in<NfsaNOC* ootNincNCOtf^r^

co^o^ODr*»(j\f>>inco
C0f**'^r*0'^'^s0f^
^^oocD^r^^^O^ m^Os CDu^(NO^^fl

-4 <N »fi ^

r*' n r* o fn m rn p* < rn
n »o

m m I

'

fn ^ o ^
CM m fn m

^ fN -i

ff* ^ O ON O
ON m ^ tN \o

'»or«'p»o^«i>r»»mo^V(Nso—i^ooiOtN
Of>*ovOfna*r«-(Ninp*.vaDP»ir*in^
V -H -H -H (N fN <-< I fN I CN fN I CMOI^

II t I 1 111 I

Ch CM GO r*

I I

fn (N <

<n rsi .

» ^ fn o
• CO V

I I

orNONinin»nin(Ns0< ' o O m fn o mm fn o ^n r* *o
I V ff> CN <

1 O ^ 0^ >

^ CD V
so ^ fn
^ fM (

1

I m <N o
I m o

r^0NO<NC0O*fn(N{N

I ^ (N \0 M

inincor»O^OCD'*t
•^ajinfNfnfNCOOio

lOO^cor-cor^inosp-^afno^mf^co^O*
' in \o r» sA^tOfn^ in

(nr^<NOOaD0Ninfno^^*nvCV'*-^O«N'Hr^j-H0Ni
r*'fNr«'<nvr*-^vO»fifN<i)a\fn«i)fNO^»nr«»fNr^fnsOi

1 (N O CO •

> s0 I

1 fn
I o 00 -H •

> CO o o
I (N ON

i*Oinr^r*tOinr^cor^

r^OOO*OsfiONf^CD(N*CCN
OCOo^ONf^tninintNf^co^

(N m ^ (I (N fn <n fn ^ fn fn f |'*><N^^-H^CN-H<nf>if*iCN^fnfn^fnfnfnm(Nf>*fnfnfnfn^fnfn(Nfn

fNs£>-HOCDVfnfNCTNrNVOfNfN-^^r^i iOT^'*000NVfN\oo^*NC0OincNO'-'CD^ininfn\o^eNm\oo0N
o in m tn O r» V0 CO tn CO ON (S o O m o CS
^ m in O p' ON ON o o» in O O ON CN p-

in ^ CM fn (N m r* CN r* in i-t r- in in
fn (n (n CN m

OD ON m (N CN fn in 00 r- r- fn CO (N nD 0»
in in r- in o» r- 00 <n CO m o» O ON (N
fn fn 00 r* (N CM CN ON m m

fn

(N <n m o in r- ON CO ON m m r* (N CN m n*
O CN <n ON o» 03 ON CO CN CO fn o ON m in (N CN

o (n o fn CN (n m fn O ON CO
o m in p* ON fn in (N p» ^
^ o •«r 00 in o in

CN fn

^ CN ^ ^ fn
ivfi^vtnoNfn'AajincD
r^fntN^cNinoN^in^

r«4CD'*^r*'p'inc0^C0r^-^p*<N^fn^fnoN00^»^fna0O'^OO'^^ccNfncNP*VP»'O'**^in^»»^^ffl^-H\o^mminfn^TinsO uicnoovt cn^^u^nO -H\Ofnin^>£r^r^^os-^fnr'0^^inP'r^Oinr^cDP^

ONOv*<-*^-tONinfnoOP»r^OONfn^O'^cNCDinO(n(NV^\fiCDCOfN*ovin-^o»fncN-<o»'^^'H^fnr*cN^
p*uisa**)r*^^in>flcN>fiONO\00<n^inv*aNP*fn--i-H-^p*0>fiOfn\oo'*><N'fiCDODO»f^\C^in^o^p*cD'*i

cNfn»»^fNif*i^rnfN4fnfn(n(nfnfnfnfn<N^fN'H^fno'^<NfNCN^'nrn^fnfnfnM--^(N(nfnfnfnv^fnfNfn

ONp*r^-^o*>i)p.*fiinr^vi^OcNinfNinoN^p»OcN'-«^fNfN*<)'TOCNCDfncNscvinOfno^ON>^p«-(NP-oo-^
CN fn m ON T CN in s0 m ^V fn in (n ^ as ON CD o o*
^ ^ \0 o» in fn CN CNm
CM CO ffl (N m CD <a OS CN
T CD in ^ O) ^0 CD fn p- m 00

^ fn p- V ^0

u u
u . Ej

c
. a • a >.J= • J£
u it v *j a o. u
a u c a . a

Ol 41 W W a. c
4» ^ CJi 01 C7»£ J=

o ON P". m CN ^ so 0» ^0 CD ^ fn fn fn O ON fn V nO ON sO CM
00 o* o sO s0 ON sO sO CN in ON in \0 o p' O SO V CN m V in CO
p- fn P* fn CN <N «o CN cn CD m o CM p- <n CD in o fn in m in

CN CN CN m
NO <N P* (N O* ON vO O in NO >o p» m P* CM CD fn O «o ON CD p- CN sO

fn sO fn fn ^ CN ON P> CN o^ fn vO O fn CM m m fn in ON O in P^
CN CN in p- vO CN fn « fn ir CN fn CN (N in fn ON m

u u u

u U u
u u U

*^ u » >• a> u u u u •

CI u • s u)1 u j£ a u u 13 •

c « J£ u • c u w • Q. • X 0) • u •

i) « c u V a 01 to c » 71 00 01 u 3 J J£ QD W J *" • JCa C C en ai • C D 0 c 3 X X £ QD 09 IQ • • X
« •^ -F* 0a Kl la 10 91 J< Jt Jt > (J IV 01 •o (Q IQ >0 (J kl w a «J X

E s s a B s s a a c c c c c C Qi Q« fit a. a. 0,0,0,0,

36

'a^in*ajr~-nino'^<NCNr~Oifio-<OOODinoo-<avr»ooeOTr<N-<oooN'rinr~o\
1 i

<-*
i o 1

u

1 ^ 1 Q ..

Q 1 1 o rn
„

1
^ j

^
1 ^ 1

1-^

1 1
1^

1 1

1 Q fM
1 ^ 1 ^ 1 fN

..

1 OS 1
1 PI „

1 1 ^ . CN ..

1
1 1

..

,
1

..

1 Q o
1 Q

> • •

O Q
[!

„
..

in ..

Q OS «^ !|

!

Q Q —
j

!j

!

!

GO Q _
cn

!!

jj

o (N u

o 11

M O u

n II

11

CM CO u
• • • • - 11

CD 11

CD II

CD II

(N 1 O II

II

II

o 11m so o a

incNOOO>«'*>oO*n^(*)^OcNO<NOO'Hrn(
^ ^

«rr*u-ir^in^incN\0^^O\f^OO'^a\CDO<^»0'*^OCDC0'*l^m^CDCDOr*<N^mCD
CDGDOf^fN\0-H<N^tn<N(NCDO0Nfn^OOC0Or-.ir»-<0\0\inOfNr^^^f*sr-0s-^(-l

^tNOOOO^OO^r'in-^0'*OcNOOO^*N<NOf^-^'HOOf>isooin^^\OinII llfJJI IIOl 1 III II 11^ I II I 1^1

^a^^^r^Ou^^r)p^lnGOf*'Of^cor«r^o^0^nfn^m^ncDfnco<^l^^vco^O^OO^^
OOvorM^Or^'*ir*in^o\moincDPnoo^OS'^0(Np-\Ofs*^fninoOOCNw(rir^

o ^

oooooooooooooooooooooooofMoooociooooocio
> III I I I I I I I 1 II

[^2910'^**'^ — ''^''^*^^'^*^®0^®o^ocDCDtn-^^o»OvncDWin'n^o>o
GDCOor^vor*f>i'*tO-^r^o\r*Of^'n^OOsOtno\^(N<Nao^o\coocDOininr^^'3r

O ^ ^ ^ -H fN ^ fN rn

^^O^GDa)«^OCO(N<«\fi*TVOCO^O^^OvO^9sOICDv0CO^\O^OSsAO9Vi/^
v0^ors)nor>i^(*iC0u^v^rsiinr^>£c>)OCNfsiu^^r>i\0^OV0scNr<ir>irn^OvA0\^ CN ^oif*i<o inr*fn r^aofn m cn o cn-hiti

*N (N ^ ^ t vo m oi 1

I fN

mfnin\or^r.ino»0-^vOinr^0^^r*^^0^(MCDO\^fNO'^novOCD'ni^(^-^GO
CDsO\oos^rfi^<^r^aor^*Nsooo»^»o-H(>i-^fNfnr*^^fNO(NVin(N-Hrnr*\o^;H

inr*oooo*noo^<N\Osoo-^0<NO^^CDknfNO^-Hifivo(N^OeN-Hvi5u^^
i-H ^ GD

' I 1/1 in ^ I

-;''^*«'^'^i^u^o*aoi^o»'n^^^vOco^oOM^-Hr^'VP«.uivooo*fN*om'TONSin

I I I I

<N I ^ I *0 I O I fN II

I O I >0 I I O II

I -H t CO I I ^ II

I I I I II

^ I I OS 1 CN I ff\ II

O I O I O I I in ti

I cn I CO I I I in II

I I CN I I o u
I I t I ^ II^ t m I sO 1 in I II

I CD I ^ I I OS II

• I * I 'I • I • II

^ I ^ I O I r- I fN IIm I 1 tfi 1 I in IIm I ^ t ^ I t II

cn I in I ^ I I o II

I ^ I cn I I ^0 II

I ^ I OS I I O U
I I I I OS u

r^(nfnrnvomfn\Otom4>'nrnrnvOsornvo«OcnrnrncnrnfnrninmiorntO^O\Ornrnrn<o

2;5J3J)J'^fNO»fN^r*'OscOfn^^CD^O^r*

I I I

«rn-7m(NosrN^r^oscDc*ic*>^CD^O^r^rno^CNOOssO>tfsOOfNOsm(nrNOsvO
pnfnaD^v^nfNvOO^fN^CD<nosOlntno^OO^CD^^'ncn^pvCD^^^^N^*(NO»^^>
^^•^mCMCNtfi fNfN-iCNfN^«r-4^om^fN^^ ICNrNfN-H^fN fN ^ ^ (N |^

I * II I III I I I I I I I I I I II
rNr«inin(Ntnrn^osa}sOosooocDr^^^osr^kn4>^0^<*>rsi^rsirNvO^OOstn(SrN
r»losOso^^^^*>^NCDO^'H^N^noOsfNr*^^oO'HfncDr-'0(ao^lnfnfN^no^s^>cn^na)'*>

I n I r» I n I CN II

^ I tn 1 *o 1 m I II

I I I • I • I I u
fa] I fN I so I m I u u
O I I ^O I CO I vO II

• 1 (N I O* I CN 1 * U
1 I 1 I 1 II

I I I I II

OS I o I tn I o I o II

OS 1 ^ I ^ I O I

fNCDfNO*r*u^cnosfn(*iu^u^r**o^»0'-»r--sn*or*^Os*OOs*o»oinp«'(NfnvOi>ir*incDO
ODOO^f^CDO'^CDin^^O^O ^r»oor^sor«-<Nr*'a)<ninvn»o^(Nco»nr»'0\f**^vO

in^inQ^vr»rN^^or*>oooinso^^<orsir<'r^fn^inin\OCO^^fn'^CD(nm(*iO
(N^fNOf**0>O*V^'n^0S'*l^CD^0sO0\'^^^>>0*0r^P^'*l^*O " " "

"

CD I O
O I ^

t ^O II

I CN I O I CO II

I (N t

I CN I

I cn fN (N ^ f icnrnfMCNfnocnncnfnfN^mcn^v^c
^sOmCNvOOtsOOCDCS

^m^^cn^CNOi^nm

cn I CD I ^ I o
cn I r*> I OS I ^

I CD II

I II

I in II

cn I o I * I O

rNu^r'\Ovor>>^vO^oscD(N<-^vincn'^««(Nrnininn>cD^r->tnin^C0tncDO(nNOinto
I V I (N 1 ^

^**or;cno^O»or*fs<oscnvfNvo^sOosoo^-Hr*ino40s»0(n^incnr-fNosinO'Oa)
ov'^ocNfNtou-tmv^Oov'O '^o^trjinor^o^OCDtnotnaD^sO'^r^fNfNor-cDinfN\Otn'nr*^ ^-^cn^o^o* r^r-r-coostnfNr^vOOscNfNfNin^ -^sOf^fnina)*o

-H cn-H^ CN fN <N^(NfN(N'-4

'noO'0'OO^fNOcnfN(NCDCD^*•voslnao^^Oslnos^Ou^co^n^o
«or^(S ocoos^^otosr^vo^r^kO^so ^o^^^m^cn

p-^-hovnO «»^fN cnmos-Hvocn-*

o»o«Ou*itninoovfn
OtininOfnincncNcno*
^ ^ lO o» cn 10

(nfnmfnfNcn^cncnfnfNfncno'ncnfnmfN^cnvv^^mvcn^^

0'^'**f^6DO^P*fN'*-HiO»otnO'^<n»0(NfNO*-Hin^^(NinP-ON\0^

^^II^^:^2'S2'*'•'^®^°'^®^'^O*3sfN-^(^(N(N^N0^^n^r-OOcNf^vmofsir-vooin sO^o-^mor^mcNOOtncnr^inoo^fN>otn<n>o-^ -• <N rn fN ^rr^r-.oDOsrnfNoosOos -^cNin-i-^Cl-H-H fN^<N-^ (N

incNinjfNvOO^-Hcn^ooOtnmof^r^Os'n^inaj'^^^oooseNCNina)
ajininocn^cN^mcDco-or* fNaoco<n^ovcDco^O'^^»n^vO^ ^ ^ osrn r.^^o»sO ^^cn

O O m (

O <N (N (

<N >0 -H (

.-^ fN

CO <N (

O «o ^ •

cn m ^ .

u u u

0, > • «j * O Of • U

. fj U »M S « >, o O 'D to

o •

• JZ
o • a> J o
• V fi 3 •

O 41 W

• a c o u
_ S -w 10 .

>t lO -4 ••-I ^ Q. K
(O-kifiCCCCC-H

4J u
u
o

in o <« CO 1 * 1 o 1 CDO CO m 1 o 1 n 1 -H
o m CO « r» 1 <n

Oi 1 V
1 -1

kfi 00 a
1

1 in^ fn
1

1 fN
1 m

fn ^ « m 1

1 <N
o o\ in o

o\ o
• •

IN
•

o
ON 'A ir» *n m

fN

vC O V CO VS vO
vO CO in p* CN CO CD

• •

o
•

o fn

o o ON CO

•

•o

•

m
•

O tn in
51 Ol tn

in

ON in CO fn in— -a CO m CO r- in
-• * (N (N fN

u u 01 E
• 3

u V o « > S
u • u
• >4 u tl 1 D H
u j: u « > 1 «
Z X Z K < 1 Z

I O u

I vS II

I II

I II

I fn u
I fN u
I O II

(\fi II

I T II

III

I a\ II

I O II

I n II

I CO II

I II

« I O I O II

1 II

I O I -• II

I • I a\ II

I O I O II

I I O II

1 I fN II

I I n II

I I II

I II

37

APPENDIX C. STATEMENT TYPES

Statement Types

(123 modules)

for
whi le
if
else
switch
case

7.

8.

9.
10.
11.
12.

goto
break
assignments
preprocessors
comments
blanklines

13. return
14. input
15. output
16. functions
17. declarations
18. default

1 Names System3,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1

1 300.

c

sys3 3 7 44 14 2 2 88 23 75 33 3 6 79 23 1— 5 3 7 44 14 2 2 88 23 75 33 3 6 79 23 1

1 300s.

c

sys3 3 7 45 14 2 2 86 23 76 31 3 8 112 23 1— 5 3 7 45 14 2 2 86 23 76 31 3 8 79 22 1

1 4014.

c

sys3 4 25 2 4 18 4 96 19 1 25 3 7 11 102 32 3
1— 5 4 25 3 4 18 4 97 19 1 25 2 7 11 105 32 3
1

1 450.

c

sys3 2 5 27 6 1 4 2 4 59 24 69 27 3 4 91 20 1

-- 5 2 5 27 6 1 4 2 4 59 24 69 27 3 4 91 20
1 arcv.c sys3 3 2 6 2 20 2 8 4 4 36 8— 5 1 7 27 1 1 1 2 36 6 69 116 171 16 1

1 banner.

c

sy83 7 1 5 21 7 2 9 3 19 10— 5 7 1 5 22 8 2 9 3 22 12

1 bcopy .

c

sys3 3 13 9 1 15 8 8 28 9~ 5 3 13 9 1 15 4 1 9 8 28 8

1 bfs.c sys3 15 27 162 39 6 52 1 27 283 1 5 222 5 34 13 502 152 3— 5 15 27 162 39 6 52 1 27 286 4 7 223 5 34 13 506 155 3

1 cal.c sy83 6 3 13 1 2 4 3 46 9 26 13 26 9 1— 5 6 3 13 1 2 4 3 47 1 9 26 13 27 10 1

1 cat.c sys3 1 2 17 1 1 3 3 16 5 1 4 1 1 26 8
— 5 1 2 19 1 1 3 3 18 10 1 5 1 1 31 9

1 cb. c sys3 3 9 53 6 1 15 5 140 2 2 1 10 107 27 1

~ 5 4 26 185 59 3 25 3 3 241 56 8 15 1 3 9 415 64 2

checkcw.c sys3 2 5 25 3 2 4 6 41 1 4 19 9 27 9 1

— 5 2 5 25 3 2 4 6 42 2 4 19 9 28 10 1

checkeq.

c

sys3 2 3 21 8 1 1 2 22 1 1 4 14 19 2

-- 5 2 3 21 8 1 1 2 23 2 1 4 14 20 3

chgrp.

c

sys3 1 1 5 1 6 5 1 6 18 6
-- 5 1 1 5 1 6 5 2 6 18 6

chmod .

c

sys3 3 3 6 5 18 2 3 36 12 10 14 4 35 9 2— 5 3 3 6 5 18 2 3 36 12 11 14 4 35 9 2

chown .

c

8ys3 1 1 5 1 6 5 1 7 18 6— 5 1 1 5 1 6 5 2 7 18 6
chroot .

c

sy83 4 2 1 2 1 3 13— 5 4 2 1 3 1 3 13
clr i .

c

sy83 3 1 7 14 5 1 5 6 31 6— 5 3 1 11 3 18 11 3 8 8 41 8
cmp . c 8V83 4 21 1 24 2 1 13 4 2 32 4— S 4 21 1 25 3 1 13 4 2 33 5

col.c sys3 4 9 26 5 4 19 11 57 9 g 39 1 2 10 53 2 3 4— 5 4 9 26 5 4 19 11 57 9 6 39 1 2 10 53 23 4

comm .

c

sys3 5 21 1 3 9 5 19 2 1 23 3 , 1 1 48 7 1— 5 5 21 1 3 9 5 22 3 1 23 3 1 1 49 8 1

cpio.

c

sy83 11 13 132 18 4 24 16 20 175 48 11 68 30 8 351 68— 5 20 18 166 25 4 28 7 30 240 58 68 83 27 9 439 85 1

cron .

c

sy83 5 8 37 5 1 4 13 1 65 13 1 26 3 9 88 16
-- 5 5 8 37 5 1 4 13 1 66 14 1 26 3 9 89 17 c

crypt .

c

sy83 4 3 6 1 29 4 1 6 1 32 2— 5 4 3 6 1 30 5 1 6 1 33 3

csplit .

c

8ys3 10 6 32 7 3 10 9 37 18 28 40 1 109 22 2— 5 10 6 32 7 3 10 9 38 19 29 41 1 111 23 2

ct . c 8ys3 4 9 53 6 1 5 1 7 54 20 1 34 6 2 174 23— 5 8 10 59 5 1 5 8 89 19 26 78 3 8 308 42
cu. c sys3 13 11 102 20 2 12 8 19 143 61 70 51 9 10 404 23 2— 5 15 10 88 29 1 7 2 17 118 64 88 46 9 334 59 1

cut . c sy83 4 5 25 7 2 7 6 43 4 8 5 27 8 2
-- 5 4 5 25 7 2 7 6 48 5 8 5 28 9 2

cw. c sy83 2 14 84 39 2 9 1 14 116 6 168 20 8 2 56 192 21 2
-- 5 2 14 87 41 2 9 1 14 121 7 173 21 8 2 57 191 22 2

38

(continued)

Names System3 r 5 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

date .

c

sys3 4 z 2 2 19 84 12 6 25 1 73 26 1— 5 4 2 25 2 2 19 86 15 8 27 1 95 21 1

dd.c sys3 4 9 66 6 1 5 10 98 13 5 37 5 109 26— 5 4 9 6 7 6 1 6 10 99 16 6 37 5 112 27
derof f .

c

sys3 1

3

28 95 52 2 19 7 4 106 17 12 90 15 3 10 106 52 1— 5 13 28 95 52 2 19 7 4 106 17 12 90 15 3 10 106 52 1
devnm.

c

sys3 2 6 1 2 4 3 1 17 2— 5 2 6 1 2 4 1 3 1 19 2
d£ . c 8y83 5 2 16 2 1 3 1 3 23 8 1 12 2 7 54 13 1— 5 o 1 ^ 4 cD X 4 3 7 12 5 17 5 11 64 15 1
du. c sya3 c

4. ^7 1 3 1 37 11 9 19 1 3 52 12 1— 5 c •5
i. X 3 1 3 7 17 10 20 1 3 55 12 1

echo* c sy8 3 Z 1 r\U X 8 5 8 10 6 4 1— 5 1 nu X QO 1 8 10 6 4 1
env • c 8y83 2

•3

7 1X r\
\j X X 2 2 13 2 1 23 9

2 3 7 1 Aw n 1 1 r\X U 5 13 1 34 8
8ys 3 g 18 1 Q u Z4 z 1 9 1 80 17

D 6 18 1 ^ 1 1 6 1 80 17
Of f f^am^n sys 3 1 1 9 1 1X A q n 36 6

\ 9 1 Q 0-0 1X J, 1 J,
11 5 36 6

errpt > c sys3 16 8 87 20 3 20 1 12 X 3 o "3 O3^ 60 23 100 336 100 3
19 Q 101 30 g 34 1 17 A A 70 35 120 350 126 6

expr^ • c sys 3 3 4 33 7 g 2 21 7Q 36 21 119 33
I 31 7 g 29 2 18 D / u 26 1

7

. 122 24
sys 3 3 7 66 1

7

1 q 15 5 Q A 1 22 3 1 9 58 29
c—— 3

5
7 DO 1 7X / X Q 15 5 85 9 1 22 3 1 9 59 30

r 1 no c sy83 7 D 13 3 1111 J X 8 2 7 45 5 4 468 115— 5 7 Q 106 J ^ 1X A* 6 6 1 7 Q129 29 29 50 5 1 460 115 1
getopt •

c

sy83 Q AH riU nU 8 1 10 1 16 5— 5 n fl u U 8 1 2 10 1 16 7
get ty •

c

sys 3 5 zo £o X 1 3 66 1

1

31 47 97 22 1
~ 3 1 A Tin

i. X u C T c 28 269 116 343 248 3 3 7 363 185 3
giraph • c sys 3 12 g 74 16 zu 3 18 X / X D 3 X X cD 195 105 2

3 12 6 74 1

6

2 zu 3 18 17Lie 7 DO X X AU 196 105 2
grep.

c

sys 3 I 3 16 1 1X 7 7 1 AX 4 1 11

1

•aJ O 1 c 1 7 41 15
~— 3 I 3 16 2 X 7 7 X 1 A J o ozz 1 7

/ 44 1

7

g irpc)c c 5 2 21 g Q Q 7 Q 1 4,
o ozz 4 2 1

1

6
3 5 2 21 g 7 Q 1 J 7 7ZZ 4 2 1

1

5
hp c sys 3 4 12 39 13 1 5 10 84 Q 7 AZ 4 7J X 7J 1 7 A 24 1

5 4 12 39 13 1 5 10 ^ J O 7 7 AZ4 73 1 3 130 24 1
hyphen •

c

sys 3 4 10 4 26 n (1U Q fl fl X 7 CZ 3
c

5 4 9 4 7 1 1 Q nU fl X 7 7Z /
cD

id . c sys 3 4 g 3 Q QO fl Au 7 AZU QO Au

i ni t •

c

5 4 g J 1X fl A e 7 AZU Qa
sys 3 18 12 39 11 3 7 8 87 28 4 70/ z 7 z 1X 1 Q OX70 7 7 1— 5 35 27 174 56 g 52 55 378 277 771/ / X J X X A AU 7 £ A

/ bU 45 5 5
join •

c

sys 3 6 6 22 12 2 7 10 46 7 X 7 1X z fl AU 7 66 16 1

kill .

c

5 6 6 22 12 2 7 10 47 oo 1 QX 7 1 AX 4 fl A 7
/

C 7D 7 1

7

1
sys 3 1 9 4 X J 3 1

X 7J fl A 1

7

3
5 1 9 4 1 c

X J 1 A1 U 3 17 3
kunb •

c

sys 3 2 2 27 g 4 20 8 9 ft nU fl A 39 48 1

1

2
5 2 2 27 g 4 8 9 ft 1 3 1 9 39 59 6 2

label i t .

c

sys 3 2 16 1 3 o Q 1 a flu A 6 47 7

1 i ne •

c

3 2 1

7

2 fl\j 3 7 •>
X 1 8 66 8

sys 3 1 3 1 Q 1 X 7z iX AU 1

1

3

link .

c

— 5 3 1X Q 1 2 2 1 1

1

3
8ys3 1 fl U U u flu A 6— 5 1 1 6

login.

c

sy83 1 3 22 2 3 40 28 10 14 1 11 98 16
-- 5 10 13 73 10 3 27 6 15 128 55 108 126 3 3 18 285 110 3

logname .

c

8y83 1 1 1 1 5
-- 5 1 2 2 2 2 7

l8 . C sy83 9 5 54 22 2 18 5 98 14 40 47 1 18 118 73 1

mail .

c

— 5 9 5 58 23 2 18 6 116 26 52 52 1 18 143 78 1
sy83 14 11 87 14 2 22 2 14 142 17 17 44 11 2 6 344 43 1

makekey .

c

— 5 18 10 123 11 3 26 3 19 180 57 97 81 15 2 16 435 68 1
8y83 1 3 7 C-- 5 1 1 1 3 8 1

39

(continued)

Names Sy8te«3,5 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18

1 manprog.c sys3 2 X 3 1 Ciu AU 1 7 J U 1— 5 2 1 3 1 2 n
yj \j 7 5

J n 1U 1

1 mesg.c sy83 1 1 8 1 2 5 5 g 3 4 U U "5 1 4 1 1-- 5 1 1 8 1 2 5 5 9 3 5 n 1
i, X. 1 1

1 mkdir.c sys3 1 1 7 6 2 1 7 3 Q 36 n 1— 5 1 1 7 6 2 2 7 3 36 n 1

1 mkfa.c sys3 28 5 39 2 3 13 5 9 164 14 17 70 1 22 145 JO 1
1

-- 5 41 10 85 5 3 18 9 17 285 85 37 112 1 1 30 255 59]_ 1

1 mknod .

c

sys3 2 11 3 10 3 1 4 28 g 1— 5 2 13 4 11 13 2 4 Q 30 g 1

1 aount.c 8ya3 4 4 14 15 5 1 7 1 2 38 4— 5 4 4 16 17 9 2 7 1 2 43 4 I

1 BV. c aya3 2 4 42 3 2 26 10 1 19 g 2 117 14 n 1— 5 2 4 41 3 2 27 16 1 22 6 2 118 14 1

1 ncheck .

c

sys3 15 4 45 2 1 3 2 14 54 16 3 29 9 1 8 105 38 1 1— 5 15 4 49 5 1 3 2 14 63 34 6 32 11 1 9 125 42 1 1

1 newgrp.c sya3 1 1 11 13 6 2 12 6 42 10 i— 5 1 1 14 1 20 6 3 12 6 53 11 1

1 news .

c

sya3 5 6 27 7 2 8 1 8 36 8 11 39 2 1 18 102 29 2 1— 5 5 6 27 7 2 8 1 8 36 8 12 39 2 1 18 102 29 2 1

1 nice.c sys3 2 2 1 1 3 8 4 1

-- 5 1 4 3 2 2 5 11 5 1

1 nl.c aya3 4 7 28 19 6 34 35 121 10 26 25 1 14 65 29 5 i— 5 5 7 32 19 6 35 36 130 10 34 27 1 10 62 34 5 1

1 nohup .

c

aya3 6 3 1 2 26 1— 5 6 1 5 1 2 5 27 4 1

1 od • c aya 3 8 2 26 6 3 17 1 17 48 3 1 17 2 18 52 12 1 1— 5 8 2 27 7 3 19 1 19 52 5 2 18 2 19 59 12 1
1

1 pack .

c

sya3 14 6 29 2 5 1 96 13 32 26 9 22 75 34 1— 5 14 6 32 2 5 1 99 21 34 27 9 23 82 36
1 paaawd.c aya 3 2 3 34 9 18 43 6 9 24 89 10 1— 5 2 3 35 9 18 44 7 9 24 90 11
1 paate.c aya 3 3 5 20 7 2 5 7 55 5 8 8 2 26 9 2— 5 3 5 20 7 2 5 7 56 6 8 8 2 27 10 2
1 pcat.c aya3 9 2 33 2 8 82 17 17 22 12 60 19— 5 9 2 33 2 8 83 22 17 23 12 61 20
1 pr • c aya3 13 7 85 15 6 37 12 168 29 21 44 21 4 10 187 43 3— 5 13 7 90 16 6 38 13 175 29 21 46 22 4 10 195 44 3

1 prof •

c

aya3 11 5 42 4 1 3 78 13 9 18 5 127 40
e— J 7 5 55 5 1 13 3 9 126 106 248 165 10 325 67

1 pa • c aya3 13 11 111 28 1 13 21 180 41 91 67 7 40 294 87
3 21 13 125 33 1 13 25 194 106 107 96 2 40 424 103

1 pt X •

c

ay a 3 8 16 54 5 4 15 14 95 14 21 79 1 3 6 150 28 4— 3 8 16 54 5 4 15 14 96 15 21 79 1 3 6 151 29 4
1

pWCK •

C

•y » J 8 1 22 6 1 2 30 14 10 24 2 54 9
J 8 1 22 6 1 2 31 18 10 25 2 55 10

pwa • C aya3 3 3 10 1 12 4 1 8 39 5
3 3 3 10 1 12 7 2 9 39 5

£ egcBp • c ays 3 2 16 16 5 2 7 1 3 43 1 2 2 5 58 11 2
2 16 16 5 2 7 1 3 45 2 4 2 5 59 13 2

IT B • C sy s 3 5 24 3 1 3 3 10 4 1 13 6 2 5 53 8 1

3 5 24 3 1 3 3 10 4 1 13 6 2 5 57 8 1
r Bd i f • C ya J 2 14 2 7 4 5 6 8 48 5

adiff.c

c
J 2 14 2 7 4 6 6 8 48 5

y V J 2 22 56 6 5 22 20 111 12 22 84 11 178 31 4
-- 5 2 22 56 6 5 22 20 114 13 23 84 11 179 33 4

aetmnt

c

aya3 4 1 4 2 11 4 2 11 2
-- 5 4 1 4 2 11 8 1 6 11 2

sleep.

c

aya3 1 2 4 1 1 3 6 1— 5 1 2 4 1 2 3 6 1
aort . c 8ya3 17 35 103 18 2 16 8 15 176 12 2 70 4 4 2 210 68 2

apline.

c

— 5 17 35 103 19 2 16 8 15 177 17 2 71 4 4 2 217 69 2
sys3 8 1 29 2 3 14 11 80 3 4 48 2 4 63 32 1

aplit.c
— 5 8 1 29 2 3 14 11 81 4 4 48 2 4 64 33 1
sys3 3 1 9 3 1 11 21 1 6 1 1 13 3— 5 3 1 12 4 1 11 24 2 6 1 1 22 3

atty. c sys3 6 1 77 22 1 2 73 3 28 2 94 225 20 1— 5 6 1 94 31 1 2 88 6 1 31 2 111 241 23 1

40

(continued

)

Names System3,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

su . c Eys3 1 20 4
-- 5 1 21 4

sum. c sy83 3 8 4— 5 3 8 4

sync .

c

sys3— 5

sysdef .

c

sys3 11 4 52 5 4 10— 5 12 1 53 7 2 7

tabs .

c

sys3 6 14 38 19 3 13
— 5 6 14 38 19 3 13

tail.c sy83 2 11 27 4 1 4— 5 2 11 27 4 1 4
tar . c sys3 21 14 103 13 1 20— 5 21 14 103 13 1 20
tec sys3 1 8 42 6 5 32— 5 1 8 42 6 5 32
tee . c sys3 4 3 6 1 1 3— 5 4 3 6 1 1 3

time .

c

sys3 1 2 6— 5 1 2 6

touch.

c

8ys3 2 3 25 4 1 4— 5 2 3 25 4 1 4
tr.c 8ys3 5 6 23 3 2 5— 5 5 6 23 3 2 5

tsort.c sya3 10 2 20— 5 10 2 20
tty . c sys3 1 1— 5 1 3 1 1 3

unount .

c

sy83 1 4 5— 5 1 4 5 6
uname.

c

sy83 1 9 6— 5 1 11 7

uniq.

c

8y83 1 8 14 1 3— 5 1 8 14 2 3

units .

c

8ys3 12 8 57 3 14— 5 12 8 57 3 14
unlink .

c

8y83 1— 5 1

unpack .

c

8y83 9 2 34 3— 5 9 4 43 4
vlx. c 8y83 31 4 42 3 4 17

-- 5 31 4 42 3 4 17
volcopy.

c

sy83 7 1 56 10~ 5 10 5 130 27 2 5

wc . c 8ys3 1 2 10 2 1 3~ 5 1 2 10 2 1 3

who. c sy83 1 1 7 1— 5 11 7 49 17 1 13
write.

c

sys3 4 2 26 1

-- 5 1 2 19 10
xargs .

c

sy83 4 15 44 10 3 17— 5 3 13 44 10 3 17

1 1 40 16 1 9 1 1 76 9
1 1 43 14 2 9 1 1 84 9

16 2 2 4 2 4 24 7

21 3 2 5 2 4 28 7

3
1 3

8 94 35 36 66 49 327 77 4
5 94 99 35 57 61 308 77 2

1 13 129 22 67 30 1 84 41
1 13 130 23 87 31 1 85 42
7 4 32 6 1 9 36 9 1
7 4 33 10 1 10 39 10 1

5 18 133 21 2 90 9 2 10 323 61 1

5 18 133 21 3 90 9 2 10 323 61 1
5 13 150 12 4 14 4 1 1 157 55 3
5 13 150 12 4 14 4 1 1 157 55 3

2 15 5 1 7 21 11
2 15 5 2 7 21 11

14 3 2 7 2 25 8
15 5 4 7 2 26 9

3 42 5 1 16 1 57 24
3 44 8 1 16 1 70- 17

2 1 61 1 1 9 1 25 14 1

2 1 62 2 1 11 1 27 14 1

4 41 1 9 13 1 1 54 33
4 41 1 10 13 1 1 54 33

1 1 3 1 6 1

2 5 2 2 6 4 10 7

6 4 3 23 3

6 6 5 1 3 31 5 1

5 7 2 4 10 5
6 8 2 1 4 5 12 5
3 15 2 1 15 2 1 2 39 13
3 17 3 1 16 2 1 2 42 13

28 1 111 3 33 1 1 19 66 46
28 1 112 4 33 1 1 19 70 51

5
1 5

10 78 17 16 22 12 16 55 27
10 86 20 20 35 13 1 75 18
1 13 111 10 19 38 4 10 133 69 1
1 13 111 10 20 36 4 10 133 89 1
7 65 16 4 35 8 20 179 13
7 2 140 61 34 63 7 46 357 30 2

4 23 1 2 12 6 12 7 1

4 24 2 2 13 6 13 7 1

1 6 4 3 5 25 7
14 94 16 104 114 1 168 79 1

6 2 21 7 2 16 1 75 12
20 8 54 66 1 102 26

18 133 15 11 46 IS 43 46 3

16 126 12 10 41 15 51 45 3

TOTAL

(sys3/sy85

)

1. 592/681
2. 624/695
3. 3771/4542
4. 739/1010
5. 156/175
6. 829/992

7. 273/248
6. 598/753
9. 6714/6117

10. 1181/2332
11. 1416/3419
12. 2901/4286

13. 359/369
14. 124/132
15. 889/971
16. 10479/13260
17. 2693/3749
16. 89/105

41

AN ANALYSIS OF CHANGES DURING
MAINTENANCE OF A C SOFTWARE SYSTEM

by

KYUNG HEE AN

B.S., Korea University, 1977

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

ABSTRACT

Software maintenance of computer systems has been an

important task. Current demands require the development of good

tools for evaluating software during maintenance and enhancement.

The maintenance process is not well understood so far. The first

step of my research analyzed the relation of changes between the

Unix Systems and Systems of C modules. The analysis will help

evaluating and identifying changes within modules. One goal of

this research is the development of a measure to predict where

software changes are likely to occur.

The result section of the paper describes the relationships

among several predictors such as lines of code, weight, and

nesting levels. The concluding section represents the evaluation

of the predictors.

