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INTRODUCTION

Factor Analysis Is a branch o£ statistical science. It is often mis-

takenly considered as psychological theory since the factor analysis technique

was originally developed and extensively used in tlie field of psychology. The

nathod came into being originally to provide mathematical litodels for the ex-

planation of psychological theories of human ability and behavior.

The mathematical techniques Inherent in factor analysis are not limited

to psychological applications. The principal concern of factor analysis is

the resolution of a set of variables linearly in terms of a small number of

categories called "factors". This resolution can be accomplished by the

analysis of the correlations among the variables, A satisfactory solution

will yield factors which convey all the essential information of the original

set of variables. The chief aim of factor analysis is to attain economy of

description which is sometimes called scientific parsimony.

The factor analysis technique is not new. Charles Spearman is generally

given credit for Che birth of factor analysis. His paper "General Intel-

ligence. Objectively Determined and Measured" was published In the American

Journal of Psychology in 1904, This early work was the beginning of the

development of the "Two - factor Theory" although the terra factor was not

used explicitly at that time. From a statistical point of view an Im-

portant contribution to factor analysis was made by Karl Pearson who pub-

lished a paper in 1901 on "The Method of Principal Axes",

From 1904 to 1925 a considerable amount of work on psychological

theories and mathematical foundations was completed. In the 30' s it became

evident that Spearman's Two - factor Theory was not always adequate to de-

scribe a battery of psychological tests.



Gamett (1919) explored the possibility of extracting several factors

directly from • vatrlx of correlations among tests and the concept of

multiple - factor analysis resulted. In addition to Gamett; Thurstone

(1935), Hotelling (1933), Holzinger (1934, 35, 36) and Thomson (1936) made

iiBportant contributions to the developnent of multiple factor analysis in the

1930*8.

During World War II with large scale testing, classification, and aa«-

slgmaent problems research psychologists employed factor analysis widely

throughout the military services. In recent years factor analysis has been

applied to fields other than that of psychology. Factor analysis has been

used in such fields as sociology, oeterology, political science, geography,

economics, physiology and D«dicine. ,
-^

The applications of factor analysis Indicated above are concerned pri-

aarily with classification and verification of scientific hypotheses in the

particular field of investigation. A different application of factor

analysis is to suppleaent and simplify conventional statistical techniques

and computations. Typical of this kind of applicaticm is the use of factor

analysis in expediting the computation of multiple regression statistics.

Hals paper will be devoted primarily to presenting some of the under-

lying theory and application of the factor analysis technique.

THEOEETICAL ASPECTS

The Model

Since factor analysis involves the correlation matrix among several

different variables it is necessary to develop the notation to be used for

this report. A measurement from the Jth variable and the ith individual will



be X.. where J*l,...,a and 1<"1, ...(N and the loean

X, - J X../N . (1)
i-l ^^

The deviate tvxm the mean will be

*Ji- ^-^i <2)

consequently the variance of the variable X is

N
oj - J X /" / N . (3)

•• 1-1 ••

The standardized value of the variable J for the ith individual will be

the aet of all values «.^ (i - 1, , , . , N) is called a statistical

variable « in standard form. The variance of this variable is unity.

The product maaent-correlation between any two standardised variables

say J and k is

The intercorrelations among all the variables of a study constitute the

basic data for factor analysis.

It is the object of the factor analysis to represent variable s. in

texas of several underlying factors. The simplest B«th«utical model for

describing a variable in terras of several others is the linear model. There

are two types of factors that will be distinguished,

(a) Conatm Factors - involved in more than one variable of a set. These



factor* will be denoted Fj^, Fj, . . . , F^ where a ;« n 1» the total

nUBd>«r of coanon factors*

(b) Unique Factors - Involved In a single variable of a set. V^, V^^

^ , » U will denote the unique factors. -^
•^ • n J'

The linear esqiression for any variable s ( J - 1 , 2, . . , n) may be

written as

•j "ji^ *" V2 "• •• •* V»^Vj • (6)

This equation may be rewritten explicitly for the ith individual as

«Ji
-
«J1^1

^ *J2^2i + • • • + *j.^«i * «j"ji
• (7)

By squaring^ sunaing over the N values and dividing by N

» 9 9 S 9 2 S

H
4- «> I f-1 / » + N I "11 / « *

1-1 •i iil ^^
(8)

2<-jl *J2 J, V2i
/»+... -^

-J. -J ^.i^ji / «)

IM I
i-l

:ii
Mo,

N
2

^ 1-1 J^
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H
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I <«^i>
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2 .^, ni' Mo
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2 •«'/ -^-^



The varl«s«« of aay •taodardijMcl variable x is unity*

Variance Ccnqponents

Since the variance of a variable in standard form is equal to unity,

and all variables (including the factors) are assumed to be in standard

form for any sample, equation (8) can be rewritten.

If the factors are uncorrelated this can be revrittens

The terms on the right hand side of this equation represent the portions of

the unit variance of s ascribable to the respective factors. For exaiiq)le

2
a.. is the contribution of the factor F. to the variance of z • The
J^ 2 j

total contribution of a factor F to the variances of all the variables

2 ^
is defined to be V - \ a (p - 1, 2, ... , o). Frras the exposition

P j«l JH
, . ,_

of the total unit variance as expressed by (10) two important concepts in

factor analysis follow, (a) the communality of a variable z, which is given

by the sum of squares of the cotonon factor coefficients^

^J
"

*J1^
* *j2^ "^ • • • * *jm^ ( J - l# 2. ^ . . , «) (11)



and (b) the contribution of the uniqueness factor. This uniqueness factor

2 2 2 2
can be broken down Into tvo portions* a -• b. + c where b is called

2
the specificity of the variable and c is called the error variance of the

variable. Therefore the total unit variance can be expressed as

I - h^ + a^ - h^ + b^ + c^ . (12)

2
We obtain the conmunality and the uniqueness a. of each variable In a set

by factorial oethods. The further splitting of the uniqueness factor is in*

dependent of the factorial solution, however the reliability of the variable

can generally be found by experliaentel aethods and the error variance is given

by the equation

where r.. is the reliability, and

2 2 2
b^ - «j - Cj^ * <^*>

2^ere a^ is Icnown from the factor solution*

It follows that

r,, - h * + b

/

(15)
JJ J J

'"' l
and

r

'
1

"j" - 'jj - "j'
• ,

<">



In other words the coimaunallty is always less than or equal to the reli-

ability of the variable. It becomes equal only when the specificity van-

ishes*

Employing The foregoing model for the expression of a variable z. in

terms of factors, the components of variance are given by:

Total Variance ( 1 ) - h^ + b^ + c^ - h^ + a^

Reliability (r ) " ^j^ + ^j^ - 1 - c^

Cn—iiiiality (h^) - h^ - 1 - a^

2 2 2 2
Ihiiqueness («. ) " b. -• c. « 1 - h.

Specificity (b^) - b^ - «/ - c^
J ' J J J

2 22 2
Error Variance (c. ) « •- - 1 - r

Objectives

Having described the composition of variables in terms of factors, it

is now possible to outline the objectives of a factor analysis of a set of

data. For a set of n variables, the linear model (6) may be rewritten in

expanded form as follows

I

'I
- ni^l ^ ^2 ^2 -^ • • • -^ *1« ^m -^ *1 "l

'2 " -21^ + a22 F^ + . . . + a^^ F^ + a^U^
^^^

z-a,F, +a,F, +,..+a F +aUnalln22 nma nn



•'"
': 8

. .*».. /

Tha coefficients of the various factors In the equations above are estliaated

by the factor aaalysla technique and become what Is known as the "factor

pattern" or aimplj "pattern**. In a pattern the coonon factors (F ) nay be

correlated or uncorrelatcd, however the unique factors (U.) are always aa-

suaed to be uneorrelated among thcBwelves and with all coiaBon factors.

Factor analysis yields not only patterns but also correlations between

the variables and the factors. A table of such correlations Is called a

**factor structure". Both a pattern and a structure are necessary for a

coaq>lete solution.

PRINCTPAL-FACTOR SOLDTION

Derivation

Although several solutions are available to solve the factor analysis

problem, only the principal-factor solution will be considered In this paper.

The derivation of the principal-factor solution was taken from Uotelllng (1933)

and Harman (1962). The principal-factor solution was not used to any great

extent until the development of high speed computers, because of the large

amount of time required to complete the solution by hand methods.

The analysis Is begun with a factor F. whose contribution to the con-

munalltles of the variables has as great a total as possible, then the first

factor residual correlations are obtained. Next, a second factor F , In-

dapendent of F., with a maximum contribution to the residual conmunallty

Is found. This process Is continued until the total comnunallty Is analyzed.

The factor pattern to be determined may be represented by

j " 'jl ^1 * • • • "^

*Jp ^p "^ • • • "^ «j» ^m ^J ^» ^' • • • • **^ <">



where the unique factor has been omitted. The svsa of squares of the factor

coeffielants gl^ws the coonunallty of a particular variable, while any term

2
a. indicates the contribution of the factor F to the conmunality of

z.» The first stage of the principal->factor method involves the selection

of the first factor coefficients a., so as to nake the sua of the contrl>

butions of that factor to the total conaunality a maximum. This sum is given

^l • •U* -^ *21^ -^ • • •^•ni* • <W>

and the coefficients a . must be chosen to make V^ a maxlmwi under the

conditions

(j, k - I, 2, . . . , n) (20)

iritere r..

'jk ^1 -jp %
2

.. t^. and r is the comraunality h. of variable z . The

conditions (20) say that the reproduced correlations are to be replaced by

the observed correlations, inq;>lying the assun^tion of zero residuals.

In order to maximize a function of n variables when the variables are

connected by an arbitrary ntsi^r of auxilary equations, the method of

Lagrange multipliers is particularly well adapted (Osgood, 1932). This

iMthod is eiq>loyed to maximise V., iriiich is a function of the n variables

a., under the f- n(n + 1) conditi<ms (20) asKmg all coefficients a, . Letjx z jp

' « - V - I V r,k - V, -
I I V a a^ » (21)
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yAimxm V.uC" V^t^ '^^^ t^^ Lagrange multipliers. Ihe partial derivative of

this new ftraction T with respect to any one of the n variables a . is

set equal to zero, namely

"~ - - V . . _ «
(22)^ -ji -

,1 "j^ ^i - "•

and siiailarly put the partial derivative with respect to any of the other

coefficients a (p '^ I) equal to zero, that is.

3 T
- I >'4fc *ic«" <P ^ 1) . ./ (23)

3*4 " "
u^, "jk *kp

Jp k-1 "' *^

The two sets of equations (22) and (23) may be combined as follows:

"^ ' 'l' 'Jl '
Jl "j" -icp - ° < - I. ^ • • . °> <«>

where the Kronecker 5. " 1 if p • 1 and 5. " if p )t 1*
IP IP

Multiply (24) by a., and sun with respect to j, obtaining

« •Ha
IP

J-1 ^ j-1 k-1 ^^ J^ ''P

n
Now, the expression ^ W.,, a . is equal to a. . according to (22) and

^ 2
setting ^ a.. • A., equation (25) may be written as followst

J-1
^

f I
'• , , \f^ . . . -^ . -^

• 'ip 'i -
Jj V \p

-
. • (26)



Upon multiplying (26) by a and suamlng for p, this equation becoaas

11

•j' ''
' Ji ">" Ji "Jp *^>

- (27)

or* upon applying the condltlcms from (20)

- X, a., •

^i, 'jk -ki 'h'n (28)

The n equations may be rewritten In full as follows t

(h^ - X) a^^ + r^2 a^^ +
"^n "31 + • • • + ^^ \i ' 0,

'21 hi •*• ^^'2 " ^> hi + '23 *31 "^ • • • * hn ^nl " °»

'31 *11 -" '32 «21 "» <'*3 - ^) «31 ^ • • •
"

'^3n \l ' ^
(29)

11*11 "
'n2 *21 -^

'n3 hi -^ • • • + <\ " ^> ",'a

where the parameter of (28) Is designated by X without a subscript.

Thtts, the maximization of (19) under the conditions (20) leads

to « system of n equations (29) for the solution of the n unknowns

a.^« A necessary and sufficient condition for this system of n homogeneous

equations to have a non-trlvlal solution Is the vanishing of the determinant

of coefficients of the a ., This condition may be written

"J 7, "



12

(h^* - X)

'21

'31

'ttl

12

(h^^ - X)

^32

n2

13

'23

(h3* - X)

^n3

• • •
'In

'2ii

'3n

(V - ^>

- (30)

If the determinant in (30) were expanded it would lead to an n-order

polynomial in X . This equation is known as a characteristic equation.

Some of the important properties of characteristic equations which apply

to factor analysis include the fact that all roots are real and that a

q-fold multiple root substituted for X in (30) reduces the rank of the

determinant to (n " q)*

When a simple root of the characteristic equation Is substituted for

X in (29) a set of homogeneuous linear equations of rank (n - 1) is ob-

tained* This set of equations has a family of solutions, all of which

are proportional to one particular solution. It follows that the factor of

proportionality is X. - J *4i • ^^^ expression is precisely V.,
^ J-1

^^

the quantity which is to be maximized. In other words, V is equal to

the largest root X. of the characteristic equation (30).

The problem of finding the coefficients a . of the first factor F.,

which will account for as much of the total communality as possible, is

then solved. The largest root X. of (30) is substituted in (29), and

any solution <''ii»°'9i**»*t°i ^* obtained. These values are divided
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by the square root of the sum of their squares and then multiplied by J X.

to satisfy relation (19). Tlie resulting quantities are

~2 i 2~

*Jl
" "jl \ ^1 / \l^**ll

* "21 '*'••*'*
°nl ^ (J - 1» 2, * . ..n) (31)

which arc the desired coefficients of F. In the factor pattern (18).

The roots (X's) of a characteristic equation (30) are referred to as

"eigenvalues"* The solution to the set of equations (29) corresponding to

each eigenvalue leads to a vector which Is called an "eigenvector". The

BBthematlcal problem can be expressed In the form: Find a number A and

an n diawnslonal vector j^ f^ such that

R X - X X )- (32)

where R Is the correlational matrix. Any number X satisfying this

equation Is called an eigenvalue of R and Its associated vector

X - foi_» a. , . , , o 1 is called an eigenvector of R, An eigenvector

scaled to (31) is designated a • fa, , a. ..... a ~|
.

"T [ ip 2p npj

Having determined the coefficients a ., of the first factor F. , the

next problem is to find a factor which will account for a maximum of the

residual communallty. In order to do this, it is necessary to obtain the

first-factor residual correlations. Furthermore, in obtaining still other

factors the residual correlations with two, three, . . • , (m - 1) factors

removed are employed, and hence a suitable notation is required. A con-

venient notation for the residual correlation of r^, with s factors

removed is 'ij^# Thus, when the first factor has been obtained the first

factor residuals become
,,
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I'jk
- 'jk

-
*J1 -kl - -ja \2 -^

*J3 \3 ^ • • •
-^ V "km

• ^"^

Hora generally, the matrix of first-factor residuals may be expressed in

matrix form by:

R - R - Q (34)

where

represents the n x n symmetric matrix of products of the first-factor

coefficients, which appear in the column vector £^.

In determining the coefficients of the second factor F^, it is neces-

sary to maximize the quantity

^2 -12^ * '22' ^ • • •*«n2'
^^^

which is the sum of the contributions of F^ to the residual coiaaunallty.

This maximization Is subject to the conditions (33) which are analogous to

the restrictions (20) In the case of the first factor. The theory of

characteristic equations provides the basis for determining the coefficients

of the second and subsequent factors. It is not necessary, however, to carry

through an analysts for maxlraliing the contributions of F^ to the residual

communallty. Instead It will be shown that the required maximum eigenvalue

of R, Is, In fact, the second largest eigenvalue of the original correlation

matrix R.

If a represents the m eigenvectors of R (properly scaled). It
P

can be determined whether they are also eigenvectors of R^. Postmultlplying

the matrix R. by any vector a yields



^' .^-J-J' p

14

R a - (R- a, a ') a (37)
1 p —1—1 p

from the definition (34) of the residual matrix* Expanding this expression

and applying (32) produces:

» *
' R, a - Ra - a, a, a «• X a - a, a, a . (38)

I —p —p —1 —1 —p p =? —1 —1 —

p

Nov consider the two cases: p 1 and p f* 1« a) l^en p 1,

t

^1 " ^1 JLi according to (38), ao that the above expression reduces to

R^ a^ - 0. (39)

In other words, the eigenvector corresponding to the largest eigenvalue

X. of R is also an eigenvector of R. but its associated eigenvalue

*

in R. is Ecro. b) When pf'l. a. a"0 according to (26) and
1 —1 -p

expression (38) becomes:

R, a - X a - a, . - X a (40)
1 -p p -p -1 p -p ^ '

which says that except for X , the eigenvalues of R are identical with

those of R and their associated eigenvectors are also identical. The

expressions (34) and (40) prove that the eigenvectors of R. are Identical

with those of R, and that they have corresponding eigenvalues except that

corresponding to the eigenvector ja. in R. is a zero eigenvalxie in place

of X. in R.

From the foregoing it is clear that X. of R is the largest eigen-

value of R . In other words, to obtain the coefficients of the second

factor F^ from the largest eigenvalue of the residual matrix R it

suffices to extract the second largest eigenvalue of the original matrix R.
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By the same type of arguneat, the successive eigenvalues and their associated

eigenvectors are obtained directly from the original correlation matrix R,

until m factors have been extracted.

When unities are placed In the diagonal of R then usually m » n. If

some numbers less than unities (estimates of conmunalities) are placed in the

diagonal, and the positive serai-definite property of R Is preserved, then

ra will be less than n, and all eigenvalues will be real and nonnegative.

VThen negative eigenvalues occur in the course of the computation, it is

evidence that the requirement of positive semi-definiteness has been violated.

An important mathematical property of the principal-factor solution Is

that of orthogonality of the colucm vectors of factor coefficients. This

property is expressed by

a a = 6 X (41)

or ill expanded algebraic forui:

I a. 2 , X

(p, q-1, 2, ...» raj p ^ q).(42)

n
Y a, a. » 0.

• ' JP J1

Computational Procedures

The method used in deriving the principal-factor solution does not

lend itself to efficient computation of the factor problem. The method that

will be presented In this paper is taken from Hotelling (1936) and Harpian (1962).
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This oethod involves an iterative scheme which yields a root of the char-

acteristic equation and the coefficients of the associated factor siraul'

taneotisly. The roots appear in descending order of magnitude upon suc-

cessive applications of the method. For this reason the method is espec-

ially suitable in practical situations where only a few of the largest

characteristic roots and associated factor coefficients are required. Frosi

« practical point of view it is desirable if a small number of roots will

account for the total communality and this is one of the chief aims of factor

analysis.

The iterative process is begun by selecting an arbitrary set of n

numbers, and transforming them again and again by use of the observed cor-

relations until they converge to the desired coefficients of the first prin-

cipal factor. Thus, an arbitrary set [«ii» <»21» • • • » "nil
''* *^'**'*''

formed into a new set [Y,,* T21» • • • » Yj^f] *« follofws:

^l - X 'J'^
"^1 ::

a - 1. 2, .... n) (43)

or in matrix notation: ^^

Y - R a
,

' ^**)

where js and j^ are the original and transformed n x I column vectors,

respectively, and R is the n x n correlation matrix.

If the number a^ are proportional to the directional cosines of any

line through the origin, then the numbers T.] *f proportional to the

direction cosines of a new line resulting from the rotation (A3). In general,

the line associated with the numbers y.. is distinct from the line corres-

ponding to the a...
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In practice it cannot be expected that the arbitrary numbers a will

be so selected as to be proportional to the direction cosines of one of the

principal axes. The iterative process then involves the use of the derived

numbers y.. as a new set of arbitrary nimbers in place of a^ and the

transformation (44) becomes

i - RX (45)

So again, if the numbers y.. are proportional to the direction cosines of

any line through the origin, then the nirabers ^ . will be proportional to

the direction cosines of a new line corresponding to the original one under

transformation (45), Tliis process is continued until the ratios aiaong the

quantities obtained at any stage converge to the corresponding ratios among

the coefficients of F. to any specified degree of accuracy. The proof of

the convergence of these ratios to those of the coefficients a . of the

first principal factor is given by Hotelling (1933), A convenient procedure

is to divide each of the trial values by a fixed one of them, say the largest.

Then the next value obtained, corresponding to this number, will be an ap-

proximation to the characteristic root X^,

Instead of calculating the successive values y ., C
j^
etc., and sub-

stituting them in equations like (44) and (45), a modification will next

be introduced which greatly accelerates convergence (Hotelling, 1936), This

simplification is accomplished by the formal algebraic substitution of the

successive estimates in these equations. Upon substituting the values for

Y., from (44) into the right hand member of (45), the latter equation takes

the form

i - R(Ra) - R^a . (46)
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Consequently, if the correlation matrix Is first squared and then used for

the transformation of the original set of arbitrary nunbers a .» the ssom

results are obtained as that accoapllshed by the transformation (44) followed

by the transfomatlou (45) and effectively does the Job of two Iterations*

The Improvement In the Iteration process need not end with the employnent

2
of R as higher powers of R will Increase the speed of convergence.

The second and remaining principal factors may be determined by the same

method, and convergence can be accelerated by the use of a convenient power

of the matrix of residual correlations* It Is not necessary, however, to

obtain this power of the residual matrix by repeated squarlngs, as was done

In the case of the original matrix of correlations. Instead, the determination

already made of the power of R and the following algebraic properties of

matrices can be employed for this purpose*

In getting the square of the residual matrix algebraically from (34)

;
Rj^ - R* - 2 R Qj +

QjL*
V (47)

2
the terms RQ^ and Q. appear. If these terms can be expressed by quan-

tities already known then the actual squaring of R. will be eliminated*

Thos, from the definition (35) of the product matrix.

Prom (41)

since X. is a scalar and

applying definition (35) to the last expression produces!

-Al^l Al> ^1

'£,lh
f

^1

'hSLi
«

il
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Also» from the matrix foznmlatlon of (28) for the particular case of the

first principal factor of the correlation matrix R, the following relation-

ship .'.I '',' ';^
.

' •

provides the basis for expressing BjQ. in terms of knovn quantities. Post*

multiplying (49) by ^ and applying definiticm (35) yields!

• ^i " h h '
^'°^

Upon substituting the known quantities from (48) and (50) for the terms

2
RQ. and Q. In (47) » the square of the residual aatrix becomes

t

Rj^ - R^ - 2X^ Qj^
+ X^ Q^

- R^ - X Q , (51)

In other words » actual squaring of the residual matrix is not necessary since

the square of the correlation matrix and tlie matrix of products of first

factor coefficients are available*

"Hie preceding analysis can be generalized to higher powers of the

residual matrix. For example upon squaring (51)

R^* - R* - 2 Xj^ R^ Qj + \^ Qj* (52)

and successively applying (50) to the middle term and (48) to the last

term on the right, there results

i



21

R^^ - R* - 2 Xj^^ R Qj + \^ Qj

- R* - 2 X^^ Qj + X^ Qj

,4 ^ 3.R*-X^^Qj ^ (53)

^ cinilar fashion. It can be shoim that for any positive Integer a,

V"^"*l''^ Ql
. <54)

Therefore the e power of the residual matrix is expressed in terms of the

e power of the original correlation matrix, elioinating the actual multi-

plications of the residual matrix.

A NUMERICAL EXAMPLE

First-Factor Coefficients

The data used in this example was taken from a report on the evaluation

of flight performance in the United States Air Force B-47 training progran

(Woolmaa, 1955)* The student pilots were required to perform six specific

tasks on the B-47 simulator trainer. A numerical score was recorded by the

instructor based on the students performance of the task. In order to study

the relationships between the six tasks, a sample of 76 students was selected

and Intercorrelations between all tasks were ccwaputed. These correlations

are presented in Table I. This is the basic data that will be used to il-

lustrate the principal - factor solution of the factor analysis problou



21

Table 1. Intarcorrelatlon matrix

Task

1. Turns - .78 .01 .17 .09 .29

2. Change
of A/S - .18 .33 .19 . fH

3. ADF - .54 .63 #91

4. VOR • ,40 .23

5. ILAS - •!•

6. GCA •

The first step in solving the factor analysis problea is to decide how

to estimate the comraunalitles to be entered on the diagonal of the matrix.

Several suggestions have been offered on how to estiiaate these numbers or

QD—unn11Hrn (Uanaon, 1962). One of the simplest methods is to choose the

highest correlation in each row or column and use this as the estimate of

the Jth cotmunality. Using this procedure the reduced correlation matrix is

given in Table 2 with the elements above and below the diagonal included for

•oaptttatlonal purposes.
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Table 2. Reduced correlation matrix: R

I 2 3 4 5 6
'i «n"

1 ^21 .78 .01 .17 .09 .29 2.12 .8413

2 .78 all .18 .33 .19 .26 2.52 1.0000

3 .01 at .63 .54 .63 .31 2.30 .9127

4 .17 •J) .54 45i •40 .23 2.21 .8770

5 .09 .19 .63 .40 ^ .36 2.30 .9127

6 .29 .26 .31 .23 .36 ^ 1.81 .7182

The sums of the rows of R are entered in the column S . The set of

trial values °ii "* obtained by dividing each value of S. by the

largest value appearing In the column. In the above case, 2.52 was the

divisor used in obtaining the a . set of trial values. The higher

powers of the matrix R were then computed to increase the speed of con-

vergence.
.

'
•

,

1 2 3 5 6 V" ^r
(2

1 1.34 1.37 .39 .59 .45 .61 4,75 4.75 ,8377

2 1.37 1.46 .64 .80 .68 .72 5.67 5.67 1.0000

3 .39 .64 1.21 1.02 1.16 .71 5.13 5.13 •9048

4 .59 .80 1.02 .93 .97 .65 4.96 4.96 • 8748

5 .45 .68 1.16 .97 1.13 .72 5,11 5.10 .8995

6 .61 .72 .71 .65 .72 .56 3.97 3,97 .7002
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The column headed T has been added to Table 3 for checking purposes.

This check Is made by confuting the product of R by the column of values

S. from Table 2. These values

V" - 1 '^i
=. (j - 1, 2, 6) (55)

should agree, except for rounding errors, with the respective svans S of

the rows of R. It is advantageous to compute the column T first since

this can be done without actually squaring the matrix and the next set of

values o - can be computed. In this manner it Is possible to make one

further comparison to ascertain whether there Is sufficient agreement between

the last two sets of trial values a to discontinue raising the natrix R

(2)
to any higher power. The second set of trial values a . are computed in

exactly the same maimer as the values a . ', Since the agreement between

(1) (2)
a.,' • and a.,^"' was not too good, the matrix R was raised to a higher
'jl

po««r»

'jl

Table 4, Fourth power of correlation matrix! R

1

2

3

4

5

6

4.75

5.30

3.43

3.67

3.51

3.13

5.30

6.04

4.36

4.50

4.41

3.75

3.43

4.36

4.92

4.51

4.83

3.45

3.67

4,50

4,51

4,26

4.46

3,33

3,51

4.41

4.83

4.46

4.75

3.44

3.13

3.75

3.45

3.33

3,44

2.65

23.79

28.36

25.50

24.73

25.40

19.75

T (4)

J

23.78

28.36

25.48

24.71

25.38

19.74

.8385

1.0000

.8984

.8713

.8949

.6960
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Table 5. Eighth power of correlation matrix: R
8

—

—

1 2 1 4 5 ^r
1 98.00 115.87 100.58 98.46 100.42 79.17 592.5 592.5 ,8393

2 115.87 137.34 120.50 117.62 120.22 94.37 705.9 705.9 1,0000

3 100.58 120.50 110.55 106.64 109.96 84.84 633.1 633.1 .8968

4 98.46 117.62 106.64 103.19 106.15 82.27 614.3 614.3 .8702

5 100.42 120.22 109.96 106.15 109.38 84.50 630.6 630,6 .8930

6 79.17 94,37 84.84 82,27 84.50 65.71 490.9 490.9 .6953

Table 6. Sixteenth power of corre lation matrix: R

1 2 3 4 5 6 s/'« T (16)

J «n''"

I - mm - - - - 366210 .8394

2 - ^m mm - - - 436283 1.0000

3 - - - - «• - 391144 .8965

A - - - m «• - 379596 .8701

5 - - - • <m - 389644 .8931

6 - - - •• <»' - 303319 .6952

Note by using equation (55) it xjas not necessary to actually square the

f 16)
eighth power of matrix R in order to get the set of trial values a

^^

in Table 6. The differences between the successive sets of trial values are

sumnarized in Table 7.
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Table 7. Differences bet\>reen successive trial values

Variable
"Jl "jl "Jl "Jl °jl

I -.0036 .0008 .0008 .0001

2 •

3 -.0079 -.0064 -.0016 -.0003

4 -.0022 -.0035 -.0011 -.0001

5 -.0132 -.0046 -.0019 .0001

6 -.0180 -.0042 -.0007 -.0001

The a.j values agree with the a .^ ' values to three decimal places.

The next step is to calculate the F- coefficients a , The calculation of

these values using equation (31) is given in Table 8.

Table 8. Calculation of the F. coefficients

Variable

1

"jl
First Iteration

./ /,

Third Iteration Fourth Iteration

'jl

^jl "jl
/ /

'ji "Jl ^Jl °J1

1 .8394 1.8736 .8388 1,8730 .8389 1.8730 .8389 ,588

2 1.0000 2.2337 1.0000 2.2328 1.0000 2.2327 1.0000 .701

'^ 3 .8965 2.0012 .8959 1.9995 .8955 1.9993 .8955 ,628

4 ,8701 1.9438 .8702 1.9425 .8700 1.9424 .8700 .610

5 .8931 1.9913 .8915 1.9900 .8913 1,9894 .8910 .625

6 .6952 1.5533 .6954 1.5522 .6952 1.5521 ,6952 .488

2.2327

J-1
'jl

4.5398 .7013
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The "Y
values In each Iteration were computed using equation (43).

After the y , values had been computed the a^ values for that iteration

were computed by dividing each y ^ by the largest value of y^j*

After four Iterations the successive sets of a^j^ values agreed to three

decimal places and were considered stable enough to calculate the a^^

coefficients using equation (31).

Second - Factor Coefficients

It was shown that the matrix of first-factor residuals R^ Is given

by the equation

^ " " " ^1
(34)

where

''".
_

"

.
-r -

't V'
"

. -.:.

In this example the matrix Q^ Is obtained by multiplying the column vector

a, by its transpose s^^ where '

(35)

,588

.701

.628

•^1 "
,610

.625

' ; . /
• 488

I?
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Table 9. Product matrix: Q. «» a- a.

t 2 3 4 5 6
'n «j^

1 .346 .412 .369 .359 .368 .287 2.141 2,14

2 .412 .491 .440 ,428 .438 .342 2.551 2.55

3 .369 .440 .394 .383 .392 .306 2.284 2.29

4 .359 .428 .383 .372 .381 .298 2.221 2.22

5 .368 .438 .392 .381 .391 ,305 2.275 2.27

6 .287 .342 .306 .298 .305 .238 1,776 1.77

In order to check the calculation of the elements o£ the product matrix

Q. , obtain the sums of the rows E - and compare them with the corresponding

values a.D. where

'^l
- I \l .

k"l
(56)

The stjra of the flrst'-'factor coefficients D. for this example Is 3.640.

The matrix R, is computed by subtracting the elements In matrix Q.

from the corresponding elements In matrix R«

Table 10. Matrix of first-factor residuals: R,

1 2

1 .434 .368

2 .368 .289

3 -.359 -.260

4 -.189 -.098

5 -.278 -.248

6 .003 -.082

3

.359

4

-.189

5

-.278

6

.003 -.021

.260 -.098 -.248 -.032 -.031

.236 .157 .238 .004 .016

.157 .168 .019 -.068 -.011

.238 ,019 ,239 .055 .025

,004 -.068 .055 .122 .034

a
<^>

J2

-.6176

-.9118

.4706

-.3235

.7353

1.0000



29

Since the S . sums were very small the a ^ set of trial values

were used to compute the second factor coefficients rather than raising the

matrix R. to a higher power. The results of these calculations are given

in Table 11.

Table 11, Calculation of the F coefficients

°J2

First Iti•ration
f L

Fourth Iteration '

1

Fifth Iteration

Variable

^12 °12 f /. ^12 «i2 ^12 .°12 ...
'^12

1 -,6176 -.9128 -1.0000 -1.2559 -1.0000 -1.2549 -1,0000 -.667

2 -,9118 -.8458 -0,9266 -1.0036 -0.7991 -1.0028 -0,7991 -.535

3 ,4706 ,6981 0,7647 0.9626 0.7665 0.9618 0.7664 .513

4 -,3235 .1716 0.1880 0.4570 0.3639 0.4567 0.3639 ,244

5 .7353 .7344 0.8046 0.8273 0.6587 0,8267 0.6588 .441

6 1,0000 ,2592 0.2840 0.0855 0.0681 0,0854 0.0680 .046

'^' 1.2549
j-1

^^
• - 2.7970 \ ^2//.\ I a^^ n. .6698

Five iterations were required before the o^ set of trial values were

considered stable enough to compute the a . coefficients. la order to

determine whether two factors accounted for most of the communality, it was

necessary to compute the matrix ox the second-factor residuals R. wb«M

\'\' "^2 (57)

and

Q2 - ^ ^2 (58)
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In this case

^

-.667

-.535

.513

.244

.441

.046

Table 12. Product matrix: Qn " S? Jo

1

2

3

4

5

6

.445

.356

-.342

-.163

-.294

-.031

.356

.286

-.274

-.131

-.236

-.025

-.342

-.274

.263

.125

.226

.024

4

-.163

-.131

.125

.060

.108

.011

-.294

-.236

.226

.108

.194

.020

-.031

-.025

• 024

.011

•020

• 002

J2

-.029

-.024

.022

.010

.018

.001

-.028

-.022

.022

.010

.019

.002

The check procedure for the matrix Q^ is analagous to that of the

product laatrix Q..

Table 13. Second factor residuals: R.

1 2 3 4 5 6

-.011

.012 .003

-.017 .014 -.027

-.026 .033 .032 .108

.016 -.012 .012 -.089 .045

.028 -.057 -.020 -.077 .035 .120
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Two factors have accounted for the greater part of the conuaunallty,

since the largest value In the second-factor residual matrix R2 is .120.

In addition the majority of the entries have an absolute value of less than

.05. For practical purposes and for the purposes of this paper, the two

factors are considered an adequate solution to this factor problem. The

results are suanarized in Table lA.

Table 14. Principal-factor pattern for six B-47 sinulator tasks

Variable Pattern Coefficients ConHBimalitv

J h ^2 Original . Calculated

1« Turns .588 -.667 .78 .791

2. Change of A/S ,701 -.535 .78 .778

3. ADF .628 .513 .63 .658

4. VOR .610 .244 .54 .432

5. ILAS .625 .441 .63 .585

6. GCA .488 .046 .36 .240

Total 3.72 3.484

Contribution of factor 2.232 1.250

I of total original
coitanunallty 60.0 33.6 93.6

Although 93.6Z of the estimated communality has been accounted for after

the extraction o£ two factors, we do not know whether the original estimates

of the coianunslities were correct. One method of refining the estimates of

conmmnalities is an iteration technique (Harman, 1962). This method involves
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Obtaining a principal-factor solution such as that presented in Table lA,

then refactoring with the calculated conmiunalities as the next estimates.

This process is continued until agreement between successive sets of com-

Biunalities has been achieved to any desired degree of accuracy. This

technique is practical if a high speed digital computer is available. The

solution presented in Table 14 indicates some deviations between the esti-

mates of the conmunalities and the calculated communalities. In actual

practice these deviations are large enough to warrant getting better estimates

of the communalities.

Interpretation

Assuming that the solution above is adequate, the next step is to in-

terpret the results of this analysis. The factor pattern as it appears in

Table 14 indicates that there is 1) a general factor where all six variables

are contributing about equally and 2) a second factor in which variables

1 and 2 are contributing something quite different from variables 3, 4 and

5. This is evident by the negative loadinr,s on variables 1 and 2 and

positive loadings on variables 3, 4 and 5. The pattern definitely indi-

cates the presence of two factors.

It is often possible to simplify the interpretation of the original

factor pattern by making an orthogonal rotation in the factor space. The

purpose of the orthogonal rotation is to obtain "simple structure", (Thurston,

1947), A simple structure may be viewed as an attempt to reduce the com-

plexity of the original factors.

The original factor pattern has been plotted in Figure 1. The axes

were rotated 50 degrees in a clockwise direction in an attempt to achieve
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• Changs of A/S

Figure 1, Orthogonal rotation of axes*
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high loadings on tasks 3 - 6 In one factor and high loadings on tasks 1 and

2 in the second factor. The required transformation is accomplished by the

following set of equations:

b- " a, Cos 6 + a. Sin 6
1 -^ ^

bj --J^ Sin e + a^ Cos 6

where 6 is the angle of rotation. This trans fonnatlon can also be ex-

pressed in matrix form

Cos e -sin e

M - C

Sin 6 Cos 6

where C is the pattern matrix from Table 14 and M Is the rotated matrix

pattern.

In this example

Sin (-50) - -.766 Cos (-50) - .643

and ".588 -.667 .643 .766 '.889 .022

.701 -.535 -.766 .643 .861 .193

.628 .513 .011 .811

M - .610 .244 m .205 .624

.625 .441 .064 .762

.488 .046
_ .278 .403
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It is evident that some simplification was achieved by this rotation.

Variables 1 and 2 are Isolated in one factor while variable 3-6 are highly

loaded in the other factor. The interpretation of these results seems to

depend upKjn the relative cotsplexity of the six variables or tasks. The two

tasks. Turns and Change of Airspeed, were simple manuevers and were highly

correlated consequently they make up one of the two factors. The remaining

four tasks were quite complex in contrast and tended to group together in a

second factor.

The same data was factor analyzed in 1955 by the writer of this report.

The centroid solution was used to determine the factor pattern in the earlier

analysis (Guilford, 195A). An orthoganal rotation of the axes was made to

give a clearer interpretation of the results. The rotated factors of the

two solutions are presented in Table 15 for comparison.

Table 15. Comparison of two factor solutions

Variable

Principal - Factor Centroid

"l "2 ^ ^''2

1 Turns .889 .022 .85 .04

2 Change of
A/S

.861 .193 .90 .16

3 ADF .011 .811 .00 .86

4 VOR .205 .624 .22 .60

5 ILAS .064 .762 .07 .76

6 GCA .278 .403 .27 .41
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The results of the two analyses agree quite closely. The slight dis-

crepancies Bay be due to the failure to refine the estimates of the com-

munalities in the principal - factor solution. It is both interesting and

gratifying to this writer that the results should agree so closely using

two entirely different solutions.
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ABSTRACT

Factor analysis Is that branch of statistics which deals with the

internal structure of matrices of correlations. Initially, it was de-

veloped by psychologists, with Spearman, Tliomson and Thurstone pioneering

the early work in the development of factor analysis. Today factor analysis

is being used in the areas of geology, medicine, physical science, and many

other fields besides that of psychology. This wider use of factor analysis

has been brought about, primarily, by the development of high speed digital

computers. The modem computer has made it possible to solve the factuK

problem in minutes and hours rather than the days and weeks formerly required

using the desk calculator.

The chief aim of factor analysis is to describe a number of variables,

say n, in terms of ra factors where m ^ n. The model for any standardized

variable say z can be expressed as follows

"j " *jl ""l
"^

^J2 ^2 -^ • • • -^ ^jm ^m + »j "j ^ J " ^ "^

where F, ,F^, . , . ,F represents the m factors and U, represents the
1* 2* ' ra "^

J

uniqueness of the jth variable. The complete mathematical model la a matrix

of n such equations. The problem is to compute the coefficients of

F- F„ , , , F for each variable J, These coefficients are called the12m
factor pattern and represent the solution of the factor problem.

There are several solutions presented in the literature for determining

a factor pattern. The principal - factor solution was chosen because of its

rigorous mathematical basis. From an algebraic point of view the principal



factor solution consists of choosing a set of factors In decreasing order

of their contribution to the total coinmunality. The analysis is begun with

the original correlation matrix with the conmunalltles or estimates of the

coMnunalities as the diagonal elements. The factor F^ whose contribution

to the coramunalitles of the variables has as great a total as possible Is

extracted. Then the first-factor residual correlations are obtained. A

second factor T^^ Independent of F^, with itiaximun) contribution to the

residual conmunality Is next found. This process is continued until the

total coiotaunality is analyzed. The a^^, s^^, . , . a^^ colunm vectors are

the coefficients of F^, F2 F^ and are the desired factor pattern.

There are at least two laajor advantages of the principal factor solution

over other available solutions:

1) No assumptions are required about the distribution of the original

n variables.

2) The factors are extracted in decreasing order of size. Tlierefore

the process can be terminated at any point and the statistician can

be assured that any of the remaining factors will be smaller than

the last factor extracted.

The principal-factor method Is Illustrated with a numerical example.

A comparison of the centrold solution and the principal-factor solution of

this exoBple is presented.


