
BENDING AND BUCKLING OF A PRISMATIC BAR
SUBJECTED TO AXIAL AND LATERAL LOAD SIMULTANEOUSLY

AMIN^KANUBHAI B.

B. E. (Civil), Vallabh Vidyapith Vidyanugar, I960

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1963

Approved by:

/fl&jor Professor tf



R+

As-/7

ZZ'en+s TABLE OP CONTENTS

SYNOPSIS ii

INTRODUCTION iii

ILLUSTRATIVE PROBLEMS 2

EXAMPLE PROBLEM 1 2

EXAMPLE PROBLEM 2 9

EXAMPLE PROBLEM 3 11

HAMPLE PROBLEM 4 14

EXAMPLE PROBLEM 5 20

EXAMPLE PROBLEM 6 26

EXAMPLE PROBLEM 7 29

EXAMPLE PROBLEM 8 31

CONCLUSION 32

ACKNOWLEDGMENT 33

APPENDIX I 34



ii

BENDING AND BUCKLING OF A PRISMATIC BAR
SUBJECTED TO AJCIAL AND LATERAL LOAD SIMULTANEOUSLY

by

AMIN KANUBHAI bS1 ^

SYNOPSIS

A method for det- Lniag the capacity of restrained bar

of a constant cross section with different system of loading

is described. The type of failure considered is that due to

bending or buckling by lateral and longitudinal load acting

simultaneously, and also due to restraining moments applied at

the ends of bar. The restraining moments are created by apply-

ing equal or unequal eccentric load at the ends of bar. The

results of the standard case of lateral loading are modified

for asymmetrical lateral loading on a compressed bar, with the

help of the principle of superposition. In general, the effect

of the axial load on laterally loaded bar is discussed in lim-

iting case of failure for each type of loading. The expression

for deflection is derived for each case in multiple of two

quantities of which, the first represents the deflection due to

only lateral load and the second quantity, which is a trigono-

Graduate student of Civil Engineering Department ofKansas State University, Manhattan, Kansas.



iii

metric expression, is the effect of axial load. This will af-

ford enough information to investigate the critical value of

axial load for which the bar remains in elastic stability be-

fore it buckles to failure.

INTRODUCTION

With the advancement in the use of high strength alloys or

steel in engineering structures, especially in bridges, ships,

and aircrafts, it becomes necessary to discuss the problems of

elastic stability. Urgent practical requirements have given

rise in recent years to extensive investigations, both theoret-

ical and experimental, of the conditions governing the stabil-
o

ity of such structural elements as bars, plates, and shells. (1)

The first problems of elastic instability concerning lat-

eral buckling of compressed members were solved by L. Euler.

However, at that time, the principal structural materials neces-

sitated large sections of structural members for which the ques-

tion of elastic stability does not arise. Only with the begin-

ning of extensive construction of steel railway bridges in the

last five decades did the question of buckling of compression

members become of practical importance. Thus, Euler* s solution

for slender bars became useful in such conditions. The use of

steel led naturally to types of structures embodying slender

compression members, thin plates, and thin shells. Experience

(2)'Number in parentheses refers to corresponding items in
Appendix I.
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showed that such structures may fail in some cases not on ac-

count of high stresses, surpassing the strength of materials,

but owing to insufficient elastic stability of slender or thin

walled members.

The lateral buckling and bending of compressed members is

a practical case of elastic instability. In the modern design

of bridges, ships, and aircraft, we are confronted by a variety

of stability problems. We have solid struts; built-up or "lat-

tice work" columns; and tubular members, where there is a pos-

sibility of local buckling, as well as buckling as a whole. In

the use of thin sheet material, as in plate girders, and air-

plane structures, we have to keep in mind that thin plates may

prove unstable under the action of forces in their own planes,

and fail by buckling sideways, Thin cylinders or shells, such

as vacuum vessels, which have to withstand uniform external

pressure, may exhibit instability and collapse at a relatively

low stress if the thickness of the shell is too small in compar-

ison with the diameter. The thin cylindrical shell may buckle

also under axial compression, bending, torsion, or a combination

of these.

If a beam is submitted to the action of lateral loads alone,

the deflection of the beam and the stress produced are propor-

tional to the magnitudes of the loads. Little change in the

positions of the loads have only a small effect on deflections

and stresses. Such small deflections do not affect the value

of bending moment and shear forces in the beam. In actual cal-

culation of these quantities the deflections are entirely neg-
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lected, and all necessary distances from the initial straight

form of the beam are determined. However, conditions are en-

tirely different when axial and lateral loads act simultaneous-

ly. The stresses and deflections are not proportional to the

magnitude of the longitudinal force. A slightest eccentricity

in the application of the axial load or a little initial de-

flection in the beam may have a substantial effect on the final

deflection of the beam and on the stresses produced in this

condition. Here the effect of small deflections of the beam

should be considered in the calculation of bending moments and

shear forces.

When the magnitude of the axial compressive force approach-

es a certain limiting value, usually called the critical load,

the deflections become very sensitive to the slightest change

in the position of the point of application or in magnitude of

the axial load, and the bending of the beam becomes a character-

istic sudden lateral buckling. To study this, the derivations

of concrete examples are produced here.

ILLUSTRATIVE PROBLEMS

The first example chosen is a single load acting on a

compressed bar. (1)* (2)

5Page No. 2.
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Fig. 1. Single load on a compressed bar.

If an axial compressive force acts on an ideal prismatic

bar, it produces only uniform compression; however, if there is

also a lateral load acting on the bar, the axial force produces

some effect on the bending of the bar. This effect can be in-

vestigated by considering the deflection curve of the bar.

(See Fig. 1.)

Denoting the corresponding flexual rigidity by EI and axi-

al compressive force by P, the differential equations of the

deflection curve for the left and right portions of the bar are

E* S£ - - ^ " *

EI & . - Q (L-C) (L-x) _ ^
dx

2
Knowing M - - EI ^-Z

dx2

(1)

(2)

in which L is the span and C is the distance of the load Q from

the right support B.

P oFor simplification denoting ^ = K^ the equation (1) be-

comes

d
2
y £C x

L EI



The corresponding homogeneous equation is *M| + ytj =

dx^

The auxiliary equation is D + K »

The roots of this equation are -iK

Hence, the complementary solution is y » A cos Kx + B sin Kx

And, particular solution is Yp » - |r x

Therefore, the general solution is

Y - A cos Kx + B sin Kx - |j|x (3)

Similarly, the general solution of the equation (2) is

Y - C cos Kx + D sin Kx - 9 ^L~g£ ^ L"3C ) (4)

The constants of integrati^ A, B, C, D can he determined

from the conditions at the ends of the bar and at the point of

application of the load Q.

Since the deflections at the end of the bar, are zero,

then at A, x » 0, y m

Substituting these values in equation (3) we have

« A cos + B sin - 82
JrJb

A »

At B, x L and y »

Substituting this in equation (4-) we have

- C cos KL + D sin KL - $ (L"c )
¥

(L"L )

C • -D tan KL (5)

At the point of application of the load Q the two portions

of the deflection curve as given by the equations (3) and (4),

have the same deflection at Q and same slope at Q. So rewriting



and simplifying the equations (3) and (4) we have

B sin K (L-C) - |£ (L-C) = D sin K (L-C)

- tan KL cos K (L-C) - 3S (L-C)

and

BK cos K(L-C) - -^ - M cos K(L-C) - tan KL sin K(L-C)

from which

An b t sin KCA " ° B * PK sin KL

9mm ft
sin (L-C) _ Q sin K(L-C) ,-*
PK "

PK tan KL ^b;

Substituting these values of constant in the equations

(3) and (4) we have

y =
PK

S

!in
gL 8iDKl -iJ f" x^(I-O) (7 )

which simplifies to

" -%W^ -i- «i«) - aQeflttad for «.<«) (8 )

It will be necessary to find the deflection at the center

and compare it with the standard value of deflection on a sim-

ply supported beam when load is at center. This value is Ql?

From equation (7) when x » C » L/2



q. sin ** D .

yT = * 2 sin 3— -

Sin KL « 2 sin |^ cos §r

Therefore

^ tan ^ QL
yL,

=
"~2l« Sf (A)

'2

2 P
But it is already known that K »|?

KL L J"P ^ . ,„x
2"~ * 5 A'1T

= u say convenience (9)

2
So that K « §* and P = 4u j*1

L
J?

Substituting values of K and P in (A) we have

y „ 9.(*an u)L5 „ QX3

16u5EI 16u2£I

" QL ftanu-ul

^ JL (tan u-u) (10)

From expression (10) it is obvious that with a load Q only at

the center of the beam the deflection is %&Ef while the second

factor 2? (tan u-u) is the effect of the axial load P.
u^

In the equation u * 5 7|j , when P is small, the quantity

u is also small and the factor 2_ U~U
^ approaches unity.

u^

This can be shown by selecting first two terms of series for



tan u and substituting it in the factor.

u? 2u^tan«u+|-+^

As u increases the factor also increases. The factor

approaches to infinity as u increases to 7T/
2

The value of P when u - Jf /2 is found from the relation

L /P"
5 * 2T " u But u " 77 /'2

>

p

This allows us to conclude that when the axial load in-

creases to limiting value, the smallest lateral load on the

beam may produce large deflection. This limiting value of

compressive force is denoted by critical load Per.

It can be observed that when lateral load and axial load

act simultaneously, the maximum bending moment can be obtained

by multiplying the bending moment aue to lateral load with the

trigonometric factor such as ^- (tan u-u). The value of this
u-*

factor approaches to unity when the compressive force decreases

but the same factor increases to infinity when the value of u

approaches to 7T/g% i.e., when compressive force has the value

77 KT
icr - * as derived above, which is known as critical value

L

Per.

To support the method of finding bending moment as described

above, an expression for the same is derived in a following



manner. (1)^

From the equation (7)

ft sir:

PK si
in KG . v QC
in~KL sxn ** - PTX

JK » g sin KC - _ QC
dx P sin KL cos ** ft

- - frsiHS *•*-«-

at x > L / and C » L /

i2*
dx2

q sin P • K sin |&
P sin KL

sin2 KL
2"

cos KI:/ sin KLv2 /a

S : tan KL
>P r

B.M. Max. • - EI (
d-?)x - L

/l

EI «S tan KL

and

B.M. Max. » gfc ^S_Ji

ji u

K

3age No. 5.



Again we see that the first factor in above expression

represents the bending moment produced by the load Q alone,

while the second factor is the magnification factor, represent-

ing the effect of the axial force P on the maximum bending mo-

ment.

EXAMPLE PfiOELEM 2 (l)
6

The result of the single acting lateral load on a com-

pressed bar can be generalized for several lateral loads. (See

Figure 2.) It is seen from the equations (7) and (8) that when

a lateral load Q2 is added to the lateral load Q,, the result-

ant deflection can be obtained by the principle of superposi-

tion. It can be shown that the same method of superposition

can also be used if several lateral loads are acting. For in-

stance, the case of two lateral loads as shown in Pig. 2:

Y-aacts y

X- AXxS

Pig. 2. Two lateral loads acting on a compressed bar.

The differential equation of the deflection curve of the

left portion of the beam x (L-C
? ) is

Page No. 6.
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£ly « „ . «±_± x _ «£_4 x - py (10)

If we consider now the load Q^ and the load Q2 separately

acting on the compressed bar and denote the deflection as Y,

when the load Q1 is acting and as Y
2

when the load Q^ is act-

ing, for the left portion of the beam the following will be the

equations for the deflection curve.

£IY
1
" - - -±£± x - tt

x

EIY
2
" - - -£j£ x - PY

2

Adding these two equations together, the following expres-

sion is obtained

Q, C, Qo o
JSI(Y

1
M Y

2
") - - -*ji x -

-*J4 x - P(Y1+ Y
2 )

When the deflections 1^ and Y
2

are added, this equation is

the same as aquation (10) when it was obtained considering the

loads Q,^ and Qg acting simultaneously. The same conclusion can

be made also for the middle and for the right portions of the

bar. From this it can be concluded that in the case of several

loads acting on a compressed bar, the resultant deflections can

be obtained by superposition of the deflections produced by

each lateral load acting together with the longitudinal force P.

The solution for n loads can be directly generalized from the

equations (7) and (8). (See Fig, J.)
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AND SO ON

Fig. 3. n Lateral loads acting on a compressed bar.

in m

sin Kx
PK sin q i - 1 0^ sin KC

±
-
fa i - 1 Q.C.

n

+ lK
n
sin

Lg } i =• m + 1 Q.^ sin K(L-C.)

n

- ^ i*rir + 1 Qi
(L-C

i ) (11)

This is achieved by taking the summation of "n" loads,

EXAMPLE PROBLEM 3

The problem of a uniformly distributed load may be ap-

proached by use of equation (11). (See Pig. A-„)

7/-V r

U » i i I I h y •* y •*

V"*j c "

oc- <j*—L-x- B

Pig. 4. Uniformly distributed lateral load acting on
a compressed bar.

L.
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Consider a small length do at 'c' from B so that the load

acting at that point is q(dc). Substituting the value of

Q « qdc and integrating to required limits we have:

L-x L-x

y - li
n
sS kl Adc sin KC - h f+ dc

o o

sin K(L-x) (* PK sin KL J
L-x

| sin K(L-C)dc - j^&

L-x

J q(L-C)dc

L-x
(12)

sin Kx
PK sin KL

[-foosKcj -fg [f]
L-x

HN&& it** «^ kl L-x^*^
O^2

]L-x

_ sin Kx
y * ^2"

PT- sin KL
q fl - cos (L-x) k! - ^^ (l-x) 2

sin K(L-x) „ f,+ ,,

,
.jy

—\ < q n - cos
PK^ sin KL L ]

Kx
J

» fgl ,(-x2
/2

)

7 * "?2 sin P 2 fSin *" 3in2 K
^I"

X>
+ sin K(L-x) sin2 ^]

" Sfe [
X ^L-X)

2 x2(L-x)J
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2q 1 f"a . Kx „^ Kx .2 K(L-x)
y ^2 hts; 2

[
sin 2~ cos t 8in -V^

2 xin K|aa cos ifcfa sin2 f ]

*
2"fe

|3c(L-x) fL-x + xM

» -y^S sin * sin Sttg«i |' cos Kl sin iQfi^
PK^ sin KL * L « d

cos fi^pll sin |tj - ^ ioc(L-x)

^— sinf* sin M¥I 3inf? ,KL.^
3?PF" sin KL

- §p x (L-x)

iL« =•«», Kx «-?« K(L-x)

!S C ^ jy. | in
KL

2PK2 sin B cos P s n 5~ - ^p x(L-x)

jrhJt-'H^
- cos (Jj - |£ + |2E)~j . jj x (L_x)

y . ^ ^

PK cos j*

cos (Kx * |I0 - cos §* - |p x (L-x)

PK^

cos H (1-
2jj

KjL
cos *—

- 1 ~ fp x (L"*x )
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If u
KL h U a L P

SET

4EIu'
T2~ also 4u£

4EIu^ 4u^

cos u(l -

cos u -1- qL^ x(L-x)

8 EIu2

^L
16EIu

2x
cos u(l - »•

cos u
- 1

- A— x (L-x)
8EIu

(13)

As P increases u also increases. ( . ximum value of

u a T\/p
(say) so that cos u « and hence, the deflection be-

comes o* . ) Therefore , we can conclude that axial force P has

considerable effect on th* bending of the beam when the beam is

loaded laterally.

EXAMPLE PROBLEM 4-

A triangular load is an interesting situation to be con-

sidered. The results will be similar to the preceding example

of a uniformly distributed load. (See Pig. 5.)
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X-A*l*

Fig. 5* Triangular distributed lateral load acting
on compressed bar.

Considering a section at a distance c from B having

width dc.

q is the maximum load at left hand side.

The value of load at distance c from B q = *oC

Sub
loC

stituting -jj- for q in equation (12) we have

y = sin Kx
PK sin KL

. L-x

ft
L-x

j£ dc sin KC -
|^ /

w
dc

L L
sin K(L-x) f qoC . Wx „%, L-x f qoC ,,. „ NJ+
PK sin KLV ~ Sin K ^L-C >dc " PL"T

^ "T ^ L-C )dc
L-x L-x

(14)

4o sin Kx
PK L sin KL C-I cos KC +

L—

x

-IsinKc] -Vfr)K2 J
o PL2 L 3 'o

L-x

+ V^Sffi [S cos K<W) ij sin (L-0) if
K L-x

. (L-x) « fLc
2

c3

pl2 L~ - r L
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y ŵ n^ {•_ ap oos K(Irt0 + jl sln «^,J

^ sin K(L-x) TL _ (]>x) coe ^ m 1
s

.

n j^-7

PK^ L sin KL L *
-I

y - ^l sts-ie (J
sin K(L"X) sin **

- (L-x) sin Kx cos K(L-x)

+ L sin K(L-x) - (l-x) cos Kx sin K(L-x)

-
j|

sin Kx sin K(L-x) 1

- h N^ + C1-x)

ft
-^ (L

/2-v x
'3)\]

7 « —-

—

ZS. L sin k(L-x) f sin Kx cos K(L-x)
PK* 1 sin KL L *•

K(W)}^]+ cos Kx sin

3^ <I*0 f|««)2 £ - (W)2
(L
/6

. «
/})]
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%
PK2 L sin KL

[L sin K(L-x) - (L-x) sin Kl]

%> L

PL'
| (L-x)[l- (L-x)

2
]

^ i' T sin K(L-x)

PK2 L L sin

- Pi^ <2L~X > *

L sin KL x sin KL
sin KL sin KL

[

sin K(L-x) %
sin KL

'

I * X * 5PT x(L"x
> < 2L-*>

Now u . P • L/
2 Jfj

and K2 = 9

4EIu'

L2

(A)

We have

<W
lttlu

sin 2u(l- 1)

sin 2u - I • 11 - ^^MP (L-x) (2L-x)
8EIuc

(15)

As P increases u increases as seen in equation A. Let u

increase to 77 /_ such that sin 2u ai.njj 0; the value of

the expression then becomes infinity. The same argument pre-

sented in the Problem 3 holds good; that is, the axial force P

has substantial effect on a laterally loaded beam.

Using the expressions previously derived, one can solve

for any system of loading on the beam. To illustrate this,
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two modifications are briefly discussed. (See Fig. 6.)

rT*fr

YjLJL-kJLk.m
>**B

- 3 ^ 5 H

(a)

Deflected structure
(c)

Fig. 6. Asymmetrical uniformly distributed load acting
on compressed bar.

The above system of loading, as shown in Fig. 6 (a), does

not occur usually in a practical problem, but theoretically it

will be interesting to see the application of derived expres-

sions. The above problem can be divided into the forms shown

in Fig. 6 (b) and (c).

The two halves are solved separately taking L
/2 as the

span. At x - /2 the net deflection is zero. The same problem

can be solved by assuming the equation of deflected curve of

the form

7

r>C

^ G„ sin *Up .

n = 1 L
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The equation of the def lected curve is derived by substi-

tuting /p instead of L in expression number (15).

y = 0_L

256EIu [

cos u (1 - ~)
COS u

- -a-^j x (
L
/?- x)

This shows that at x « 7? 7 ° which satisfies the boun-

dary condition. This expression is true for both parts of the

divided beam because of the symmetry, but in first part the di-

rection of y is downward, while in second part the direction of

y is upward. The second modification is shown in Figure 7.

(a)

(b)

Deflected structure

(c)

Fig. 7. Triangular distributed load acting on a
compressed bar.

The system of lateral loading can be divided into two por-

tions and each can be solved separately.
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On similar lines the expression for the deflected struc-

can be derived by s\

tioii (15) • Then we have

T
ture can be derived by substituting /g instead of L in equa-

256£li?

rsin 2u (1-fj)
L 2x

sin 2u j# 16LIu

This shows that at x » /g y which satisfies the boun-

dary condition. This expression is true for both parts of the

divided beam, because of the symmetry, but in first part the

direction of y is downward, while in second part the direction

of y is upward.

EXAMPLE PROBLEM 5 (l) 7 (2)
8

(3)
9

In this example the bending of a compressed bar by couples

is considered. Such problems are a modification of single con-

centrated load Q. The solution for a single concentrated force

"Q" is available for us to use in this case by recalling expres-

sions (7) and (8). The equation of the deflected curve when

the couple is applied at the right hand of the beam can be de-

rived in the following way: (See Fig. 8.)

'Page No. 11.

3Page No. 29.
9Page No. 2.
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R^Q.

(a) 00

Fig. 8. Moment acting at one end of compressed bar.

Assume that the distance from one end of the beam is in-

definitely decreasing and that at the same time Q is increasing

so as to have the product QC finite and equal to M- . The de-

flection curve is then obtained from equation (7) by substitut-

ing sin KC = KC for C is very small and QC = EL.

Q sin KC
PK sin KL sin Kx -8?x

pi/
for x <± (L-C)

££C sin Kx £C
* " PK sin KL " PLX

M
y - t5-

b sin Kx
P sin KL PL

now QC » M,

y -
^b
P

sin Kx
sin KL -a (16)

To find angle of rotation at the ends B and A expression

(16) is differentiated.

&3
dx P

K cos Kx
. sin KL 1]
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Evaluating this relation at x » and x « L

a 7 x-0 " r I sin"!!L sin KL * L J

= r K
l sin 2u • X J

KL
as u

tout \ \m " u

and Jr » a
IT

*a' and 'b' are angles of

rotation at A and B respectively.

Substituting these values we obtains

a s
2u3T [•»* * »

J

a , V; i r i „ na 5Iu [sin 2u S J
(17)

Similarly at x

b Vi |i i
~

]b 3ST 25 L2H - taTH \
(18)

The expressions ggj and t^j obtain the values of the

angles produced by the couple ^ acting alone, while the trigo-

nometric factors represent the effect of axial load on the

angles of rotation of the ends of the bar.

For calculating the effect of M and ft on a compressed

bar, the trigonometric factor may be abbreviated as follows to

facilitate the calculation.
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1 (-A
u vsm 2u " fe> ^ Cu) (19)

In (fe " tan 2u) V (u) (20)

If two couples M
a

and M^ are acting at the ends A and B

of the bar, the deflection curve is obtained by superposition.

From relation (16) we obtain the deflection produced by the

couple M^. Substituting in the same equation M for Pi and

(L-x) for x, we find the deflections produced by the couple M
a

The deflection curve then is represented by

Mu -
sin Kx
sin KL LJ + P

sin K(L-x)
sin KL

-^O

L-x 1
L J

Q^b

(21)

H

Fig. 9. Couples from either end act on compressed bar.

Using the relations (1?), (18), (19), and (20), and the

principle of superposition, we obtain the angle of rotation:

ML ML
ycu) + ^r<^u)3EI

KL

6EI

ML
a

6EI

(22)

4>W
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If the axial load has the eccentricity e and e^ at the

end A and B, equation (21) can be rewritten in the following

way. Substituting M
fl

Pe
fi

and J^ = Pe^, we obtain:

y = e f s
f
n ft - II * « /

sin K(L-x) L-x 1y eb L sin KL " I J
+ e

a [_ Bin KL * T".|

It is interesting to find the expression for deflection

when M
& * Mjj « M at x « L / .

T » H fsinJx . |1 . h 1 sin K(L-x) L-x 17 P L sin KL L J
+
f L sin KL " "IT J

Substituting x « /2

P
sin KL/2
sin KL

l/o +
Sln K/

2 1, 1
'2 * sin KL " ^J

M f 2s in ^/p ^
I L sin KL * X

J

2sin KL -,

H
p (sec u - 1) As fi u

3£j ^ (sec u - 1) P = ^EI

or v - XOL 2* \ 1 ~ COS U "1
7 ~ SET Jf L COS U J (23)
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'The value of the deflection at the center when only end

moments are acting may be computed by using "Tafel der Warte".

(See Fig. 10.)

Fig. 10. Moment diagram when unit moment acts at the
ends and unit load acts at the middle point
of the beam.

y . |j
1 „. % L .

h\l^
mr
8EI

Therefore, it can be seen -chat the factor ^p (sec u - 1) in re-
u

lation (23) is the effect of the axial load on the deflection

of the beam. As U approaches TA the same factor increases

indefinitely because
rs = *** . The samecos u cos 77/2

factor becomes unity when trigonometric function is expanded

and only the first few terms are considered. Therefore, an

axial load creates a considerable deflection and affects the

bending of the beam when accompanied by lateral loads.
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EXAMPLE PROBLEM 6 (l)
10

(2)
11

In the previous discussion the critical load on a com-

pressed bar was obtained by considering the simultaneous action

of compressive and bending forces. The same result may be ob-

tained by assuming initially that the bar is perfectly straight

and simply compressed by a centrally applied load. First the

case of slender prismatic bar built vertically at the bottom

and loaded axially at the top is considered. (See Fig. 11.)

A X-v's

n?/)///; >- Y-axis

Fig. 11. Slender prismatical bar built in vertically
at the bottom and loaded axially at the top.

The problem of buckling of columns was first discussed by
L. Euler. If the load P is less than its critical value, the

bar remains straight and undergoes only axial compression.

10

11

Page No. 64.

Page No. 146.
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This straight form of elastic equilibrium is stable. If a lat-

eral force is applied and a small deflection produced, this de-

flection disappears when the lateral force is removed and the

bar becomes straight again. By gradually increasing P, a con-

dition is obtained in irhich the straight form of equilibrium

becomes unstable and a slight lateral force may produce a lat-

eral deflection which does not disappear when the lateral force

is removed. The critical load is then defined as the axial

load which is sufficient to keep the bar in a slightly bent

form. This load can be calculated by using the differential

equation of the deflection curve. Using coordinate axis marked

in the figure, the bending moment at any cross section mn is

F(c -y) and corresponding differential equation of the curve

becomes

ElMJ-P(<f-y) (24)
dx

r2 p

We obtain

*-$ + K2y = K2

The complementary solution will be

y A cos Kx + B sin Kx

while the particular solution of the equation is y « cf

The general solution of the above differential equation

will be
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J • J A cos Kx + B sin Kx (25)

in which A and B are constants of integration which must be ad-

justed to satisfy the conditions of the built-in end.

y at x »

g at x =

i.e. A « - C and B

Hence we have

7 • cV - C' cos Kx (26)

The condition at the upper end requires

This will be satisfied if /cos KL • which requires either
r

r in which case there is no deflection or cos KL be-

cause J ± . i.e., KL (2n+l) /% when n is any integer the

smallest value of KL which satisfies the condition is n/^ .

Hence KL « L J^ = 3-

From which we have

Per .2Lfp
4lr (27)

This is the critical load for the bar in such condition. It is

the smallest axial load that can keep the bar in slightly bent

shape

•
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EXAMPLE PROBLEM 7 (2)
12

Lateral Buckling of Prismatic Bar

As an example of a more complicated case of lateral buck-

ling of bars, let us consider a centrally compressed strut with

the lower end built in and the upper end hinged. The critical

value of the compressive force is that value Per which can keep

the strut in slightly buckled shape. During buckling a lateral

reaction Q will be produced as shown in the figure.

P

hi fin/

Pig. 12. Lower end built and upper end hinged
compressed bar.

The differential equation of the deflection curve becomes

-f
- - Py + Q(L-x)EI ^Z

dx'

From the past experience the general solution of above

differential equation is

y - A cos Kx + B sin Kx + S(L-x)

12Page No. 153.



Eliminating the constants A and B by the boundary condi-

tions

x =

x =

x = L

y »

g
y =

A + $L -

A cos KL + B sin KL

KB

Hence

i

-§L

(i)

(ii)

(iii)

B

* I tan KL

From (i)

From (ii)

From (iii)

Hence, we have the following relation from the above

tan KL KL

The above relation can be solved graphically KL «*T/p 3 T\/9

and a curve for tan KL is drawn. The root of equation is found

from the intersection of line y KL with the curves. The

smallest value obtained in this way is KL 4.493 •
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Fig. 13. Graph showing the value of K.

Then Per = K2EI -
K

i EI

Hence Per - ^F

EXAMPLE PROBLEM 8

Finally, it will be interesting to solve some problems

with the help of the results expressed previously. Let us as-

sume such condition as expressed in problem

<3t

*tf7f

s=^=\^ M,

Fig. 14. (a) Lateral load and couple acting on a
compressed bar.
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This problem is divided into two problems as shown below:

-< C

77777

(A)

Fig. 14 (b)

fTTTt
7

M(
(B)

Fig. 14 (c)

Solution of A and B are already discussed. Hence, by-

superimposing two results, we will get the required expression

for the deflection of original beam.

CONCLUSION

In most of the above expressions we find the trigonometric

function along with expression of the bending of bar without

axial force. This trigonometric expression is the effect of

the axial force. The limiting conditions of the trigonometric

function shows us that the effect of the axial load is consider-

able and in limiting condition the bar may break due to this

force.
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ABSTRACT

A method for determining the capacity of restrained bar

of a constant cross section with different system of loading

is described. The type of failure considered is that due to

bending and buckling by lateral and longitudinal load acting

simultaneously, and also due to restraining moments applied at

the ends of bar. The restraining moments are created by apply-

ing equal or unequal eccentric load at the ends of bar. The

results of the standard case of lateral loading are modified

for asymmetrical lateral loading on a compressed bar, with the

help of the principle of superposition. In general, the effect

of the axial load on laterally loaded bar is discussed in Ha-

lting case of failure for each type of loading. The expression

for deflection is derived for each case in multiple of two

quantities of which, the first represents the deflection due to

only lateral load and the second quantity , which is a trigono-

metric expression, if the eficct of axial load. This will af-

ferd enough information to investigate the critical value of

axial load for which the bar remains in elastic stability be-

fore it buckles to failure.


