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Abstract 

Advanced glycation endproducts (AGEs) are formed in many cooked meat products via 

Maillard browning reactions. Current research suggests consumption of these compounds may 

be a contributor to chronic diseases such as diabetes and heart diseases. Thus, information on 

the prevalence and inhibition of these compounds in food is desirable.  

The first objective was to determine the AGE content, as determined as Nε-

carboxymethyllysine (CML) level, in cooked meat and fish prepared by general cooking methods 

recommended by U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-

FSIS). We found AGE was detected in all the cooked samples, but the levels depended on the 

different cooking conditions. Broiling and frying at higher cooking temperatures produced 

higher levels of CML and broiled beef contained the highest CML content (21.84 μg/g). 

However, the baked salmon (8.59 μg/g) and baked tilapia (9.72 μg/g) contained less CML as 

compared to the other samples.  

In order to investigate the inhibitory effect of selected natural antioxidant on AGEs 

formation in cooked meat, four cereal brans, wheat (Jagger, JA), triticale (Spring Triticale, ST; 

Thundercale, TH), and Rye (RY) bran were added to beef patties before cooking. RY (42.0% 

inhibition), ST (27.5% inhibition), and TH (21.4% inhibition) brans significantly decreased CML 

formation compared with the control. The inhibition of CML was correlated to the water-

holding activity (WHC) of the samples, and the radical scavenging activity of the brans. 

The effect of cereal bran extracts (JA, ST, TH, and RY), was studied in a bovine serum 

albumin and glucose (BSA-GLU) model system. The ST extract significantly (P <0.05) inhibited 

CML formation compared to the control group. ST particularly contained vanillic acid (VA), 



 

 

chlorogenic acid (CHA), gentisic acid (GEA), and ferulic acid (FA), where GEA and CHA mitigated 

CML with an average percentage decrease of 29.6% for CHA and 51.1% for GEA. It therefore 

may be useful in preventing AGEs formation by using ST bran as a food addictive, which 

contains abundant phenolic acids.  

In summary, current dietary AGEs database will provide important information for use in 

estimating AGEs exposure, and also these data demonstrate that a significantly reduced intake 

of dietary AGEs can be achieved by low heat AGE cooking methods such as baking, which can be 

used at home or in the meat industry. Cereal bran addition to meat products may reduce 

formation of AGEs that is a desired attribute for the processed meat products industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

FORMATION AND INHIBITION OF ADVANCED GLYCATION ENDPRODUCTS IN MEAT AND MODEL 
SYSTEMS 

 
 

by 
 
 

GENGJUN CHEN 
 
 

B.S., China Agricultural University, 2006 
M.S., Beijing Technology and Business University, 2009 

 
 

A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

DOCTOR OF PHILOSOPHY 
 
 

Food Science 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 
 
 
 

2016 
 
 
 
 

Approved by: 
 

Major Professor 
J. Scott Smith 

 



 

 

Abstract 

Advanced glycation endproducts (AGEs) are formed in many cooked meat products via 

Maillard browning reactions. Current research suggests consumption of these compounds may 

be a contributor to chronic diseases such as diabetes and heart diseases. Thus, information on 

the prevalence and inhibition of these compounds in food is desirable.  

The first objective was to determine the AGE content, as determined as Nε-

carboxymethyllysine (CML) level, in cooked meat and fish prepared by general cooking methods 

recommended by U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-

FSIS). We found AGE was detected in all the cooked samples, but the levels depended on the 

different cooking conditions. Broiling and frying at higher cooking temperatures produced 

higher levels of CML and broiled beef contained the highest CML content (21.84 μg/g). 

However, the baked salmon (8.59 μg/g) and baked tilapia (9.72 μg/g) contained less CML as 

compared to the other samples.  

In order to investigate the inhibitory effect of selected natural antioxidant on AGEs 

formation in cooked meat, four cereal brans, wheat (Jagger, JA), triticale (Spring Triticale, ST; 

Thundercale, TH), and Rye (RY) bran were added to beef patties before cooking. RY (42.0% 

inhibition), ST (27.5% inhibition), and TH (21.4% inhibition) brans significantly decreased CML 

formation compared with the control. The inhibition of CML was correlated to the water-

holding activity (WHC) of the samples, and the radical scavenging activity of the brans. 

The effect of cereal bran extracts (JA, ST, TH, and RY), was studied in a bovine serum 

albumin and glucose (BSA-GLU) model system. The ST extract significantly (P <0.05) inhibited 

CML formation compared to the control group. ST particularly contained vanillic acid (VA), 



 

 

chlorogenic acid (CHA), gentisic acid (GEA), and ferulic acid (FA), where GEA and CHA mitigated 

CML with an average percentage decrease of 29.6% for CHA and 51.1% for GEA. It therefore 

may be useful in preventing AGEs formation by using ST bran as a food addictive, which 

contains abundant phenolic acids.  

In summary, current dietary AGEs data will provide important information for use in 

estimating AGEs exposure. These data demonstrate that a significantly reduced intake of 

dietary AGEs can be achieved by low heat AGE cooking methods such as baking, which can be 

used at home or in the meat industry. Cereal bran addition to meat products may reduce 

formation of AGEs that is a desired attribute for the processed meat industry. 
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Chapter 1. REVIEW OF LITERATURE 

 

INTRODUCTION 

Research shows that the Maillard reaction occurs in food processing, which can change 

the taste, aroma, and color of roasted, grilled, and boiled foods. In the Maillard reaction, 

reducing sugars react with proteins in food to form a brown product that provides distinctly 

different food flavor. However, the reaction can also cause food safety/toxicology concern 

(Ames, 2009; Somoza, 2005). In the reaction, free amino groups of proteins can react with the 

carbonyl group of reducing sugars to form advanced glycation endproducts (AGEs), which are a 

group of complex and heterogeneous compounds that have pathogenic significance in 

metabolic diseases such as diabetes and heart diseases (Poulsen et al., 2013).  

Excessive AGEs are linked to many diseases related to aging, including diabetes, 

nephropathy, renal disorders, and Alzheimer’s (Ahmed, 2007; Brownlee, 1994; Kim, Reddy, 

Rahbar, Lanting, & Natarajan, 2002). AGEs have two main pathologic effects: (A) altering the 

chemical and biological properties of body protein by cross-link formation and (B) increasing 

oxidative stress, inflammation, and disorders in an organism through binding with receptors on 

the cell surface (Chuyen, 2006). Some epidemiological studies show that too much of certain 

dietary AGEs correlate with reactive oxygen species (ROSs), which may be important in disease 

pathologies (Uribarri et al., 2007). A number of clinical experiments have found excess 

accumulation of AGEs in diabetic patients (Vlassara et al., 2002).  

According to numerous reports (Ahmed, 2005; Henle, 2005; Wu, Huang, Lin, & Yen, 

2011), the common AGEs found in food are Nε-carboxymethyl lysine (CML), glyoxal-lysine dimer 
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(GOLD), methylglyoxal-lysine dimers (MOLD), glyoxal (GO), methylglyoxal (MGO), 3-

deoxyglucosone (3-DG), pentosidine, and pyrraline (Figure 1).  

Although the mechanism of Maillard reaction is still not fully understood, research has 

established that the modern diet is a major source of AGEs. Their levels depend on such things 

as cooking method, temperature, and chemical precursors in foods. In particularly, heat-

processed cookery leads to high levels of AGEs in cooked food (Forster, & Henle, 2003).  

Consequently, an emerging question is how to decrease the formation of dietary AGEs. 

The answer depends on such changes as decreasing cooking temperatures and times (Goldberg, 

Cai, Peppa, Dardaine, Baliga, & Uribarri, 2004). Investigating and understanding AGE inhibitors 

is another effective way to reduce AGE formation (Reddy, & Beyaz, 2006), and research on 

these inhibitors has intensified in recent years. A variety of synthetic agents have been 

evaluated for the ability to reduce AGEs, but natural antioxidants from plants or foods may be 

more promising inhibitors; they are less toxic and may scavenge free radicals associated with 

the Maillard reaction (Cameron, & Cotter, 1993; Wu, & Yen, 2005).  

Extensive studies on how dietary AGEs affect the population can be found in recent 

literature, inspiring the following questions: (1) Which kinds of dietary AGEs are toxic for 

humans? (2) What are the limits for toxic AGE consumption and how can people reduce their 

uptake? (3) What are the mechanisms of toxicity of dietary AGEs and how can people actually 

avoid cooking foods to the point where AGEs form? This review provides basic information on 

dietary AGEs, their formation mechanism, the relationship between AGEs and human health, 

the methods through which dietary AGEs can be detected in foods, the occurrence of AGEs in 

foods, what affects AGE formation in food, and how can dietary AGEs be mitigated. 
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Figure 1. Chemical structure of AGEs (modified from Henle, 2005). Glyoxal-lysine dimer (GOLD), 

methylglyoxal-lysine dimers (MOLD), glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-

DG), Nε-carboxymethyl lysine (CEL), and Nε-carboxymethyl lysine (CML). 
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AGES IN FOODS 

Food processing induces glycation of protein through the Maillard reaction. In 1912, a 

French chemist Louis-Camille Maillard undertook his study on the reaction of amino acids and 

sugars (Wolfrom, Schlicht, Langer, & Rooney, 1953).  In the late 1940s and early 1950s, a series 

of studies revealed how pigments were formed during the Maillard reaction. In 1953, an 

American chemist, John E. Hodge, explained a mechanism for the Maillard reaction (Everts, 

2012). During the following two decades, research focused on the impact the Maillard reaction 

had on flavor of food, and how amino acids were modified during the Maillard reaction 

(Erbersdobler, & Somoza, 2007; Finot, Deutsch, & Rujard, 1981). The subject of AGEs was first 

raised by Brownlee, Vlassara, and Cerami (1984) when they studied the influence of non-

enzymatic browning on plasmase. Neeper et al. (1992) first characterized one of the typical 

receptors for AGEs (RAGEs), which is an immunoglobulin with a mass of 42 kDa. RAGEs related 

glycation research remains an area of significant interest in glycation-linked physiological 

processes associated with chronic diseases. Clearly, food is a rich source of AGEs, but 

researchers still question the physiological significance of AGEs in foods and continue to study 

their formation mechanism.  

Although how AGEs form in foods is still not clear, one proposed mechanism, which is 

called free radical formation, has been identified (Hayase, Shibuya, Sato, & Yamamoto, 1996).  

AGEs are generated through the Maillard reaction between reducing sugars and free amino 

groups (Figure 2). In the early stages of the mechanism, the carbonyl group of sugars reacts 

with the amino group to produce the Schiff base. Then, the stable ketosamines compounds 

https://en.wikipedia.org/wiki/Immunoglobulin
https://en.wikipedia.org/wiki/Carbonyl_group
https://en.wikipedia.org/wiki/Amino
https://en.wikipedia.org/wiki/Ketosamine
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(Amadori products) take shape. They decompose to reactive carbonyls like GO, MGO, and 3-DG 

and free radicals. In addition, highly reactive carbonyls may form through severe oxidation of 

fatty acids (Fu et al., 1996). In the late stages of this mechanism, the carbonyls react with amino 

groups of compounds to generate AGEs, which also can form oxidatively from Amadori 

products (Nguyen, Van der Fels-Klerx, & Van Boekel, 2014; Ruttkat, & Erbersdobler, 1995).  

 

Reducing 
sugar

Schiff
base

Amadori
products

AGEs

Reactive carbonyl 
species

Amino 
group

Amino 
group

Fatty acid

 
 
Figure 2. Formation pathway of AGEs (modified from Poulsen et al., 2013). 
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In CML formation (Figure 3), a reducing sugar (glucose) condenses with an amino group 

of lysine, to form a Schiff base/glucosamine. The glucosamine is rearranged to yield the 

Amadori product, which subsequently oxidizes to form CML. And CML can also form directly 

from the reaction between lysine and GO, which is produced by glucose autoxidative 

glycosylation or Schiff’s base decomposition (Ahmed, Thorpe, & Baynes, 1986; Poulsen et al., 

2013; Uribarri et al., 2007). In an analogous reaction, 3-DG reacts with lysine residues to form 

pyrraline, while pentosidine can be generated through the reaction of pentose with lysine and 

arginine as well as other types of AGEs like GOLD and MOLD, which can be derived from the 

Amadori products (Chuyen, 2006; Wolff, & Dean, 1987). 

 

TOXICITY OF DIETARY AGES 

Food-derived AGEs and their possible toxicity have become a topic of increasing interest 

in research. Hofmann et al. (2002), in an animal study using mice, revealed that consuming 

high-AGEs diets was associated with insulin resistance, which is a cause of type 2 diabetes. 

Vitek et al. (1994) found that reducing intake of food-derived AGEs could decrease significantly 

those diseases related to inflammation and oxidative stress, as well as significantly increase the 

lifespan of mice. Moreover, the levels of circulating AGEs correlated with the levels of food-

derived AGEs in a study using human-derived endothelial cells in vitro (Goldberg et al., 2004). 

Furthermore, a low-AGE diet significantly reduced serum AGE levels as well as endothelial 

dysfunction in a group of diabetic subjects (Raj, Choudhury, Welbourne, & Levi, 2000). More 

clinical trials with an AGE-restricted diet are shown in Table 1. These studies suggest that 

dietary AGEs may be toxic, thus affecting human health. 
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Figure 3. A free radical mechanism for CML formation derived from lysine and glucose 

(modified from Ahmed et al., 1986; Poulsen et al., 2013; Uribarri et al., 2007). 
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Table 1. Clinical trials with an AGE-restricted diet. 

 

Study population  Trial design Results References 

Diabetes (United 
States) 

Crossover Decrease AGEs and 
markers of oxidative 
stress and 
inflammation 

Vlassara  
et al., 2002 

 
End-stage renal disease 
no diabetes (United 
States) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease AGEs and 
markers of 
inflammation 

 
Uribarri  
et al., 2003 

 
Healthy and chronic 
kidney disease no 
diabetes (United 
States) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease AGEs and 
markers of oxidative 
stress and 
inflammation 

 
Vlassara  
et al., 2009 

 
Diabetes (United 
States) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease AGEs, 
oxidative stress, 
inflammation, and 
homeostatic model 
assessment 

 
Uribarri  
et al., 2010 

 
Healthy (France) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease AGEs and 
homeostatic model 
assessment 

 
Birlouez-Aragon  
et al., 2010 

 
Healthy (United States) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease AGEs but 
no change in 
endothelial function 
and inflammation 

 
Semba  
et al., 2014 

 
Overweight women 
(Denmark) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease urinary 
AGEs and 
homeostatic model 
assessment 

 
Mark  
et al., 2014 

 
Overweight or obese 
men (Mexico) 

 
3 parallel groups 
(diet+exercise) 

 
Decrease AGEs and 
weight 

 
Macias-Cervantes  
et al., 2015 

 
Type 2 diabetes 
(Mexico) 

 
2 parallel groups (high 
and low AGE) 

 
Decrease AGEs and 
weight 

 
Luevano-Contreras 
et al., 2013 



9 

 

AGES AND HUMAN DISEASES 

With the continued research on dietary AGEs, their effects on human health have 

become apparent, and a diet pattern with high levels of AGE intake may be a potential risk 

factor in a variety of diseases like diabetes, age-related diseases, atherosclerosis, cancer, and 

other diseases (Ahmed, 2005; Brownlee, 1994; Kim, et al., 2002). 

Poulsen et al. (2013) suggested two possible AGE pathogenic pathways in the 

occurrence and development of chronic diseases: first, the cross-linking of AGEs and 

biomolecules like proteins, nucleic acids, may directly destroy the structure and function of the 

biomolecules; and second, the binding of AGEs to specific (RAGEs) may activate a series of 

signaling pathways that trigger expression of inflammatory mediators and cellular oxidative 

stress, thereby enhancing cellular activation and degradation, encouraging inflammation and 

even dysfunction or inflammatory disorders of cells and tissues (Heizmann, 2007). The RAGE-

dependent pathway is an important pathogenic route (Thornalley, 2007). In particular, diseases 

like dementia, cardiovascular disease, and renal failure may be caused or enhanced by AGEs 

(Table 2).  

Table 2. Major diseases possibly caused by AGE exposurea. 

 

Possible pathologies Failure of maintenance in cell or tissues 

Cardiovasular diseases, atherosclerosis Blood vessels 

Dementias, neuropathy  Neurones 

Complications of diabetes Insulin metabolism 

Blindness, cataracts, retinopathy Retina, lens 

Renal failure, nephropathy Glomeruli 

aAdapted and modified from references (Brownlee, 1995; Palinski, et al., 1995). 
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Mechanism of action 

 RAGEs are a major signal transduction receptor for AGEs, mediating many chronic 

diseases. RAGEs belong to a multiligand group in the immunoglobulin super family that includes 

S100/calgranulin (Heizmann, 2007), high mobility group box 1 (HMGB1), b-amyloid peptide, and 

b-sheet fibril (Neeper et al., 1992). The binding of AGEs to RAGEs causes oxidative stress and 

activates the transcription factor called nuclear factor kappa B (NF-κB), which controls 

such genes as COX-2 (cyclo-oxygenase-2), TNFα (tumor necrosis factor α), inducible nitric oxide 

synthase (iNOS), and  IL-6 (interleukin-6) that are expressed as infection and inflammation. 

Their synthesis and secretion, as regulated by NF-κB, may also create a vicious cycle that may 

lead to complications in chronic diseases like diabetes (An et al., 2011; Thornalley, 2007). 

However, we still need to describe a more precise molecular mechanism to explain how the 

interaction of AGEs with RAGEs controls the inflammation process. 

 

AGEs and diabetes  

The incidence of diabetes is rapidly increasing worldwide year by year, reaching 387 

million in 2014, increasing from about 285 million in 2010 and 124 million in 1997 (Shi, & Hu, 

2014). Complications are common. However, how AGEs affect the pathogenesis of diabetes is 

only partly understood; AGEs and their receptors on specific cell types may contribute to this 

increase in diabetes and its complications. A large number of studies have found that AGEs 

accumulated in patients suffering from type 2 diabetes mellitus, also identified as 

hyperglycemia-associated glycotoxins (Huebschmann, Regensteiner, Vlassara, & Reusch, 2006). 

According to Vlassara et al. (2009), the uptake of dietary AGEs correlates with serum AGE levels 

https://en.wikipedia.org/wiki/RAGE_(receptor)#cite_note-pmid1378843-1
https://en.wikipedia.org/wiki/NF-%CE%BAB
https://en.wikipedia.org/wiki/Genes
https://en.wikipedia.org/wiki/Inflammation
https://en.wikipedia.org/wiki/NF-%CE%BAB
http://www.ncbi.nlm.nih.gov/pubmed/?term=Huebschmann%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=16732039
http://www.ncbi.nlm.nih.gov/pubmed/?term=Regensteiner%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=16732039
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vlassara%20H%5BAuthor%5D&cauthor=true&cauthor_uid=16732039
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reusch%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=16732039


11 

 

in patients. A variety of studies show that dietary AGEs may be important in type 2 diabetes 

mellitus and its complications because it is involved in the development of insulin resistance 

and cell dysfunction (Vlassara, & Uribarri, 2014). Moreover, glycation intermediates, the 

reactive carbonyl species (RCSs) including GO, MGO, 3-DG, also contribute to complications in 

diabetic patients (Uribarri, et al., 2007). 

Tanji et al. (2000) stated that deposition and accumulation of AGEs was significant to 

diabetic nephropathy, which may cause glomerulosclerosis. Nagai, Hayashi, Xia, Takeya, and 

Horiuchi (2002) have revealed AGE level in tissues not only correlates with the severity of 

atherosclerotic lesions but also the quantity of plasma proteins, so diabetic patients may also 

see significant atherosclerosis .  

Blood vessel damage is a common complication in diabetics (Peppa, Uribarri, & Vlassara, 

2004). Zhang et al. (2003) observed that AGEs could be involved in oxidative damage and 

accelerated coronary atherosclerosis in diabetics. In addition, Hughes et al. (2004) reported 

AGE concentration correlated with the severity of retinopathy in patients; protein glycation 

may restrict blood flow in retinal blood vessels. 

Accumulation of AGEs occurs especially in diabetes and chronic renal failure, and that 

may play a major pathogenetic role. Plasma CML levels were found to increase in patients with 

chronic renal failure (Singh, Barden, Mori, & Beilin, 2001). CML accumulated in the tissues of 

uremic patients, which may be also related to impaired renal function 

(Schwenger, Zeier, Henle, & Ritz, 2001).  Moreover, inflammatory markers like C-reactive 

protein were reduced in dialysis patients who followed an AGEs-free diet for 4 weeks (Uribarri 

et al., 2007).  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Vlassara%20H%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Uribarri%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nagai%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12377783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hayashi%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=12377783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xia%20L%5BAuthor%5D&cauthor=true&cauthor_uid=12377783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takeya%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12377783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Horiuchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12377783
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Singh,%20R&dais_id=16128299&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Singh,%20R&dais_id=16128299&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Mori,%20T&dais_id=9393686&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Beilin,%20L&dais_id=1909361&excludeEventConfig=ExcludeIfFromFullRecPage
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schwenger%20V%5BAuthor%5D&cauthor=true&cauthor_uid=11455783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zeier%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11455783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Henle%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11455783
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ritz%20E%5BAuthor%5D&cauthor=true&cauthor_uid=11455783
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Clinical studies show that for diabetic patients with cataracts, lens CML concentration 

was significantly higher than control patients (Hashim, & Zarina, 2011). Based on the results 

from Franke, Dawczynski, Strobel, Niwa, Stahl, and Stein (2003), the levels of serum CML 

generated by oxidation may contribute to cataract formation. 

AGEs and age-related diseases  

As AGEs and RAGEs form and interact,  they can produce ROSs and elicit inflammation 

and then alter gene expressions, which can affect the development and progression of age-

related diseases and induce age-related decline related to intracellular damage and apoptosis 

(Luevano-Contreras & Chapman-Novakofski, 2010). This has been implicated in Alzheimer's 

disease (Necula & Kuret, 2004), cardiovascular disease (Cuevas et al., 2011), coronary heart 

disease (Kanauchi, Tsujimoto, & Hashimoto, 2001), and other common age-related diseases.  

 It is well known that diabetes is a risk factor for Alzheimer’s disease. In Necula et al. 

(2004), symptoms of Alzheimer’s like neuronal cell death, amyloid plaque formation, and 

neuronal tangles can be caused by the glycation of τ-proteins. The reaction appears to occur in 

the early stages of Alzheimer’s (Kimura, Takamatsu, & Araki, 1995). Vitek et al. (1994) 

suggested that the β-amyloid deposition and plaque formation in Alzheimer’s patients 

accelerates significantly via crosslinking of AGEs in vitro. Moreover, over expression of RAGE in 

the brain may produce oxidative stress and inflammation through IL-1β, TNF-α, or NF-κβ up-

regulation, which may accelerate the onset and progression of Alzheimer’s (Cuevas et al., 

2011).  

Mitochondrial dysfunction contributes to the onset and development of cardiovascular 

disease, which may be activated by the interaction between AGEs and RAGE 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zarina%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20842534
http://www.ncbi.nlm.nih.gov/pubmed/?term=Franke%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12781289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dawczynski%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12781289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Strobel%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12781289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Niwa%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12781289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stahl%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12781289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stein%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12781289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luevano-Contreras%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22254007
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chapman-Novakofski%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22254007
https://en.wikipedia.org/wiki/Advanced_glycation_end-product#cite_note-18
https://en.wikipedia.org/wiki/Advanced_glycation_end-product#cite_note-19
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(Nargund, Pellegrino, Fiorese, Baker, & Haynes, 2012). Extensive studies have shown an 

increase in cardiovascular risk as RAGEs increase, specifically in type 1 diabetes (Nin et al., 

2011). 

Kilhovd, Berg, Birkeland, Thorsby, and Hanssen (1999) reported levels of AGEs that were 

significantly higher in heart disease patients with type 2 diabetes mellitus than patients without 

diabetes. Furthermore, in coronary heart disease patients, the number of blood vessels with 

stenosis correlated with circulating AGEs (Kanauchi et al., 2001). 

AGEs and cancer 

Recently, more evidence has emerged implicating AGEs in the development of various 

types of cancers, through oxidation stress, proliferative effects, and inflammatory reactions. 

The interaction of AGEs with RAGE and their pathogenic signaling pathway may partly explain 

an increased risk of tumor growth and metastasis in patients with diabetes or other age-related 

diseases (Allmen, Koch, Fritz, & Legler, 2008). 

Takino, Yamagishi, and Takeuchi (2010) noted, however, that glyceraldehyde-derived 

AGEs enhanced cancer malignancy, not proliferation, in their study of the influence of 

glyceraldehyde-derived AGEs on cultured lung cancer A549 cells. Moreover, by testing of the 

expression of CML and argpyrimidine in four different types of human tumors in 

immunohistochemistry, van Heijst, Niessen, Hoekman, and Schalkwijk (2005) found the AGEs 

have great influence on the expression of several kinds of human cancer tissues. 

Although growing evidence shows that AGEs may affect the growth or progression of 

different types of cancer cells, the pathogenic mechanism remains unknown. Kang, Tang, Lotze, 

and Zeh (2012) found crucial evidence of the interaction of RAGE and the HMGB 1 protein in 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Nargund%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=22700657
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pellegrino%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=22700657
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fiorese%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=22700657
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baker%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=22700657
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haynes%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=22700657
http://care.diabetesjournals.org/search?author1=B+K+Kilhovd&sortspec=date&submit=Submit
http://care.diabetesjournals.org/search?author1=T+J+Berg&sortspec=date&submit=Submit
http://care.diabetesjournals.org/search?author1=K+I+Birkeland&sortspec=date&submit=Submit
http://care.diabetesjournals.org/search?author1=P+Thorsby&sortspec=date&submit=Submit
http://care.diabetesjournals.org/search?author1=K+F+Hanssen&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takino%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20631911
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yamagishi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20631911
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takeuchi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20631911
http://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Heijst%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=16037299
http://www.ncbi.nlm.nih.gov/pubmed/?term=Niessen%20HW%5BAuthor%5D&cauthor=true&cauthor_uid=16037299
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoekman%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16037299
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schalkwijk%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=16037299
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kang%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22722139
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tang%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22722139
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lotze%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=22722139
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zeh%20HJ%203rd%5BAuthor%5D&cauthor=true&cauthor_uid=22722139
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the development of pancreatic cancer. Furthermore, AGEs-RAGE interactions induced the 

development of interleukin-6 and renal cell carcinoma (RCC) (Miki et al., 1993). Takino et al. 

(2010) found AGEs can active Rac 1 to enhance the migration of lung cancer A549 cells because 

they can induce generation of ROS. However, future studies must elucidate the pathogenic 

mechanism of AGE, as well as the physiological relevance of AGEs and the biology of cancer 

cells. 

 

FACTORS AFFECTING AGES FORMATION 

How quickly AGEs generate in food depends on composition of foods, availability of 

precursors or antioxidants added, processing temperature and time, availability of water, and 

other factors that influence the Maillard reaction (Sharma, Kaur, Thind, Singh, & Raina, 2015).  

Composition of foods  

Many foods provide a wide variety of precursors for the Maillard reaction and formation 

of AGEs, as among them, sugar and amino acids, intermediates-Amadori compounds, 

methylglyoxal, and other reactive carbonyl compounds present in foods. The type of sugar 

influences the reaction; for instance, Laroque et al. (2008) found reactions like ribose > fructose 

and glucose and aldose > ketose in model studies. Lysine is a long amino acid considered to 

have the strongest capacity for inducing the brown color in the reactions in glycose and amino 

acid systems (Ajandouz, & Puigserver, 1999). Uribarri et al. (2010) stated that the foods high in 

fat and protein contained more AGE content after cooking than vegetables, grains, and other 

carbohydrate-rich foods.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Takino%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20631911
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sharma%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26604334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kaur%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26604334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thind%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=26604334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Singh%20B%5BAuthor%5D&cauthor=true&cauthor_uid=26604334
http://www.ncbi.nlm.nih.gov/pubmed/?term=Raina%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26604334
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Time and temperature  

Cooking time and temperature are important to the formation of Maillard reaction 

products (MRPs).  As early as 1990, Ledl and Schleicher (1990) monitored the progress of 

Maillard reaction by measuring the degree of browning, finding similar results when heating 

samples for four weeks at 20°C, or 3 h at 100°C, or 5 min at 150°C. Augustin, Sanguansri, and 

Bode (2006) later found increasing temperature and time increased the rate of reactions as well 

as dark colored products in their model system.  Uribarri et al. (2010) constructed a dietary AGE 

database of 249 foods used in modern cookery, showing that frying, broiling, and grilling at 

higher temperatures produced more AGEs than boiling, stewing, and steaming at lower 

temperatures. Based on their findings, high temperature cookery meant CML formation 

increased 10 to 200 times. Others had similar results (Chao, Hsu, & Yin, 2009), showing that in 

chicken, pork, beef, salmon, and cod samples that were boiled, fried, or baked, the CML levels 

were significantly higher than in raw foods (P < 0.05). 

Moisture content 

In food systems, water transports water-soluble precursors of the Maillard reaction 

during cooking, so water content of food is important. The Maillard reaction generally occurs 

when water activity is between 0.6-0.8 in some model systems (Ledl et al., 1990; Tanaka, Chiba, 

Ishizaki, Takai, & Taguchi, 1994). In foods with low water activity, if reactants are highly mobile, 

Maillard reaction products (MRPs) may form more quickly. Acevedo, Schebor, and Buera (2008) 

noted that the rate of reaction in a dried potato system increased dramatically as water activity 

increased. Some previous publications show that adding salt and phosphate greatly increased 

water-holding capacity (WHC) of foods, thus decreasing formation of some MRPs in meat 

https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Munehiko+Tanaka
https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Noriaki+Chiba
https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Shoichiro+Ishizaki
https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Rikuo+Takai
https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Takeshi+Taguchi
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products. For instance, Persson, Sjõholm, and Skog (2003) showed that adding water-binding 

ingredients (1.5% sodium chloride and 0.3% sodium tripolyphosphate) to beef patties 

decreased the formation of heterocyclic amines like 2-amino-1-methyl-6-phenylimidazo (4,5-b) 

pyridine when patties were fried at 180°C and 220°C. Another article reveals that MRPs levels 

increased dramatically in meat systems, particularly at the meat surface (crust) when cooked at 

high temperatures as in grilling (Sinha et al., 2005). Moreover, Uribarri et al. (2010) 

demonstrated that dry heat cooking increases cooking loss and encourages dietary AGEs to 

form. However, direct information on moisture content of food and formation of individual 

dietary AGE remains rare. 

pH  

pH can greatly affect the formation of MRPs (Nursten, 2005a, b). The rate of the 

Maillard reaction is low at pH < 7.0, but increases as pH increases from 7.0 to 10.0. However, at 

that point, the rate of browning obviously decreases as pH goes past 11.0 (O’Brien, & 

Morrissey, 1989).  

Metal ions 

Metal ions can also influence the Maillard reaction at different stages depending on the 

type of metal ion. Kwak and Lim (2004) found that adding Fe2+ and Cu2+ could increase the rate 

of browning in a model system, which could be due to the water binding capacity of metal ions 

and subsequent reduction in water activity. On the contrary, Ca2+ and Mg2+ could decrease the 

rate of the Maillard reaction. 
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DETECTING AGES IN FOODS 

AGEs contain a wide range of complex chemical structures, and their levels are low in 

foods, so it is difficult to identify AGEs in many types of food items. The most common methods 

of detecting AGEs use fluorescence spectroscopy, enzyme-linked immunosorbent assays 

(ELISA), and chromatography like high-performance liquid chromatography (HPLC), liquid 

chromatography-mass spectrometry (LC-MS), gas chromatography (GC), and gas 

chromatography-mass spectrometry (GC-MS). There are no commonly accepted methods like 

analysis kits for detecting AGEs. Most analytical techniques have so far focused on CML (Table 

3). Standardized methods to detect AGEs are needed so research results from different 

laboratories and units can be compared (Smit, & Lutgers, 2004). 

 

Table 3. Summary of methods for identifying CML in different foods.  

 

Food products Methods Key points Reference 

Wide range of daily foods ELISA Monoclonal anti-CML 

antibody 

Goldberg et al., 2004;  

Uribarri et al., 2010 

Whole meals, milk 

products, cereal and meat 

products 

HPLC Fluorescence detection of 

OPA derivative 

Dittrich et al., 2006;  

Delgado-Andrade et al., 2007; 

Hartkopt et al., 1994;  

Drusch et al., 1999 

Infant formulas GC Heptafluorobutyryl 

isobutyl ester 

Bueser et al., 1987 

Meat and milk products, 

infant formulas 

GC-MS 

 

SIM of trifluoroacetyl 

methyl ester  

Charissou et al., 2007 

Milk products, beverages LC-MS Multiple reaction 
monitoring 

Assar et al., 2009;  
Fenaille et al., 2006 
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Fluorescence spectrophotometry 

Fluorescence spectrometry can quickly determine an analyte level in solution based on 

its fluorescence characteristics, which are directly proportional to the intensity of emission. 

Fluorescence spectrometry excites electrons in molecules of AGEs, which then emit light. These 

fluorescence values can be measured, with intensity reflecting the levels of AGEs, but the 

technique has poor specificity in identifying an individual AGE compound (Schmitt, Schmitt, 

Munch, & Gasic, 2005). 

Enzyme-linked immunosorbent assay 

ELISA uses the connection of an analyte to an enzyme, producing a specific antigen-

antibody reaction, by which a substance can be identified through a change in color.  The 

competitive ELISA method can measure AGEs levels in many food items but the antibody only 

reacts with certain AGEs, not with Amadori products or other non-glycosylated protein 

(Horiuchi, Araki, & Morino, 1991). 

The ELISA technique has been used extensively to measure AGEs, including nonspecific 

AGEs (Koschinsky et al., 1997; Makita, Vlassara, Cerami, & Bucala, 1992), based on antibodies 

for CML or MGO derivatives (Uribarri et al., 2010).  A competitive ELISA with an anti-CML 

monoclonal antibody (4G9) has also been developed and used to measure CML expressed as 

AGE units in a wide range of food products (Goldberg et al., 2004). Although the method is 

quick and effective, it relies on different anti-CML antibodies. Moreover, as Turk, Ljubic, 

Turk, and Benko (2001) have shown, as immunogens, AGEs may produce auto-antibodies that 

interfere with test results. 

https://en.wikipedia.org/wiki/Molecules
http://www.ncbi.nlm.nih.gov/pubmed/?term=Turk%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ljubic%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
http://www.ncbi.nlm.nih.gov/pubmed/?term=Turk%20N%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
http://www.ncbi.nlm.nih.gov/pubmed/?term=Benko%20B%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
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Chromatography 

Chromatography separates and detects individual components from the matrix using 

chromatographic separation or color. The instrumental methods couple high performance 

liquid chromatography (HPLC)  with diode array detectors (HPLC-DAD), fluorescence detectors 

(HPLC-FLD), mass spectrometer (HPLC-MS), or gas chromatography (GC) coupled with MS (GC-

MS) (Ahmed, Argirov, Minhas, Cordeiro, & Thornalley, 2002; Charissou, Ait-Ameur, & Birlouez-

Aragon, 2007; Hartkopt, Pahlke, Ludmann, & Erbersdobler, 1994; Rufian-Henares, Guerra-

Henandez, & Garcia-Villanova, 2004). Although they may require either the acid or enzymatic 

hydrolysis of bound AGEs in food samples before analysis, the methods are sensitive and can 

provide accurate results. For instance, Rufian-Henares et al. (2004) first studied the pyrraline 

level in foods, and Charissou et al. (2007) determined how much CML occurred in different milk 

and meat samples. In addition, HPLC has been applied successfully after CML was derived using 

the o-phthaldialdehyde reagent (Drusch et al., 1999; Hartkopt et al., 1994) (Figure 4). Currently, 

ultra performance liquid chromatography (UPLC) has been used to test for AGEs and promises 

to be a universal method for identifying an extensive range of food-derived AGEs (Assar, 

Moloney, Lima, Magee, & Ames, 2009; Hull, Woodside, Ames, & Cuskelly, 2012).  
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Figure 4. Phthaldehyde (OPA) derivatization reaction (modified from Drusch et al., 1999). 

 

LEVELS OF AGES IN FOODS 

AGEs can be generated under human physiological conditions, but diet is the major 

source of exogenous AGEs (Assar et al., 2009). As early as the 1990s, human studies confirmed 

that about 10% of dietary AGEs are absorbed in the body and correlate with circulating and 

tissue AGE levels (Koschinsky et al., 1997). Although AGEs may influence the progression of 

chronic diseases like diabetes and uremia, full information about the levels of AGEs in foods 

remains unknown. In addition, no regulations or industry standards exist for dietary AGEs. It is, 

therefore, desirable to estimate AGE levels in commonly consumed foods.  

AGEs, including CML, pyrraline, and pentosidine, as well as the reaction intermediates, 
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occur in complicated food products. Fully quantifying these complicated compounds is 

generally difficult, but several types of analysis can currently find the level of CML and 

pentosidine in foods because their chemical structures are better understood in food and 

biology samples. CML was the first amino acid derivative identified during food processing and 

may form predominantly from the oxidation of Amadori products (Kasper & Schieberle, 2005). 

Pyrraline, as a pyrrole derivative of lysine, was successfully quantified in milk products using 

enzymatic hydrolysis (Hegele et al., 2008).  Compared to the non cross-linked compounds, 

cross-linked AGEs were less easily identified in food samples; among these cross-linked AGEs, 

pentosidine was first detected in heated milk samples (Henle, Schwarzenbolz, & Klostermeyer, 

1997). Ahmed et al. (2002) observed methyl-glyoxal-hydro-imidazolone (MG-H1) formation in 

bakery foods and in coffee, where it may generate by the reaction of arginine with carbonyls in 

the roasting process. Such reactive carbonyls as GO and 3-DG have been reported in several 

food products (Schwarzenbolz, Henle, Haebner, & Klostermeyer, 1997).  

Levels of CML in foods 

CML, as a marker and one of the more frequently studied AGEs, occurs in a wide range 

of foods among the different food categories. For the past 20 years, because CML is a relatively 

abundant AGE in biological or food systems, it has been extensively studied and used as a 

marker for total AGEs (Tauer, Hasenkof, Kislinger, Frey, & Pischetsrieder, 1999).  

Both immunochemical and instrumental methods can identify CML levels in foods. 

Uribarri et al. (2010) tested CML levels in 549 foods using an ELISA, where AGE content was 

expressed in kilounits (kU) per serving size of different food items (Table 4), but according to 

Assar et al. (2009), instrumental methods like chromatograph analysis generally provide more 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3FpUc8Fr4bCs8art1DT&field=AU&value=Hegele,%20J&ut=25948076&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3FpUc8Fr4bCs8art1DT&field=AU&value=Henle,%20T&ut=26212732&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3FpUc8Fr4bCs8art1DT&field=AU&value=Henle,%20T&ut=26212732&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3FpUc8Fr4bCs8art1DT&field=AU&value=Klostermeyer,%20A&ut=32378568&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage&cacheurlFromRightClick=no
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reliable data. These researcher evaluated CML levels in dairy, cereals, fruits, vegetables, meat 

and fish products; LC or GC data are provided in Table 5 and 6. Cooking method may speed up 

CML formation, particularly grilling, roasting, and frying. Furthermore, foods high in fat and 

protein generally contain larger amounts of CML. The food-derived CML database provides 

some information useful in estimating exposure of dietary AGEs, as well as serving as a practical 

guide for reducing their intake. 

 

Table 4.  The AGE content in food products.  

 

Food product AGEa kU/100g Serving size AGE kU/serving 

Beef, steak, strips, fried without oil, 7 min 6973 90 g 6276 

Beef, frankfurter, broiled 450°F, 5 min 11270 90 g 10143 

Chicken, breast, broiled, 450°F, 15 min 5828 90 g 5245 

Chicken, breast, fried without oil, 7 min 3554 90 g 3199 

Cheese, American, low fat (Kraft) 4040 30 g 1212 

Cheddar cheese 5523 30 g 1657 

Pork, chop, pan fried, 7 min 4752 90 g 4277 

Smoked deli ham 2349 90 g 2114 

Salmon, fillet, broiled 3347 90 g 3012 

Raw salmon 528 90 g 475 

Egg, fried, one large 2749 45 g 1237 

Egg yolk, large, 10 min 1193 15 g 179 

Milk, whole (4% fat) 5 250 mL 12 

Yogurt, vanilla, (Dannon) 3 250 mL 8 

Vegetable juice, V8 (Campbell Soup Co) 2 250 mL 5 

Milk, fat free (Tuscan Dairy Farms) 2 250 mL 4 

aAGE content is expressed by CML level as assessed by competitive ELISA using monoclonal 
antibody (4G9) (Uribarri et al., 2010). 
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Table 5. Content of CML in dairy products, cereal-based foods, fruits, and vegetables. 

 

Food products CML (mg/kg protein) CML (mg/100g food) References 

Dairy products    

UHT milk 29-46  Fenaile et al., 2006 

UHT flavor milk  41-93  Drusch et al., 1999 

Pasteurized milk 16.3  Fenaile et al., 2006 

Infant formula 30  Hartkopf et al., 1995 

Powdered infant formula 60.1  Fenaile et al., 2006 

Pasteurized skimmed milk  0.02 Hull et al., 2012 

UHT whole milk  0.22 Hull et al., 2012 

Cheddar cheese  1.18 Hull et al., 2012 

Cereal-based products    

Cornflakes 6.0-8.0  Charissou et al., 2007 

Biscuit 5-35  Charissou et al., 2007 

Toasted bread 0-13  Charissou et al., 2007 

Potato bread 25.65  Hull et al., 2012 

Fried white bread 80.79  Hull et al., 2012 

White bread crust  0.35 Peng et al., 2010 

Sponge cake  0.36 Srey et al., 2010 

Fruit and vegetables    

Tomato 10.2  Hull et al., 2012 

Apple 39.3  Hull et al., 2012 

Raw carrot not detectable          Charissou et al., 2007 

Orange  0.08 Hull et al., 2012 
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Table 6. Content of CML in meat and fish products. 

 

Food products CML (mg/kg protein) CML (mg/100g food) References 

Chicken    

Boiled chicken breast 17.2  Hull et al., 2012 

Raw chicken  0.018 Chao et al., 2009 

Baked chicken  0.07 Chao et al., 2009 

Roasted chicken breast 17.4  Hull et al., 2012 

Fried chicken breast 23.5  Hull et al., 2012 

Pork    

Raw pork   0.02 Chao et al., 2009 

Baked pork  0.076 Chao et al., 2009 

Baked pork (leg joint)  0.27 Hull et al., 2012 

Fried fillet strip  0.61 Hull et al., 2012 

Grilled pork loin chop  0.39 Hull et al., 2012 

Sausage 23  Hartkopf et al., 1995 

Beef    

Raw beef 3.9  Assar et al., 2009 

Boiled minced beef 27.3  Assar et al., 2009 

Fried minced beef 61.1  Assar et al., 2009 

Raw beef  0.013 Chao et al., 2009 

Fried fillet beef steak  0.42 Hull et al., 2012 

Grilled fillet beef steak  0.49 Hull et al., 2012 

Fish    

Raw salmon  0.01 Chao et al., 2009 

Baked salmon                             0.068 Chao et al., 2009 

Grilled/oven baked salmon not detectable  Charissou et al., 2007 

Tuna canned in brine  0.54 Hull et al., 2012 

Raw cod  0.018 Chao et al., 2009 
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Baked cod  0.055 Chao et al., 2009 

Grilled cod 3.7  Hull et al., 2012 

Fried breaded cod  0.36 Hull et al., 2012 

 

Levels of pentosidine in foods 

 When pentose links to both arginine and lysine residue, pentosidine is generated by 

Maillard reaction; pentosidine has been identified in a variety of foods. According to Henle et 

al. (1997), pentosidine concentrations were low in milk, coffee, bakery, and other products 

(Table 7). More studies are needed to evaluate how pentosidine affects the glycation of food 

proteins. 

 

Table 7. Amounts of pentosidine in food products.  

 

Food products Pentosidine concentration 

Raw milk not detectable 

Pasteurized milk not detectable 

Fresh UHT milk (not detectable-0.05)a 

Bread crust (0.4-2.6)a 

Roasted coffee (10.8-39.9)a 

UHT milk (not detectable-0.01)b 

Coffee 0.2b 

Pasta not detectable 

Bakery products (not detectable-0.4)b 

aPentosidine is in mg/kg protein (Henle et al., 1997); bPentosidine is in mmol/mol arginine 
(Henle, 2008). 
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Levels of pyrraline in foods 

Pyrraline, another acid labile AGE, results from a reaction of a lysine group-and 3-

deoxyglucusulose. It is found in both food and model systems; protein-bound pyrraline was first 

detected among the alkaline hydrolysates of proteins and glucose (Hegele et al., 2008; Henle, 

2008; Rufian-Henares et al., 2004). HPLC has been used to quantify the levels of pyrraline in a 

wide range of foods (Table 8). 

 

Table 8. Amounts of pyrraline in food products.  

 

Food products Pyrraline concentration 

Sterilized formula A 495a 

Sterilized formula B 344a 

UHT  formula A 453a 

UHT formula B 277a 

Roasted meat not detectable 

Milk products (not detectable-25)b 

Pasta ( not detectable-13)b 

Bakery products (1-10)b 

aPyrraline is in mg/kg protein (Rufian-Henares et al., 2004); bPyrraline is in mmol/mol lysine 
(Henle, 2008). 
 

Levels of dicarbonyl compounds in foods 

Dicarbonyl compounds like GO, MGO, and 3-DG form easily during the Maillard reaction 

(Yamaguchi, Ishida, Zhu, Nakamura, & Yoshitake, 1994). The literature does report quantitative 

data on MGO and GO (Bravo et al., 2008; De Revel, & Bertrand, 1993); research shows that 
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small amounts of carbonyl compounds were found in yogurt, beverages, and other food items 

(Table 9). Recently, research shows that average levels of MGO were 3.0 mg/kg in bread and 

8.3 mg/kg in cookies (Degen, Hellwig, & Henle, 2012). Compared to GO and MGO, very little 

data is available on 3-DG in food, although honey was reported to contain large amounts of 3-

DG, between 80 mg and 1450 mg/kg in tested samples (Weigel, Opitz, & Henle, 2004). This 

limited information on the dicarbonyl compounds in foods means more comprehensive 

quantitative data is needed to investigate dietary exposure to this compound. 

 

Table 9. Ranges of dicarbonyl compounds in different food items. 

 

Food products GO MGO 3-DG 

Cheesea 4-6 mg/kg 4-11 mg/kg not detectable 

Yogurta 0.6-0.9 mg/kg 0.6-1.3 mg/kg not detectable 

Wineb not detectable nd-4.5 mg/L 2.2-9.5 mg/L 

Soy saucesb not detectable not detectable 32-832 mg/L 

Brew Coffeea not detectable 23-47 mg/L not detectable 

Honeyb not detectable nd-436 mg/L 271-1641 mg/L 

Cocoaa 0.9-3.4 mg/kg 0.02 mg/kg 0.5-3.6 mg/kg 

Breadb not detectable nd-28 mg/kg 13-619 mg/kg 

Roast bean coffeea 20-130 mg/L 20-220 mg/L not detectable 

Pastab not detectable not detectable nd-8.8 mg/kg 

Cookiesb not detectable 1.8-68 mg/kg 8.5-385 mg/kg 

aData are from Henle (2008); bData are from Degen et al. (2012). 
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BIOAVAILABILITY OF DIETARY AGES 

To summarize animal experiments and pathological and clinical studies (Delgado-

Andrade, Tessier, Niquet-Leridon, Seiquer, & Pilar, 2012; Somoza, Wenzel, Weiss, Clawin-

Rädecker, Grübel, & Erbersdobler, 2006), consuming AGE-rich foods may lead to significantly 

higher AGEs in human plasma. Studies also indicated that the higher the intake of food-derived 

AGEs, the more AGEs the body excretes. However, how the intestines absorb AGEs remains as 

yet unclear. AGEs may be bound to specific receptors and subsequently decomposed by 

macrophages, or they may be broken down by the extracellular proteolytic system.  

In addition, smaller molecules-soluble peptide AGEs can be excreted by the kidneys 

(Baumann, 2012), but any deterioration in the renal system like reduced renal function, can 

result in more accumulation of dietary AGEs in the body, which can cause oxidative, release 

pro-inflammatory molecules, cause abnormal signaling and gene expression and thus 

contribute to the pathology of chronic diseases like diabetes and add to medical complications 

(Bierhaus, Hofmann, Ziegler, & Nawroth, 1998; Singh, Barden, Mori, & Beilin, 2001). Therefore, 

accurately determining exposure to dietary AGEs is important for risk assessment.  

 

HUMAN EXPOSURE TO DIETARY AGES 

Only a few studies have examined human exposure to dietary AGEs. Delgado-Andrade, 

Seiquer, Navarro, and Morales (2007) showed, for children between 11 and 14 years old, 5.3 

mg mean total CML intake/day indicated a diet with low MRPs, whereas 11.3 mg CML 

intake/day indicated a diet high in MRPs.  A group of 18-24 year olds, according to Uribarri et al. 

(2007), consumed an average of 15000 kU/day of CML based on 3-day food records for 90 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bierhaus%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9659442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hofmann%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=9659442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ziegler%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9659442
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nawroth%20PP%5BAuthor%5D&cauthor=true&cauthor_uid=9659442
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Singh,%20R&dais_id=16128299&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Singh,%20R&dais_id=16128299&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Mori,%20T&dais_id=9393686&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1FUBq5oSjPunpUTWGRC&author_name=Beilin,%20L&dais_id=1909361&excludeEventConfig=ExcludeIfFromFullRecPage
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healthy subjects. In another study of a group of 18-24 year olds in France, the mean CML intake 

in a French diet was 5.4 mg CML/day when food was cooked at high temperatures, although 

that amount was significantly decreased when food was cooked using low temperature 

methods like steaming (Birlouez-Aragon et al., 2010), which adds to the evidence that high 

cooking temperatures can increase formation of dietary AGEs. Nevertheless, more studies are 

needed on dietary exposure to AGEs for other populations, including the kinds of food products 

that contribute more to daily AGE intake. 

 

MITIGATING DIETARY AGES IN FOODS 

A wide variety of epidemiological and animal studies have shown that dietary intake of 

AGEs increases health risks. Therefore, investigating and developing ways to decrease 

formation of AGEs in food products may delay or prevent chronic disease.  

Some common mitigating methods include selecting different food types, modifying 

cooking methods, and adding inhibitors. 

Food types 

Overall, dietary AGEs form more easily in foods rich in fat and high in protein, such as 

red muscle meat products (beef and pork) with an average 43 kU/g CML. In contrast, vegetables 

and fruits contain relatively fewer dietary AGEs with an average 3.4 kU/g CML (Goldberg et al., 

2004). Hull et al. (2012) provided additional results to support the data, showing the lowest 

average CML level in fruits and vegetables was 0.13 mg/100g. Uribarri et al. (2010) indicated 

animal-derived products contained the highest levels of AGEs; even uncooked cheeses and 

butter have large amounts of dietary AGEs. Based on current evidence, a diet with more fruits, 
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vegetables, and grains may reduce exposure to dietary AGEs. 

Modifying cooking methods 

Because food processing parameters like cooking time, cooking temperature, and 

cooking method are an important part of formation of dietary AGEs, they must be considered 

as part of the move to reduce dietary AGEs. However, certain types of cooking enhance the 

flavor and color of food, usually requiring higher cooking temperatures or longer cooking times, 

both of which can enhance formation of dietary AGEs (Chao et al., 2009). Some studies note 

that formation of dietary AGEs were significantly reduced by modifying culinary techniques, 

cooking for less time and at lower temperatures. Uribarri et al. (2010) found that AGE content 

was 5,828 kU/100 g in broiled chicken and 5,963 kU/100 g in broiled beef but dropped 

significantly to 1,123 kU/100 g when chicken was boiled in water, while in stewed beef, AGE 

content dropped to 2,230 kU/100 g. Goldberg et al. (2004) had already suggested daily AGE 

ingestion could be reduced by 50% by boiling and stewing foods. Assar et al. (2009) also 

showed the average CML content in boiled beef (5.0 mg/kg food) was much lower than in fried 

minced beef (11.2 mg/kg food). These research results show that cookery choice can reduce 

consumer intake of dietary AGEs. 

AGE Inhibitors  

Using AGE inhibitors during cooking can mitigate the formation of dietary AGEs. 

Generally speaking, inhibitors attenuate oxidative stress through scavenging AGE 

intermediates, the reactive dicarbonyls, or free radicals produced in the process of 

glycoxidation (Wu et al., 2011). Investigating and developing AGE inhibitors has been widely 

done, and inhibition may occur as part of the inhibitor’s antioxidant activity or capacity to 
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scavenge carbonyl groups (Lo et al., 2006; Zieman, & Kass, 2004). To be specific, anti-AGE 

agents may act during the glycation process by trapping carbonyl groups on Amadori products 

and reactive dicarbonyl compounds (Tan, Wang, Lo, & Ho, 2008). However, antioxidants can 

actually prevent the formation of AGEs by inhibiting oxidation of sugar and subsequent 

formation of Amadori products, possibly because they can scavenge hydroxyl and superoxide 

radicals or chelate metal ions to alleviate oxidative stress. (Lee, Jang, Lee, Kim, & Kim, 2006; 

Yamaguchi, Ariga, Yoshimura, & Nakazawa, 2000) 

A variety of synthetic and natural products have been evaluated as AGE inhibitors. 

Common synthetic AGE inhibitors include aminoguanidine (Nagai, Murray, Metz, & Baynes, 

2012) and pyridoxamine (Culbertson, Enright, & Ingold, 2003), both of which are effective 

carbonyl trapping agents that decrease carbonyl stress (Figure 5). Even during cooking, adding 

aminoguanidine has prevented formation of new dietary AGEs in olive oil. Unfortunately, 

aminoguanidine is considered toxic if taken excessively; it may lead to hypercholesterolemia 

and hypertriglyceridemia (Cameron et al., 1993).  

 

 

 

 

 

 

Figure 5. Proposed mechanism for reaction trapping dicarbonyl compounds with 

aminoguanidine (modified from Price, Rhett, Thorpe, & Baynes, 2001). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zieman%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=14977384
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kass%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=14977384
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tan%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18296351
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18296351
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lo%20CY%5BAuthor%5D&cauthor=true&cauthor_uid=18296351
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ho%20CT%5BAuthor%5D&cauthor=true&cauthor_uid=18296351
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Natural anti-AGE agents, derived from plant or food products, have fewer side-effects 

and may be promising AGE inhibitors because they contain abundant antioxidants and may 

mitigate AGE formation by trapping free radicals. The inhibitory effect of cinnamon bark on AGE 

formations was demonstrated in a bovine serum albumin (BSA)-glucose model (Peng, Cheng, 

Ma, Chen, Ho, & Lo, 2008). Moreover, it effectively inhibited CML formation during in vivo 

glycation during oral administration of vitamin C (1 g/day) for four consecutive weeks (Vinson, 

& Howard, 1996). Nine main phenolic constituents in vaccinium ethanolic extracts inhibited 

CML formation as well (Beaulieu et al., 2010). In addition to anti-oxidants, anti-glycation in 

active compounds of natural products may also be related to their ability to trap carbonyls. For 

instance, phenolic compounds like chlorogenic acid are responsible for the properties that 

allow coffee silverskin extract to trap carbonyls (Mesias, Navarro, Martinez-Saez, Ullate, del 

Castillo, & Morales, 2014). Navarro and Morales (2015) noted that hydroxytyrosol (3,4-

dihydroxyphenyl ethanol), one of the major phenolic compounds in olive oil, could trap the 

reactive dicarbonyl species MGO and therefore inhibit AGE formation (Figure 6). Based on the 

findings of previous studies, further research into anti-glycation agents is necessary because the 

use of such agents may delay the onset of chronic diseases like diabetes. The challenge of 

future research will be how to explain the direct structure and functional relationships in the 

anti-glycation process, as well as how to retain satisfactory flavor while keeping food safe. 

Enhancing water-holding activity 

Dry heat cooking actually encourages formation of dietary AGEs (Uribarri et al., 2010), 

perhaps due to increased cooking loss and mobility of water soluble precursors. Although we 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Mesias,%20M&ut=41104948&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage&cacheurlFromRightClick=no
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Mesias,%20M&ut=41104948&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage&cacheurlFromRightClick=no
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Martinez-Saez,%20N&ut=39435804&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Martinez-Saez,%20N&ut=39435804&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=del%20Castillo,%20MD&ut=14626556&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=del%20Castillo,%20MD&ut=14626556&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Morales,%20FJ&ut=42548448&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Navarro,%20M&ut=9688590&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=3BFSMzqlOZLZmyTV74M&field=AU&value=Morales,%20FJ&ut=42548448&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage&cacheurlFromRightClick=no
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still so not have enough definitive information on the correlation of water-holding activity 

(WHC) and dietary AGEs, we can assume that adding water-binding compounds may restrict 

transport of reaction precursors, leading to a decrease in the formation of dietary AGEs in food 

systems. 

In conclusion, dietary AGEs may require changes in cooking methods for those foods 

with a high probability of forming AGEs. Lower cooking temperatures and less cooking time; 

steaming, stewing, and poaching instead of frying, grilling, and roasting; using natural 

antioxidants in foods to inhibit the formation of AGEs would all contribute to reducing AGEs in 

food. 
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Figure 6. Proposed mechanism for reaction trapping methylglyoxal with 3,4-dihydroxyphenyl 

ethanol (modified from Navarro et al., 2015). 
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SUMMARY 

The Maillard reaction results in the irreversible formation of advanced glycation 

endproducts (AGEs). Increasingly, AGEs are recognized as important in clinical science; they are 

associated with oxidation stress and inflammation, and thus with complications of diabetes and 

other chronic diseases.  

AGEs are a large and heterogeneous group of compounds caused by the reaction 

between reducing sugars and amino groups from amino acids. Research points to dietary AGEs 

as important contributors to AGEs circulating in humans. 

Dietary AGEs form because of the composition of food items, the cooking temperature 

and cooking time, humidity, pH, and the presence of antioxidants or antiglycation products. 

Generally speaking, animal-derived foods cooked at high temperatures and for a long time will 

show more AGEs than other foods. 

Future research should focus on extending our database of levels of dietary AGEs in 

more foods, applying new methods of identifying dietary AGEs, understanding what contributes 

most to AGE exposure from cooked foods, and elucidating the pathogenic mechanisms of 

dietary AGEs. 
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Chapter 2. DETERMINATION OF ADVANCED GLYCATION ENDPRODUCTS 

IN COOKED MEAT PRODUCTS1,2 

 

ABSTRACT 

Advanced glycation endproducts (AGEs), a pathogenic factor implicated in diabetes and 

other chronic diseases, are produced in cooked meat products. The objective of this study was 

to determine the AGE content, as measured by Nε-carboxymethyllysine (CML) levels, in cooked 

chicken, pork, beef and fish (salmon and tilapia) prepared by three common cooking methods 

used by U.S. consumers: frying, baking, and broiling. The CML was detected in all the cooked 

samples, but the levels were dependent on types of meat, cooking conditions, and the final 

internal temperature. Broiling and frying at higher cooking temperature produced higher levels 

of CML, and broiled beef contained the highest CML content (21.8 μg/g). Baked salmon (8.6 

μg/g) and baked tilapia (9.7 μg/g) contained less CML as compared to the other muscle food 

samples. 

 

 

 

 

 

 

 

1- Reproduced with permission from: Chen, G., & Smith, J. S. (2015). Determination of advanced glycation 

endproducts in cooked meat products. Food Chemistry, 168, 190-195. 

http://dx.doi.org/10.1016/j.foodchem.2014.06.081 

2- Presented in part at IFT Annual Meeting 2013. Toxicology and Safety Evaluation Division #COMP19-04. 

http://dx.doi.org/10.1016/j.foodchem.2014.06.081
http://www.ift.org/Meetings-and-Events/Past-Meeting-Resources/Technical%20Abstract%20Search%20Details.aspx?id=56935
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INTRODUCTION 

Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous 

compounds that are formed through the Maillard reaction, a nonenzymatic reaction between 

reducing sugars and free amino groups (Ahmed, 2005). Although the mechanism of the Maillard 

reaction is still not fully known, the AGEs exist in the body as well as in food. The common AGEs 

found in food are Nε-carboxymethyl lysine (CML), methylglyoxal-lysine dimers (MOLD), 

pentosidine and pyrraline (Wu, Huang, Lin and Yen, 2011). Current research suggests excessive 

consumption of these compounds may contribute to metabolic chronic diseases including 

diabetes, renal disorders, and Alzheimer’s disease (Brownlee, 1994; Kim, Reddy, Rahbar, 

Lanting, & Natarajan, 2002; Koschinsk et al., 1997). Some epidemiological studies have shown 

that consumption of certain dietary AGEs are indicators of oxidative stress and inflammation 

such as 8-isoprostanes, which may play an important role in disease pathologies (Uribarri et al., 

2007). Moreover, reductions of inflammatory mediators were also found in diabetic subjects by 

restricting their dietary AGEs (Vlassara et al., 2002). Based on some animal studies, AGE-rich 

diets fed to mice was associated with kidney disease and accumulation of AGEs in tissue 

(Hofmann et al., 2002; Vitek et al., 1994). Thus, information on the levels of dietary AGEs and 

the prevalence of these compounds in food items is desirable.  

It is established that the diet is a significant source of exogenous AGEs. In addition, long-

term storage and cooking procedures can increase AGEs content in foods (Forster & Henle, 

2003). The concentrations and types of AGEs in cooked meat depend on several factors 

including cooking method, cooking temperature and time, and the presence of protein and fat 

(Goldberg et al., 2004). Traditional cooking methods may play a key role in AGEs consumption 
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and exposure. Compared to some Asian countries, it is estimated that broiling or grilling was 

used more to cook steak (34%), and pan frying was used more to cook chicken (56%) and fish 

(54%) in the U.S. (Keating & Bogen, 2004).  All of these cooking methods have been reported to 

induce AGE formation (Ames, 2008; Delgado-Andrade et al., 2007). For example, Goldberg et al. 

(2004) found that higher levels of CML in meats cooked by broiling and frying with higher 

temperatures.  

Although some previous studies have investigated AGEs levels in food (Dittrich et al., 

2006; Drusch, Faist, & Erbersdobler, 1999; Goldberg, Cai, Peppa, Dardaine, Baliga, & Uribarri, 

2004; Hull, Woodside, Ames & Cuskelly, 2012), direct comparison is of results is difficult 

because of the various preparation methods, meat types, and cooking conditions. For instance, 

meat samples have been cooked to different internal temperatures in past studies, which 

yielded inconsistent results. Therefore information on AGEs levels should include some 

standard parameters such as the internal temperature of the cooked samples. 

CML has been studied extensively as an oxidation product, and is reported to be formed 

by numerous pathways in food systems (Ahmed et al., 1986). In the process of cooking meat 

products, CML may form though the oxidation of fructose lysine or the direct reaction of glyoxal 

and lysine. Many of the AGEs are not as stable to acids as CML is, so it is often used as an 

indicator in foods (Tauer, Hasenkof, Kislinger, Frey, & Pischetsrieder, 1999).  

This study was performed to evaluate the AGEs content, as measured by CML levels, in 

meat and fish samples cooked to the internal temperatures recommended by the U.S. 

Department of Agriculture, Food Safety and Inspection Service (1998). The results can be used 
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as a guideline for evaluating the risk associated with AGE consumption and give some 

reasonable advice about dietary habits for consumers. 

 

MATERIAL AND METHODS 

Materials 

The Nε-carboxymethyl lysine (CML) standard was purchased from NeoMPS (Strasbourg, 

France),  boric acid, sodium hydroxide, hydrochloric acid, 2-mercaptoethanol, sodium 

borohydride, and Na tetraborate decahydrate, were purchased from Sigma Aldrich (St. Louis, 

MO, USA).  Acetonitrile (HPLC grade), chloroform (HPLC grade), methanol (HPLC grade), 

and ortho-phthalaldehyde (OPA) reagent were obtained from Fisher Scientific (Fairlawn, NJ, 

USA).  

Chemical analyses 

Crude protein for uncooked meat samples was measured with a Leco FP-2000 protein 

analyzer (Leco Corp, St Joseph, MI, USA) according to AOAC Int method 992.15 (Kingbrink & 

Sebranek, 1993). Fat and moisture content were determined with a CEM Smart Trac system 

(CEM Corp., Matthews, NC, USA) using AOAC Int method 2008.06 (Leefler et al., 2008).  

The pH of each sample was measured according to the method of Jang, et al. (2008). 

Five grams of fine ground tissue was added to 45 mL of distilled water, and mixed for 30 s at 

medium speed in a Waring blender (Waring Laboratory, Torrington, CT, USA) followed by 

measument with an Accumet AP115 pH meter (Fisher, Pittsburgh, PA, USA).  
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Preparation of meat samples 

Fresh meat samples were purchased from regional supermarkets: beef rib round steak, 

pork top loin, skinless chicken breast, and fish fillet (tilapia and salmon). Fresh meat products 

were tempered to room temperature prior to cooking. A thermocouple temperature probe was 

inserted in the middle of each sample, and temperature was recorded with a data logger (USB-

TC model, Measurement Computing, Norton, MA, USA).  

The description of the cooking methods for the samples is presented in Table 10. The 

cooking methods preferred by U.S. meat consumers were used in the experiments. Meat 

samples were prepared by pan frying at different desired surface temperatures, oven broiling at 

232°C (450°F), and oven baking at 177°C (350°F). To eliminate foodborne illness, the internal 

cooking temperature was used according to recommendation of USDA-FSIS (1998): 63°C (145°F) 

for fish, 71°C (160°F) for pork, 74°C (165°F) for chicken, and 71°C (160°F, well done) for beef. To 

compare the AGEs levels in cooked meat with different degrees of doneness, the pork samples 

were fried to 63°C (145°F, medium), and the beef steak samples were also fried to 54°C (130°F, 

very rare), 63°C (145°F, medium), 71°C (160°F, well done) and 77°C (170°F, over done). In order 

to compare the AGE contents in cooked meat by different frying methods, the beef samples 

were cooked to the same internal temperature of 71°C (160°F) by turning once (after 5 min) or 

multiple times (interval of one minutes). No salt, spice, and oil were used in the cooking 

procedures. Approximately 2 mm of the surface or 2 mm of the middle part of the meat was 

excised from the cooled samples with a motorized meat slicer (Cabela grade slicer, 1/3 hp, 

Sidney, NE, USA). The sample was then homogenized with a food processor (KitchenAid, model 
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KFP 750) and stored at 4°C overnight. The extraction of CML in each sample was performed the 

following day. 

Determining of CML 

The CML was extracted from meat samples according to Drusch, Faist, & Erbersdobler 

(1999) except that chloroform/methanol (2:1, v/v) solution was used as the defatting solvent. 

Each meat sample (0.20 gram) was defatted using two extractions of 20 mL 

chloroform/methanol (2:1, v/v) solution followed by centrifugation at 10,000 rpm (10,600 xg) at 

4°C for 10 min with a Fisher MARATHON 21000(R) Centrifuge fitted with a 6-Place Fixed Angle 

rotor (9.5 cm radius, 04-976-011).  The defatted samples were dried completely at 50°C, and 

reduced with 4 mL sodium borate buffer (0.2 M, pH 9.4) and 2 mL sodium borohydride (1 M in 

0.1 M NaOH) for 4 h at room temperature.  Hydrochloric acid (HCl) was added to the reduced 

samples to a final concentration of 6 M HCl. Each sample was flushed with a stream of nitrogen 

for 5 min followed by hydrolysis at 110°C for 20 h in screw-capped vials. Upon completion of 

hydrolysis, samples were dried by rotary evaporation, and transferred into a 10 mL volumetric 

flask with water and made to volume. After filtration, the filtrates were concentrated and 

dissolved in sodium borate buffer (0.2 M, pH 9.4). The sample was brought to 10 mL in a 

volumetric flask follow by a final membrane filtration (nylon, 0.45um) for later derivatization.  
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Table 10. Cooking conditions of the meat and fish samples. 

 

Meat 
typea 

Cooking 
methodb 

Internal 
temperature 
(°C) 

Cooking  
temperature 
(°C) 

Cooking  
time (min) 

Cooking  
lossc (%) 

Beef  Frying 71 204 20 25.23±1.80 

 Broiling 71 232 16 30.81±4.10 

Baking 71 177 45 21.59±2.69 

Pork  Frying 71 204 16 24.83±1.79 

 Broiling 71 232 14 31.25±3.93 

 Baking 71 177 35 22.50±3.03 

Chicken  Frying 74 204 18 29.66±2.08 

 Broiling 74 232 16 35.90±2.31 

 Baking 74 177 35 27.24±1.45 

Salmon Frying 63 204 12 19.64±2.42 

 Broiling 63 232 10 25.98±2.64 

 Baking 63 177 14 16.71±1.24 

Tilapia Frying 63 204 12 18.12±1.89 

 Broiling 63 232 8 25.26±2.54 

 Baking 63 177 12 19.84±2.82 

aBeef: rib round steak, 270-310g, 2.5 thickness; pork: top loin: 220-250g, 2.3 cm thickness; 
chicken: breast without skin, 230-250g, 2.3 thickness; salmon: 180-200g, 1.8 cm thickness; 
tilapia:140-160g, 1.5 thickness. 
bFrying: meat was fried in a Teflon-coated frying pan; broiling: meat was prepared on a broiler 
pan to be out of the drippings and cooked in an oven; baking: the meat was prepared on a 
baking pan and baked in an oven. 
c% cooking loss= (before cook weight−after cook weight)/before cook weight*100%.  
Values are represented as mean ± standard deviation (n=3). 

 

The hydrolysate (50 µL) was mixed with 200 µL of ortho-phthalaldehyde (OPA) 

derivatization reagent and reacted 5 min prior to HPLC analysis. The CML was analyzed with an 

HP1090A Series II HPLC (Agilent Technologies, Santa Clara, CA, USA) coupled with a HP 1046A 
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programmable fluorescence detector according to the method of Peng et al. (2010). The CML 

separation was achieved with a reversed-phase TSK gel ODS-80 TM column (25 cm×4.6 mm, 5 

μm, 80 Å, Tosohass, Montgomeryville, PA, USA), and with the fluorescence settings of 340 nm 

(excitation) and 455 nm (emission) (Figure 7). The mobile phases were: (solvent A) sodium 

acetate buffer (20 mM, adjusted to pH 6.7 with acetic acid)/acetonitrile (90:10, v/v) and 

(solvent B) acetonitrile. The flow rate was 1.0 mL/min and the injection volume was 20 μL. The 

CML separation was achieved with a linear gradient that started with 5% B and changed to 70% 

B within 5 min and kept at 70% B till 17 min. The gradient was set back to 95% B in 1 min 

followed by a post run of 15 min to allow the column to equilibrate prior to the next injection.  

Data were analyzed using ChemStation software Rev A.06.00. The identities of CML peaks were 

achieved by comparison between the retention times and the standard. CML content of the 

samples was determined based on the peak areas of the corresponding derivatives. 

Statistical Analyses 

The experiment was a randomized complete block design. Analyses of variance (ANOVA) 

were performed on the data by using SAS version 9.1 (SAS Inst. Inc., Cary, NC, U.S.A.), and P < 

0.05 was selected as the decision level for significant differences. 

 

 



61 

 

Figure 7. HPLC chromatograph of CML derivative peaks related to a raw beef sample using a 

TSK gel ODS-80 TM column (25 cm×4.6 mm, 5 µm) with a fluorescence intensity of settings at 

340 nm (excitation) and 455 nm (emission). The flow rate was 1.0 mL/min and injection volume 

was 20 µL. The mobile phases were: (solvent A) sodium acetate buffer (20 mM, adjusted to pH 

6.7 with acetic acid)/acetonitrile (90:10, v/v) and (solvent B) acetonitrile.  
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RESULTS AND DISCUSSION 

Chemical analyses 

Chemical analyses of the fresh meat products are summarized in Table 11. The pH of 

raw meat samples ranged from 5.56 to 7.95. The moisture level of the raw meat samples was 

between 69.25 and 77.21%. The fat levels of raw meat samples were from 1.68 to 7.18%. The 

protein levels of raw meat samples ranged from 17.98 to 21.53%. 

 

Table 11. Chemical analyses of raw meat samples. 

 

Meat type Moisture (%) Fat (%) Protein (%) pH 

Beef   69.25±1.06 7.18±0.94        21.53±0.57    5.56±0.11    

Pork  74.49±1.41 6.16±1.52       19.01±2.38 6.08±0.17 

Chicken  73.92±2.99 4.25±1.06 21.88±0.59   6.16±0.10       

Salmon 75.03±2.96      1.94±1.27       18.59±1.70 6.85±0.07         

Tilapia 77.21±1.78   1.68±1.41         17.98±2.42 7.95±0.09           

Each value is represented as mean ± standard deviation (n=3). 
 

CML levels in cooked meat and fish 

Meat and fish samples were extracted in triplicate and analyzed by HPLC. The limit of 

detection was 1.5 ng/mL and the limit of quantification was 5.0 ng/mL for CML. The CML 

quantitative determinations in raw, boiled, fried or baked meat are summarized in Figure 8 and 

Table 12, and the amount of each sample was expressed in μg/g food. In the present study, we 

first detected the CML levels in the outer layer (2 mm) among all the samples, and in the middle 

layer (2 mm) of fried samples. CML was found among all samples and the contents were in the 

range of 1.09 μg/g food (inside layer of fried pork) to 21.84 μg/g food (outer layer of broiled 
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beef steak). We found that all cooked meat items showed higher levels of CML in the outer 

layer as opposed to the untreated meat (P <0.05), such as in the fried beef (20.03 μg/g) 

compared to the raw samples (2.05 μg/g). The results are similar to those reported by Assar et 

al. (2009), who indicated CML content in fried minced beef (11.2 mg/kg food) was much higher 

than it was in raw minced beef (0.72 mg/kg food).  As can be seen in Figure 8, all cooking 

methods (broiling, frying and baking) significantly increased the formation of CML in the outer 

layer of the meat samples.  

 

 

Figure 8. CML content (μg/g) of meat samples cooked by different methods.  

abcdBars with the different superscript letters differ significantly (P < 0.05). 
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Table 12. CML content (μg/g) of meat samples was identified in the outer layer (2 mm) among 
all the samples (out), and also in the middle layer (2 mm) of fried samples (in). 

 

   Treatment   

Meat types Raw (control) Frying (out) Frying (in) Broiling (out)  Baking (out) 

Beef steak 2.05±0.40a 20.03±0.83a 3.13±0.68a 21.84±0.28a 14.31±1.04a 

Pork top loin 1.98±0.97a 17.53±1.48b 1.09±0.53a 20.35±1.64a 12.53±1.19a 

Chicken breast 1.48±0.77a 17.16±1.43b 2.99±0.89a 19.69±0.78a 13.58±0.63a 

Salmon 1.92±0.61a 12.20±1.68c 2.05±0.63a 12.23±1.13b 8.59±1.07b 

Tilapia 1.07±0.38a 12.53±1.19c 3.43±1.10a 11.24±1.25b 9.72±1.33b 

abcMeans with different superscripts within the same column are significantly different at P 
<0.05. 
Values are represented as mean ± standard deviation (n=3). 
 

As shown in Table 13, except for the tilapia samples, we did not find dramatic change of 

the CML contents in the inside layer of fried meat and fish (P >0.05). All the levels of CML in the 

outer layer of fried meat were much higher than they were in the middle layers (P <0.05). It is 

possible more water-soluble precursors are transferred to the surface of meat to form AGEs at 

cooking. Therefore CML was concentrated more in the outer layer of the fried meat, which 

raised an interesting issue related to AGE intake and etiology.  Some consumers are fond of the 

aromatic outer crust of cooked meats, and it may enhance their exposure to the risk of dietary 

AGEs. 
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Table 13. CML content of raw and fried samples (μg/g). 

 

   Meat type   

Treatment Beef steak Pork top loin Chicken breast Salmon Tilapia 

Raw (uncooked) 2.05±0.40a 1.98±0.97a 1.48±0.77a 1.92±0.61a 1.07±0.38a 

Frying (inside) 3.13±0.68a 1.09±0.53a 2.99±0.89a 2.05±0.63a 3.43±1.10b 

Frying (outside) 20.03±0.83b 17.53±1.48b 17.16±1.43b 12.20±1.68b 12.53±1.19c 

abcMeans with different superscripts within the same column are significantly different at P < 
0.05. 
Values are represented as mean ± standard deviation (n=3). 
 

The CML levels of cooked chicken samples (internal temperature of 74°C) are 

summarized in Figure 8.  The levels in the broiled and fried chicken breast were higher 

compared to the baked samples (P <0.05). The CML levels of beef samples cooked to well-done 

(internal temperature of 71°C) are also reported in Figure 8. There was an increase of CML 

amounts (~ 1.5-fold) in both fried and broiled beef as compared to the baked beef, following 

the increase in cooking temperature.  In addition, CML contents in broiled pork (20.35 μg/g) 

and fried pork (17.53 μg/g) were both significantly higher than those in samples baked to an 

internal temperature 71°C (P <0.05).  Frying meat in direct contact with a heat source may 

produce more CML than oven baking, in which the meat is cooked indirectly by hot air.  The fact 

that our CML levels were higher in fried pork than in baked pork is inconsistent with the report 

of Chao et al. (2009), who stated that all baked chicken, pork and beef samples had more CML 

than fried samples. They found the CML contents in fried fish samples (salmon and cod) were 

higher than those were in baked samples, which was similar to our result, that the CML levels 

were significantly less in baked salmon (8.59 μg/g) than fried salmon (12.20 μg/g) and broiled 
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salmon (12.23 μg/g) samples (P <0.05). However, the amount of CML did not differ much 

among baked, fried, and broiled tilapia samples (P >0.05). The different cooking temperature or 

degrees of doneness of the cooked meat may count for the inconsistent results. It is notable 

that our baking temperature was 170°C rather than the 230°C used by Chao et al. (2009). In our 

study, cooking temperature may affect CML formation more since the temperature used for 

broiling (232°C) and frying (204°C) were higher than that used for baking (177°C).  

As shown in Table 10, CML levels correlated well with the cooking temperature and 

cooking loss. For example, cooking loss of broiled chicken in the present study was higher 

(35.90%) along with the higher CML contents (19.69 μg/g). However, it was lower in baked 

chicken (27.24%). According to the studies by Skog and Jägerstad (1997) and Janoszka and 

Sajewicz (2009), water-soluble reactants can leach out of the product and collect on the surface 

enhancing Maillard endproduct formation. High cooking temperature accelerates this process, 

which may explain why high cooking loss correlates to the high levels of CML.  

We investigated the occurrence of CML in broiled meats (Table 12). There was no 

significant difference among beef, pork and chicken (P >0.05). However, it is evident that there 

were lower levels of CML in the broiled salmon and tilapia as contrasted to the other meat 

items (P <0.05), which was in agreement with the results from Uribarri et al. (2010). The results 

of the baked samples are also in Table 12, and the CML contents in the fish (salmon and tilapia) 

ranked relatively lower compared to the muscle meat samples (P <0.05).  Among all the fried 

samples, the highest level of CML was found in beef steak (20.03 μg/g), followed by pork (17.53 

μg/g) and chicken (17.16 μg/g). They were all significantly higher than those in salmon (12.20 
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μg/g) and tilapia (12.53 μg/g). The different chemical ingredients in the raw meat products 

(Table 10) may be responsible for the differences of the CML levels to some extent in our study.  

Although we found less CML in fried fish than in fried muscle meat, Chao et al. (2009) 

reported salmon had the highest level of CML in fried fish and meat samples. Moreover, there 

were no significant differences in CML between fried pork and chicken (P >0.05), which was 

consistent with the result from Uribarri et al. (2010). However, it was not in agreement with the 

report from Hull et al. (2012), who pointed out more CML was found in pork strips (0.61 

mg/100g) than in chicken strips (0.51 mg/100g) and beef steak (0.42 mg/100g). The 

inconsistent results may be due to the different conditions of the raw samples (such as the 

thickness of meat), the cooking utensils, and the degree of doneness.  

We compared the results in different degrees of doneness of fried beef and pork 

samples (Table 14). For the beef samples, the CML content increased significantly (P <0.05) with 

increasing degree-of-doneness from medium to well done (internal temperature from 63 to 

71°C) both in cooking temperature of 204°C (from 10.15 to 20.03 μg/g) and 160°C (from 10.52 

to 16.30 μg/g).  We did not find any dramatic differences for other change of the degree of 

doneness of cooked samples (P >0.05). In pork samples, the CML levels increased significantly 

(P <0.05) with rising the internal temperature from 63 to 71°C both in cooking temperature of 

204°C (from 13.29 to 17.53 μg/g) and 160°C (from 8.84 to 17.44 μg/g). 
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Table 14. CML content (μg/g) of meat fried to different degrees of doneness.  

 

Cooked items Internal temperature (°C) Cooking temperature (°C) 

  204 160 

Beef steak 54 (Very rare) 9.17±0.58a 9.87±0.71a 

 63 (Medium) 10.15±1.43a 10.52±0.96a 

 71 (Well done) 20.03±0.82b 16.30±1.03b 

 77 (Over done) 21.01±1.92b 16.56±1.31b 

Pork top loin 63 (Medium) 13.29 ±1.15a 8.84±0.66a 

 71 (Well done) 17.53±1.48b 17.44±1.43b 

abMeans with different superscripts within the same column are significantly different at P 
<0.05. 
Values are represented as mean ± standard deviation (n=3). 

 

The turning frequency also affected the CML formation of meat when pan frying (Table 

15). The beef steak was placed, one at a time, in a pan preheated from 160°C to 204°C. In the 

first session, these samples were turned at 1-minute intervals until the final temperature (71°C) 

were reached. In the second session, beef samples were also cooked to the same internal 

temperatures and flipped after 5 minutes. The CML levels increased significantly from 180°C to 

204°C regardless of whether turning repeatedly (P <0.05).  At 204°C, the CML level (20.03 μg/g) 

by single turning was remarkable higher than it was (12.16 μg/g) by multiple turning when 

reaching the same internal temperature. Therefore, we believed multiple flipping of the meat 

reduced CML formation compared with single turning when frying, which may be as a result of 

accelerating the loss of water-soluble precursors. 
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Table 15. CML content of fried beef steak (71°C internal temperature) in frying. 

 

Preheat temperature (°C) CML content (μg/g) 

 Single turn Multiple turn 

160 16.30±1.03a 9.88±1.19a 

170 17.64±0.91a 9.02±0.77a 

180 17.81±0.48a 10.61±0.90a 

204 20.03±0.82b 12.16±0.63b 

abMeans with different superscripts within the same column are significantly different at P 
<0.05. 
Values are represented as mean ± standard deviation (n=3). 

 

As mentioned earlier in Table 12, the CML contents of meat products cooked by 

standard methods can be ordered relatively from low to high. Low levels of total CML (less than 

10 μg/g) were found in baked salmon (8.59 μg/g) and baked tilapia (9.72 μg/g).  Intermediate 

levels of CML (10 to 15 μg/g) were found in fried salmon (12.20 μg/g), fried tilapia (12.53 μg/g), 

broiled salmon (12.23 μg/g), broiled tilapia (11.24 μg/g), baked beef (14.31 μg/g), baked pork 

(12.53 μg/g), and baked chicken breast (13.58 μg/g). High levels of CML (more than 15 μg/g) 

were found in fried beef (20.03 μg/g), fried pork (17.53 μg/g), fried chicken breast (17.16 μg/g), 

broiled beef (21.84 μg/g), broiled pork (20.35 μg/g), and broiled chicken breast (19.69 μg/g). In 

conclusion, due to the high or intermediate levels of CML detected in the fried or broiled 

muscle food, our study indicated people frequently consuming these muscle meat have a high 

exposure to dietary CML that may increase risk of diseases.  
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CONCLUSION 

Dietary AGEs have been suggested as a factor in many chronic diseases such as diabetes, 

and their relationship continues to be developed. These results indicate that the levels of AGEs 

as monitored by CML levels in cooked meat depended on chemical composition of meat, 

cooking conditions and the final internal temperature. For example, among all the meat 

categories, exposure to higher temperatures coincided with higher CML levels in the outer layer 

of meat as compared to the samples prepared at lower temperatures. The data may provide 

researchers information for estimating dietary AGEs exposure, and help food professionals 

guide consumers to reduce the intake of AGEs formed in cooked meat, i.e., cooking at lower 

temperature, flipping meat more during pan frying, and removing the outside crusted layer of 

excessive cooked meat prior to consumption. Future studies are desirable to further expand the 

AGEs database, and investigate other methods to prevent AGEs formation at cooking, such as 

adding inhibitory compound such has antioxidants. 
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Chapter 3. INHIBITION OF ADVANCED GLYCATION ENDPRODUCTS IN 

COOKED BEEF PATTIES BY CEREAL BRAN ADDTION1.2 

 

ABSTRACT 

Advanced glycation endproducts (AGEs) are formed in cooked meat products via 

Maillard reaction, which are seen as a contributor to chronic diseases such as diabetes and 

heart diseases. A number of reports have shown that natural antioxidants such as phenolic 

acids in grains, herbs, and spices can inhibit their formation. The objective of the study was to 

determine the inhibitory effects of selected wheat (Jagger, JA), triticale (Spring Triticale, ST; 

Thundercale, TH), and Rye (RY) bran on AGEs levels in cooked beef patties, as measured by Nε-

carboxymethyl lysine (CML) contents. The CML was detected in all the cooked samples, 

whereas the patties to which RY (42.0% inhibition), ST (27.5% inhibition), and TH (21.4% 

inhibition) brans were added significantly decreased CML formation. RY and ST, were more 

abundant in total phenolics content (TPC) and exhibit higher properties as free radical 

scavengers. Using Pearson’s correlation and multiple linear regression analysis, the inhibition of 

CML in patties was correlated to the water-holding activity (WHC) of the samples, and the 

radical scavenging activity of the brans as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) 

assay. These results suggest that addition of bran may be a potential method of decreasing the 

formation of AGE in cooked patties. 

1- Reproduced with permission from: Chen, G., Madl, R. L. & Smith, J. S. (2016). Inhibition of advanced glycation 

endproducts in cooked beef patties by cereal bran addition. Food Control (In Press). 

http://dx.doi.org/10.1016/j.foodcont.2016.09.037 

2- Presented in part at IFT Annual Meeting 2013. Toxicology and Safety Evaluation Division #074-04. 

http://dx.doi.org/10.1016/j.foodcont.2016.09.037
http://www.ift.org/Meetings-and-Events/Past-Meeting-Resources/Technical%20Abstract%20Search%20Details.aspx?id=56935
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INTRODUCTION 

Advanced glycation endproducts (AGEs) are formed from the Maillard reaction, which is 

a non-enzymatic reaction of proteins with reducing sugars (Ahmed, 2005). Well known AGEs in 

foods include Nε-carboxymethyl lysine (CML), methylglyoxal (MGO), and pentosidine. The CML 

in food has been studied extensively and used as a marker since it is a relatively abundant AGE 

in food systems (Wu, Huang, Lin, & Yen, 2011). Formation and accumulation of AGEs are 

suspected to be involved in the pathogenesis of aging and several diseases such as diabetes 

(Poulsen et al., 2013). The pathogenic effect of AGEs might modify the chemical and biological 

properties of molecules, as their binding capacity to cellular receptors in a wide range of tissues 

resulting in functional changes of DNA, proteins, and lipids (Ahmed, 2005). In cell culture 

studies, AGEs were found to induce cellular oxidative stress and cell activation, and excess 

consumption of dietary AGEs was also considered to increase inflammation and oxidative stress 

in some epidemiological studies (Goldberg et al., 2004; Uribarri et al., 2007). Moreover, a series 

of animal studies found that consumption of AGE-rich diets by mice was associated with kidney 

disorders and damage (Hofmann et al., 2002). These findings suggest that dietary AGEs may be 

considered a chronic risk factor for human health. It therefore is desirable to acquire the 

information on the prevalence of dietary AGEs in food.  

In view of previous research reports, limiting the formation of AGEs in foods depends on 

many factors, such as decreasing cooking temperature, cooking time, and increasing of water-

holding capacity (WHC) of meat samples (Chen, & Smith, 2015; Goldberg et al., 2004; Persson, 

Sjöholm, & Skog, 2003). However, a potential treatment may involve use of various natural 

antioxidants, which may scavenge the generated free radicals accompanied with the formation 
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of AGEs though the Maillard reaction. Some reports have indicated that the phenolic extracts 

from spice (Ahmad, & Ahmed, 2006), microalgae (Sun, Peng, Liu, Fan, Wang, & Chen, 2010), 

buckwheat products (Szawara-Nowak, Koutsidis, Wiczkowski, & Zielinski, 2014), and wheat bran 

(Wang, Sun, Cao, & Tian, 2009) can inhibit AGE formation.  

 Adding cereal bran to meat products, with its significant amount of dietary fiber and 

antioxidant, may have a positive effect on health promotion (Liu, 2007; Reddy, Hirose, Cohen, 

Simi, Cooma, & Rao, 2000). Cereal is a good dietary source of natural antioxidants such as 

phenolic acids, which are concentrated more in the bran portion and include ferulic, vanillic, p-

coumaric, and syringic acids (Mattila, Pihlava, & Hellstrom, 2005). Recently, the ability of 

certain phenolic acids such as vanillic acid, ferulic acid and p-coumaric has been shown to 

inhibit AGEs formation in vitro (Wu et al., 2011; Zhang et al., 2015). Huang, Chuang, Wu, and 

Yen (2008) reported vanillic acid can scavenge reactive carbonyl species in glycation process, 

thus decreasing AGE formation. During cooking, water is important for the transport of water-

soluble precursors of Maillard reaction products (MRPs) from the center to the surface of meat 

(Persson et al., 2003). Some previous research has shown that additives, such as salt and 

phosphate with good WHC, can increase and decrease the formation of some MRPs in meat 

systems (Persson, Sjöholm, & Skog, 2002). Thus, it is possible that the bran addition has an 

inhibitory effect on the formation of AGEs in meat products due to its WHC.  

Although cereal bran has been investigated for their antioxidant activity, there is no 

information regarding their inhibitory effect on the formation of AGEs in cooked meats. This 

study was conducted to determine the effects of selected wheat, triticale, and rye brans on 

AGEs levels in cooked beef patties as measured by CML contents. This study was also 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Peng,%20XF
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Peng,%20XF
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Fan,%20KW&ut=3774218&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Fan,%20KW&ut=3774218&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Chen,%20F&ut=16183706&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Szawara-Nowak,%20R&cacheurlFromRightClick=no
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Chuang,%20HC
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Yen,%20GC&ut=16049098&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
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performed to determine if AGEs inhibition is correlated with total phenolic content (TPC), 

antioxidant activity, or the WHC of samples.  

 

MATERIAL AND METHODS 

Materials 

Fresh ground beef (10% fat) was purchased from a local supermarket. Cereal seed 

samples (wheat, rye, and triticale) were provided by a certified seed grower Vance Ehmke 

(Dighton, KS, USA). The samples included one wheat variety (Jagger 2010), two triticale varieties 

(Spring Triticale 2011, & Thundercale 2011), and one rye variety (Rye 2009). The Nε-

carboxymethyl lysine (CML) standard was purchased from NeoMPS (Strasbourg, France). High 

purity standards of phenolic acids, 2,2-diphenyl-1-picrylhydrazyl (DPPH), boric acid, 

hydrochloric acid, Folin–Ciocalteu’s reagent, 2-mercaptoethanol, sodium chloride, sodium 

borohydride, anhydrous magnesium sulfate, and sodium tetraborate decahydrate were 

purchased from Sigma Aldrich (St. Louis, MO, USA). In addition, solvent and chemicals such as 

acetonitrile (HPLC grade), chloroform (HPLC grade), methanol (HPLC grade), ortho-

phthalaldehyde (OPA) reagent, ACS grade acetone, petroleum ether, hexanes, sodium 

carbonate, sodium hydroxide, ethanol, ethyl acetate, ethyl ether, and methanol were obtained 

from Fisher Scientific (Fairlawn, NJ, USA). 

Bran sample preparation 

Before the milling of the cereal seed samples, moisture content was tested with a Single 

Kernel Characterization System (SKCS) (Perten Instruments, Hägersten, Sweden). The moisture 

content was adjusted to 15%, and the samples were equilibrated in the glass bottles for 24 h at 
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room temperature. A Quadrumat Junior mill system (Brabender, Duisburg, Germany) was used 

to mill the tempered seeds. The bran fractions were collected and sieved with a Ro-Tap sieve 

shaker (W.S. Tyler, Mentor, Ohio) over a 0.4 mm particle size screen for 3 min. Later the 

samples were collected, flushed with nitrogen, stored in the glass bottles, and refrigerated at 

4°C.  

Beef patty sample preparation 

The selected wheat, triticale, and rye bran was added and homogenized with 100 g of 

fresh ground beef at a level of 5%, a concentration that does not cause noticeable change in 

flavors (Talukder, & Sharma, 2010). Control samples contained no bran. In order to ensure 

uniformity, a petri dish (10 cm × 1 cm) was utilized to form patties. Each patty was refrigerated 

overnight at 4°C, and cooked in a frying pan at surface temperature of 204°C (400°F), with a 

controller (Bernant, Barrington, USA). The patties were cooked until their internal temperature 

reached 71°C (160°F), which is recommended by the U.S. Department of Agriculture – Food 

Safety and Inspection Service (USDA-FSIS) (1998). After cooling for 30 min at room 

temperature, approximately 2 mm of the top of the patty samples was excised by a meat slicer 

(Cabela grade slicer, 1/3 hp, Sidney, NE, USA), and then was ground and homogenized by a 

processor (KitchenAid, model KFP 750) and refrigerated at 4°C. Determination of CML contents 

in samples was performed on the next day. Each sample was analyzed in triplicate.  

Determination of CML 

The CML of beef patty samples was extracted according to Drusch et al. (1999) except 

that chloroform/methanol (2:1, v/v) solution was used as the defatting solvent (Chen et al., 

2015). Each sample (0.20 g) was defatted using 20 mL chloroform/methanol (2:1, v/v) solution 
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followed by centrifugation (10,600 x g at 4°C) for 10 min (Model 21000R Centrifuge, Fisher 

Scientific, Pittsburgh, PA, USA). Reducing reagent of 4 mL sodium borate buffer (0.2 M, pH 9.4) 

and 2 mL sodium borohydride (1 M in 0.1 M NaOH) were added to the dried sample for 4 h at 

room temperature. Subsequently, hydrochloric acid was mixed to a final concentration of 6 M 

HCl, and the sample was hydrolyzed for 20 h at 110°C. The final CML extracts were 

concentrated until dry with a rotary evaporator and dissolved in 10 mL of sodium borate buffer 

(0.2 M, pH 9.4), followed by a final membrane filtration (nylon, 0.45 mL). The extract (50 μL) 

was reacted with 200 μL of OPA derivatization reagent for 5 min prior to HPLC analysis.  

According to the method of Peng, Ma, Cheng, Jiang, Chen, and Wang (2010), the CML 

was analyzed with an HP1090A Series II HPLC (Agilent Technologies, Santa Clara, CA, USA) 

coupled with a HP 1046A fluorescence detector programmed to excitation/emission 

wavelengths of 340nm and 455nm. A reversed-phase TSK gel ODS-80 TM column (25 cm x 4.6 

mm, 5 μm, 80 Å, Tosohass, Montgomeryville, PA, USA) was utilized to separate CML with the 

mobile phases: (solvent A) acetate buffer (pH 6.7, 20 mM)/acetonitrile (90:10, v/v), and (solvent 

B) acetonitrile. The flow rate was 1.0 mL/min and the injection volume was 20 μL. The CML 

separation was achieved with a linear gradient program that started with 5% B and changed to 

70% B within 5 min, and kept at 70% B till 17 min. The gradient was set back to 95% B in 1 min 

followed by a post run of 15 min for equilibration. The identity of CML was confirmed by 

comparing retention times between samples and standards in the fluorescence spectra, and 

levels were determined by the peak areas of their corresponding derivatives respectively.  
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Determination of WHC of beef patty samples 

WHC of samples was determined by the method of Wardlaw, Mccaskil, and Acton 

(1973). Meat sample of 15 g was mixed with 22.5 mL of 0.6 M sodium chloride solution, and 

then was stirred for 1 min and refrigerated at 4°C for 15 min. The slurry was stirred again and 

centrifuged (12,000 x g) for 15 min (Fisher Scientific, Model 21000R Centrifuge, Pittsburgh, PA, 

USA). The supernatant was decanted and the volume recorded. The amount of solution 

retained by meat was reported as the WHC in mL per 100 g sample. 

Determination of phenolic acid composition in bran 

A modified extraction method was used to extract free phenolics from bran samples 

(Krygier, Sosulski, & Hogge, 1982). An extraction solvent A of methanol/acetone/water (7:7:6, 

v/v/v) was prepared, which was adjusted to pH 2 with concentrated hydrochloric acid. Bran 

sample of 1 g was de-fatted with 30 mL petroleum ether, and then homogenized with a mixer 

(Omni International, Kennesaw, Georgia, USA) using 7 mL  of extraction solvent A. The sample 

was made up to final volume of 35 mL with the solvent A and shaken at room temperature for 2 

h. The mixture was centrifuged (5000 x g) for 15 min (Sorvall RC-5C Plus Centrifuge, Kendro 

Laboratory Products, Newtown, CT, USA), and the supernatant was concentrated to about 15 

mL by evaporation under vacuum at 40°C. Subsequently, the extract was subjected to a liquid-

liquid extraction with 90 mL solvent B of ethyl ether/ethyl acetate (1:1 volume ratio). The 

supernatant layer was removed and evaporated to dryness under vacuum, and then 

reconstituted in methanol. It was clarified by a final membrane filtration (nylon, 0.45 mL), and 

stored at -20°C until analysis. 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=MCCASKIL.LH
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=ACTON,%20JC&ut=8015166&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.gmi-inc.com%2Fsorvall-rc-5c-plus-superspeed-centrifuge.html&ei=8Po2VYLFIMSHsAWO34GQCw&usg=AFQjCNFd-NxkQktK8is5J34PbV6W-0fMXg&sig2=14xU-XZzG7PL7Z1eb94V3g&bvm=bv.91071109,d.b2w
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.gmi-inc.com%2Fsorvall-rc-5c-plus-superspeed-centrifuge.html&ei=8Po2VYLFIMSHsAWO34GQCw&usg=AFQjCNFd-NxkQktK8is5J34PbV6W-0fMXg&sig2=14xU-XZzG7PL7Z1eb94V3g&bvm=bv.91071109,d.b2w
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The composition of phenolic acids was identified by HPLC using a reverse-phase TSK gel 

ODS-80 TM column (25 cm×4.6 mm, 5 μm, 80 Å, Tosohass, Montgomeryville, PA, USA), 

according to an established method (Robbins, 2003). The extract or standard (10 μL) was 

injected into a HP1050 Series HPLC (Agilent Technologies, Santa Clara, CA, USA) coupled with a 

diode array detector (DAD). Eluent A was 1% acetic acid (v/v) while elute B was acetonitrile. At 

a flow rate of 1.0 mL/min, a solvent gradient was as follows: 0 min 100% A; 5 min 99% A; 9 min 

90% A; 19 min 50% A; 20 min 0% A; and 30 min 100% A. The phenolic compounds were 

detected at 260 nm for p-hydroxybenzoic (4-OHBA), and vanillic (VA); at 320 nm for chlorogenic 

(CHA), caffeic (CA), gentisic (GEA), and ferulic acids (FA), by comparison of their retention times 

and spectra with standards, and quantitative analysis was based on their peak areas from the 

chromatograms. All calibration data showed good linearity (R2 > 0.998) for the phenolic acids 

within the range of 3.1–125.0 μg/mL. The limit of detection (LOD), for all phenolic acids, was 

from 0.8 to 2.2 μg/mL, and the limit of quantification (LOQ) was from 2.8 to 7.3 μg/mL. 

TPC assay in bran 

TPC of the extracts was determined using a method of Singleton, and Rossi (1965). The 

phenolic extracts (200 μL) with ferulic acid solution, and methanol blank, were added to a 10 

mL test tube, and then 1.5mL of 0.2N Folin-Ciocalteu reagent was added. The tube was 

vortexed in an analog vortex mixer (Fisher Scientific, Fairlawn, NJ, USA) and mixed with 1.5 mL 

of 6% sodium carbonate, and allowed to incubate in the dark at room temperature for 2h. 

Absorbance of the mixture was read at 725 nm, and TPC was expressed as mg ferulic acid 

equivalents (FAE) per gram of bran. 



83 

 

Radical DPPH scavenging activity assay in bran 

The free radical scavenging capacity of each bran extract was estimated according to the 

DPPH assay by Singh, Chidambara-Murthy, and Jayaprakasha (2002). The phenolic extract 

samples (0.1 mL) or 0.1 mL methanol (blank) was mixed with 3.9 mL of DPPH solution  

(6 x 10-5 M) in a test tube. The samples were incubated at room temperature in the dark for 2 h, 

and the absorbance was measured at 517 nm.  

DPPH scavenging activity (%) = [(Abscontrol −Abssample)/Abscontrol] × 100. 

Statistical analyses 

The experimental data were reported as means ± standard deviations for triplicate 

determinations. Analyses of variance (ANOVA) were performed on the data, and statistical 

significance was selected at P < 0.05. Pearson’s correlation and regression analysis, and 

stepwise multiple linear regression (MLR) were conducted to evaluate relationships between 

CML inhibition and WHC, TPC, and DPPH scavenging activity. Stepwise MLR analysis was 

employed with the aim to explore the parameters related to the changes in the CML contents. 

An equation of MLR model takes the following form: 

Y = β0 + β1*X1 + β2*X2 + β3*X3+ … + βp*Xp  

Where Y is the dependant variable (inhibition of CML); X1, X2, X3, …, Xp represent the 

independent variables (WHC, TPC , DPPH scavenging activity, and their interaction factors); β 0 is 

the intercept of this plane; β1, β2, β3, …, and βp are the standard partial regression coefficients of 

variables. The criteria for removal or selection of variables in the MLR model were based on the 

significance level of setting at 0.05. All statistical analyses were performed using SAS version 9.1 

(SAS Inst. Inc., Cary, NC, USA).  
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RESULTS AND DISSCUSION 

Method validation  

The linearity of the standard calibration curve of CML was tested in a range from 0.025 

to 0.50 μg/mL, and the correlation coefficient indicated acceptable linearity (R2 > 0.998). The 

method showed good repeatability with a relative standard deviation (RSD) value of <8%. The 

limit of detection (LOD) was 0.007 μg/mL, whereas the limit of quantification (LOQ) was 

calculated to be 0.025 μg/mL. Recovery experiments were conducted by spiking the samples 

with 2.5, 6.5, and 20.0 μg/g CML (n=3). The average recovery rates were 81.39 ± 6.55, 86.38 ± 

6.49, and 91.83 ± 8.71%. The recovery and linearity of CML from this study was comparable 

with other previous studies (Sun, Tang, Wang, Rasco, Lai, & Huang, 2015; Zhang, Huang, Xiao, 

& Mitchell, 2011). 

CML content in beef patties 

In the present study, four cereal brans (JA, RY, ST, and TH) were added to beef patties to 

investigate their inhibitory effects on AGE formation. The CML in each sample was extracted 

and analyzed by HPLC and the amount is expressed in μg/g sample. Although every raw and 

cooked sample contained CML, no significant differences (P > 0.05) in CML contents among the 

uncooked patties of five treatments were found: 2.83±0.43 μg/g in control, 4.21±1.35 μg/g in 

RY, 2.44±0.20 μg/g in ST, 4.52±1.62 μg/g in TH, and 3.55±1.67 μg/g in JA. The CML quantitative 

determinations in cooked samples are summarized in Table 16. All the cooked patties exhibited 

higher levels of CML as compared to the raw samples (P < 0.05). The result was consistent with 

values reported by Assar, Moloney, Lima, Magee, & Ames (2009), which indicated fried minced 

beef contained higher CML level than raw minced beef. Moreover, a similar finding was 

http://pubs.acs.org/author/Zhang%2C+Gong
http://pubs.acs.org/author/Xiao%2C+Lu
http://pubs.acs.org/author/Mitchell%2C+Alyson+E
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demonstrated in our previous study when evaluating the influence of cooking methods on the 

dietary CML formation among a variety of meat products (Chen et al., 2015).  

Table 16 also summarizes the effect of cereal bran on the CML content and inhibition in 

the cooked patties. Three cereal brans showed the capacity of reducing CML in the samples to 

different extents, which was consistent in the expression and report of data, for example, 10.69 

μg/g in RY. The results indicated CML levels in the three treatments were significantly lower 

than in the control group (P < 0.05). Furthermore, adding RY (42.03%) and ST (27.52%) was 

effective in inhibiting of AGE in cooked patties, whereas the inhibitory effect of TH (21.35%) 

was lower. However, the addition of JA bran (17.33 μg/g, 6.08% inhibition) in the patties did not 

show a significant decrease in CML formation.  

 

Table 16. Effect of bran source on CML concentrations (μg/g), percent inhibition, and WHC 

(mL/100g) in cooked patties samples.  

 

Treatment/source CML (μg/g) % Inhibition WHC  (mL/100 g) 

Control 18.45±3.50a  14.22±4.07a 

Rye (RY) 10.69±2.51b 42.03 27.55±3.36b 

Spring Triticale (ST) 13.37±1.12bc 27.52 22.89±3.67bc 

Thundercale (TH) 14.51±1.06cd 21.35 21.11±4.02ab 

Jagger (JA) 17.33±0.89ad 6.08 18.89±4.34ac 

abcdMeans with different superscripts within the same column are significantly different at P < 
0.05.  
Value is represented as mean ± standard deviation (n=3).  
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A series of studies has demonstrated that adding natural plants or plants extracts 

reduced the formation of AGEs in foods or model systems. For example, Uribarri et al. (2010) 

showed that application of lemon juice on lean beef for 1 h before cooking significantly reduced 

AGE formation up to 50%.  Grape seed ingredients inhibited CML formation in bread products 

probably due to the antioxidant activity of phenolic compounds in the extract, which performed 

in a dose-dependent way (Peng et al., 2010). According to the study reported by Farrar, Hartle, 

Hargrove, and Greenspan (2008), the AGE level in meat model system was reduced by 

approximately 60% with sorghum bran extract containing a high phenolic content. Moreover, 

buckwheat extracts showed an inhibitory effect on formation of AGEs in BSA-glucose model 

systems because of their radical scavenging activity (Szawara-Nowak et al., 2014). 

WHC of beef patties 

WHC of samples is also summarized in Table 16. RY and ST bran were effective in 

increasing the WHC in beef patties since both of them were with significant difference 

compared to the control (P < 0.05), whereas the value of JA was the lowest (18.89 mL/100g). 

The presence of different amounts of soluble dietary fiber in the bran might explain the result. 

In addition, the studies reported by Fernández-Ginés, Fernández-López, Sayas-Barberá, & 

Pérez-Alvarez (2005), and Talukder et al. (2010) both provided the similar results; that addition 

of cereal fiber or bran increased the WHC of meat products. 

TPC of brans 

TPC of the four brans ranged from 0.21 to 0.59 mg ferulic acid equivalents (FAE) per 

gram of bran (Table 17). ST possessed the highest level of 0.59 mg FAE/g bran, followed by RY 

(0.50 mg FAE/g bran), TH (0.30 mg FAE/g bran) and JA (0.21 mg FAE/g bran) with significant 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Szawara-Nowak,%20R&cacheurlFromRightClick=no
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=1A5Iw91Ad6uqSqhl1VW&field=AU&value=Fernandez-Gines,%20JM&ut=11517177&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=1A5Iw91Ad6uqSqhl1VW&field=AU&value=Fernandez-Lopez,%20J&ut=16511138&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=1A5Iw91Ad6uqSqhl1VW&field=AU&value=Sayas-Barbera,%20E&ut=16514533&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
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differences between each other (P < 0.05). In this study, it seemed that the wheat variety (JA) 

bran had the lower level of TPC in comparison with the rye variety, which was consistent with 

other research findings (Povilaitis, Sulniute, Venskutonis, & Kraujaliene, 2015; Weidner, 

Amarowicz, Karamac, & Dabrowski, 1999). 

 

Table 17. TPC and DPPH scavenging activity of selected bran sources.  

 

Type TPC (mg FAE/g bran)A DPPH scavenging activity (%)B 

Rye (RY) 0.50±0.06a 37.92±5.32a 

Spring Triticale (ST) 0.59±0.03b 29.12±5.90b 

Thundercale (TH) 0.30±0.03c 19.01±4.51c 

Jagger (JA) 0.21±0.02d 12.37 ±0.78c 

abcdMeans with different superscripts within the same column are significantly different at P < 
0.05. Value is represented as mean ± standard deviation (n=3).  
ATPC was expressed as mg ferulic acid equivalents (FAE) per gram of bran. 
BDPPH scavenging activity (%) = [(Abscontrol −Abssample)/Abscontrol] × 100. 

 

Radical DPPH scavenging activity  

As showed in Table 17, the DPPH scavenging activity of bran is listed as percent 

inhibition: RY (37.92%), ST (29.12%), TH (19.01%), and JA (12.37%); significant differences were 

observed between each other (P < 0.05). It is noticed that JA bran had the lowest DPPH 

scavenging activity of 12.37% while it also had the lowest amount of TPC in our study. However, 

cereal bran with a high DPPH scavenging activity did not always contain a high level of TPC, 

which was in agreement with some published results (Verma, Hucl, & Chibbar, 2009; Zhou, 

Laux, & Yu, 2004). For example, the ST bran had the highest TPC among the four brans, but 
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possessed a lower DPPH scavenging activity in comparison with the RY bran. The result may be 

due to other compounds in RY bran that could impact more on its antioxidant activity. 

 

Individual phenolic acid 

The major phenolic acids of each bran sample were determined in this study. Typical 

HPLC chromatograms of phenolic acids in cereal bran are shown in Figure 9, and their different 

levels in bran are reported in Table 18. As shown in Table 18, among all the brans samples FA 

was the prominent phenolic acid followed by VA while GEA, 4-OHBA, and CHA were present at 

the much lower contents, which was similar to previous reports (Hosseinian, & Mazza, 2009; 

Mattila et al., 2005). In relation to the different types of bran, GEA was specific in the triticale 

variety (ST and TH), but CHA had been identified in most of the cereal varieties other than in 

the wheat (JA). And it is worth mentioning that the caffeic acid was only found in Rye samples, 

which may contribute to its effective inhibition of AGEs, as illustrated in Table 16. Furthermore, 

the content of individual phenolic acid in RY (131.45 ug/g) and ST (120.79 ug/g) were higher 

than it were in JA (91.78 ug/g) and TH (88.85 ug/g). The result was not always consistent with 

the TPC data in our study. For example, there was significantly lower level of TPC in the JA than 

in the TH (P < 0.05). This may be possible because there may be other phenolic acids that were 

not identified, as shown in Figure 9. The different phenolic acids ingredients in bran may be 

responsible for the differences of their antioxidant capacity such as the free radical scavenging 

activity. 
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Table 18. The phenolic acids composition of the bran cereal cultivarsa.  

 

Phenolic acids Rye Spring Triticale Thundercale Jagger 

Vanillic acid (VA) ND 18.92±0.34 ND 22.02±0.81 

Caffeic acid (CA) 13.61±0.48 ND ND ND 

Gentisic acid (GEA) ND 4.39±0.11 4.14±0.42 ND 

Ferulic acid (FA) 109.7±7.17 93.49±3.69 81.73±2.80 63.44±4.65 

Chlorogenic acid (CHA) 3.52±0.49 3.99±0.18 2.97±0.80 ND 

4-Hydroxybenzoic  

acid (4-OHBA) 

4.65±0.11 ND ND 6.32±0.19 

Total content 131.45±7.23 120.79±3.45 88.85±1.75 91.78±4.02 

aResults are expressed as µg per gram bran.  
ND not detected. 
Values are mean values ± standard deviation (n=3).  
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Figure 9. Representative HPLC chromatograms of phenolic acids in the cereal brans. (A1) Rye 

(260 nm); (A2) Rye (320 nm); (B1) Spring Triticale (260 nm); (B2) Spring Triticale (320 nm); (C1) 

Jagger (260 nm); (C2) Jagger (320 nm); and (D) Thundercale (320 nm). 
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Figure 10. Regression analysis between the CML percent inhibition in samples which added 

and; (A) TPC of bran, (B) DPPH scavenging activity on bran, and (C) WHC of samples. 
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Correlation analysis of CML inhibition  

Pearson’s correlation analysis was utilized to evaluate the relationship between the CML 

percent inhibition and the TPC and DPPH scavenging capacity of bran, as well as the 

relationship to WHC. In this study, the correlation coefficients of WHC, DPPH and TPC 

scavenging capacity were 0.89, 0.88 and 0.75 respectively, which indicated the parameters 

positively correlated well with inhibition of CML (P < 0.05). However, regression coefficient of 

determination of TPC (R2 = 0.57) was less than those of WHC (R2 = 0.79) and DPPH scavenging 

capacity (R2 = 0.78), which is illustrated in Figure 10.  

The correlation analysis only dealt with a single variable which could be insufficient 

because the parameters may be interrelated. Therefore, MLR was also used to optimize the 

model for explaining the relationship between the CML percent inhibition and parameters. The 

first static treatment concluded inclusion of interaction caused no main effects since the P-

value was much higher than the significance level in the F-test for the model including 

interaction factors. After excluding the interaction terms, it found the factor X2 (TPC) and X3 

(scavenging activity on DPPH) were correlated to some extent by the diagnosis of collinearity. 

Nevertheless, in the stepwise selection process, the partial correlation was not significant for 

the variable X2 (TPC) on the set significance level (P > 0.05), which led X2 to be removed from 

the model. A final fitted regression model equation was constructed as following: 

Ŷ = -30.24+ 1.68* X1 + 0.68* X3   

In the equation, the coefficient of determination is 0.89, which indicated it could 

account for 89% of the variation in CML inhibition. The F-test with an associated P-value less 

than 0.0001 had also shown a significant linear relationship between the variables in the 
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analysis of variance.  Moreover, the standard partial correlation coefficients of X1 (WHC) and X3 

(scavenging activity on DPPH) were 0.51 and 0.48. According to the P-values, one of the most 

important variables affecting CML inhibition was WHC (P < 0.001) followed by scavenging 

activity on DPPH (P = 0.025). It seems that adding bran with high WHC and DPPH scavenging 

activity into patty samples is a good choice to decrease the AGE formation. This is because bran 

may restrict the transport of water-soluble precursors of AGEs, and antioxidants in bran could 

react or quench the free radicals generated in the Maillard reaction (Persson et al., 2003; Wu et 

al., 2011). 

  

CONCLUSION 

The four cereal brans included in this study, showed different TPC, phenolic acids 

composition, and DPPH antioxidant activity in which rye (42.0%) and spring triticale (27.5%) 

also exhibited good inhibitory effect on CML formation in beef patty samples. The added bran 

CML percent inhibition had a significant correlation to WHC of samples and DPPH scavenging 

activity of brans through stepwise MLR analysis. Hence, adding the natural cereal bran (rye or 

spring triticale) in meat patties would effectively inhibit AGE formation in cooking, which may 

be a healthier choice for meat consumers. Future studies are desirable to investigate the 

inhibitory mechanisms of natural phenolic compounds in cereal bran on AGE formation.  
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Chapter 4. INHIBITION EFFECTS OF CEREAL BRAN EXTRACT ON THE 

FORMATION OF ADVANCED GLYCATION ENDPRODUCTS1,2 

 

ABSTRACT 

The adverse health effects of advanced glycation endproducts (AGEs) is of current 

interest; some research have indicated that consuming these compounds may contribute to 

chronic diseases such as diabetes and heart diseases. The objective of this study was to 

determine the inhibitory effect of cereal bran extract from wheat (Jagger, JA), triticale (Spring 

Triticale, ST, and Thundercale, TH), and Rye (RY) on AGE formation in a bovine serum albumin-

glucose (BSA-GLU) model system. The ST extract inhibited AGE formation as measured by Nε-

carboxymethyllysine (CML) levels. Subsequent HPLC analysis revealed four major phenolic acids 

that were present; vanillic (VA), chlorogenic (CHA), gentisic (GEA), and ferulic acids (FA). The 

present study also investigated the antioxidant and antiglycation properties of the phenolic 

acids, which showed that GEA and CHA were effective radical scavengers and acted against 

dicarbonyl compounds. The results indicated that using ST bran extract may be useful in 

preventing AGE formation because phenolic acids scavenge free radicals and trap carbonyl 

species. 

 

 

 

1- Presented in part at IFT Annual Meeting 2015. Toxicology and Safety Evaluation Division #046. 

2- Presented in part at IFT Annual Meeting 2016. Toxicology and Safety Evaluation Division #155. 

http://www.ift.org/Meetings-and-Events/Past-Meeting-Resources/Technical%20Abstract%20Search%20Details.aspx?id=56935
http://www.ift.org/Meetings-and-Events/Past-Meeting-Resources/Technical%20Abstract%20Search%20Details.aspx?id=56935
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INTRODUCTION 

During food processing or storage, free amino groups of protein can react with the 

carbonyl group of reducing sugar to form advanced glycation endproducts (AGEs) via Maillard 

browning reactions. An array of dietary AGE products has been detected in vivo, some of which 

are characterized as Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine, pentosidine, and 

pyrralines (Ahmed, 2005; Sell et al., 1991). Several diseases, such as diabetes, are widely 

associated with the chemical processes that cause AGEs to form and accumulate (Poulsen et al., 

2013; Rojas, & Morales, 2004). For example, cells interact with AGE-modified proteins, inducing 

several biological responses in vivo, among them the development of diabetic vascular 

complications (Dickinson, Carrington, Frost, & Boulton, 2002). The initial Maillard reaction 

yields a Schiff base, which then rearranges to form a stable Amadori product like fructosamine 

(Nagaraj, & Sady, 1996). Then, a series of irreversible reactions occur through the Amadori 

rearrangement step forming highly reactive dicarbonyl intermediates such as glyoxal, 

methylglyoxal, and 3-deoxyglucosone (Singh, Barden, Mori, & Beilin, 2001; Vlassara, 1996). 

Hence, inhibiting fructosamine adducts and dicarbonyls may reduce formation of AGEs and 

lower the risk of chronic disease development.  

At present, treatment with AGE inhibitors may prevent clinical complications as a result 

of their antioxidant activity or reactive carbonyl species trapping activity. A variety of synthetic 

products like aminoguanidine have been evaluated as inhibitors of AGE formation. However, 

natural products from foods or plants may be more promising inhibitors because they are less 

toxic (Wu, Huang, Lin, & Yen, 2011). Cereal bran, containing most of the phenolic acids found in 

whole grain, has been a healthy source of dietary fiber and natural antioxidants (Liu, 2007). 
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Recent literature suggests the phenolic acids fractions in bran are compounds with high 

antioxidant capacity (Verma, Hucl, & Chibbar, 2009). Lo, Hsiao, and Chen (2011) demonstrated 

the carbonyl trapping activity of various phenolic acids. Buckwheat extracts inhibited the 

formation of AGEs in a BSA-GLU model system because of their ability to scavenge radicals 

(Szawara-Nowak, Koutsidis, Wiczkowski, & Zielinski, 2014). Farrar, Hartle, Hargrove, and 

Greenspan (2008) showed that sorghum bran extract with a high phenolic content reduced the 

AGE level approximately 60% in their model system. Nevertheless, to our knowledge, studies of 

the effect of bran extracts in preventing formation of AGEs in a model system are still rare. In 

most studies, fluorescence spectrometry or enzyme linked immunosorbant assay (ELISA) has 

been commonly used to determine the AGEs. Fluorescence spectrometry can determine the 

intensity to reflect the level of AGEs. However, it cannot easily identify an individual AGE 

compound (Schmitt, Gasic-Milenkovic, & Schmitt, 2005). On the other hand, AGEs may produce 

auto-antibodies that interfere with results from ELISA test (Turk, Ljubic, Turk, & Benko, 2001). 

The formation of AGEs was estimated by chromatography method in model systems, as 

measured by CML formation, to see how well different bran extracts inhibited AGEs. The 

objectives thus were to compare AGE inhibition by bran extracts, determination of which 

phenolic acids were most efficacious. 

 

MATERIAL AND METHODS 

Materials 

Vance Ehmke (Dighton, KS, USA), a certified seed grower, provided cereal seed samples 

(wheat, rye, and triticale). The Nε-carboxymethyl lysine (CML) standard was purchased from 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=4FsXnO5bZDgHXcZYaeQ&field=AU&value=Szawara-Nowak,%20R&cacheurlFromRightClick=no
http://www.ncbi.nlm.nih.gov/pubmed/?term=Turk%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ljubic%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
http://www.ncbi.nlm.nih.gov/pubmed/?term=Turk%20N%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
http://www.ncbi.nlm.nih.gov/pubmed/?term=Benko%20B%5BAuthor%5D&cauthor=true&cauthor_uid=11163030
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NeoMPS (Strasbourg, France). High purity phenolic acids, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 

2,4,6-trinitrobenzenesulfonic acid (TNBS), BSA, glyoxal, nitro blue tetrazolium chloride (NBT), 

sodium azide, Girard-T reagent, glucose, boric acid, hydrochloric acid, 2-mercaptoethanol, 

sodium chloride, sodium borohydride, anhydrous magnesium sulfate, sodium sulfite, dibasic 

sodium phosphate, and sodium tetraborate decahydrate, were obtained from Sigma Aldrich (St. 

Louis, MO, USA). Solvent and other chemicals like acetonitrile, chloroform, methanol, ortho-

phthalaldehyde (OPA) reagent, acetone, petroleum ether, ethyl acetate, ethyl ether, methanol, 

hexanes, sodium carbonate, sodium hydroxide, and ethanol were purchased from Fisher 

Scientific (Fairlawn, NJ, USA). 

Preparing bran extracts  

Moisture content of the cereal seed samples was tested using a Single Kernel 

Characterization System (Perten Intruments, Hägersten, Sweden), and moisture content was 

adjusted to 15% and equilibrated for 24 hours. A Quadrumat Junior mill system (Brabender, 

Duisburg, Germany) was used to mill the tempered seed. A Ro-Tap sieve shaker (W.S. Tyler, 

Mentor, OH) was used to collect the bran fraction and sieve it for 3 minutes over a 0.4 mm 

particle size screen. The sample was collected, flushed with nitrogen, and stored in glass bottles 

in a refrigerator held at 4°C.  

A modified extraction method was used to extract free phenolics from bran samples 

(Krygier, Sosulsk, & Hogge, 1982). The sample of bran (10 g) was de-fatted with petroleum 

ether, then homogenized using a professional mixer (Omni International, Kennesaw, GA, USA), 

adding a solvent with a volume ratio of methanol/acetone/water (7:7:6, pH 2), adjusted with 

HCl. The sample was brought to 350mL with the solvent, and shaken at room temperature for 2 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjM5dDyhZHKAhUBjz4KHZgYA5cQjhwIBzAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F2%2C4%2C6-Trinitrobenzenesulfonic_acid&psig=AFQjCNFAghkOy_uvA-qsra5bliF281TlWQ&ust=1452027446916198
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hours. The mixture was centrifuged (5000 x g) for 15 minutes (Sorvall RC-5C Plus Centrifuge, 

Kendro Laboratory Products, Newtown, CT, USA), and the supernatant was then concentrated 

to about 150 mL by evaporation under vacuum at 40°C. The extract was then subjected to a 

liquid-liquid extraction with ethyl ether/ethyl acetate (1:1 volume ratio).  The supernatant layer 

was collected and evaporated to dryness and then reconstituted in methanol, and stored at -

20°C until analysis. 

Constructing BSA-GLU system 

BSA (2 μg/μL), glucose (100 mM), and NaN3 (0.1 g/mL) were incubated with bran extract 

(1μg/μL) or phenolic acid compounds (1 mM) in 100 mM phosphate buffer (pH 7.4) at 37°C for 

7 days. The control group was the reagents without test samples. After the procedure, samples 

were stored at -20°C before analysis.  

Measuring degree of glycation  

Degree of glycation was determined by a TNBS method (Nissen, 1979) with some 

modification. The sample was dissolved in 0.1 M sodium borate containing 0.1 M sodium 

hydroxide; 0.5 mL was then reacted with 2 mL of 1 M TNBS for 5 min. To stop the reaction, 

1.5% sodium sulfite (1.5 mM) and 98.5% of dibasic sodium phosphate (0.1 M) were added. The 

absorbance was measured at 420 nm using a Genesys 10vis spectrophotometer (Thermo 

Scientific Inc., Waltham, MA, USA).  The degree of glycation was calculated according to the 

equation below.  

Degree of glycation = [(Abscontrol −Abssample )/Abscontrol] × 100 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.gmi-inc.com%2Fsorvall-rc-5c-plus-superspeed-centrifuge.html&ei=8Po2VYLFIMSHsAWO34GQCw&usg=AFQjCNFd-NxkQktK8is5J34PbV6W-0fMXg&sig2=14xU-XZzG7PL7Z1eb94V3g&bvm=bv.91071109,d.b2w
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.gmi-inc.com%2Fsorvall-rc-5c-plus-superspeed-centrifuge.html&ei=8Po2VYLFIMSHsAWO34GQCw&usg=AFQjCNFd-NxkQktK8is5J34PbV6W-0fMXg&sig2=14xU-XZzG7PL7Z1eb94V3g&bvm=bv.91071109,d.b2w
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Identifying phenolic acids composition  

An HPLC method (Robbins, 2003) was used with an HP1050 Series HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) coupled with a diode array detector. A reverse-phase TSK 

gel ODS-80 TM column (25 cm×4.6 mm, 5 μm, 80 Å, Tosohass, Montgomeryville, PA, USA) was 

selected to analyze ST bran extract. The flow rate was 1.0 mL/min and injection volume was 15 

μL. The mobile phases were 1% acetic acid (solvent A) and acetonitrile (solvent B). The solvent 

gradient was as follows: 0 min 100% A; 5min 99% A; 9 min 90% A; 19 min 50% A; 20 min 0% A; 

and 30 min 100% A. The phenolic acids were measured at 260 nm for VA and at 320 nm for 

CHA, GEA, and FA. Phenolic acids were identified by comparing retention times and spectra 

with standards, and quantitative analysis was based on peak areas from the chromatograms.  

All calibration data showed good linearity (R2 > 0.998) for the studied phenolic acids within the 

range of 3.1–125.0 μg/mL. The limit of detection was 0.8 to 1.2 μg/mL, and the limit of 

quantification was 2.8 to 4.1 μg/mL. 

Radical DPPH scavenging activity assay  

Selected phenolic acids in bran extract were estimated using a previously reported 

DPPH assay (Singh, Chidambara-Murthy, & Jayaprakasha, 2002). Different levels of samples or 

control were mixed with the DPPH solution (6 x 10-5 M) in a test tube. Then samples were 

incubated for 1 hour in the dark, and absorbance was measured at 517 nm using a Genesys 

10vis spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA).  

DPPH scavenging activity (%) = [(Abscontrol −Abssample )/Abscontrol] × 100 

The activity was defined as the amount of antioxidant necessary to decrease the initial DPPH 

radical concentration by 50% (IC50).  
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Measuring fructosamine adduct 

The fructosamine adduct was identified using an NBT method previously described by 

Baker, Zyzak, Thorpe, and Baynes (1994). Selected phenolic acid compounds (0.01 mM, 0.1 

mM, 1 mM) were added to the BSA-GLU system and held at 37°C for 7 days. Quercetin was 

used as a positive control. The glycated samples (50 μL) were reacted with 150 μL of NBT 

reagent (300 μM) in sodium carbonate buffer (100 mM, pH 10.4) for 30 min at room 

temperature. The absorbance was measured at 530 nm with a Genesys 10vis 

spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA).  

Inhibitory activity of fructosamine (%) = [(Abscontrol −Abssample )/Abscontrol] × 100 

where Abscontrol is the absorbance of the group in the absence of inhibition compounds. The 

result was calculated as IC50, which is how much compound was needed to decrease 

fructosamine formation by 50%.  

Determining dicarbonyl compounds  

Dicarbonyl compounds were measured using an existing method with some 

modification (Mitchel, & Birnboim, 1977). A series of phenolic acids were added as the 

inhibition compounds, and the BSA-GLU system was held at 37°C for 7 days. Quercetin was 

used as a positive control. A total of 100 μL of sample was mixed with 50 μL Girard-T solution 

(500 mM) and 850 μL of sodium formate (500 mM, pH 2.9) for 1 h at room temperature. A 

Genesys 10vis spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA) was used to 

measure the absorbance at 290 nm.  The inhibitory activity of dicarbonyl compounds was 

calculated by the following equation. 

Activity (%) = [(Abscontrol −Abssample )/Abscontrol] × 100 
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The Abscontrol is the absorbance value of the control group in the absence of inhibition 

compounds. The IC50 value represented the level of an individual compound required to 

decrease dicarbonyl compounds by 50%. 

Constructing BSA-glyoxal system  

BSA (2 μg/μL) and glyoxal (5 mM) were mixed with 0.1 g/L NaN3 in 100 mM phosphate 

buffer (pH 7.4) at 37°C in the presence or absence of selected phenolic acids (1 mM). After 

incubating for 7 days, the samples were stored at -20°C prior to CML determination.  

CML analysis 

CML of the sample was extracted as described previously (Drusch et al., 1999). Prior to 

analysis, the samples was reduced with sodium borate buffer (0.2 M, pH 9.4) and sodium 

borohydride (1 M in 0.1 M NaOH), and was hydrolyzed by 6 N HCl for 20 h at 110°C (Chen, & 

Smith, 2015). The CML extract was concentrated by rotary evaporation, and dissolved in 

sodium borate buffer (0.2 M, pH 9.4), followed by membrane filtration (nylon, 0.45 mL). The 

OPA derivatization reagent was mixed with the samples for 5 min prior to HPLC analysis. The 

isolated CML were measured using an HP1050 Series II HPLC (Agilent Technologies, Santa Clara, 

CA, USA) coupled with a HP 1046A fluorescence detector programmed to excitation/emission 

wavelengths of 340 nm and 455 nm. Separations were achieved on a reversed-phase TSK gel 

ODS-80 TM column (25 cm x 4.6 mm, 5 μm, 80 Å, Tosohass, Montgomeryville, PA, USA). The 

mobile phase consisted of solvent A: acetate buffer (pH 6.7, 20 mM)/acetonitrile (90:10, v/v) 

and solvent B: acetonitrile. The gradient elution was performed as follows: start 5% B, change 

to 70% B within 5 min, then keep at 70% B for 17 min. The gradient was set back to 95% B in 1 

min followed by a post run of 15 min for equilibration. The flow rate was 1.0 mL/min, and the 
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injection volume was 20 μL. CML was quantified by comparing retention times of samples and 

standards in the fluorescence spectra; levels were determined by the peak areas of their 

corresponding derivatives. 

Statistical analyses 

Data were subjected to analyses of variance (ANOVA). When significant differences 

were found, statistical presence was determined at a P value of 0.05. Data reported as means ± 

standard deviations for triplicate determinations, and all analyses were conducted using SAS 

version 9.1 (SAS Inst., Inc., Cary, NC, USA). 

 

RESULTS AND DISCUSSION 

Method validation 

The limit of detection of CML was 0.007 μg/mL, and the limit of quantification was 

calculated to be 0.025 μg/mL. The linearity of the standard calibration curve ranged from 0.025 

to 0.50 μg/mL, and the calculated correlation coefficient indicated a good linearity (R2 > 0.99). 

Recovery experiments were conducted by spiking the samples with 0.25, 0.6, and 1.2 ng/μL of 

CML (n=3), for which the average recovery rates were 79.81, 80.52, and 88.87%. The recovery 

and linearity of CML in some previous reports compared favorably with our study (Sun, Tang, 

Wang, Rasco, Lai, & Huang, 2015; Zhang, Huang, Xiao, & Mitchell, 2011). 

Degree of glycation  

Glycation occurs in the model system because of the covalent reaction of the carbonyl 

group in glucose with the amino groups in proteins. Degree of glycation is often used to 

determine the degree of reaction by measuring the free amines with TNBS (Nissen, 1979). 

http://pubs.acs.org/author/Zhang%2C+Gong
http://pubs.acs.org/author/Xiao%2C+Lu
http://pubs.acs.org/author/Mitchell%2C+Alyson+E
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Figure 11 shows the time dependency of the glycation process; degree of glycation increased 

from 4.17, 10.05, 18.15, and 33.10 to 35.39% during incubation. Although degree of glycation 

increased rapidly in the first five days, it did not change significantly (P > 0.05) later in 

incubation (days 5 to 7), which was consistent with the study of protein isolate-sugar system 

reported by Bu et al. (2015). Our results indicated that BSA and glucose reacted sufficiently 

during the last stage of incubation. 

 
 

 

Figure 11. The degree of glycation in BSA with glucose after incubation.  

abcdValues of degree of glycation without the same letter are significantly different (P < 0.05). 

The values shown are the mean ± SD (n=3).  
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Mitigating CML in BSA-GLU system 

We first measured the inhibitory effect of cereal bran extracts on CML formation in the 

BSA-GLU system. Our results showed that incubating BSA with glucose in phosphate buffer (pH 

7.4, 37°C) leads to CML formation; Table 19 shows the measured concentration in the system, 

and it exhibits no significant differences (P > 0.05) in average CML concentration between the 

control system (4.61 ng/10 μL) and any of the treatment groups of added RY (4.13 ng/10 μL), JA 

(3.98 ng/10 μL), and TH (5.52 ng/10 μL). However, we did find significant differences (P < 0.05) 

between the control and ST group (2.21 ng/10 μL), which suggests that ST bran extract can 

inhibit CML formation under assay conditions. 

 

Table 19. Effect of brans extracts and phenolic acids on CML formation in BSA-GLU system. 

 

Treatment CML (ng/10 μL) Treatment CML (ng/10 μL) 

Control 4.61±0.84a Control 4.61±0.84a 

Rye (RY) 4.13±0.87ac Gentisic acid 2.47±0.23b 

Thundercale (TH) 5.52±2.05a Ferulic acid 4.52±0.41ac 

Spring Triticale (ST) 2.21±0.27bc Vanillic acid 4.81±1.80a 

Jagger (JA) 3.98±1.01ac Chlorogenic acid 2.86±0.53bc 

abcdMeans with different superscripts within the same column are significantly different at P < 
0.05. 
Value is represented as mean ± standard deviation (n=3). 

 

Phenolic acids in ST bran extract 

The phenolic acids in ST bran extract may contribute to the inhibitory effect on CML 

formation. Figure 12 shows typical HPLC chromatograms of phenolic acids in ST bran extract. FA 

was the most common phenolic acid (82.98 ±8.55 μg/g), as can be seen in Table 20, with VA, 
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GEA, and CHA at lower concentrations which is in agreement with  previously published 

research (Hosseinian, & Mazza, 2009; Mattila, Pihlava, & Hellstrom, 2005).  

 

Table 20. The phenolic acids composition of ST extract and their scavenging effect on DPPH 

radicals expressed as IC50. 

Phenolic Acid Concentration (μg/g) IC50 (μM) 

Gentisic acid 3.43±0.44a 9.34±1.82a 

Ferulic acid 82.98±8.55b 42.68±1.51b 

Chlorogenic acid 3.16±0.54a 16.10±0.84c 

Vanillic acid 17.30±2.08c NDd 

abcMeans with different superscripts within the same column are significantly different at P < 
0.05. 
dND represents that the IC50 is not-detectable because the free radical scavenging activity was 
too low (the % inhibition was only 4.2% at 1 mM).  
Value is represented as mean ± standard deviation (n=3). 
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Figure 12. HPLC chromatographs of Spring Triticale bran extract using a TSK gel ODS-80 TM 

column (25 cm×4.6 mm, 5 µm) with ultraviolet detection at different wavelengths of 260 nm 

and 320 nm. The flow rate was 1.0 mL/min and injection volume was 15 µL. The mobile phases 

were 1% acetic acid (solvent A) and acetonitrile (solvent B). 
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Inhibiting CML formation by phenolic acids  

The phenolic acids in brans have distinct antioxidant activities (Naczk, & Shahidi, 2006; 

Verma et al., 2009), but few have reported on their antiglycation activities. How they inhibited 

the formation of CML was first evaluated in the BSA-GLU model. Table 19 shows that among 

those compounds, CHA (37.9% inhibition) and GEA (46.4% inhibition) significantly influenced 

CML formation (P < 0.05). However, the control and the FA (4.52 ng/10 μL) and VA (4.81 ng/10 

μL) treatment groups showed no significant differences (P > 0.05), which does not fully agree 

with previous reports (Gugliucci, Bastos, Schulze, & Souza, 2009; Mesías, Navarro, Martinez-

Saez, Ullate, del Castillo, & Morales, 2014; Weerachat, Aramsri, Henrique & Sirichai, 2013; Yoo 

et al., 2010). This may be due to different reaction system conditions and detection methods. 

Gugliucci et al. (2009) indicated CHA was a major antiglycation compound in BSA-methylglyoxal 

system. And CHA was responsible for antiglycative properties of the in BSA-methylglyoxal and 

BSA-GLU model systems (Mesías et al., 2014). However, Weerachat et al. (2013) pointed out FA 

could slow the protein glycation process. In their glucose-glycated BSA systems, FA (1-5 mM) 

reduced the level of fluorescent AGEs by 12.61-36.49%, and CML by 33.61-66.51% using ELISA 

method. Moreover, VA also showed potent inhibitory activity on AGEs formation with an IC50 of 

93.93 μM by testing the level of total fluorescen AGEs in a BSA model system containing added 

glucose and fructose solution (Yoo et al., 2010).  

Antioxidant activity of phenolic acids  

The mitigation effects of phenolic acids may be due to antioxidant activities, scavenging 

free radicals generated as AGEs form. Our results, because the DPPH assay was used to 

http://apps.webofknowledge.com.er.lib.k-state.edu/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=4CLSOIZzAtbv1mwuydM&field=AU&value=Navarro,%20M&ut=9688590&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
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measure the anti-radical effect of phenolic acids, showed decreases from GEA, CHA, FA, and VA, 

in that order (Table 20). The IC50 value indicates GEA as the lowest (9.34 μM), followed by CHA 

(16.10 μM), FA (42.68 μM), all of which are significantly different from each other (P < 0.05).  

The diverse substituents on the aromatic ring of the phenolic acid are shown in Figure 

13. Our study showed CHA and GEA, each with two hydroxyl groups, had higher radical 

scavenging activity than FA and VA with only one hydroxyl group each, which does agree with 

previous studies (Chen, & Ho, 1997; Pekkarinen, Stockmann, Schwarz, Heinonen, & Hopia, 

1999). Brand-Williams, Cuvelier, and Berset (1995) noted that hydroxycinnamic acid derivatives 

were more active than hydroxybenzoic acid among the monohydroxyl phenolic acids. Our 

results agreed in that FA was more active than VA. The capacity of phenolic acids to trap 

radicals may be attributed to the reaction that forms resonance-stabilized phenoxyl radicals 

(D'Andrea, 2010; Sakihama, Cohen, Grace, & Yamasaki, 2002). For instance, compared to the 

carboxylic group of VA, the conjugated double bond of FA could stabilize radicals more through 

resonance. In addition, CHA and GEA exhibited more DPPH scavenging activity and inhibited 

CML formation in our study (Table 20).  Therefore, radical scavenge activity may influence the 

antiglycation capacity of phenolic acids. 

Antiglycation activity of phenolic acids 

Not only free radicals, but also reactive intermediates like fructosamine or the 

dicarbonyl compounds, contribute to AGE formation during the Maillard reaction. Fructosamine 

is an Amadori product with a ketoamine structure, which could reduce the NBT reagent (Baker 

et al., 1994). Table 21 shows the inhibitory effect of phenolic acids on the fructosamine adduct. 

It seems that neither GEA nor CHA could inhibit fructosamine formation at the selected levels 
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of 0.01, 0.1, and 1 mM. Vlassopoulos, Lean, and Combet (2014) found otherwise in their study, 

indicating the presence of six phenolic acids during incubation could significantly reduce 

fructosamine formation in the BSA-GLU system. This difference in results may be due to 

different structures of the phenolic compounds and/or the model system conditions. 
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Figure 13. Chemical structures of phenolic acids in the Spring Triticale bran extracts. 
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Mitchel et al. (1977) found a reaction easily occurring between the Girard-T reagent and 

aldehyde or ketone compounds with dicarbonyl groups. We did observe GEA and CHA inhibited 

formation of dicarbonyl compounds (Figure 14). Moreover, GEA (IC50 = 13.7 μM) had more 

inhibitory capacity than CHA (IC50 = 17.3 μM) (P < 0.05). Wu, Hsieh, Wang, and Chen (2009) 

stated that some phenolic acids could prevent formation of dicarbonyl compounds in a glucose-

mediated protein modification system and found that gallic acid had the strongest activity. 

 

Table 21. Inhibition effect of phenolic acid on fructosamine adduct (%). 

 

 

Compounds 

Concentration          

IC50  0.01 mM 0.1 mM 1 mM 

Chlorogenic acid (CHA) 0.58±1.85 1.53±1.48 2.39±1.89 NDa 

Gentisic acid (GEA) 0.35±1.41 1.75±0.78 2.57±0.95 NDa 

Quercetin - - - 197.09±10.41b 

aND not-detectable.  
bIC50 is the amount of quercetin (nM) to decrease the fructosamine by 50%. 

All the results are expressed as mean values ± standard deviation (n=3).  
 

Mitigating CML in BSA-glyoxal system 

To further evaluate the inhibitory mechanism of phenolic acids, we measured their 

influence on CML formation in the BSA-glyoxal system. As illustrated in Figure 14, the two 

phenolic acids of CHA and GEA both inhibited CML formation with an average percentage 

decrease of 29.6% for CHA and 51.1% for GEA.   
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Figure 14. Inhibition effect on (A) dicarbonyl compounds formation in BSA-GLU model; and (B) 

CML formation in BSA-glyoxal model.  

abcMeans with the different letters on the bars are significantly different (P < 0.05).  

The bars represented the mean ± SD (n=3). 
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To our knowledge, oxidation of Amadori products like fructosamine, and the sugar-

glyoxal pathway, leads to CML formation in the Maillard reaction (Ahmed, 2005). In our study, 

the GEA and CHA scavenged reactive dicarbonyl compounds and inhibited, to some extent, CML 

formation in the BSA-glyoxal system (Figure 14), whereas neither exhibited inhibition activity on 

the fructosamine adduct (Table 21). From our results, we could infer that phenolic acids 

mitigated CML formation by inhibiting the glyoxal pathway, not by oxidizing Amadori products. 

 

CONCLUSION  

Cereal brans have long been recommended to consumers because of their high fiber 

and natural antioxidant content. This study investigated the effect of bran extract on AGE 

formation in model systems. Among the bran extracts examined, ST inhibited CML formation 

the most, which could be due to the phenolic acids in it, CHA and GEA, both of which are 

effective scavengers of free radicals and even, to some extent, antiglycation inhibitors. It also 

suggested that phenolic acids mitigated CML formation by inhibiting the glyoxal pathway in our 

systems. Thus, ST bran, which is rich in phenolic acids, could be a potentially useful food 

addictive for inhibiting AGEs. 

In the present study, the Inhibitory effects on the CML formation by bran extract was 

demonstrated in vitro, but it cannot be assured the effect also could occur in vivo. Therefore, 

that should be taken into account for future research. 
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SUMMARY 

AGEs are a large and heterogeneous group of compounds caused by the reaction 

between reducing sugars and amino groups in amino acids. Dietary AGEs, a potent factor of 

chronic diseases such as diabetes, are formed during the cooking of meat and fish, and their 

levels were monitored by CML levels. The chemical composition of meat, cooking conditions 

and internal temperature can influence CML levels in cooked meat and fish samples. High levels 

of CML were found in beef, pork, and chicken prepared by frying and broiling methods. The 

CML content in cooked fish was less when the appropriate cooking methods were selected like 

baking at a lower temperature. 

Because of some evidence of the risk of chronic disease, it is necessary to investigate 

how to prevent CML formation at cooking. Cereal brans have been seen as dietary foods due to 

their high fiber and natural antioxidant concentration. Addition of cereal brans (Spring Triticale 

and Rye) in beef patty inhibited the formation of CML, which may be a healthier choice for 

meat consumers. The CML percent inhibition had a significant correlation to WHC of samples 

and DPPH scavenging activity of brans.  

The study to investigate the inhibitory mechanisms of cereal bran extract on AGEs 

formation was conducted in the model systems. ST extract had the highest inhibition activity on 

CML formation, and the phenolic acids in it, CHA and GEA, exhibited as the effective 

antioxidants and antiglycation compounds. Moreover, it was found that the mitigation 

mechanism of phenolic acids on CML formation was by inhibiting the glyoxal pathway in our 

systems. Therefore, ST bran, was rich in phenolic acids, which could be considered as a 

potentially useful AGE inhibitor as a food addictive.  
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Our research data can give researchers information for estimating dietary AGEs 

exposure in the general population of the U.S. Furthermore, these data can provide a reference 

by the food industry to modify the process conditions to reduce formation of dietary AGES.  

            Overall, more research is needed to better understand the role of dietary AGEs in health 

at the molecular and biological level. The standard methods for measuring the specific dietary 

AGEs are necessary. Future research should be conducted on optimizing food additives to 

mitigate dietary AGEs while maintaining food safety and flavor. 
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Figure A-1. Standard curve of CML by fluorescence detection settings of 340 nm (excitation) 

and 455 nm (emission). 

 

 

 

Figure A-2. Standard curve of inhibition activity of quercetin on fructosamine adduct for IC50 

determination. 
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Figure A-3. Standard curve of inhibition activity of quercetin on dicarbonyl compounds for IC50 

determination. 

 

 

 

Figure A-4. Standard curve of inhibition activity of gentisic acid on dicarbonyl compounds for 

IC50 determination. 
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Figure A-5. Standard curve of inhibition activity of chlorogenic acid on dicarbonyl compounds 

for IC50 determination. 

 

 

 

Figure A-6. Standard curve of inhibition activity of feruilic acid on scavenging activity on DPPH 

radicals for IC50 determination. 
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Figure A-7. Standard curve of inhibition activity of gentisic acid on scavenging activity on DPPH 

radicals for IC50 determination. 

 

 

 

Figure A-8. Standard curve of inhibition activity of chlorogenic acid on scavenging activity on 

DPPH radicals for IC50 determination. 
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Figure A-9. Degree of glycation was determined by a TNBS method. 
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Figure A-10. The reaction between reactive radical and DPPH reagent. 
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Figure A-11. Fructosamine adduct is identified using an NBT reagent method. 
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Figure A-12. The reaction between aldehyde and Girard’s reagent T.  
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Figure A-13. Nutritional information of breakfast honey wheat bagel. Available at: 

http://prgmichigan.com/2020-breakfast.php. 
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Figure A-14. Nutritional information of 12" sub on roasted beef sandwich (wheat with American 

cheese, lettuce & tomatoes). Available at: http://www.pcpizza.com/items/roast-beef. 

http://www.pcpizza.com/items/roast-beef
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Figure A-15. HPLC chromatograph of CML derivative peaks related to the CML standard (0.025 

μg/mL) using a TSK gel ODS-80 TM column (25 cm×4.6 mm, 5 µm) with a fluorescence intensity 

of settings at 340 nm (excitation) and 455 nm (emission). The flow rate was 1.0 mL/min and 

injection volume was 20 µL. The mobile phases were: (solvent A) sodium acetate buffer (20 

mM, adjusted to pH 6.7 with acetic acid)/acetonitrile (90:10, v/v) and (solvent B) acetonitrile.  
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Figure A-16. HPLC chromatograph of CML derivative peaks related to a baked salmon sample 

using a TSK gel ODS-80 TM column (25 cm×4.6 mm, 5 µm) with a fluorescence intensity of 

settings at 340 nm (excitation) and 455 nm (emission). The flow rate was 1.0 mL/min and 

injection volume was 20 µL. The mobile phases were: (solvent A) sodium acetate buffer (20 

mM, adjusted to pH 6.7 with acetic acid)/acetonitrile (90:10, v/v) and (solvent B) acetonitrile.  
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Figure A-17. HPLC chromatograph of CML derivative peaks related to a fried chicken sample 

(inside) using a TSK gel ODS-80 TM column (25 cm×4.6 mm, 5 µm) with a fluorescence intensity 

of settings at 340 nm (excitation) and 455 nm (emission). The flow rate was 1.0 mL/min and 

injection volume was 20 µL. The mobile phases were: (solvent A) sodium acetate buffer (20 

mM, adjusted to pH 6.7 with acetic acid)/acetonitrile (90:10, v/v) and (solvent B) acetonitrile.  
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Table A-1. Basic information of dietary fiber. 

 

Definition  

of dietary fiber 

Function of  

dietary fiber  

Average daily intake (AI) 

recommendation 

Non-digestible form of carbo-

hydrates and lignin. 

 

Naturally occurs in plants, helps 

provide a feeling of fullness. 

 

Best sources are whole grains, 

brans, beans and peas, additional 

sources of dietary fiber include nut, 

and other vegetables, and fruits. 

 

May help reduce the 

risk of cardiovascular 

disease, obesity, and 

Type 2 diabetes. 

May promote healthy 

lipid profiles and 

glucose tolerance, 

and ensure normal 

gastrointestinal 

function. 

 

The AI for fiber is 14 g per 

1,000 calories, or 25 g per day 

for women and 38 g per day 

for men; Most Americans 

underconsume dietary fiber, 

and usual intake averages only 

15 g per day. 

Children and adults should 

consume foods naturally high 

in dietary fiber in order to 

increase nutrient density. 

 
aModified by source: U.S. Department of Agriculture, Agricultural Research Service, Nutrient 
Data Laboratory. 2009. Available at: http://www.ars.usda.gov/ba/bhnrc/ndl. 
 
 

 

 

 

 

 

 

 

http://www.ars.usda.gov/ba/bhnrc/ndl


144 

 

Table A-2. Selected food sources ranked by amounts of dietary fiber per standard food portion. 

 

Food Standard  

Portion Size 

Dietary Fiber  

in Portion (g)a 

Beans (navy, pinto, black, kidney, 

white, great northern, lima), cooked  

½ cup  6.2–9.6  

Bran ready-to-eat cereal (100%)  1/3 cup (about 1 ounce)  9.1  

Split peas, lentils, chickpeas, or 

cowpeas, cooked  
½ cup  5.6–8.1  

Artichoke, cooked  ½ cup hearts  7.2  

Pear  1 medium  5.5  

Soybeans, mature, cooked  ½ cup  5.2  

Plain rye wafer crackers  2 wafers  5.0  

Bran ready-to-eat cereals (various)  1/3–¾ cup (about 1 ounce)  2.6–5.0  

Asian pear  1 small  4.4  

Green peas, cooked  ½ cup  3.5–4.4  

Whole-wheat English muffin  1 muffin  4.4  

Bulgur, cooked  ½ cup  4.1  

Mixed vegetables, cooked  ½ cup  4.0  

Raspberries  ½ cup  4.0  

Sweet potato, baked in skin  1 medium  3.8  

Blackberries  ½ cup  3.8  

Soybeans, green, cooked  ½ cup  3.8  

Prunes, stewed  ½ cup  3.8  

Shredded wheat ready-to-eat cereal  ½ cup (about 1 ounce)  2.7–3.8  

Figs, dried  ¼ cup  3.7  

Apple, with skin  1 small  3.6  

Pumpkin, canned  ½ cup  3.6  
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Greens (spinach, collards, turnip 

greens), cooked  
½ cup  2.5–3.5  

Almonds  1 ounce  3.5  

Sauerkraut, canned  ½ cup  3.4  

Whole wheat spaghetti, cooked  ½ cup  3.1  

Banana  1 medium  3.1  

Orange  1 medium  3.1  

Guava  1 fruit  3.0  

Potato, baked, with skin  1 small  3.0  

Oat bran muffin  1 small  3.0  

Pearled barley, cooked  ½ cup  3.0  

Dates  ¼ cup  2.9  

Winter squash, cooked  ½ cup  2.9  

Parsnips, cooked  ½ cup  2.8  

Tomato paste  ¼ cup  2.7  

Broccoli, cooked  ½ cup  2.6–2.8  

Okra, cooked from frozen  ½ cup  2.6  

 

aModified by source: U.S. Department of Agriculture, Agricultural Research Service, Nutrient 
Data Laboratory. 2009. Available at: http://www.ars.usda.gov/ba/bhnrc/ndl. 
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Table A-3. Cereal bran food recipes. 

 

 
Food 

 
Ingredients 

 
How to make it 
 

Source 

Bran 

Beef 

Burger  

 

500g lean beef mince 

60g All-Bran Original 

40g reduced fat 
mozzarella cheese 

4 tablespoons spicy 
tomato chutney or 
tomato sauce 

Large handful rocket 
leaves 

4 small wholegrain 
rolls 

 

 

Combine the beef and All-Bran 
Original. Form into 4 patties and 
refrigerate for 30 – 45 minutes. 

Heat a heavy based fry pan over 
medium heat. Sprinkle the patties 
with salt and cook on one side for 
4 minutes. Turn and place ¼ of 
the cheese on top of each patty. 
Cover and cook for 4 minutes. 

Lightly toast the rolls. Place the 
bases of the rolls on serving 
plates and top with the patty, 
sauce or tomato chutney, rocket 
leaves and tomato. Cover with 
the top of the roll. 

https://www.allbran
.co.uk/recipes/fibre-
health/lunch/beef-
burger-recipe.html 

Meaty 
Meat 
Balls 

1 ½ lb lean ground 
beef 
 
¾ cup oat bran cereal, 
uncooked 
 
whole eggs 
 
coarse salt 
 

Mix thoroughly; Form meatballs 
approx 2 inches, and place on 
ungreased baking sheet;  

Sprinkle with coarse salt. Bake at 
350°F until nicely browned.  

Add to the chunky sauce OR place 
on top of finished spaghetti or 
other pasta dish. Sprinkle grated 
old cheddar on top. 

 

 

http://grouprecipes.
com/77936/elaines-
meaty-meat-
balls.html 

http://www.grouprecipes.com/77936/elaines-meaty-meat-balls.html
http://www.grouprecipes.com/77936/elaines-meaty-meat-balls.html
http://www.grouprecipes.com/77936/elaines-meaty-meat-balls.html
http://www.grouprecipes.com/77936/elaines-meaty-meat-balls.html
http://www.grouprecipes.com/77936/elaines-meaty-meat-balls.html
http://www.grouprecipes.com/77936/elaines-meaty-meat-balls.html
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Chili 1 pound lean 

 

ground beef 

1 large onion, sliced 

 

1/2 cup chopped 
green bell pepper 

 

1 cup Kellogg's All-
Bran Original cereal 

 

In large saucepan, cook ground 

beef, onion and green pepper 

until meat is browned, stirring 

frequently. 

 

 

Stir in remaining ingredients, 

cutting tomatoes into pieces with 

spoon. Cover. Cook over low heat 

about 1 hour. Stir occasionally. 

Remove bay leaf before serving. 
 

http://www.all-
bran.com/recipes/ch
ili.html 

Turkey 

Bran 

Burger 

2/3 cup Kellogg's All-

Bran Original cereal 

1/2 cup finely 

chopped onions and 

1 egg white 

2tablespoon worceste

-rshire sauce 

1 teaspoon garlic salt 

1 pound ground 

turkey 

Combine KELLOGG'S All-Bran 

cereal, onions, Worcestershire 

sauce, garlic salt and egg white. 

Let stand about 3 minutes or until 

cereal softens.  

 

Gently stir in ground turkey. 

Portion into six and shape into 4-

inch patties. 

 

Grill, broil or pan fry about 4 

minutes on each side or until 

browned and meat is no longer 

pink (160 degrees F). 

https://www.kellogg

s.com/en_US/recipe

s/turkey-bran-

burgers-recipe.html 

 

 

 

 

 

 

 

 

 

https://www.kelloggs.com/en_US/products/kellogg-s-all-bran-original-cereal-product.html
https://www.kelloggs.com/en_US/products/kellogg-s-all-bran-original-cereal-product.html
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Table A-4. Stepwise selection process by SAS software in Chapter 3. 

 

NOTE: SAS initialization used: 
      real time           10.89 seconds 
      cpu time            1.01 seconds 
 
1    data AGE; 
2    input inhibition TPC DPPH WHC; 
3    datalines; 
 
NOTE: SAS went to a new line when INPUT statement reached past the end of a line. 
NOTE: DATA statement used (Total process time): 
      real time           0.65 seconds 
      cpu time            0.01 seconds 
 
 
19   proc reg; 
20   model inhibition=TPC DPPH WHC / collin 
21               collinoint; 
22 
23   run; 
 
 
NOTE: PROCEDURE REG used (Total process time): 
      real time           1:20.89 
      cpu time            2.81 seconds 
 
 
24   data AGE2; 
25   input inhibition TPC DPPH WHC; 
26   datalines; 
 
NOTE: SAS went to a new line when INPUT statement reached past the end of a line. 
NOTE: DATA statement used (Total process time): 
      real time           0.01 seconds 
      cpu time            0.01 seconds 
 
42   proc reg; 
43   model inhibition=TPC DPPH WHC / 
44   selection= stepwise 
45   sle=0.30 sls=0.05 stb; 
46   run; 
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