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Abstract 
 

 
This research builds upon previous efforts to explore the use of Statistical Process Control (SPC) 

in lieu of cycle counting. Specifically a three pronged effort is developed. First, in the work of Huschka 

(2009) and Miller (2008), a mixture distribution is proposed to model the complexities of multiple Stock 

Keeping Units (SKU) within an operating department. We have gained access to data set from a large 

retailer and have analyzed the data in an effort to validate the core models. Secondly, we develop a 

recursive relationship that enables large samples of SKUs to be evaluated with appropriately with the 

SPC approach. Finally, we present a comprehensive set of type I and type II error rates for the SPC 

approach to inventory accuracy monitoring.  

 
 

 
 
 
 
 
 
 
 

  



iii 
 

Table of Contents 

List of Figures ................................................................................................................................................ v 

List of Tables ................................................................................................................................................ vi 

Acknowledgements .................................................................................................................................... vii 

Chapter 1 – Introduction and Objective ...................................................................................................... 1 

1.1 Background ......................................................................................................................................... 1 

1.2 Objectives ............................................................................................................................................ 3 

1.3 Task ..................................................................................................................................................... 4 

Chapter 2 – Literature Review ..................................................................................................................... 5 

2.1 Inventory Control Systems .................................................................................................................. 5 

2.1.1 Cycle Counting ........................................................................................................................ 8 

2.1.1.1 Random Sample Cycle Counting ............................................................................. 7 

2.1.1.2 Geographic Cycle Counting ..................................................................................... 7 

2.1.1.3 Process Control Cycle Counting .............................................................................. 8 

2.1.1.4 ABC Method ............................................................................................................ 8 

2.2 Statistical Process Control ................................................................................................................. 10 

2.2.1 Control Charts ....................................................................................................................... 11 

2.2.2 Type I and Type II Error Rates for Control Charts ................................................................. 12 

2.2.3 Average Run Length (ARL) .................................................................................................... 12 

2.2.4 Variable Control Charts ......................................................................................................... 14 

2.2.4.1   Control Chart  .................................................................................................... 14 

2.2.4.2 R Control Chart ..................................................................................................... 16 

2.2.5 Attribute Control Charts ....................................................................................................... 18 

2.2.5.1 P Control Chart  ..................................................................................................... 19 

2.2.5.2 C Control Chart  ..................................................................................................... 22 

2.3 Background of SPC Approach for Inventory Control ......................................................................... 23 

2.3.1 Application and Notation ...................................................................................................... 24 

2.3.2 SPC Approach to Inventory Accuracy Monitoring ................................................................ 26 

2.3.3 Constructing an Example ...................................................................................................... 27 

Chapter 3 – Defining Sub-populations of SKUs ......................................................................................... 29 

3.1 Defining Sub-Populations .................................................................................................................. 29 



iv 
 

3.2 Experimentwise Error Rate ............................................................................................................... 33 

Chapter 4 – Computer Program ................................................................................................................. 34 

4.1 Defining Recursive Relationship ........................................................................................................ 34 

4.3 Computer Program Setup ................................................................................................................. 35 

Chapter 5 – Type I Error Rates ................................................................................................................... 37 

5.1 Defining   and   Values  ................................................................................................................... 37 

5.2 Type I Error Rate Results  .................................................................................................................. 39 

5.3 Type I Error Rate Conclusions ........................................................................................................... 41 

Chapter 6 – Type II Error Rates .................................................................................................................. 43 

6.1 Type II Error Rates       Shift  .................................................................................................... 43 

6.2 Type II Error Rates       Shift  .................................................................................................... 45 

6.3 Type II Error Rates       Shift  .................................................................................................... 47 

6.4 Type II Error Rate Conclusion ............................................................................................................ 50 

Chapter 7 – Conclusions and Future Work ................................................................................................ 52 

7.1 Conclusions ....................................................................................................................................... 52 

7.2  Future Work ..................................................................................................................................... 53 

References  ................................................................................................................................................. 55 

Appendix A – Computer Program .............................................................................................................. 58 

Appendix B –  ,  , and m Values for Tables  ............................................................................................ 63 

Appendix C – All Type I Error Rate Tables ................................................................................................. 65 

Appendix D – All Type II Error Rate Tables ................................................................................................ 68 

 

 
 
 
 
 
 
 
 
 
 
 



v 
 

List of Figures 

Figure 1: Pareto Principle Example ............................................................................................................... 9 

Figure 2: Discount Department Store ......................................................................................................... 24 

Figure 3: Discount Department Stores (   and   ) ..................................................................................... 25 

Figure 4: Home Electronics t-test Matrix  ................................................................................................... 30 

Figure 5: Computer Program Output  ......................................................................................................... 36 

 

  



vi 
 

List of Tables 

Table 1: Complete Enumeration Example  ................................................................................................. 28 

Table 2: Game Sub-Population  .................................................................................................................. 31 

Table 3: Home Electronics Sub-Population ................................................................................................ 31 

Table 4: Accessories Sub-Population .......................................................................................................... 31 

Table 5: Ink Sub-Population ........................................................................................................................ 32 

Table 6: Computer Sub-Population ............................................................................................................ 32 

Table 7: Ink Sub-Population ........................................................................................................................ 32 

Table 8: Complete Enumeration vs. Computer Program............................................................................ 36 

Table 9: Flat Min/Max Type I Error Rates ................................................................................................... 39 

Table 10: Linear/Weighted Type I Error Rates ........................................................................................... 40 

Table 11: Flat Min/Max,         Type II Error Rates  ............................................................................ 43 

Table 12: Linear/ Weighted,         Type II Error Rates  ...................................................................... 44 

Table 13: Flat Min/Max,         Type II Error Rates  ............................................................................ 45 

Table 14: Linear/ Weighted,         Type II Error Rates  ...................................................................... 46 

Table 15: Flat Min/Max,         Type II Error Rates  ............................................................................ 48 

Table 16: Linear/ Weighted,         Type II Error Rates  ...................................................................... 48 

Table 17: Flat Min CL vs. Shift CL ................................................................................................................ 50 

Table 18: Flat Max CL vs. Shift CL................................................................................................................ 50 

 

 

  



vii 
 

Acknowledgements 
 

The research completed for this thesis could not have been successful without the help of 

numerous individuals. I want to start by thanking Dean John English who has served as my advisor 

throughout the past two years of work on this thesis. Dean English provided support and always made 

time in his busy schedule to assist in any way that he could. I have learned a great deal from Dean 

English technically, academically, and general life lessons. I was fortunate to have the opportunity to 

work so closely with Dean English and I know the knowledge and experience gained throughout this 

time will stick with me perpetually. 

Next, I want to thank Dr. Todd Easton for his work on the computer programming and recursive 

function break through. Dr. Easton’s wide breadth of knowledge allowed him to easily understand the 

problem. Dr. Easton was then able to apply his intelligence in computer programming to advise and 

direct me in the creation of the computer program. During our time working together Dr. Easton was 

again able to use his knowledge base to develop the breakthrough recursive function that is utilized in 

the research. Dr. Easton has played an integral in this thesis and on my college career. I know that as I 

move on many of his teachings will come into use. 

Finally, I want to thank Dr. John Boyer and Kyle Huschka for the support they have provided. Dr. 

Boyer serves on my defense committee and has provided help with his expertise in statistics. Dr. Boyer 

has been willing to meet and help out in any way that I have needed. This thesis was an extension of 

research completed by Kyle. During my time working on the thesis Kyle assisted in understanding his 

work and also provided ideas to improve my work.  All of these contributions have been invaluable to 

the completion and success of this thesis.  

 

 



1 
 

  
Chapter 1: Introduction and Objectives 

 

1.1 Background 

Inventory record accuracy is vital to companies with high numbers of products. For a company to 

have accurate records, actual on hand inventory should equal their recorded inventory. As retail stores 

become larger and distribution centers service larger regions, assurance of accurate inventory records 

becomes much more significant and a more challenging task. Retail environments (e.g. large retail 

stores, distribution centers, etc.) often have thousands of different stock keeping units (SKU’s) in their 

inventory. Brooks and Wilson (2005) state that failure to keep accurate inventory records can result in 

loss of product, time wasted correcting records, product not in stock for consumers, and overstock of 

items. 

Cycle counting is currently the most common and established method used by companies to keep 

inventory record accuracy as described in Dehoratius and Raman (2008).  Cycle counting has generally 

replaced periodic physical inventory checks. Cycle counting is accepted as a better method as it doesn’t 

require the entire store or warehouse to shut down to count SKU’s. Physical inventory checks are not 

only tedious and stressful, but they usually result in errors due to the time constraints on the availability 

of the facility. With cycle counting, subsets of the SKU’s within inventory are examined to see if the 

actual on hand inventory equals the recorded inventory. If there are differences between the two, 

errors are corrected. Cycle counting is found to be less disruptive to daily operations, provides an 

ongoing measure of inventory accuracy, and can be adapted to focus on items with higher value.   

Brooks and Wilson (2005) explain that with the correct execution of cycle counting, a company can 

have “95% or better accuracy.” The dilemma for a large company is that it takes a large amount of 

resources, labor hours, and money to ensure that cycle counting is implemented correctly. 
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Consequently, for large retail environments, there is a need for a method to keep high levels of 

inventory accuracy without the large amount of time and resources that cycle counting requires. 

Furthermore, a more feasible approach would be one that is simply a monitoring approach and can be 

added to the periodic activities of operational personnel.  As companies strive to be more efficient, the 

cost competitive pressures mount on the effective use of resources. 

Statistical Process Control (SPC) is a proven statistical method used to monitor processes and 

improve quality using variance reduction. SPC utilizes random samples to monitor and control a process 

to ensure it is operating correctly and producing parts in accordance to its stochastic nature.  In the 

inventory accuracy domain there is an opportunity to utilize random samples rather than the prescribed 

selection of SKU’s as implemented in varied approaches of cycle counting so that Type I and Type II 

errors are controlled. As such, statistical process control is an ideal application for monitoring inventory 

accuracy as the total sampled number of SKU’s can be dramatically reduced. There are two SPC tools 

that could be used to monitor inventory record accuracy. 

The first method is a P-chart. A P-chart can be used to monitor the percent of SKU’s in a sample for 

which the observed inventory level that matches the recorded inventory level. This means a random 

sample of n SKU’s is selected and each SKU is checked to see if the actual on hand inventory exactly 

equals the recorded inventory. The number of SKU’s for which the observed quantity matches the 

recorded inventory is divided by the total sample size. That provides a point estimate of the inventory 

accuracy, or P. Over time, P, is plotted on a P chart as seen in Cozzucoli (2009). The second method is a 

C-chart. C-charts can be used to monitor the collective number of item adjustments for a set of 

randomly observed SKU’s where the on hand inventory failed to match the recorded inventory. That is, 

when a given SKU is sampled and the on-hand inventory does not match the recorded inventory level, 

the on-hand inventory or the recorded inventory will be adjusted in order to match the two.  This means 

that either items will be ordered or the on-hand inventory will be adjusted. For the C-chart application 
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to inventory accuracy an inspection unit of size n is sampled and the observed number of inventory 

adjustments is plotted in relationship to time as seen in Huschka (2009). 

Huschka (2009) presents an analytical approach for small sample sizes and a simulation to 

provide suitable estimates of Type I and Type II errors for larger sample sizes as suggested in Yu (2007). 

In this research, we establish an efficient approach so that Huschka’s (2009) analytical approach can be 

extended to a wide set of real world scenarios. A program is created that allows for the examination of 

type I and type II error rates of the C-chart with such populations. Conditions considered are typical of 

populations found in the industry.  

 

1.2 Objective 

 Recent advances in Huschka (2009) provide much of the motivation for this research. Huschka 

(2009) presents an analytical approach to determining the Type I and Type II error rates for C-charts 

used to detect shifts in the number of inventory adjustments. In this thesis, the objective is to 

comprehensively explore the use of a C-chart to manage inventory adjustments that are required when 

the recorded inventory fails to match the number of inventory on the shelf. The first part of our research 

will verify the analytical model created by Huschka (2009) with real world data provided by a large 

international retailer.  As the work of Huschka (2009) is limited to small samples, we extend that work to 

examine the impact of the C-chart approach in a real world setting. 
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1.3 Tasks 

The following tasks are a summary of the goals of this research: 

1. Verify Analytical Model 

1.1. Work with a national leader in the retail environment to secure data that supports or refutes 

the modeling concepts in Huschka (2009) 

1.2. Analyze the data to determine “reasonable” modeling parameter values 

1.3. Report findings of 1.1 and 1.2 in a report to document the usefulness of assuming the 

environmental conditions as prescribed in Huschka (2009) 

2. Create a program able to calculate any sample size 

2.1. Define an equation able to calculate any sample size 

2.2. Create program that allows for the evaluation of type I and type II error rates for different 

values of  the c chart as defined below.   is the proportion of the population represented by 

the PDF,   is the Poisson arrival rate of the population,   is number of SKU’s sampled, and   is 

the number of sub-populations 

2.2.1.           

2.2.2.         

2.2.3.          

2.2.4.         

2.3. Using the large retail environment data to present observations and conclusions  
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Chapter 2: Literature Review 

 To understand this research, there are two fields of work that are important: statistical quality 

control and inventory control. Specifically, we pay particular attention to the advances in the use and 

development of statistical process control (SPC) and cycle counting. We provide basic descriptions of the 

two areas and some of the more recent advances. It will be our observation that SPC can be used to 

efficiently monitor inventory accuracy. 

 

2.1 Inventory Control Systems 

Inventory record accuracy is vital to any company with high levels of inventory. For a company to 

keep accurate records, on hand inventory should equal recorded inventory. This has become a 

challenging task for some environments (e.g. large retail stores, distribution centers, etc.) because they 

often have thousands of different stock keeping units (SKU’s) in their inventory. Piasecki (2003) indicates 

that there are several causes of discrepancies between actual on hand inventory and recorded 

inventory: stock loss or shrinkage, transaction errors, and product misplacement. Kok and Shang (2007) 

report that there are two problems that occur when inventory accuracy is poor. The first happens when 

an out of stock item is reported as in stock. This prevents the replenishment system from ordering more 

of the product. This results in higher backorder penalties and lost sales. The second happens when the 

recorded inventory shows fewer items than are in the physical inventory. This causes more products to 

be ordered and leads to higher inventory costs. To find and fix these discrepancies, there needs to be a 

system to monitor and make the required changes to inventory records.  
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2.1.1 Cycle Counting 

 Dehoratius and Raman (2008) examine 370,000 inventory records from 37 different stores and 

found that 65% of their inventory was inaccurate. This is not uncommon, and it is the reason that many 

companies have implemented strategies to keep track of the inventory records. Cycle counting is 

currently the most common and established method used by companies to keep inventory record 

accuracy.  Cycle counting generally replaces annual physical inventory checks. Cycle counting is accepted 

as a better method, because it doesn’t require the entire store to shut down to count SKUs as often 

required with physical inventory checks. Physical inventory checks are tedious and usually result in 

errors due to the time constraints on counting the SKUs. With cycle counting, subsets of inventory are 

counted to check that the actual on hand inventory equals the recorded inventory. If there are 

differences between the two, errors are corrected. When compared to inventory checking where a 

facility is closed and all SKUs are checked for accuracy, cycle counting is less disruptive to daily 

operations, provides ongoing measure of inventory accuracy, and can be enhanced to focus on items 

with higher monetary value. 

Brooks and Wilson (2005) stated that “through the proper use of cycle counting, inventory 

record accuracy above 95% can be consistently maintained.” As suggested, the dilemma for a large 

company is that it takes a large amount of resources, labor hours, and money to ensure that cycle 

counting is implemented correctly.  For large environments, there is a need for a method to keep high 

levels of inventory accuracy that does not require the large amount of time, structure of operation, and 

large resources required by cycle counting.  We further assume that basic concepts of statistical 

inference can be accepted as basic knowledge of the work force.  As companies strive to be more 

efficient, cost competitive pressures mount on the effective use of resources. The next section provides 

an overview of some of the more common ways that cycle counting is being performed. Most of the 

concepts presented are found in Brooks and Wilson (2005). 
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2.1.1.1 Random Sample Cycle Counting 

 Random sample cycle counting is one of the more basic forms of cycle counting. SKU’s are 

randomly selected for a given inventory such that each SKU of the population has an equal opportunity 

of being selected. There are two ways that random cycle counting can be carried out. They are called 

constant population counting and diminishing population counting.  

 Constant population technique implements sampling such that any SKU can be selected for any 

sampling period. In essence, this is sampling with replacement and is similar to the concept of sampling 

for SPC. This means, that if a SKU is picked for one sampling interval, it could be picked at the exact 

same likelihood the next period. It is also called “sampling with replacement.” Diminishing population 

implements sampling such that after a SKU is picked it isn’t returned to the population until all the other 

SKU’s have been chosen. In essence this is “sampling without replacement.”  Probabilistically, this is the 

sampling approach connected to distributions such as the hypergeometric distribution. 

 

2.1.1.2 Geographic Cycle Counting 

 Schreibfeder (2005) describes geographic cycle counting as starting at one end of the warehouse 

and counting a certain number of products each day until you reach the other end of the building. This 

method is considered the simplest form of cycle counting. This method allows a methodical approach to 

counting all materials in a warehouse, and it is not confusing to implement. Schreibfeder (2005) 

recommends that all items be counted at least once every 3 months. 
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2.1.1.3 Process Control Cycle Counting 

 Brooks and Wilson (2005) first introduced process control cycle counting. It is built upon the 

examination of SKUs that are convenient to count. This method is considered controversial in theory but 

effective in practice. To perform this method, the inventory records must have counts for each SKU at 

each location where the SKU is stored. The employee is then sent to a specific location to perform the 

cycle counting. They check the parts in every location, but they only spend time counting parts that will 

be easy to count. They then make adjustments necessary as overages or shortages are discovered.  

If the parts are not easy to count, the counter checks the part identification, location, and order 

size. The employee then “eye balls” or estimates the number in a given the bin to see if it looks similar 

to the number of parts recorded in the system. If there is a large discrepancy between the numbers of 

parts in the bin compared to what the recorded inventory shows then a precise count is attained and an 

adjustment is made. For example, if the bin has about 10 parts in it and the system records an inventory 

of 100, the employee denotes the discrepancy, makes the exact count and the necessary adjustment. 

Brooks and Wilson (2005) state that the advantage of this method is that you can count 10-20 times the 

part numbers in a given time period with no extra cost. The disadvantage is having the employees 

determine what is “easy to count”. 

 

2.1.1.4 ABC Method 

The ABC method, also known as the Ranking Method, is based on the Pareto Principle and is a 

common way to perform cycle counting. The Pareto Principle has its root in economics where it is 

known that a majority of the wealth is held by a few number of people. For application inventory 
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accuracy, it is assumed that only a few number of SKUs drive the bulk of inventory inaccuracy. An 

example of the Pareto Principle can be seen below in Figure 1. 

 

Figure 1: Pareto Principle Example (Reproduced from Inventory and Demand Analysis. 
<http://www.resourcesystemsconsulting.com/blog/archives/37>) 

 

 

In Figure 1., inventory items are divided into three different categories: A items, B items, and C 

items. The ABC method places emphasis on parts that have a history of poor accuracy levels. Figure 1 

shows that although A items are only 20% of the total inventory, they result in 75% of the errors. It can 

also be seen that B items are 30% of the total inventory and result in 15% of the total errors. Finally, C 

items are 50% of the total inventory but result in only 10% of the total errors.  

Rossetti et al. (2001) states that the ranking method can be tailored to the specific priorities of 

the organization (e.g., accuracy levels, inventory cost, etc.).  The company must establish the ranking of 

each SKU and design sampling accordingly. Rossetti et al. (2001) warns that the ABC method has a 

disadvantage in that the category classifications are primarily based on financial considerations.  When 

considering delaying production or shipments, inexpensive items are as important as expensive items. 
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For example in an automobile assembly plant, the engine is much more expensive than the motor 

mounts, but absence of either stops production.  Thus, it is important to consider lead-time, amount of 

usage, and bill of material (BOM) level when employing ABC cycle counting.  

 

2.2 Statistical Process Control (SPC) 

 Montgomery (2009) states that “a company must continuously seek to improve process 

performance and reduce variability in key parameters.” He goes further to state “Statistical Process 

Control (SPC) is a primary tool for achieving this objective.” SPC is a powerful collection of problem 

solving tools useful in achieving process stability and improving capability through the reduction of 

variability. SPC has become such a powerful tool because it is easy to use, it has a significant impact, and 

can be applied to virtually any process.  The tools of SPC are often called the “the magnificent seven”, 

they are: 

1. Histogram 
2. Check Sheet 
3. Pareto Chart 
4. Cause and Effect Diagram 
5. Defect Concentration Diagram 
6. Scatter Diagram 
7. Control Chart 

For this research, we use control charts as a method to monitor inventory accuracy. Control 

Charts utilize random samples to monitor a process to ensure it is operating in accordance to its natural 

stochastic behavior.  In inventory accuracy domain, there is opportunity to utilize random samples 

rather than the various approaches of cycle counting. As eluded before, the random sample approach of 

cycle counting hints at the procedures used in control charts. However, there is no statistical approach 

to draw inference on the entire inventory.   Control charts are statistically valid approaches that control 
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underlying type I and type II errors. Statistical process control is an ideal application for monitoring 

inventory accuracy.  

 

2.2.1 Control Charts 

Control charts were first proposed in Shewart (1926, 1927), and they are considered one of the 

primary techniques of SPC. A control chart essentially plots measurements of a quality characteristic 

versus time. The chart consists of a centerline (CL) upper control limit (UCL) and lower control limit 

(LCL). The centerline is used to describe the central tendency or estimate average of the sampled 

statistic. The UCL and LCL denote the upper and lower bounds where the sampled statistic should fall 

given the process is operating in its normal stationary way (also called “in-control”).    The UCL and LCL 

are estimated differently depending on the sampled statistic, but they all follow a similar formula which 

can be seen below in equation (1) and (2): 

                     (1) 

                     (2) 

 

In this case, w is the sampled statistic that measures a given quality characteristic. The mean of 

w is   , and the variance of w is   
 . L is the distance of the control limits from the center line in 

multiples of the standard deviation of w and is often assumed to be 3. From these equations it is noted 

that the mean and variance are never known in practice and can only be estimated.  
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2.2.2 Type I and Type II Error Rates for Control Charts 

Control limits are generally set at three (3) standard deviations away from the mean of the 

population. When a data point falls out of these limits, it indicates that the process is not stationary or 

out of control. There are two types of errors that are associated with control charts. They are type I and 

type II errors. When predicting type I and type II errors, there is a null hypothesis (  ) and an alternative 

hypothesis (  ). In our retail and warehouse domain the null hypothesis will be the mixture distribution 

is representative of the population. The alternative hypothesis will be that the mixture distribution is not 

representative of the population. 

The type I (  ) errors are known as the false alarm rate and occurs when the null hypothesis is 

rejected, but it is actually true. In application, this would happen if the operator concludes that the 

process is out of control when it is in fact in control. Type II (   errors happen when we fail to reject the 

null hypothesis but the alternative is actually true. This means that the operator concludes the process is 

in control when it is in fact out of control. The common probabilistic statements defining    and   are 

shown below in equation (3) and (4): 

                                    (3) 

                                          (4) 

 

2.2.3 Average Run Length (ARL) 

 The average run length (ARL) is the average number of points that must be plotted before a 

point indicates an out of control condition. For Shewart control chart, the ARL can be calculated from 

the equation (5): 
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          (5) 

 

The probability that any point exceeds the upper control limit or falls below the lower control 

limit is P. The in control ARL is the inverse of the probability of a type I error,  . The out of control ARL is 

the inverse of (1-P( )). The out of control ARL is the average number of points needed to detect a 

process shift when one has occurred.  The formulas to find type I and type II error rates are below in 

equation (6) and (7): 

                                                         (6) 

                                                              (7) 

 

In equation (6) and (7) W is the sampled statistic.  The ARL is used in many research advances to 

evaluate the performance of control charts. Crowder (1987) shows a numerical procedure using integral 

equations for the tabulation of moments of run lengths of exponentially weighted moving averages 

(EWMA). Gan (1993) presents a computer program for computing the probability of a function and 

percentiles of run length for a CUSUM control chart. Calzada and Scariano (2003) study the integral 

equation and Markov chain approaches for computing average run lengths for two-sided EWMA control 

charts. 

Crowder (1987) tabulates  ’s for the EWMA control chart. Champ and Woodall (1987) use 

Markov chains to compute the ARL’s for the   chart while embedding various run rules. Marcellus 

(2008) compares Bayesian analogue of Shewhart   chart to cumulative sum charts. He found that 

Bayesian offered better results, but it required more information which may be difficult to obtain. 
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Burroughs et al. (2003) studied the effect of using run rules on   charts and determined that they 

improve the sensitivity of the charts. There are hundreds of such advances in the literature, and they 

point to the conclusion that controls charts, if designed correctly, can be useful in monitoring 

performance. The ultimate goal of a control chart is to have a large in control ARL and small out of 

control ARL’s. 

  

2.2.4 Variable Control charts 

 Variable control charts are used when quality characteristics are expressed in terms of 

numerical measurements. This can include any single measurable quality characteristic such as length, 

weight, diameter, or volume. The three common control charts that are used for variable data are the  , 

R, and S control Charts. The   control chart is used to monitor the process average or mean quality level 

and is also known as the control chart for means. The R control chart is used to monitor the range, while 

the S control chart is used to monitor the standard deviation. The range is the difference between the 

max and minimum values found in a given sample of n observations. Either the R or S control chart can 

be used to monitor the process variability.  

 

2.2.4.1   Control Chart 

For a process, sampled observations,    , can be collected.  The observations are assumed to 

follow a normal distribution with mean µ and variance   
 .  The sample average, called   , (an unbiased 

estimator of µ) is calculated as: 

  
             

 
         (8) 
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It is well known that the resulting population of    s follows the normal distribution with mean µ 

and variance    
  (

   
  

 
). The   control chart is used to monitor the   ’s and gain inference on the stability 

of the central tendency of the process.  Using equations (1) and (2) as a basis, the theoretical control 

limits for the    chart are as follows: 

                       (9) 

                  (10) 

                       (11) 

 

Clearly, µ   and   
  are never known with certainty, so in practice they must be estimated with 

unbiased estimators as shown below:   

          
    
 
   

 
        (12) 

    
  

 

  

 
          (13) 

 

In equation (12) m = number of subgroups observed. d2 is one of many control chart constants 

and are tabled for various subgroup sizes in all basic texts in quality control (e.g., Montgomery 

(2009)).                                       for each subgroup i, also called the range. The 

resulting control limits used in practice are as follows: 

                          (14) 
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                  (15) 

                           (16) 

 

Making the substitution,     
 

    
, (also a standard tabled value for control charts), the 

resulting control chart limits are classically estimated as: 

                       (17) 

                  (18) 

                       (19) 

 

2.2.4.2 R Control Chart 

R and S charts are used to monitor process variability. The R chart does this by plotting the range 

while the S chart uses the sample standard deviation. For this research, we are going to concentrate on 

the R chart as a method to monitor process variability. As described earlier    is simply the difference 

between the largest and smallest observation and can be easily collected. The center line of an R chart is 

the average range which can be calculated below:  

   
             

 
         (20) 
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The R chart follows the basic 3-sigma control limit approach, where     and   
  are the mean 

and variance of the range statistic R as described in Montgomery (2009). Again using the theoretical 

control limits from equation (1) and (2) the control limits are defined as: 

                      (21) 

                  (22) 

                      (23) 

  

Because, µ   and   
  are never known with certainty, so in practice they must be estimated with 

unbiased estimators as shown below:  

         
    
 
   

 
        (24) 

    
     

 

  

 
          (25) 

 

   is another control chart constant and can be found in all basic texts in quality control (e.g., 

Montgomery (2009)). Substituting these unbiased estimators the resulting control limits used in practice 

are as follows: 

            
 

  

 
           (26) 

                  (27) 

             
 

  

 
            (28)  
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   and    are control chart constants whose values depend on the sample size.  To ease the 

computations equation (29) and (30) can be defined: 

      
   

  
          (29) 

      
   

  
          (30) 

 

Substituting in these equations the resulting control chart limits are classically estimated as: 

                   (31) 

                 (32) 

                   (33) 

 

The R chart has been a very commonly used method for monitoring process variability. Wang 

(2009) identifies the R chart as a hybrid approach that allows you to control chart concurrent patterns at 

once. Castagliola (2005) found that the R chart can be used in tandem with a EWMA control chart to 

better monitor the process range. Costa and Magalhaes (2007) shows how joint X and R charts with 

varying sample sizes and variable intervals improves the control chart performance in terms of the 

speed with which shifts can be detected.  

 

2.2.5 Attribute Control Charts 
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Attribute control charts are the second way that data can be monitored by control charts. Unlike 

variable control charts that are used to measure numerical data, attribute control charts are used to 

measure values that are determined by a discrete response. Some examples of attribute control charts 

would be conforming/nonconforming, pass/fail, go/no go, and good/bad. There are four different types 

of attribute control charts that are commonly used and they are P, NP, C and U control charts. Each of 

these charts will be explained in more detail in the following sections. 

There are numerous other control charts that have been developed. Burke (1992) examines the 

use of a G chart and H chart to monitor the total number of defects and average number of defects 

based on the geometric distribution. Taleb (2009) looks at attribute control charts based on average run 

length with a pre defined process shift. Rudisill et al. (2004) uses a method of modifying U charts to 

monitor Poisson attribute processes. Ou et al. (2009) looks at using CUSUM as a method of control chart 

for attribute controls. Woodall (1997) gives a good summary of substitutes that have been tried for P, 

NP, C, and U charts. He goes further to explain why P, NP, C, and U are the widely accepted choice for 

attribute charts. In this research we will concentrate on P and C control charts. 

 

2.2.5.1 P Control Chart 

The P chart is commonly called the fraction nonconforming control chart. A part is considered 

nonconforming when it doesn’t “conform” to the standard or requirement of one or more 

characteristics. Let us assume that the probability a unit will not conform to specifications is  . The 

likelihood of producing a defect is descriptive of a Bernoulli random variable. If one desires to describe 

the,   , number of independent defective units in a sample of size n, the resulting number of successes 

describes the binomial distribution shown in equation (34): 
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                     (34) 

 

In equation (34)    
    and    

         . The number of units that are nonconforming is 

D and n is the total sample size. D follows a binomial distribution with parameters n and p. The sample 

fraction nonconforming,   , is defined as the ratio of the number of nonconforming units in the sample D 

to the sample size n. From a sampling perspective, the underlying Bernoulli parameter, p, can be 

estimated for sample i in equation (35): 

   
 

 
            (35) 

 

The P chart essentially plots sample estimates of p for successive samples and plots them on a 

control chart as seen in equations (36) – (38): 

                      (36) 

                  (37) 

                      (38) 

 

Obviously the population parameter, p, is never known with certainty. Therefore the Bernoulli 

parameter, p, is estimated for m samples as: 

     
    
 
   

 
           (39) 
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Equation (39) produces an unbiased estimate of p. To calculate the control limits, the average, 

 , and variance,   
 , are estimated as follows: 

      
   
 
   

 
         (40) 

   
  

      

 
          (41) 

 

 Using equations (36), (37), and (38) we are then able to make simple substitutions to estimate 

the control limits for the P chart: 

          
        

 
         (42) 

                        (43) 

          
        

 
         (44) 

 

The NP chart is very similar to the P chart in the fact that it is used to monitor nonconforming 

parts. The difference between the two charts is that NP monitors the number of nonconforming parts 

instead of the fraction of nonconforming parts. The NP chart is used when it is easier to interpret 

process performance as the actual number of defective units plotted. There are many advances in P 

charts over the years. More recently, Spliid (2010) looked at EWMA control chart for Bernoulli data. 

Cozzucoli (2009) used a P chart to monitor multivariate processes.  
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2.2.5.2 C Control Chart 

When looking at parts or items there can be many nonconformities on a given unit (e.g. 

scratches, dents, etc.). If the total number of nonconformities becomes excessive, then given units can 

be judged defective or nonconforming. The C chart is used to measure the number of nonconformities 

per inspection unit. Unlike the P chart the C chart uses the Poisson distribution to describe it, which can 

be seen in equation (45): 

      
     

  
          (45) 

 

Using the theoretical control limits from equations (1) and (2) the control limits for a c chart are 

defined: 

                      (46) 

                  (47) 

                      (48) 

 

The next step is to define the mean and variance for a c chart which is shown in the equations 

below:  

     
   
 
   

 
          (49) 
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              (50) 

 

Then by combining these equations the commonly used control limits can be defined: 

                    (51) 

                        (52) 

                    (53) 

 

A commonly used attribute chart, the C chart, has had many advances over the years so I have 

included a few more recent advances. Lapinski and Dessouky (1994) look at methods to improve the C 

chart to optimize the control limits. Specifically they look at ways to choose the locations to sample, the 

size of the sample, and frequency of sampling. Through this work the authors found that C charts can be 

slow in detecting small shifts. Khoo (2004) identified an efficient alternative that constructs a Poisson 

moving average chart for the number of nonconformities.  

 

2.3 Background of SPC Approach for Inventory Control 

Since our research deals with SPC as an approach to monitor inventory accuracy, it is important to 

look at previous work. Huschka (2009) developed an analytical model to monitor inventory adjustments 

with an SPC approach. This model is a logical extension of Miller (2008). Huschka integrates SPC as a 

means to improve inventory control and management. In his work, he shows that the C-chart is a 

reasonable approach to monitor inventory adjustments for sample sizes, and it is likely effective in real 
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world applications. The effort uses complete enumeration to develop a baseline for model validation 

and concludes with some preliminary simulation findings. 

 

2.3.1 Application and Notation 

Setting up a background of SPC and inventory control methods is important to understand how 

these two methods can be used together to improve current industry standards. Up to this point our 

research has been based on a theoretical problem and has not been defined in practical terms. This 

section will look to show how these methods could be used in a real large retail environment. The first 

step to make this happen is to define a retail environment to apply these methods too. This research 

examines discount department stores which include stores like Costco, K-Mart, Meijer, Target, and Wal-

Mart. Below, in Figure 2, we have set up a discount department store that is broken up into 

departments that are commonly found in real world discount department stores.  

 

Figure 2: Discount Department Store 
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 From Figure 2 it is easy to see that there are a total of 7 departments within this store. They are 

Apparel, Beauty/Health, Electronics, Groceries, Home Products, Toys, and Other. The other section 

could represent multiple different areas such as outdoor living, sports/recreation, automotive, and 

seasonal products to name a few examples. 

For a given department, Huschka (2009) assumes that the number of inventory adjustments for 

a SKU within a department (say department i) follows a Poisson distribution with parameter     and that 

each SKU in the department follows the same Poisson distribution. In essence, a given discount retail 

environment can be thought of as a collection of Poisson sub-populations with parameter   , where 

each sub-population makes up    of the entire population as shown in Figure 3. 

  

Figure 3: Discount Department Stores (   and   ) 

 

This concept gives rise to the following nomenclature: 

     proportion of the population represented by pdf i 

     Poisson arrival rate of the     population 
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    number of SKU’s sampled to assess inventory adjustments for the population 

    number of sub-populations 

2.3.2 SPC Approach to Inventory Accuracy Monitoring 

In this section the same complete enumeration concept developed by Huschka (2009) was used 

as validation points for the new approach of the thesis. Complete enumeration looks at all possible 

events and the probabilities associated with the events. To set up this problem the PDF is first 

introduced which can be seen in equation (54), below: 

                                (54) 

 

Using this notation, Huschka (2009) describes Z as the variable that is observed from a 

population that results from a mixture of   sub-populations. Using a mixture of   Poisson distributions 

the resulting expected value, E(Z) and variance, Var(Z) can be seen in equations (55) and (56): 

         
 
              (55) 

                 
   

           
 
      

       (56) 

 

With the expected value and variance known control limits are easily described. Huschka (2009) 

uses equations (57) and (58) to create the control limits: 

                               (57) 

                                (58) 

Where       
 
   .  
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After determining the expected value, variance, and control limits the next logical step for 

Huschka (2009) was to figure out the type I and type II error rates which can be seen in equations (59) 

and (60): 

             
 
                           

 
                       (59) 

          
 
                                

 
                          (60) 

 

2.3.3 Constructing an Example 

After presenting this equation Huschka (2009) gives an example with m=5 sub-populations and 

n=2 SKUs with the following parameters: 

    = 0.25, 0.50, 0.75, 0.20, 0.30 

    = 0.15, 0.20, 0.05, 0.40, 0.20 

 

With these parameters in place Huschka (2009) was able to easily calculate the expected value 

and variance using equations (55) and (56) which are respectively 0.315 and 0.337. Huschka (2009) was 

then able to compute the UCL and LCL from equations (57) and (58) to be 4.74 and -2.22, respectively. 

From this the next step is to utilize the PDF and complete enumeration to come up with the expected 

probabilities at each state. Table 1, on the following page, provides the final probabilities at each state: 
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Table 1: Complete Enumeration Example 

 
Y= X1 + X2 Prob(Y) 

 

 
0 0.54375953 

 

 
1 0.32079783 

 

 
2 0.104350788 

 

 
3 0.025076815 

 

 
4 0.004989009 

 

 
5 0.000867797 

 

 
6 0.000135831 

 

 
7 1.94586E-05 

 

 
8 2.58001E-06 

 

 
9 3.19167E-07 

 

 
10 3.7063E-08 

 

 
11 4.0588E-09 

 

 
Sum 0.999999999 

  

 From Table 1, it is seen that once at 11 errors the sum of the probabilities is close enough to 1 to 

stop calculating past this point. With the cumulative probabilities in place the next step is to calculate 

the type I error rate by utilizing the calculated UCL, LCL, and equation (59), which turns out to be 

.001026. 
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Chapter 3: Defining Sub-populations of SKUs 

 This chapter provides analysis of data from a national leader in retail. Due to time constraints 

and the large amount of data that were received, only the electronics department was used for analysis. 

All of the work that is done with the electronics department could easily be reapplied to the other 

departments within this retail environment. 

 

3.1 Defining Sub-Populations 

 Before analysis on the data could be performed there needed to be defined sub-populations 

with SKU’s in each sub-population that were a good fit. To do this, SKUs were broken into logical 

categories that were believed to follow similar distributions. For example a 46” TV is assumed to follow 

a similar pattern as a 32” TV, therefore, these two would be grouped together. Once logical groups were 

assigned, Minitab software was utilized to complete the statistical analysis to see if every combination 

of SKUs within the sub-population followed a similar distribution. To do this, a two sample t-test was run 

for each SKU within the population against every other SKU within the population. A 95% confidence 

interval was examined for the difference between these SKUs. The equations that were used to perform 

the two sample t-test can be seen below in formulas (61), (62), and (63): 

       
    

    
 

    

    
         (61) 

          
        

    
 

        

    
        (62) 

                            (63) 
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In these equations, Y represents the number of errors found within the SKU while n represents 

the total number of observations for each SKU. If “0” was found to be within the confidence interval 

then it was determined for the purposes of this research that these two SKU’s were similar enough to be 

in the same sub-population.  For each sub-population that was looked at, a data matrix was completed 

to show the confidence interval of each SKU with every other SKU within the sub-population. An 

example of one of these matrixes can be seen below in Figure 4.  

 

Figure 4: Home Electronics t-test Matrix 

 

Figure 4 shows that every SKU within this sub-population has a similar mean. Five additional 

sub-populations were similarly considered. In each case, games, home electronics, accessories, 

computer, ink, and TV/DVD, similar mean characteristics were found for those sub-populations; 

therefore, the assumption that similar SKUs follow the same mean error rate is supported. Tables 2-7, 

on the following page, provides the SKUs and final groupings for each sub-population.   

 

 

 

 

Table 2: Game Sub-Population 



31 
 

 
SKU Description 

 

 
1300 PC Game 

 

 
1315 PC Game 

 

 
1325 PC Game 

 

 
1350 PC Game 

 

 
2010 PC Software 

 

 
2015 PC Software 

  

Table 3: Home Electronics Sub-Population 

 
SKU Description 

 

 
375 Home Phone 

 

 
376 Home Phone 

 

 
3405 GPS 

 

 
4825 Antenna 

 

 
5235 MP3 Min. store 

 

 
5240 MP3 Player 

 

 
5615 CD Player 

 

 
6025 Home Theatre 

  

Table 4: Accessories Sub-Population 

 
SKU Description 

 

 
705 Phone Cords/Acc. 

 

 
1224 PC mouse 

 

 
3406 GPS Acc. 

 

 
4810 Speaker Acc. 

 

 
4811 TV Mount 

 

 
4815 Coax Acc. 

 

 
4820 Surge Prot. 

 

 
4835 Remote 

 

 
4840 MP3 Charge/Acc. 

 

 
4841 MP3 Charge/Dock 

 

 
4842 MP3 Acc. 

 

 
4860 Cd/Dvd/VHS cleaner 

 

 
8034 PS2 Acc. 

 

 
8045 PSP Acc. 

 

 
8118 Wii Acc. 
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Table 5: Ink Sub-Population 

 
SKU Description 

 

 
1259 Gloss Paper 

 

 
1260 BlK Printer Ink 

 

 
1262 Color Printer Ink 

 

 
1264 Combo Ink 

  

Table 6: Computer Sub-Population 

 
SKU Description 

 

 
1101 Desktop PC 

 

 
1115 PC des equip. 

 

 
1130 Laptop 

 

 
1131 Laptop 2 

 

 
1162 Printer 

 

 
1168 Printer 2 

 

 
1207 Webcam 

 

 
1209 Router 

 

 
1216 Hard drive 

 

 
1267 Hard drive 

  

Table 7: TV/DVD Sub-Population 

 
SKU Description 

 

 
3639 Combo TV/DVD 

 

 
3641 19"-22" TV 

 

 
3643 32" TV 

 

 
3646  40"/42" TV 

 

 
3647  46"/47" TV 

 

 
4010  DVD Player 

  

 

 

3.2 Experimentwise Error Rate 



33 
 

It is important to note that the experimentwise error rate is likely very large for our pragmatic 

approach within this chapter. The   values for all the experiments considered is greater than the 

individual experiment. Steel and Torrie (1980) state that a true experimentwise error rate must clearly 

allow any and all possible hypotheses to be tested and that it is desired that each treatment has a 

meaningful set of contrasts. The experimentwise error rate approximation can be seen in equation (64), 

below: 

              
          (64) 

 

     is the experimentwise error rate,     is the per comparison error rate, and C is the number 

of comparisons. In the case of the home electronics scenario the per comparison error rate was set at 

.05 and there were a total of 28 comparisons made. In this case the experimentwise error rate would be 

.7622. This is high and it is likely that there is at least one type I error, but we believe there is 

overwhelming evidence of similar mean characteristics. With our research it is understood that there is 

a good chance of inflated type I errors due to the procedures we used to make sub-populations. It is 

important to be conscious of this as results are examined later in the research.  

  



34 
 

Chapter 4: Computer Program 

Small values of n have been examined for the SPC approach to cycle counting in Huschka (2009) 

using complete enumeration. In this chapter, we present a recursive approach to consider larger sample 

sizes. This approach is embedded in a computer program so that larger sample sizes can be considered. 

The data that was provided by the large retail environment was utilized to compare the results of the 

program with the results of complete enumeration. We will show that this program can achieve the 

same type I error rates as complete enumeration for n=1, n=2, and n=3. After n=3 complete 

enumeration becomes quite computationally burdensome.  

 

4.1 Defining the Recursive Relationship 

As stated previously, complete enumeration becomes computationally burdensome and is not 

effective to utilize as n grows larger. Miller (2008) develops an approach called conditional probabilities 

that is further used by Huschka (2009). Although this method is somewhat effective for estimating type I 

error rates, it is not effective for large sample sizes. With a recursive relationship, loops can easily be set 

to calculate n for much larger sizes, to provide precise estimates of type I error rates.  Equations (65), 

(66), and (67) show the relationship that was developed:  

   
    

       

  
                       (65) 

   
     

      
    

            (66) 

   
          

        

                  (67) 
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From equation (65), (66), and (67) the nomenclature follows as n is the total number of SKUs, i is 

the total number of errors, and j is the current iteration of the errors. Equation (65) initializes the 

recursive function. Q gives the final probability at n=1 for each error, j. Using this initialization it is 

possible to utilize this equation to solve for any value of n as seen in equation (66). The final equation 

(67) determines the final type I error. With this recursive equation in place it is easy to examine larger 

sizes of n. The next step was developing a program that could read data and take the necessary steps to 

find error rates for the data. 

 

4.2 Computer Program 

 A computer program was created to calculate larger values of n and can be found in Appendix A.  

There are two main parts to the program. The first part begins reading the number of product types in 

each sub-population and the corresponding   and   values. Once these values are calculated, the 

program utilizes equations (54) and (55) to find the expected value and variance for the sub-population. 

With the expected value and variance the LCL and UCL can be calculated with equations (56) and (57). 

The second part of the program applies the recursive relationship to calculate each of the probabilities 

and ultimately find the type I error rate. The final program takes the   and   values that are specified by 

the user and give a print out from n=1 to n=150. This can be edited to be larger or smaller depending on 

preference of the user.  Figure 5, below, is an example of the output screen from the program. 
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Figure 5: Computer Program Output 

 Comparisons of the program are made to complete enumeration to ensure that the correct 

expected value, variance, LCL, UCL, and Type I error are calculated. To do this a sub-population was 

arbitrarily picked with size of m=10 and fixed alpha and lambda equal to .1 and 2.5 respectively.  Table 8, 

below, provides the results of complete enumeration vs. the computer program.  

 

Table 8: Complete Enumeration vs. Computer Program 

  n= Exp. Value Variance LCL UCL Type I Error 

Complete 
Enumeration 

1 2.5 2.5 0 7.243 0.004245 

2 2.5 2.5 0 11.708 0.00545 

3 2.5 2.5 0 15.716 0.004603 

Computer 
Program 

1 2.5 2.5 0 7.243 0.004245 

2 2.5 2.5 0 11.708 0.00545 

3 2.5 2.5 0 15.716 0.004603 

  

 Table 8 shows that the computer program is validated with complete enumeration and has the 

ability to give accurate results. In the type I error rate column, it can be seen that the computer program 

provides the same precision as complete enumeration up to 6 decimal places.  
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Chapter 5: Type I Error Rates 

Based upon observations made analyzing real world data, an experiment of numerous different 

type I error rates are constructed to evaluate the type I error rate in a balanced fashion. There are 

numerous different type I error rates that could be examined, but ultimately the real world retail 

environment data is used to derive the type I error rates examined. In this section larger values of n and 

differing sub-populations are examined. Specifically, n=5, n=75, and n=150 are explored. Additionally 

m=5, m=10, and m=15 are examined. Defining the   and   values that are utilized is a little more 

complex and will be explained in the following section. 

 

5.1 Defining   and   Values 

In this section we will explore   and   values when m=5, but any of the scenarios can be 

replicated for differing values of m. Five different methods are used for   which are fixed, delta 

increase, delta decrease, skewed top, and skewed bottom. When observing   values it is important to 

keep in mind that each value is a proportion of the population and thus the sum of all the  ’s within a 

sub-population must add up to 1. When the   values are fixed the total proportion of the sub-

population, 1, is divided by the size of the sub-population, m. This can be seen in equation (68): 

        
 

 
          (68) 

  

 In the fixed scenario when observing m=5,  =.2 for all  ’s within the sub-population. The next 

scenario for   is delta increase and delta decrease. These two states are calculated in the same manner 

the only difference is increase starts at the minimum and goes to the maximum, while decrease starts at 

the maximum and goes to the minimum. The initialization of this state can be seen, below, in equation 

(69): 

                        (69) 
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 When using the delta approach the first step is to calculate the delta total which can be done by 

using equation (69). In the case of m=5 the delta total would be equal to 15. Once this is calculated the 

next step is to calculate the individual   values for the delta approach with equation (70): 

        
  

      
         (70) 

 

 Equation (70) allows for each individual   value to be calculated for the delta state. In the case 

of m=5 and delta increase state   =.0666,   =.1333,   =.2000,   =.2666, and   =.3333. To utilize the 

delta decrease state these values are reversed starting at .3333.  

The final scenario that is observed is the skewed top and skewed bottom. This scenario is 

observed because it is important to understand how a single product could potentially skew results if it 

is a high proportion of the population. In the case of skewed top    was arbitrarily set to equal .5, while 

the remaining  ’s proportions are evenly distributed utilizing equation (68).  In the case of skewed top 

  =.5,   =.125,   =.125,   =.125, and   =.125. Skewed bottom is obtained by swapping    and   .  

Now that the process to find each of the   values has been defined the next step is to define the 

process to find each of the   values. Similarly to   these values will differ as there are changes in m and 

the observations below will be for m=5. There are four different methods utilized for   which are: flat 

minimum, flat maximum, linear, and weighted.  

The real world data helped drive the   values that are used.  From the data it was found that all 

of the   values were greater than .5 and less than 5. These values are then set as the maximum and 

minimum values that are used for testing. Flat minimum is sets all of the   values equal to .5, while flat 

maximum sets all of the   values equal to 5. The linear approach is an increase in a linear manner from a 

starting value of .5 to an ending value of 5. The equation to find    can be seen, below, in equation (71) 

and (72): 
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         (71) 

                    (72) 

 

In equation (71) 4.5 is used because it is the difference between 5 and .5. When looking at m=5 

the   values are as follows   = .5,   = 1.625,   =2 .75,   = 3.875, and   = 5. The final approach for   

values is the weighted scenario. This is similar to the idea of skewed   ’s. All of the   values are at the 

minimum of .5 while the last   value in the sub-population is heavily weighted with a value of 5. Each of 

the approaches outlined in this section is chose to test numerous different possible scenarios that could 

occur in the real world. It is not an exhaustive list of possible scenarios that can happen in the real 

world. The exact values that are used in each of these different scenarios are found in Appendix B.  

 

5.2 Type I Error Rate Results 

Using every scenario of   and   that have been outlined nine detailed tables can be found in 

Appendix C that show the type I error rate for every scenario.  From these tables it was determined that 

m has no effect on the type I error rate when   is set to flat minimum or flat maximum.  A separate table 

for flat minimum and flat maximum for each value of n are examined. In Table 9, below, a list of the type 

I error rates for the flat minimum and flat maximum are presented: 

 

Table 9: Flat Min/Max Type I Error Rates 

  n=5 n=75 n=150 

Flat Minimum 0.004245 0.003124 0.002952 

Flat Maximum 0.002240 0.002123 0.002045 

 

Table 9 shows that the type I error rates are all relatively low, no matter the scenario, but a Flat 

maximum gives a little bit lower type I error rate. In all cases the type I errors are similar to the classic 
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  chart with normality assumed, but it does appear that the SPC approach may have a bit better type I 

error for larger     or average inventory inaccuracy. 

 

It is also important to note that as n increases the type I error rate continues to decrease. We 

now extend our type I error rates to   conditions of linear and weighted. Table 10, below, has the type I 

error rates for the linear and weighted scenarios: 

 

Table 10: Linear/ Weighted Type I Error Rates 

Lambda Linear Weighted 

Alpha n= m=5 m=10 m=15 m=5 m=10 m=15 

Fixed 

5 0.003287 0.003811 0.003451 0.008133 0.014378 0.014846 

75 0.002607 0.002436 0.002523 0.003238 0.003674 0.003928 

150 0.002371 0.002428 0.002408 0.002821 0.003233 0.003499 

Delta Increase 

5 0.002612 0.003149 0.002854 0.004641 0.008996 0.010831 

75 0.002490 0.002431 0.002528 0.002555 0.003280 0.003566 

150 0.002392 0.002176 0.002146 0.002383 0.002680 0.002936 

Delta Decrease 

5 0.004992 0.005308 0.004642 0.014846 0.016851 0.012562 

75 0.002761 0.002669 0.002694 0.003928 0.005110 0.003829 

150 0.002641 0.002490 0.002370 0.003499 0.003646 0.003255 

Skewed Top 

5 0.004669 0.005867 0.007527 0.010831 0.016788 0.014115 

75 0.002532 0.002617 0.002835 0.003566 0.004038 0.004887 

150 0.002529 0.002524 0.002598 0.002936 0.003375 0.003834 

Skewed Bottom 

5 0.003221 0.002531 0.002697 0.003309 0.003309 0.003309 

75 0.002194 0.002345 0.002401 0.002517 0.002517 0.002517 

150 0.002130 0.002216 0.002232 0.002343 0.002343 0.002345 

 

Table 10 was designed to display type I error rates in a readable format that allows for easy 

comparison between scenarios. The first observation made from Table 10 is that some of the type I 

error rates are reaching above 1%. A type I error rate above 1% is not uncommon, but it is a value that is 

much higher than the classic value of .0027 for an   chart assuming normality. Looking at Table 10 it is 
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noted that all of the values above 1% occurred when   is weighted and n=5. There is some evidence that 

increasing n for the weighted conditions of   may lead to excessive type I error rates.  

In the weighted scenario, all of the values are set to .5 except for a single value that is set to 5. 

This causes a high variance for the number of errors and pushes the control limits further out. When 

looking at lower values of n, the calculation of the LCL will return a negative value that is outside the 

realm of feasible errors. In the case of UCL, it does not get out far enough to make up for the large 

variance in probabilities, and in turn, it causes the type I error rate to increase. From looking at Table 10 

it is seen that the type I error rate is well below 1% when n=75 or n=150. This should not be a cause for 

a concern.  

The second finding from Table 10 is that type I error rates decrease as n increases. This is no 

surprise, as such behavior is expected due to the central limit theorem. Table 10 confirms the 

hypothesis and matches the findings from Table 9. When n=150 it is evident that the highest type I error 

rate is .003834. As with Table 9 this is not below the .0027 that is necessary to meet the normality 

assumption, but is still an acceptable type I error rate.  

 

5.3 Type I Error Rate Conclusions 

 Several general observations are made from Table 9 and Table 10. The first was that no matter 

what value of m, if the      are equal, the type I error rate is the same for all conditions. This makes 

logical sense because the expected value and variance are the same no matter how many sub-

populations exist.  

The second observation made is that as n increases the type I error rate dwindles. As this is 

examined further it is found that this is what should be expected. The central limit theorem states that 

as sample sizes increase, with a mean and variance, the sampling distribution of the mean approaches a 
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normal distribution. In our scenarios, the sampling distribution is tending to a normal distribution as 

more SKUs are pulled from the mixture Poisson process. This is the cause for slight decrease in the the 

type I error rates as n increases.  

 The final observation made is that the majority of our type I error rates were below 1% which is 

an acceptable level. However, there are a few cases in which the type I error rate is seen to inflate 

higher than 1%. The only cases of this happening were when n=5 with   set to weighted. It is 

determined that this is due to the large variance that is caused when   is weighted. From these findings 

it can be determined that this would not be a serious issue for any real world environment because it is 

unlikely that a real world retail environment would ever be looking at such small values of n. It is 

however important to note this and keep it in mind when looking at scenarios that would come close to 

fitting a weighted state.  



43 
 

Chapter 6: Type II Error Rates 

In this section type II error rates are discussed. Shifts in   at 10%, 25%, and 35% will be 

observed. Since type I error rates are calculated for nine different tables above with three different 

shifts in   this would require a total of 27 tables. The same table format will be utilized as was used for 

type I error rates. Appendix D presents all 27 tables and these may be referenced as necessary. Before 

moving forward it is important to mention that this is not an exhaustive list of all type II error rates. In 

fact there are an infinite number of scenarios for which type II error rates could be determined. This 

section provides a balanced set of scenarios and examines how different shifts in    affect the type II 

error rates.  

 

6.1 Type II Error Rates       Shift  

A smaller shift of        begin the examination of type II error rates. This is determined to be 

small by running numerous tests and finding that the type II error rates were unlikely to be detected in 

most scenarios. In Table 11, below, the type II error rates for flat minimum and flat maximum can be 

seen at different levels of n: 

 

Table 11: Flat Min/Max,         Type II Error Rates 

  n=5 n=75 n=150 

Flat Minimum 0.999411 0.997919 0.993811 

Flat Maximum 0.998703 0.908302 0.727124 

 

 When n=5, both flat minimum and flat maximum have fairly high type II error rates which means 

it is unlikely that this shift would be detected. As n starts to increase it is observed that the type II error 

rate decreases for both flat minimum and flat maximum. When looking at flat maximum, it is seen that it 
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decreases at a much faster rate as n increases, since the flat maximum has much higher values of    than 

flat minimum. If a higher   is shifted by a percentage it causes the shifted  ’s to increase at a faster rate. 

As the values of   increase, the expected value will also increase. Thus a shift with higher   values will 

cause its expected value to move away from the assumed expected value of the control limits at a much 

faster rate. This allows for quicker detection of a type II error rate, because it more quickly moves away 

from the mean as the shift increases. In Table 12, below, we present the type II errors for linear and 

weighted  ’s with a 10% increase: 

 

Table 12: Linear/ Weighted,         Type II Error Rates 

Lambda Linear Weighted 

Alpha n= m=5 m=10 m=15 m=5 m=10 m=15 

Fixed 

5 0.998952 0.998764 0.998900 0.995902 0.994410 0.994102 

75 0.988917 0.988462 0.987505 0.998757 0.999220 0.999060 

150 0.968217 0.961694 0.963686 0.996467 0.997809 0.998351 

Delta Increase 

5 0.999246 0.993420 0.999100 0.998124 0.996924 0.993901 

75 0.977045 0.975535 0.973590 0.997302 0.998816 0.999081 

150 0.931200 0.917313 0.913742 0.992634 0.996698 0.997459 

Delta Decrease 

5 0.997988 0.998796 0.998175 0.994102 0.988564 0.991189 

75 0.994695 0.993649 0.993119 0.998757 0.998964 0.998233 

150 0.983399 0.980218 0.976875 0.998351 0.997903 0.996157 

Skewed Top 

5 0.998079 0.997430 0.997910 0.993901 0.993295 0.998599 

75 0.996231 0.996960 0.996786 0.999081 0.999104 0.990800 

150 0.989766 0.990549 0.990625 0.997495 0.998354 0.990109 

Skewed Bottom 

5 0.999497 0.999329 0.999589 0.999365 0.999365 0.999365 

75 0.981053 0.976383 0.973948 0.993985 0.993985 0.993984 

150 0.942092 0.929416 0.924577 0.983733 0.983733 0.983732 

 

 Similar to Table 11, we see that in Table 12 the type II error rates are relatively high. This should 

not be of any concern because it is a small shift in       . Similar to the type I error rate, the type II 

error rate decreases as n increases in almost every scenario examined in Table 12.  
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It should be noted there are some cases that when n increases there is not a decrease in the 

type II error rate. These cases were isolated only to the scenario when   is in the weighted state. These 

few rare cases are examined and it is found that it only occurred when moving from n=5 to n=75. It is 

observed that there are ten cases where it didn’t decrease and of these cases the largest increase was 

by .010004.  

This is a similar situation to the problems observed with the weighted state for type I error 

rates. Due to the high variance of the   values, the distribution becomes quite dispersed. In the case of 

n=5, the type II error rate is lower because the LCL is truncated to zero, and the UCL is unable to detect 

the dispersion. This is not a huge concern, but is important to note when looking at data similar to the 

weighted state at low levels of n. There could also be some round off error due to the utilization of a 

program, but the values are small enough it is not of any concern. A larger shift in   is explored in the 

next section. 

 

6.2 Type II Error Rates       Shift  

Following the same format as above, the type II error rates for a shift in       are observed 

when the base state is set to flat minimum and flat maximum. Below, Table 13 presents type II error 

rates at different levels of n for each state: 

 

Table 13: Flat Min/Max,         Type II Error Rates 

  n=5 n=75 n=150 

Flat Minimum 0.998905 0.987006 0.938342 

Flat Maximum 0.994993 0.170157 0.004697 
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 Table 13 meets all the conditions that were observed in Table 11. It can be seen that the type II 

error rate decrease as n increases and that flat maximum is decreasing at a much faster rate than flat 

minimum. It is somewhat alarming to see n=150 return one type II error rate equal to .938342 and 

another equal to .004697. After further investigation, it can be attributed to the larger   values 

compared to such small    values. Keep in mind that two extremes for   values are used when looking at 

flat minimum and flat maximum. Table 14, below, provides the type II error rates for the linear and 

weighted states: 

 

Table 14: Linear/ Weighted,         Type II Error Rates 

Lambda Linear Weighted 

Alpha n= m=5 m=10 m=15 m=5 m=10 m=15 

Fixed 

5 0.999817 0.999777 0.999806 0.998539 0.997555 0.997226 

75 0.863697 0.845308 0.832716 0.994180 0.997976 0.998283 

150 0.554144 0.486133 0.486053 0.966540 0.981999 0.986121 

Delta Increase 

5 0.999705 0.999366 0.999408 0.999531 0.998926 0.997401 

75 0.683259 0.646398 0.625272 0.981731 0.994822 0.996991 

150 0.246691 0.189437 0.175521 0.915006 0.969900 0.979121 

Delta Decrease 

5 0.999483 0.999720 0.999544 0.997226 0.993543 0.994776 

75 0.942325 0.924152 0.916258 0.998283 0.997650 0.992211 

150 0.759122 0.703063 0.668434 0.986120 0.979259 0.961661 

Skewed Top 

5 0.999496 0.999254 0.999407 0.997401 0.996716 0.995321 

75 0.967231 0.973700 0.972843 0.996991 0.998750 0.998575 

150 0.860963 0.874276 0.876791 0.979121 0.986179 0.982998 

Skewed Bottom 

5 0.999887 0.999757 0.999832 0.999908 0.999908 0.999908 

75 0.739638 0.674209 0.648259 0.943876 0.943876 0.943876 

150 0.311082 0.234131 0.212416 0.776429 0.776429 0.776428 

 

 The first thing observed when looking at Table 14 is that it met all of the findings that we 

previously discovered in Table 12. When looking at the linear state, it is seen that as n increases, the 

type II error rate decreases. When looking at the weighted state, it is seen that there are a few cases 
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that the type II error rates are not decreasing as n is increasing. In Table 14 there were only six cases of 

the type II error rate not decreasing as n increased. Like Table 12, it only happened from n=5 to n=75. It 

was also found that the largest discrepancy between the two values was an increase of .004017 which is 

much better than .010004 we saw in Table 12. It is seen that potential round off errors have lessened in 

table 8. 

 When    is shifted it moves the entire distribution to the right which allows for improved 

detection. This is important with a highly variable state with a low level of n because the control limits 

are now detecting more probabilities within the realm of possible errors. As shifts in   continue to grow 

this issue will dwindle until reaching a point that the type II error rates will all decrease as any value of n 

increases.  

 The final observation that was made from Table 14 is that Type II error rates drop in many of the 

scenarios. It was observed that the cases that type II error rates reached prevalent levels were when 

n=150, and it was set to a linear state. There was also somewhat of a trend when   was equal to skewed 

bottom and delta increase. In these cases there were larger drops in the type II error rate. These findings 

will continue to be monitored as larger shifts in   are explored. 

 

6.3 Type II Error Rates       Shift  

The final shift in a type II Error rate that will be observed will be a shift in      . Below, Table 

15 shows the type II error rates with a base condition set to flat minimum and flat maximum:  
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Table 15: Flat Min/Max,         Type II Error Rates 

  n=5 n=75 n=150 

Flat Minimum 0.999328 0.967226 0.837217 

Flat Maximum 0.988425 0.011245 0.000004 

 

 From Table 15 it is seen that the type II error rates continue to decrease as n increases. It is also 

seen that at the flat maximum condition, it decreases at a much faster rate than the flat minimum 

condition. From Table 11, Table 13, and Table 15 it is noted that as the shift in   increases there is a 

decrease in the type II error rate. This makes sense as the shift becomes more pronounced. Although 

this isn’t a surprise, it should be noted that type II error rates behaved as expected for this circumstance. 

Table 16, below, shows the type II error rates for the linear and weighted scenarios: 

 

Table 16: Linear/ Weighted,         Type II Error Rates 

Lambda Linear Weighted 

Alpha n= m=5 m=10 m=15 m=5 m=10 m=15 

Fixed 

5 0.999885 0.999931 0.999942 0.999263 0.998577 0.998305 

75 0.643636 0.602687 0.578296 0.985186 0.994754 0.995438 

150 0.182622 0.130891 0.128160 0.903518 0.948496 0.958904 

Delta Increase 

5 0.998330 0.998934 0.999050 0.999816 0.999465 0.998516 

75 0.331281 0.282605 0.260015 0.951121 0.986946 0.992413 

150 0.023377 0.012786 0.010724 0.762204 0.913643 0.940445 

Delta Decrease 

5 0.999790 0.999893 0.999817 0.998305 0.995543 0.996284 

75 0.836859 0.787829 0.768067 0.995438 0.993325 0.979684 

150 0.437658 0.351804 0.310054 0.958904 0.937276 0.892541 

Skewed Top 

5 0.999793 0.999671 0.999742 0.998516 0.997936 0.996920 

75 0.908467 0.925504 0.924025 0.992413 0.996560 0.995976 

150 0.630679 0.661848 0.668583 0.940445 0.958754 0.949448 

Skewed Bottom 

5 0.999892 0.999690 0.999763 0.999979 0.999979 0.999978 

75 0.409233 0.317150 0.286780 0.844875 0.844875 0.844874 

150 0.040273 0.020018 0.015894 0.462642 0.462642 0.462642 
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When studying Table 16 the first finding noted is that there is evidence that supported a 

previous theory. From Table 14 it was hypothesized that as shifts in   increased there would be a point 

at which all type II error rates would decrease as any value of n increases. When looking at Table 16 

every case that n increases results in a decrease in  .   

The second observation is that there are definitive trends that are causing type II error rates to 

drop. The first of these trends that is observed is that in almost every case when comparing a type II 

error rate with constant  , m, and n the linear state will result in a lower type II error rate than the 

weighted state. The only time this did not happen was in a few cases when n=5. This is due to the high 

variability with a low value of n that was previously discussed.  

There are two causes for the lower type II error rates for the linear state. The first is because it 

has lower variability like the weighted state. This means that the control limits are much tighter and as 

shifts occur they will move out of the control limits faster and allow them to be detected more quickly. 

The second reason is that the linear state has much higher values of   than in the weighted state. These 

values are higher  ’s causing the expected value to change much quicker thus moving away from the 

assumed mean quicker. 

The next trend that was seen was that when   was set to delta increase and skewed bottom, 

detection of type II error rates happened quicker. This relates back to having  ’s that are at a higher 

level thus causing a higher expected value. In the case of the delta increase and skewed bottom the 

highest proportioned   value lines up with the highest value of  . This causes the expected value to be 

much higher than other scenarios and causes shifts to move away from the mean at a much quicker 

rate. The conclusion section ties all of these findings together.  
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6.4 Type II Error Rate Conclusions 

After observing three different types of shifts in  , a few very important discoveries were made 

and a few questions that need to be explored further. The first area that needs to be explored is why flat 

maximum with a percentage shift is able to detect quicker than flat minimum.  Below, Table 17 and 

Table 18 show the control limits for each value of n and the corresponding control limits with each shift 

of    that is observed. 

 

Table 17: Flat Min CL vs. Shift CL 

  Base Min 10% Shift 25% Shift 35% Shift 

n=5 [0,7] [0,8] [0,8] [0,9] 

n=75 [19,56] [22,61] [26,67] [29,72] 

n=150 [47,98] [53,105] [59,117] [61,121] 

 

 

 

 

 When observing Table 17 and Table 18 we see that as the shift is increased the control limits 

move further away from the base condition as should be expected. As n increases we also see that the 

distribution is shifting away from the base condition quicker as we previously discovered. When 

comparing Table 17 and Table 18 it is observed that the distribution for flat maximum is shifting away 

from the base condition much quicker than flat minimum. Looking at the 35% shift when n=150 for flat 

minimum we see that the shifted control limits take into consideration a good portion of the base 

conditions control limits. When compared to a 35% shift when n=150 for flat maximum it is seen that 

the shifted control limits are completely outside of the base control limits.  

Table 18: Flat Max CL vs. Shift CL 

  Base Max 10% Shift 25% Shift 35% Shift 

n=5 [10,40] [12,43] [14,48] [16,51] 

n=75 [317,433] [352,473] [404,534] [429,564] 

n=150 [644,806] [713,882] [816,997] [885,1073] 
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This is the reason that in this scenario we see a type II error rate of .837217 for flat minimum 

while flat maximum returns a type II error rate of .000004. When observing percentage shifts the flat 

maximum will move quicker out of the base conditions control limits due to a higher expected value. 

This makes it much easier to detect shifts when    values are higher or there is significant weight put on 

an individual   value.   

 Another important take away from the type II error rate analysis was that m has minimal effect 

on the resulting type II error rate. Through all of the tables when everything else was held constant 

comparing type II error rates for different values of m gave very similar results. There was only one 

instance when there was a discrepancy larger than .06 in all of the tables. The majority of 

inconsistencies happened when using   values that had repeating decimals which caused numerical 

instability. 

 The third finding from the type II error rate examination was that when there is a single   value 

that is highly weighted it causes a high variance. Due to this high variance the probabilities stretch out 

and this causes an issue for small values of n. In the case of n=5 this causes the type II error rate to be 

lower because the LCL pushes negative and the UCL is unable to detect the large variance of 

probabilities.  

 The final conclusion from the type II error rate analysis is that as n increases a decrease in the 

type II error rate can be expected. Although this can’t be assumed for every state it is definitely the case 

in a large majority of the scenarios.  The only time this conclusion was not valid was when    was set to 

the weighted state for the reasons listed in the previous paragraph. It is important that when 

performing analysis on data to keep this in mind and understand how to find a scenario that would 

resemble the weighted state.   
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Chapter 7: Conclusion and Future Work 

 

7.1 Conclusions 

 The work by Huschka (2009) set the background for this thesis and brought up the need to 

examine larger sample sizes. Huschka proposed simulation, but we developed a recursive approach that 

eliminated the need for simulation. The development of this thesis has successfully advanced the belief 

that SPC can be utilized as an efficient method to improve inventory control systems in a real world 

environment as Huschka (2009) believed to be the case.  Although complete enumeration was an 

effective method to find type I error rates for small values of n, it was impossible to apply this to real 

world environments for large sample sizes. The development of a recursive function and a program that 

can calculate large values of n proved that SPC is utilized in a resourceful and practical manner. There 

are a few important lessons and findings from this research that will now briefly be discussed. 

 As n increases a decrease in type I and type II error rates should be expected in most scenarios. 

It was found that the only time this did not occur is when looking at smaller values of n and when   is set 

to the weighted state. To avoid these issues it would be recommended to observe your   values closely 

to ensure that there is not a single value that is an outlier from the rest of the sub-population. It is also 

suggested that when utilizing the SPC approach to use sample sizes greater than 50.  

 This research was able to determine that m has minimal to no affect on type I and type II error 

rates. It was found that there was some variance due to round off error and repeating decimals, but it 

was negligible in most scenarios. This is an important find because it allows the practitioner to make 

comparisons between sub-populations of different sizes of m. 
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 The final finding from this research was the effect larger expected values have on the detection 

rate of type II errors. When observing percentage shifts, the flat maximum distribution will move quicker 

out of the base conditions control limits due to a higher expected value. This will assist the practitioner 

when observing the expected values of differing populations and making connections to the type II error 

rates.  In the future work section we will look at a method that allows for equal detection of type II error 

rates and other methods to advance this research. 

 

7.1 Future Work 

 The research completed in this thesis takes the previous work of Huschka (2009) and proves the 

usefulness of SPC in real world retail environments. With this progression, the next steps of this work 

should be to look at methods to further improve upon the current model and computer program work 

that was created in this thesis.  

 The modeling techniques used in this thesis only scratched the surface of possible situations 

that could come up in the real world. Type II errors could be extended beyond just the shifts in   that 

are observed in this research. Model shifts in   should be examined first. Additionally, since an 

analytical approach is now available for large sample sizes the type I error rates should be fixed at .0027. 

Then from there finding the resulting type II error rates could be analyzed. This would allow for an equal 

detection process for all type II error rates. 

 Aside from the modeling techniques, there are also significant improvements that need to be 

made to the computer program. In its current state, it is effective for finding type I and type II error 

rates, but it is not efficient. For each value in the type II error rate table   ,    m, n, and control limits 

had to be adjusted manually. After entering each of these values, the program calculates the type II 
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error rate for that specific location in the table. Adding on to the program to allow it to calculate type II 

error rates for different values of m and n for a certain set of   and   values would allow it to be much 

more efficient. There are also memory allocation issues. The current program can only calculate up to 

values of n=150. After that point issues start to occur and the program crashes. It would be a huge 

improvement to rework resource allocations within the program to allow it to calculate up to n=200.  

 The final area to progress the work in this thesis is to utilize an updated and efficient computer 

program to observe a retail environment over a period of time. Although real world data was used in 

this thesis, it was a snapshot of data. Being able to observe data over a six month to one year period 

would allow for the observation of the complexities of a real world environment over time. This could 

open up new ideas on how to improve the current work and show that the current work is effective in 

all situations instead of isolated scenarios.  
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Appendix A – Computer Program 

 

#include "stdafx.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include "math.h" 
 
typedef struct Data_S Data; 
typedef struct Families_S Families; 
typedef struct Product_S Product; 
 
#define MAXFAMILY 1 
#define MAXITER 151 
#define MAXSKUS 16 
#define MAXHISTORY 0 
#define MAXERRORS 822 
 
 
struct Data_S { 
 Families *family; 
 int numfamilies; 
 int totaldatapts; 
 double *totalerrorprob; 
}; 
 
struct Families_S { 
 Product *prod; 
 int numprod; 
 double ucl[MAXITER]; 
 double lcl[MAXITER]; 
 double expectval; 
 double var; 
 double prob[MAXITER][MAXERRORS]; 
}; 
 
 
struct Product_S { 
  double alpha; 
  double lamda; 
  double *probabilities; 
  int probabilitylength; 
  int *errorhistory; 
  int historylength; 
  int familynum; 
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  int productnum; 
}; 
 
void alphalambda (Data *data); 
 
void calcprob (Data *data, int numberit); 
 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 int errors, i, j, k, numberit; 
 Data *data=NULL; 
 
 data =(Data*)calloc( 1, sizeof( Data )); 
 data->totalerrorprob =(double*)calloc(MAXERRORS, sizeof(double)); 
 data->family =(Families*)calloc(MAXFAMILY, sizeof(Families)); 
 for(i=0;i<MAXFAMILY;i++){ 
  data->family[i].prod =  (Product*)calloc(MAXSKUS, sizeof(Product));  
  for (j=0; j<MAXSKUS; j++) { 
 
  } 
 } 
 
 alphalambda (data); 
 
 numberit=1;   
 
 calcprob(data, numberit); 
 
 return 0; 
} 
 
 
void alphalambda (Data *data) { 
 
 int cnt,i, j, k, l, sum, totpicks; 
 double sumd, sumstdev, var, UCL, LCL; 
  
 data->numfamilies=1; 
 for (i=0; i<data->numfamilies; i++) { 
 
         data->family[i].prod[1].alpha=.2; 
   data->family[i].prod[2].alpha=.2; 
   data->family[i].prod[3].alpha=.2; 
   data->family[i].prod[4].alpha=.2; 
   data->family[i].prod[5].alpha=.2; 
 
   data->family[i].prod[1].lamda=.5; 
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   data->family[i].prod[2].lamda=.5; 
   data->family[i].prod[3].lamda=.5; 
   data->family[i].prod[4].lamda=.5; 
   data->family[i].prod[5].lamda=.5; 
 
   data->family[i].numprod=5; 
 
 } 
 
 getchar(); 
 
 for (i=0; i<data->numfamilies; i++) {  
  sumd=0; 
  for (j=1; j<=data->family[i].numprod; j++) { 
  
  } 
 } 
 
    for (i=0; i<data->numfamilies; i++) {  
  sumd=0; 
  sumstdev=0; 
  for (j=1; j<=data->family[i].numprod; j++) { 
   sumd+=data->family[i].prod[j].alpha*data->family[i].prod[j].lamda; 
   sumstdev+=data->family[i].prod[j].alpha*(((data->family[i].prod[j].lamda*data-
>family[i].prod[j].lamda)+data->family[i].prod[j].lamda)); 
   var=sumstdev-(sumd*sumd); 
  } 
 
  data->family[i].var=var; 
  data->family[i].expectval=sumd; 
 
  for (j=1; j<MAXITER; j++) { 
   data->family[i].lcl[j]=(double)j*data->family[i].expectval-3*sqrt(j*data-
>family[i].var); 
   data->family[i].ucl[j]=(double)j*data->family[i].expectval+3*sqrt(j*data-
>family[i].var); 
   if ( data->family[i].lcl[j]<0) data->family[i].lcl[j]=0; 
  } 
 } 
} 
 
void calcprob (Data *data, int numberit) 
{ 
 
 int cnt,i, j, k, l, m,  totpicks; 
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 double sumd, pr, finalprob 
[MAXFAMILY][MAXERRORS],prob[MAXFAMILY][MAXERRORS],origprob[MAXERRORS],totalprob[MAXERR
ORS],fact ; 
 double answerprob [MAXFAMILY][MAXITER][MAXERRORS]; 
 double type1error; 
 
 for (i=0; i<data->numfamilies; i++) { 
  for (l=0; l<MAXERRORS; l++) { 
   finalprob[i][l]=0; 
   prob[i][l]=0; 
  } 
 } 
 
 for (i=0; i<data->numfamilies; i++) { 
  for (l=0; l<MAXERRORS; l++) { 
   prob[i][l]=0; 
   finalprob[i][l]=0; 
  } 
  for (j=1; j<=data->family[i].numprod; j++) { 
   for (l=0; l<MAXERRORS; l++) { 
    pr= pow(2.71828,(-data->family[i].prod[j].lamda)); 
 
    for (m=1;m<=l; m++) { 
     pr=pr*data->family[i].prod[j].lamda/(double)m; 
    } 
    pr=pr*data->family[i].prod[j].alpha; 
    prob[i][l]+=pr; 
   } 
  } 
  for (l=0; l<MAXERRORS; l++) { 
 
  } 
 } 
 
    numberit=145; 
 for (i=0; i<data->numfamilies; i++) { 
  for (j=0; j<=numberit; j++) { 
   for (k=0; k<MAXERRORS; k++) { 
    if (j==1) { 
     answerprob[i][1][k] =prob[i][k]; 
    } else  answerprob[i][j][k]=0; 
   } 
  } 
 } 
 for (i=0; i<data->numfamilies; i++) { 
  for (j=2; j<=numberit; j++) { 
   sumd=0; 
   for (k=0; k<MAXERRORS; k++) { 
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    for (l=0; l<=k; l++){ 
     answerprob[i][j][k]+=answerprob[i][1][l]*answerprob[i][j-1][k-l]; 
 
    } 
    sumd+=answerprob[i][j][k]; 
   } 
  } 
 } 
  
 for (i=0; i<data->numfamilies; i++) { 
 
  for (j=1; j<=numberit; j++) { 
   
   for (k=0; k<MAXERRORS; k++) { 
    data->family[i].prob[j][k]=answerprob[i][j][k]; 
     
   } 
  } 
 } 
 
 for (i=0; i<data->numfamilies; i++) { 
 
  for (j=1; j<=numberit; j++) { 
   sumd=0; 
   for (k=288; k<=411; k++) { 
    sumd+=data->family[i].prob[j][k];  
   } 
  type1error=1-sumd; 
  printf("n= %d ex val: %.3f var: %.2f LCL: %.1f UCL: %.3f ", j, data->family[i].expectval, 
data->family[i].var, data->family[i].lcl[j], data->family[i].ucl[j]); 
  printf("Type II: %f\n", sumd); 
  } 
 } 
} 
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Appendix B –  ,  , and m Values for Tables 

Appendix C-Table 1: m=15 Values 

m=15 Fixed Delta Increase Delta Decrease Skewed Top Skewed Bottom 

Alpha 1 0.067 0.008 0.125 0.500 0.036 

Alpha 2 0.067 0.017 0.117 0.036 0.036 

Alpha 3 0.067 0.025 0.108 0.036 0.036 

Alpha 4 0.067 0.033 0.100 0.036 0.036 

Alpha 5 0.067 0.042 0.092 0.036 0.036 

Alpha 6 0.067 0.050 0.083 0.036 0.036 

Alpha 7 0.067 0.058 0.075 0.036 0.036 

Alpha 8 0.067 0.067 0.067 0.036 0.036 

Alpha 9 0.067 0.075 0.058 0.036 0.036 

Alpha 10 0.067 0.083 0.050 0.036 0.036 

Alpha 11 0.067 0.092 0.042 0.036 0.036 

Alpha 12 0.067 0.100 0.033 0.036 0.036 

Alpha 13 0.067 0.108 0.025 0.036 0.036 

Alpha 14 0.067 0.117 0.017 0.036 0.036 

Alpha 15 0.067 0.125 0.008 0.036 0.500 

m=15 Flat Min. Flat Max Linear Weighted 
 Lambda 1 0.50 5.00 0.50 0.50 
 Lambda 2 0.50 5.00 0.82 0.50 
 Lambda 3 0.50 5.00 1.14 0.50 
 Lambda 4 0.50 5.00 1.46 0.50 
 Lambda 5 0.50 5.00 1.79 0.50 
 Lambda 6 0.50 5.00 2.11 0.50 
 Lambda 7 0.50 5.00 2.43 0.50 
 Lambda 8 0.50 5.00 2.75 0.50 
 Lambda 9 0.50 5.00 3.07 0.50 
 Lambda 10 0.50 5.00 3.39 0.50 
 Lambda 11 0.50 5.00 3.71 0.50 
 Lambda 12 0.50 5.00 4.04 0.50 
 Lambda 13 0.50 5.00 4.36 0.50 
 Lambda 14 0.50 5.00 4.68 0.50 
 Lambda 15 0.50 5.00 5.00 5.00 
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Appendix C-Table 2: m=10 Values 

m=10 Fixed Delta Increase Delta Decrease Skewed Top Skewed Bottom 

Alpha 1 0.100 0.018 0.182 0.500 0.056 

Alpha 2 0.100 0.036 0.164 0.056 0.056 

Alpha 3 0.100 0.055 0.145 0.056 0.056 

Alpha 4 0.100 0.073 0.127 0.056 0.056 

Alpha 5 0.100 0.091 0.109 0.056 0.056 

Alpha 6 0.100 0.109 0.091 0.056 0.056 

Alpha 7 0.100 0.127 0.073 0.056 0.056 

Alpha 8 0.100 0.145 0.055 0.056 0.056 

Alpha 9 0.100 0.164 0.036 0.056 0.056 

Alpha 10 0.100 0.182 0.018 0.056 0.500 

m=10 Flat Min. Flat Max Linear Weighted 
 Lambda 1 0.50 5.00 0.50 0.50 
 Lambda 2 0.50 5.00 1.00 0.50 
 Lambda 3 0.50 5.00 1.50 0.50 
 Lambda 4 0.50 5.00 2.00 0.50 
 Lambda 5 0.50 5.00 2.50 0.50 
 Lambda 6 0.50 5.00 3.00 0.50 
 Lambda 7 0.50 5.00 3.50 0.50 
 Lambda 8 0.50 5.00 4.00 0.50 
 Lambda 9 0.50 5.00 4.50 0.50 
 Lambda 10 0.50 5.00 5.00 5.00 
  

Appendix C-Table 3: m=5 Values 

m=5 Fixed Delta Increase Delta Decrease Skewed Top Skewed Bottom 

Alpha 1 0.200 0.067 0.333 0.500 0.125 

Alpha 2 0.200 0.133 0.267 0.125 0.125 

Alpha 3 0.200 0.200 0.200 0.125 0.125 

Alpha 4 0.200 0.267 0.133 0.125 0.125 

Alpha 5 0.200 0.333 0.067 0.125 0.500 

m=5 Flat Min. Flat Max Linear Weighted 
 Lambda 1 0.50 5.00 0.50 0.50 
 Lambda 2 0.50 5.00 1.63 0.50 
 Lambda 3 0.50 5.00 2.75 0.50 
 Lambda 4 0.50 5.00 3.88 0.50 
 Lambda 5 0.50 5.00 5.00 5.00 
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Appendix C – All Type I Error Rate Tables 

Appendix D-Table 1: n=5, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.004245 0.002240 0.003287 0.008133 

Delta Increase 0.004245 0.002240 0.002612 0.004641 

Delta Decrease 0.004245 0.002400 0.004992 0.014846 

Skewed Top 0.004245 0.002240 0.004669 0.010831 

Skewed Bottom 0.004245 0.002240 0.003221 0.003309 

 

Appendix D-Table 2: n=75, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.003124 0.002123 0.002607 0.003238 

Delta Increase 0.003124 0.002123 0.002490 0.002555 

Delta Decrease 0.003124 0.002123 0.002761 0.003928 

Skewed Top 0.003124 0.002123 0.002532 0.003566 

Skewed Bottom 0.003124 0.002123 0.002194 0.002517 

 

Appendix D-Table 3: n=150, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.002953 0.005444 0.002371 0.002821 

Delta Increase 0.002953 0.005444 0.002392 0.002383 

Delta Decrease 0.002953 0.005444 0.002641 0.003499 

Skewed Top 0.002953 0.005444 0.002529 0.002936 

Skewed Bottom 0.002953 0.005444 0.002130 0.002343 
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Appendix D-Table 4: n=5, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.004245 0.002240 0.003811 0.014378 

Delta Increase 0.004245 0.002240 0.003149 0.008996 

Delta Decrease 0.004245 0.002240 0.005308 0.016851 

Skewed Top 0.004270 0.002240 0.005867 0.016788 

Skewed Bottom 0.004270 0.002240 0.002531 0.003309 

 

Appendix D-Table 5: n=75, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.003124 0.002123 0.002436 0.003674 

Delta Increase 0.003124 0.002123 0.002431 0.003280 

Delta Decrease 0.003124 0.002123 0.002669 0.005110 

Skewed Top 0.003124 0.002123 0.002617 0.004038 

Skewed Bottom 0.003124 0.002123 0.002345 0.002517 

 

Appendix D-Table 6: n=150, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.002953 0.005444 0.002445 0.003233 

Delta Increase 0.002953 0.005444 0.002176 0.002680 

Delta Decrease 0.002953 0.005444 0.002490 0.003646 

Skewed Top 0.002953 0.005444 0.002524 0.003375 

Skewed Bottom 0.002953 0.005444 0.002216 0.002343 

 

Appendix D-Table 7: n=5, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.004245 0.002240 0.003451 0.014846 

Delta Increase 0.004245 0.002240 0.002854 0.010831 

Delta Decrease 0.004245 0.002240 0.004642 0.012562 

Skewed Top 0.004245 0.002240 0.007527 0.014115 

Skewed Bottom 0.004245 0.002240 0.002697 0.003309 
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Appendix D-Table 8: n=75, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.003124 0.002123 0.002523 0.003928 

Delta Increase 0.003124 0.002123 0.002528 0.003566 

Delta Decrease 0.003124 0.002123 0.002694 0.003829 

Skewed Top 0.003124 0.002123 0.002835 0.004887 

Skewed Bottom 0.003124 0.002123 0.002401 0.002517 

 

Appendix D-Table 9: n=150, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.002952 0.005444 0.002408 0.003499 

Delta Increase 0.002953 0.005444 0.002146 0.002936 

Delta Decrease 0.002953 0.005444 0.002370 0.003255 

Skewed Top 0.002953 0.005444 0.002598 0.003834 

Skewed Bottom 0.002953 0.005444 0.002232 0.002345 
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Appendix D – All Type II Error Rate Tables 

Appendix E-Table 1: y=10%, n=5, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.999411 0.998703 0.998952 0.995902 

Delta Increase 0.999411 0.998703 0.999246 0.998124 

Delta Decrease 0.999411 0.998703 0.997988 0.994102 

Skewed Top 0.999411 0.998703 0.998079 0.993901 

Skewed Bottom 0.999411 0.998703 0.999497 0.999365 

 

Appendix E-Table 2: y=10%, n=75, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.997919 0.908302 0.988917 0.998757 

Delta Increase 0.997919 0.908302 0.977045 0.997302 

Delta Decrease 0.997919 0.908302 0.994695 0.999066 

Skewed Top 0.997919 0.908302 0.996231 0.999081 

Skewed Bottom 0.997919 0.908302 0.981053 0.993985 

 

Appendix E-Table 3: y=10%, n=150, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.993811 0.727124 0.968217 0.996467 

Delta Increase 0.993811 0.727124 0.931200 0.992634 

Delta Decrease 0.993811 0.727124 0.983399 0.998351 

Skewed Top 0.993811 0.727124 0.989766 0.997495 

Skewed Bottom 0.993811 0.727124 0.942092 0.983733 
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Appendix E-Table 4: y=10%, n=5, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.999411 0.998703 0.998764 0.994410 

Delta Increase 0.999411 0.998703 0.993420 0.996924 

Delta Decrease 0.999411 0.998703 0.998796 0.988564 

Skewed Top 0.999411 0.998703 0.997430 0.993295 

Skewed Bottom 0.999411 0.998703 0.999329 0.999365 

 

Appendix E-Table 5: y=10%, n=75, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.997919 0.908302 0.988462 0.999220 

Delta Increase 0.997919 0.908302 0.975535 0.998816 

Delta Decrease 0.997919 0.908302 0.993649 0.998964 

Skewed Top 0.997919 0.908302 0.996960 0.999104 

Skewed Bottom 0.997919 0.908302 0.976383 0.993985 

 

Appendix E-Table 6: y=10%, n=150, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.993811 0.727124 0.961694 0.997809 

Delta Increase 0.993811 0.727124 0.917313 0.996698 

Delta Decrease 0.993811 0.727124 0.980218 0.997903 

Skewed Top 0.993811 0.727124 0.990549 0.998354 

Skewed Bottom 0.993811 0.727124 0.929416 0.983733 

 

Appendix E-Table 7: y=10%, n=5, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.999411 0.998703 0.998900 0.994102 

Delta Increase 0.999411 0.998703 0.999100 0.993901 

Delta Decrease 0.999411 0.998703 0.998175 0.991189 

Skewed Top 0.999411 0.998703 0.997910 0.998599 

Skewed Bottom 0.999411 0.998703 0.999589 0.999365 
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Appendix E-Table 8: y=10%, n=75, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.997919 0.908302 0.987505 0.999060 

Delta Increase 0.997919 0.908302 0.973590 0.999081 

Delta Decrease 0.997919 0.908302 0.993119 0.998233 

Skewed Top 0.997919 0.908302 0.996786 0.990800 

Skewed Bottom 0.997919 0.908302 0.973948 0.993984 

 

Appendix E-Table 9: y=10%, n=150, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.993811 0.727124 0.963686 0.998351 

Delta Increase 0.993811 0.727124 0.913742 0.997459 

Delta Decrease 0.993811 0.727124 0.976875 0.996157 

Skewed Top 0.993811 0.727124 0.990625 0.998109 

Skewed Bottom 0.993811 0.727124 0.924577 0.983732 

 

Appendix E-Table 10: y=25%, n=5, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.998905 0.994993 0.999817 0.998539 

Delta Increase 0.998905 0.994993 0.999705 0.999531 

Delta Decrease 0.998905 0.994993 0.999483 0.997226 

Skewed Top 0.998905 0.994993 0.999496 0.997401 

Skewed Bottom 0.998905 0.994993 0.999887 0.999908 
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Appendix E-Table 11: y=25%, n=75, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.987006 0.170157 0.863697 0.994180 

Delta Increase 0.987006 0.170157 0.683259 0.981731 

Delta Decrease 0.987006 0.170157 0.942325 0.998283 

Skewed Top 0.987006 0.170157 0.967231 0.996991 

Skewed Bottom 0.987006 0.170157 0.739638 0.943876 

 

Appendix E-Table 12: y=25%, n=150, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.938342 0.004697 0.554144 0.966540 

Delta Increase 0.936983 0.004697 0.246691 0.915006 

Delta Decrease 0.936983 0.004697 0.759122 0.986120 

Skewed Top 0.936983 0.004697 0.860963 0.979121 

Skewed Bottom 0.937940 0.004697 0.311082 0.776429 

 

Appendix E-Table 13: y=25%, n=5, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.998900 0.994988 0.999777 0.997555 

Delta Increase 0.998900 0.994988 0.999366 0.998926 

Delta Decrease 0.998900 0.994988 0.999720 0.993543 

Skewed Top 0.998900 0.994988 0.999254 0.996716 

Skewed Bottom 0.998900 0.994988 0.999757 0.999908 

 

Appendix E-Table 14: y=25%, n=75, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.987006 0.170157 0.845308 0.997976 

Delta Increase 0.987006 0.170157 0.646398 0.994822 

Delta Decrease 0.987006 0.170157 0.924152 0.997650 

Skewed Top 0.987006 0.170157 0.973700 0.998750 

Skewed Bottom 0.987006 0.170157 0.674209 0.943876 
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Appendix E-Table 15: y=25%, n=150, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.938342 0.004697 0.486133 0.981999 

Delta Increase 0.938342 0.004697 0.189437 0.969900 

Delta Decrease 0.938342 0.004697 0.703063 0.979259 

Skewed Top 0.938342 0.004697 0.874276 0.986179 

Skewed Bottom 0.938342 0.004697 0.234131 0.776429 

 

Appendix E-Table 16: y=25%, n=5, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.998900 0.994988 0.999806 0.997226 

Delta Increase 0.998900 0.994988 0.999408 0.997401 

Delta Decrease 0.998900 0.994988 0.999544 0.994776 

Skewed Top 0.998900 0.994988 0.999407 0.995321 

Skewed Bottom 0.998900 0.994988 0.999832 0.999908 

 

Appendix E-Table 17: y=25%, n=75, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.987006 0.170157 0.832716 0.998283 

Delta Increase 0.987006 0.170157 0.625272 0.996991 

Delta Decrease 0.987006 0.170157 0.916258 0.992211 

Skewed Top 0.987006 0.170157 0.972843 0.998575 

Skewed Bottom 0.987006 0.170157 0.648259 0.943876 
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Appendix E-Table 18: y=25%, n=75, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.938342 0.004697 0.486053 0.986121 

Delta Increase 0.936983 0.004697 0.175521 0.979121 

Delta Decrease 0.936983 0.004697 0.668434 0.961661 

Skewed Top 0.936983 0.004697 0.876791 0.982998 

Skewed Bottom 0.937940 0.004697 0.212416 0.776428 

 

Appendix E-Table 19: y=35%, n=5, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.999328 0.988425 0.999885 0.999263 

Delta Increase 0.999328 0.988425 0.998330 0.999816 

Delta Decrease 0.999328 0.988425 0.999790 0.998305 

Skewed Top 0.999328 0.988425 0.999793 0.998516 

Skewed Bottom 0.999328 0.988425 0.999892 0.999979 

 

Appendix E-Table 20: y=35%, n=75, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.967226 0.011245 0.643636 0.985186 

Delta Increase 0.967226 0.011245 0.331281 0.951121 

Delta Decrease 0.967226 0.011245 0.836859 0.995438 

Skewed Top 0.967226 0.011245 0.908467 0.992413 

Skewed Bottom 0.967226 0.011245 0.409233 0.844875 

 

Appendix E-Table 21: y=35%, n=150, m=5 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.837217 0.000004 0.182622 0.903518 

Delta Increase 0.837217 0.000004 0.023377 0.762204 

Delta Decrease 0.837217 0.000004 0.437658 0.958904 

Skewed Top 0.837217 0.000004 0.630679 0.940445 

Skewed Bottom 0.837217 0.000004 0.040273 0.462642 
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Appendix E-Table 22: y=35%, n=5, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.999328 0.988425 0.999931 0.998577 

Delta Increase 0.999328 0.988425 0.998934 0.999465 

Delta Decrease 0.999328 0.988425 0.999893 0.995543 

Skewed Top 0.999328 0.988425 0.999671 0.997936 

Skewed Bottom 0.999328 0.988425 0.999690 0.999979 

 

Appendix E-Table 23: y=35%, n=75, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.967226 0.011245 0.602687 0.994754 

Delta Increase 0.967226 0.011245 0.282605 0.986946 

Delta Decrease 0.967226 0.011245 0.787829 0.993325 

Skewed Top 0.967226 0.011245 0.925504 0.996560 

Skewed Bottom 0.967226 0.011245 0.317150 0.844875 

 

Appendix E-Table 24: y=35%, n=150, m=10 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.837217 0.000004 0.130891 0.948496 

Delta Increase 0.837217 0.000004 0.012786 0.913643 

Delta Decrease 0.837217 0.000004 0.351804 0.937276 

Skewed Top 0.837217 0.000004 0.661848 0.958754 

Skewed Bottom 0.837217 0.000004 0.020018 0.462642 
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Appendix E-Table 25: y=35%, n=5, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.999328 0.988425 0.999942 0.998305 

Delta Increase 0.999328 0.988425 0.999050 0.998516 

Delta Decrease 0.999328 0.988425 0.999817 0.996284 

Skewed Top 0.999328 0.988425 0.999742 0.996920 

Skewed Bottom 0.999328 0.988425 0.999763 0.999978 

 

Appendix E-Table 26: y=35%, n=75, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.967226 0.011245 0.578296 0.995438 

Delta Increase 0.967226 0.011245 0.260015 0.992413 

Delta Decrease 0.967226 0.011245 0.768067 0.979684 

Skewed Top 0.967226 0.011245 0.924025 0.995976 

Skewed Bottom 0.967226 0.011245 0.286780 0.844874 

 

Appendix E-Table 27: y=35%, n=150, m=15 

    Lambda 

Alpha 

  Flat Min. Flat Max. Linear Weighted 

Fixed 0.837217 0.000004 0.128160 0.958904 

Delta Increase 0.837217 0.000004 0.010724 0.940445 

Delta Decrease 0.837217 0.000004 0.310054 0.892541 

Skewed Top 0.837217 0.000004 0.668583 0.949448 

Skewed Bottom 0.837217 0.000004 0.015894 0.462642 

 


