

TACKLING THE PROBLEMS OF DIVERSITY IN RECOMMENDER SYSTEMS

by

MANIKANTA BABU KARANAM

B.E., Osmania University, India, 2008

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2010

Approved by:

Major Professor

Dr. William H. Hsu

Abstract

A recommender system is a computational mechanism for information filtering, where

users provide recommendations (in the form of ratings or selecting items) as inputs, which the

system then aggregates and directs to appropriate recipients. With the advent of web based media

and publicity methods, the age where standardized methods of publicity, sales, production and

marketing strategies do not. As such, in many markets the users are given a wide range of

products and information to choose which product they like, to find a way out of this

recommender systems are used in a way similar to the live social scenario, that is a user tries to

get reviews from friends before opting for a product in a similar way recommender system tries

to be a friend who recommends the options.

Most of the recommender systems currently developed solely accuracy driven, i.e.,

reducing the Mean Absolute Error (MAE) between the predictions of the recommender system

and actual ratings of the user. This leads to various problems for recommender systems such as

lack of diversity and freshness. Lack of diversity arises when the recommender system is overly

focused on accuracy by recommending a set of items, in which all of the items are too similar to

each other, because they are predicted to be liked by the user. Lack of freshness also arises with

overly focusing on accuracy but as a limitation on the set of items recommended making it

overly predictable.

This thesis work is directed at addressing the issues of diversity, by developing an

approach, where a threshold of accuracy (in terms of Mean Absolute Error in prediction) is

maintained while trying to diversify the set of item recommendations. Here for the problem of

diversity a combination of Attribute-based diversification and user preference based

diversification is done. This approach is then evaluated using non-classical methods along with

evaluating the base recommender algorithm to prove that diversification is indeed is possible

with a mixture of collaborative and content based approach.

 iii

Table of Contents

List of Figures .. vi

List of Tables ... ix

Acknowledgements ... x

1 Introduction and Background .. 1

1.1 Introduction ... 1

1.2. Background ... 2

1.2.1 Content-based Approach ... 4

1.2.2 Collaborative Filtering .. 5

1.2.2.1 Memory-Based .. 5

1.2.2.2 Model-Based ... 6

1.2.3 Hybrid Approach .. 7

1.2.4 Open Research Problems .. 7

1.2.4.1 Overconcentration / diversity issues ... 8

1.2.4.2 Accuracy / freshness / relativity .. 8

1.2.4.3 Handling non-static data ... 8

1.2.4.4 Learning method for new users... 9

1.2.4.5 Sparse data .. 9

1.3 Thesis Goals .. 10

1.3.1 High-level Overview ... 12

2 Related Research Work ... 13

2.1 Base Recommender Algorithm ... 13

2.1.1 Content-based Approaches ... 13

2.1.2 Collaborative Filtering .. 14

2.1.3 Hybrid Approaches ... 16

2.2 Diversification in Recommender System ... 17

2.2.1 User preference based diversity .. 18

2.2.2 Attribute-based diversity ... 18

2.2.3 Explanation based diversity .. 19

3 Modeling text corpora and Clustering ... 20

 iv

3.1 Modeling text corpora ... 20

3.1.1 Information Retrieval Techniques .. 20

3.1.1.1 TF-IDF Scheme .. 20

3.1.1.2 LSI (Latent Semantic Indexing) .. 21

3.1.1.3 pLSI (Probabilistic Latent Semantic Indexing) .. 21

3.1.2 Latent Dirichlet Allocation ... 22

3.1.2.1 Notation and Terminology .. 22

3.1.2.2 Generative Process of LDA .. 23

3.2. Cluster Analysis .. 25

4 Preliminary Experiments & Methodology... 28

4.1 Preliminary Experiments .. 28

4.2 Methodology ... 31

4.2.1. Collaborative Filtering Component .. 31

4.2.2. Content-Based Component ... 33

4.2.3. Hybrid Step: Weighted Combination.. 35

4.2.4. Diversity .. 38

5 Experimental Setup .. 48

5.1. LDA, No. of Topics. ... 48

5.2. Cluster Sizes.. 49

5.2.1. Collaborative Filtering .. 49

5.2.2. Diversifier ... 50

5.3. Evaluation Metrics .. 51

5.4. Evaluation - Experiments. ... 52

6 Evaluations and Results ... 53

6.1. Evaluating based on MAE .. 53

6.1.1 Experiment Set 1.1 .. 53

6.1.2 Experiment Set 1.2 .. 65

6.1.3 Comparison with other base recommender algorithms .. 76

6.2. Evaluation of Diversity Metrics of the recommender system 78

6.3. Conclusion and Research Questions ... 85

7 Future Work and Limitations... 86

 v

7.1. Limitations .. 86

7.2. Future Work .. 87

Bibliography ... 88

 vi

List of Figures

Figure 1-1: Recommendation Techniques. [9] .. 4

Figure 1-2: Long tail in recommender systems [32] ... 10

Figure 1-3: Loss of Relevancy: Accuracy (%) to Loss in Items (%) for validation of thesis goal of

70% threshold cutoff. .. 11

Figure 3-1: The topic simplex for three topics embedded in the word simplex for three words. The

corners of the word simplex correspond to the three distributions where each word

(respectively) has probability one. The three points of the topic simplex correspond to three

different distributions over words. The mixture of unigrams places each document at one of

the corners of the topic simplex. The pLSI model induces an empirical distribution on the

topic simplex denoted by x. LDA places a smooth distribution on the topic simplex denoted

by the contour lines.[6] ... 22

Figure 3-2: Graphical model representation of LDA. The boxes are ‘plates’ representing

replicates. The outer plate represents documents, while the inner plate represents the

repeated choice of topics and words within a document. [6] ... 24

Figure 3-3: Clustering Stages [21] .. 25

Figure 3-4: K-Means Example [[53]] .. 27

Figure 4-1: Mean Absolute Error (MAE) to Number of Users, graph for a pure collaborative

filtering approach on five different 80-20 splits of the complete data set, each represented

by Set1, Set2, Set3, Set4 and Set5. .. 29

Figure 4-2: Mean Absolute Error (MAE) to Number of Users, graph for a pure Content-based

approach on five different 80-20 splits of the complete data set, each represented by Set1,

Set2, Set3, Set4 and Set5. .. 30

Figure 4-3: Euclidean Distance [53]... 32

Figure 4-4: System Architecture.. 47

Figure 5-1: LDA - no. of topics to Accuracy, with different classifiers like Naïve Bayes, Support

Vector Machine (SVM), J48 (), Logistic Regression, Random Forest. 49

Figure 5-2: Average Similarity of Cluster centers to Number of Clusters 50

file:///C:/Users/mkaranam/Desktop/thesis/Thesis_doc_temp.doc%23_Toc278225973
file:///C:/Users/mkaranam/Desktop/thesis/Thesis_doc_temp.doc%23_Toc278225977
file:///C:/Users/mkaranam/Desktop/thesis/Thesis_doc_temp.doc%23_Toc278225978

 vii

Figure 6-1: Cross Validation Plot for the parameter set (α = 0.7, β = 0.1, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 55

Figure 6-2: Cross Validation Plot for the parameter set (α = 0.6, β = 0.2, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 56

Figure 6-3: Cross Validation Plot for the parameter set (α = 0.5, β = 0.3, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 57

Figure 6-4: Cross Validation Plot for the parameter set (α = 0.4, β = 0.4, γ = 0.05, δ = 0.05 and

λ = 0.1) with Folds to Mean Absolute Error... 58

Figure 6-5: Cross Validation Plot for the parameter set (α = 0.4, β = 0.4, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 59

Figure 6-6: Cross Validation Plot for the parameter set (α = 0.4, β = 0.4, γ = 0.1, δ = 0.05 and λ

= 0.05) with Folds to Mean Absolute Error. .. 60

Figure 6-7: Cross Validation Plot for the parameter set (α = 0.3, β = 0.5, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 61

Figure 6-8: Cross Validation Plot for the parameter set (α = 0.2, β = 0.6, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 62

Figure 6-9: Cross Validation Plot for the parameter set (α = 0.1, β = 0.7, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error. .. 63

Figure 6-10: Cross Validation Plot for the parameter set (α = 0.1, β = 0.1, γ = 0.1, δ = 0.6 and λ

= 0.1) with Folds to Mean Absolute Error. .. 64

Figure 6-11: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.7, β

= 0.1, γ = 0.05, δ = 0.1 and λ = 0.05) .. 67

Figure 6-12: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.6, β

= 0.2, γ = 0.05, δ = 0.1 and λ = 0.05) .. 68

Figure 6-13: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.5, β

= 0.3, γ = 0.05, δ = 0.1 and λ = 0.05) .. 69

Figure 6-14: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.4, β

= 0.4, γ = 0.1, δ = 0.05 and λ = 0.05) .. 70

Figure 6-15: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.4, β

= 0.4, γ = 0.05, δ = 0.1 and λ = 0.05) .. 71

 viii

Figure 6-16: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.4, β

= 0.4, γ = 0.05, δ = 0.05 and λ = 0.1) .. 72

Figure 6-17: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.3, β

= 0.5, γ = 0.05, δ = 0.1 and λ = 0.05) .. 73

Figure 6-18: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.2, β

= 0.6, γ = 0.05, δ = 0.1 and λ = 0.05) .. 74

Figure 6-19: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.1, β

= 0.7, γ = 0.05, δ = 0.1 and λ = 0.05) .. 75

Figure 6-20: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.1, β

= 0.1, γ = 0.1, δ = 0.6 and λ = 0.1) .. 76

Figure 6-21: ‘Average Similarity to Number of Users’ for 1st 80-20 split dataset. 80

Figure 6-22: ‘Average Similarity to Number of Users’ for 2nd 80-20 split dataset. 81

Figure 6-23: ‘Average Similarity to Number of Users’ for 3rd 80-20 split dataset. 82

Figure 6-24: ‘Average Similarity to Number of Users’ for 4th 80-20 split dataset. 83

Figure 6-25: ‘Average Similarity to Number of Users’ for 5th 80-20 split dataset. 84

 ix

List of Tables

Table 1-1: Notations used in a recommender system ... 3

Table 1-2: Recommendation Techniques. [9] ... 3

Table 2-1: Recommender Techniques ... 17

Table 6-1: Experimental Parameter Set ... 54

Table 6-2: Experimental Splits (Data Sets). ... 65

Table 6-3: Experimental Parameter Set ... 66

Table 6-4: Comparison with various base recommender algorithms. .. 78

 x

Acknowledgements

I would like to thank my major professor, Dr. William H. Hsu for his guidance,

suggestions, comments, patience and encouragement in the completion of the thesis work. I owe

him my gratitude towards the completion of my thesis work.

 I would also like to thank my Dr. Doina Caragea for guiding me through the initial

phases of the thesis and also for commenting and suggesting changes during the course of the

thesis work.

I also would like to thank Dr. Gurdip Singh for agreeing to serve in my committee and

also, for guiding and suggesting in both his courses and my thesis.

 1

1 Introduction and Background

1.1 Introduction

‘It is often necessary to make choices without sufficient experiences of the alternatives.

As such, a typical recommender system tries to assist users in this process of choosing

alternatives, where the user is still naïve in the current scenario’. [35] A recommender system is

a computational mechanism for information filtering, where users provide recommendations (in

the form of ratings or selecting items) as inputs, which the system then aggregates and directs to

appropriate recipients. With the advent of web based media and publicity methods, in many

markets the users are given a wide range of products and information to choose which product

they like, to find a way out of this recommender systems are used in a way similar to the live

social scenario, that is a user tries to get reviews from friends before opting for a product in a

similar way recommender system tries to be a friend who recommends the options [35].

As Chris Anderson mentions in his ‘A Long Tail’, ‘we are leaving the age of information

and entering the age of recommendation’. In today’s world, the age where standardized methods

of publicity, production and marketing strategies do not work because of a large section of users

who prefer rated, reviewed and recommended products; As such, in many markets the users are

given a wide range of products and information to choose which from, to find a way out of this;

recommender systems are used in a way similar to the live social scenario, that is a user tries to

get reviews from friends before opting for a product in a similar way recommender system tries

to be a friend who recommends the options.

The above mentioned process is a sequential process and early recommender systems

were thought to be a problem of sequential prediction, but further development and research led

to the stage where they are considered to be an iterative decision problem.

It has been more than a decade since the first papers on recommender systems have been

published ([35], [18]) and there have been many successful systems implemented in one’s daily

life. They have seen a great deal of commercial success (for example Amazon and Netflix). Even

then, the area of recommender system has a lot of research problems left to deal, with lots of

improvements still needed since; they are still far from perfect, and face tremendous challenges

in increasing the overall utility of the recommendations. These challenges are present in all

stages of the recommendation process. They begin with the cold start problem: given a new user

 2

how do we recommend items to the user without forcing her to give feedback on a starter set of

items [47]. Similarly, given a new item introduced into the system, how do we know when (and

to whom) we should recommend it?

This thesis focuses on the development of a diversity-boosting component of a

recommender system - one that returns a set of items that are not to similar to one another. This

component extends and is used in tandem with an algorithmic approach to collaborative

recommendation: one that performs partitioning-based clustering of user ratings and applies

classification-based prediction.

Information retrieval is a major part of this recommender system since the items

considered here are movies and they are described with the use of text documents. To measure

similarities between textual documents there have been many information retrieval techniques

developed but a relatively new technique, Latent Dirichlet Allocation is used. Collaborative-

filtering is one of the most successful techniques used in the construction of a recommender

system. This approach requires the system to find a set of users similar to the active user, to

accomplish this task portioning-based clustering (K-Means clustering) is used.

1.2. Background

The research in this field of recommender systems has been a long one; the first

recommender system [14] was developed in 1992, and they introduced the term collaborative

filtering. As such, for almost two decades there has been a significant increase in the techniques

used for recommending. Many popular algorithms have been proposed to solve the ever evolving

problem of recommending.

In Table 1-2, some of the popular techniques used for developing recommender systems

are listed and a brief description of the background, input and the process used for each of the

techniques is documented [9]. Also, in Figure 1-1, a graphical representation of the techniques is

given.

 3

Terms Notations

Users: People who use the system to provide

reviews or feedback, using which the system

tries to recommend to an unknown new user.

u

Set of Users U

Items: Things a system has to recommend. i

Set of Items I

Table 1-1: Notations used in a recommender system

Technique Background Input Process

Collaborative Ratings from U of item in

I.

Ratings from u of items

in I.

Identify users in U

similar to u, and

extrapolate from their

ratings of i.

Content-based Features of items in I. u’s ratings of items in I Generate a classifier

that fits u’s rating

behavior and use it on

i.

Demographic Demographic information

about U and their ratings

of items in I.

Demographic

information about u.

Identify users that are

demographically

similar to u, and

extrapolate from their

ratings of i.

Utility-based Features of items in I. A utility function over

items in I that describes

u’s preferences.

Apply the function to

the items and

determine i’s rank.

Knowledge-

based

Features of items in I.

Knowledge of how these

items meet a user’s needs.

A description of u’s

needs or interests.

Infer a match between

i and u’s need.

Table 1-2: Recommendation Techniques. [9]

 4

Figure 1-1: Recommendation Techniques. [9]

The approaches used in constructing a recommender system are classified into three main

categories; they are content-based, collaborative filtering and hybrid approaches [3]. As, these

form the major part of the work done in this thesis work, a brief understanding of these

approaches is needed.

1.2.1 Content-based Approach

Content-based recommendation can be termed as an outgrowth and continuation of

information filtering research [4]. In a content-based system, the objects of interest are defined

by their associated features. For example, text recommendation systems like the newsgroup

filtering system NewsWeeder [26] uses the words of their texts as features. A content-based

recommender learns a profile of the user’s interests based on the features of items the user has

rated; and can be termed as ‘item-to-item correlation’ [39]. The type of user profile derived by a

content-based recommender depends on the learning method employed. Decision trees, neural

nets, and vector-based representations have all been used. As in the collaborative case, content-

based user profiles are long-term models and updated as more evidence about user preferences is

observed. Content-based approach is one where the recommendation is done solely based on the

similarity between the items and the active users’ preferences rather than considering the

information which the other users provide. Here similarity is computed based on item attributes

using appropriate distance measures. Each item is represented by a feature vector or an attribute

 5

profile. The features in general might hold nominal values (topics, classes) or numeric values

representing the defining aspects of the item. A variety of distance measures can be used over the

feature vectors to calculate the similarity between two items. Some of the commonly used

distance measures would be cosine similarity, TF-IDF, etc.[37]

1.2.2 Collaborative Filtering

Collaborative filtering (CF) is a process of filtering information using various techniques

by the use of collaboration between many agents. In recommender systems, this can be termed

an approach of filtering information (regarding the reviews, ratings, feedback of items by various

users) [38]. ‘Collaborative recommender systems compute item propositions by analyzing

community data and similarities between users or items’ [49]. The basic usage is done in an

iterative process, in step one a set of similar users to the active (current) user are found and the

information representing these users (user profiles) is considered. Finding the similarity between

users can be done in many ways like considering the patterns of ratings, patterns of reviews or

feedbacks and techniques like distance measures can be used to find the similarity between the

users. After the initial set of similar users is found the information pertaining to those users is

used to obtain the predictions on the items for the active user. To summarize this it can be said

that the like-minded users have same preferences and capturing these preferences can help in

alleviating the problem of recommender system. Many different techniques have been proposed

for collaborative recommendation, including the most original methods [36], Bayesian learning

[44], latent semantic indexing [22] and clustering.

Two types of algorithms for collaborative filtering have been studied: memory based and

model-based.

1.2.2.1 Memory-Based

This mechanism uses user rating data to compute similarity between users or items,

which is used for making recommendations [7]. It is easy to implement and is effective. The

basic idea is to compute the active user’s predicted vote of an item as a weighted average of

votes by other similar users or K nearest neighbors (KNN) [45]. Two commonly used memory-

based algorithms are the Pearson Correlation Coefficient (PCC) algorithm [36] and the Vector

Space Similarity (VSS) algorithm [7]. These two approaches differ in the computation of

similarity. The PCC algorithm generally achieves higher performance than vector-space

 6

similarity method. The advantages with this approach are the ability to explain the results, which

is an important aspect of recommendation systems. It is easy to create and use. New data can be

added easily and incrementally. It need not consider the content of the items being

recommended. The mechanism scales well with co-rated items. These approaches focused on

utilizing the existing rating of a training user as the features. However, the memory-based

method suffers from two fundamental problems: data sparseness and inability to scale up. Data

sparseness refers to the difficulty that most users rate only a small number of items and hence a

very sparse user-item rating matrix is available. As a result, the accuracy of the method is often

quite poor. As for computational scalability, algorithms based on memory-based approaches

often cannot cope well with the large numbers of users and items ([45], [7]).

1.2.2.2 Model-Based

In contrast, model-based algorithms build models that can explain the records of historic

ratings well and predict the ratings for an active user using estimated models [23]. Two popular

model-based algorithms are the clustering for collaborative filtering ([24], [44]) and the aspect

models [20]. Clustering techniques work by identifying groups of users who appear to have

similar preferences. Once the clusters are created, predictions for an individual can be made by

averaging the opinions of the other users in that cluster. Some clustering techniques represent

each user with partial participation in several clusters. The prediction is then an average across

the clusters, weighted by the degree of participation. The aspect model [20] is a probabilistic

latent-space model, which considers individual preferences as a convex combination of

preference factors. The latent class variable is associated with each observation pair of a user and

an item. The aspect model assumes that users and items are independent from each other given

the latent class variable. There are many model based CF algorithms. These include Bayesian

Networks, clustering models, latent semantic models such as singular value decomposition,

probabilistic latent semantic analysis, Multiple Multiplicative Factor, Latent Dirichlet allocation,

markov decision process based models. This approach has a more holistic goal to uncover latent

factors that explain observed ratings.

It handles the sparse data better than memory based ones. This helps with scalability with

large data sets. It improves the prediction performance. It gives an intuitive rationale for the

recommendations. The disadvantage with this approach is the expensive model building. One

needs to have a tradeoff between prediction performance and scalability. One can lose useful

 7

information due to reduction models. A number of models have difficulty explaining the

predictions [45].

1.2.3 Hybrid Approach

The term hybrid recommender system is used here to describe any recommender system

that combines multiple recommendation techniques together to produce its output. There is no

reason why several different techniques of the same type could not be hybridized, for example,

two different content-based recommenders could work together, and a number of projects have

investigated this type of hybrid, [5] which uses both naive Bayes and kNN classifiers in its news

recommendations, is just one example.

The earlier survey of hybrids [9] identified seven different types of hybrid approaches:

i. Weighted: The score of different recommendation components are combined

numerically.

ii. Switching: The system chooses among recommendation components and applies the

selected one.

iii. Mixed: Recommendations from different recommenders are presented together.

iv. Feature Combination: Features derived from different knowledge sources are combined

together and given to a single recommendation algorithm.

v. Feature Augmentation: One recommendation technique is used to compute a feature or

set of features, which is then part of the input to the next technique.

vi. Cascade: Recommenders are given strict priority, with the lower priority ones breaking

ties in the scoring of the higher ones.

vii. Meta-level: One recommendation technique is applied and produces some sort of model,

which is then the input used by the next technique.

1.2.4 Open Research Problems

In this section some of the open research problems are discussed, these are the major

problems which have been documented from the literature review ([2], [47], [28], [32], [40],

[43], [31]), which was done for the background information and also in understanding the state-

of-the-art recommender systems. The major reasoning behind such open problems is in most

cases the recommender algorithms are accuracy driven and this can in turn hurt the recommender

system itself [28].

 8

1.2.4.1 Overconcentration / diversity issues

Recommender systems in most cases are overly focused on accuracy and this scenario is

called as overconcentration [2]. Focusing solely on accuracy drives the recommender system to

recommended items which have high predicted rating, which can raise the scenario where the

items might be similar to each other in terms item-attributes. This scenario can limit the

recommendation item space. An example given by the author (Amer-Yahia, Lakshmanan,

Vassilvitskii, & Yu, 2009), in a movie recommender system if a user X has rated in favor of

movies in fantasy genre previously, then an accuracy driven recommendation system, tries to be

sure to recommend movies from fantasy genre which user X might enjoy but the system doesn’t

take risks to predict if the user X might try some movie from other genres. The result of never

taking risks might make the recommender system homogenous and boring; this can result in user

X losing interest in the system itself. ‘The goal of recommendation diversification is to identify a

list of items that are dissimilar with each other, but nonetheless relevant to the user’s interests’

[47].

1.2.4.2 Accuracy / freshness / relativity

A different but subtle problem which is not addressed usually is that of freshness [2].

Lack of freshness also arises with overly focusing on accuracy but as a limitation on the set of

items recommended making it overly predictable. In (Amer-Yahia, Lakshmanan, Vassilvitskii, &

Yu, 2009) the author suggests that even if the set of items recommended are diverse, it still might

lack freshness, to support this claim a simple example is given, a system that only recommends

blockbuster movies from every genre. While such a system would likely have high accuracy

scores (these items are blockbusters for a reason), and the set of recommended items is diverse

(since recommendations come from many different genres), such a system would rarely be

useful.

1.2.4.3 Handling non-static data

Sometimes the data of items or user profiles might be changing; the items may have been

upgraded or they might get more information, this is one problem where most recommender

systems are trained for a set of static item set, and recommend using those, but cannot handle

new data continuously [43]. Dealing with changing user preferences can be a big head-ache for a

recommender system which keeps track of user profiles. User preferences for products are

 9

drifting over time. Product perception and popularity are constantly changing as new selection

emerges. Similarly, customer inclinations are evolving, leading them to ever redefine their taste.

Thus, modeling temporal dynamics should be a key when designing recommender systems or

general customer preference models [25].

1.2.4.4 Learning method for new users

For a new user, to recommend items can be a challenge and trying to understand the user

can lead to many solutions but trying to find the best fit for the user is hard. One difficult, though

common, problem for a recommender system is the cold-start problem ([40], [31]), where

recommendations are required for items that no one (in our data set) has yet rated. Collaborative

filtering cannot help in a cold-start setting, since no user preference information is available to

form any basis for recommendations. However, content information can help bridge the gap

from existing items to new items, by inferring similarities among them. Choosing the features

can be a very difficult one. Since all users are not understood on the same basis.

1.2.4.5 Sparse data

Although every system has ‘super’ raters, that is people who rate thousands (and in some

cases tens of thousands) of items, the number of such people is low. In fact, most people give

feedback on only a handful of items, resulting in a large, but very sparse dataset. The data also

exhibits the long tail phenomenon, with the majority of items getting just a handful of ratings.

However, as recent studies have shown, understanding the tail is crucial—while no item in the

tail is rated by too many people, the vast majority of people rate at least a few items in the tail

[32].

 10

Figure 1-2: Long tail in recommender systems [32]

1.3 Thesis Goals

Regardless of the underlying recommendation strategy, item-based or user-based, one of

the key concerns in producing recommendations is over-concentration, which results in returning

items that are too homogeneous. Traditional solutions rely on post-processing returned items to

identify those which differ in their attribute values (e.g., genre and actors for movies). Such

approaches are not always applicable when intrinsic attributes are not available.

In this thesis, I consider the problem of diversifying the set of item recommendations.

This thesis presents an approach to diversify the recommended item set that is based on the

prediction combinations of content-based approach and collaborative filtering approach.

Although the problem of diversity and freshness seem to be very closely related they are very

independent of each other. The problem of freshness is also handled partly. Therefore the goals

of the thesis work are stated below:

i. Develop a recommender algorithm which can produce accurate predictions.

Accuracy is measured in terms of Mean Absolute Error (MAE); on a range of 1 to

5 accuracy greater than 70% (i.e., MAE less than 30% (1.5)) is considered to be

reasonable.

 11

To support the claim that 70% accuracy cutoff is indeed a reasonable threshold, a simple

experiment was done. The data set which is used to develop the recommender system, is used to

evaluate the changes with accuracy. The intuition is that in a worst case scenario, with changing

accuracy levels the items which are relevant can become irrelevant and irrelevant items can

become relevant items. Suppose on a rating scale of 1 to 5, with 1 being the worst and 5 being

best item for the user, then with changing accuracy the recommender system can term the items

indifferently.

The result of experiment is given below, with accuracy to loss in relevancy graph. From

the graph it can be inferred that until 70% accuracy the drop in relevancy is uniform after that

there is drastic drop in relevancy. Hence this supports the claim of 70% being a reasonable

accuracy cutoff for the recommender system.

Figure 1-3: Loss of Relevancy: Accuracy (%) to Loss in Items (%) for validation of thesis goal of

70% threshold cutoff.

ii. Prove that the generated recommender algorithm when compared to other hybrid

recommender algorithms performs reasonably well.

 12

iii. Diversify the set of item recommendations, without major loss of relevance.

Prove that once a threshold of the accuracy is reached diversity can be increased

further without any major loss of relevance.

Therefore, this thesis asserts that once a base recommender algorithm is generated, one

can diversify the set of item recommendations on various metrics with holding an acceptable

level of relevance. This thesis is directed at recommender systems which are developed holding

only the accuracy metrics as the only goal of recommending. The essence of the thesis work is to

understand the diversification process and advantages of diversifying using a hybrid approach

rather than an attribute driven diversification or explanation based diversification or random

diversification.

1.3.1 High-level Overview

In the thesis work, I develop a recommender system for movies. The data set used

consists of 943 users, who combined to rate a total of 1682 movies. The total numbers of ratings

are around 100,000. For most of the systems, developed using this dataset the MAE (Mean

Absolute Error) and using different base recommendation algorithms [46], is around 1.0 to 1.2

on a scale of 5. So the goal is to develop a recommender system, which tries to maintain a MAE

of 1.2 maximum thresholds cut off and tackle the issues of diversity and freshness.

To handle the issue of diversity, the approach is to understand the items, and trying to

come up with features which represent these items, and next try to sort them out into sets. As,

here the items are movies we can try to sort them out into sets in two ways. One possible solution

is to take the pre-defined genres and sort the movies by the values of the genres. Another

solution is to represent the movies in terms of feature vectors and then trying to sort them into

sets based on the distance between them. While, the first solution might result in movies being in

multiple sets and they might be given a higher weight for a specific user while recommending

genres. The drawback of second solution is that selecting the features can become a problem. In

Chapter 5, I discuss the solution more in detail. The issue of freshness is dealt in somewhat a

random way here; predictability comes when already known items are seen. Because of this, I

treat each item equally and in the later stages by the use of pattern seen in user profile to those

IMDB data Error! Reference source not found., I put weights to parameters which affect the

predicted rating of the movie. These approaches are discussed clearly and in detail in Chapter 4.

 13

2 Related Research Work

In this Chapter I discuss some of the base recommender algorithm approaches mentioned

in Chapter 1. In section 2.1, some of the related work and systems developed using content-

based, collaborative filtering and hybrid approaches is documented. Also, a comparison of those

approaches is also given. In section 2.2, the research part of this system ‘Diversity in

recommender system’ is discussed with the help some already existing approaches and

limitations and advantages of those approaches are done.

2.1 Base Recommender Algorithm

Some of the related work done in developing base recommender algorithms is

documented in this section.

2.1.1 Content-based Approaches

As mentioned in the previous Chapter, content-based Approaches are one of the majorly

used techniques in developing a recommender algorithm. There have been many systems which

have been developed using this approach. As mentioned in the previous Chapter content-based

approach tries to identify the item-to-item correlation between items rated/reviewed by the active

user to those of unseen items, thus inferring predictions. Even with the essence of such an

inference used in content-based recommender approach, there have been many improvements /

techniques used to increase such efficiency or accuracy of such inference.

For example, the approach of ‘Knowledge Infusion: the process of providing a system

with the background knowledge which allows a deeper understanding of the items it deals with.’

this deals with finding out models and relationships between information gathered from various

sources about the items [42]. Here, although the base technique is to find items which might be

liked by the user, this can be done with a better understanding of the items. As items are

described by their attribute profiles, this approach does give a richer attribute profiles, which

helps in understanding the items better. Clearly, however, the drawback of such an approach is

the source of information itself and the validity of the sources this might turn bad in case of web-

based applications. Also, building models on the large scale of information is very expensive,

although this might increase accuracy the process of model building is an expensive process.

 14

Another technique used to increase the efficiency of a content-based approach is to use

feature weighting in the representation of items [11], here changing the feature weights using a

collaborative filtering approach is done, with this richer feature profiles of items specific to the

active user are generated. Although from the results, it can be concluded that this approach

outperforms traditional content-based approaches, but the most common problem with content-

based approach is not solved, that is of uniquely identifying the items. The author does not

propose a solution to solve the problem of identifying features but tries to understand the

identified features better, and this approach works well for a well defined data set, but can

perform poorly if the features are wrongly identified.

Likewise in most systems using a content-based approach some common problems seem

to appear. Some of the advantages and disadvantages of content-based approaches are discussed

here.

Some of the advantages of this approach are the system can actually recommend

previously unrated items. In this approach all the items are considered to be equally weighted.

Thus this will not only consider popular items but also consider unrated and unpopular items.

Another advantage of content-based approach is the ability to recommend items to users with

unique interests and to provide explanations for its recommendations. Since it does not consider

user similarities, it only goes on to give items similar to the ones which the user likes, so any

kind of user can be recommended.

Some of the limitations of content-based approach are that of problem of finding features

which can uniquely identify the items is very difficult indeed. In most cases when the items are

very similar, then deciding on the number of features needed to identify each one uniquely can

cause quite a head-ache. Also, the recommending approach does not learn from the user, if the

user has contrasting opinions on two similar items, the system can lead to recommending

unrelated items.

2.1.2 Collaborative Filtering

As mentioned in the previous Chapter Collaborative Filtering Approaches are one of the

most commonly used techniques in developing a recommender algorithm. There have been many

systems which have been developed using this approach. As mentioned in the previous Chapter

Collaborative Filtering approach tries to identify the like-minded users to the active users, by

 15

using either a memory based approach (section 1.2.2.1) or model based approach (section

1.2.2.2) and from the like-minded users the intuition is to infer predictions on unrated items for

the active user. Even with the essence of such an inference in collaborative filtering approach,

there have been many improvements / techniques used to increase efficiency of such inference.

Identifying the users’ relevance opinion is one of the approaches [10]. The intuition is not

just finding like-minded users from the user database but to understand the like-minded user

itself. This is done to weight the relevance of the like-minded user to the active user. Thus

constructing such a model to understand the user relevance opinion is shown to increase the

efficiency of pure collaborative filtering approach. This kind of approach can lead to very

accurate predictions, but the approach doesn’t guarantee any accuracy when the active user is

unique or some unique items which are unrated or not popular might be recommended.

The above mentioned disadvantages are the most common in most systems using pure

collaborative filtering approaches, like another system [49] in which collaborative filtering is

used in two ways, one to directly infer predictions from the set of similar users to the active user

and another is to generate rules from the similar users using domain knowledge and user

preferences; these rules are used to infer more accurate predictions. This approach actually

solves one of the open problems ‘cold-start’ thanks to pre-processing done during the inception

of the system, but then again it still doesn’t handle the general problem in collaborative filtering

that of handling unique users and unpopular items.

Thus, from most of the research the advantages and disadvantages of collaborative

filtering approaches are documented here in short. Some of the main advantages of collaborative

filtering approaches are the mean squared error on the prediction on an item and to those of

actual ratings can be considerably reduced. It can actually give an accurate estimate on the items

reviewed by like-minded users, thus reducing the set of items to recommend considerably; also

the computational complexities are lesser than those of content-based approaches.

There are many known open problems, which are seen with the use of collaborative

filtering approach, although these approaches might give recommendations, in most cases the

items which the active user is looking for, but in some cases they might have the following

problems:- The problem of cold-start can be give a real head-ache, since to find similarity

between active user and set of other users, the active-user doesn’t have any information

regarding him, even if the cold-start is solved by initially giving a set of most popular items,

 16

there might be a possibility that the active user might be very unique and the knowledge base

might not have a user who is similar to the current user. Also, if the ratings of user for all the

items is sparse, i.e., if the user-item matrix of ratings is constructed and if the matrix is sparse,

then the similarity measure is going to weigh down significantly, since the measure of similarity

can be less the threshold which might actually signify dissimilar users. Also, in most cases the

items which are not popular are avoided and thus reducing the chance of a user having a broader

scope of items available, this might actually have a negative cascading effect on the purpose of

recommender system.

2.1.3 Hybrid Approaches

The term hybrid recommender system is used here to describe any recommender system

that combines multiple recommendation techniques together to produce its output. There is no

reason why several different techniques of the same type could not be hybridized, for example,

two different content-based recommenders could work together, and a number of projects have

investigated this type of hybrid [5], which uses both naive Bayes and kNN classifiers in its news

recommendations, is just one example.

The main purpose of developing hybrid approaches is to overcome the problem which is

seen using either the pure content-based approach or pure collaborative filtering approach. The

limitations of a hybrid system completely depends the type of hybrid it is and the base

recommender algorithm itself and it does not have common limitations like the previous

approaches.

As mentioned in the previous Chapter, a hybrid recommender system can be a

combination of any (at least two) recommender approaches, even if they are of the same type.

For example, in the previous section 2.1.2, the system [49] uses a combination of two

collaborative filtering approaches in a weighted hybrid recommender system. Also, in the section

2.1.1, the system [42] uses a weighted combination of multiple content-based approaches to

predict ratings. The systems combining same kind of recommender approaches implicitly they

carry the same problems as with their base approach. Because of this a content-based hybrid

approach has the same limitations as content-based normal system, and same agrees with a

collaborative filtering based hybrid approach.

 17

There are some systems, which try to merge different approaches in order to overcome

the limitations of each of the individual approaches. Content-boosted collaborative filtering is

one such approach [29] in which the existing user profiles are enriched with content-based

predictions and these are used to generate the collaborative filtering based predictions for the

complete set of items. This way, the limitations of collaborative filtering are overcome and also,

the limitations of content-based filtering.

A general comparison of the recommender approaches is given in table below, the

comparison is very generic and some of the attribute values for comparison can vary depending

on the approach used.

Attribute Content-Based Collaborative

Filtering

Hybrid (non-similar

approaches)

Unique Users

Unpopular Items

Non-static item set

Non-static user profiles

Sparse Data Set

Relevant Recommendation

Complexity

Table 2-1: Recommender Techniques

2.2 Diversification in Recommender System

There have been a lot of approaches which have been developed for solving the issues of

diversity. Some of them have been item-based diversification, some have been based on user

tastes and some have been a mixture of both item based and user preferences. Hence, diversity is

not just defined in terms of how different the set of recommended items are from each other, but

can be defined in terms of the need of the recommender system. For example, there are systems

which provide temporal diversity i.e., diversity over time, some which provide explanation

diversity i.e., the diversity which arises from difference in explanation of each recommended

 18

item (basically the approach used to get the item recommendation) and many other kinds of

diversities are possible based on the need of the recommender system.

Thus, this section concentrates on the diversification task which is handled in the current

thesis work, i.e., item diversity in the set of recommended items. Also, one of the pre-requisite of

this task of diversification is maintain a level of relevance, since diversifying the results solely

for the purpose of producing diverse results can lead irrelevant recommendations.

Some of the approaches used to produce item diversification are based on item attribute-

based diversification or user-preference based diversifications or explanation based

diversification.

2.2.1 User preference based diversity

The approach where diversification is done based on user attributes [50] can be beneficial

in many ways; here user attributes can refer to attributes which are used to understand the user.

The approach used here considers the items into clusters of topics which are relevant to the user

based on the user attributes and recommends using the topic probability for all items in the

topics. For example, in case of a movie recommender system, the topic might mean genres and

item diversification is done based on genre probabilities for the active user. Also, such an

approach leads to high level of diversification, while maintaining a reasonable amount of

accuracy, the problem with such an approach is that, this might work fine when user preferences

don’t change, i.e., using static data. But when dealing with changing user preferences this can

lead to very bad recommendations. Another issue can be that of understanding user tastes, which

itself is an open problem, since choosing the attributes on which the user has to be understood is

the very essence of recommender system.

2.2.2 Attribute-based diversity

The approach of attribute-based diversification is to say that the recommended items

differ from each other as much as possible. The measure used here can be termed as

‘dissimilarity’, which is to say the dissimilarity between items. This can be calculated by

representing the items using attributes and then concentrating on understanding the dissimilarity

of the attributes. For example, Yahoo! Movies [54] recommends movies based on the attributes

intrinsic to each movie (such as genre, director, etc.). This works reasonably well in comparison

with user-based diversification, but the only problem exists when the item set is not clearly

 19

defined. This approach doesn’t work properly in the web scenarios where the understanding the

items is not easy. The situations in which the items are clearly defined are the ideal situation for

such an approach [2].

2.2.3 Explanation based diversity

Another approach of explanation based item diversification [2] is to recommend a set of

items greedily to increase the diversity factor. The diversity factor used here is the ‘Jaccard

diversity distance: the difference in the explanation sources to two items’. Clearly this is a

completely different approach and is not compared to the item diversity produced by other

approaches, but here the novel factor is to produce diversity in items using the diversity which is

drawn from the recommender algorithm itself. This can lead to varied results in item diversity

since; it is possible to have different explanation sources for items even when the items are

intrinsically similar.

The approach used in this thesis work, is a combination of some of the above mentioned

approaches, to solve the issue of diversity to produce item based diversity. But the user tastes are

not considered directly, but are understood from the way of collaborative filtering, since the

clusters of similar users are considered to be of the same type as the active user. The approach is

to understand the items in-terms of attribute profiles. This is taken from the Content-based

approach; I propose to form clusters of items, which are similar to each other. Thus, this actually

considers various defining attributes of the items. After clusters of items are generated, trying to

assign weights on the clusters based on like-minded user preferences; like-minded users are

found from the collaborative filtering approach. The intuition behind using similar users instead

of the active user is to provide more diversification since although the users are similar they are

not identical so getting their choices helps in providing a variety of choices for the active user.

Greedily choose the items, which minimize the relative item similarity from each of the cluster

of items based on the weights of the clusters.

 20

3 Modeling text corpora and Clustering

This Chapter is documented to handle the discussions of some of the specific techniques

used in this thesis work. In section 3.1.1 some of the information retrieval techniques which have

been previously used to model textual corpora are discussed with their pros and cons and also

Latent Dirichlet Allocation which is used for topic modeling on item content as a replacement

for the previous IR techniques is discussed and in section 1 Clustering Analysis which is used to

find similar users and similar items is discussed.

3.1 Modeling text corpora

Information Retrieval is a science of retrieving information from documents, in general

sense searching through documents for information pertaining to a natural language query. One

of the main goals of a successful information retrieval is the techniques’ power of representing a

textual corpus. The goal is to find short descriptions of the members of a collection that enable

efficient processing of large collections while preserving the essential statistical relationships

that are useful for basic tasks such as classification, novelty detection, summarization, and

similarity and relevance judgments.

There have been many techniques which have been developed to handle this research

problem, the essence of the technique is to significantly reduce the text corpora into vector of

real numbers, the vectors might represent keywords, topics, etc.,

3.1.1 Information Retrieval Techniques

3.1.1.1 TF-IDF Scheme

A basic vocabulary of ‘words’ or ‘terms’ is chosen, and, for each document in the corpus,

a count is formed of the number of occurrences of each word. After suitable normalization, this

term frequency count is compared to an inverse document frequency count, which measures the

number of occurrences of a word in the entire corpus (generally on a log scale, and again suitably

normalized). The end result is a term-by-document matrix X whose columns contain the tf-idf

values for each of the documents in the corpus. Thus the tf-idf scheme reduces documents of

arbitrary length to fixed-length lists of numbers [37].

 21

While the tf-idf reduction has some appealing features—notably in its basic identification

of sets of words that are discriminative for documents in the collection—the approach also

provides a relatively small amount of reduction in description length and reveals little in the way

of inter- or intra-document statistical structure [6].

3.1.1.2 LSI (Latent Semantic Indexing)

LSI uses a singular value decomposition of the X matrix to identify a linear subspace in

the space of tf-idf features that captures most of the variance in the collection. This approach can

achieve significant compression in large collections. Furthermore, it can be argued that the

derived features of LSI, which are linear combinations of the original tf-idf features, can capture

some aspects of basic linguistic notions such as synonymy and polysemy [12].

3.1.1.3 pLSI (Probabilistic Latent Semantic Indexing)

Given a generative model of text, however, it is not clear why one should adopt the LSI

methodology—one can attempt to proceed more directly, fitting the model to data using

maximum likelihood or Bayesian methods.

A significant step forward in this regard was made by probabilistic LSI (pLSI) model

[19], also known as the aspect model, as an alternative to LSI. The pLSI approach, models each

word in a document as a sample from a mixture model, where the mixture components are

multinomial random variables that can be viewed as representations of ‘topics’. Thus each word

is generated from a single topic, and different words in a document may be generated from

different topics. Each document is represented as a list of mixing proportions for these mixture

components and thereby reduced to a probability distribution on a fixed set of topics. This

distribution is the ‘reduced description’ associated with the document.

In pLSI, each document is represented as a list of numbers (the mixing proportions for

topics), and there is no generative probabilistic model for these numbers. This leads to several

problems: (1) the number of parameters in the model grows linearly with the size of the corpus,

which leads to serious problems with over-fitting, and (2) it is not clear how to assign probability

to a document outside of the training set ([6], [15]).

Latent Dirichlet Allocation (LDA) was proposed to alleviate the problems of pLSI and to

produce a more generative probabilistic model. A clear depiction of the difference between pLSI,

LDA and unigrams is geometrically given in figure below.

 22

Figure 3-1: The topic simplex for three topics embedded in the word simplex for three words.

The corners of the word simplex correspond to the three distributions where each word

(respectively) has probability one. The three points of the topic simplex correspond to three

different distributions over words. The mixture of unigrams places each document at one of the

corners of the topic simplex. The pLSI model induces an empirical distribution on the topic

simplex denoted by x. LDA places a smooth distribution on the topic simplex denoted by the

contour lines.[6]

3.1.2 Latent Dirichlet Allocation

3.1.2.1 Notation and Terminology

The notation used in the methodology of LDA is given below:

 A word is the basic unit of discrete data, defined to be an item from a vocabulary

indexed by {1 … V}. We represent words using unit-basis vectors that have a

single component equal to one and all other components equal to zero. Thus,

 23

using superscripts to denote components, the v
th

 word in the vocabulary is

represented by a V-vector w such that wv = 1 and wu = 0 for u not equal to v.

 A document is a sequence of N words denoted by w = (w1, w2 … wn), where wn is

the n
th

 word in the sequence.

 A corpus is a collection of M documents denoted by D = {w1, w2 … wM}.

3.1.2.2 Generative Process of LDA

Here a brief description of the generative process which is used by LDA is given, for

further details regarding the generative process and other information refer to [6].

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The

basic idea is that documents are represented as random mixtures over latent topics, where each

topic is characterized by a distribution over words.

1. Choose N ~ Poisson (ξ).

2. Choose θ ~ Dir (α).

3. For each of the N words wn:

a) Choose a topic zn ~ Multinomial (θ).

b) Choose a word wn from p (wn | zn, β), a multinomial probability conditioned

on the topic zn.

Several assumptions are made to this basic model.

First, the dimensionality k of the Dirichlet distribution (and thus the dimensionality of the

topic variable z) is assumed known and fixed. Second, the word probabilities are parameterized

by a k x V matrix β where βij = p (w
j
 = 1 | z

i
 = 1), which for now we treat as a fixed quantity that

is to be estimated. Finally, the Poisson assumption is not critical to anything that follows and

more realistic document length distributions can be used as needed.

Next the k-dimensional Dirichlet random variable can take values in the (k−1)-simplex and

has a probability density function:

[6]

Where the parameter α is a k-vector with components αi > 0, and where Ґ(x) is the

Gamma function.

 24

Given the parameters α and β, the joint distribution of a topic mixture θ, a set of N topics

z, and a set of N words w is given by:

[6]

Where p (zn | θ) is simply θi for the unique i such that z
i
n = 1.

Integrating over θ and summing over z, we obtain the marginal distribution of a

document:

[6]

Finally, taking the product of the marginal probabilities of single documents, we obtain

the probability of a corpus:

[6]

The LDA model is represented as a probabilistic graphical model in Figure 3-2. As the

figure makes clear, there are three levels to the LDA representation. The parameters α and β are

corpus level parameters, assumed to be sampled once in the process of generating a corpus. The

variables θd are document-level variables, sampled once per document. Finally, the variables zdn

and wdn are word-level parameters and are sampled once for each word in each document.

The LDA tool which was used in this thesis Mallet [56] uses Gibbs Sampling for

estimating the parameters.

Figure 3-2: Graphical model representation of LDA. The boxes are ‘plates’ representing

replicates. The outer plate represents documents, while the inner plate represents the repeated

choice of topics and words within a document. [6]

 25

3.2. Cluster Analysis

Clustering is one of the major and important techniques used in unsupervised learning in

many fields like machine learning, information extraction etc., Unsupervised learning can be

termed as a class of problems were given a data one wants to find the structure, features and

distortion in the data. In unsupervised learning the data is unlabelled, so no organization is

manually done, so given such a data one tries to extract key features, understand the distortion

etc., Clustering is a technique used to solve these kinds of problems. Clustering is the

unsupervised classification of patterns (observations, data items, or feature vectors) into groups

(clusters). It has an appeal and usefulness as one of the steps in exploratory data analysis.

However, clustering is a difficult problem combinatorial, and differences in assumptions and

contexts in different communities have made the transfer of useful generic concepts and

methodologies slow to occur ([34], [21], [41]).

Here I cover some basics of clustering and which of the techniques is used in my work.

Going through the stages in clustering [21], the major importance is given to representing the

items (data) into an effective feature vector. The starting step is to understand patterns which can

help in identifying the features, using this, a set of all possible candidate features can be

extracted. In the next step, the extracted candidate features are used and using some selection

criteria based on the active problem, the feature selection is done and all the data is represented

in the form of feature vectors. Using some clustering technique in the next step these data nodes

are grouped into clusters. Normally, the grouping is done based on the distance measures

between all the data nodes. Most commonly used distance measures are:

 Euclidean Distance

 Manhattan Distance

 Hamming Distance

 Mahalanobis distance

Figure 3-3: Clustering Stages [21]

 26

Clustering techniques are majorly classified into two categories:

i. Hierarchical Clustering: In these types of clusters the clusters at any stage of

grouping are formed from the information by the previous stage clusters. These

are normally agglomerative (bottom-up) or Divisive (top-down). Clustering

techniques are those which are used on the data points which are represented in

the form feature vectors. [30]

ii. Partitioning Clustering: Here typically the approach tries to determine all clusters

at once. They are not dependent on the clusters of previous iterations like the

hierarchical clustering techniques. These are mostly used when the data set is

large enough that the computational effort used by hierarchical clustering is too

expensive. [30]

In this thesis work a partitioning clustering technique is used since the data set is large

enough. As mentioned before, clustering is a famous technique used for collaborative filtering

approach. Hence for collaborative filtering component of the recommender system clustering is

used and also in the approach to solve the problem of diversity.

The clustering technique specifically used is K-Means Clustering using Euclidean

Distance. The k-means algorithm assigns each point to the cluster whose center (also called

centroid) is nearest. The center is the average of all the points in the cluster — that is, its

coordinates are the arithmetic mean for each dimension separately over all the points in the

cluster. The steps used in K-Means algorithm [16] are given below:

1. Initialize algorithm with guessed centers C.

2. For each data point xi, compute its membership m (cj | xi) in each center cj and its

weight w (xi).

3. For each center cj, re-compute its location from all data points xi according to their

memberships and weights: given in the figure below.

4. Repeat steps 2 and 3 until convergence.

 27

Figure 3-4: K-Means Example Error! Reference source not found.

 28

4 Preliminary Experiments & Methodology

This Chapter is documented to address the methodology of the system developed in this

thesis work. In section 4.1 preliminary experiments and results are shown, which serve as the

rationale behind the decision for the approach chosen to develop the base recommender system

algorithm. In section 4.2, the methodology used in this thesis work is described in detail.

4.1 Preliminary Experiments

The approach used to develop a base recommender algorithm in this thesis work is a

weighted hybrid approach on a combination of content-based and collaborative filtering

components. To emphasize the need for using a hybrid approach, some initial experiments are

run on individual components of content-based and collaborative filtering,

The preliminary experiments are chosen from the most used experimental methodology,

i.e., measuring the responsiveness (accuracy) of a recommender system. The metric used to

measure this is the Mean Absolute Error (MAE), which is the mean of the absolute values of

error in prediction for each user.

The complete dataset used consists of 943 users who have combined to rate a total of

1682 movies and the total number of ratings is 100,000. From the complete data set 5 different

80-20 splits are taken to run the experiments. 80% split is considered as the train dataset and

20% split is considered as the test dataset.

For the content-based component the item representation in the attribute profile is done

using the topic probabilities which have been generated using LDA described in the previous

Chapter, and predicting the ratings of movies for users in the test set, using the train dataset.

For the collaborative filtering component the users from the train dataset are represented

using their ratings as feature instances, and clustered using this format to find a cluster of similar

users. Predictions are inferred for movies, using this cluster of similar users.

The results of these experiments for both content-based and collaborative filtering

component are given below in Figure 4-1: Collaborative Filtering Component and Figure 4-2:

Content-Based Component.

 29

Figure 4-1: Mean Absolute Error (MAE) to Number of Users, graph for a pure collaborative

filtering approach on five different 80-20 splits of the complete data set, each represented by

Set1, Set2, Set3, Set4 and Set5.

 30

Figure 4-2: Mean Absolute Error (MAE) to Number of Users, graph for a pure Content-based

approach on five different 80-20 splits of the complete data set, each represented by Set1, Set2,

Set3, Set4 and Set5.

From the preliminary experiments it is clear that both the components of content-based

and collaborative filtering do not perform well. This can be inferred; when these result values are

compared to some hybrid systems which use both the approaches. For example, a hybrid system

[32] which is run on the same dataset as the preliminary experiments clearly outperforms the

individual content-based and collaborative filtering components. Thus, there is a need to develop

a better approach than using individual components.

These preliminary experimental results form the basis for the rationale behind the hybrid

approach for the development of a base recommender system algorithm in this thesis work.

 31

4.2 Methodology

The goal of the approach is to develop a recommender system, which can tackle the

problem of diversity while maintaining the maximum threshold cut-off MAE (Mean Absolute

Error).

The data set used to develop the recommender system is ‘Movie Lens data set’ by Group

Lens Research group (Group Lens is a research lab in the Department of Computer Science and

Engineering at the University of Minnesota) [52]. The data set consists of 943 Users who have

combined to rate 1682 Movies (Items). The total number of ratings given are 1, 00,000. Apart

from this, documents about movies (items) from Wikipedia Error! Reference source not

found. and IMDB Error! Reference source not found. are collected to gather more information

about the items. The Wikipedia articles would normally give plot, awards and reception

information of the movie. The information from IMDB was the IMDB user rating, number of

user votes and the year of release. All this information is used for the prediction.

The approach used to develop the hybrid system is weighted recommendations. ‘The

scores (or votes) of several recommendation techniques are combined together to produce a

single recommendation’ [8]. So both content-based recommendations and collaborative

recommendations are combined using weighted parameters.

4.2.1. Collaborative Filtering Component

Collaborative filtering takes into account user preferences. As mentioned before, model

based collaborative filtering approach is used; this mechanism uses user rating data to compute

similarity between users and similar users are found using clustering technique. This is used for

making recommendations. This was the earlier mechanism and is used in many commercial

systems. It is easy to implement and is effective.

So the first step is the representation of user profiles. Here the information at hand about

users is just the ratings they have given for some movies. So, to represent this information, the

movies are considered as features for each user and their respective ratings are considered as

feature instances. Thus a feature vector for each user is generated. Mathematically this can be

represented as: Consider for user u, and the whole set of Movies as {m1, m2, m3… m1682} and the

ratings given by the user can be {1, 5} for some of the movies and the rest are unrated by this

 32

user. Unrated values are considered to be 0 in this instance. So ratings be considered as {ru1,

ru2… ru1682}

So a user feature vector would be in the form of:

m1682 *ru1682 + m1681*ru1681 … m3*ru3 + m2*ru2 + m1*ru1U 

Now, initially the active user for whom the recommendations are to be made is also

considered using the cold start initial recommendations (most popular items in terms of number

to user ratings for the movie) to have rated some initial set of movies. Thus he is also represented

in this format.

The next step is to find the users who are similar to the active user, to do this K-Means’

clustering technique is used. The inputs of the clustering technique are the feature vectors of the

user profile and the active user. The user-profiles are modified so the feature vectors are

constructed for only the movies which have been rated by the active user. This is done to ensure

that the similarity is constrained to the point of the information known about the active user. If

this is not done, the active user might be placed in a cluster of similar users, yes, but the

probability that the user, given initial ratings, might actually differ from the cluster of similar

users is very high. To eliminate this scenario, given the current information of the active user

similarity is found by only using the given information.

The distance measure used for K-Means Clustering is the ‘Euclidean distance’. The

Euclidean distance between point’s p and q is the length of the line segment . In Cartesian

coordinates, if p = (p1, p2 ... pn) and q = (q1, q2 ... qn) are two points in Euclidean n-space, then the

distance from p to q is given by:

To eliminate computational complexities, recursive clustering is used to find the best

cluster into which the active user has to be placed. Once a cluster of ‘n’ similar users is found,

the next step is to infer predictions for these set of similar users. To do this Cosine Rule is used.

The Cosine Rule here states that, the prediction for a movie ‘m’ is given by the average of

ratings of the similar users which are transformed using the cosine similarity between the active

user and the similar user. Mathematically, this can be represented as follows: Let movie be

Figure 4.7: Euclidean Distance (Image from Wikipedia) Figure 4-3: Euclidean Distance Error! Reference source not found.

 33

represented by ‘m’ from set of Movies ‘M’ of size ‘k’, which have been rated by active user, and

the set of similar user be represented by ‘U’ of size ‘n’, then cosine similarity of user ‘u’ from set

‘U’ to the active user ‘a’ is given by:

Now, the complete rating prediction is given by the following formula:

M: Set of movies rated by the active user ‘a’.

k: Size of movie set M.

m: movie which set M.

U: Set of similar users to the active user ‘a’.

n: Size of similar user set U.

u: similar user who set U.

The intuition of the above formula is that the rating of two users are related by the

measure of similarity of the users, so for an user y whose prediction for an item is to be made by

using the rating of user x who has already rated the item, then prediction of y is similarity of the

users x and y times the rating of item. The above formula can be explained as ‘the prediction of

unrated item for a user, is said to be the average of all the predicted ratings using all the users’.

4.2.2. Content-Based Component

A content-based recommender learns a profile of the users’ interests based on the features

present in items the user has rated. To do this, using the active users’ profile and information

about the items rated and information of unrated items, the predictions are to be made. The initial

step is to gather the information of items. As the items are movies, to describe an item the

information needed in most cases would be plot of the movie, genre of the movie, awards,

reception of the movie and additionally cast of the movie can also be considered. All this

information is taken out from the Wikipedia articles for each of the 1682 movies manually and is

placed into documents for each movie. Now, the next step is to represent these documents in

terms of feature vectors. There are many approaches used in these kinds of problems. It is a

 34

problem of text classification in machine learning. Some of the popular approaches would be

vector space model and latent semantic analysis. LDA (Latent Dirichlet Allocation), which is

discussed in Chapter 3, is used here for this purpose.

Using LDA one can represent the documents of text in terms of topic probabilities.

However choosing the number of topics can be an issue, since choosing a very high number of

topics can give you fine grained representation of the documents, but it can also lead to lots of

noise. Since, some of the topics can be unrelated and unnecessary. Some experiments are

conducted to choose the number of topics. These are clearly detailed in Chapter 5. Now, let’s say

each document is represented in terms of topic probabilities and the number of topics is ‘n’.

Thus, using the above approach each item (movie) can be represented in terms of feature

vectors in the following format mathematically:

In the above formula, m is the movie, ‘wi’s’ are the weights are for each of the topics,

‘tpi’ are the topics and ‘t’ is the total number of topics.

The Next step is to infer the predictions for each movie using the active users’ profile.

We have the set of movies M, which have been rated by the active user. So constructing an item-

item similarity matrix of the set of movies in M and the remaining of the total movies is to be

done. This can be done in many ways; one of the simplest ways is to use the Cosine Similarity

measure between two feature vectors. Cosine Similarity for item-item co-relation is given by the

following formula:

Once the item-item similarity matrix has been constructed, the next step is to infer the

predictions of the items using the ratings of the items rated by the active user. This is similar to

the cosine rule which was used to infer predictions in collaborative filtering component. The

mathematical representation of the cosine rule used here is stated below:

 35

The intuition of the above formula is that the rating of two items are related by the

measure of similarity of the items, so an item y whose prediction is to be made by using the

rating of item x which has been rated, then prediction of y is similarity of the items x and y times

the rating of item x. The above formula can be explained as ‘the prediction of unrated item, is

said to be the average of all the predicted ratings from all the rated items’.

4.2.3. Hybrid Step: Weighted Combination

A weighted hybrid recommender is one in which the score of a recommended item is

computed from the results of all of the available recommendation techniques present in the

system. For example, the simplest combined hybrid would be a linear combination of

recommendation scores. Here we have predictions from content-based component and the

collaborative filtering component, now these are to be used to predict the final predictions. This

is done by predictor component. The predictor considers these two predictions as the baseline

predictors and uses additional predictors to make accurate predictions. The following give the

predictors used by the component.

Base Line Predictors:

 Content-based prediction.

 Collaborative filtering prediction.

Additional Predictors:

 Time-line predictions.

 IMDB user rating.

 Genre Predications.

 The additional predictors are used to reduce the error in prediction.

Time-line predictions are used in a manner, where the active user predominantly prefers

watching movies from a specific time period. For example a user might prefer watching movies

released in 1980’s. To capture these kinds of preferences, this predictor is used. The time-line

prediction is done in the same way as previous predictions. For example, a movie ‘m’ has been

rated as ‘r’ by the active user. Let the year of release be in the period of |t1 – t2|, then all the

movies in the same period are given predictions in a similar way using the cosine rule discussed

earlier. Mathematically, this is represented as follows:

 36

IMDB user-rating is used in order to better understand the active users’ general opinion

of a movie. This majorly comes into play when the active user is very unique and cannot find

significant similar users or the items which the active user prefers seem to be very unique and

where not rated by many users. To capture these kinds of preferences, this predictor is used. The

mathematical representation of the prediction is given below.

We now define the term ‘Diff’, as the difference in the IMDB rating of the movie and

current rating of the movie. If two movies are different and we have user rating for one and have

to predict for another, then although, if we know the similarity measure we need to understand in

what way, the similarity affects the predicted rating. For example, a movie x might have been

rated as 3 by the user and might have a rating of 5 on IMDB, and for another movie y we try to

predict the user rating using IMDB rating. In such case simply using the similarity measure to

infer ratings cannot be right solution, since we cannot directly say how the similarity effects the

difference in the IMDB and user rating of a movie, sometimes it might be decrease the difference

between the IMDB and user rating or sometimes it might just increase. The following solution is

used to solve this issue.

 37

This mathematically can be represented as:

The final IMDB prediction is given by:

Genre Predictions are used to understand, if a user predominantly prefers movies from a

particular genre. This is a common phenomenon, that many users prefer some genres to other

genres. This can help reduce the errors in prediction, if such a case exists. The approach is to

initially, find the cluster of similar users and then get an average of the ratings for each genre;

these are the genre averages for the active user. Then for each movie an average of all the genres

it belongs is taken as the genre prediction of the movie.

The Genre Averages are calculated as following:

Here, ‘g’ is the genre; g (n) represents the size of the set of movies in this genre and

which have been rated by the cluster of similar users.

Next the genre predictions are calculated using the following formula:

Now, after calculating the predictions of all movies from the predictors, the Predictor

component, tries to combine these to make some meaningful recommendations. The simplest

way to combine these would be combining them with uniform weights, but this kind of situation

doesn’t actually help in getting accurate predictions. Thus, giving weights to each on them using

 38

the current instance is the best way to do this. Firstly, the final formula for the predictor

component looks like the following mathematical representation:

Predicted rating (movie) =

α (Collaborative Prediction) +

β (Content-based Prediction) +

γ (Time Prediction) +

δ (IMDB Prediction) +

λ (Genre Prediction).

The parameters ‘α’, ‘β’, ‘γ’, ‘δ’, ‘λ’ are weights given to each of the predictions.

An ideal assigning of values for the parameters would be to depend on the instance of the

active user profile and item under considerations to re-arrange the weights. For example, if the

user is unique and cannot find many similar users, then the weight on collaborative filtering is to

be reduced or if the movie under consideration is very rare and is unique, then collaborative

filtering is to be weighed more. Also, considering the other predictors, the user profile is to be

considered. However this is not easy to solve and in the current thesis the parameter values are

assigned statically using some experiments. Description of how the weighting procedure and fine

tuning of these parameters is shown in Chapter 5.

4.2.4. Diversity

The approach where diversification is done based on user tastes [50] can be beneficial in

many ways since diversification is done considering the user attributes. Also, such an approach

leads to high level of diversification, while maintaining a reasonable amount of accuracy, the

problem with such an approach is that, this might work fine when user preferences don’t change,

i.e., using static data. However when dealing with changing user preferences this can lead to very

bad recommendations. Another issue can be that trying to understand user tastes itself is an open

problem, since on what attributes the user has to be understood is the very essence of

recommender system.

The approach of item-based diversification is to say that the recommended items differ

from each other as much as possible. The measure used here can be termed as ‘dissimilarity’,

which is to say the dissimilarity between items. This can be calculated by representing the items

using attributes and then concentrating on understanding the dissimilarity of the attributes. For

 39

example, Yahoo! Movies [54] recommends movies based on the attributes intrinsic to each

movie (such as genre, director, etc.). This works reasonably well in comparison with user-based

diversification, but the only problem exists when the item set is not clearly defined. This

approach doesn’t work properly in the web scenarios where the understanding the items is not

easy [47]. The situations in which the items are clearly defined are the ideal situation for such an

approach.

Another approach might be diversifying based on the item explanations. i.e., to diversify

based on how each item is recommended and calculating the similarity on explanations. This

approach produces a different way of handling diversity, which is based on the explanations of

the recommended items. However the drawback of this approach can be that it does not ensure

that the items themselves are diverse. It might be possible that two items which are

recommended by different explanations might be similar [2].

Now coming to the research part of the system i.e., the issues of diversity. To deal with

this, the approach is to understand the items, and trying to come up with features which represent

these items, and next try to sort them out into sets. As, here the items are movies we can try to

sort them out into sets in two ways.

One implementation is to take the pre-defined genres and sort the movies by the weights

of the genres. Using these genre weights and converting them into genre ratios can be useful in

solving this problem of diversity, but this is true in case of a well defined dataset, but in most

cases, finding the clusters of items is difficult. Also, using this approach it is not guaranteed that

the items recommended are actually diverse, since movies in different genre can be similar too.

The implementation used in this thesis work is to understand the items from a different

perspective rather than pre-defined clusters (genres). Thus, I propose my novel approach to

solving the issue of diversification. For this approach, both the item similarity measure and user

tastes although in an indirect way are considered. The approach is to understand the items in-

terms of feature vectors. This is taken from the Content-based approach, thus using the feature

vector of items; clusters of items which are similar to each other are formed. Thus, this actually

considers various factors of the items rather than just the genres. After clusters of items are

generated weights are given to the clusters based on user predictions; here users are just the

similar users who have been clustered from the collaborative filtering approach. The intuition

behind using similar users instead of the active user / or complete set if users is to provide more

 40

diversification since although the users are similar they are not identical so getting their choices

helps in providing a variety of choices for the active user.

Thus, once cluster weights are assigned to each of the cluster of items, these weights are

used to get ratios of weights of each cluster. Then, a greedy algorithm is used to recommend

movies. This algorithm, greedily chooses the items from the cluster which maximize the

diversity i.e., minimum amount similarity. Also, there is a restriction on the item relevance to the

active user. Since, if the restriction on relevance is removed, although the algorithm might

recommend diverse movies, it might consider the items which are very irrelevant to the active

user.

The figure above shows the working of algorithm used for diversification in the current

recommender system.

The issue of freshness is dealt in somewhat a random way here; predictability comes

when already well known items are predicted again. Because of this, I treat each item equally

and in the later stages by the use of pattern seen in user profile to those IMDB data, I put weights

to parameters which affect the predicted rating of the movie. Here the number of votes given for

a movie in IMDB and the number of users who have rated the movie in the current dataset are

considered. The concept is the movie with majority of votes normally will be known to the user

 41

is other ways rather than the recommender system. So using the weights as indirectly

proportional to the number of votes can give a higher recommendation to movies which might

have been seen the by user. Also, considering another perspective, the number of users who rate

the movie in the current dataset gives a measure of the movie been watched and seen by the

active user. However it would be even more interesting to see the number of similar users who

have rated the movie, thus considering this intuition the following algorithm is used to deal with

the issue of freshness.

Although the freshness component is built at a later part, this component is imbibed into

the system as part of the predictor component, since diversifying and predictability are done in

different ways, diversifying is done to produce a recommended set of items, but predictability

factor is produced for each movie individually.

 42

The complete algorithm of the recommender system is given below:

 43

 44

 45

 46

 47

Figure 4-4: System Architecture

 48

5 Experimental Setup

 In this Chapter, we describe the dataset used in this work and the experiments designed

to calculate the best-fit for choosing the number of topics using LDA and the reasons for

choosing the cluster sizes for finding similar users. Some experiments are done to evaluate the

approach and design of the recommender system and describe evaluation metrics used for

evaluation. This Chapter is organized as follows: In Section 5.1, the experiments conducted to

choose the number of topics for LDA is discussed. In Section 5.2, the reasons behind the cluster

sizes are discussed. In Section 5.3, various evaluation metrics of the recommender system are

recommender system. In section 5.4, experiments conducted for evaluating the recommender

system are discussed.

5.1. LDA, No. of Topics.

Using LDA one can represent the documents of text in terms of topic probabilities.

However choosing the number of topics can be an issue, since choosing a very high number of

topics can give you fine grained representation of the documents, but it can also lead to lots of

noise. Since, some of the topics can be unrelated and unnecessary.

For choosing the number of topics, some experiments were conducted. In the

experiments, for each number of topics each item is represented by a vector of the topic

probability and each item are given a class based on the Genre it belongs to. To construct a

balanced data set for testing, the genre ‘drama’, which actually classifies the items into an almost

50-50 balanced dataset, is used.

The intuition behind choosing such an experiment was that, the most ideal number of

topics would generally give an ideal description of each item. Thus the more ideal the

descriptions better the accuracy in classifying the items in to classes.

This dataset is given to five different classifiers, to check the accuracy with changing

number of topics; the results for these experiments are shown in Figure 5-1:

 49

Figure 5-1: LDA - no. of topics to Accuracy, with different classifiers like Naïve Bayes, Support

Vector Machine (SVM), J48 (), Logistic Regression, Random Forest.

The dataset was run on an 80-20 % split for training and testing. The results show the

variance in accuracy with changing number of topics. From the experiments, it can be evaluated

that most of the classifiers show a peak in the topic number ranging from 60-80, but clearly 4/5

classifiers have a peak at the value of ~80, because of these results, the number of topics ideally

suited to represent the items (movies) is chosen to be ~80.

Also, the classifiers used here are the implementations from the Waikato Environment for

Knowledge Analysis (WEKA). It came about through the perceived need for a unified

workbench that would allow researchers easy access to state-of-the-art techniques in machine

learning [55].

5.2. Cluster Sizes

5.2.1. Collaborative Filtering

Choosing the cluster sizes is very important, since if there is no restriction on the number

of users who are similar to the active user, then the cluster might contain users who actually

might be dissimilar (i.e., very less similarity). To solve this, the average numbers of users who

 50

have a rated a movie is taken. On an average, given the dataset, the average number of users who

have rated a random movie is around ~59.4. So the restriction is to cluster recursively until the

total number of similar users found is utmost 60.

The intuition behind this is ‘too much of a good thing can turn bad’. If the cluster size is

too large, then the possibility of finding users who hold very little similarity to the active user is

considerably high. This can result in decreasing the predicted rating of movies which the active

user might like and can increase predicted ratings of other movies.

5.2.2. Diversifier

In the system, the diversifier component also clusters items to get cluster weights. Here

there is no restriction on the cluster sizes but the number of clusters. K-Means clustering

algorithm requires the number of clusters to be defined clearly, so to choose the number of

clusters, some experiments have been done with varying number of clusters. The experiment is

use the topic vectors with ~80 as the topic size as the input and for varying number of clusters,

the average similarity between the cluster centers is calculated.

The result of the experiment is shown below.

Figure 5-2: Average Similarity of Cluster centers to Number of Clusters

 51

From the graph, it is clear with varying number of clusters, the items which are clustered

based on similarity vary. From the graph, it is clear that around 7 clusters are needed to ideally,

get the best distribution of items based on similarity.

5.3. Evaluation Metrics

There have been many metrics in the past which have been used for evaluating

recommender systems.

Mean Absolute Error: The main purpose of recommender system is to successfully

predict the items with same amount of similarity to the active user. This main goal of the

recommender system is measured through the Mean Absolute Error (MAE). This metric allows

the base recommender algorithm to be successfully validated with other recommender

algorithms. There have been many evaluation metrics which have been done off-line using test

and train datasets. Here in the current recommender system, the calculation of MAE is done off-

line using test and train datasets.

The next evaluation metric is the goal of the recommender system, once the base

recommender system is measured above the accuracy threshold; it has to be evaluated based on

the goal, on which the recommender algorithm is developed. So, the next metric is to measure

the diversity of the system. This is done by introducing a new measure ‘Average Similarity’

(AS). This is measured for the recommended items as the average of the similarity of items

recommended. The calculation of this measure is done off-line using test and train datasets, but it

can be done online or offline.

Evaluating the Freshness component of current recommender system is an open-problem.

Since, to evaluate whether a item recommended is fresh for the user or not cannot be done off-

line and even online it has to been done with keeping track of user profiles, and asking the user

explicitly of the freshness factor. This is a limitation of this current recommender system, since

this recommender system is developed using an assumption of static data set.

 52

5.4. Evaluation - Experiments.

Here the recommender system has 5 parameters, which change the values of the

predictions and the recommendations considerably. So for evaluating the best fit recommender

system model, one has to find the best (ideal) parameters which make the recommender system

to be most effective. These five parameters are the weights for each component of the

predictions: Content-based prediction, Collaborative Filtering prediction, Time-Line prediction,

IMDB prediction and Genre Predictions.

 Measuring MAE (Mean Absolute Error):

The experiments used to measure the MAE, consists of varying input values to find the

best parameters and the MAE for each of the parameter set. There are a total of five test and train

data sets. Each of the datasets used for testing is a 90-10, 80-20, 70-30, 60-40, and 50-50 split of

the original complete dataset. These set of experiments is called as Experiment Set 1.

Another point to be noted is that, this evaluation is done, without considering the

diversity component of the system. Since, this metrics is to evaluate the actual base

recommender algorithm; the evaluation is done without involving both diversifier component

and the freshness component.

 Measuring AS (Average Similarity):

The experiments used to measure the AS are pretty much similar to the measuring of

MAE. AS, is measured as the average of similarities of the items that are recommended.

However once the MAE for the recommender system is found to be within the threshold, we can

use the same recommender system measure the diversity factor of the system. These set of

experiments are referred as Experiment Set 2.

These experiments are done on a recommender system which holds the threshold cut-off

MAE and the experiments are not done on varying splits of datasets but an 80-20 split of dataset.

The intuition is that once the recommender system can make descent predictions, then evaluating

it for a particular dataset is sufficient to understand its diversity factor rather to understand at

each and every split.

Another point to be noted is that, the freshness component which was not included in the

experiments conducted to measure MAE is used here, since diversifier component is the last

component which makes the recommendations. So, the system has to be evaluated on the basis

of all the working components.

 53

6 Evaluations and Results

In this Chapter, using the experimental set-up mentioned in the previous Chapter, the

methodology is evaluated using various experiments. In section 6.1, the experiments conducted

to evaluate the recommender system based on Mean Absolute Error are discussed and results of

those experiments are given. In section 6.2, the experiments conducted to evaluate the

recommender system, based on how it tackles the diversity issues are discussed; the results of

those experiments are also shown. In section 6.3, the research questions which this recommender

system answers are documented.

6.1. Evaluating based on MAE

This section concentrates on evaluating the base recommender algorithm developed in

this thesis work using a cross validation approach (section 6.1.1) and to further support the claim

of meeting the thesis goal experiments done are noted (section 6.1.2) and comparison (section

6.1.3) of the base recommender algorithm experimental results with other algorithms using the

same data set.

6.1.1 Experiment Set 1

The first set of experiments is used to fine tune the parameters which can effectively

produce a recommender system, which can produce the threshold cutoff which was put as a goal

of the recommender system in Chapter 1. For this purpose the approach of cross validation is

used. One round of cross-validation involves partitioning a sample of data into complementary

subsets, performing the analysis on one subset (called the training set), and validating the

analysis on the other subset (called the validation set or testing set).

Here 10-fold cross validation is used to evaluate the parameters for the recommender

system. In 10-fold cross validation the complete data set is randomly split into 10% subsets and

in each round of evaluation 9 splits are used as training set and the remaining one split is used as

testing split.

The parameter sets used in these experiments are given below:

 54

α

Content-based

β

Collaborative

Filtering

γ

Time Prediction

δ

IMDB

Prediction

λ

Genre

Prediction

0.7 0.1 0.05 0.1 0.05

0.6 0.2 0.05 0.1 0.05

0.5 0.3 0.05 0.1 0.05

0.4 0.4 0.05 0.05 0.1

0.4 0.4 0.05 0.1 0.05

0.4 0.4 0.1 0.05 0.05

0.3 0.5 0.05 0.1 0.05

0.2 0.6 0.05 0.1 0.05

0.1 0.7 0.05 0.1 0.05

0.1 0.1 0.1 0.6 0.1

Table 6-1: Experimental Parameter Set

 55

Figure 6-1: Cross Validation Plot for the parameter set (α = 0.7, β = 0.1, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error

for each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.57 to 1.67 and clearly this is more than the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy. Further tampering with the parameter set is needed.

 56

Figure 6-2: Cross Validation Plot for the parameter set (α = 0.6, β = 0.2, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error

for each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.40 to 1.55 and clearly this is more than the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy. Further tampering with the parameter set is needed.

 57

Figure 6-3: Cross Validation Plot for the parameter set (α = 0.5, β = 0.3, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error

for each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.28 to 1.38 and this is within the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy. Further tampering with the parameter set could prove

to produce better results.

 58

Figure 6-4: Cross Validation Plot for the parameter set (α = 0.4, β = 0.4, γ = 0.05, δ = 0.05 and

λ = 0.1) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a

0.90 to 1.1 and this is within the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy. Further tampering with the parameter set could prove

to produce better results.

 59

Figure 6-5: Cross Validation Plot for the parameter set (α = 0.4, β = 0.4, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a 0.9

to 0.95 and this is within the threshold cutoff which was put up as a goal for the recommender

system in terms of accuracy. Further tampering with the parameter set could prove to produce

better results.

 60

Figure 6-6: Cross Validation Plot for the parameter set (α = 0.4, β = 0.4, γ = 0.1, δ = 0.05 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a 0.9

to 1.1 and this is within the threshold cutoff which was put up as a goal for the recommender

system in terms of accuracy. Further tampering with the parameter set could prove to produce

better results.

 61

Figure 6-7: Cross Validation Plot for the parameter set (α = 0.3, β = 0.5, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.35 to 1.46 and this is within the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy. Further tampering with the parameter set could prove

to produce better results.

 62

Figure 6-8: Cross Validation Plot for the parameter set (α = 0.2, β = 0.6, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.45 to 1.55 and this is within the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy.

 63

Figure 6-9: Cross Validation Plot for the parameter set (α = 0.1, β = 0.7, γ = 0.05, δ = 0.1 and λ

= 0.05) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.66 to 1.72 and this is clearly more than the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy.

 64

Figure 6-10: Cross Validation Plot for the parameter set (α = 0.1, β = 0.1, γ = 0.1, δ = 0.6 and λ

= 0.1) with Folds to Mean Absolute Error.

From the box plot above, the cross validation folds are drawn against mean absolute error for

each fold. From the graph it is clear that for most of the instances in all the plots range from a

1.80 to 1.95 and this is clearly more than the threshold cutoff which was put up as a goal for the

recommender system in terms of accuracy. Also, this parameter set was used to show the

importance of base predictors over the additional predictors and also to prove that base predictors

need to be given more weight when compared to the other additional predictors to get better

accuracy.

 65

From the experimental results given above, indeed some of the parameter sets do produce

the base recommender algorithm, which can gold the threshold cutoff which was given in this

thesis goal.

6.1.2 Experiment Set 1.2

To further evaluate the recommender system with parameter sets, which are evaluated in

the previous experiments, a new set of experiments are used to evaluate the recommender system

based on MAE (Mean Absolute Error) responsiveness of the system, the system is asked to

predict on various datasets. These datasets are generated randomly, to represent x-y % splits of

the complete dataset and one part is considered for training (knowledge base) and another part

for testing. Care is taken to generate the datasets in such a way that they consist of all the users in

the training dataset and also in the test dataset.

The various sets of parameter values used on the recommender system are given below:

Train Dataset (Number of Ratings) Test Dataset (Number of Ratings)

90,000 10,000

80,000 20,000

70,000 30,000

60,000 40,000

50,000 50,000

Table 6-2: Experimental Splits (Data Sets).

To test the current recommender system, just running experiments using the datasets is

not feasible since, the recommender system is completely dependent on the parameters which

determine the weights of the various components like content-based, collaborative filtering etc.,

Because of this approach, the recommender systems makes various prediction depending on the

values of the parameters. So a various list of experiments are run using various parameter values.

 66

The various sets of parameter values are given below:

α

Content-based

β

Collaborative

Filtering

γ

Time Prediction

δ

IMDB

Prediction

λ

Genre

Prediction

0.7 0.1 0.05 0.1 0.05

0.6 0.2 0.05 0.1 0.05

0.5 0.3 0.05 0.1 0.05

0.4 0.4 0.05 0.05 0.1

0.4 0.4 0.05 0.1 0.05

0.4 0.4 0.1 0.05 0.05

0.3 0.5 0.05 0.1 0.05

0.2 0.6 0.05 0.1 0.05

0.1 0.7 0.05 0.1 0.05

0.1 0.1 0.1 0.6 0.1

Table 6-3: Experimental Parameter Set

The intuition behind choosing parameter values in a manner as above, is that since all the

components try to normalize the ratings in such a way that they are in the range of 1-5, which is

the base rating range of the dataset, to keep the predictions in range and not to over fit the

dataset, the parameter set is chosen such that the sum of all parameters is 1.0. Clearly, we know

that the main two base predictors are Content-based and Collaborative Filtering; hence these two

must have a combined weight which is greater than the sum of the rest of the parameters. The

last experimental parameter set, is an example to show, what happens if the baseline predictors

are violated to consider the additional parameters. Other than that, most of the parameter sets are

constructed in a manner to get a pattern on how the MAE varies with changing parameters and

also, this is a trial and error process. Because of this the recommender system may or may not

 67

give the best or worst MAE of possible MAE values, but this definitely gives a range on how the

MAE varies with changing parameter set.

Next there are 50 experiments which are conducted, using the parameter sets given above

and 5 different data splits given above. For, each of the parameter set a ‘MAE to number of

users’ graph is constructed for each of the data set. Also, these experiments are done without

considering the freshness and diversity component, since this is the evaluation of the base

recommender algorithm.

The results of the all the experiments and discussions of each of the result are given

below:

Figure 6-11: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.7, β

= 0.1, γ = 0.05, δ = 0.1 and λ = 0.05)

From the graph, it is clear that the MAE clearly seems to increase as the dataset used to

train decreases. This can be attributed by two possible reasons, one is that since the collaborative

filtering component needs to find cluster of similar users, with decreasing datasets, the user-

profiles seem to shorten and thus giving clusters of users who might actually be differing in

opinion to an extent and another reason for such a behavior is that, with decreasing dataset the

active user profile also decreases, thus reducing the possibility of a accurate prediction by the

content-based component, which infers predictions using the cosine rule from the previous

 68

ratings of the active user. These two seem to be the main reasons behind such a behavior. Also,

one important aspect which needs to be discussed is that the average drop in MAE for each

decrease train dataset is about ~0.07, which signifies the weight of collaborative filtering

component; this behavior is further discussed with varying parameter set. Also, the range of

MAE for all the datasets combined is ~1.45 to ~1.85. These results are not the threshold cut-off

which was defined as the prerequisite for the recommender system, to tackle the problem of

diversity.

Figure 6-12: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.6, β

= 0.2, γ = 0.05, δ = 0.1 and λ = 0.05)

The average drop in MAE is about ~0.09, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~1.35 to ~1.80. These results are not the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness.

 69

Figure 6-13: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.5, β

= 0.3, γ = 0.05, δ = 0.1 and λ = 0.05)

The average drop in MAE is about ~0.10, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~1.30 to ~1.80. These results are not the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness.

 70

Figure 6-14: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.4, β

= 0.4, γ = 0.1, δ = 0.05 and λ = 0.05)

The average drop in MAE is about ~0.11, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~0.85 to ~1.40. These results are in the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness. So further tampering with the parameter set with varying additional parameters could

prove to show better results.

 71

Figure 6-15: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.4, β

= 0.4, γ = 0.05, δ = 0.1 and λ = 0.05)

The average drop in MAE is about ~0.1, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~0.60 to ~1.35. These results are in the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness. So further tampering with the parameter set with varying additional parameters could

prove to show better results.

 72

Figure 6-16: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.4, β

= 0.4, γ = 0.05, δ = 0.05 and λ = 0.1)

The average drop in MAE is about ~0.9, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~0.80 to ~1.40. These results are in the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness. Since, tampering with the additional parameters doesn’t show any significant decrease

in MAE for any of the datasets, it can be concluded that the baseline predictors are the main

weights which alter the MAE majority of Users, which implicitly signifies the fact that the

additional parameters are used to handle unique users in most cases and also to capture a part of

user preferences.

 73

Figure 6-17: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.3, β

= 0.5, γ = 0.05, δ = 0.1 and λ = 0.05)

The average drop in MAE is about ~0.9, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~1.35 to ~1.85. These results are not in the threshold cut-off.

 74

Figure 6-18: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.2, β

= 0.6, γ = 0.05, δ = 0.1 and λ = 0.05)

The average drop in MAE is about ~0.11, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~1.35 to ~2.10. These results are not in the threshold cut-off.

 75

Figure 6-19: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.1, β

= 0.7, γ = 0.05, δ = 0.1 and λ = 0.05)

The average drop in MAE is about ~0.13, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~1.40 to ~2.25. These results are not in the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness.

 76

Figure 6-20: Number of Users to MAE (Mean Absolute Error), for the parameter set (α = 0.1, β

= 0.1, γ = 0.1, δ = 0.6 and λ = 0.1)

The average drop in MAE is about ~0.1, which signifies the weight of collaborative

filtering component; this behavior is attributed to the weight since, for collaborative filtering

component bases its need on finding the cluster of similar users. Also, the range of MAE for all

the datasets combined is ~1.75 to ~2.50. These results are not in the threshold cut-off which was

defined as the prerequisite for the recommender system, to tackle the problem of diversity and

freshness. Now to signify the fact the additional parameters can handle only a few of the total set

of users, the graph shows a significant increase in the range of MAE when compared to the

previous parameter set.

From all the experiments and their results as shown above, the base recommender

algorithm which was developed to get a MAE, which is less than the threshold-cutoff that was

defined before the system was developed, is achieved.

6.1.3 Comparison with other base recommender algorithms

When compared to three different base recommender algorithms, which have been run on

the same dataset as ‘Movie Lens’ [52], the current recommender system seems to run reasonably

well with the other base algorithms. Three different base recommender algorithms are considered

 77

here for comparison they are: Delanny & Verleysen, 2007 [13], Zaier, Godin, & Faucher, 2008

[32] and Park & Tuzhilin, 2008 [48].

The system in Delanny & Verleysen, 2007 [13] uses a Collaborative Filtering approach

with the use of generalized linear models to represent user profiles. In such a representation, the

user profiles are represented with much more richer information than a normal representation

would do. From the paper, the results of the implementation and experiments on an 80-20 % data

split of complete dataset yields good results. The Mean Absolute Error of this system is between

0.875 and 0.975. When the base recommender algorithm developed in this thesis work is

compared to Delanny & Verleysen, 2007 [13], it shows a reasonable amount of accuracy,

although Delanny & Verleysen, 2007 [13] gives a very uniform range of error in terms of MAE,

the current algorithm has a bigger range of error from 0.65 to 1.22.

The system in Park & Tuzhilin, 2008 [48] uses a collaborative filtering approach with the

use of Pearson Correlation Coefficient similarity measure. This is a collaborative filtering

approach in which the instead of using Euclidean distance to find the similar user cluster, the

Pearson correlation coefficient distance is to measure the similarity between users. The Mean

Absolute Error of this system is between 0.88 – 1.12 for an 80-20 % split of Movie Lens dataset

[52]. When the base recommender algorithm developed in this thesis work is compared to Park

& Tuzhilin, 2008 [48], it performs better with a lower MAE than Park & Tuzhilin, 2008 [48] for

some users and worse than Park & Tuzhilin, 2008 [48] with higher MAE.

The system in Zaier, Godin, & Faucher, 2008 [32] uses a hybrid approach with model

based collaborative filtering. In this approach the concept is a content-boosted collaborative

filtering, that is a model is generated to predict unknown ratings for the user profiles and the

complete user profiles are then used to find similar users and thus a better cluster of similar

users, thus providing more accurate predictions. The Mean Absolute Error of this system is

between 0.70 – 1.13 for an 80-20 % split of Movie Lens dataset [52]. When the base

recommender algorithm developed in this thesis work is compared to Zaier, Godin, & Faucher,

2008 [32], it performs better with a lower MAE than Zaier, Godin, & Faucher, 2008 [32] for

some users and worse than Zaier, Godin, & Faucher, 2008 [32] with higher MAE.

The reasons for such a behavior of the current base recommender algorithm can be

attributed to that fact that this algorithm concentrates more than the rest of the algorithms on user

 78

preferences. This might help in some cases with more accurate prediction when the user actually

has those predictions, but when the user actually does not have those kinds’ preferences then this

might produce less accurate predictions. Thus having the parameters static can produce good

results in some cases but in some can produce bad results. This is one of the limitations of the

system that the parameters are chosen statically.

The results of the comparisons are given below:

Base Recommender Algorithm Range of MAE (Mean Absolute Error) on

an 80-20 split dataset.

Delanny & Verleysen, 2007 [13]

(Collaborative Filtering with interlaced

Generalized Linear Models)

0.875 – 0.975

Park & Tuzhilin, 2008 [48] (Collaborative

filtering with Pearson Correlation

Coefficient similarity measure)

0.88 – 1.12

Zaier, Godin, & Faucher, 2008 [32] (Hybrid

Approach, with model based collaborative

filtering)

0.70 – 1.12

Current Algorithm (Weighted Hybrid

Approach, Content-based and collaborative

filtering)

0.65 – 1.22

Table 6-4: Comparison with various base recommender algorithms.

6.2. Evaluation of Diversity Metrics of the recommender system

From the previous section 6.1.2, it is clear that some of the parameter sets do hold the

prerequisite of the threshold cutoff, which was defined to examine a working recommender

system, which can diversify over the recommendations. To evaluate the approach described in

Chapter 4 for diversification, experiment set 2 described in Chapter 5 are run on a working

recommender system from 6.1.2.

 79

The perquisite of a recommender system which holds the cutoff MAE is found from

6.1.2, so one of the three sets of parameters which hold the cut-off in the previous experiments is

taken to run the experiments to evaluate the diversity component of the recommender system.

The metric used to evaluate is ‘Average Similarity’ Metric which signifies the average similarity

of the top-n recommendations for each user. The data set used here is different from the previous

datasets used for experiment set 1. There are a total of five datasets, which are constructed in the

same manner as the previous datasets, but only difference is that all the datasets are 80-20 %

splits of the complete dataset. The intuition behind choosing such a dataset is to make sure that

every user can get n recommendations which are actually relevant, considering 50-50 datasets

might make the system, provide less than n recommendations for some users. Also, care is taken

that all the five datasets are dissimilar. Also, the predictions are modified to include the freshness

factor into them. As mentioned in Chapter 4, the diversifier component is the one which makes

the final recommendations, keeping this mind the freshness component is imbibed as mentioned

in the Chapter 4, and the complete system is evaluated based on average similarity metrics.

The 80,000 ratings part of the datasets is used for training (knowledge base) and the

remaining dataset is used to test the recommender system. The following figures show the results

for the experiments in an ‘Average Similarity to Number of Users’ graph.

 80

Figure 6-21: ‘Average Similarity to Number of Users’ for 1st 80-20 split dataset.

From, the graph it can be inferred that the average similarity for the dataset ranges from

~0.15 to ~0.51 when the diversifier is used and the average similarity without any diversity

included is from ~0.45 to ~0.82. There also seems to be varying range of average similarities,

this can be attributed to the fact that the set of item recommendations change with users and also

the user set do consists of some unique users, although the system recommends items to those

users, the system seems to recommend more familiar items, this behavior can be supported by

the claim that recommender systems’ main goal is to recommend relevant items, even though

they are similar. So maintaining a level of relevance, the recommender system tries to maximize

the diversity of the items recommended. The diversifier does provide a drop in average

similarities proving that the recommended items are more diverse than previous expected.

 81

Figure 6-22: ‘Average Similarity to Number of Users’ for 2nd 80-20 split dataset.

From, the graph it can be inferred that the average similarity for the dataset ranges from

~0.12 to ~0.55 when the diversifier is used and the average similarity without any diversity

included is from ~0.44 to ~0.87. The diversifier does provide a drop in average similarities

proving that the recommended items are more diverse than previous expected, but for some users

the diversifier provides a lesser diverse set of items than the base algorithm, this can understood

from the fact that diversifier uses cluster weights of item clusters to get the number of items from

each cluster and some unique user / unpopular items might make a drop in cluster weights

providing lesser diverse items.

 82

Figure 6-23: ‘Average Similarity to Number of Users’ for 3rd 80-20 split dataset.

From, the graph it can be inferred that the average similarity for the dataset ranges from

~0.18 to ~0.69 when the diversifier is used and the average similarity without any diversity

included is from ~0.52 to ~0.84. The diversifier does provide a drop in average similarities

proving that the recommended items are more diverse than previous expected, but for some users

the diversifier provides a lesser diverse set of items than the base algorithm, this can understood

from the fact that diversifier uses cluster weights of item clusters to get the number of items from

each cluster and some unique user / unpopular items might make a drop in cluster weights

providing lesser diverse items.

 83

Figure 6-24: ‘Average Similarity to Number of Users’ for 4th 80-20 split dataset.

From, the graph it can be inferred that the average similarity for the dataset ranges from

~0.16 to ~0.73 when the diversifier is used and the average similarity without any diversity

included is from ~0.51 to ~0.94. The diversifier does provide a drop in average similarities

proving that the recommended items are more diverse than previous expected, but for some users

the diversifier provides a lesser diverse set of items than the base algorithm, this can understood

from the fact that diversifier uses cluster weights of item clusters to get the number of items from

each cluster and some unique user / unpopular items might make a drop in cluster weights

providing lesser diverse items.

 84

Figure 6-25: ‘Average Similarity to Number of Users’ for 5th 80-20 split dataset.

From, the graph it can be inferred that the average similarity for the dataset ranges from

~0.17 to ~0.78 when the diversifier is used and the average similarity without any diversity

included is from ~0.54 to ~0.87. The diversifier does provide a drop in average similarities

proving that the recommended items are more diverse than previous expected, but for some users

the diversifier provides a lesser diverse set of items than the base algorithm, this can understood

from the fact that diversifier uses cluster weights of item clusters to get the number of items from

each cluster and some unique user / unpopular items might make a drop in cluster weights

providing lesser diverse items.

 85

6.3. Conclusion and Research Questions

 The first of the goals of this thesis work ‘Develop a recommender algorithm which can

produce accurate predictions. Accuracy is measured in terms of Mean Absolute Error

(MAE), on a range of 1-5 accuracy greater than 70% (i.e., MAE less than 30% (1.5)) is

considered to be reasonable.’ is achieved from the experiment set 1 result shown in

section 6.1.2. The base recommender algorithm which was developed to get a MAE,

which is less than the threshold-cutoff that was defined, is achieved.

 The second of the goals of this thesis work ‘Prove that the generated recommender

algorithm when compared to other hybrid recommender algorithms performs reasonably

well.’ is achieved from section 6.1.3. When compared to three different base

recommender algorithms, which have been run on the same dataset ‘Movie Lens’ [[52]],

the current recommender system seems to run reasonably well in comparison the other

base algorithms. From the results, it is clear that the variation in MAE is more than all of

the approaches, but it does achieve an acceptable MAE for 80-20 dataset split.

 The last of the foals of this thesis work ‘Diversify the set of item recommendations,

without major loss of relevance. Prove that once a threshold of the accuracy is reached

diversity can be increased further without any major loss of relevance.’ is achieved from

the results shown in section 6.2. From the results of experiment set 2 in section 6.2, the

system does give a descent amount of diversity and performs better than a system without

any implementation for diversity, since for most of users on an average the similarity is

less than 0.4. This suggests that system does provide reasonably diverse at the same time

fresh and relevant recommendations.

 86

7 Future Work and Limitations

In this Chapter the limitations of the current thesis work are listed out in section 7.1 and a

proposed future plan of work is discussed briefly in section 7.2.

7.1. Limitations

The current recommender system has several limitations, they are discussed below:

 The current recommender system considers the data to be static, and uses this static

data to make predictions for a new user. This recommender system cannot handle any

changes to the data. Although it uses data from IMDB which is non-static, the data

from IMDB is downloaded during the process of developing the system and it doesn’t

handle any changes to IMDB data at run-time, any changes have to be made before

the systems’ inception.

 Also, a limitation of the system is that it uses LDA in content-based component, and

even in the diversifier, to represent items. However the representation itself can be

incomplete since, LDA doesn’t capture any correlation between topics which is one

of major principles in textual representations of items.

 Also, choosing the parameters is done statically and the user preferences are not

captured to the utmost capacity. Although the system works reasonably well, with the

static parameters, usage of dynamic parameters can increase the efficiency of the

recommender system. If the parameters are modified dynamically, the fluctuations in

the average similarities and MAE of the predictions for users can be reduced.

 Also, the concept of relevance is not standard, since the recommender system

considers the item whose rating is better than 2.5 out of 5 to be relevant. However the

concept of relevance is dependent on the user. So, this makes the system to be static

to be limited in the sense of user preference.

 Another limitation is that the system doesn’t provide any offline evaluation metrics

for the problem of freshness (predictability). Since, from the approach it is defined

that evaluating predictability depends only on the user, so it has to be done at run-

time and also on the long run.

 87

 Also, one major limitation in the implementation of the system is the time-

complexities and storage requirements the system requires to have a descent response

time. With a reasonable size of dataset, the response time is not huge but with

increasing dataset the approach requires a lot of computations, thus requiring large

memory spaces and processor speed to have a smaller response time.

7.2. Future Work

The future work consists of tackling the limitations and handling other open problems in

recommender systems. Some of the possible future plans of actions are given below:

 First step is to understand the best way to tackle the problem of non-static data, while

maintaining a descent level of computational overheads required.

 Another plan is to consider dynamic assignment of parameter set, for each different

user. One plan of action is to implement a classifier like artificial neural network to

compute the weights based on the active user profile. Also, the problem to threshold

for relevance is to be set dynamically for a user, rather a standard procedure.

 Also, to solve the problem of cold-start in a better way rather than considering just the

most popular items initially. One solution might be to use tree structure (Decision

Trees) to get a directed way of understanding new user.

 88

 Bibliography

[1] Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions

on Knowledge and Data Engineering, 734-749.

[2] Amer-Yahia, S., Lakshmanan, L. V., Vassilvitskii, S., & Yu, C. (2009). Battling

Predictability and Overconcentration in Recommender Systems. IEEE Data Engineering

Bulletin.

[3] Balabanovic, M., & Shoham, Y. (1997). Content-based, collaborative recommendation.

Communication of the ACM , 66-72.

[4] Belkin, N. J., & Croft, W. B. (1992). Information filtering and information retrieval: two

sides of the same coin? . Communications of the ACM , 29-38.

[5] Billsus, D., & Pazzani, M. J. (2000). User Modeling for Adaptive News Access. User

Modeling and User-Adapted Interaction , 147-180.

[6] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Machine

Learning Research , 993-1022.

[7] Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the 14th Conference on

Uncertainity in Artificial Intelligence, (pp. 43-52).

[8] Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User

Modeling and User-Adapted Interaction , 331-370.

[9] Burke, R. (2007). Hybrid Web Recommender Systems. The Adaptive Web: Methods and

Strategies of Web Personalization, Lecture Notes, Vol. 4321, 377-408.

[10] Cazella, S. C., Reategui, E., & Alvares, L. O. (2006). E-commerce recommenders'

authority: Applying the user's opinion relevance in recommender systems. In

Proceedings of the 12th Brazilian Symposium on Multimedia and the Web, (pp. 71-78).

[11] Debnath, S., Ganguly, N., & Mitra, P. (2008). Feature weighting in content-based

recommendation system using social network analysis. In Proceedings of the 17th

International Conference on World Wide Web, (pp. 1041-1042).

[12] Deerwester, S. C., Susan T, D., Landauer, T. K., Furnas, G. W., & Harshman, R. A.

(1990). Indexing by Latent Semantic Analysis. American Society of Information Sciences

, 391-407.

 89

[13] Delanny, N., & Verleysen, M. (2007). Collaborative filtering with interlaced generalized

linear models. In Proceedings of the European Symposium on Atrificial Neural Networks,

(pp. 247-252). Bruges, Belgium.

[14] Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering

to weave an information tapestry. Communications of the ACM , (pp. 61-70).

[15] Griffiths, T. L., & Steyvers, M. (2007). Topics in Semantic Representation.

Pyschological Review , 211-244.

[16] Hamerly, G., & Elkan, C. (2002). Alternatives to the k-means algorithm that find better

clusterings. In Proceedings of the 11th International Conference on Information and

Knowledge Management. (pp. 600-607)

[17] Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

collaborative filtering recommender systems. In Proceedings of the ACM Transactions

on Information Systems. (pp. 5-53)

[18] Hill, W., Stead, L., Rosentein, M., & Furnas, G. (1995). Recommending and evaluating

choices in a virtual community of use. In Proceedings of the SIGCHI Conference on

Human factors in computing systems. (pp. 194-201)

[19] Hofmann, T. (1999). Probabilistic Latent Semantic Indexing. In Proceedings of the 2nd

Annual International SIGIR Conference.

[20] Hosmann, T., & Puzieha, J. (1999). Latent Class Models for Collaborative Filtering. In

Proceedings of the International Joint Conference on Artificial Intelligence, (pp. 688-

693).

[21] Jain, A., Murthy, M., & Flyn, P. (1999). Data Clustering: A Review. ACM Computing

Surveys,31(3): 264-323.

[22] Jiang, J., M., W. B., Donato, J., Ostrouchov, G., & Grady, N. (1999). Mining Consumer

product data via latent semantic indexing. Intelligent Data Analysis , 377-398.

[23] Kim, B. M., & Li, Q. (2004). Probabilistic Model Estimation for Collaborative Filtering

Based on Items Attributes. In Proceedings of the IEEE/WIC/ACM International

Conference on Web Intelligence, (pp. 185-191).

[24] Kohrs, A., & Merialdo, B. (1999). Clustering for Collaborative Filtering Applications.

Computational Intelligence for Modelling, Control & Automation. (pp. 27-36)

[25] Koren, Y. (2009). Collaborative filtering with temporal dynamics. In Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery, (pp. 447-456).

 90

[26] Lang, K. (1995). Newsweeder: Learning to filter Netnews. In Proceedings of the 12th

International Machince Learning Conference. (pp. 331-339)

[27] Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information

Retrieval. Cambridge University Press.

[28] McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: how

accuracy metrics have hurt recommender systems. In Proceedings of the CHI '06

Extended abstracts on Human factors in computing systems, (pp. 1097-1101).

[29] Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative

filtering for improved recommendations. In Proceedings of the 18th National Conference

on Artificial Intelligence, (pp. 187-192).

[30] Mitchell, T. (1997). Machine Learning. McGraw Hill.

[31] Park, S.-T., Pennock, D., Madani, O., Good, N., & DeCoste, D. (2006). Naïve filterbots

for robust cold-start recommendations. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and DataMining, (pp. 699-705).

[32] Park, Y.-J., & Tuzhilin, A. (2008). The long tail of recommender systems and how to

leverage it. In Proceedings of the ACM conference on Recommender systems.

[33] Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., & Welling, M. (2008). Fast

collapsed gibbs sampling for latent dirichlet allocation. In Proceedings of the 14th ACM

SIGKDD international conference on knowledge discovery and data mining, (pp. 569-

577).

[34] Raatikainen, K. E. (1993, May). Cluster analysis and workload classification. In

Proceedings of the ACM SIGMETRICS Performance Evaluation Review , pp. 24-30.

[35] Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the

ACM , 56-58.

[36] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An

open architecture for collaborative filtering on netnews. In Proceedings of the 8th ACM

Conference on Computer Supported Cooperative Work, (pp. 175-186). New York, NY,

USA.

[37] Roelleke, T., & Wang, J. (2008). TF-IDF uncovered: as study of theories and

probabilities. In Proceedings of the 31st Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, (pp. 435-442).

[38] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th International Conference on

World Wide Web, (pp. 285-295). New York, NY, USA.

 91

[39] Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender Systems in E-Commerce. In

Proceedings of the 1st ACM Conference on Electronic Commerce, (pp. 158-166).

Denver, Colorado, USA.

[40] Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics

for cold-start recommendations. In Proceedings of the 25th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, (pp. 253-

260). Tampere, Finland.

[41] Schkolnick, M. (1997). A clustering algorithm for hierarchical structures. ACM

Transactions on Database Systems , 27-44.

[42] Semeraro, G., Lops, P., & Basile, P. (2009). Knowledge infusion into content-based

recommender systems. In Proceedings of the 3rd ACM Conference on Recommender

Systems, (pp. 301-304).

[43] Taghipour, N., & Kardan, A. (2008). A hybrid web recommender system based on Q-

learning. In Proceedings of the SCM Symposium on Applied Computing, (pp. 1164-1168).

[44] Ungar, L., Foster, D., Andre, E., Wars, F. S., Wars, D. S., & Whispers, J. H. (1998).

Clustering Methods for Collaborative Filtering. In Proceedings of the 15th National

Conference on Artificial Intelligence. AAAI Press.

[45] Xue, G.-R., Lin, C., Yang, Q., Xi, W. S., Zeng, H.-J., & Yu, Y. (2005). Scalable

collaborative filtering using cluster-based smoothing. In Proceedings of the ACM SIGIR

Conference, (pp. 114-121). Salvador, Brazil.

[46] Xue, G.-R., Lin, C., Yang, Q., Xi, W. S., Zeng, H.-J., & Yu, Y. (2005). Scalable

collaborative filtering using cluster-based smoothing. In Proceedings of the ACM SIGIR

Conference, (pp. 114-121). Salvador, Brazil.

[47] Yu, C., Lakshmanan, L., & Amer-Yahia, S. (2009). It takes variety to make a world:

Diversification in Recommender Systems. In Proceedings of the 12th International

Conference on Extending Database Technology, (pp. 368-378). Saint Petersburg, Russia.

[48] Zaier, Z., Godin, R., & Faucher, L. (2008). Evaluating Recommender Systems. In

Proceedings of the International Conference on Automated solutions for Cross Media

Content and Multi-channel Distribution, (pp. 211-217).

[49] Zanker, M. (2008). A collaborative constraint-based meta-level recommender. In

Proceedings of the ACM Conference on Recommender Systems, (pp. 139-146).

[50] Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving

Recommendation Lists Through Topic Diversification. In Proceedings of the 14th

International Conference on World Wide Web, (pp. 22-32). Chiba, Japan.

 92

[51] IMDB (2010). Internet Movie Database. Retrieved June 2010, from

http://www.imdb.com

[52] GroupLens. (1997, September 19). MovieLens Dataset. Retrieved June 2010, from

GroupLens: http://www.movielens.org

[53] Wikipedia. (2004, July 22). Wikipedia: The free encyclopedia. Retrieved July 2010, from

http://www.wikipedia.org

[54] Yahoo! (1998, May 12). Retrieved June 2010, from Yahoo! Movies:

http://movies.yahoo.com

[55] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutmann, P., & Witten, I. H. (2009).

The WEKA Data Mining Software: An Update. SIGKDD Explorations .

[56] McCallum, A. K. (2002). MALLET: A Machine Learning for Language Toolkit.

http://mallet.cs.umass.edu. 2002.

http://mallet.cs.umass.edu/

