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Chapter 1

INTRODUCTION

This report presents the design and implementation of a
family of three related stack-machine interpreters, similar
to the p-machine interpreted Pascal systems, The input for
each interpreter is a series of pcodes., The pcodes represent
single boolean expressions or series of boolean expressions.
The interpreters execute the pcodes using test cases and
evaluate the resulting boolean.

The scope of the pcodes includes operands, operators,
and various labels. The operands are identifiers, integer
constants, integer arrays, indices, and ranges. The
operators are arithmetic, indexing, relational, logical, and
quantifiers.

Each interpreter is part of a larger system, which is
described as background information but which was not a part
of the work of this project. The input for each interpreter,
the pcodes, is produced by a parser/code-generator. The
parser takes "programs" which are created by a user's
interpretation of stories in the domain of logic problems,
much like those found in logic text books, The story
problems belong to one of three different problem domains
(proposition, proposition proof, and predicate). These

problem domains correspond to three languages named



proposition, proposition proof, and predicate, Chapter 2

describes the problem domains,

——=>(_)=-=>
"all men N/ all(x) : |--=->|produce|--=>pcodes
are mortal" mortal(x) pcodes
/ A\
Story Problem User Program Parser
pcodes--=>
execute pcodes |--->Interpreter
using test cases results
x = John|==e—eeee- > and
x = Bob evaluate boolean
x = Don result
Test Case Interpreter
File

Figure 1.1 : Walk-through of a System

Figure 1.1 illustrates the sequence of steps that occur
in the system. First the user chooses a story problem from
one of the problem domains, Then the user creates a program
to symbolize the story problem. The symbolized program is
input to the parser/code generator which produces the pcodes
for the respective interpreter, The interpreter then
executes the pcode using test case values and evaluates the
boolean result for each test case.

The user creates the programs in an external language
defined by one of the three "source" grammars., The parser
checks the program to make sure that it follows the syntax

described in the source grammar. Each source grammar is



described in conjunction with its corresponding problem
domain discussion in Chapter 2, The code generator produces
the pcodes using the definitions from one of three "target"
grammars, again, one for each of the three interpreters.
Each source and target grammar are related by a
"translation" grammar. The three target grammars and the
three translation grammars are discussed as Chapter 3.
Chapters 4, 5, and 6 are detailed discussions of the
three languages, one chapter per language. Chapter 4 is the
proposition language, chapter 5 is proposition proof, and
chapter 6 is predicate. These three chapters have a parallel
structure, each describing the external language, grammar,
parser, and interpreter for the respective problem domain,
The structure of these three chapters is the following one.
The internal language structure -- the pcodes
The pcodes for the language are described.
The test case file
The contents of the test case file are described. An
explanation is given as to how to derive the values
for the test cases,
The test case file structure
The structure of the test case files are illustrated.
The interpreter design
The interpreter design is described, including how

the interpreter executes the pcodes using the test



case values and how the resulting boolean value is

evaluated.

The last chapter, the conclusion, discusses and
illustrates some of the problems that were encountered in

the design of the project,



Chapter 2

PROBLEM DOMAINS & SOURCE GRAMMAR DESCRIPTIONS

The larger project from which the work of this project
was derived originated from the compiler class taught at
Kansas State University in the spring semester, 1986. Class
programming projects included building parsers and code
generators for three similar grammars. Again, the parsers
and code generators are not part of this report. Each
grammar was for a different problem domain, which had been
introduced in the programming science course at KSU,

The wvhole project is designed to aide students in
writinglprograms for story problems in the programming
science course, Since the story problems used in the project
belong to one of three different problem domains covered in
the class, the students have a means of exercising three of
the skills taught in the course,

In the next three sections of this chapter each of the
three problem domains are described. In each problem domain
section, the corresponding source grammar is discussed.
The fourth section describes all three translation grammars
and all three target grammars together, since they have a

similar conceptual structure.

Problem Domain : Proposition
For the proposition problem domain, the user is given a

simple story problem such as "all dogs are animals", The



user must composed a sequence of propositions using names
defined in the story: "all(x) : animal(x)". A proposition is
a boolean (logical) expression, comprised of logical
constants, objects with predefined predicates, relational
expressions on integers and on one-~dimensional integer
arrays. The relational expressions map to boolean values,
Propositions use the operators not, and, or, implies, and
equivalence., Propositions also use parentheses to determine
the order of evaluation., Figure 2.1 lists six examples of

propositions.

Logical Constant ¢ true

Boolean Expression @ k implies j

Predefined Construct : raining(cats) and raining(dogs)
Proposition with Parentheses : (a = b)

Relational Expression on Integers : x =73 + 1
Relational Expression on Integer Arrays : B[i] < B[i+l]

Figure 2.1 : Proposition examples

The source grammar for the profosition problem domain
is listed in Appendix A -- Source Grammars., The source
grammar is context-free; however, the terminals in the
source grammar that are "names" (the choices for the rules
"Var", "Avar", "Ivar", "Pvar", and "Cvar") are restricted
to being only the names used in the story problem. "Var" is
any variable name used in the story problem, "Avar" is any
array name, "Ivar" is any index, "Pvar" is any predefined
construct, and "Cvar" is any constant, For example, if a

story problem read: x is twice as large as y, then the only



names that can be used in a program are "x" and "y". This
constraint is enforced because the interpreter uses a name
table, similar to a compiler's symbol table, to substitute
different values for the variables of a story problem during
the execution and evaluation of a program. Because of the
name constraint, the source language is context-sensitive,

The proposition source grammar is the building block for
the other two source grammars., The "props" and "prop" rules
are unique to the proposition source grammar; however, the
rest of the rules are included in each of the other two
source grammars, The next few paragraphs explain some of the
rules of the proposition source grammar,

"Props" represents a collection of "Prop"s, which are
propositions, One proposition may be broken into two or more
smaller propositions, each on a separate line, to make the
program easier to read. If the proposition is broken into
several lines, then, excluding the last one, all lines are
jdentified by a label. The last line uses the labels instead
of the actual expression. The entire "program", therefore,
is easier to understand, Figure 2.2 illustrates this idea;
2.2a is the proposition as one line and 2,2b breaks it into

four lines,



a. X > yand y > z or x > =z

b. :one: X >y
ttwo! y > 2z
tthree: x > =z

one and two or three

Figure 2.2 : Example proposition using labels

Problem Domain : Proposition proof

For the proposition proof problem domain the user is
given a proof problem as in Figure 2.3a2a and is required to
enter a sequence of steps which proves the conclusion

similar to Figure 2.3b,

a., Given : premise 1 : a implies b
premise 2 : b implies c
premise 3 : a = true

Prove : b = true

b. a implies ¢ // premise 1, premise 2
b = true // premise 3, fact 1

Figure 2.3 : Example proposition proof

The proof problems use axioms, premises, facts and a
conclusion. Axioms are propositions that are taken to be
true at face value -- without proof. Premises are

propositions that are the '

'given" parts of a proof; they are
taken to be true only for the proof in which they are used.
Facts are steps of the proof consisting of a proposition and

a list of reasons why. The reasons why consist of axioms,



premises and previous facts. The conclusion is the
proposition which the user is required to prove.

An example proposition proof story problem is pictured
as Figure 2,4, Axioms, premises, and a conclusion are
outlined in the story problem; the steps of the proof have

been omitted.

axiom 1 :
not(stmts_have_side_effects) implies preds_are_stmts
axiom 2 :
not(preds_are_stmts) implies not(prgmers_write_pgms)
axiom 3 :
not((prgmers_write_pgms) and not(preds_are_stmts))
implies stmts_have_side_effects
axiom & :
not(not(stmts_have_side_effects) or
not(prgmers_write_pgms)) implies
not(programmers_are_rich)
premise 1 :
programmers_write_pgms
conclusion :
not(programmers_are_rich)

Figure 2.4 : Proposition proof example

The proposition proof source grammar adds the use of
axioms, premises, and facts to the proposition source
grammar. With these additions, the rules "Prog", "Step",
"Reasons", and "Reason" replace the "Props" and "Prop" rules
in the proposition source grammar to create the proposition
proof source grammar, The next few paragraphs explain these
rules,

A proof consists of a sequence of steps which
correspond to the facts used to prove the conclusion. The

"Step" rule consists of a label (:"F"Int:) identifying the



fact number of the proof, a logical expression ("Lexp"),
zero or more "logical operator logical expression" groups,
and the reasons ("Reasons") why the fact is true. "Prog" is
one or more "Step"s.

"Reasons" is one or more "Reason". "Reason" is either
an axiom number ("A"Int), a premise number ("P"Int), or a
fact number ("F"Int). The axiom, premise, or fact number
corresponds to the axiom, premise, or fact number used in
the proof problem to represent the pcodes for the axionm,

premise or fact respectively,

Problem Domain : Predicate

For the predicate problem domain the user is given a
story problem, similar to the ones used in the proposition
problem domain, and is required to enter a program that
corresponds to the story problem. Statements in the language
are propositions which may be composed using predicates.

Figure 2.5 illustrates a simple story problem and program.

Story Problem : all values b[j..k] are greater than 25
Program : ( ForAll i : ( j..k ) ¢ b[i] > 25 )

Figure 2.5 : Example predicate story problem and program

The statements are propositions with the addition of
quantifiers and ranges. The quantifiers are "ThereExists",

"ForAll", and "NumberOf". The general form of a predicate is

10



( quantifier : range : proposition )., Three predicate

examples are illustrated in Figure 2.6,

a, (ThereExists i : (j..k) ¢ b[i] = 0)
b. (ForAll i : (j..k) : b[i] = 0)
c. (NumberOf i : (j..k) : (b[i] = 0) <= 5

Figure 2.6 : Predicate examples

For the quantifier "ThereExists", the meaning of the
predicate would be there exists a value in the given range
that makes the proposition true. In Figure 2.6a., the
predicate reads there exist a value, i, in the range j to k
such that array b element i equals zero.

For "ForAll", the meaning would be for all values in
the given range the proposition is true, In Figure 2,6b.,
the predicate reads for all values, i, from j to k, array b
element i equals zero.

Finally, for "NumberOf" a number expression is given as
the number of values in the range that make the proposition
true, Figure 2.6c. reads the number of values, i, from j to
k, that satisfy array b element i equals zero is less than
or equal to five,

The predicate language is a subset of first order logic
with a few restrictions. The quantifiers are over integer
variables only, such as ( ForAll (i) : b[i] > O ). Another
restriction is that the proposition is limited to relational

or logical expressions using objects with predefined

11



predicates, one-dimensional integer arrays, and integer
constants.

The predicate source grammar needs rules to define the
structure of a predicate and the use of the qualifiers.
Exchange the "Prop" rule of the proposition source grammar
with the rules "Prog" (different from the "Prog" rule of 'the
proposition proof source grammar), "Pred", "Qualex", "Qual",
and "Numex" to create the predicate source grammar, Note
that the predicate source grammar uses the "prop" rule of
the proposition source grammar. The next few paragraphs
explain these new rules.

A "Prog" is zero or more labeled "Prop"s ending with a
"Pred", "Pred" is represented by either the "Qualex" rule or
the "Numex" rule, a relational operator ("Relop"), and an

index expression ("Iexp").

12



Chapter 3

TARGET AND TRANSLATION GRAMMARS

The pcodes, output from a code generator, are the input
for the respective interpreter. The pcodes are defined by
one of three target grammars. Each language has a target
grammar that defines its pcodes. The target grammars are
context-free; but by enforcing the use of the names given in
the story problems, by using the name table, the target
languages are context-sensitive. The three target grammars
are listed as Appendix C -- Target Grammars.

In the target grammars the terminating items are pcodes
which are stack machine instructions. Each has three parts:
operator, operand, operand; not all of the instructions show
values for all three of these parts. A zero is the
understood missing operands. In Appendix D - Opcode Table,
each operator (opcode) is listed with its meaning and
the steps performed by each interpreter.

Some of the stack machine instructions can be optimized
by the code generator. For example, instead of pushing two
operands onto the stack and then popping them off to perform
a relational operation, the relational instruction would be
comprised of the operator and both of its operands. The

pcodes would be one instruction verses three.

13



All operands that end with "inx" are actually indices
into a name table which is used in a similar fashion as a
symbol table is used in a compiler.

The translation grammar for each language represents
the relationship between each language's source and target
grammars. Each translation grammar, therefore, illustrates
how each target grammar is derived from each source grammar.
Each of the three translation grammars are attribute
grammars and are listed in Appendix B -- Translation
Grammars,

The objects inside the curly brackets are either
intermediate steps towards the pcodes or semantic actions,
An example of an intermediate step is shown in the "Prog"
rule of the predicate translator grammar, The { "olang am )
is added to the front of the "Prog" rule of the predicate
source grammar and { "oend" } is added to the end which
creates the "Prog" rule of the predicate translation
grammar, These two intermediate steps are replaced by the
terminals "olang", "3", and "oend" in the predicate target
grammar,

Some of the items in the curly brackets are semantic
actions. Semantic actions are distinguished from the

" which

intermediate steps by the use of the symbols "¢=m
means replace the left side with the value on the right
side. The replace action is the semantic action, For

example, in the "Relop" rule, the first choice is to replace

14



the "rel" with the operator "oeq". The replacement takes
place in the rule "Rexp" even though it is described in the
"Relop" rule.

Some of the attributes in each of the three translation
grammars use the suffix "inx". "Inx" is also a constraint of
these grammars because it corresponds to an index into the
name table.

To understand how a program is translated into pcodes,
an example problem from the proposition problem domain is
illustrated in Figure 3.1. The program is "x = z", A
derivation tree for each of the grammars (source,
translation, and target) is drawn for the program and the

resulting pcodes are given in Figure 3.1.

15



Program : " x =y "

Source grammar: Translation grammar:
PTOPS Props
Prop ("olang 1"}
| Prop {"oend"}
Lexp
Lexp
Rexp |
Rexp
Exp Relop Exp
| Exp Relop Exp {"oeq")
Var = Var
| | Var {"opush xinx"} Var {"opush zinx")
x z
Target grammar: Pcodes:
Props olang 1 0
opush xinx O
"olang" "1" opush zinx O
Prop "oend" oeq 0 0
oend O 0
Lexp
RTxp
Exp Exp Relop
"opush" "yinx" "opush" "oinx" “oeq“

Figure 3.1 :
Grammar Derivation trees and pcodes for a proposition example

16



Chapter 4

PROPOSITION LANGUAGE

The internal language structure -- the pcodes

The pcodes operators for the proposition interpreter
are listed in the first table of Appendix D: "Proposition
Opcode Table". In the table, the operator column lists the
names of all the operators., The meaning column explains what
each operator represents and the interpreter code column
describes the action executed for each operator by the
interpreters.

The first pcode for the proposition language is "olang
1 0" and the last one is "oend 0 0". The operands are either
indices into the name table, "O", or an immediate operand
value; a "1" is used in the first pcode represents the fact
that the pcodes represent a program for the proposition
language. The name table keeps track of variable names,
values, and types. The types correspond to the source
grammar rules "Var", "Avar", "Int", etc. For example, if the
variable is an array name, then from the source grammar it
is an Avar and the name table type is "array".

A "0" means either the value is on the top of the run
stack or no value is used. Some operators only need one
operand, such as olang and opush, while some operators do

not require operands, such as oend and owhy.

1.7



Table 4,1 displays the pcodes for the example: "x > y
and y > z or i > z", The operands "10", "11", énd 12" 4ia
the table are indices into the name table. These indices
correspond to x, y, and z respectively. The operands for
"oand" and "ocor"™ are on the run stack; therefore, "0"s are
used in the pcodes for the operands for "oand" and "oor".
The zero operands for "oend" and the zero operand for

"olang", are place holders for the missing operands as

defined previously.

Table 4.1 : Proposition sample pcodes

Operator Operand Operand

olang 1 0
ogrt 10 11
ogrt 1l 12
oand 0 0
ogrt 10 12
oor 0 0
oend 0 0

The test case file

In testing a program for a story problem in the
proposition problem domain, the number of test cases needed
is determined by the number of primitive logical expressions
used in the solution program. The primitive logical
expressions are either relational expressions or predefined
predicates. The number of test cases is equal to two raised
to the power of "the number of primitive logical expressions
used in the solution program", Therefore, if the solution

program used one primitive logical expression, then two test

18



cases are formed; two primitive logical expressions -- four
test cases, three -- eight test cases, etc.

A table is created similar to the one in Table 4.2,
Each relational expression is represented in the table and
the true/false combinations are listed under the relational
expression headings. For the example program "x >y and y >
z or x > 2", three primitive logical expressions were used,
namely three greater than operators; therefore, eight test

cases are needed.

Table 4.2 : Table used to derive test case file

(x>y) (y>z) (x>z) Xy z result
true true true 321 true
true true false - - = -——
true false true 312 true
true false false 213 false
false true true 2 31 true
false true false 1 32 false
false false true - - - —_——
false false false 123 false

Each variable in the story proﬁlem is represented as a
heading in the table just as x, y, and z are placed in Table
4,2 for the example program. Values are selected for the
variables to satisfy each row of the table. For example, if
3, 2, and 1 are substituted for x, y, and z respectively,
then the first row which is "true true true" is satisfied.
The rest of the table is completed in the same manner and
the resulting sets of values for the variables are the test

cases.

19



The last column of a table holds the value of each test
case. A test case value is derived by substituting true or
false for each relational expression and evaluating the
program.

The test case file for the proposition language has a
test case for each possible combination of true/false values
for the relational expressions for one program solution for
a given story problem., A user may create a different progranm
. for the story program. For example, using the story problem
"y is less than or equal to 2" the following three programs

are correct: "x >= y", "y < x or x = y", and "x >= y or y <

",

A user cannot create a correct program using less thén
number of relational expressions as used in the solution
program., Therefore, executing the pcodes, which represent
the program, using the values from each test case is a sure
method of verifying that the program from the user is(is
not) a correct interpretation of the story problem,

Some programs in the proposition language will not have
the exact number of test cases as described in the first
paragraph of the previous section., The reason behind a test
case file's shortage of test cases is for some programs, one
or more of the rows of the table cannot be satisfied. For

instance, in the example problem only six cases are possible

because a case cannot be written where (x>y) and (y>z) are

20



true while (x>z) is false nor can one be written where (x>y)

and (y>z) are false while (x>z) is true.

The test case file structure

The test case file for the proposition interpreter has
for each test case, a value for each variable in the story
problem, After each variable is represented for a test case,
the value of the test case is listed, The value of the test
case is either true or false; true is represented by a "1",
false by a "0".

Each item in the test case file starts in column one of
the file and resides on a separate line from the rest of the
items. For the variables of the test cases the name of the
variable is first followed by its test value. The value of
each test case (1 for true or Olfor false) is inserted at
the end of each test case. The symbol "&" is used as a
signal to the interpreter that the test case value is next
in the file. The test cases are placed in the file one after
another with absolutely no blank lines. For the example "x >
y and y > z or x > z" the test case file is illustrated in

Figure 4.1.

x CR 3 CR y CR 2 CR z CR 1 CR & CR 1 CR
x CR 3 CR y CR 1 CR z CR 2 CR & CR 1 CR
x CR 2 CR y CR 1 CR z CR 3 CR & CR 0 CR
x CR 2 CR y CR 3 CR z CR 1 CR & CR 1 CR
x CR 1 CR y CR 3 CR z CR 2 CR & CR 0 CR
x CR 1 CR y CR 2 CR 2z CR 3 CR & CR 0 CR

Figure 4.1 : Proposition test case file example

21



For the first test case in Figure 4.1, the values 3, 2,
and 1 are substituted for x, y, and z respectively, yielding
"3 > 2 and 2 > 1 or 3 > 1", After examining the new
expression, it is easy to see that the test case result is
true (1). The rest of the test cases can be explained in the

same fashion.

The interpreter design

The proposition interpreter executes the pcodes using
the values from each test case and evaluates the true/false
result for each test case. All test cases must produce
correct results in order for the user's program to be a
correct interpretation of the story problem., For instance,
from the test case file section of this chapter, the
following story problem has six test cases: "either x is
greater than y and y greater than z or x is greater than z".
All six test cases must yield correct results before the
user's program is accepted.

The interpreter places the first set of values from
Table 4.2 (values for x, y, and z) into the name table as
the values for x, y, and z respectively. Then the pcode is
executed for a true/false result which is compared to the
true/false value (the value after the "&" symbol) in the
test case. If these two boolean values do not match then the
evaluation of the program stops and the following message is

returned to the user: "your program is incorrect", If,

22



however, the values do match then the next test case is
executed and evaluated. If each test case is successful,

then the following message is returned: "your program is

correct".

Begin
error <-- false
Repeat
store test case values
execute pcodes using test case values
If result <> test case result Then
error <-- true
Endif
Until eof(test case file) or error
If error Then
output "your program is incorrect"
Else
output "your program is correct"”
Endif
End

Figure 4.2 : Proposition interpreter algorithm

Figure 4.2 illustrates the algorithm used for the
proposition interpreter. The code for the interpreter reads
a test case, substitutes the values into the name table,
executes the pcodes using the previously set values from the
name table, compares the executed result against the correct
one from the test case file, and then either continues with
the next test case or quits because of the evaluation of the

result is negative or the last case has been executed.
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Chapter 5

PROPOSITION PROOF LANGUAGE

The internal language structure -- the pcodes

The '"pcodes" for the proposition proof interpreter are
described in Appendix D in the second table: "Proposition
Proof Opcode Table", The first pcode is "olang 2 0" and the
last one is "oend 0 0",

Table 5.1 illustrates the pcodes for the example proof
in Figure 5.1. The operands "alinx", "a2inx", "plinx",
"flinx", "cinx", "tominx", "takeinx", "goinx", and "eatinx",
listed in the table, are indices into the name table. These
indices map to axiom 1, axiom 2, premise 1, fact 1,
conclusion (fact 2), tom, takebus(tom), gohome(tom), and
eatdinner(tom), respectively, in the problem outlined in
Figure 5,1. At run time, the values for the operands for the
operator "oimp", for this example, are at the top of the

stack; therefore, in the pcodes the operands are "QO".

Problem:
axiom 1 : takebus(tom) implies gohome(tom)
axiom 2 : gohome(tom) implies eatdinner(tom)
premise 1 : takebus(tom)
conclusion : gohome(tom) -
Solution:
fact 1 :
takebus(tom) implies eatdinner(tom) // axiom 1, axiom 2
fact 2 :
conclusion // premise 1, fact 1

Figure 5.1 : Proposition proof story problem & program
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The pcodes between the asterisk lines in Table 5.1 are
the axioms,.premises and conclusion. The pcoﬁes for the
axioms and premises are saved and later executed as the
pcodes for the reasons used for the facts in the user's
proof program. For example, in the proof of Figure 5.1, the

first reason of the first fact is "axiom 1".

The pcodes

which are executed for "axiom 1"

are those between the

pcodes "oaxiom alinx O" and

oaxiom a2inx O™ in Table 5.1.

The asterisk lines are not part of the pcodes.

Table 5.1 : Proposition proof example pcodes

Operator Operand Operand Operator Operand Operand
olang 2 0 oarg tominx 0
oo e sk e ek sk sk e e e skek ofun goinx 0
oaxiom alinx 0 oend 0 0
oarg tominx 0 e s 3 se s e 3 s sl e sl s e sk sl sk sk ke ok
ofun takeinx 0 ofact flinx 0
oarg tominx 0 oarg tominx 0
ofun goinx 0 ofun takeinx 0
oimp 0 0 oarg tominx 0
oend 0 0 ofun eatinx 0
oaxiom aZinx 0 oimp 0 0
ocarg tominx 0 owhy 0 0
ofun goinx 0 oaxiom alinx 0
ocarg tominx 0 oaxiom a2inx 0
ofun eatinx 0 oend 0 0
oimp 0] 0 ofact cinx 0
oend 0 0 owhy 0 0
oprem plinx 0 oprem plinx 0
oarg tominx 0 ofact flinx 0
ofun takeinx = O oend 0 0
cend 0 0 oend 0 0
ofact cinx 0

The test case file
In testing a program for a story problem in the

proposition proof problem domain, the number of test cases
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needed is calculated the same way as for the proposition
problem domain. For the sample problem, three primitive
logical expressions are used: gohome(tom), takebus(tom), and

eatdinner(tom), so eight test cases are needed.

Table 5.2 : Proposition proof test cases for example problem

takebus(tom)____gohome(tom)__ eatdinner(tom)
true true true
true true false
true false true
true false false
false true true
false true false
false false true
false false false

For the proposition proof test case file, a table is
created similar to the one for the sample problem in Table
5.2. Each primitive logical expression of the problem is
listed as a heading of the table and a truth table is
created below the headings. Each line of the table

represents one test case.

The test case file structure

The test case file for the proposition proof
interpreter has for each test case a true/false value for
each primitive logical expression used in the story problem.
The true values are represented by a "1" and false by a "0O"
just as they were in the proposition language.

Again, each item is on a separate line starting in

column one and the file has no blank lines. The variable
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name is listed first and the value next; therefore, each
test case consists of the name and corresponding truth value
of every variable used in the story problem. For the example

described in Figure 5.1, the test case file would appear as

Figure 5.2.

takebus CR 1 CR gohome CR 1 CR eatdinner CR 1 CR
takebus CR 1 CR gohome CR 1 CR eatdinner CR O CR
takebus CR 1 CR gohome CR 0 CR eatdinner CR 1 CR
takebus CR 1 CR gohome CR 0 CR eatdinner CR 0O CR
takebus CR 0 CR gohome CR 1 CR eatdinner CR 1 CR
takebus CR 0 CR gohome CR 1 CR eatdinner CR O CR
takebus CR 0 CR gohome CR O CR eatdinner CR 1 CR
takebus CR 0 CR gohome CR O CR eatdinner CR O CR

Figure 5.2 : Proposition proof test case file example

The interpreter design

The pcodes for the proposition proof language include
pcodes for the axioms, premises, and conclusion, and as well
as the pcodes for each fact. The pcodes for each axiom,
premise, and the conclusion are executed several times by
the interpreter, therefore, the respective pcodes are stored
in an array (this array is called "fact-array" in the
report). Facts that the interpreter accepts are also placed
in fact-array.

The pcodes in fact-array for the axioms start with the

pcode: "oaxiom ainx 0", The premises start with "

oprem pinx
0", facts -- "ofact finx O" and the conclusion -- "ofact

cinx O", The pcodes for the axioms, premises, and facts end
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with the pcode: "oend O 0". The entries are placed end-to-
end in fact-array; to locate a particular axiom, premise or
fact a linear search is performed.

Each reason for a fact is represented in fact-array;
the interpreter, therefore, searches the pcodes in fact-
array for the one with the same operator (ocaxiom, oprem,
ofact) and first operand (ainx, pinx, finx, cinx) as the
reason given for a particular fact. The pcodes from that
position in the array until the "oend 0 0" pcode are then

executed as the reason.

Table 5.3 : Table 5.2 with execution results
(True results lists the axioms, premises,
and facts that are true for each test case.)

Case takebus(tom) gohome(tom) eatdinner(tom) True Result

1 true true true al,a2,pl,fl,f2
2 true true false al, pl ,£2
3 true false true a2,pl,fl

4 true false false a2,pl

5 false true true al,a2, f1,£2
6 false true false al, f1,£f2
7 false false true al,a2, fl

8 false false false al,a2, fl

The proposition proof interpreter begins by loading the
pcodes for the axioms, premises, and conclusion into fact-
array. Then each fact is executed by the following method.
For each test case, the reasons are executed and the
resulting boolean value is evaluated, If all reasons produce
true results for a test case, the fact is executed using the
same test case values, If the fact also evaluates to true,

then the testing continues with the next test case, else
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execution stops and the fact is rejected. If any reason
evaluates to false, the interpreter starts again with the
next test case and the first reascon,

For example, for the first test case in the sample
prbblem, the value "true" would be substituted as the value
for takebus(tom), gohome(tom), and eatdinner(tom) in the
name table, The interpreter takes the first reason given for
the first fact and executes the pcodes for it using the
values of the first test case. Using the "True Result”
column of Table 5.3, which lists the axioms, premises, and
facts that evaluate to true, the result of executing axiom 1l
(the first reason for the first fact) is true. The next
reason, axiom 2, is executed using the first test case
values and the result is true too. Axioms 1 and 2 are the
only reasons for fact 1 and each were true for the first
test case so the fact pcodes are executed. The result is
again true; therefore, a counting variable, TrueCount,
initialized to zero, is incremented.

Next, the interpreter places the values of the second
test case into the name table and the above execution
pattern is performed again. From Table 5,3, only axiom 1 is
true so the next test case is loaded into the name table,
This case fails because of axiom 1 as &oes the fourth test
case. The fifth one, however, has a true result for axiom 1,
axiom 2, and the fact so TrueCount is again incremented. The

next test case fails since axiom 2 is false. The last two
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result in true for both the axioms and the fact so TrueCount
is left with the value of four. The first fact is accepted
as the value of TrueCount is greater than zero.

The interpreter then executes next fact, the
conclusion, in a similar fashion starting with the first
test case. The conclusion is also accepted (the "True
Result" column of Table 5.3 illustrates that the conclusion,
fact 2, is accepted) by the jnterpreter so the example story
problem is successfully solved.

Even though a case is found where both the reasons and
the fact evaluate to true, the rest of the cases have to be
checked. The fact must evaluate to true for every test case
in which all the reasons evaluate to true, The fact is
rejected, if a case is found where all reasons evaluate to
true and the fact evaluates to false.

If all test cases produce a false result for at least
one of the reasons or the fact never produces a true result,
meaning the TrueCount remains zero, then the fact is not
accepted.

If a fact is accepted, then that fact's pcodes are
added to the fact-array, Once added to the fact-array, the
fact is considered true and can be used as a reason for
future facts, For example in the sample problem, the first
fact is accepted and then it is used as a reason for the

conclusion.
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Once all facts ending with the conclusion are accepted,
the execution ends and the program, the list of facts with
reasons, is a correct solution to the story problem,

A user is not limited on the number of reasons given
for the facts for each step in the program; nor is there a
limited on the number of actual steps for the program,

By examining Table 5.3, if a user gives one fact, which
would be the conclusion, in the program for the story
problem, depending on the reasons used, the interpreter
returns two conflicting results, If a user gives axiom 1 and
axiom 2 as the reasons, in order to be accepted, the
conclusion has to be true for test cases one, five, seven,
and eight because those are the cases in which both reasons
are true, Since the conclusion is not true for case seven or
eight, the interpreter rejects it. On the other hand, if a
user uses axiom 1 and 2 and premise 1 as reasons the
interpreter accepts the conclusion because all three reasons
are true for only the first test case and the conclusion is

also true for this case.
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Chapter 6

PREDICATE LANGUAGE

The internal language structure -~ the pcodes

The "pcodes" for the predicate interpreter are listed
in the third table in Appendix D: "Predicate Opcode Table".
The first pcode is "olang 3 O" and the last one is "oend O
ov.

An example story problem and program are listed iﬁ
Figure 6.1 and the corresponding pcodes are illustrated in
Table 6.1, The operands "jinx" and "kinx" listed in Table
6.1, are indices into the name table. They map to j and k
which were used as range bounds in the story problem. The
"binx" operand represents the b array and "iinx" is the
bound variable used to index the array. At run time, the

operands for "oeq"

will be at the top of the stack:
therefore, "0" is used in the pcode. The first operand of
the operator "opushi" (push immediate) is "O" which is the

"0" used in the program.

Story Problem:
“gome values of b[j..k] are zero
Program:
( ThereExists i : (j..k) ¢ b[i] = 0 )

Figure 6.1 : Example predicate story problem and program
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Table 6,1 : Predicate sample pcodes

Operator Operand Operand

olang 3 0
oexist iinx 0
orange jinx kinx
oindex binx iinx
opushi 0 0
oeg 0 0
oend 0 0

The test case file

In testing a program in the predicate problem domain,
if the number of test cases is determined as it is in the
other two domains, then the test case file would be very
large. The example: (ThereExists i : (j..k) : b[i] = 0) is
equivalent to (b[j]l=0 or b[j+1]=0 or ... or b[k-1]=0 or
b[k]=0) which yields two raised to the power of "k-j+1" test
cases, That many test cases is not practical so a
heuristical approach is taken which uses a small number of
test cases, The actual number of test cases is a judgement
call, it could be two, three, four, or any number decided by
the program solution writer. For the example illustrated in
this chapter, two test cases are used,

The beginning of the test case file has values for each
element of the program solution array, these array values
are used for each of the test cases.

FEach test case is comprised of a value for the lower

bound variable of the range and ene for the upper bound
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variable. The predicate is executed once for each value of
each test range.

To derive the test case values, create an array and a
table similar ta the ones in Figure 6.2. The size of the
array is.arbitrary; however, it depends somewhat on the
values that fill it. For the example in Figure 6.1, an array
of ten elements was used and the array values are displayed
in Figure 6.2b. Only array elements 3, 4, and 6 satisfy the
preﬂicate; therefore, at least one of the test case ranges
must include at least one of these elements and at least one

of the test case ranges must exclude all of these elements.

a. Predicate :
( ThereExists i ¢+ ( j «« kK ) ¢ b[i] = 0 )

b. Array values :

b[1] = 3 b[2] = 6 b[3] = 0O b[4] = O b[5] = 4
b[6] = O b[7] = 6 b[8] = 5 b[9] = 3 b[10] = 7
c. Test case table :
Case Lower Upper Test Case Counting
Number Bound Bound Value Variable Result
1 2 5 true 2
2 7 10 false 0

Figure 6.2 : Array & table used to derive
example predicate test case file

When the test cases are created for the predicate
problem domain, the story problem needs to be examined
carefully, A user is not restricted to writing an exact

duplicate of the solution program for a particular story
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problem; therefore, the test cases should be created so that
"almost correct" programs will not be accepted.

For the example predicate, the following incorrect
program is accepted by the interpreter because the first
test case (see Figure 6.2c¢c) has two array elements equal to
zero in its range.

( NumberOf i : ( ju.k ) ¢ ( B[i] = 0 ) > 1 ).
This predicate actually means "in the range there is more
than one zero"; however, the story problem stated "at least
one zero exists", To correct the first test case so that the
above program is not accepted the range should have only one

array element equal to zero, not two,

The test case file structure

Each value in the predicate problem domain test case
file is ona line by itself beginning in column one and no
blank lines exist within the file. The first part of the
test case file has a value for each element in the array.
The array element values are listed sequentially starting
with the first element. The array name is listed before
each array element value.

The rest of the test case file is comprised of the
actual test cases. Each test case contains values for the
lower and upper range variables, and a boolean value for the
test case. The name of each range variable is listed before

its value and the symbol "&" is listed before the boolean
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value. The boolean value is true if the test case range
satisfies the predicate; it is false otherwise. True is
represented by "1" and false by "0".

Figure 6.3 illustrates the test case file for the
example problem described in Figure 6.1, The "b", (Figure
6.3) is the name of the array, which has ten elements,
indexed one through ten., The "j" is the lower bound variable
and "k" is the upper bound., Each test case uses the same

values for the array.

b CR 3 CR b CR 6 CR b CR O CR
b CR 0 CR b CR 4 CR b CR 0O CR
b CR 6 CR b CR 5 CR b CR 3 CR
b CR 7 CR

j CR 2 CR k CR 5 CR & CR 1 CR
j CR 7 CR k CR 10 CR & CR O CR

Figure 6.3 : Predicate test case file example

The interpreter design

The pcodes for the predicate problem domain contains
several parts: a language number, a qualifier, two range
variables, and the proposition, The predicate interpreter
executes the pcodes for the proposition part of the
predicate using the range values from each test case and
evaluates the true/false result for each test case. For the
user's program to be a correct interpretation df the story
problem, when the program is executed with each test case
range, the result must match the given test case answer, the

value after the "&" token in the test case file.
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At the start of each test case, a counting variable is
set to zero. Each time the execution of the pcodes for the
proposition yields "true'", the counting variable is
incremented. After the last execution of the proposition
pcodes, the counting variable is evaluated to determine if
the entire test case yields "true" or "false".

The counting variable value varies depending on which
quantifier is used. For a program which used "ThereExists",
if the counting variable is greater than zero then the test
case result is true, else it is false. For "ForAll", if the
counting variable is equal to the upper bound minus the
lower bound plus one then the result is true, else false.
For "NumberOf", if the counting variable is equal to the
value represented by the first operand in the pcode for the
operator "onum" then the result is true, else false,

If the test case result matches the value in the test
case file, the value after the "&" token, then the next test
case is processed, If the result does not match then the
interpreter halts execution and returns the message "y owr
program is not correct!"; if each test case matches the test
!"

case value then the message "Your program is correct is

returned to the user,.
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Chapter 7

CONCLUSION

Code-generator/grammar problems

During the design and implementation of the three
interpreters, three problems related to the grammars and
code generators were encountered, The next few paragraphs
discuss these problems and their solutions,

Each problem domain's grammar allows relational
expressions to be structured like the examples in Figure
7.1, Figure 7.2 illustrates the pcodes generated for each

example in Figure 7.1,

a. x >y > =z b. s <t<s ¢, p>q=r

Figure 7.1 : Relational expression examples

a. opush xinx O b. opush sinx O c. opush pinx O
opush yinx 0 opush tinx O opush ginx O
ogrt O 0 olss O 0 ogrt O 0
opush zinx O opush sinx 0 opush rinx O
ogrt O 0 olss O 0 oeg 0 0

Figure 7.2 : Pcodes for relational expression examples

When either of the three interpreters executes the
pcodes in Figure 7.2, even though the original expressions
were correct, the interpreters will reject them, For
example, after executing the pcodes in Figure 7.2c when the
values 3, 2, 1 are used for p, q, r respectively, each
interpreter returns "true"; however, the actual result is

"false".
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Each interpreter uses "1" to represent "true" and "O"
for "false". When executing the pcodes for Figure 7.2c
(again using the test values 3, 2, 1l for p, q, r) an
interpreter pushes the value for p onto the run stack and
then pushes the value of q. The next pcode requires an
interpreter to pop two values off the run stack and perform
the "greater than" operation which, in turn, pushes the
boolean value "1" onto the stack. The next .pcode pushes the
value for r onto the stack and the "oeq" pcode performs the
"equals" operation, The operands for thé "oeq" pcode are 1
(true) and 1 (value of r) when they should have been 2
(value of q) and 1 (value of r).

The solution would require the code generators to
optimize the pcodes when relational expressions are
structured as those illustrated in Figure 7.1. For example,
Figure 7.2c would have the pcode "opush ginx 0" after the
pcode "ogrt O O". Then each interpreter would compare the

value for "q" with the value for "r" verses comparing a

boolean value with the value for "r".

The second problem deals with logical expressions. The
source grammars allow logical expressions in the form
illustrated by the examples of Figure 7.3. The precedence
rules for "and", "or", "implies", and "equivalence" are
jgnored in the source grammars; however, "not" is handled

correctly, Figure 7.4 demonstrates the pcodes for the

examples in Figure 7.3, The pcodes illustrate that the
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equation will be evaluated left to right irregardless of the
precedence, Without precedence rules, Figure 7.3a would be a

different expression if it were written "h and g or £f".

a,f or g and h b. 1 implies m equals n ¢. i or j implies k

Figure 7.3 : Logical expression examples

a. opush finx O b. opush linx O c. opush iinx O
opush ginx 0 opush minx O opush jinx O
oor 0 0 oimp O 0 oor 0 0
opush ginx 0O opush ninx 0 opush kinx O
oand O 0 ceqv O 0 oimp O 0]

Figure 7.4 : Pcodes for logical expression examples

The solution would leave all parts of the system
unchanged, which means that all logical operators have equal
precedence., (Perhaps the user would be warned that the
logical operators have equal precedence and that by default,
the answer is executed left to right.) The user can enforce
the order of execution, however, with parentheses i.e. "f or
(g and h)" verses "f or g and h". or with reordering the
expressions, i.e. "g and h or f" verses "f or g and h",

The third problem is with the predicate language
because it has trouble dealing with the operator "not". The
grammar allows the "not" to be taken on the entire equation;
however, this cannot be done by the interpreter because it

"not" of the current value on the stack. The

takes the
problem can be illustrated with the example predicate and

pcodes in Figure 7.5. The interpreter takes the "not" of the
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value placed on the stack by the "oeq" pcode instead of

n "

executing the "not" for the entire predicate,

Predicate
not ( ForAll i : ( j..k ) : b[i] = 0 )

Pcode : olang 3 0
oall iinx O
opush iinx O
opush iinx O
orange 0 0
opush ainx 0
opush diinx O
oindex O 0
opushi 0 0
oeq 0 0
onot 0 0
oend 0 0

Figure 7.5 : Predicate and pcodes example

The solution would append "oend" to the end of the rule
"Lexp". (Refer to the Predicate translation grammar in
Appendix B for the "Lexp" rule.) With the change, the code
generator inserts the pcode "oend 0 0" before the pcode
"onot O 0", which causes the interpreter to first execute
the proposition part of the prédicate once for each value of
the range, then take the "not" of the evaluation of the

counting variable value,

Testing of the interpreters

The proposition and predicate interpreters were tested
with a number of different story problems and sample
programs. These two interpreters include a procedure which

allows the stack changes to appear on the screen. From
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viewing the stack operations, the proposition and predicate
interpreters work as expected from their design.

The design of the proposition proof interpreter
required that some of the pcodes be saved at the start of a
proof program execution andlthat during the execution more
pcodes would also be saved., Then the execution of a proof
program would either require the user to give all facts and
reasons at once or would require the interpreter to execute
each fact as a separate program, The second method would
mean that those pcodes which need to be saved would be saved
in a file, This design issue was never resolved; therefore,

the interpreter was never completed.

42



REFERENCES

Barrett, William A., Bates, Rodney M., Gustafson, David A.,
Couch, John D. Compiler Construction Theory And
Practice, Chicago, Illinois: Science Research
Associates, Inc., 1986, Chapter 2, p. 17-66.

Bauver, F. L., Eickel, J. Compiler Construction an Advanced
Course. New York: Springer-Verlag, 1976, Chapter 1, p.
1-36, Chapter 2, p. 37-56.

Borland International, TurboPascal Version 3.0 Reference
Manual, California, 1985,

Gries, David. The Science of Programming. New York:
Springer-Verlag New York Inc., 1981. pp. 8-9,12, 25,
29, 66, 71-74, 304--3009.

Korfhage, Robert R. Logic and Algorithms: with Applications
to the Computer and Information Sciences. New York:
John Wiley & Sons Inc., 1966, Chapter 6, p. 125-143.

Pratt, Terrence W, Programming Languages Design and
Implementation, New Jersey: Prentice-Hall, 1984, Chapter
9, p. 303-329,

43



APPENDIX A

Proposition Source Grammar

Props ::= :Lab: Prop eol ]* Prop eol

{*"Lab" defines a label, if the line is correct¥*}
Prop ::= Lexp [ Lop Lexp ]*
Lexp ::= Lab | Rexp | not Lexp | ( Prop )

| Pvar ( Ovar )
{*Note: label must have been previously defined¥}

Lop ::= and | or | imp | eqv

Rexp = Exp [ Relop Exp ]1..2 | Ivar in Range
Relop 2:= = | =< | >=| /=] > | <

Range ::= ( Iexp .. Iexp )

Exp t:= Var | Avar "[" Iexp "]" | Iexp

Jexp ::= Const | Ivar [ Sign Const ]
Var ::= { any "var" name defined in the problem )
Avar ::= { any "array" name defined in the problem }

Ivar ::={ any "index" name, defined in
the problemorin Qualex or Numex }

Pvar 1::= {‘any "pred" name defined in the problem )}
Cvar ::= { any "const" name defined in the problem }

Ovar i

{ any "object" name defined in the problem }
Lab ::= { any "label" name )

{*Note: problem names are those
used in the story problem¥*)
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Proposition Proof Source Grammar
Prog ::= Step eol [ Step eol ]* done.

Step ::= :"F"Int : Lexp [ Lop Lexp ]*¥ // Reasons

Lexp = Lab | Rexp | not Lexp | ( Prop )
| Pvar ( Ovar )
{*Note: label must have been previously defined¥*}
Lop = and | or | imp | eqv

Rexp ::= Exp [ Relop Exp ]1..2 | Ivar in Range

Relop 1:= = | =< | >= ] /= [ > | <

Range ::= ( Iexp .. Iexp )

Exp := Var | Avar "[" Iexp "]" | Iexp

Iexp ::= Const | Ivar [ Sign Const ]

Var ::= { any "var" name defined in the problem }
Avar ::= { any "array" name defined in the problem )}

Ivar ::={ any "index" name, defined in
the problemorin Qualex or Nuwmex }

Pvar ::= { any "pred" name defined in the problem )}

Cvar ::= { any "const" name defined in the problem }
Ovar ::= { any "object" name defined in the problem }
Lab t:= { any "label" name )}

{*Note: problem names are those
used in the story problem¥)}

Sign ::= + | -

Const Int | Cvar

Int F -

{any legal integer)
Reasons ::= Reason [ , Reason ]*

Reason ::= "A"Int | "P"Int | "F"Int
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Predicate Source Grammar

Prog ::= [ :Lab: Prop eol ]* Pred
{#*"Lab" defines a label, if the line is correct¥)

Pred 1= Qualex | Numex Relop Iexp
Qualex ::= [ not ] ( Qual Ivar : Range : Lexp )
Qual se= "AL11" | "Exist"
Numex ::= ( "Num" Ivar : Range : Lexp )
Lexp $am Lab | Rexp | not Lexp | ( Prop )

Pvar ( Ovar )

{*Note: label must have been previously defined¥*}

Lop ::= and | or | imp | eqv
Rexp ::= Exp [ Relop Exp ]1..2 | Ivar in Range
Relop :1:= = I =< | >= | /= | > | <

Range ::= ( Iexp .. Iexp )

Exp ::= Var | Avar "[" Iexp "]" | Iexp

Iexp ::= Const | Ivar [ Sign Const ]

Var ::= { any "var" name defined in the problem )
Avar t:= { any "array" name defined in the problem )

Ivar ::={ any "index" name, defined in
the problemorin Qualex or Numex }

Pvar ::= { any "pred" name defined in the problem }
Cvar ::= { any "const" name defined in the problem }
Ovar ::= { any "object" name defined in the problem }
Lab ::= ( any "label" name }

{*Note: problem names are those
used in the story problem¥*}

Sign ti= 4+ | =
Const ::= Int | Cvar

Int ::= {any legal integer)
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Notation used :

1.

Each entry in the source grammars is a rule, The name of
a rule is listed on the left side of the symbols: "::=",
The choices for a rule are listed after the "::="
symbols and are separated with the symbol "|",

The square brackets "[" and "]" enclose items that are
optional.

a. The asterisk means zero or more occurrences.
b. The "1..2" means one or two occurrences,
c. No symbol means zero or one occurrence.

To distinguish the difference between the use of the
square brackets for optional items and the use of thenm
as part of a choice for a rule, they are enclosed in
quotes when they are part of a choice, For example, the
square brackets in the second choice of the rule "exp"
are required as part of that choice so they are enclosed
in quotes.

Quotes are also used around words when the actual word
is part of a choice; for example, the "Qual" rule is
either the actual word "A1ll" or the actual word
"Exists".

The symbols "{*" and "*}" are used for comments about
the rule, such as after the rules Props, Lexp, and Lab
in the proposition source grammar.

The curly brackets "{" and "}" are used to list a class

of items such as the choices for the rules Var, Avar,
and Ivar in the proposition scurce grammar,
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APPENDIX B

Proposition Translation Grammar

Props ::= { "olang 1" }
[ :Lab: Prop eol { define(Lab) } ]*¥ Prop
{ "oend" )} .

Prop ::= Lexp [ Lop Lexp { olop } 1%

Lexp ::= Lab { output code generated
by previous labeled line }
Rexp ' ;

not Lexp (

( Prop )
Pvar ( Ovar ) { "oarg oinx
{#*Note: "oinx" in the Ovar index,
"pinx"™ is the Pvar index¥)}

"onot" }

" Y"ofun pinx" }

Lop ::= and { olop <-- "oand" }
or { olop <-- "oor" }
imp { olop <-- "oimp" }
eqv { olop <-- "oeqv" )
Rexp = Exp [ Relop Exp { rel } ]
[ Relop Exp { rel }
Ivar in Range { "oin iinx" )
{*Hote: "iinx" is the Ivar index*)
Relop ::= = { rel <-- "oceq" )
=< { rel <-- "oels" }
>= { rel <-- "ogeq" }
/= [ rel <-- "oneq" }
> ( rel <-- "ogrt" }
< [ rel <-- "olss" }

t

Range ::= ( Iexp .. Iexp ) { "orange" )
Exp ::= Var { "opush inx" }
| Avar { "opush ainx" } "[" Iexp "]"
{ "oindex" )}
Texp
{*Note: "inx"™ is the Var index,
"ainx" is the Avar index¥*}

Iexp ::= Const .
Ivar { opush iinx" } [ Sign Const { sign } ]

Sign ::= + { sign <-- "oplus" }
- { sign <-- "ominus" }
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Const ::= Int { "opushi int" )}
Cvar { "opush cinx" )}
{*Note: "cinx"™ is the Cvar index¥*)

Proposition Proof Tramslation Grammar
Prog :t= { olang 2" } [ Step eol ]* Last { "oend" )

Step t:= :"F"Int : { "ofact finx" )}
Lexp [ Lop Lexp 1* // ( "owhy" } Reasons
{#*Note: "finx" is the fact index¥*)

Last ts= :"C": { "ofact cinx" }
// { "owhy" } Reasons
{*Note: "cinx" is the conclusion index*)}

Lexp ::= Lab { output code generated
by previous labeled line )
Rexp

not Lexp ({

( Prop )
Pvar ( Ovar ) { "oarg oinx

{#*Note: "oinx" in the Ovar index,
"pinx" is the Pvar index¥*)

"onot" )

" "ofun pinx" }

Lop ::= and olop <-- "oand"

{ }
or { olop <-- "oor }
imp { olop <-- "oimp" }
eqv { olop <-- "oeqv" }

Rexp t::= Exp [ Relop Exp { rel } ]
[ Relop Exp { rel } ]
Ivar in Range { "oin iinx" )
{#*Note: "iinx" is the Ivar index¥*}

Relop ::= = { rel <-- "oeq" }

=< [ rel <-- "oels" }

>= [ rel <-- "ogeq" }

/= { rel <-- "oneq" }

> { rel <-- "ogrt" }

< { rel <-- "olss" }
Range ::= ( Iexp .. Iexp ) { "orange" )}
Exp ::= Var { "opush inx" }

| Avar { "opush ainx" } "[" Iexp "]"
{ "oindex" }
Iexp
{*Note: "inx"™ is the Var index,
"ainx" is the Avar index¥}
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Const

| Ivar { opush iinx"

Texp ::
. } [ Sign Const { sign } ]

Sign ::= + [ sign <-- "oplus" }
- { sign <-- "ominus" }

Const ::= 1Int { "opushi int" }
Cvar { "opush cinx" }
{#*Note: "cinx" is the Cvar index¥)

Reasons ::= Reason [ , Reason ]* { "oend" }

Reason 1::= "A"Int { "oaxiom ainx" )
"P"Int { "oprem pinx" )}
"F"Int { "ofact finx" )}
{ note: Mainx" is the axiom index,
"pinx" is the premise index }

Predicate Translation Grammar

Prog :t= { "olang 3" )
[ :Lab: Prop ]* Pred { "ocend" }

Pred ::= Qualex | Numex Relop Iexp { rel }
Qualex ::= { not <-- null } [ not { not <-- "onot" } ]
( Qual Ivar [ qual "iinx" } : Range : Lexp )
{ not }
Qual ti= "ALL" { qual <-=-= "oall" )
| "Exist" { qual <-- "oexist" )

Numex ::= ( "Num" Ivar { "onum iinx " } : Range
Lexp { "oend" } )

Lexp ::= Lab { output code generated
by previous labeled line )

Rexp

not Lexp { "onot" )

( Prop ) -

Pvar ( Ovar ) { "oarg oinx" "ofun pinx" }
{*Note: "oinx" in the Ovar index,

"pinx" is the Pvar index¥)

Lop ::= and { olop <-- "ocand"
or { olop <-- "oor"
imp { olop <-- "oimp'
eqv { olop <-- "oeqv"

)
)
')
}
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Rexp ::= Exp [ Relop LExp { rel } ]
[ Relop Exp { rel } ]
| Ivar in Range { "oin iinx" )
{*Note: "iinx" is the Ivar index*)

Relop ::= = { rel <-- "oeq" }
=< { rel <-- "oels" }
e —_n n
7o (el T owetede )
> [ rel <-- "ogrt" }
¢ { rel <-- "olss" }

Range ::= ( Iexp .. Iexp ) { "orange" )
Exp :t= Var { "opush inx" }
| Avar { "opush ainx" )
{ "oindex" }
Texp
{#*Note: "inx" is the Var index,
"ainx" is the Avar index¥)}

"[‘l H]“

Iexp

Iexp ::= Const
| Ivar { opush iinx"™ } [ Sign Const ( sign } ]

Sign ::= + { sign <-- "oplus" }
- { sign <-- "ominus" )}

Const ::= Int { "opushi int" }
Cvar { "opush cinx" }
(*Note: "cinx" is the Cvar index¥*)

Notation used :

1.

Each entry in the translation grammars is a rule, The
name of a rule is listed on the left side of the
symbols: "::=", The choices for a rule are listed after
the "::=" symbols and are separated with the symbol "|".

The square brackets "[" and "]" enclose items that are
optional,

a, The asterisk means zero or more occurrences,

b. No symbol means zero or one occurrence.

To distinguish the difference between the use of the
square brackets for optional items and the use of them
as part of a choice for a rule, they are enclosed in

quotes when they are part of a choice. For example, the
square brackets in the second choice of the rule "exp"
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are required as part of that choice so they are enclosed
in quotes.

Quotes are also used around words when the actual word
is part of a choice; for example, the "Qual" rule is
either the actual word "All" or the actual word
"Exists".

The symbols "{*" and "*}" are used for comments about
the rule, such as after the rules Props, Lexp, and Lab
in the proposition source grammar.

Some of the items inside the curly brackets are
intermediate steps towards the pcodes. An example of an
intermediate step is shown in the "Prog" rule of the
predicate translator grammar., The { "olang 3" } is added
to the front of the "Prog" rule of the predicate source
grammar and { "oend" ) is added to the end which creates
the "Prog" rule of the predicate translation grammar.

The intermediate steps are replaced by terminmals, which
are partial pcodes, in the respective target grammar,

The rest of the items in the curly brackets are semantic
actions., Semantic actions are distinguished from the
intermediate steps by the use of the symbols "<--" which
means replace the left side with the value on the right
side. The replace action is the semantic action., For
example, in the "Relop" rule, the first choice is to
replace the "rel" with the operator "oeq". The

‘replacement takes place in the rule "Rexp" because the

term "rel" is located in "Rexp"; the semantic action,
however, is described in the "Relop" rule.
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APPENDIX C

Proposition Target Grammar

Props ::= "olang" "1" [ Lab Prop ]* Prop "oend"

Prop = Lexp [ Lexp Lop ]*
Lexp =

Rexp

Lexp "onot"

Prop '

ﬂoarg" ﬂoinx" "Ofun" “pinx"
Lop ::= "oand" | "oor" | "oimp" | "oegqv"

Rexp ::= Exp [ Exp Relop ] [ Exp Relop ]

Relop ::= "oeq" "oels"
"Ogeq" lloneq"
"ogrt" "DlSS“

Range ::= Iexp Iexp "orange"

Exp 1i= "opush" "inx"
‘ "opush" "ainx" Iexp "oindex"
Iexp
Iexp 1::= Const
| "opush™ "iinx" [ Sign Const ]
Sign ::= "oplus" | "ominus"

Proposition Proof Target Grammar

Prog s:= "olang" "2" [ Step ]* Last "oend"
Step ::= "ofact" "finx" Lexp [ Lop Lexp ]*

// "owhy" Reasons )
Last ::= "ofact" "cinx"

// "owhy" Reasons

Lexp ::=
Rexp
Lexp "onot"
Prop
Tloargﬂ "Oinx" llofunll "pinx"

5.3



Lop :1= "oand" | "oor" | "oimp"™ | "oeqv"

Rexp = Exp [ Exp Relop ] [ Exp Relop ]
Relop ::= "oeq" "oels"

Ilogeq" lloneq"

||Ogrt" "0155"
Range ::= Iexp Iexp "orange"
Exp = "opush" "inx"

"opush" "ainx" Iexp "oindex"

Texp
Iexp ::= Const

| "opush" "iinx" [ Sign Const ]

Sign ::= "oplus" | "ominus"

E U

Reasons ::= Reason [ Reason ] oend"

Reason ::= "oaxiom" "ainx"

"oprem" "pinx“
"ofact"™ "finx"
Predicate Target Grammar

Prog ::= "olang" "3" [ Lab Prop ]* Pred "oend"

Pred ]

Qualex | Numex Iexp Relop

Qual "iinx" Range Lexp [ "onot" ]

Qualex ::
Qual ::= "0all" | "oexist"

Numex ¢::= "onum" "iinx" Range Lexp

Lexp s::=

Rexp

Lexp "onot"

Prop

lfoarg" "OinX" "Ofun" "pinx"
Lop ::= "oand" | "oor" | "oimp" | "oeqv"
Rexp ::= Exp [ Exp Relop ] [ Exp Relop ]
Relop ::= "oeq" "oels"

nogeqn "oneq"

"ogrt" ﬂolss"
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Range ::= Iexp Iexp "orange"

Exp 11m "opush" "inx"
"opush" "ainx" Iexp "oindex"
Texp

Iexp ::= Const

| "opush" "iinx™ [ Sign Const ]

Sign ::= "oplus" | "ominus"

Notation used :

1.

Each entry in the target grammars is a rule. The name of
a rule is listed on the left side of the symbols: "::="
The choices for a rule are listed after the "::="
symbols and are separated with the symbol "|".

The square brackets "[" and "]" enclose items that are
optional,

a. The asterisk means zero or more occurrences,
b. No symbol means zero or one occurrence,

The items enclosed in quotes are the pcode operators and
operands. These quotes are not part of the pcodes; they
are used to make the operators and operands easier to
identify.

The operands which end in "inx" are actually indices
into the name table. For example, the "ainx" operand
from the "Exp" rule is the index value of the name table
element where the array information is located.
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oneg

olss

oels

ogrt

ogeq

oand

oor

oimp

oeqv

APPENDIX D

Proposition Language Opcode Table

Meaning

not equals

less than

less than or equal

gpreater than

greater than or equal

logical and

logical or

logicalimplies

logical equivalence

Interpreter Code

(Operand2) =
(Operandl))

(Operand2) <>
(Operandl))
push (Operand2) >
(Operandl))
push (Operand2) >=
(Operandl))
push (Operand2) <
(Operandl))

(Operand2) <=
(Operandl))

push

((right (Operand2) =
aTrue) and

(Operandl) =
aTrue))

push

(left

((right (Operand2) =
aTrue) or

(Operandl) =
aTrue))

push

(left

If (right(Operand2) =
aFalse) or
(left (Operandl) =
aTrue) Then
push(True)
Else
push(False)
{endif}

If right (Operand2) =
left (Operandl) Then
push (True)

Else
push (False);

{endif)
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opush

push

pushint(left(Operandl));

opushi push immediate pushint(Operandl);
olang language If not Operandl = 1 Then
error := True;
{endif}
oend end terminator Case 1: Used to mark the
end of the "owhy" pcode;
Case 2: Used to mark the
end of the pcode.
oarg argument :
ofun function pushint (left (Operandl));
oplus add Operandl push (right (Operand2) +
to Operand2 left (Operandl))
ominus subtract Operandl push (right (Operand2) -
from Operand2 left (Operandl))
ostar multiply Operandl push (right (Operand2) *
and Operand2 left (Operandl))
odiv divide Operand2 push (right (Operand2) /
by Operandl left (Operandl))
onot not pop (bool);
If bool = 1 Then
bool := 0
Else
bool := 1
{endif)
push(bool);
Proposition Proof Language Opcode Table
Operator Meaaing Interpreter Code
oaxiom axiom Executes pcode listed in

labels array for the axiom
identified by Operandl,
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oprem

ofact

owhy

oeqg

oneq

olss

oels

ogrt

ogeq

oand

oor

premise

fact

why - reason

equals

not equals

less than

less than or equal

greater than

greater than or equal

logical and

logical or

58

Executes pcode listed in
labels array for the
premise identified by
Operandl.

Case 1: Uses it as the
beginning marker to the
pcode for the fact; Case 2:
Executes pcode listed in
labels array for the fact
identified by Operandl.

Uses it as the beginning
marker to the pcode which
lists the reasons the fact
is true, pcode that would
follow owhy would be oaxiom
operandl Operand2, opren
Operandl Operand2, or ofact
Operandl Operand2.

push (right (Operand2) =
left (Operandl))

push (right (Operand2) <>
left (Operandl))

push (right (Operand2) >
‘ left (Operandl))

push (right (Operand2) >=
left (Operandl))

push (right (Operand2) <
left (Operandl))

push (right (Operand2) <=
left (Operandl))

push ((right (Operand2) =
. aTrue) and
(left (Operandl) =
aTrue))

push ((right (Operand2) =

aTrue) or

(left (Operandl) =
aTrue))



oimp

oeqv

opush
opushi

olang

oend

oarg
ofun

oplus

ominus

ostar

odiv

logicalimplies

logical equivalence

push
push immediate

language

end terminator

argument
function

add Operandl
to Operand2

subtract Operandl
from Operand2

multiply Operandl
and Operand?2

divide Operand2
by Operandl

If (right(Operand2) =
aFalse) or
(left (Operandl) =
aTrue) Then
push(True)
Else
push(False)
{endif)

If right (Operand2) =
left (Operandl) Then
push (True)

Else

push (False);
{endif)

pushint(left(Operandl));
pushint(Operandl);
If not Operandl = 1 Then

error := True
{endif}

Case 1: Used to mark the

end of the "owhy" pcode;

Case 2: Used to mark the

end of the pcode.

3
'

pushint (left (Operandl)});

push (right (Operand2) +
left (Operandl))

push (right (Operand2) -
left (Operandl))

push (right (Operand2) *
left (Operandl))

push (right (Operand2) /
left (Operandl))
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onot not pop (bool);
If bool = 1 Then

bool := O
Else

bool := 1
{endif}

push(bool);

Predicate Language Ohcode Table

Operator Meaning Interpreter Code
oexist there exists If trueCount = 0 Then
error := True;
(endif)
oall for all If trueCount <>

highInx-lowInx+l Then
error := True;
{endif}

onum number If trueCount <O
{onum value} Then
error := True;

(endif}
oindex index pushint(B[boundVar]);
crange range Begin

{InterpTab should have const
values in the field "value"
for jinx & kinx which was
set by calling addinx)

If nd2 <> 0 Then
highInx := ndZ
Else
error := True;
{endif}
If ndl <> O Then
lowInx := ndl
Else
error := True
{endif)
End;

oin in - used with range
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oplus

ominus

ostar

odiv

onot

oeq

oneq

olss

oels

ogrt

ogeq

oand

oor

add Operandl
to Operand?2

subtract Operandl
from Operand2

multiply Operandl
and Operand2

divide Operand?2
by Operandl

not

equals
not equals

less than

less than or equal

greater than

greater than or equal

logical and

logical or
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push

push

push

push

(right (Operand2) +
left (Operandl))

(right (Operand2) -
left (Operandl))

(right (Operand2) *
left (Operandl))

(right (Operand2) /
left (Operandl))

pop (bool);

If bool =
bool := 0

Else

1 Then

bool := 1
{endif)
push(bool);

push

push

push

push

push

push

push

push

(right (Operand2) =
left (Operandl))

(right (Operand2) <>
left (Operandl))

(right (Operand2) >
left (Operandl))

(right (Operand2) >=
left (Operandl))

(right (Operand2) <
left (Operandl))

(right (Operand2) <=
left (Operandl))

((right (Operand2) =
aTrue) and

(left (Operandl) =
aTrue))

((right (Operand2) =
aTrue) or

(left (Operandl) =
aTrue))



oimp logicalimplies If (right(Operand2) =
aFalse) or
(left (Operandl) =
aTrue) Then
push(True)
Else
push(False)
{endif}
oeqv logical equivalence If right (Operand2) =
left (Operandl) Then
push (True)
Else
push (False);
{endif}
opush push pushint(left(Operandl));
opushi .push immediate pushint(Operandl);
olang language If not Operandl = 1 Then
error := True;
{endif}
oend end terminator Case 1: Used to mark the
end of the "owhy" pcode;
Case 2: Used to mark the
end of the pcode.
oarg argument H
ofun function pushint (left (Operandl));
Notes:
1. From the pcode format, operator operand operand, the

first operand is referred to as "Operandl" in this
appendix and the second one is referred to as
"Operand2".

The terms "push" and "pushint" from the "Interpreter
Code™ column are function calls, "Push" puts the value
on the top of the run stack., "Pushint" puts Operandl on
the top of the run stack.

The terms "left" and "right" from the "Interpreter Code"
column are functions calls. The functions either
retrieve the values from the name table or pop them off
the top of the run stack.
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The "trueCount" used in the "Interpreter Code" column is
set to zero at the start of the interpreter. Each time
the pcode is executed and the result is true, trueCount
is dincremented.

The variable "highInx" from the "Interpreter Code"
column holds the value of the upper bound of the range
and the variable "lowInx" holds the value of the lower
bound of the range,
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APPENDIX E

#%% This is the code for the file "Intrl.inc" %%

{general interpreter symbol table definitions }

Const

InterpSize = 400;
Type

InterpRecord = Record

name : nametype;
kind : char;
value : Integer
End;
InterpTabType = Array [l..InterpSize] of InterpRecord;
Var
InterpTab : InterpTabType;

Procedure initInterpTab;
Var
inx : Integer;
txt ¢ string[255];
Begin
For inx := 1 to InterpSize Do
Begin
InterpTab[inx].name :=
InterpTab[inx].kind := 'o';
InterpTab[inx].value := -1;
End; (for)
End; {initInterpTab}

Procedure addindex (name : nametype;
kind : char;
inx : Integer);
Begin
InterpTab[inx].name := name;
InterpTab[inx].kind := kind;
End; {addindex}

#%% This is the code for the file "Intr2,inc" *%=*

Const
MaxStackSize = 25;
aTrue = 1;

aFalse = 0;

Type
StackType = Array [l..MaxStackSize] of Integer;
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Var
answer : Char;
B : Array [1..10] of Integer;
Stack : StackType;
name : nametype;
inx,
jnx,
whichnum,
savefact,
savereasons,
work,
value,
newVal,
trueCount,
Start0fCode,
boundVar,
low,
high,
highInx,
lowInx,
index,
StackIndex : Integer;
theCase : optype;
showstack : Boolean;

{InitStack initializes the run stack to a default value)
Procedure InitStack:

Var
inx : Integer;

Begin
For inx := 1 to MaxStackSize Do
Stack[inx] := maxint
{endfor}
End; {InitStack])

65



{StoreVal stores "value" into the InterpTab at the

(where "name" is
Procedure StoreVal (name : nametype;
value : Integer);

Var
index : Integer;

Begin
index:=1;
While index <= InterpSize Do

Begin
If InterpTab[index].name = name Then
Begin
InterpTab[index].value := value;
index := maxint -1
End; (if)

index:= succ(index);
End; (while)
End; (StoreVal}
{RtrvVal returns the value of location index
Function RtrvVal(index : Integer) : Integer;

Begin
RtrvVal := InterpTab[index].value;
End; {RtrvVal}

{(DisplayStack displays the stack contents])
Procedure DisplayStack;
Var
linenun,
inx : Integer;

Begin
linenum := 23;
For inx := 1 to StackIndex + 1 Do
Begin
GotoXY (70,1linenum);
write (' ')
linenum := pred(linenum)
End; {for}

linenum := 23:
For inx := 1 to StackIndex + 1 Do
Begin
GotoXY (70,1inenum):
write (Stack[inx]);
linenum := pred(linenum)
End; {for)
readln
End; {DisplayStack}
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{push places a value onto the top of the run stack)
Procedure push (StackValue : Boolean):

Begin
If StackIndex < MaxStackSize Then
Begin
StackIndex := succ(StackIndex):
If StackValue Then
Stack[StackIndex] := aTrue
Else
Stack[StackIndex] := aFalse:
{endif}
If showstack Then
DisplayStack
{endif}
End {if}
Else
error := True
{endif}
End; {push]}

{pushint places the value "StackInt™ onto the top of the
{run stack
Procedure pushint (StackInt : Integer);

Begin
If StackIndex < MaxStackSize Then
Begin '
StackIndex := succ(StackIndex);
Stack[StackIndex] := StacklInt;
If showstack Then

DisplayStack
{endif}
End {if)}
Else
error := True
{endif]}

End; {pushint}
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{pop returns the top value of the run stack}
Function pop : Integer;

Begin
pop := -1;
If StackIndex » 0 Then
Begin

pop := Stack[StackIndex];
Stack[StackIndex] := maxint;
StackIndex := pred(StackIndex);
If showstack Then

DisplayStack
{endif}
End {if)}
Else
error := True
{endif}

End; {pop)

{left returns a value for the first operand of the pcode
{entry

Function left (ndl : Integer) : Integer;

Begin
If ndl = 0 Then
left := pop
Else
left := RtrvVal(ndl);
{endif}

End; {left}

{right returns a value for the second operand of the pcode }

{entry
Function right (nd2 : Integer) : Integer;

Begin
If nd2 = 0O Then
right := pop
Else
right := RtrvVal(nd2);
{endif}
End; {right)
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*%¥%* Proposition Interpreter **%

Procedure Propintr( code : codetype;
Var error : Boolean):

{calls errormsg, symval }
Label

Quit;
Procedure StoreTestCase:

Begin
Readln (TextFile,name,value);
While (not eof(TextFile)) and (name <> '&') Do
Begin
StoreVal (name, value);
Readln (TextFile, name, value);
End; {while}
If name <> '&' Then
error := True
{endif)
End; {StoreTestCase)
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Procedure ProcessTestCase;

Var
index : Integer;

Begin
index := 1;

While (code[index].op <> oend) and
(index< CodeMax) Do

Begin

With code[index] Do

Case op of
oeq
oneq
olss
ogeq
ogrt
oels
oand

oor

oimp

oeqv

opush
opushi
olang

End; {Case)
{endwith]

.
.

push(right(nd2) = 1left(ndl));
push(right(nd2) <> left(ndl));
push(right(nd2) > 1left(ndl));
push(right(nd2) <= left(ndl));
push(right(nd2) < 1left(ndl));
push(right(nd2) >= left(ndl));
push((right(nd2) = aTrue) and
(left(ndl) = aTrue));
push((right(nd2) = aTrue) or
(left(ndl) = aTrue));

If (right(nd2) = aFalse) or
(left(ndl) = aTrue) Then
push(True)

Else
push(False);

{endif}

If right(nd2) = left(ndl) Then
push (True)

Else
push (False);

{endif}

pushint(left(ndl));

pushint(ndl);

If not ndl = 1 Then
error:=True;

{endif)

index := succ(index);

End; (While}

End; {ProcessTestCase)
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"Begin {Procedure Proplntr)
errormsg

('Do you want to see the stack as it changes? y/n');
readln (answer);

If answer = 'y' Then
showstack := true
Else
showstack := false;
{endif)

Assign (TextFile, probname+'.ans');
StackIndex := 0;
InitStack;
{$I-)
reset (TextFile):
If TOResult > O Then
Begin
error := True;
Goto Quit
End; {if)
{$1+}
Repeat
StoreTestCase;
If not (error) Then
Begin
ProcessTestCase;
If pop <> value Then
error := True;
{endif}
End; (if}
Until eof(TextFile) or error;
Quit :
Close(TextFile);
If error Then
errormsg ,
('#*%% your program is incorrect ¥%%')
Else
errormsg
(" *%% your program is correct %%%')
{endif}
End; {ProplIntr}
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**¥ Proposition Proof Interpreter ¥%%¥
{general interpreter symbol table definitions )

Var
labels : CodeType;

Procedure proofint( code : codetype;
Var error : Boolean);
{calls errormsg, symval }

Label
Quit,
EndReasons,
EndTestCases;

{StoreTestCase stores a test case value and gets the next
{one
Procedure StoreTestCase;

Label
Quit;

Var
index : Integer;

Begin
For index := 1 to 3 Do
Begin
Readln (TextFile,name,value);
If not eof(TextFile) Then
StoreVal(name,value)

{endif)

Else

Begin
error := True;
Goto Quit

End; {else}
End; (For)
Quit :
End; {StoreTestCase]
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{ EvalReason evaluates a reason and returns true/false }
Function EvalReason (code : CodeType) : Integer;

Begin
While (code[index].op <> oend) and
(code[index].op <> owhy) Do
Begin
With code[index] Do
Case op of

oeq : push(right(nd2) = 1left(ndl));
oneq : push(right(nd2) <> left(ndl));
olss : push(right(nd2) > 1left(ndl));
ogeq : push(right(nd2) <= left(ndl));
ogrt : push(right(nd2) < 1left(ndl));
oels : push(right(nd2) >= left(ndl));
oand : push ((right(nd2)=aTrue) and

(left(ndl)=aTrue));
oor : push ((right(nd2)=aTrue) or
(left(ndl)=aTrue));
If (right(nd2)=aFalse) or
(left(ndl)=aTrue) Then
push(True)
Else
push(False);
{endif)
oeqv + If right(nd2) = left(ndl) Then
push (True)
Else
push (False);
(endif}
opush : pushint(left(ndl));
opushi : pushint(ndl);
oarg : 3
ofun : pushint(left(ndl));
olang : If not ndl = 2 Then
error:=True;
{endif}

oimp

End:; {Case)
{endwith)
index := succ(index);
End; {While)
EvalReason := pop
End; {EvalReason}
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Procedure StoreAxPremFact;
Begin
While (code[index].op <> oaxiom) and
(code[index].op <> oprem) and
(code[index].op <> ofact) and
(code[index].op <> owhy) and
(jnx <= codemax) Do
Begin
labels[jnx].op := code[index].op;
labels[jnx].ndl := code[index].ndl;
labels[jnx].nd2 := code[index].nd2;
jax = succ(jnx);
index := succ(index)
End; {while}
If (code[index].op = owhy) and (jnx <= codemax) Then
Begin
labels[ jnx].op := oend;

labels[ jnx].ndl := O;
labels[jnx].nd2 := 03
jonx := succ(jnx)

End; (if}

End; {StoreAxPremFact)

Begin {proofint}
index := 1;
If (code[index].op <> olang) and
(code[index].ndl <> 3) Then
Begin
error := True;
Goto Quit
End {if}
Else
index := 23
{endif}
{ store the axioms and premises }
jnx 1= 1;
While code[index].op <> ofact Do
StoreAxPremFact;
{endwhile)
savefact := index;
{ increment past the fact to get to the reasons |}
While code[index].op <> owhy Do
- index := succ(index);
{endwhile}
index := succ(index);
savereasons := index;
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Assign (TextFile, probname+'.ans');
($I-)
reset (TextFile);
If IOResult > O Then
Begin
error := True;
Goto Quit
End; (if}
{$I+}
Readln (TextFile,name,value);
TrueCount := 0;
While not eof(TextFile) Do
Begin
StoreTestCase;
While code[index].op <> oend Do
Begin
whichnum := code[index].ndl;
inx := 1;
{ find the axiom, premise, or fact }
While labels[inx].ndl <> whichnum Do
inx := succ(inx);
{endwhile)}
{ increment past the header record }
inx := succ(inx):
work := EvalReason(labels):
If work = aFalse Then
Goto EndReasons
Else
index := succ(index);
{endif}
End; {while}
index := savefact;
work := EvalReason {actually evalFact}(code);
If work = aFalse Then
Begin
error := True;
Goto EndTestCases
End {if}
Llse
TrueCount := succ(TrueCount);
{endif} =
EndReasons :
index := savereasons;
End: {while)
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EndTestCases :
If TrueCount = 0 Then
error := True;
{endif}
If error Then
errormsg
(" *%% your fact was not accepted *%¥')
Else
Begin
errormsg
(' ®%% your fact is accepted *%% '),
index := savefact;
StoreAxPremFact {store the new fact )}
End; {if}
Quit :
End; {proofint)
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*** Predicate Interpreter *¥*

Procedure Predintr( code : codetype;
Var error : Boolean);
{calls errormsg, symval )}

Label
Quit, quit2;

Procedure StoreTestCase;

Var
inx : Integer;

Degin
inx := 1;
Readln (TextFile,name,value);
While (not eof(TextFile)) and
Begin
If name = 'b" Then
Begin
B[inx] := value;
inx := succ(inx)
End (if)
Else
StoreVal (name,value);
{endif)

(name <>

Readln (TextFile,name,value);:

End; {while)
If name <> '&' Then
error := True;
{endif)
End; {StoreTestCase})
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Procedure ProcessCode;

Begin

With code[index] Do

Case op of

oeq push(right(nd2) = left(ndl));
oneq push(right(nd2) <> left(ndl));
olss push(right(nd2) > left(ndl));
ogeq : push(right(nd2) <= left(ndl));
ogrt : push(right(nd2) < 1left(ndl));
oels : push(right(nd2) >= left{ndl));
oand : push((right(nd2) = aTrue) and
(left(ndl) = aTrue));
oor ¢ push ((right(nd2) = aTrue) or
(left(ndl) = aTrue));
oimp : If (right(nd2) = aFalse) or
(left(ndl) = aTrue) Then
push(True)
Else
push(False);
{endif} .
oeqv ¢ If right(nd2) = left(ndl) Then
push (True)
Else
push (False):
{endif)
opush : pushint(left(ndl));
opushi : pushint(ndl);
olang : if not ndl = 3 then
error:=True;
{endif}
orange : Begin {(InterpTab should have const }
{values in the field "value" }
{for jinx & kinx which was set
{by calling addinx}
If nd2 <> 0 Then
highInx := nd2
Else
error := True;
{endif)}
If ndl <> O Then
lowInx := ndl
Else
error := True
{endif)
End;
ocindex pushint (B[ boundVar]);
End; (Case}
{endwith])

End; {ProcessCode)}
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Begin {Procedure PredIntr)
errormsg

(' Do you want to see the stack adjustments? y/n');
readln (answer);

If answer = 'y' Then
showstack := True
Else
showstack := False;
{endif)
Assign (TextFile,probname+'.ans');
{$I-} '

reset (TextFile);
If IOResult > 0 Then
Begin
error := True;
Goto Quit
End; [if)
{$1+)
If code[1].ndl <> 3 Then
Begin
error := True;
Goto Quit
End; {if}
If (code[2].0p in [ocall,oexist]) Then
Begin
theCase := code[2].0op;
boundVar := code[2].ndl
End {if}
Else
Begin
error := True;
Goto Quit
End; {else)
index := 3;
While code[index].op <> orange Do
Begin
ProcessCode;
index := succ(index)
End; {while}
ProcessCode; {process the orange}
If error Then Goto Quit;
index := succ(index):
StartOfCode := index;
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{ process each test case )
Repeat
trueCount := 0;
StoreTestCase;
If error Then Goto Quit;
low := RtrvVal(lowInx):
high := RtrvVal(highInx);
For boundVar := low to high Do
Begin
index := Start0OfCode;
While code[index].op <> oend Do
Begin
ProcessCode;
index := succ(index)
End; {while}:
newVal := pop}
If newVal = aTrue Then
trueCount := succ(trueCount);
{endif}
End; {for)
If error Then Goto Quit;
Case theCase of
cexist : If trueCount = O Then
error := True;
{endif)
call : If trueCount <> highInx-lowInx+l Then
error := True;
{endif)
End; {case)
If (error and (value = aFalse)) or
((not error) and (value = aTrue)) Then
error := False

Else
error := True
{endif)
Until ecf(TextFile) or error;
Quit :
If error Then
errormsg

('#%% your program is not correct *¥¥ ')
Else
errormsg
('®%% your program is Correct *** ');
{endif} :
End; {Predintr}

80



THE DESIGN OF THREE INTERPRETERS:
PROPOSITION, PROPOSITION PROOF, & PREDICATE

by
Sarah R. Lauxman

B,S., KEansas State University, 1985

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986



ABSTRACT

This report presents the design and implementation of a
family of three related stack-machine interpreters, similar
to the p-machine interpreted Pascal systems, The input for
each interpreter is a series of pcodes. The pcodes represent
single boolean expressions or series of boolean expressions,
The interpreters execute the pcodes using test cases and
evaluate the resulting boolean,

The three interpreters are proposition, propositicn
proof, and predicate; and correspond to three problem
domains: proposition, proposition proof, aﬁd predicate. The
boolean expressions are programs which are representations
of story problems which belong to one of the three problem
domains. The propositions are boolean (logical) expressions,
The proposition proof problems are short proofs. With a few
restrictions, the predicates are a subset of first order

logic.





