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Abstract 

In this thesis, I examine the Articles for Deletion (AfD) system in /Wikipedia/, a large-scale 

collaborative editing project.  Articles in Wikipedia can be nominated for deletion by registered 

users, who are expected to cite criteria for deletion from the Wikipedia deletion. For example, an 

article can be nominated for deletion if there are any copyright violations, vandalism, advertising 

or other spam without relevant content, advertising or other spam without relevant content. 

Articles whose subject matter does not meet the notability criteria or any other content not 

suitable for an encyclopedia are also subject to deletion. 

The AfD page for an article is where Wikipedians (users of Wikipedia) discuss whether an article 

should be deleted. Articles listed are normally discussed for at least seven days, after which the 

deletion process proceeds based on community consensus. Then the page may be kept, merged 

or redirected, transwikied (i.e., copied to another Wikimedia project), renamed/moved to another 

title, userfied or migrated to a user subpage, or deleted per the deletion policy. Users can vote to 

keep, delete or merge the nominated article. These votes can be viewed in article‘s view AfD 

page. However, this polling does not necessarily determine the outcome of the AfD process; in 

fact, Wikipedia policy specifically stipulates that a vote tally alone should not be considered 

sufficient basis for a decision to delete or retain a page. 

In this research, I apply machine learning methods to determine how the final outcome of an 

AfD process is affected by factors such as the difference between versions of an article, 

number of edits, and number of disjoint edits (according to some contiguity constraints).  My 

goal is to predict the outcome of an AfD by analyzing the AfD page and editing history of the 

article.  The technical objectives are to extract features from the AfD discussion and version 

history, as reflected in the edit history page, that reflect factors such as those discussed above, 

can be tested for relevance, and provide a basis for inductive generalization over past AfDs.  

Applications of such feature analysis include prediction and recommendation, with the 

performance goal of improving the precision and recall of AfD outcome prediction.
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Chapter 1 - Introduction 

 1.1 Problem Definition 

 

Wikipedia is large scale collaborative editing project. This means that registered users all over 

the globe can edit the articles present in Wikipedia. Other than editing the articles, registered 

users can nominate articles for deletion. There are various factors that lead to this nomination 

like copyright violations, vandalism, advertising or other spam without relevant content, 

advertising or other spam without relevant content etc. When users edit an article in Wikipedia, 

the articles version by that user is stored in the history log of that article. We can construct an 

edit graph over a bunch of these edited versions. Edit graphs is discussed in Chapter 2. 

In this thesis, I apply machine learning methods to determine how the final outcome of an AfD 

process is affected by factors such as the difference between versions of an article, number of 

edits, and number of disjoint edits (according to some contiguity constraints).  My goal is to 

predict the outcome of an AfD which is nothing but the collaborative decision made by all the 

registered users for the AfD article log. This is done by analyzing the AfD page and editing 

history of the article.  The technical objectives are to extract features from the AfD discussion 

and version history, as reflected in the edit history page, that reflect factors such as those 

discussed above, can be tested for relevance, and provide a basis for inductive generalization 

over past AfDs.  

Here I first analyze the prediction in five different bases. The baseline0 includes analyzing the 

data which contains the number of votes (keep, merge and delete) for all the AfD articles. The 

baseline1 includes the data from baseline0 and also the difference between two edited versions of 

AfD articles. Baseline2 includes the data from baseline1 and also the number of edits since 

previous crawling. Baseline3 includes the data from baseline1 and also the number of disjoint 

edits since previous crawl. The number of disjoint edits is the number of nodes that appear in the 

edit graph.  The final base, gSpan base includes finding the frequent sub graphs from group of 

edit graphs.  

      

Frequent patterns are patterns (such as item sets, subsequences, or substructures) that appear in a 

dataset frequently. A substructure can refer to different structural forms, such as sub graphs, sub 
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trees, or sub lattices, which may be combined with item sets or subsequences. If a substructure 

occurs frequently, it is called a (frequent) structured pattern. Finding such frequent patterns plays 

an essential role in mining associations, correlations, and many other interesting relationships 

among data. Moreover, it helps in data classification, clustering, and other data mining tasks as 

well.  

The first step of finding frequent sub graphs is constructing the edit graphs. Edit graph is a 

directed graph having nodes representing some textual data and edges represent the difference 

between the neighboring nodes. In this thesis, the textual data is one of the modified versions of 

an AfD article. The next step is then to find frequent sub graphs from a group of edit graphs. In 

my thesis ―frequent patterns in Wikipedia pages‖, I try using the features of edit graph to 

improve the overall prediction of outcome of the AfD articles. 

For finding the frequent sub graphs I have used the gSpan algorithm. gSpan (graph-based 

Substructure pattern mining) discovers frequent substructures without candidate generation. 

gSpan builds a new lexicographic order among graphs, and maps each graph to a unique 

minimum DFS code as its canonical label. Based on this lexicographic order, gSpan adopts the 

depth-first search strategy to mine frequent connected sub graphs efficiently. Performance study 

shows that gSpan substantially outperforms previous algorithms, sometimes by an order of 

magnitude. Including the feature of frequent sub graphs to improve the overall prediction of 

outcome of AfD page can be considered for future improvements.  

Machine learning tools are used to analyze the data from the AfD articles and check how 

accurate is the result (outcome of the AfD article) in accordance with the date related to the AFD 

article itself. One popular suite of machine learning tools, Waikato Environment for Knowledge 

Analysis (Weka) is used for this analysis. Weka provides implementations of learning algorithms 

that you can easily apply to your dataset. It also includes a variety of tools for transforming 

datasets, such as the algorithms for discretization. You can preprocess a dataset, feed it into a 

learning scheme, and analyze the resulting classifier and its performance all without writing any 

program code at all.  

 1.2 Goal and Technical Objectives 

The goal of this project is to analyze the data from the AfD articles and check how accurate is 

the result (outcome of the AfD article) in accordance with the date related to the AfD article 
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itself.  The next step is to prove that including the features of edit graph and frequent sub graphs 

will improve the overall accuracy of the result with its respective data. 

In order to achieve this goal, I have first extracted the AfD articles over a frequent period of time 

(fourteen versions over a period of seven days). Articles for deletion can be viewed through a 

few basic categories; it becomes much more accessible to the community at large. If a nominator 

is able to list an AfD correctly, they're probably able to tell whether it's a biography, media, 

science, and so on related topic. With a categorization option in place, editors are less likely to 

miss AfDs of interest, and save the time from browsing the entire list. The debates are sorted into 

the following subcategories using the indicated code in the {{REMOVE THIS TEMPLATE 

WHEN CLOSING THIS AfD}} template: 

cat=M Media and music 

cat=O Organization, corporation, or product 

cat=B Biographical 

cat=S Society topics 

cat=W Web or internet 

cat=G Games or sports 

cat=T Science and technology 

cat=F Fiction and the arts 

cat=P Places and transportation 

cat=I Indiscernible or unclassifiable topic 

cat=? Nominator unsure of category (I have used ‗Q‘ instead of ‗?‘ in this project) 

cat=U Debate not yet sorted 

 

The category name of a particular article is stored in the page titled ―Editing Wikipedia:Articles 

for deletion/article_name (section)‖. All the AfD articles are stored in the local system in a 

directory hierarchy. An example for one directory hierarchy is 

―M\List_of_Category_III_films\23-01-2011D‖. For each AfD article I store the History 

(directory), history, links, logs, talk, view AfD and the article itself. History contains the versions 

of the article since its first modification and first crawl. I have used Java programming language 

for this whole process. 
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After the AfD articles are stored in the local system, I construct a version graph for the articles 

stored in the History (directory). Nodes in the version graph represent the article content. The 

edge between two neighbors represents the difference (UNIX difference) between the two 

different versions of the articles connected by the edge. The UNIX diff is based on the LCS 

(Longest Common Subsequence) algorithm. The longest common subsequence (LCS) problem is 

to find the longest subsequence common to all sequences in a set of sequences (often just two). 

An example version graph looks like this: 

 

Figure 1.1 Sample Version Graph (edit graph) 

 1.2.1 UNIX Diff command 

In Unix operating System, diff is a file comparison utility that outputs the differences between 

two files. It is typically used to show the changes between one version of a file and a former 

version of the same file. Diff displays the changes made per line for text files. 
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> diff sample.doc vi.doc 

 

If you only changed the name and date without moving any lines, your output should be similar 

to :- 

 

18c18 

< NAME  DATE 

--- 

> Melanie Johnson  10-12-96 

 

For generating the graph I have used Java programming language and Dotty. Dotty is a graph 

editor for X Windows System. It may be run as a standalone editor, or as a front end for 

applications that use graphs. It can control multiple windows viewing different graphs. 

Furthermore, each version graph is associated with a threshold. Here the threshold is the length 

of the difference. If the length of the difference between two versions is less than the threshold 

we merge the two versions or else they remain as two different versions of the graph. 

In order to analyze the overall accuracy of the result of the AfD article with its corresponding 

date, we need to generate an Arff file which is given as input to the machine learning tool 

(Weka). The attribute-relation file format (Arff) is an input file format that is used in the Weka 

system. 

For analyzing the overall result, the data is divided along 4 baselines. They are:- 

 1.2.2 Baseline0  

Baseline0 includes the number of keep, delete and merge votes. It also has the end result 

(attribute class) of the AfD article. Here we analyze this data with various machine learning 

algorithms like LibSVM, J48 and Multilayer Perceptron.  

 1.2.3 Baseline1 

Baseline 1 includes six different data files. Each data file consists of data from Baseline0 and the 

difference between two versions of the AFD articles. The first data file consists of 

difference between Version 0 and Version1 of all the AFD articles plus the baseline0 data. The 

second data file consists of difference between Version 0 and Version3 of all the AFD articles 
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plus the baseline0 data. The third data file consists of difference between Version 0 and 

Version5 of all the AFD articles plus the baseline0 data. The same is the case for the remaining 

data files. 

 1.2.4 Baseline2 

Baseline 2 includes six different data files. Each data file consists of data from Baseline0 and the 

difference between two versions of the AFD articles and also the number of nodes difference 

between the nodes present in the History (directory) of each version. The first data file consists 

of difference between Version 0 and Version1 of all the AFD articles and the number of node 

difference (number of nodes in Version1 History minus the number of nodes in Version 0 

History) and the baseline0 data. The second data file consists of difference between Version 0 

and Version3 of all the AFD articles and the number of nodes difference (number of nodes in 

Version3 History minus the number of nodes in Version 0 History) and the baseline0 data. The 

same is the case for the remaining data files. 

 

 1.2.5 Baseline3 

Data in Baseline3 has the same format as in Baseline 2 but here we first draw a version graph on 

the nodes present in the History of each version of the AfD article. Since the edit graph has a cut 

off threshold the number of nodes present in the History directory decrease by the actual number 

because of merging. 

 

 1.2.6 gSpan Baseline 

Baseline 4 data includes the data from Baseline2. It also includes the node count which is 

derived from frequent sub graph discovery. This is done by first finding the frequent sub graphs 

of the edit graphs stored in the History (directory) of each article. Now we find how any nodes in 

each History (directory) are actually part of the frequent sub graphs. The sum of these nodes 

gives the node count. For example, the second data file includes the data present in the second 

data file from Baseline 2 and the count of nodes from History (directory) of version3 which 

appear in the frequent sub graph of that particular AfD article.  
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 1.3 Overview  

The following chapters will discuss about the background and related work, the algorithms used 

in order to implement this project, the end result and the future work for this project. 

 

Chapter 2 discusses my literature review which includes a survey of the longest common 

subsequence (LCS) algorithm and the gSpan algorithm used for predicting the frequent patterns 

in the AfD articles. It also includes brief overview about graph plotting tool ―dotty‖, the machine 

learning tool WEKA used for data analysis and the input Arff file format which represents the 

data for Baseline0 through Baseline4. 

 

Chapter 3 discusses my methodology, particularly how the algorithms discussed in Chapter 2 are 

used in this project. Here I also present the input data that is used to train a supervised inductive 

learning system to predict AfD outcomes. This training data is processed into a WEKA‘s 

Attribute Relational File Format (Arff) for all feature sets used in my experiments. These include 

several experimental baselines and an augmented feature set based on the edit history, which I 

developed as part of the reported research. 

 

Chapter 4 discusses about my experiment design. Here I present experimental features and the 

algorithms used to extract them from successive versions of a text file in a collaborative editing 

system. I use sample edit graphs graphs to illustrate these features and show how they are 

calculated from the original input data. This edit graph is the graph given as input to the gSpan 

algorithm. Also the alternative and independent measures survey to validate the original input 

data. 

 

Chapter 5 discusses the results of my experiments using the experimental control, other baseline 

experiments, and the augmented feature set.  I interpret the outcomes of these experiments and 

discuss how the empirical findings are in accordance with my hypothesis, and summarize how 

the implemented system relates to the overall problem definition. I conclude with a review of the 

original technical objectives and potential future work that can be done may yield more effective 

results and make the analytical process I have outlined in this thesis more efficient 
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Chapter 2 - Background and Related work 

 2.1 Longest Common Subsequence Algorithm 

String comparison is a central operation in various environments: a spelling error correction 

program tries to find the dictionary entry which resembles most a given word, in molecular 

biology, we want to compare two DNA or protein sequences to learn how homologous they are, 

in a file archive we want to store several versions of a source program compactly by storing only 

the original version as such; all other versions are constructed from the differences to the 

previous one, etc. An obvious measure for the closeness of two strings is to find the maximum 

number of identical symbols in them (preserving the symbol order). 

This, by definition, is the longest common subsequence of the strings. Formally, we are 

comparing two input strings, X[l..m] and Y[l..n], which are elements of the set C*; here C 

denotes the input alphabet containing T symbols. A subsequence 

S[1..s] of X[1..m] is obtained by deleting m – s from X. A common subsequence (cs) of X [l ..m] 

and Y[l .A] - designated cs(X,Y) - is a subsequence which occurs in both strings ( we will 

assume that m <= n ). The longest common subsequence (ICs) of strings X and Y, lcs(X, Y), is a 

common subsequence of maximal length. The length of lcs(X, Y) is denoted by r(X, Y), or when 

the input strings are known, by r.  

The lcs problem is a special case of the edit distance problem. The distance between X and Y, 

Dist(X,Y), is defined as the minimal number of elementary operations needed to transform the 

source string X to the target string Y. In practical applications, the operations are restricted to 

insertions, deletions and substitutions subjected to single input symbols. For each operation, an 

application dependent cost is assigned, whence the distance is defined as the minimum sum of 

transformation costs. Normalizing the costs of insertion and deletion to 1 and excluding the 

substitution operation (which can be accomplished by defining its cost to be >= 2), we have in 

fact the lcs problem: in order to transform X to Y, we first delete m - r symbols from the source 

to obtain lcs(X, Y). To this string we insert n - r symbols to form the target.  

Therefore, Dist(X,Y) =n+m-2.r(X,Y) 

Another closely related problem is the shortest common supersequence problem (scs), in which 

we want to find the shortest string containing X and Y as subsequences. In this case, 
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r(X,Y) =m+n-r(scs(X,Y)), where r(scs(X, Y ) ) denotes the length of the shortest common 

supersequence. After constructing the supersequence, we can extract the Ics in a linear scan 

through the scs. However, if the input consists of more than two strings (N-lcsmscs), there is no 

obvious symmetry between the problems anymore. 

 The Ics problem can be reduced to two other well-known problems also. Lcs(X,Y) is typically 

solved with the dynamic programming technique and filling an m x n table. The table elements 

can be regarded as vertices in a graph and the simple dependencies between the table values 

define the edges. The task is to find the longest path between the vertices in the upper left and 

lower right corner of the table. Another reduction can be done to the longest increasing 

subsequence problem (lis). In the lis problem, we are given a sequence Z of z integers, and our 

task is to find longest subsequence of Z which is strictly increasing. The input to the lis problem 

is obtained from the Ics input as follows: takeX[l] and find all positions j in Y, for whichX[I] = 

Y[j]. Sort these indices into decreasing order. Build a sorted list forX[2] in a similar way and 

append it to the one we got for X[l]. Repeat this for all symbols in X. As a result, we have a 

sequence of integers having decreasing runs ('saw-tooth' form). Solving the lis of this sequence 

gives the Y-indices of those symbols which belong to the ICS. 

The studies on theoretical complexity of the Ics problem give the lower bound Omega (n2), if the 

elementary comparison operation is of type 'equal/unequal' and the alphabet size is unrestricted. 

However, if the input alphabet is fixed, we reach the lower bound Omega (Tn). In practice, the 

underlying encoding scheme for the symbols of the input alphabet implies a topological ordering 

between them and the <-comparison gives us more information reducing the lower bound to 

Omega(n1ogm). Of the current methods, the O(n2/ logn) algorithm of Masek and Paterson is 

theoretically the fastest known. 

The operation of diff is based on solving the longest common subsequence problem. 

In this problem, you have two sequences of items: 

       a b c d f g h j q z 

       a b c d e f g i j k r x y z  

and you want to find a longest sequence of items that is present in both original sequences in the 

same order. That is, you want to find a new sequence which can be obtained from the first 

sequence by deleting some items and from the second sequence by deleting other items. You also 

want this sequence to be as long as possible. In this case it is 
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       a b c d f g j z 

From a longest common subsequence it's only a small step to get diff-like output: if an item is 

absent in the subsequence but present in the original, it must have been deleted. (The '–' marks, 

below.) If it is absent in the subsequence but present in the second sequence, it must have been 

added in. (The '+' marks.) 

       e   h i   q   k r x y 

       +   - +   -   + + + + 

 

 2.2 Frequent pattern mining 

Frequent patterns are patterns (such as itemsets, subsequences, or substructures) that appear in a 

data set frequently. For example, a set of items, such as milk and bread, which appear frequently 

together in a transaction data set is a frequent item set. A subsequence, such as buying first a PC, 

then a digital camera, and then a memory card, if it occurs frequently in a shopping history 

database, is a (frequent) sequential pattern. A substructure can refer to different structural forms, 

such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or 

subsequences. If a substructure occurs frequently, it is called a (frequent) structured pattern. 

 2.2.1 gSpan (graph based substructure pattern mining) 

gSpan (graph-based Substructure pattern mining) discovers frequent substructures without 

candidate generation. gSpan builds a new lexicographic order among graphs, and maps each 

graph to a unique minimum DFS code as its canonical label. Based on this lexicographic order, 

gSpan adopts the depth-rst search strategy to mine frequent connected subgraphs efficiently. 

Performance study shows that gSpan substantially outperforms previous algorithms, sometimes 

by an order of magnitude. 

Frequent substructure pattern mining has been an emerging data mining problem with many 

scientific and commercial applications. As a general data structure, labeled graph can be used to 

model much complicated substructure patterns among data. Given a graph dataset, D = {G0, 

G1,..,Gn}, support(g) denotes the number of graphs (in D ) in which g is a subgraph. The 

problem of frequent subgraph mining is to find any subgraph g s.t support (g)>= minSup (a 

minimum support threshold). To reduce the complexity of the problem (meanwhile considering 
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the connectivity property of hidden structures in most situations), only frequent connected 

subgraphs are studied. 

gSpan is the first algorithm that explores depth first search (DFS) in frequent subgraph mining. 

Two techniques, DFS lexicographic order and minimum DFS form a novel canonical labeling 

system to support DFS search. gSpan discovers all the frequent subgraphs without candidate 

generation and false positives pruning. It combines the growing and checking of frequent 

subgraphs into one procedure, thus accelerates the mining process. 

gSpan uses a sparse adjacency list representation to store graphs. Algorithm 1 outlines the 

pseudo-code of the framework, which is self-explanatory (Note that š represents the graph 

dataset, › contains the mining result). Assume we have a label set { A,B, C,… } for vertices, and 

{ a, b, c, …} for edges. In Algorithm 1 line 7-12, the first round will discover all the frequent 

subgraphs containing an edge A—A (with label alpha). The second round will discover all the 

frequent subgraphs containing A – B (with label alpha), but not any A—A (with label alpha) . 

This procedure repeats until all the frequent subgraphs are discovered. The database is shrunk 

when this procedure continues (Algorithm 1-line 10) and when the subgraph turns to be larger 

(Sub procedure 1-line 8, only graphs which contains this subgraph are considered. ‗Ds‘ means 

the set of graphs in which ‗s‘ is a subgraph). Subgraph Mining is recursively called to grow the 

graphs and find all their frequent descendants. Subgraph Mining stops searching either when the 

support of a graph is less than minSup, or its code is not a minimum code, which means this 

graph and all its descendants have been generated and discovered before. 

 

 Algorithm 1 

 GraphSet Projection(D,S). 

1: sort the labels in š by their frequency; 

2: remove infrequent vertices and edges; 

3: relabel the remaining vertices and edges; 

4:  S1 < all frequent 1-edge graphs in D; 

5: sort S1 in DFS lexicographic order; 

6:  S <-S1; 

7: for each edge e belongs to S1 do 
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8: initialize s with e, set s.D by graphs which contains e; 

9: Subgraph Mining(šD,S,s); 

10: š D <- D - e; 

11: if |D| < minSup ; 

12: break; 

 

 Subprocedure 1  

 Subgraph Mining(šD,S,s). 

1: if s != min(s)  

2: › return; 

3: S <- S U {s} 

4: enumerate s in each graph in šD and count its children; 

5: for each c, c is s' child do 

6: if support(c) >= minSup 

7:     s <- c; 

8: Subgraph Mining(šDs,S,s); 

 

 2.3 Dotty (directed graph editor) 

DOT is a Unix filter that takes a DOT language file specifying the objects in a directed graph and 

output a optimal (in some sense) layout of the objects in one of a number of formats including 

Postscript and Maker Interchange Format (MIF). DOTTY is a customizable directed graph 

editor. It is a X Windows based GUI that is very easy to use. With just a few clicks of the mouse, 

you can build a graph. DOTTY is built upon DOT. 

These lines in a file: 

digraph G { 

  a -> b [label="hello", style=dashed]; 

  a -> c [label="world"]; 

  c -> d; b -> c; d -> a; 

  b [shape=Mdiamond, label="this is b"]; 
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  c [shape=polygon, sides=5, peripheries=3]; 

  d [style=bold]; 

                    } 

Produce this:- 

 

Figure 2.1 Example DoTTy graph 

 

 2.3 Counting the number of merge, keep and delete votes 

Users of Wikipedia pages can nominate an article for deletion by placing {{subst:proposed 

deletion}} on the page. If any person (even the author him/herself) objects to the deletion 

(usually by removing the {{proposed deletion}} tag), the proposal is aborted and may not be re-

proposed. The article is first checked and then deleted by an administrator 7 days after 

nomination. It may be undeleted upon request. 

If the article is undeleted it is either kept as a separate page or merged into some other page. If 

the article is merged, the administrator places {{afd-mergeto}} and {{afd-mergefrom}} on the 

appropriate pages, which tags the articles for merging via ordinary editing. 

If the article is kept, the administrator includes '''Keep''' in the edit section of the page.  

By counting the number of keep, delete and merge votes of the AfD articles during frequent time 

intervals over a period of time, we can analyze the frequent patterns in Wikipedia pages. 
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 2.4 Preparing the input 

 

Preparing input for a data mining investigation usually consumes the bulk of the effort invested 

in the entire data mining process. Here we look at a particular input file format, the attribute-

relation file format (Arff), that is used in the WEKA system. 

 2.4.1 ARFF Format 

We look at a standard way of representing datasets, called an ARFF file. We describe the regular 

version, but there is also a version called XRFF, which, as the name suggests, gives ARFF 

header and instance information in the extensible Markup Language (XML). Figure 2.3 shows an 

ARFF file for the weather data in Table 2.2, the version with some numeric features. Lines 

beginning with a % sign are comments. Following the comments at the beginning of the file are 

the name of the relation (weather) and a block defining the attributes (outlook, temperature, 

humidity, windy, play?). Nominal attributes are followed by the set of values they can take on, 

enclosed in curly braces. Values can include spaces; if so, they must be placed within quotation 

marks. Numeric values are followed by the keyword numeric. Although the weather problem is 

to predict the class value ‗play?’ from the values of the other attributes, the class attribute is not 

distinguished in any way in the data file. The ARFF format merely gives a dataset; it does not 

specify which of the attributes the one that is supposed to be predicted is. This means that the 

same file can be used for investigating how well each attribute can be predicted from the others, 

or it can be used to find association rules or for clustering. 
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Figure 2.2 Weather data in a table format



16 

 

 

Figure 2.3 Arff file format of weather data 

Following the attribute definitions is an @data line that signals the start of the instances in the 

dataset. Instances are written one per line, with values for each attribute in turn, separated by 

commas. If a value is missing, it is represented by a single question mark (there are no missing 

values in this dataset). The attribute specifications in ARFF files allow the dataset to be checked 

to ensure that it contains legal values for all attributes, and programs that read ARFF files do this 

checking automatically. As well as nominal and numeric attributes, exemplified by the weather 

data, the ARFF format has three further attribute types: string attributes, date attributes, and 

relation-valued attributes. String attributes have values that are textual. Suppose you have a 

string attribute that you want to call description. In the block defining the attributes it is specified 

like this:  

@attribute description string 

Then, in the instance data, include any character string in quotation marks (to include quotation 

marks in your string, use the standard convention of preceding each one by a backslash, \). 
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Strings are stored internally in a string table and represented by their address in that table. Thus, 

two strings that contain the same characters will have the same value. String attributes can have 

values that are very long—even a whole document. To be able to use string attributes for text 

mining, it is necessary to be able to manipulate them. For example, a string attribute might be 

converted into many numeric attributes, one for each word in the string, whose value is the 

number of times that word appears.  

 

 2.5 Brief overview of WEKA 

Experience shows that no single machine learning scheme is appropriate to all data mining 

problems. The universal learner is an idealistic fantasy. As we have emphasized throughout this 

book, real datasets vary, and to obtain accurate models the bias of the learning algorithm must 

match the structure of the domain. Data mining is an experimental science. 

 

The WEKA workbench is a collection of state-of-the-art machine learning algorithms and data 

preprocessing tools. It includes virtually all the algorithms described in this book. It is designed 

so that you can quickly try out existing methods on new datasets in flexible ways. It provides 

extensive support for the whole process of experimental data mining, including preparing the 

input data, evaluating learning schemes statistically, and visualizing the input data and the result 

of learning. As well as a variety of learning algorithms, it includes a wide range of preprocessing 

tools. This diverse and comprehensive toolkit is accessed through a common interface so that its 

users can compare different methods and identify those that are most appropriate for the problem 

at hand.  

WEKA provides implementations of learning algorithms that you can easily apply to your 

dataset. It also includes a variety of tools for transforming datasets, such as the algorithms for 

discretization. You can preprocess a dataset, feed it into a learning scheme, and analyze the 

resulting classifier and its performance all without writing any program code at all. I have used 

J48, LibSVM and Multilayer perceptron for the analysis of my data. In my project I have used 

the Explorer to analyze the data. More information about using WEKA and different classifiers 

can be found in Data Mining - Practical Machine Learning Tools and Techniques, Third Edition 

by Ian H. Witten, Eibe Frank and Mark A. Hall. 
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 2.6 Machine Learning Algorithms Used For Classification 

In machine learning and pattern recognition, classification refers to an algorithmic procedure for 

assigning a given piece of input data into one of a given number of categories. An example 

would be assigning a given email into "spam" or "non-spam" classes or assigning a diagnosis to 

a given patient as described by observed characteristics of the patient (gender, blood pressure, 

presence or absence of certain symptoms, etc.). An algorithm that implements classification, 

especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes 

also refers to the mathematical function, implemented by a classification algorithm that maps 

input data to a category. 

 

 2.6.1 Classifier used in this project  

 2.6.1.1 C4.5 Algorithm 

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5 is an 

extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used 

for classification, and for this reason, C4.5 is often referred to as a statistical classifier. 

C4.5 builds decision trees from a set of training data in the same way as ID3, using the concept 

of information entropy. The training data is a set S = s1, s2,... of already classified samples. Each 

sample si = x1, x2,... is a vector where x1,x2,... represent attributes or features of the sample. The 

training data is augmented with a vector C = c1, c2,... where c1,c2,... represent the class to which 

each sample belongs. 

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its set 

of samples into subsets enriched in one class or the other. Its criterion is the normalized 

information gain (difference in entropy) that results from choosing an attribute for splitting the 

data. The attribute with the highest normalized information gain is chosen to make the decision. 

The C4.5 algorithm then recurs on the smaller sub lists.  

J48 is an open source Java implementation of the C4.5 algorithm in the WEKA data mining tool. 

 2.6.1.2 Support vector machine 
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A support vector machine (SVM) is a concept in computer science for a set of related supervised 

learning methods that analyze data and recognize patterns, used for classification and regression 

analysis. The standard SVM takes a set of input data and predicts, for each given input, which of 

two possible classes the input is a member of, which makes the SVM a non-probabilistic binary 

linear classifier. Given a set of training examples, each marked as belonging to one of two 

categories, an SVM training algorithm builds a model that assigns new examples into one 

category or the other. An SVM model is a representation of the examples as points in space, 

mapped so that the examples of the separate categories are divided by a clear gap that is as wide 

as possible. New examples are then mapped into that same space and predicted to belong to a 

category based on which side of the gap they fall on. 

More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a high- 

or infinite- dimensional space, which can be used for classification, regression, or other tasks. 

Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the 

nearest training data points of any class (so-called functional margin), since in general the larger 

the margin the lower the generalization error of the classifier. LibSVM is a library of SVMs 

which is actively patched.  

 2.6.1.3 Multilayer Perceptron 

 

A multilayer perceptron (MLP) is a feed forward artificial neural network model that maps sets 

of input data onto a set of appropriate output. An MLP consists of multiple layers of nodes in a 

directed graph, with each layer fully connected to the next one. Except for the input nodes, each 

node is a neuron (or processing element) with a nonlinear activation function. MLP utilizes a 

supervised learning technique called back propagation for training the network. Back 

Propagation is a machine learning algorithm to train a neural network. MLP is a modification of 

the standard linear perceptron, which can distinguish data that is not linearly separable.  
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Chapter 3 - Methodology 

 3.1 Extracting the AfD pages into the local system 

For extracting the AfD pages into the local system I have used Java programming. These AfD 

pages are stored in directory hierarchy. 

 

Figure 3.1 Directory 

The directory hierarchy includes Directory as the root node. On the first level we have the 

category nodes ‗B‘, ‗F‘, ‗G‘, ‗I‘, ‗M‘, ‗O‘, ‗P‘, ‗Q‘, ‗S‘, ‗T‘, ‗U‘, ‗W‘. Each of these categories 

includes the wiki AfD articles directory. Furthermore, each of these AfD article directories 

includes the different version for that article, where each version includes the AfD article, its 

history, its links, logs, talk and view_AfD page of that article. 

 

Figure 3.2 Directory Structure
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For storing all the above information into the local system, I have used JAVA StringTokenzer 

class and its operations. 

 

 3.2 Generating version graph from AfD articles 

AfD article‘s nodes stored in each versions History directory are given as input to the program 

which generates the version graph. A version graph indicates how the various versions relate to 

each other. An object's version graph consists of nodes and arrows. Each node represents a 

version of the object and each arrow points from one object version to a successor of that object 

version. The following figure shows a typical version graph for an object with 11 versions. 

 

Figure 3.3 Version Graph 

There are two kinds of arrows. A solid arrow indicates the creation of one object version based 

on another. For example, the solid arrow from Version 6 to Version 7 indicates that Version 7 

was created based on Version 6. A dashed arrow indicates the merging of property values and 

collections from one object into another. For example, the dashed arrow from Version 10 to 

Version 11 indicates that property values and collections from Version 10 were merged into 

Version 11. 

For simplicity, the version graph that the program generates only includes the solid edges and we 

merge the versions with edge value less than the threshold into a single version. 

The edges in the version graph represent the UNIX difference between two versions as described 

in chapter 1. A sample version graph looks like this: 
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Figure 3.4 Sample version graph 

These set of version graphs are given as input to the gSpan algorithm which is used for frequent 

pattern recognition. 

 

 3.3 Input format to gSpan Algorithm 

The gSpan program is written in C++ and takes input format as follows: 

 "t # N" means the Nth graph,  

 "v M L" means that the Mth vertex in this graph has label L, 

 "e P Q L" means that there is an edge connecting the Pth vertex with the  

     Qth vertex. The edge has label L. 

 

 M, N, P, Q, and L are integers. 

The output of the gSpan algorithm has the format as follows: 

 t # id * support  

 vertex-edge list, same as the input format 

 x graph_id list 
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 "id" is an integer, the serial number of the pattern.  

 "support" is the absolute frequency of the graph pattern. 

 "graph_id list" is a list of graphs that contain the pattern. 

Example:  

 gSpan -f Compound_422 -s 0.1 -o -i 

 

 Which asks gSpan to discover all frequent sub graphs whose frequency is  

 10%. Here, the input file is "Chemical_340". It outputs the patterns in  

 "Chemical_340.fp", with graph id. 

 

 3.4 Input format for Arff data files 

 3.4.1 Baseline0 

The input format for baseline1 includes the attributes  

@relation Base0 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

DATA HERE 

 3.4.2 Baseline1 

The input format for baseline1 includes the attributes 

@relation DayX 

@attribute Difference numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 



24 

 

@data 

 Data Here 

 

 

 3.4.3 Baseline2 

The input format for baseline2 includes the attributes 

@relation DayX 

@attribute Difference numeric 

@attribute Number_of_nodes_Difference numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

Data Here 

 

 3.4.4 Baseline3 

The input format for baseline3 includes the attributes 

@relation DayX 

@attribute Difference numeric 

@attribute Number_of_nodes_Merged numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

Data Here 

 3.4.5 gSpan Baseline 

@relation DayX 
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@attribute Difference numeric 

@attribute Frequent_subgraphOccurence numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

Data Here 
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Chapter 4 - Experimental Design 

 4.1 Sample text files given as initial input 

 

Since it is harder to analyze the vertex graph for the AfD articles, I have used sample text files. 

Each of these sample text file is considered as a different version of its present version. These 

files are number 1 through 9. Where 1 denotes the first version and 9 is the last version. These 

set of files is give as the input to the methodology discussed in section 3.2 (generating version 

graph). 

 

 4.2 Step by Step Generation of Version graph for sample text files: 

The sample text files have the following information 

File 1: 

this is a text 

File 2: 

this is the text and 

File 3: 

this is a text and this is different 

File 4: 

this is a test 

File 5: 

this is a text 

File 6: 

this is 

File 7: 

this is the text and is different wohoo 

File 8: 

this is the text and 

File 9: 

this is a textddd 
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During each step if a version is same as its previous version we merge both the versions into a 

single version which is numbered after the minimum of the two versions merged. 

 Step1 

 

Figure 4.1 Step1 of edit graph 

 Step2 

 

Figure 4.2 Step2 of edit graph 
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 Step3 

 

Figure 4.3 Step3 of edit graph 
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 Step4 

 

Figure 4.4 Step4 of edit graph 

 Step5 

Since, version 5 (file 5) is same as node 1 we merge it with version1. By merging these two 

nodes, node 4 becomes the parent of node 1. 
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Figure 4.5 Step5 of edit graph 

 Step6 

 

Figure 4.6 Step6 of edit graph 
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 Step7 

 

Figure 4.7 Step7 of edit graph 

 Step8 

Since, version 8 (file 8) is same as node 2 we merge it with version2. By merging these two 

nodes, node 7 becomes the parent of node 2. 

 

Figure 4.8 Step8 of edit graph 



32 

 

 4.3 Generation of version graph with node names 

The below version graph is same as the version graph in step 8 of section 4.2 but with node 

names. 

 

Figure 4.9 Edit graph with node names 

 

 

 4.4 Isomorphism and Sample Input to the gSpan algorithm 

In graph theory, an isomorphism of graphs G and H is a bijection between the vertex sets of G 

and H such that any two vertices u and v of G are adjacent in G if and only if ƒ(u) and ƒ(v) are 

adjacent in H. This kind of bijection is commonly called "edge-preserving bijection", in 

accordance with the general notion of isomorphism being a structure-preserving bijection. 

In the above definition, graphs are understood to be undirected non-labeled non-weighted graphs. 

However, the notion of isomorphism may be applied to all other variants of the notion of graph, 

by adding the requirements to preserve the corresponding additional elements of structure: arc 

directions, edge weights, etc., with the following exception. When spoken about graph labeling 
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with unique labels, commonly taken from the integer range 1,...,n, where n is the number of the 

vertices of the graph, two labeled graphs are said to be isomorphic if the corresponding 

underlying unlabeled graphs are isomorphic. 

If an isomorphism exists between two graphs, then the graphs are called isomorphic and we 

write. In the case when the bijection is a mapping of a graph onto itself, i.e., when G and H are 

one and the same graph, the bijection is called an automorphism of G. 

The graph isomorphism is an equivalence relation on graphs and as such it partitions the class of 

all graphs into equivalence classes. A set of graphs isomorphic to each other is called an 

isomorphism class of graphs.                                                                                                                                                                                                                                                                                                                           

Graph G Graph H 
An isomorphism 

between G and H 

 

 

ƒ(a) = 1 

ƒ(b) = 6 

ƒ(c) = 8 

ƒ(d) = 3 

ƒ(g) = 5 

ƒ(h) = 2 

ƒ(i) = 4 

ƒ(j) = 7 

Figure 4.10 Isomorphism 
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Chapter 5 - Final analysis, Conclusion and Future Work 

In this chapter I analyze the WEKA classifier output for the input data presented in Chapter 3. 

The results show that adding the factors other than the number of votes  like difference 

between versions of an article, number of edits, and number of disjoint edits (according to some 

contiguity constraints) does not help much in the prediction process. This is mainly because of 

the insufficient data I have crawled from the AfD page. The results may vary significantly for 

large amounts of data. 

The data crawled in this project is the AfD log as on August 1, 2011 

(http://en.wikipedia.org/wiki/Wikipedia:Articles_for_deletion/Log/2011_August_1#Suicide_by_

hanging).  There are 64 instances of AfD articles from this log. I have done the experimental 

analysis over these 64 instances. In the following chapter I discuss the various outputs for the 

four baselines with J48, LibSVM and multilayer perceptron classifiers. 

 5.1 Experiment Analysis using J48 

 5.1.1 Baseline 0 analysis 

J48 pruned tree for: 

Keep <= 1 

|   Merge <= 0 

|   |   Delete <= 0: keep (2.0) 

|   |   Delete > 0: delete (36.0) 

|   Merge > 0: merge (3.0) 

Keep > 1 

|   Delete <= 4: keep (20.0/2.0) 

|   Delete > 4: delete (3.0) 

 

Number of Leaves :  5 

 

Size of the tree :  9 

http://en.wikipedia.org/wiki/Wikipedia:Articles_for_deletion/Log/2011_August_1#Suicide_by_hanging
http://en.wikipedia.org/wiki/Wikipedia:Articles_for_deletion/Log/2011_August_1#Suicide_by_hanging
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I have analyzed the output by looking at the confusion matrix and ROC weighted area below. It 

clearly shows that J48 does not give an accurate prediction. It has 4 false negatives and 5 false 

positives. 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.8       0.114      0.762     0.8       0.78       0.88     keep 

                 1         0.016      0.75      1         0.857      0.992    merge 

                 0.878     0.13       0.923     0.878     0.9        0.917    delete 

Weighted Avg.    0.859     0.12       0.865     0.859     0.861      0.909 

 

=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

 16  1  3 |  a = keep 

  0  3  0 |  b = merge 

  5  0 36 |  c = delete 

   

 5.1.2 Base line 1 analysis for Day6 

J48 pruned tree 

------------------ 

 

Keep <= 1 

|   Merge <= 0 

|   |   Delete <= 0: keep (2.0) 

|   |   Delete > 0: delete (36.0) 

|   Merge > 0: merge (3.0) 

Keep > 1 

|   Delete <= 4: keep (20.0/2.0) 

|   Delete > 4: delete (3.0) 
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Number of Leaves  :  5 

 

Size of the tree :  9 

The output confusion matrix and ROC weighted area is shown below. It clearly shows that J48 

still does not give an accurate prediction. It has 4 false negatives and 5 false positives. There is 

no improvement over Baseline0 

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.8       0.114      0.762     0.8       0.78       0.88     keep 

                 1         0.016      0.75      1         0.857      0.992    merge 

                 0.878     0.13       0.923     0.878     0.9        0.917    delete 

Weighted Avg.    0.859     0.12       0.865     0.859     0.861      0.909 

 

=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

 16  1  3 |  a = keep 

  0  3  0 |  b = merge 

  5  0 36 |  c = delete 

 

 5.1.3 Base line 2, Baseline 3, gSpan baseline analysis for Day6 

Baseline 2, 3 and 4 don‘t have any improvement over the Baseline0. This clearly means that J48 

algorithm is not accurate for data I have for analysis.  
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 5.2 Analysis using LibSVM 

 5.2.1 Baseline0 analysis 

Analysis using LibSVM shows that there is improvement over the process of prediction of the 

AFD page. The results in the confusion matrix clearly shows that there are only 2 false positives 

and 1 false negative which is much accurate than analysis using J48. 

 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.95      0.045      0.905     0.95      0.927      0.952    keep 

                 1         0          1         1         1          1        merge 

                 0.951     0.043      0.975     0.951     0.963      0.954    delete 

Weighted Avg.    0.953     0.042      0.954     0.953     0.953      0.956 

 

=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

 19  0  1 |  a = keep 

  0  3  0 |  b = merge 

  2  0 39 |  c = delete 

 5.2.2 Baseline1, Baseline2, Baseline3 and gSpan base analysis after Day6 

The analysis of data by adding the factors like difference between versions of an article, number 

of edits, and number of disjoint edits has the following results: 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0         0          0         0         0          0.5      keep 

                 0         0          0         0         0          0.5      merge 

                 1         1          0.641     1         0.781      0.5      delete 

Weighted Avg.    0.641     0.641      0.41      0.641     0.5        0.5   
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=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

  0  0 20 |  a = keep 

  0  0  3 |  b = merge 

0 0 41 |  c = delete 

The above analysis using LibSVM shows that adding additional factors actually decreases the 

accuracy of the result by a huge margin. The above confusion matrix has 20 false negatives for 

keep and 3 false negatives for merges. 

 

 5.3 Analysis using Multilayer Perceptron 

 5.3.1 Baseline0 analysis 

Analysis using multilayer perceptron has the results as shown below. It shows that it has no 

improvement over prediction process using LibSVM 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.95      0.045      0.905     0.95      0.927      0.968    keep 

                 1         0          1         1         1          1        merge 

                 0.951     0.043      0.975     0.951     0.963      0.978    delete 

Weighted Avg.    0.953     0.042      0.954     0.953     0.953      0.976 

 

=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

 19  0  1 |  a = keep 

  0  3  0 |  b = merge 

  2  0 39 |  c = delete 
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 5.3.2  Baseline1, Baseline2, Baseline3 and gSpan base analysis 

Baseline1, Baseline2 and Baseline3 do not have much improvement over Baseline 0. The results 

for gSpan baseline are shown in the next page. The confusion matrix shows that there is much 

accuracy over the number of deletions. 

 

 

  

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.9       0.023      0.947     0.9       0.923      0.981    keep 

                 1         0          1         1         1          1        merge 

                 0.976     0.087      0.952     0.976     0.964      0.987    delete 

Weighted Avg.    0.953     0.063      0.953     0.953     0.953      0.986 

 

=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

 18  0  2 |  a = keep 

  0  3  0 |  b = merge 

  1  0 40 |  c = delete 

 5.3.3 Baseline3 with Augmented Data 

This baseline as not discusses in earlier chapters include the data from Day6 of Baseline 3 and 

also the length of keep, merge and delete. Keep length is the sum of the lengths (words) of 

description by the users who vote article as keep. Delete length is the sum of the lengths (words) 

of description by the users who vote article as delete. Merge length is the sum of the lengths 

(words) of description by the users who vote article as merge 

Output analysis for this data using Multilayer Percpetron with Atrribute selected classifier is 

shown below. As you can see it has no improvement over Baseline0. It has 2 false negatives and 

1 false positive. 
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=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.9       0.045      0.9       0.9       0.9        0.99     keep 

                 0.667     0          1         0.667     0.8        0.995    merge 

                 0.976     0.087      0.952     0.976     0.964      0.994    delete 

Weighted Avg.    0.938     0.07       0.938     0.938     0.936      0.992 

 

=== Confusion Matrix === 

 

  a  b  c   <-- classified as 

 18  0  2 |  a = keep 

  1  2  0 |  b = merge 

  1  0 40 |  c = delete 

 

 5.4 Conclusion 

The final conclusion can  be made that the above input data of analysis does not improve the 

overall accuracy of prediction by adding factors like difference between versions of an article, 

number of edits, and number of disjoint edits (according to some contiguity constraints) in 

addition to the number of votes by much. Multilayer perceptron accurately analysis the input 

data provided when compared to other classifiers J48 and LibSVM. This is clearly because the 

above analysis is done over a data of 64 instances. This is clearly a very less sufficient data for 

analysis. Having a huge amount of data might change the overall analysis by a significant 

amount.  

 

          

 5.5 Future Improvements 

In order to improve the overall analysis of results which is the prediction of AfD outcome, we 

need to gather a considerably huge amount of data. This can be done by crawling through more 

than one AfD logs from Wikipedia. We can also add additional factors which improve the 
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efficiency of analysis. One such factor is to store the number of citations the user provides when 

he votes a particular AfD article. By storing the above information there is a high probability of 

accuracy of prediction process. We can also store information of bunch of Wikipedia AfD logs 

rather than one AfD  log. 
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Appendix A - Input Data 

Access input data from http://people.cis.ksu.edu/~a777/ 

 A.1 Arff Schema 

  Baseline0 

The input format for baseline1 includes the attributes  

@relation Base0 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

DATA HERE 

 Baseline1 

The input format for baseline1 includes the attributes 

@relation DayX 

@attribute Difference numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

 Data Here 

 

 

 Baseline2 

The input format for baseline2 includes the attributes 

@relation DayX 

@attribute Difference numeric 

http://people.cis.ksu.edu/~a777/
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@attribute Number_of_nodes_Difference numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

Data Here 

 

  Baseline3 

The input format for baseline3 includes the attributes 

@relation DayX 

@attribute Difference numeric 

@attribute Number_of_nodes_Merged numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

Data Here 

  gSpan Baseline 

@relation DayX 

@attribute Difference numeric 

@attribute Frequent_subgraphOccurence numeric 

@attribute Keep numeric 

@attribute Delete numeric 

@attribute Merge numeric 

@attribute Class { keep, merge, delete } 

@data 

Data Here 

 


