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Abstract

Background: Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity.
Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK
(Ug99) is virulent to most previously deployed resistance genes. Therefore, the objective of this study was to
identify loci conferring resistance to stem rust pathogen races including Ug99 in an Aegilops umbelluata bi-parental
mapping population using genotype-by-sequencing (GBS) SNP markers,

Results: A bi-parental F,5 population derived from a cross made between stem rust resistant accession Pl 298905
and stem rust susceptible accession Pl 542369 was used for this study. F, individuals were evaluated with stem rust
race TTTTF followed by testing F».5 families with races TTTTF and TTKSK. The segregation pattern of resistance to
both stem rust races suggested the presence of one resistance gene. A genetic linkage map, comprised 1,933 SNP
markers, was created for all seven chromosomes of Ae. umbellulata using GBS. A major stem rust resistance QTL
that explained 80% and 52% of the phenotypic variations for TTTTF and TTKSK, respectively, was detected on

chromosome 2U of Ae. umbellulata.

Conclusion: The novel resistance gene for stem rust identified in this study can be transferred to commercial
wheat varieties assisted by the tightly linked markers identified here. These markers identified through our mapping
approach can be a useful strategy to identify and track the resistance gene in marker-assisted breeding in wheat.
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Background

Wild relatives of wheat (Triticum aestivum L. and T.
turgidum ssp. durum (Desf.)) have been used in breeding
programs as sources of agronomically valuable traits.
Several genes derived from wild relatives have been
deployed in cultivated wheat varieties over the last cen-
tury and played a significant role in wheat improvement
worldwide [1]. Species of the genus Aegilops have been
successfully used in wheat wide-crossing programs [2, 3].
Though there are many challenges to introgress alien
chromatin into wheat, some of the Aegilops species have a
genome homologous to one of the three T. aestivum
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subgenomes (A, B, and D) and transfer of a favorable trait
by conventional crossing is possible [4]. However, intro-
gression barriers for many other species requires the ap-
plication of techniques such as chemical treatments,
irradiation, cold treatment, absence of particular genes
such as Phl or gametocidal genes, and bridging crosses
[2]. These techniques have facilitated the creation of a
range of addition, substitution, and translocation lines
through chromatin introgression between wheat and
Aegilops species such as Ae. comosa Sibth & Sm., Ae.
umbellulata Zhuk., Ae. geniculata Roth and Ae. biuncialis
Vis. [5]. Consequently, numerous studies have demon-
strated that Aegilops species carry useful genes for traits
such as disease and insect resistance [6], drought tolerance
[7] and salt tolerance [8]. Resistance genes to leaf rust,
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stripe rust, stem rust and powdery mildew have been suc-
cessfully transferred from Aegilops species to wheat [9-15].

Aegilops umbellulata, a Mediterranean-western Asiatic
grass, is one of the 11 diploid species in the Aegilops
genera [16] that possesses seven pairs of chromosomes
(2n = 2x = 14, UU genome). From the standard chromo-
some karyotype that has been completed for Ae. umbel-
lulata [17], six of the seven chromosomes had about the
same chromosome size. Relatively, chromosome 1U is
the shortest chromosome.

Aegilops umbellulata is the source of leaf rust resistance
gene Lr9 that was transferred to hexaploid wheat [18].
This species has also been identified as a source of resist-
ance to stem rust [19, 20], powdery mildew, Hessian fly
and greenbug [21]. In addition, it is a source of high-
molecular-weight (HMW) glutenin subunits [22, 23].

The search for new sources of resistance to stem rust,
caused by Puccinia graminis f. sp. tritici (Pgt), from wild
relatives of wheat has been intensified [24] due to the
emergence of stem rust pathogen race TTKSK (the first
isolate of this race was named Ug99). The cultivated wheat
gene pool has a narrow genetic base for resistance to Ug99
and up to 90% of world’s wheat cultivars are considered
Ug99 susceptible [25]. Since 2011, a total of five Ug99
resistance genes have been introgressed from Ae. tauschii
Coss., Ae. searsii Feldman & Kislev ex K. Hammer, and Ae.
geniculata into wheat; these are Sr51 [26], Sr53 [27],
SrTA1662 [28], SrTA10171 [29] and SrTA10187 [29].

The development of new sequencing technologies has
facilitated the discovery of a large number of SNP
markers for many crop species such as hexaploid wheat
[30], barley [31], rice [32] and maize [33]. Genotyping-
By-Sequencing (GBS), a reduced representation genotyp-
ing platform, has been used effectively to create high
density genetic maps for several cultivated crops such as
hexaploid wheat [34, 35], barley [36], oats L. [36] and
maize [37]. However, as far as we know, there is no
SNP-based genetic map that can be used to map novel
traits in Ae. umbellulata. Mapping of disease resistance
genes in wild diploid progenitor species of wheat has
been a successful strategy to aid the cloning of stem rust
resistance genes Sr35 and Sr22 from T. monococcum L
[38, 39]. Mapping in a diploid species allows for recom-
bination to readily occur whereas recombination may be
inhibited once a genomic region has been introgressed.
Only a few U genome-specific markers are available [40,
41]. Therefore, in the present study, we report a new
stem rust resistance QTL identified by scanning the en-
tire genome of Ae. umbellulata with GBS SNP markers.

Methods

Biological materials and genotyping

A total of 140 F, individuals were derived from a cross
made between two accessions of Ae. umbellulata: PI
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298905, resistant to Pgt race TTTTF (isolate 01MN84A-
1-2) and TTKSK (isolate 04KEN156/04), and PI 542369,
susceptible to both races. The two Ae. umbellulata
accessions were obtained from the publically available
National Small Grains Collection (NSGC), USDA-ARS
(https://www.ars.usda.gov/pacific-west-area/aberdeen-id
/small-grains-and-potato-germplasm-research/docs/nat
ional-small-grains-collection/). Leaf tissue was col-
lected from each F, individual and the two parents at
the seedling stage, and DNA was extracted following
a BioSprint protocol [42]. F; seeds were harvested from
each mature F, plant and used for stem rust assays. A sin-
gle GBS library was constructed for a pool of 142 samples
following a GBS protocol with the two restriction enzymes
Pstl (CTGCAG) and Mspl (CCGQG) [26]. Two barcoded
adaptors were used for each sample. The two parents were
sequenced to a depth 6X the F, individuals. The library
was sequenced on the Illumina HiSeq 2000 platform.

SNP calling and linkage map construction

Raw sequence data were processed for SNPs discovery
with the UNEAK algorithm [43] implemented in TAS-
SEL 3.0 [44]. The UNEAK parameters were set as fol-
lows: maximum number of expected reads per sequence
file 300,000,0000, restriction enzymes used for library
construction PstI-Mspl, minimum number of tags re-
quired for output five, maximum tag number in the
merged tag counts 200,000,000, option to merge mul-
tiple sample per line yes, error tolerance rate 0.03, mini-
mum/maximum minor allele frequencies (MAF) 0.01
and 0.5, and minimum/maximum call rates 0 and 1. The
default parameter set was used except for the minimum
number of tag counts. SNPs with up to 80% missing data
points were retained for subsequent data analysis. How-
ever, only SNPs with no missing data, no heterozygous
allele states and polymorphic for the two parents were
converted into parental genotypes.

SNP data was first converted into parental genotypes
for polymorphic SNPs with no missing or heterozygous
genotypes for both parents. SNPs with minor allele fre-
quency (MAF) less than 20%, percent heterozygosity
greater than 80%, and proportion of missing data points
greater than 50% were also removed. Finally, after re-
moving markers with segregation distortion (p<0.01),
SNPs with missing data points of less than 10% were
used for framework linkage map construction.

Linkage map construction was done in MSTMap soft-
ware [45] with the following parameters: Distance func-
tion Kosambi, cut_off p_value 10719, no_map_dist 15,
no_map_size 0, missing_threshold 0.10, estimate_before_-
clustering no, detect_bad_data yes and objective function
ML. Map construction was done four times to stabilize
the inflated linkage map size. After each map, double
recombinants were changed into missing data guided by
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graphical genotypes. Markers with missing data points
greater than 10% were removed at each step of linkage
map reconstruction. Linkage groups from the same
chromosome were merged together and reordered.

Stem rust assay and resistance mapping

The F, individuals and both parents were evaluated
against race TTTTF to determine the inheritance of
stem rust resistance. F,.5 families derived from the same
F, plants from which DNA were extracted were assessed
for reaction to both races TTTTF (01MN84A-1-2) and
TTKSK (04KEN156/04) in the Spring of 2016, under
controlled greenhouse conditions, in order to predict the
resistance genotype of the corresponding F, plants. Ten
to twenty seedlings per family for 124 families and the
two parents were assessed for reaction to race TTTTF.
A total of 63 families were assessed for reaction to race
TTKSK. Experimental procedures for inoculation, incu-
bation, and disease assessment were conducted accord-
ing to previously described methods [46]. Stem rust
seedling infection types were scored based on the 0-4
scale [47] and plants with infection types 0-2 were con-
sidered resistant whereas plants with infection types 3—4
were considered susceptible. Each F, plant was classified
as homozygous resistant, heterozygous, or homozygous
susceptible to each Pgt race depending on the segrega-
tion of stem rust response of the corresponding F,.3
seedlings. Phenotypic segregation pattern of the disease
scores recorded on F,s; families were tested for fit to
expected segregation ratios using chi-square (x®) tests.
For the purpose of QTL mapping, F, plants classified as
homozygous susceptible, homozygous resistant, or hetero-
zygous were coded as 0, 1, 2, respectively. Quantitative
trait loci (QTL) analysis was conducted in R package
RQTL with Single QTL mapping (SIM), composite inter-
val mapping (CIM) and multiple QTL mapping (MQM)
methods. In addition, we mapped the resistance locus
using the assessment of stem rust reaction of F, plants as
a molecular marker. The disease score data was included
into the genotypic data used to create frame work linkage

Table 1 Chromosome-wise SNP markers distribution for an
Aegilops umbellulata biparental population genome-wide map

Chr  #Markers Map size (cM) Max. gap size (cM) Average gap size
U 47 80.095 39.96 1.74

2U 284 116.82 4.64 042

3U 208 118.06 18.75 0.57

4U 442 184.09 441 042

5U 207 110.74 4.86 0.54

ouU 418 172.67 5.75 041

7U 327 149.99 640 046

Total 1,933 93247
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Fig. 1 Seedling infection types of PI 298905 and Pl 542369 in
response to Puccinia graminis f. sp. tritici race TTKSK. The two leaves
on the left are PI 298905 (infection type 2-) whereas the two leaves
on the right are Pl 542369 (infection type 3+)

map using the same linkage map parameters (see linkage
map construction section).

Linkage group chromosome assignment

Chromosome assignment of the linkage groups of the
framework map was accomplished using draft genome
sequences of hexaploid wheat and barley. Chinese

Table 2 Number of resistant and susceptible F,.3 families of an
Aegilops umbellulata bi-parental population in response to stem
rust pathogen races F and TTKSK

Race  Homozygous Heterozygous Homozygous Chi-square(x’) p-value
resistant susceptible

Fe 18 69 26 6.59 0.037

TTKSK® 9 35 8 6.29 0.04

211 families excluded from F segregation results and 11 families excluded
from TTKSK segregation results due to low samples size of phenotyped F3 plants
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Spring Wheat draft genome sequence version 2 [48]
and barley whole genome sequence (WGS) [49] were
used to anchor the GBS SNP sequences. All 20,252
SNP tags were aligned to the draft sequences using
BWA “aln” algorithm with default settings. Then all
linkage maps were merged to the output of sequence
alignments. Circos tool [50] was used to visualize the
syntenic relationship of Ae. umbellulata with hexaploid
wheat and barley.

Results

SNP calling and linkage map construction

From processing raw sequences using de novo SNP calling
approach in TASSEL 3, a total of 20,252 SNPs were ob-
tained with the default setting except that the minimum
tag count was set to five. However, after removing mono-
morphic SNPs, and also SNPs outside of thresholds set for
missing or heterozygous genotypes for any of the two par-
ents, a total of 10,657 SNPs were converted into parental
genotypes (A, B and H). After another round of filtering
with MAF greater or equal to 20%, level of heterozygosity
between 20% and 80%, missing data points up to 10% and
segregation distortion P<0.05, a total of 1,933 high-
quality SNP markers were selected. These relatively higher
quality SNPs were used to construct a framework linkage
map using MSTmap software.

Initially, eight linkage groups were obtained from the
1,933 SNPs using MSTMap (Table 1). However, after
assigning all linkage groups into chromosomes, two
linkage groups were assigned to chromosome 1U, and
the remaining six chromosomes had a single linkage
group each. The two linkage groups for 1U were
merged and the SNPs were reordered. The total linkage
map size was 932.47 cM with the average gap size of
0.65 cM (Table 1). We observed chromosome 1U as the
shortest linkage group with the largest gap size of
39.96 cM. It also had the least number of markers (47).
With the exception of chromosome 3U (max gap
18.75 cM), maximum gap size was less than 7 ¢cM for
all of the remaining chromosomes. Chromosome 4U
had the largest number of markers (442), and it was
also the longest chromosome at 184 cM, followed by
chromosome 6U at 172 cM. The chromosome position
(cM) and parental genotypes of each SNP in the genetic
map is presented in Additional file 1: Table S1.

Stem rust resistance mapping

Accession PI 298905 was resistant to both Pgt races
TTTTF and TTKSK with seedling infection type 2-
whereas accession PI 542369 was susceptible to both races
with seedling infection type 3+’ (Fig. 1). The segregation of
disease reaction to races TTTTF and TTKSK significantly

Table 3 Genotype-by-sequence (GBS) markers linked with quantitative loci (QTL) that confer resistance to stem rust pathogen races

TTTTF and TTKSK
Method  Race Chromosome GBS Marker LOD 5% LOD (permutation threshold)  Phenotypic variance (%) Bayes 95% interval (cM)
CiM TTTTF  2U@94.2 Aeup1GBS11453 403 527 79.59 92.2-94.2
TTKSK  2U@9%4.2 Aeup1GBS11453 949 6.34 59.03 94.2-95.0
MQM TTTTF - 2U@95.0 Aeup1GBS13266  18.03 240 78.7 90.0-96.24
TTKSK  2U@95.0 Aeup1GBS13266 565 247 5243 85-105
TTKSK  7U@0.0 Aeup1GBS16369 346 247 18.85 0.0-21.02
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deviated from a 1:2:1 ratio for F,.; families (Table 2). How-
ever, the segregation pattern across F,3 families was in
agreement with a 3:1 ratio for a single dominant gene
model (TTTTE X?=046 p=0.50; TTKSK, X*=042 p=
0.52). Taken together, these results suggest that the resist-
ance to each race is conferred by a single gene with domin-
ant effect. In order to test if the gene conferring the
resistance to each race is the same, the infection type to
races TTTTF and TTKSK were compared. A total of seven
F,3 families were homozygous resistant to both races, 32
families were heterozygous to both races, seven families
were homozygous susceptible to both races, and one family
was susceptible to race TTKSK, but heterozygous to race
TTTTE. This co-segregation pattern deviated from the ex-
pected ratio for independent resistant loci (X*=70.3 p =
3.90 X 107°). These results suggest that the resistance to
races TTKSK and TTTTF resistances is conferred by the
same gene or by tightly linked genes at the same locus.

The disease resistance classification data for races
TTTTF and TTKSK of the F,.; families were used for
QTL scanning across all seven chromosomes. On the
basis of whole-genome scanning using CIM and MQM
qtl mapping methods, a major resistance QTL for both
races TTTTF and TTKSK was identified on chromo-
some 2U linked to markers AeuplGBS11453 and
Aeupl1GBS13266 (Fig. 2, Table 3). This QTL explained
close to 80% of the phenotypic variation for response to
race TTTTF and more than 52% of the phenotypic vari-
ation for response to race TTKSK (Table 3). Using single
qtl mapping methods (SIM) such as Haley-Knot regression
(hk), extended Haley-Knot regression (ehk), expectation
maximization (em) and non-parametric (np) methods
(Additional file 2: Table S2), the QTL associated markers
were located within 2—3 cM distance from the major QTL
detected on chromosome 2U with multiple QTL methods.
A minor QTL was also detected on chromosome 7U for
response to race TTKSK (Additional file 2: Table S2, Fig. 2).
In addition, the creation of a linkage map with the disease
score as a marker placed the phenotype in the QTL region
of chromosome 2U between marker AeuplGBS16910
(89.4 cM) and AeuplGBS2109/9405 (90.5 cM) (Fig. 3).
From sequence similarity search in hexaploid genome
sequence databases, best hits were found for marker
AeuplGBS16910 on chromosome 2AL and 2DL; for
marker Aeup1lGBS2109 on chromosome 2BL and 2DL;
for marker Aeup1GBS9405 on chromosome 2DL indi-
cating the QTL detected in this study is on the distal
end of the centromere 2U.

Anchoring SNP tags into hexaploid wheat and barley
genomes

Uniquely aligned SNP tags using BWA on genome as-
semblies of hexaploid wheat and barley were used to
assign linkage groups to chromosomes. The most hits
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were found for hexaploid wheat followed by barley. The
chromosome similarity of Ae. umbellulata with that of
hexaploid wheat and barley varied depending on the
chromosome. Good collinearity was observed between
chromosomes 1U, 2U, 3U and 5U, and group 1, 2, 3 and 5
of hexaploid wheat, respectively (Fig. 4). On the contrary,
the segments of the remaining three chromosomes of Ae.
umbelullata (4U, 6U and 7U) were duplicated across
different groups of wheat chromosomes. Segments of
chromosome 4U were mainly found on group 1, 6 and 7
of hexaploid wheat whereas chromosome 6U segments
were duplicated on chromosomes of group 4, 5, and 6 of
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hexaploid wheat. Segments of chromosome 7U were
found on groups 3, 4 and 7 of hexaploid wheat. For all Ae.
umbellulata chromosomes, the SNP tags were almost
equally distributed across homoleogous chromosomes. A
similar syntenic relationship with barley was observed
(Fig. 5). With the exception of chromosomes 4U, 6U and
7U, the majority of SNP tags of Ae. umbellulata chromo-
somes were assigned to the corresponding chromosomes
of barley. Although the stem rust resistance linked
markers on 2U (94-95 cM) did not pass the threshold
level used for blast search, other markers in the QTL
region such as AeulGBS2874 (92.60 cM), Aeul GBS6092

-

N

Fig. 4 Synthenic relationship between Ae. umbellulata and hexaploid wheat using SNP tags of mapped GBS markers




Edae et al. BMC Genomics (2016) 17:1039

Page 7 of 10

Fig. 5 Synthenic relationship between Ae. umbellulata and barley (H. vulgare) using SNP tags of mapped GBS markers

5U

(96.24 cM) and AeulGBS17509 (99.72 cM) showed a
match with scaffolds on the long arms of group2 chromo-
somes of wheat. Furthermore, majority of the markers
within 20 cM on the proximal end of the QTL peak were
consistently assigned to the long arms of group 2 chromo-
somes of wheat.

Discussion

The discovery of novel genes from alien sources and
transfer to the domesticated gene pool is an efficient,
cost-effective and environment-friendly strategy to

combat rust epidemics including stem rust. In this line,
many wild relatives of wheat have been used as a source
of wheat rust resistance genes in wheat breeding pro-
grams [51]. Molecular markers have been found promis-
ing for introgression of favorable QTL/genes that confer
disease resistance [52]. In the current study, we mapped
a novel major stem rust resistance QTL from Ae. umbel-
lulata, a diploid wild relative of cultivated wheat, using a
bi-parental population genotyped with GBS technology.
As there was no previously constructed genetic linkage
map for Ae. umbellulata, a framework linkage map was
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created with a total of 1,933 SNPs. The total linkage
map size across seven chromosomes of Ae. umbellulata
was 932.47 cM with the average gap size of 0.65 cM. Al-
though chromosome 1U was the shortest chromosome
on the previously reported Ae. umbellulata chromosome
karyotype [17], the short linkage group size obtained
here for chromosome 1U was mainly due to the absence
of markers residing in the centromeric region. This re-
sulted in a gap of about 40 cM between the two arms of
the chromosome. The poor marker coverage for chromo-
some 1U could be due to removal of a large number of
markers due to segregation distortion, low minor allele
frequency and high missing data. Overall, markers were
fairly evenly distributed for the remaining six chromo-
somes. However, complete marker coverage for all chro-
mosomes could be achieved by constructing a consensus
map from two or more bi-parental populations.

The availability of the draft genome sequences of
hexaploid wheat [47, 53] and barley [48, 54] greatly facil-
itated the construction of the linkage map in this work.
Chromosome assignments and identification of inverted
linkage groups were accomplished without anchor
markers through the integration of 64 bp of GBS SNP
tags into draft sequences of these species. As expected,
more SNP tags were anchored to hexaploid wheat than
barley. However, assignment of the linkage groups into
their respective chromosomes still had high integrity
with barley as there was a one-to-one relationship be-
tween Ae. umbellulata and barley chromosomes. The
pattern of syntenic relationship observed between hex-
ploid wheat and Ae. umbellulata in the current study is
broadly similar with previously reported results based on
wheat markers [40, 55, 56] except for chromosome 7U
that shared segments with group 3 chromosomes of
wheat instead of group 6. From the syntenic relationship
between Ae. umbellulata and barley, chromosome 7U
had common markers with 7H and 3H but none with
6H (Fig. 5). The relationship between 4U and group 1 of
wheat is not known in previous observations. The previ-
ously reported syntenic relationships between wheat and
Ae. umbellulata were established based on few markers
per chromosome and only show macro-level synteny
between the two species. However, generating large
number of markers per chromosome as done in the
current work may allow to access regions of chromo-
somes that not represented when sparse markers per
chromosomes are used.

Seedling infection type data recorded after inoculating
the F,.; families allowed accurate resistance classification
of F, plants. With genome-wide QTL scanning methods,
a major QTL region conferring resistance to stem rust
pathogen races TTTTF and TTKSK was identified on
chromosome 2U. When mapped as a qualitative trait,
the linkage map position of the resistance gene also
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agreed with the detected QTL region. Group 2 chromo-
somes of hexaploid wheat also harbor 19 stem resistance
QTL [57] including major genes such as Sr32 (chrs 2A,
2B and 2D), Sr21 (chr 2A), Sr39, Sr36, Sr47, Sr28 and
Sr9 (chr 2B) and Sr46 (chr 2D). However, the newly
mapped QTL in the current investigation and the Ae.
umbellulata-derived leaf rust resistance gene (Lr9) are
located on different chromosomes as the latter was de-
rived from chromosome 6U and the introgressed seg-
ment was also mapped on chromosome arm 6BL of
hexaploid wheat [58, 59]. This demonstrates that Ae.
umbellulata is a source of untapped rust resistance
genes that need to be exploited in the future.

Conclusions

This study presents the first QTL detected for stem rust
resistance from Ae. umbellulata, a wild relative of wheat.
The new QTL was mapped on chromosome 2U using
an F,3 bi-parental population with GBS markers. The
stem resistance QTL-associated markers in the current
study can facilitate a rapid selection of wheat-umbellu-
lata recombinant events in alien gene introgression
breeding programs and aid in the cloning of this gene.
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